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Chapter 1: Introduction

Biology is complex. Even simple life forms display intricate behaviors that
are difficult to fully comprehend. The human body is an advanced organism
composed of a vast number of molecules that interact with one another, form
cells and tissue, and carry out various functions. The ability of such a biological
system to remain reasonably stable is one of nature’s true miracles. Medical
research is tightly coupled to biology, and its objective is to provide understand-
ing of, and ultimately control over, disease processes and other physiological
phenomena. This is an incredibly difficult task.

Cancer is one of the most grief-causing diseases worldwide, and it takes
many forms. In most cases it is thought to be driven by mutations that lead to
the proliferation of disobedient cells, whose increasingly fast spread devastates
the body unless stopped. Fortunately, a massive research effort has led to
longer survival rates and an improved quality of life for many cancer-afflicted
individuals. This has been enabled by the development of effective treatments
that target specific cancer subtypes and diagnostic tools that enable an early
detection of the disease. However, early detection is not yet guaranteed, and
prognosis often remains poor when the disease is detected at a late stage.

Historically, biology has been studied at a component level; the behavior
of a single compound is observed under various conditions, and the behavior
of the compound’s environment is extrapolated from those observations. The
advent of DNA and RNA sequencing techniques brought on a new era; with
these techniques, thousands of genes and transcripts can be measured in the
same experiment, and the behavior of the system as a whole can be studied
more directly. [1;2] Similarly, mass spectrometry (MS) is a technique that can
measure thousands of peptides, proteins, metabolites, and other molecules in
tissue samples. [3]

An MS experiment involves several nontrivial steps. These include care-
fully preparing the samples for MS analysis, calibrating and configuring the
instrument, processing the mass spectra to identify and quantify compounds,
statistical analysis to determine which compounds are related to the research
question, and finally interpreting the results in a biological context. Errors
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2 CHAPTER 1: INTRODUCTION

introduced at an early stage in the experimental pipeline are hard to remove or
correct for in subsequent stages. Thus, it is critical that the experimental design
is sound and that each step is carried out with great care.

In many ways, MS-based research resides at the interface between multiple
disciplines; it is often used to answer biological or medical questions, but ex-
pert knowledge of chemistry, physics, and engineering is required to apply it
successfully. During my thesis project I have focused on the development and
evaluation of techniques that enable accurate preprocessing of MS data, and
on the application of thorough statistical analysis to the final protein/peptide
expression data in the context of clinical research. Before diving into all the
details of MS-based biological research, however, I will briefly reiterate some of
the fundamental concepts of biology.

Biology and Medicine

All life forms, as we define them, are different constellations of one or more cells.
A cell is a living being in itself: it reproduces by replicating itself, maintains
its genetic integrity through DNA repair, grows by metabolizing nutrients, and,
importantly, synthesizes proteins. Proteins are instrumental to any organism
since they carry out the majority of functions, and they are synthesized through
two sequential processes: transcription and translation (Figure 1). During
transcription, nucleotide sequences (genes) in the DNA are read and used to
produce strands of RNA (transcripts), which in turn are converted to amino
acid sequences during translation. Finally, the amino acid sequences are folded
into three-dimensional structures to yield functional proteins. Some proteins
are left either completely or partially unfolded, often due to post-translational
modifications (PTMs), and these proteins were previously thought to be dys-
functional but are now known to have distinctive functions. [4;5] After synthesis,
some proteins remain inside the cell and carry out intracellular functions while
others are exported from the cell to perform extracellular functions.

The human body, an organ, and an individual cell can all be thought of as in-
creasingly complex biological systems. The human body is a collection of organs
with various functions and each organ is in turn composed of a vast number of
cells grouped by function or type. Knowledge about an individual component,
such as a protein complex, a cell type, or an enzyme, can potentially be used to
diagnose or treat diseases. Indeed, some diseases are caused by a disturbance
in the state of a single component that propagates to other components and
ultimately affects many parts of the body. The traditional pathological model of
Parkinson’s disease represents such an example: misfolding of the protein alpha-
synuclein causes it to attach to other alpha-synuclein, forming cytotoxic clumps
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Figure 1: Protein synthesis.

called Lewy bodies. In the late stages of the disease, the damage caused by the
Lewy bodies affect numerous parts of the brain, which severely degrades the
cognitive ability and motor function of the afflicted individual. Traditionally,
biological and medical research has been focused on studying small parts of
biological systems in isolation. This approach is well suited to study diseases and
other physiological states that are caused by modifications to a single compound.
However, many diseases are caused by simultaneous disruptions in the function
of multiple compounds, and the traditional approach to medical research is ill
suited to study such diseases.

The development of DNA sequencing techniques brought on a new paradigm
in biological research. These techniques (eventually) enabled the full set of genes,
the genome, of an organism to be obtained in a single experiment. Related
techniques that sequence RNA were developed simultaneously, and similarly
they enable the full set of transcripts of an organism, its transcriptome, to be
studied. At any given time, an organism contains a set of proteins in various
quantities. These proteins, and their corresponding quantities, constitute the
organism’s proteome. The scientific field that aims to study organisms’ whole set
of genes is termed genomics. Similarly, the fields that study their complete set of
transcripts and proteins are called transcriptomics and proteomics, respectively.
The proteome is different from the genome and transcriptome in one important
aspect: cells contain only a subset of the proteome and this subset varies between
body sites, whereas nearly every cell in an organism contains the same genome.
Moroever, during DNA sequencing, specific genes can be amplified to increase
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their abundance, which makes them easier to measure. Proteins, however, can
not be experimentally amplified in the same manner, which further complicates
proteomic analysis.

The genome of an organism is mostly static. Although mutations to the DNA
occur frequently, most of them are inconsequential due to countermeasures from
the organism. The transcriptome is more dynamic: one gene can often be tran-
scribed to multiple RNA sequences. An RNA transcript can produce multiple
forms of a protein, called protein isoforms. Beyond this, modifications can be
made to proteins during or after synthesis that change their ultimate function.
Such modifications are referred to as Post-Translational Modifications (PTMs),
and the most common type of PTM is phosphorylation. Other common types
are acetylation, glycosylation, hydroxylation, and methylation. [3] Altogether,
this makes the proteome of an organism highly diverse compared to its genome
and transcriptome.

Biomarker Discovery

Genes, transcripts, proteins, and many other measurable biological compounds
can all serve as potential biomarkers. A biomarker carries information regarding
the physiological state of an organism and can be used to diagnose or grade
disease; a mutated gene can indicate a particular cancer subtype, and the
presence of an antibody in the blood can indicate a viral infection. [6;7] Much
research effort is spent on finding biomarkers that can be used to detect various
types of cancer at an early stage when curative treatment is still possible.

Generally, there are two types of biomarker studies: those that are hypoth-
esis driven and those that are hypothesis free. In a hypothesis-driven study,
researchers may suspect that a specific compound, a candidate biomarker, plays
an important role in a particular disease, so they recruit a number of individuals
with the disease, collect samples from the patients, and measure the expression
of the compound in the samples. They also collect samples from healthy persons,
perform the same measurement, and compare the expression of the compound
between the diseased and the healthy samples. If the compound is systematically
up- or down-regulated in the diseased samples compared to the healthy ones,
it can be used to diagnose or grade the disease. In a hypothesis-free study,
researchers may instead try to quantify every measurable compound, or a large
fraction of them, in each sample (Figure 2). DNA sequencing, RNA sequencing,
and liquid chromatography-mass spectrometry (LC-MS) are some techniques
that enable such analyses. Differential Expression (DE) analysis can then be
performed for each individual compound, which can lead to the simultaneous
discovery of multiple novel biomarkers. Hypothesis-free and hypothesis-driven
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approaches can also be used in conjunction: measuring a large number of
compounds across a primary set of samples might yield a list of biomarker
candidates that can subsequently be either validated or rejected by analyzing a
secondary set of samples. This is commonly done in LC-MS studies by probing
for biomarker candidates in one cohort with DDA or DIA and then validating the
candidates, or rejecting them, in another cohort with high-accuracy techniques
such as Targeted MS. [8;9] The validation step is crucial to ensure that the
biomarkers found in the exploratory study are actually disease related and not
the result of experimental or measurement errors. [10;11]

protein 1 protein 2 protein 3 protein 4 protein 5

sample 1

sample 3

sample 2

sample 4

biomarker 
candidates

DE analysis

Figure 2: Exploratory studies often find biomarker candidate by
investigating the expression of a large set of compounds in different
sample groups. The candidates can then be validated, or rejected,
in subsequent studies.

Mass Spectrometry

Proteins play an integral part in a vast number of functions in biological systems,
and they often operate, and inter-operate, in highly complex ways. During
this thesis project, I have focused on a technique that is commonly used to
measure the proteome, namely mass spectrometry, and its utility in biological
and medical research. The field that studies the proteome is called proteomics.
MS-based proteomics relies heavily on the availability of genome sequence data
and is therefore tightly coupled to genomics and transcriptomics. A mass
spectrometer is an instrument whose ability to separate ionized molecules based
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on their mass-to-charge ratio (m/z) makes it an invaluable tool for the analysis
of complex biological samples. [12] To identify and quantify compounds from the
data generated with mass spectrometry, substantial data processing is necessary.
There are numerous ways to utilize mass spectrometry in biological and medical
research and during my thesis I have dealt with two of the most common ones:
liquid chromatography coupled to mass spectrometry and mass spectrometry
imaging (MSI). The two techniques are complementary in many ways and can be
used in conjunction to gain a deeper insight into the biology of a sample. LC-MS
is a highly sensitive analytical technique that can resolve and quantify thousands
of compounds in complex biological samples. MSI is not quite as sensitive as
LC-MS but provides spatial information for each resolved compound. Although
there are some fundamental differences between LC-MS and MSI, there are
many shared aspects in how their data is processed.

There are three major components in a mass spectrometer: an ion source
that ionizes molecules, a mass analyzer that separates molecule ions by their
m/z, and a detector that counts the abundance of the ions. Compounds in
both solid, liquid, and gas phases can be analyzed with mass spectrometry.
The ionization technique depends on the phase of the compound; electrospray
ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) are
the two primary techniques for analyzing liquid and solid biological samples. [13]

There are multiple types of mass analyzers; time-of-flight (TOF) analyzers have
a high acquisition speed but low resolution and precision, whereas Fourier
transform ion cyclotron resonance (FT-ICR) and Orbitrap analyzers achieve
excellent resolution and precision but are typically more expensive and have
lower acquisition speeds. [14;15]

The mass spectrometer is sometimes coupled to a high-performance liquid
chromatography (LC) system. The LC system physically separates molecules
based on their hydrophobicity. The combined LC-MS system thus has the
crucial property of separating molecules both by their hydrophobicity and by
their molecular weight. The two-dimensional separation is needed since biolog-
ical samples can contain more than 100,000 different compounds and many of
them have similar or identical masses. During analysis with LC-MS, molecules
continuously travel through the chromatographic column toward the mass spec-
trometer in which they are ionized, separated, and quantified. The travelling
speed of a molecule depends on its hydrophobicity, and the time it takes to travel
through the full length of the column is called its retention time (rt). The output
of an LC-MS experiment is a data set consisting of a large number of mass
spectra collected throughout the experiment. Figure 3 shows the distribution
of intensities over the m/z and rt dimensions from an LC-MS data set. Gas
Chromatography (GC) is an alternative to LC, and it can also be coupled to mass
spectrometry. GC-MS is mainly used in metabolomic studies, and although I
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Figure 3: Compounds are separated in two dimensions, retention
time and mass, with LC-MS. Isotopic envelopes appear as peak
clusters on the retention time - m/z - intensity surface.

have not dealt with it during my thesis project, it is similar to LC-MS in many
aspects. [16;17]

The LC-MS system provides excellent separation of compounds due to its
two-dimensional nature, but it can generally not be used to uniquely identify
those compounds unless an extra step is added. The reason for this is that many
compounds have identical masses, and the retention time of a particular molecule
can vary greatly between experiments and is therefore difficult to utilize for
identification. To be able to uniquely identify a peak on the m/z−rt−intensity
surface, a second step is performed in the mass spectrometer. In this step, the
mass spectrometer isolates molecule ions whose m/z is close to that of the peak
of interest, and then it funnels the isolated molecule ions through a cell where
collisions with high-energy particles cause them to break into fragment ions. The
fragment ions are then sent to a secondary mass analyzer that collects another
mass spectrum, a fragment spectrum. This fragmentation method is the most
common one and is called Collision-Induced Dissociation (CID or CAD). [18]

The fragment spectrum together with the mass of the intact molecule is often
sufficient information for a unique identification. Multiple fragment spectra are
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typically collected for various isolation windows across the m/z range. The first
spectrum, that of the intact molecules, is called the MS1 spectrum and the
fragment spectra are called the MS2 spectra. The process of collecting both
MS1 and MS2 spectra is the standard approach for molecule identification with
LC-MS and is sometimes called LC-MS/MS (or tandem MS) to explicitly state
that mass spectra are collected in multiple stages. Figure 4 shows the conceptual
structure of a peptide ion and an example MS2 spectrum and their b- and y-
ions. The fragmentation techniques used in MS primarily result in y- and b-ions;
however, a- and b-ions also occur to some extent.

Figure 4: Peptide identification with fragment (MS2) spectra and
data base matching. Top: an example peptide with three amino acid
residues (R1, R2, and R3). Bottom: an example MS2 spectrum of
the peptide KSTGGKAPR.

Many tissue types can be analyzed with LC-MS. Each tissue type has some
notable advantages and disadvantages regarding its informative value. Blood
has the considerable advantages of being is easily collected and homogeneous
throughout the body and improving the sensitivity of LC-MS blood analysis
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is a prioritized and ongoing task. [19] Blood tissue is, however, more difficult
to analyze for a number of reasons. The most important one is a technical
limitation: mass spectrometers have limited dynamic range and the distribu-
tion of blood proteins is skewed toward a small number of high abundance
proteins. Therefore, most blood proteins are invisible to mass spectrometer.
This limitation can be overcome to some extent by depleting the blood of the
high abundance proteins prior to LC-MS analysis. The compounds of interest
can also be completely absent in the blood; for example, malignant cells are
often localized to a single body site at the early stages of cancer and are thereby
not measurable in the blood, irrespective of the analysis technique.

MSI is primarily used to visualize the spatial distribution of molecules in
a tissue sample. During an MSI experiment, mass spectra are collected from
different locations across the tissue section. This results in a data set con-
taining at least one mass spectrum from each tissue location. An image of a
molecule ion can be generated by isolating the peak corresponding to its m/z
across all the spectra and mapping the resulting intensities to their locations
on the tissue section (Figure 5). MSI is more commonly used in metabolomics
than in proteomics. This is because larger molecules, such as proteins, are
difficult to measure with MSI, and because comprehensive digestion of tissue
molecules can not be performed without altering their spatial distributions.
In matrix assisted desorption/ionization (MALDI) MSI, a matrix solution is
sprayed across the tissue section. Molecules are ionized by firing a laser at the
matrix-coated tissue section, after which they can be separated by the mass
analyzer [13] There are other, less common, ionization methods in MSI such as
secondary ion MS (SIMS), desorption electrospray ionization (DESI), and laser
desorption/ionization (LDI). [20;21;22]

Like in LC-MS, fragment (MS2) spectra can be collected with MSI, but only
a few from each location due to the limited amount of material at each spot.
For the same reason, the spatial resolution is also limited, typically to a raster
size between 30-100 µm, but more recent instrument setups have achieved raster
sizes below 5 µm. [23] Fragment spectra are usually used to confirm the presence
of a known substance rather than identifying an unknown one. A key difference
between MSI and LC-MS is the lack of the rt dimension in MSI. This puts
extra demands on the resolving power in the m/z dimension, and in Paper
III we addressed these demands. It is important to note that MSI is typically
not used to identify unknown compounds and that peaks can typically not be
uniquely identified. Peaks can, however, still be annotated in an FDR-controlled
manner. [24]
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Figure 5: Left: Hematoxylin and Eosin (H&E) image of a tissue
section. Right: ion image of the same tissue section. MSI can be
used to record the spatial distribution of hundreds or thousands of
molecules in a single experiment.

Aims and Contributions of This Thesis

In the study resulting in Paper I, we used LC-MS to characterize the proteomes
of a set of tumor samples from a melanoma cohort. We then searched for
candidate biomarkers related to patient survival. I carried out most of the
statistical analysis of the data, co-wrote the manuscript, and participated in the
interpretation of the results. In the project resulting in Paper II, we developed
and evaluated a peak detection method for MSI data sets. I conceived the
project, co-designed the experiments, developed the method, and wrote the
manuscript with input from the co-authors. In the project resulting in Paper
III we developed a method for mass alignment in MSI. I participated in the
conception of the project, developed the method, analyzed the results, and wrote
the manuscript with input from the co-authors. In Paper IV, we expanded
on the work from Paper I by performing a more rigorous characterization of
the samples with state-of-the-art LC-MS techniques and instruments, automatic
and accurate histopathological assessment, and multi-omic data integration. We
were unable to validate the biomarker candidates from Paper I, but were able
to discover novel gene, protein, and phospho-proteomic biomarker candidates
and investigate the predictive power of the different -omic data sets, both in
terms of overall survival and survival after metastasis. I contributed to the
work behind Paper I by performing a part of the survival analysis.



Chapter 2: Data Processing in
LC-MS

With some of the fundamental concepts of MS-based proteomics established, we
can start discussing some of the key challenges in the processing and analysis
of MS data and how I have addressed them. In the following sections, I will
use the term -omics when referring to the large-scale study of molecules of any
type, e.g., genomics, transcriptomics, proteomics, or metabolomics. Moreover,
LC-MS/MS can be run in different modes and I will use the abbreviated LC-MS
to collectively refer to any or all of them.

For a long time, bottom-up proteomics has been the most popular approach
to large-scale protein identification and quantification. Bottom-up proteomics
indirectly measures proteins in biological samples by identifying and measuring
peptides (cleaved proteins) and then inferring protein identities from the peptide
measurements. A bottom-up MS experiment starts by preparing the sample for
analysis with LC-MS, and the main steps of the sample preparation are ex-
traction, denaturation, and digestion. Proteins are extracted with various lysis
buffers, which destruct cells membrane and liberate single protein molecules.
The proteins are then denatured by adding chaotropic reagents, such as urea,
to collapse their 3-D structures. Specifically, the proteins’ disulfide bonds are
broken through the process of reduction/alkylation, and this causes them to
lose their 3-D structure. Finally, digestion is performed by adding an enzyme, a
protease, that cleaves the proteins into peptides to the sample mixture. Trypsin
is the most used enzyme since it cleaves the proteins into peptides that are
likely to have desirable properties such as high ionization probability. Tryptic
peptides have charged basic amino acids, such as lysine and arginine, at the
C peptide terminal, and this give them good ionization properties. The main
benefit to analyzing peptides instead of proteins with LC-MS is that peptides
are more uniform in size than proteins, which facilitates separation with LC.
Proteins can also be measured in a top-down manner with MS. However, I have
focused exclusively on bottom-up proteomics during my thesis project.

The complexity and size of an LC-MS data set demand sophisticated soft-
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ware that can process the spectra automatically. After the sample has been
analyzed by the LC-MS system, the peptides are identified and quantified by
matching the experimental spectra against theoretical ones from a sequence
database. [25;26;27;28] Finally, the proteins are inferred from the identified pep-
tides. An obvious drawback of bottom-up proteomics is that it measures pep-
tides instead of proteins. To obtain protein identities and quantities, the iden-
tified peptides belonging to the same protein must be aggregated. However,
a peptide might be present in multiple proteins, which leads to the protein
inference problem. This problem has no trivial solution. [29;30;31]

Flavors of LC-MS

LC-MS is a versatile technique that can be applied in multiple ways to measure
peptides or proteins in biological samples. It is important to highlight that none
of the modes of LC-MS achieves perfect identification or quantification accuracy;
instead, each mode has unique strengths and weaknesses that make it suitable
for certain types of experiments. The modes differ in sensitivity and specificity,
quantitative accuracy, and reproducibility, and, naturally, the mode that best
servers the objective of the experiment should be used.

Shotgun MS, or discovery MS, is a widely used mode of LC-MS whose
primary purpose is to discover or identify proteins and peptides in biological
samples. In this mode, the mass spectrometer decides which ions to fragment
based on the intensity of the peaks in the MS1 spectra. Specifically, the in-
strument automatically selects between 10 and 100 of the most intense peaks
in the MS1 spectra and collects an MS2 spectrum for each of these peaks. The
number of selected peaks is limited by the acquisition speed of the instrument.
Each selected peak will correspond to one or multiple intact molecule ions, and
these ions are called the precursor ions. Since the isolation windows are chosen
based on information in the MS1 spectra, Shotgun MS is often called Data-
Dependent Acquisition (DDA) mode, and it was the mode we used in the study
presented in Paper I. [32] The data dependency introduces a bias toward the
most abundant peptides, which can lead to a decreased proteome coverage. Due
to this bias, low abundance compounds are rarely selected for fragmentation,
which leads to an overall low sensitivity for DDA MS. Moreover, the intensity
of a compound in the MS1 spectrum is stochastic to some extent and therefore
the set of fragmented peptides during a DDA experiment is also stochastic.
This further reduces the reproducibility of DDA MS. For example, the overlap
between the set of identified peptides in two replicates is typically 60-70 % but
can be lower or higher depending on the sample preparation method and the
instrument and its configuration. Although tens of thousands of MS1 and MS2
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spectra can be generated during a DDA MS experiment, the number of detected
peptides is considerably lower than the number of peptides actually present in
the sample. Altogether, this means that reproducing the exact same set of
identified peptides from the same sample is nearly impossible.

Targeted MS is used when the objective is to detect and accurately quantify
a predetermined set of peptides in complex samples. [33] It requires a list of
targeted peptides (precursors) and a corresponding fragment library prior to
the experiment; the retention time, m/z, and high-intensity fragment ions of
each precursor must be known. In a targeted MS experiment, the instrument
is run in Selected Reaction Monitoring (SRM) mode (or, equivalently, Multiple
Reaction Monitoring (MRM) mode). Unlike Shotgun MS, the instrument does
not perform any MS1 scans. The targeted peptides are quantified by comparing
their fragment ion intensities to the corresponding intensities of reference pep-
tides. The references have amino acid sequences identical to those of their target
counterparts but are isotopically labeled. Targeted MS is data-independent in
the sense that the precursor ions are selected prior to the experiment rather
than based on the data. Targeted MS have been used to quantify proteins from
many different tissue and cell components with high accuracy, including those
in mitochondrial pathways [34]

Although Shotgun MS can identify and quantify a large number of com-
pounds in complex samples, it has some noteworthy weaknesses: low repro-
ducibility, low sensitivity, and limited quantitative accuracy. These weaknesses
mostly stem from the stochasticity in the selection of precursor ions. Targeted
MS is in many ways complementary to Shotgun MS. It is reproducible, has a
high quantitative accuracy, and is sensitive enough to detect most low abundance
compounds. However, by definition, targeted MS is unable to discover unknown
compounds outside the predefined isolation windows. Data-Independent Acqui-
sition (DIA) MS is an alternative approach that attempts to to combine the
principles behind DDA and Targeted MS to achieve both accurate identification
and quantification. [35;36] In DIA mode, the mass spectrometer isolates and frag-
ments all precursor ions within a relatively large isolation window (25 Da) at
the low or high end of the m/z range. The isolation window is then shifted, and
another fragment spectrum is collected. This process is repeated until the whole
m/z range has been covered. Thereby, the whole m/z range is scanned in cycles,
window by window, providing comprehensive fragmentation of all precursor ions
in the sample. Since there is no bias in the selection of isolation windows, DIA
experiments are significantly more reproducible than DDA experiments. The
collection of MS2 spectra from each isolation window throughout the retention
time dimension is sometimes called a swath (Figure 4), and Swath MS and DIA
Swath are synonymous to DIA MS.

There is a trade-off between swath width and cycle time. On the one
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hand, narrowing the swaths increases the cycle time because more fragment
spectra must be collected during each cycle. If the cycle time is too long, some
compounds may be missed or incorrectly quantified due to undersampling of
the chromatographic peaks. On the other hand, a wide swath width leads to
complex MS2 spectra that are the products of multiple concurrently fragmented
precursor ions, which complicates identification and quantification. [37] Because
of this, DIA demands high-performance instruments that are capable of collect-
ing a large number of fragment spectra while keeping the cycle time low. The
requirement of a fast instrument is high compared to Shotgun mode, where only
a fixed number of the most intense precursor ions are fragmented, and targeted
mode, where only a small number of narrow m/z windows are used at any given
retention time.

To summarize, DIA MS generates a more complete and reproducible picture
of the sample’s molecular composition than shotgun MS or targeted MS, but
puts greater demands on both the instrument and processing software. DIA
experiments yield massive data sets that contain chromatograms of every frag-
ment ion. This data sets can be mined in silico for any compound of interest;
in other words, if a new peptide/compound becomes interesting for whatever
reason, it can be searched for in the data set again without having to rerun the
experiment.

Quantification accuracy can be improved by chemically labeling the peptides
prior to analysis with LC-MS. We used Tandom Mass Tag (TMT-11) labeling for
the MS experiments in Paper IV. A TMT-11 tag can be used to simultaneously
analyze 2 to 11 different peptide samples prepared from cells, tissues or biological
fluids. [38]

Processing LC-MS Single-Stage Spectra

DDA, DIA, and targeted experiments generate data sets that require different
preprocessing strategies. Targeted MS is fundamentally different from DDA
and DIA in the sense that the proteins of interest are known beforehand, so no
identification is needed. Targeted data sets are therefore fairly simply to process:
the extracted ion chromatograms for the predefined m/z windows are typically
inspected manually but can be processed automatically, and each compound
can be quantified by integrating the area under its chromatographic peak. [39]

Processing DDA and DIA data sets is considerably harder, and typically involves
two steps: (i) identify compounds by performing database searches with the
MS2 spectra, and (ii) link the identification to precursor chromatograms at the
MS1 level. DIA data requires more processing than DDA due to the multiplex
nature of the MS2 spectra; because of the wide isolation windows, multiple
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precursor ions are fragmented in each window. This results in MS2 spectra
that contain fragment signals from multiple different compounds that must be
separated somehow. [40] There are three general approaches to processing DIA
data: those based on generating and querying spectral libraries, those based on
deconvolution of fragment ions, and those based on machine learning. [36;41;42]

Searching for Matches in Sequence Databases

Peptide identification is a central part of MS-based proteomics, and much re-
search effort has been spent on developing algorithms that make it as reliable
as possible. The archetypal way of identifying peptides from LC-MS data is
by matching experimental MS2 spectra against theoretical ones derived from a
sequence database. [43] It is important to note that the traditional theoretical
spectra are one dimensional: they are simply a list of mass values, one for each
possible fragment ion. The mass of a fragment ion can easily be calculated from
its amino acid sequence. A typical sequence database contains the amino acid
sequences of all the known protein of some specific organism. The selection of
the sequence database depends on the origin of the sample. Provided that the
enzyme used to digest the protein is known and that it has a specific cleavage
site, the peptide sequences can be derived from the protein sequences. Trypsin,
for example, cuts amino acid sequences after lysine(K) and argenine (R).

To match an MS2 spectrum, a peptide spectrum match (PSM) score is cal-
culated for all sequences whose intact mass is within the isolation window. Even
a relatively narrow window (≈ 0.1 Da) can result in more than 100 candidate
sequences, which makes it critical that the PSM score discriminates well between
the correct sequence and the incorrect ones. The candidate sequence with the
highest PSM score is then a potential match for the MS2 spectrum. There are
numerous algorithms for scoring PSMs, but the factor that typically has the
largest influence on the score is the number of b- and y-ions that are matched
to the fragment spectrum. Figure 6 shows a schematic overview of sequence
database matching. Provided a list of scores corresponding to candidate peptides
for a specific MS2 spectrum (those with masses within distance D from the
precursor ion), one must decide whether the highest score is the result of a true
or false match. Fenyö and Beavis [44] use the distribution of the scores of the
peptides whose masses fall within the accepted range and survival functions to
calculate the probability that the highest scoring Peptide-to-Spectrum Match
(PSM) corresponds to a true match.

Spectral libraries contain previously obtained spectra from known peptides,
and they provide an alternative to sequence databases. Because the intensity
dimension is considered as well, matching experimental spectra against those in
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Figure 6: Conceptual description of peptide identification with LC-
MS/MS. A fragment (MS2) spectrum is collected for each isolation
window and then matched against candidate peptide sequences from
the sequence database. In this example, the third peak in the MS2
spectrum matches y4 in the first sequence (CDEK) but no fragment
ion in the second sequence.
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a spectral library provides better discrimination between true and false matches
than matching experimental spectra against theoretical ones. Spectral libraries
are often generated in the same laboratory, since technical variations may render
libraries generated in different laboratories incomparable to each other. How-
ever, this limitation has been partially overcome lately due to the emergence of
standardized sample preprocessing and analysis protocols.

A third option is to match experimental fragment spectra against predicted
ones. In this approach, fragment spectra are predicted from peptide sequences.
However, accurately predicting fragment spectra is generally difficult since the
rules of CID-based fragmentation and ECS-based fragmentation are unknown,
and it was deemed infeasible for a long time. Nevertheless, recent approaches
based on neural networks have been shown to be able to accurately predict
MS2 spectra from peptide sequences. [45;46] Like spectral libraries, this enables a
direct comparison between the experimental MS2 spectrum and the predicted
one. Deep learning has also recently been used to process DIA chromatograms
and spectra. [42]

Even a successful scoring algorithm will sometimes assign the wrong sequence
to a spectrum. Since a DDA (or DIA) experiment can produce more than
100,000 MS2 spectra, there are bound to be a considerable number of incorrect
PSMs. In search engine terminology, correct and incorrect PSMs are called
true and false discoveries, respectively, and the expected fraction of incorrect
PSMs among all PSMs is called the false discovery rate (FDR). Search engines
typically provide an FDR along with the set of peptide matches. The target-
decoy approach is probably the most common one to estimating the FDR for a
set of peptide identifications. It is based on searching for peptide matches both in
the database containing correct peptide sequences (the target database) and in
a database containing incorrect sequences (the decoy database). The simplest
way to generate the decoy database is to reverse all sequences in the target
database. If the discoveries are defined as the PSMs whose scores are above
a specific threshold, then the FDR can be computed as the ratio between the
number discoveries obtained from matching the MS2 spectra against the decoy
database and that obtained from matching them against the target database. [47]

The identification accuracy can be further improved by using the approach
of Käll et al. [48]. By training a Support Vector Machine (SVM) classifier to
separate true from false identifications, they were able to substantially improve
identification accuracy. The highest scoring PSMs from the target database are
used as examples of true identifications, and those from the decoy database are
used as examples of false ones.

Peptides or other compounds identified by matching MS2 spectra against
sequence databases can be quantified by linking them to the corresponding 3-
dimensional peaks m/z-rt surface. The 3-D peaks are assembled by matching
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MS1 peaks across spectra. Quantification using MS1 spectra is advantageous in
the sense that it can be more stable than quantification based on MS2 spectra,
which is often performed by counting the number of PSMs for each identified
compound. Furthermore, 3-D peaks from different molecule isotopes can be
connected to each other and thereby provide a robust means of obtaining the
charge state of the corresponding molecule [49]

Proteogenomics

Peptide identification via database matching has one major disadvantage: pep-
tides that are present in the sample but not in the database can not be identified.
Sequence databases normally only contain the canonical sequences for each
protein known to be expressed by a particular species. The canonical sequence
is often the most common amino acid sequence for a specific gene but can be
defined based on other criteria. However, the actual protein sequences can vary
slightly between individual samples due to mutations and other factors. By pair-
ing proteomic and genomic or transcriptomic experiments, the actual sequences
can be determined. Thereby, mutated or otherwise modified protein sequences
can be identified and quantified with LC-MS. The field that utilizes proteomics in
conjunction with genomics and/or transcriptomics is called proteogenomics. A
proteogenomic approach is especially appropriate when characterizing malignant
tissue since cancer is known to be driven by mutations, and recent proteogenomic
studies have brought new insights into cancer biology. [50;51;52;53;54] The process
of generating a sequence data base for each individual sample is called generating
sample-specific databases. [55;56;57]

At a first glance, adding all possible sequence variants to the database
may seem like a viable alternative to performing an extra experiment for each
sample. However, this is infeasible because it increases the size of the database
exponentially, which leads to an exponential increase in the number of false
PSMs. A larger number of false PSMs in turn leads to a lower number of true
identifications for a specific FDR threshold. Generally, the most limiting factor
when deciding whether to pair LC-MS with DNA or RNA sequencing is the cost
in terms of reagents, time, and instrumentation. An alternative to generating
paired proteomic and genomic/transcriptomic data sets is to use databases that
contain known mutated sequences specific to certain types of cancer. Such data
bases can be created from DNA or RNA sequence data collected across multiple
studies. [58] This approach requires less resources in terms of instrumentation
and reagents compared to generating sample-specific sequence databases but is
less sensitive and specific.



Chapter 3: Data Processing
and Analysis in MSI

LC-MS is a technique whose primary strength is its ability to identify and
quantify a large number of molecules in the same sample. MSI is a related
technique that is can be used to investigate the spatial location of molecules
within a tissue sample. A key difference between LC-MS and MSI is how well
they can distinguish different molecules from one another. In contrast to LC-
MS, which separates compounds both in the m/z and retention time dimensions,
MSI separates molecules only in the mass dimension. Therefore, MSI is unable
to distinguish between molecules with the same mass. Furthermore, different
molecules often have the same spatial distribution, which makes it hard to utilize
the spatial dimensions to improve identification. In an MSI experiment, mass
spectra are typically collected from tens of thousands, or hundreds of thousands,
of positions across the tissue section. Figure 7 summarizes images of molecule
ions are generated with MSI. In LC-MS, fragment spectra have a crucial role in
compound identification, and multiple fragment spectra are typically collected
at every time point. In MSI, however, the sampling locations are small (approx.
10-200 square micrometers) and contain only a limited amount of tissue material.
Consequently, only a small number of spectra can be collected from the same
location, which makes it impossible to collect fragment spectra for more than a
small number of precursor peaks. However, to confirm the presence and spatial
distribution of a single compound of interest, such as a drug metabolite, a small
number of fragment spectra is sufficient.

There are different approaches to analyzing MSI data and the appropriate
one depends on the design and objective of the experiment. These approaches
can be roughly divided into two groups: those that aim to discover unknown
compounds in the data set and those that try to relate the spatial distribution of
a known compound to tissue structures or to the spatial distributions of other
compounds. MSI is commonly used to investigate the spatial distribution of
drugs and their metabolites. Figure 8 summarizes MSI data analysis. Features
in MSI data sets are typically peaks or isotope clusters that are present in a
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Figure 7: Conceptual description of MSI. (A): mass spectra are
collected from different locations across the tissue section. (B):
example ion images of three different compounds from a MetaSpace
data set. Ion images visualize the spatial distribution of ions and (C)
are generated by isolating peaks across the data set mass spectra.
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sufficiently large fraction of the mass spectra. A typical data analysis work-
flow begins by detecting common peaks in the data set that represent tissue
molecules. Peaks that are co-localized with that from the drug are then of
potential interest and may be identified with subsequent experiments. Co-
localized peaks are typically found by computing the correlation coefficient
between the target peak (e.g., the drug peak) and all data set peaks. Peaks
that are co-localized with specific tissue structures can be searched for in a
similar manner.

Before extracting peaks from an MSI data set, the mass spectra are typically
processed in a series of steps. The steps include baseline correction, smoothing,
mass alignment, and peak picking. Mass spectra from TOF instruments are
noisy and generally require substantial preprocessing, whereas spectra from high
performance FT instruments, e.g., those from instruments with Orbitrap or FT-
ICR analyzers, are much cleaner and require less processing. Baseline correction
is performed to remove the baseline signal from mass spectra generated by
TOF instrument and mass alignment is performed to reduce shifts in the mass
dimension between different spectra. Peak picking, now often called centroiding,
is performed to find the location and height of peaks in the mass spectra. A
fully processed mass spectrum, a centroid spectrum, is represented by a set
of m/z-intensity pairs. Although previously a popular research topic in the
MSI field, many processing steps are now performed by instrument hardware
and/or vendor software, and the primary focus of data processing is instead on
developing methods for peak annotation and/or identification. [59]

Peak Detection

Finding a common set of molecule peaks across the data set spectra is a critical
step when processing MSI data sets. This step is sometimes called peak picking
in the literature, but I will use the term peak detection here since peak picking
also often refers to extracting peaks from individual spectra. After the molecule
peaks have been found, ion images are generated by extracting the intensities
around the m/z locations of the peaks from all spectra. The molecule peaks
therefore correspond to a set of mass channels or mass bins. Ideally, a mass bin
should capture the peak of a compound in every spectrum where it is present
without capturing peaks from any other compound. [60] Carefully selecting the
locations and widths of the mass bins is thus essential to MSI data processing,
and in Paper II we proposed a novel method for sensitive and specific MSI
peak detection. Figure 9 highlights how the placement of the mass bin can
lead to fragmented or mixed ion images in peak-crowded m/z regions. [61] It
is important to note that a molecule peak does not have to be present in all
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Figure 8: Summary of MSI data analysis. Peaks are detected
across the data set spectra. The meta data may include histological
annotations (such as tissue structures or cell types) and/or the
masses of predefined target compounds (e.g, drug compounds).
Statistical analysis includes searching for peaks that are spatially
correlated to specific tissue regions or target compounds. After MSI
analysis, peaks of interest may be identified with LC-MS.

spectra, or even in most of them, since the molecule may be localized to a small
area of the tissue.

A common way to set the mass bins automatically is to compute an average
data set spectrum, a mean spectrum, and place the mass bins at the m/z
locations of its peaks. Averaging multiple spectra has the desired effect of
attenuating noise but also the undesired effect of attenuating faint compound
signals. This behavior is reflected in the mean spectrum approach, which often
leads to concise lists of high-quality ion images but tends to miss faint signals,
especially those that are localized to small regions of the tissue.

Data set peaks and ion images can also be obtained in a more hypothesis-free
manner by slicing the mass range into uniform mass bins. [62;63;64] In the slicing
approach, ion images are generated by extracting the maximum intensity value
for each spectrum and mass bin. The slicing approach has no bias toward high-
intensity peaks/compounds and can therefore be more sensitive than the mean
spectrum approach. However, many of the bins will be placed in non-informative
regions of the mass range, i.e., regions that contain no compound peaks or other
peaks of interest. This can make slicing especially unsuitable for HRMS (high-
resolution mass spectrometry) since an impractically large number of mass bins
must be used to match the resolution. The peak width at 400 m/z of a modern
FT instrument can be below 0.5 ppm; to match that resolution with the slicing
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Figure 9: Sensitivity-specificity trade off. If the mass bin is narrow
(A, B), peaks may be missed in some spectra; but, if it is too wide,
different compounds may be mixed in the same mass bin (B). The
resolving power and mass precision of the instrument are the factors
that determine the severity of this problem.
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approach, hundreds of thousands of mass bins must be used. Peak splitting is
another disadvantage; since mass bins are placed without regard for the m/z
locations of the peaks, some peaks may overlap multiple bins simultaneously (at
most two if large bins are used). Thus, some compounds result in duplicated
ion images that may be fragmented or mixed.

Annotating Features

An MSI experiment often results in a list of peaks whose spatial distribution
is related to biologically relevant tissue structures or to the spatial distribution
of a compound of interest. The compounds that correspond to these peaks can
generally not be identified from the MSI spectra, and they must therefore be
identified with another technique. Recently, however, Palmer et al. [24] proposed
a method that enables FDR-controlled annotation of metabolites from MSI
spectra. Like some algorithms for LC-MS data processing, they identify features
as isotopic envelopes at the MS1 level. However, since it is impossible to collect
MS2 spectra for a large number of MS1 peaks in MSI, they instead base their
peak annotation on knowledge about which adducts are likely and unlikely to be
attached to the molecule ions. They define a metabolite-signal match (MSM)
score:

MSM = pchaos · pspatial · pspectral. (1)

For a given compound, the subscore pspatial accounts for the (average) spatial
similarity between its isotope peaks, the spectral similarity score, pspectral, re-
flects the similarity between its experimental isotope pattern and the expected
one, and the measure of spatial structure, pchaos, reflects the level of structure
in the ion image of its monoisotopic peak.

Provided a database of known metabolite molecular formulae, or sum for-
mulae, for a particular species, the MSM score is computed for every combi-
nation of sum formula and plausible adduct. The set of MSM scores for these
combinations is analogous to the set of PSM scores from the target database
in FDR-controlled peptide identification with LC-MS. The decoy distribution
is obtained by computing MSM scores for the same sum formulae but with
implausible adducts instead of plausible ones. The decoy distribution can then
be used to set a threshold on the MSM score so that a desired FDR is obtained.
For positive mode MALDI MS, H+, Na+, and K+ are likely adducts. Since
many metabolites have identical sum formulae, this approach does not generally
yield unique identifications for annotated peaks. Instead, it provides a set of
possible molecules that share the same sum formula for each annotated peak.

It should be noted that FDR-controlled identification/annotation with MSI
is far less sensitive than FDR-controlled peptide/protein identification with LC-
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(a) Before normalization. (b) After normalization.

Figure 10: Ion image of the lipid PI (40:7) before and after TIC
normalization.

MS. The number of annotated features ranges between 2 and 200 for most
data sets uploaded to MetaSpace (https://metaspace2020.eu), whereas more
than 10,000 peptides are routinely identified in an FDR-controlled manner with
LC-MS. [65] For the purpose of compound identification, the gain of spatial
information in MSI does not make up for its limited fragmentation capability
and its lack of the retention-time dimension.

Normalization and Quantification

Label-free quantification with MSI remains an issue for multiple reasons. Firstly,
the tissue topography may affect overall ionization, and this can lead to large
variations in the total ion count (TIC) throughout the measured m/z range
between pixels/spectra. Secondly, a single peak intensity of a compound is typi-
cally not sufficiently stable to be used as the quantitative metric of a compound.
Finally, the ionization yield can differ between molecules, which complicates
relative quantification. [66] Figure 10 shows the effect of TIC normalization on the
ion image of the lipid PI (40:7) in the mouse kidney data set originally published
by Noh et al. [67]. TIC normalization is performed by dividing each intensity
value in a spectrum by its total ion count. There are many other normalization
methods, such as median or root mean square (RMS) normalization, yet no
consensus whether one method should be preferred over the others.





Chapter 4: Few Samples with
Many Variables

One of the primary objectives of exploratory -omic studies is to find molecular
signatures that can be related to clinical outcomes. A particular expression
of a set of genes or proteins might indicate that an individual is expected
to respond well to some treatment or be at a high risk of recurring disease.
A well-known example of such a signature is the MammaPrint test, which
predicts the risk of metastasis for women with early-stage breast cancer. [68]

The MammaPrint test is based on a 70-gene signature that was initially derived
in 2002 and then validated later the same year. [68;69] Another example is the
PAM50 gene signature, which is known to accurately reflect the subtypes of
breast cancer and is routinely used as a prognostic tool. [70;71] However, deriving
such signatures from complex LC-MS or gene sequencing data is no trivial
task. This is partially due to the uncertainty in the data generated with LC-
MS and other -omic techniques, but mostly due to the difficulty in obtaining
the actual biological material. The reason for the latter is somewhat obvious:
the number of individuals suffering from a particular disease is limited, and,
therefore, as are the number of available tissue samples. It can be even harder
to obtain control samples from healthy individuals (or from healthy tissue)
because doing so may cause unnecessary harm. Furthermore, analysis with high-
throughput techniques yields measurements of a large number of molecules from
each sample. The combination of this and the scarcity of the samples results in
data sets that are composed of a small number of samples with many variables.

The samples can be thought of as existing in a high-dimensional space with
the same number of dimensions as the number of measured molecules. The
position of a sample in this space is then defined by its expression of the
molecules. Formally, a data set is high dimensional when p � N , where N
is the number of samples and p the number of variables. In data sets generated
with LC-MS and other high-throughput technologies, the variables frequently
outnumber the samples by a ratio of 10-to-1 or larger. As an example, this ratio
was approximately 80-to-1 in the TMT data set we generated for the study
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presented in Paper IV (we quantified 9800 proteins in 120 samples). From a
statistical perspective, this scenario is highly unfavorable, and many statistical
methods require the inverse scenario: that there are more samples than there
are features, or at least as many. [72;73] To reiterate, increasing the number of
samples to the extent that they match the number of features is rarely an option,
but, fortunately, there are strategies for dealing with high-dimensional data and
I will introduce and discuss some of them in this section.

Dealing with High-Dimensional Data

Being aware of the problems that come with high-dimensional data, and dealing
with them appropriately, is crucial when carrying out -omic studies, irrespective
of the research question. One of the most common objectives in an exploratory
study is to find compounds whose expression levels differ between two or more
sample groups. This is frequently done by performing a series of hypothesis
tests, one for each compound. However, the risk of observing spurious differences
increases with the number of tests, and this risk should be estimated somehow.
Another objective might be to predict the outcome of new patients from their
molecular expressions. But most predictive models generalize poorly when the
number of variables is too large compared to the number of samples, and
reducing the variable space is therefore often necessary. This can be done
”outside” the model or be directly incorporated into the model. Dimension
reduction can be performed through some feature selection procedure or by
projecting the data onto a lower-dimensional space. Both feature selection and
data projection can be done in either a supervised or unsupervised manner.
Latent variable (LV) projection is one of the most popular supervised approaches
while principal Component Analysis (PCA) is probably the most common un-
supervised approach. By design, the first principal component (PC) explains
most the of the variance in the data and the second one explains the second most
variance and so on. For -omic data, the first PCs tend to capture large sources
of variation such as batch effects, differences between body sites, or differences
in the cellular composition of the tissue while later PCs mostly correspond to
noise. This is undesirable since subtle, but often clinically relevant, features of
the data are missed. Independent component analysis (ICA) is an alternative
to PCA that does not order the different sources of variation based on their
magnitudes. [74] The statistical analysis in Paper IV relies heavily on ICA, and
we were able to relate multiple independent components of the multi-omic data
to clinical data.

A common type of unsupervised analysis in -omic studies is hierarchical
clustering during which samples are grouped in a stepwise manner based on
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their similarity to each other. The Euclidean distance and Pearson correlation
are two common measures that can be used to assess the pairwise similarity
between two samples. Hierarchical clustering can be performed both with and
without dimension reduction. If it is performed without dimension reduction,
the clustering may be driven by unrelated biological processes. In fact, it is
reasonable that the most dominant processes in the tissue are unrelated to
disease. The processes of interest may be faint in comparison, and, therefore,
supervised approaches are often more appropriate. Dimension reduction with
PCA also carries the same risk: the most dominant patterns in the data can be
related processes that are medically uninteresting.

Statistical Hypothesis Testing

Hypothesis testing is probably one of the most, if not the the most, common
application of statistics. Statistical hypothesis testing relies on stating a hypoth-
esis and then testing it using observed data. For example, we might hypothesize
that there is no association between sex and height, but when we look at the
distributions of height among females and males, we conclude that it would be
highly unlikely to observe such data if our hypothesis was true. Consequently, we
reject our hypothesis, and, by extension, indirectly accept the alternative to our
hypothesis: that there is a difference in height between females and males. We
can take a similar approach when evaluating whether there is any association
between the expression of a particular compound and a disease. In this case
our default hypothesis, or null hypothesis, is that there is no link between the
disease and the expression of the compound. To test our hypothesis, we start
by measuring the compound in sick and healthy individuals. We then record
the difference in expression between the two groups, estimate the probability of
the observed difference under the null hypothesis, and reject the null hypothesis
if this probability is sufficiently low.

The probability of making an observation at least as extreme as the one
observed, on the condition that the null hypothesis is true, is perhaps the most
well-known statistical measure: the p-value. The p-value can be defined as

p = Pr(observation|H0), (2)

and the way it is estimated depends on the type of hypothesis test. The process
of identifying differentially expressed compounds in -omic data sets is called
differential expression analysis, and one of the most common approaches to DE
analysis is to perform an independent Student’s t-test for each individual com-
pound. The t-test looks at how large the difference in mean expression between
the two groups is compared to the standard deviation of the expressions. When
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the variance of the expressions is similar in the two groups, the independent
t-test is defined as

t =
X̄1 − X̄2

sp ·
√

1/n1 + 1/n2
, (3)

where X̄1 and X̄2 are the mean expression in the first group and second group,
respectively, and sp is an estimation of the pooled standard deviation. Two
frequently used alternatives to t-tests are the Linear Models for Microarray
Data (limma) and Significance Analysis of Microarray data (SAM) methods,
which are specifically designed for omic data. [75;76] The limma approach is based
on modeling the expression of a specific compound and sample, yi, as a linear
function of a set of variables xi = [1, xi1, ..., xip]:

yi = β0 + β1xi1 + ...+ βpxip + εi = xiβ + εi, (4)

where β is the vector of regression coefficients, one for each variable, and εi a
random error. The sample group is represented by a dummy variable that is
either 0 or 1 depending on whether the sample is a member of the group or
not. Multiple dummy variables are used when there are more than two groups.
Covariates are easily incorporated directly into the model, which is an advantage
of using linear models compared to t-tests.

It is important to note that the p-value is not the same as the probability
that the null hypothesis is true: Pr(H0|observation). Bayes’s theorem gives the
relationship between the two: let P (X) = Pr(observation), then

P (H0|X) =
P (X|H0) · P (H0)

P (X)
=

P (X|H0) · P (H0)

P (X|H0) · P (H0) + P (H1|X) · P (H1)
. (5)

Note that P (H0) and P (H1) (the prior probabilities of the null and alternative
hypotheses) are generally unknown, and when they are, the posterior probability
of the null hypothesis is also unknown. Furthermore, it is important to highlight
that when the prior probability for H0 is high, the posterior probability can be
high as well, even when the p-value is very low. In other words, a low p-value,
on its own, does not necessarily indicate that the null hypothesis is unlikely.

Two types of errors can be made when performing hypotheses tests in this
manner. Firstly, the null hypothesis can be falsely rejected: we incorrectly
conclude that there is an association between the disease and the compound
when there in truth is none. Secondly, we can fail to reject the null hypothesis
when there is an actual association. The first type of error is called a false
positive, or a type I error, and the second type is called a false negative, or a
type II error. Reducing the risk of a type I error is generally not possible without
increasing the risk of a type II error, and vice versa (Figure 11). The probability
of a type I error, given that the null hypothesis is true, is conventionally denoted
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Figure 11: ROC curve for hypothesis testing. The test statistic
distribution for positive samples overlaps with that for negative
samples, leading to a trade-off between specificity and sensitivity,
or type I and type II errors.

by α. Similarly, the probability of a type II error, given that the alternative
hypothesis is true, is denoted by β. The statistical power of a test (1 − β) is
defined as the probability that the test will correctly reject the null hypothesis
when the alternative hypothesis is true.

The p-value and the type I error rate, α, are not the same, even though they
are closely related. For example, we might want to perform a set of tests and
ensure that the type I error rate is at most α = 0.05. We compute a p-value
for each test and reject the null hypothesis in the tests whose p-value is below
α. The p-values from these tests will range between 0 and α. Each individual
p-value below the threshold will thus be different from α. To summarize, the
p-value is a random variable and by bounding it, we can control α.

This brings us to the issue of multiple testing and why it matters in the
context of exploratory -omic studies. Consider the scenario where we have
measured a large number of compounds, say 1000, in two groups of individuals.
We perform a set of hypothesis tests, one for each compound, and ”discover”
20 compounds whose p-value is below our significance threshold 0.01. Then we
might be curious about how probable it is that at least one of these discoveries
is false: that there is no actual difference in expression between the two groups,
and that the unlikely observation is purely by chance. This probability is known
as the family-wise error rate (FWER). The Bonferroni method controls the
FWER by rejecting the null hypothesis only when p ≤ α/m. [77] However, this
threshold is too strict for -omic data since m is often very large; to obtain a
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FWER of 0.01 in our example data set with we would have to use a p-value
threshold of 0.01/1000 = 10−5. Most true discoveries would be filtered out by
such a strict threshold. The Bonferroni approach also assumes all compounds
are independent, but many compounds are highly correlated. Instead of ensuring
that the FWER is below some threshold, we could ensure that we discover as
many true associations as possible, while at the same time restricting the number
of false discoveries. Indeed, accepting some false discoveries in an exploratory
study is reasonable because those discoveries can be detected and filtered out
with subsequent experiments or in follow-up studies. Then it is more appropriate
to control the false discovery rate than the FWER. Let Q be the fraction of false
positives among all positives:

Q =
FP

FP + TP
=

V

V + S
=
V

R
, (6)

where V and S are the number of false discoveries and true discoveries, respec-
tively. The FDR is then defined as

FDR = E[Q]. (7)

The approach of Benjamini and Hochberg [78] is among the most popular ones
for controlling FDR. Consider once more our example with 1000 compounds and
20 discoveries: how many of these discoveries are expected to be false? We used
an α of 0.01, meaning that we expect to incorrectly reject the null hypothesis
in 1 out of 100 tests (on the condition that the null hypothesis is correct in all
cases). We have performed 1000 tests, so with our p-value threshold we expect
to incorrectly reject 1000 × 0.01 = 10 null hypotheses. With our significance
threshold, we get R = 20 (20 discovered compounds) and V = 10 resulting in
an FDR of at most 0.5. Blindly choosing a FDR threshold makes as little sense
as blindly setting the type I error rate, α, to 0.05 or 0.01. There is no correct
threshold; the threshold should reflect the goal of the study. If the goal is to
discover as many biomarker candidates as possible, a threshold considerably
larger than 0.1 can be warranted.

Predictive Modeling

Predictive modeling is another major area in statistics, and it has many appli-
cations in biology and medicine. Conventionally, predictive models are divided
into two groups: those that make categorical predictions and those that make
continuous predictions. Models of the former type are called classifiers and
those of the latter type are called regression models. In the context of medicine
and the -omic fields, predictive modeling can be used to diagnose a disease or
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Figure 12: TMT protein expression and disease stage from Paper
IV. Left: projection of 8572 protein features onto the first two latent
variables found with PLS regression. Center: the PLS prediction
largely separates the two sample groups. Right: the Receiver
Operator Curve (ROC) provides a summary of the trade-off between
sensitivity and specificity.

to give a disease prognosis based on some test results. For example, Esteva
et al. [79] trained an Artificial Neural Network (ANN) to diagnosed melanoma
from (regular camera) images of suspicious moles. Their ANN model was able
to automatically diagnose melanoma with at least as high accuracy as expert
pathologists. Yuan et al. [80] predicted patient survival for various types of
cancer using different types of molecular -omic data. They found that the
predictive power of the molecular data was modest in most cases. Neverthe-
less, their results highlight an important aspect of predictive modeling in the
context of medicine: even a modestly powerful predictive model can reveal
subtle links between a disease and the expression of proteins, transcripts, or
other biomolecules, which may lead to a deeper understanding of the underlying
pathological process.

For high-dimensional data with continuous features, Partial Least Square
(PLS) regression and Nearest Shrunken Centroid (NSC) are fast and high-
performing algorithms. [81;82;83] We used PLS to predict survival in Paper I, and
Figure 12 shows how PLS can be used to predict disease stage in melanoma from
protein expression data. Christin et al. [84] showed that multivariate models can
outperform univariate approaches in DE analysis. A multivariate model can be
trained on a classification or regression task, e.g., disease stage prediction, and
then be used for feature selection. Pure -omic data sets typically only contain
continuous features, but when they are combined with clinical data, e.g, the age,
sex, or disease stage of the individuals, a predictive model that accepts a mix
of continuous and categorical features should be used. Random Forests (RF),
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and Support Vector Machine (SVM) algorithms can handle data with a mix of
continuous and categorical features and are suitable for purely continuous data
as well. PLS was initial developed for high-dimensional chemical data, such
as spectra, while NSC was developed for the analysis of high-dimensional gene
expression data.

Cross-Validation

The more features we include in a predictive model, the better the model will be
able to fit the data. This might lead us to add as many features as possible, but
once we try to make predictions on new samples whose outcome is unknown, we
will notice that our model performs much worse than expected. Including too
many features in the model makes it overfit to the data. To get a better estimate
of the model’s accuracy, a set of test samples is typically set aside before fitting
the model. The left-out samples can then be used to get a correct estimate of
the predictive accuracy of the model. This approach is appropriate when there
is an abundance of samples; but, when samples are scarce, it produces unreliable
results. On the one hand, if a small number of samples are set aside, say 5 or 10,
the randomness in the choice of those samples is high and they may be a poor
representation of the whole sample set. On the other hand, if a larger fraction
of the samples is set aside, there might too few samples left for training. One
approach to circumvent this unfavorable trade-off is repeated cross-validation.
The objective of repeated CV is to reduce the randomness in the selection of
training and test samples by repeatedly generating many splits, and it is one of
the most common approaches to estimating the expected prediction accuracy
when the sample size is small. Figure 13 illustrates how a model with too
many variables can overfit to training data, and how repeated cross-validation
is typically performed. As an example of how cross validation has been used in
-omic research, the 70 genes defining the MammaPrint signature were initially
derived by maximizing the cross-validated prediction accuracy of a survival
classifier.

It is important that all steps of the model building is performed using only
the training data. For example, if we apply PLS in a cross-validation loop,
the direction of the latent variables should be re-computed in each iteration
using only the training data. If we compute them once using all samples, the
test samples are no longer completely unseen, and our prediction error will be
underestimated. In fact, it can be considerably underestimated; in an example
from Hastie et al. [85], a k-nearest neighbor (KNN) classifier achieved a 90%
cross-validated classification accuracy when the class labels were assigned at
random, and the true accuracy should have been around 50%. By selecting the
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(a) Model fitting. (b) Repeated cross-validation.

Figure 13: (a): Example of a model with (i) too many features,
(ii) too few features, and (iii) an appropriate number of features.
If a model has too many features, it will perform poorly on new
data even though it performs well on training data. (b): Nested
cross-validation where the inner loop is used to select the optimal
parameters. The performance of the model when the optimal
parameters are used is estimated in the outer loop.

features using all data, the classifier found spurious relationships between some
variables and the response variable, which led to the overestimated accuracy.

Survival Analysis

In survival analysis, the survival function is defined as the probability that a
subject will not experience an event within a specific time period. In other
words, the subject ”survives” as long as it does not experience an event. The
subject may be an individual and the event defined as his or her death from a
particular disease, but the subject and event can also be defined in many other
ways. Conventionally, the survival function of a subject is defined as

S(t) = Pr(T > t), (8)

where T is the elapsed time, the survival time, between the beginning of the
observation period and the event. A key property of survival analysis is that
it considers the possibility that the survival times of some subjects are only
partially observed; if a subject does not experience an event within its obser-
vation period, then it is censored because we only know that its survival time
was at least as long as the observation period. This partial knowledge is still
informative and is utilized in survival modeling. In a medical context, the
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Figure 14: Kaplan-Meier estimates of the survival functions of
melanoma patients of Paper I and IV. Individuals with stage 3
melanoma clearly survive longer than those with stage 4 melanoma,
and there also appears to be minor difference in survival between
males and females.

observation period of an individual often begins when he or she is diagnosed
with a particular disease and ends when he or she dies from the disease.

While there is an abundance of algorithms for classification and regression
tasks, there are only a few approaches to survival analysis. Perhaps the most
popular one is the Kaplan-Meier (KM) estimator, which is used to estimate
the survival function of members of a specific group. Figure 14 shows the
KM estimates for individuals in the Lund Melanoma cohort with and without
distant metastases. When comparing survival times between different groups
the log-rank test is frequently used. The KM estimator and log-rank test are
often used together to provide a visualization that is easy to interpret and an
accompanying p-value. The simplicity of this approach is treacherous, however,
since researchers are tempted to use it to answer all survival-related questions,
even those for which it is unsuitable. One example is when investigating the
relationship between a quantitative value, such as the expression of a gene or
protein, and survival. Because the log-rank test compares survival between
groups, the quantitative value must somehow be used to divide the samples into
groups. A common way to do this is to split the samples into two groups based
on whether their value is below or above some cut point. The median value is
frequently used as the cut point. Information is, however, lost when categorizing
continuous variables in this manner, and therefore KM analysis is rarely the best
choice for survival analysis with continuous variables/features. [86]

A better choice for investigating the effect of continuous variables on survival
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is the Cox Proportional Hazards model. [87] The Cox model describes how a
subject’s instantaneous risk of experiencing an event (the hazard of the subject)
depends on a set of variables. The hazard of a subject at a specific time point,
t, is defined as

λ(t) = lim
dt→0

Pr(t ≤ T < t+ dt|T ≥ t)
dt

. (9)

In the Cox model, the hazard is relative to a baseline hazard, λ0(t), and is
defined as

λ(t|x) = λ0(t) · exp (β1x1 + ...+ βpxp) = λ0(t) exp(x · β). (10)

For example, if the Cox model is used to describe a person’s risk of dying at a
specific time point, the baseline hazard would likely be related to his or her age,
and the relative risk would depend on various lifestyle factors. The Cox model
is a multivariate model that accepts both continuous and categorical variables.
Like in linear regression models, categorical covariates are modeled with dummy
variables. The hazard ratio for a particular covariate is hj = exp(βj). For
continuous covariates, the Cox model provides a higher statistical power than
KM analysis with the log-rank test.

Unfortunately, the Cox model is not directly applicable in high-dimensional
settings. It requires a sufficiently large event-per-variable (EPV) ratio; a ratio
of 10 is often recommended but one between 5-9 can also be sufficient for
certain types of analyses. [88] By definition, this requirement can not be met by
high-dimensional data sets. Therefore, some strategy for reducing the number
of variables must be employed when performing survival analysis with -omic
datasets. A straightforward approach is to perform clustering of the samples
using the expression data and then look for survival differences between the
clusters. We did this as a part of the analysis for Paper I, but there is
no guarantee that survival related features will drive the clustering and the
clusters may thus be unrelated to survival. The same strategy as that used when
performing FDR-controlled DE analysis can also be used. Survival analysis with
SAM is such an example; the univariate Cox coefficients are computed for each
individual compound and are compared to a null distribution of coefficients to
obtain those that are differentially expressed. The null distribution is generated
by shuffling, or permuting, the samples. [76]) Alternatively, the feature-space of
the data can be reduced prior to Cox analysis somehow, for example with PCA
or PLS. [89;90]. Survival analysis can be performed with PLS in the following
manner:

1. Compute the first m first latent variables with PLS. Use the response
variable yi = min(Ti, Ci) where Ti is the survival time and Ci the censoring
time.
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2. Compute the values of the latent variables for each observation in the test
set and insert them into the fitted Cox model.

Note that the first step is only reasonable when most of the samples are uncen-
sored. If this is the case, the PLS approach is similar to the Supervised Principal
Components (SPCA) approach. While the simulation study of Bair et al. [89]

indicated that SPCA performs slightly better than PLS, the computational
demands of PLS are much smaller than those of SPCA. Low computational
demands can be important since extensive cross-validation is often needed to
obtain reliable estimations of the performance of these methods. The scores
on the latent variable for new data, u′, can be calculated by first scaling the
new data with the stored means and standard deviations from previous samples:
X ′s = (X ′ −m)/s, and then projecting Xs onto the latent variable: u′ = X ′sw.
Finally, u′ can be used in the Cox model that was fitted to u.

Rank products were initially developed to detect differentially expressed
genes in noisy data collected from a set of replicated microarray experiments.
In each experiment, the genes are ranked based on their fold change between
sample groups; the gene with the smallest (largest negative) fold change is given
rank 1 and that with the second smallest one is given rank 2 and so on. The
rank product, RP , for a specific gene is then defined as the geometric mean of
its rank, r, over the set of experiments:

RP = (
k∏
i=0

ri)
1/k. (11)

The rank products can also be used with a cross-validation procedure if there
is natural way to rank features based on their contribution to the prediction.
Each iteration in the cross-validation loop will then correspond to a repetition
of the experiment.

The objective of survival analysis in proteomic or other -omic studies is
rarely to maximize the predictive power of some statistical model, but rather
to determine which compounds, if any, impact survival time. Nevertheless,
predictive modeling can be used as a means of detecting those survival-related
compounds. Like previously mentioned, the features that contribute the most
to the prediction can be extracted from a regression or classification model. As
a small example of how PLS can be used to extract survival-related features
I a generated a simulated omic data set. This data consisted of 100 samples
that each had 5000 continuous predictors. The survival times of the first 50
samples were drawn from an exponential distribution with ratio 0.5 and those
of remaining samples were drawn from an exponential distribution with ratio
1.0. All values for the predictors were initially drawn from a standard normal
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distribution. I then ’upregulated’ features 1-50 in the 50 first samples by redraw-
ing them from a normal distribution with mean of 1.0. Finally, I upregulated
features 50-300 in randomly selected samples by redrawing them from a normal
distribution with a mean of 2.0. As a result, features 1-50 were related to survival
and features 51-300 were differentially expressed between some samples, but in
a manner unrelated to survival.

I then fit a univariate Cox model for each feature independently. Around
two thirds (32) of features 1-50 were among the features with the 50 lowest
p-values. The 18 remaining discoveries were thus false, resulting in an FDR of
0.36. I also performed a cross-validated PLS procedure, and in each iteration
ranked the features based on their contribution to the first latent variable. After
100 iterations I looked at the 50 features with the lowest rank products, and 44
out of features 1-50 were among these, resulting in an FDR of 0.12. Figure 15
summarizes the univariate Cox and PLS-Cox survival analyses on the simulated
data. Finally, I ran the same analysis on a slightly more difficult data set.
The results were similar: univariate cox found 5 of the true positives whereas
PLS with rank products found 25 of them, resulting in FDRs of 0.9 and 0.5,
respectively. In real applications, the number of survival-related features is
unknown, and the FDR must be estimated. Like shown before, this is trivial
for an approach based on p-values because the p-value is uniformly distributed
under the null hypothesis, which makes the number of false discoveries easy
to estimate. For the PLS approach, however, the null distribution of the rank
products depends on the data and must be estimated. The authors of the
original rank products paper suggested to do this by shuffling the sequence 1 to
m in each iteration. But this approach underestimates the FDR considerably
when the number of features is large. A alternative approach is to re-compute
the rank products using permuted samples. The samples are assigned a random
outcome, and they are thereby ’disconnected’ from their expression values. The
resulting distribution of rank products then represent the null distribution. This
is the approach we used in Paper I. In this simulated example, however, the
permutation-based approach seems to overestimate the FDR considerably.

Because the Cox model deals with partially censored data, it does not
directly predict the survival time of subjects. Instead, it predicts their hazard
scores; but, since the true hazards of the subjects are unknown, the error of
the prediction can not be trivially estimated. However, one measure that can
be used to evaluate the predictive power of the Cox-Model is the Concordance
Index (C-index). The C-index is defined as the fraction of concordant pairs
among all valid pairs of subjects. Specifically, a pair is concordant if the subject
that experienced the event first has a higher hazard score than the other subject.
Conversely, if the subject with the lower hazard score has a shorter (uncensored)
survival time than the other subject (whose survival time may be censored), the
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pair is disconcordant. Finally, if the survival time of the subject with the lower
hazard score is censored and shorter than that of the other subject, the pair is
considered invalid. The value of the C-index will range between 0 and 1 and a
value of 0.5 represents the worst possibly model, i.e., one that makes completely
random predictions.

Figure 15: Feature selection via PLS and univariate Cox in a
simulated data set with 100 samples and 5000 features. The PLS
approach found more survival-related features than the univariate
Cox approach. Top left: C-index distributions for two levels of
impact for the 50 suvival-related features. Top right: rank product
distributions for target and null distributions. Bottom: actual and
estimated FDR for the two approaches.



Chapter 5: Summary of
Papers

Two of the four works that form my thesis attempt to relate molecular signatures
to survival in metastasized melanoma. Both studies are based on the same
cohort. The first study (Paper I) focuses on peptide and protein expression,
but also includes histopathological information. In the second study (Paper
IV), we characterized the samples more deeply by performing TMT-labelled
LC-MS and phospho proteomics. In this section, I will briefly summarize the
methodology of these studies and the conclusions we drew from them.

In addition to my contributions to the melanoma studies, I have developed
two preprocessing methods for MSI data. The first one (Paper II) describes
a sensitive peak detection approach. The second one (Paper III) describes a
general and accurate mass alignment algorithm.

Summary of Paper I

The focus of the study presented in Paper I was on the relationship between
the protein and peptide expression of tumor tissue and survival in melanoma.
Specifically, we characterized tumor tissue from lymph node metastases that
had previously been surgically removed from individuals with melanoma. To
measure the peptide and protein expression in these tissues, we used DDA
MS. The survival time was defined as the duration between the removal (and
freezing) of the lymph-node metastasis and the death of the individual. The
survival times of individuals whose deaths were unrelated to melanoma were
considered censored, as were those who were still alive at the end of the study.
The individuals who only had lymph-node metastases at the time of surgery
were classified as having stage 3 melanoma and those who also had distant
metastases were classified as having stage 4 melanoma.

We used two primary approaches to investigating the relationship between
protein expression and survival. Firstly, we clustered the samples in an un-

41
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supervised manner (Hierarchical Clustering with the ConsensusClusterPlus R
package [91]) and compared survival between the resulting groups. Secondly,
we selected proteins that were strongly connected to survival with a PLS-Cox
procedure, and then clustered the samples based on their expression of the
selected proteins. Both approaches resulted in clusters with significant survival
differences, but as expected, the the clusters obtained with the supervised ap-
proach had larger survival differences than those obtained with the unsupervised
approach.

We found the proteins with the strongest link to survival with a repeated
cross-validation procedure. In each iteration of the procedure, we generated a
training fold by randomly selecting two thirds of the samples. The remaining
one third of the samples formed the test set. With the training samples, we
computed the first PLS latent variable using survival time as the response vari-
able and protein expression as input. To determine which proteins contributed
the most to the latent variable, and by extension to the prediction of the hazard
ratios, we computed the inner product between the expression of each protein
and the scores on the latent variable. The proteins were ranked by the absolute
values of their inner products. We also fit a Cox model to the survival times and
scores on the latent variable. Finally, we used the test samples to evaluate the
model by projecting their protein expression onto the latent variable and then
predicting their hazard ratios using the Cox model. In other words, the direction
of the latent variable and the coefficients of the Cox model were determined
from the training samples and subsequently evaluated with the test samples.
We computed the rank product the proteins as the product of their ranks in
each iteration. To estimate the FDR for the rank products, we generated
a null distribution of rank products. The null distribution was generated by
shuffling/permuting the samples. An FDR threshold of 0.1 gave us 27 proteins
whose expressions were associated to survival.

Summary of Paper II

In Paper II we assessed the ability of some of the most popular MSI software to
detect compound-related peaks. We evaluated three approaches: peak detection
based using the mean spectrum with MALDIQuant, Cardinal’s unknown peak
detection algorithm, and the slicing approach. We also developed a novel
method based on the distribution of all data set peak masses. Our method
clusters data set peaks using an approach similar to that of Tibshirani et al.
They group peak masses with a hierarchical clustering method, but since the
complexity of hierarchical clustering grows exponentially with number of data
points, their approach is unsuitable for high-resolution MSI data sets. Therefore,
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we instead proposed a simple graph-based clustering method: sort the data-set
peaks by m/z in ascending order, add edges between peaks whose inter-distance
is below a small distance threshold proportional to their width, and then find
peak clusters by extracting the connected components from the resulting graph.
This method has O(n log n) complexity (due to the sorting step) and is thereby
compatible with large data sets.

To prove that the mean spectrum and slicing approaches lack in sensitiv-
ity, we generated a ground-truth data set. We deposited mixtures of known
compounds at various concentration levels on the tissue section. The spots
were deliberately made small to limit the number of spectra/pixels for each
compound. This gave us a data set containing known compounds whose con-
centrations spanned three orders of magnitude and spatial distributions were
highly localized. We then tried to recall the spiked-in compounds with the peak
detection algorithms of two popular MSI software (Cardinal and MALDIQuant),
the slicing approach, and our novel cluster-wise KDE approach. The peak
detection of MALDIQuant is based on the mean spectrum approach, and that of
Cardinal unknown (we were unable to find any documentation). MALDIQuant
was only able to recall one spiked-in compound; it was expected to perform
poorly since the mean spectrum approach is especially bad at detecting highly
localized compounds. Cardinal recalled 9, and the slicing approach recalled
10. However, the monoisotopic peaks of two and three of the compounds
MALDIQuant and Cardinal recalled, respectively, were mixed with peaks from
the background and other compounds. Our cluster-wise KDE approach recalled
all 12 compounds with high mass accuracy (an average of 2.6 ppm). The high
accuracy allowed us to correctly separate all known compound peaks from other
peaks close in m/z, and to generate ion images that agreed well with the
spotting patterns of the spiked-in compounds. In contrast, the average mass
error of Cardinal was 13.03 ppm, which was insufficient for separating all the
compounds’ peaks from matrix peaks or peaks from other compounds. For each
spiked-in compound, we searched for its fragment and isotope peaks in addition
to its monoisotopic peak. Figure 16 shows the ion images of some fragments
and isotopes of Dasatinib (one of the spiked-in compounds).
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(a) Spiked-in locations. (b) Spatial correlation Dasatinib.

(c) Most correlated ion images.

Figure 16: Ion images of the 12 most correlated peaks to that of the
monoisotopic peak of Dasatinib (which we spotted at location 4 and
5). Except for two images (second and third from the left, bottom
row), the images capture isotope or fragment ions of Dasatanib with
minimal contamination from other ions.

Summary of Paper III

The spatial resolution of the mass spectrometer and its resolving power (RP) in
the m/z dimension are critical to an MSI experiment. High spatial resolution
enables molecular distributions to be related to fine tissue structures, and high
resolving power is needed to distinguish different compounds with similar masses
from one another. Like previously mentioned, there are many factors that limit



SUMMARY OF PAPER III 45

the spatial resolution, such as the amount of material at each tissue spot and
the low ionization efficiency of the commonly used MSI setups. The resolving
power depends almost exclusively on the instrument: a high-performance FT
instrument can achieve an RP of 500,000 while TOF instruments rarely achieve
an RP of more than 50,000. The low RP of TOF instruments can is often
decreased even further by a low mass precision; systematic shifts in the measured
masses of peaks over the experiment are known to be common with TOF
instruments. In Paper III, we investigated the effect of these shifts and showed
that the effective resolving power can be improved considerably by performing
mass alignment.

Our mass alignment algorithm is based on the Correlation Optimized Warp-
ing (COW) algorithm [92] and relies on modeling peaks as Gaussian variations in
intensity. Our peak model takes into account the peak broadening that occurs
with increasing m/z for most instrument types. The exact relationship between
m/z and peak width depends on the instrument type and is described by the
ion separation equation for the instrument’s mass analyzer. Mass alignment of
an MSI data set is performed by warping the mass axis of each spectrum so that
its similarity to a common reference spectrum is maximized. If the reference
spectrum is calibrated prior to alignment, the overall mass accuracy of the data
set can be improved as well. Calibration typically involves computing the mass
shifts of a small number identified peaks in the reference spectrum.

(a) aligned (b) shifted

Figure 17: Visualization of peak overlap as a measure of m/z
alignment. The overlap (volume blocks) is maximized when the
peaks are aligned perfectly and approaches zero as the peaks are
shifted relative one another.

The intensity of a peak, pi, varies with m/z according to

pi(mz) = Hi · exp(−1

2
· (µi −mz)2

σ2
i

), (12)
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where µi is the peak’s m/z centroid location, Hi its centroid height, and σi its
width. The overlap between two peaks, pi and pj , is defined as

I(pi, pj) =

∫ ∞
−∞

(
pi(mz) · pj(mz)

)
dmz. (13)

The integral in Equation 13 can be solved analytically, which is important since
it must be computed repeatedly when aligning two spectra. Figure 17 illustrates
how a mass shift between two peaks is reflected in their overlap; the overlap has
its maximum value when the peaks are aligned perfectly, and it approaches zero
as the peaks are shifted relative to each other in either direction. We also define
a similarity score, B, between two spectra, S1 and S2 in the following manner:

B(S1, S2) =
∑

|µi−µj |<ε
I(pi, pj), (14)

where ε depends on the peak width, σ. The purpose of the criterion in Equation
14 is to reduce the number of pairwise overlap computations in B. A value
between 4σ and 6σ for the threshold ε is reasonable since the overlap is negligible
at larger distances. The similarity score is a general measure of similarity
between two centroid spectra, and it can be used for multiple purposes.

Aligning two spectra in the mass dimension is equivalent to maximizing their
similarity score. We do this by warping the mass axis of one of the spectra so
that it matches that of the other. We split the mass axis into segments and allow
each segment to be stretched, compressed, or shifted either upward or downward
in m/z. We refer to the points between two segments as the warping nodes. The
set of possible warpings is defined by all combinations of warping node shifts.
To find the optimal alignment, we evaluate B for each segment individually and
then find the optimal combination of shifts with Dynamic Programming.

The combination of our pairwise similarity score and the segment-based
warping from COW results in a flexible, yet robust, alignment algorithm. An-
other virtue of our method is its compatibility with centroid spectra. A cen-
troided spectrum is a list of m/z-intensity pairs, and its data size is much smaller
than that of a continuous spectrum. Public repositories such as MetaSpace
therefore often store MSI data sets in centroid mode. These repositories contain
hundreds of data sets, many of which are generated in different laboratories
and/or with different instruments. Mass alignment facilitates direct comparisons
between such data sets, which is highly valuable because it enables public data
sets to be used for validation purposes in biomarker studies.

We applied our mass alignment method, called MSIWarp, to four publicly
available data sets and were able to demonstrate improvements of up to 95% in
mass precision. The data sets were generated with different mass analyzers and
ionization techniques. Our results thereby indicate that our method performs
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well for data sets from multiple instrument setups, which makes it especially
suitable when comparing data sets from different laboratories. Figure 18 shows
the mass precision of a peak from one of the TOF data sets before and after
alignment. The improvement in mass precision after alignment is striking, and
it enabled us to separate peaks that were initially indistinguishable.
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Figure 18: (A): mass scatter compound isotopes. (B): zoom-in on
one mass scatter before and after alignment. (C): alignment allows
the compounds to be separated.
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Summary of Paper IV

The focus of the study presented in Paper IV was again on the relationship
between the protein and peptide expression of tumor tissue and survival in
melanoma. This time, however, we went further with the molecular characteri-
zation of the tissue. We aimed to unify the proteomic, phosphoproteomic, tran-
scriptomic expressions with in-depth histopathology analysis, and relate these
data to clinical variables. Survival analysis was performed with two different
approaches: Cox analysis and outlier analysis (OLA). Instead of using a PLS-
Cox model to select survival-related compounds like we did in Paper I, we used
the regularized reformulation of the Cox model described by Simon et al. [93].
Feature selection was performed in two steps: the features whose univariate
Cox coefficient was above a specific threshold were initially used as input to
the regularized Cox model. The features that survived the regularization step
were then selected as the final features. This procedure was repeated 100 times
inside a cross-validation loop, and the features that were selected in at least 50
of the 100 repetitions were defined as related to survival. Aggregation of the
results from the outlier analysis and Cox analysis yielded a total of 298 survival-
related proteins. Out of these, 9 were selected to be validated in an independent
cohort with immunohistochemical (IHC) characterization. The independent
IHC validation cohort consisted of primary melanomas from 42 patients. Some
of these patients developed locoregional or distant metastases during the follow-
up period. Nine candidate biomarkers were studied by immunohistochemical
analysis.

We also searched for independent components in the different -omic data
sets with ICA and then investigated the association between the independent
components and clinical features. We found that multiple independent compo-
nents were significantly related to several clinical features, including survival.
We performed the same analysis with PCA instead of ICA and found that the
principal components generally exhibited a weaker relationship to the clinical
features than the independent components. This suggests that the multi-omic
data sets are better represented by additive subsets of independent non-Gaussian
sources rather than by pieces of uncorrelated information.

The fact that we were unable to validate the protein signature derived in
the first study (Paper I) has many possible explanations. Firstly, melanoma
is known to be a highly heterogeneous disease. Secondly, we used DDA MS
in the first study, which may have introduced uncertainties in the data that
led to spurious findings. Regardless, these results highlight the importance of
validating biomarker candidates.
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Conclusions and Future Perspectives

Mass Spectrometry and other high-throughput techniques have changed how we
approach many complex and challenging questions in cancer research. Still, the
full potential of mass spectrometry is yet to be realized. Low reproducibility,
largely due to the randomness of DDA MS, has been a longstanding obstacle
for research based on LC-MS. Improving the quality of the preprocessing of
LC-MS data is essential to achieving higher reproducibility, and new algorithms
and software MS data processing are published at a high rate. The MSI field
is similarly dependent on reproducible results, and, during my thesis, I have
focused on improving some of the most essential steps of MSI data preprocessing.
The results from Paper II indicate that routinely used software packages miss a
substantial fraction of compounds, particularly the faintly expressed ones. Sen-
sitivity is essential for reproducibility, and the method we proposed highlights
that there are still considerable improvements to be made.

Shareable data is critical to the success of the research fields related to
mass spectrometry. The first requirement for easily shareable data is a common
data format. For LC-MS data the common format is ”mzML”, while that
for MSI data is ”imzML”. [94;95] Instrument vendors have gradually improved
their support for these formats throughout recent years, yet some compatibility
issues remain. Public data repositories that are convenient to use is a second
requirement, and notable examples of such repositories include ProteomeX-
change, MetaSpace, and MetaboLights. [96;97] The key to maximizing the utility
of these repositories is the availability of software packages that can process data
sets from different instruments types and vendors. The software we published
together with Paper III, MSIWarp, is such an example. [98] Together with the
peak detection method presented in Paper II, it can hopefully help improve
reproducibility and facilitate data sharing in the MSI field.

It is important to remember what a proteomic data set represents: a snap-
shot of the proteome at the time of sample collection. On its own, a single
snapshot is insufficient to fully understand how disease processes develop within
the tissue, how and when the tissue responds to treatment, and how the tissue
affects and is affected by neighboring tissue. This limitation is hardly unique to
MS proteomics; every study based on in-vitro experiments is limited in the same
sense. A complete understanding of the disease process can only be gained from
continuous measurements of the same tissue, but collecting a sample is always
invasive to some degree, especially when collecting a large amount of tissue. At
the same time, each sample must contain enough biological material to reflect
the state of the tissue, regardless of the sensitivity of the analytical technique.
Frequent and systematic sample collection requires substantial dedication from
individuals participating in disease studies, particularly when the disease is
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cancer. Collecting tumor tissue from the same individual over a long time is
rarely an option because it is critical to remove all the cancerous tissue as soon
as possible to minimize the risk of metastasis. If an individual is unfortunate
enough to develop metastases, additional tissue material may be collected from
subsequent surgeries, but the previous principle is still true: no cancerous tissue
should be left after surgery. Therefore, it is hard to get more than a couple of
samples from the same individual.

For most cancers, more and better biomarkers are needed to paint a more
complete picture than the one we currently have, and a necessary step toward
obtaining them is developing better analytical techniques. Perhaps even more
important is to facilitate data sharing. The lack of validation samples were a
limitation to the study described in Paper I, and although the validation cohort
we used in the follow-up study (Paper IV) adds confidence to its conclusions,
more samples are still needed to fully validate the biomarkers it proposes. This
is especially true due to the heterogeneity of melanoma.

Beyond having access to data from other research groups is having permis-
sion and incentive to share our own. Encouraging data sharing is a political
rather than a scientific task; clinical samples are a valuable commodity, and
research groups often compete for the same grant money. This has the unfor-
tunate consequence that many groups protect their data, even after publishing
their studies. The scarcity of tissue samples remains a major bottleneck in
cancer research, and in addition to ensuring a high experimental quality and
consistency, sharing data must become a top priority for any research organiza-
tion, be it a global, national, or regional one.
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Populärvetenskaplig Sammanfattning

Biologiska system förefaller vara nästan oändligt komplexa. Människans kropp
sägs inneh̊alla flera biljarder celler som utför en mängd olika uppgifter och som
utgör olika typer av vävnad. En enskild cell är i sin tur en komplicerad organism
som är uppbyggd av proteiner, lipider och andra biomolekyler. Att fullständigt
först̊a ett sjukdomsförlopp är därför ingen enkel uppgift. Att dessutom kunna
styra det för att bota sjukdomen är ännu sv̊arare. Trots det utvecklas det
ständigt nya läkemedel och behandlingsmetoder som förbättrar v̊ara chanser
att bli botade fr̊an sv̊ara sjukdomer och att leva hälsosamma liv.

Utveckling inom gensekvensering har möjliggjort genetisk karaktärisering av
vävnadsprover. Detta har i sin tur lett till länken mellan genetik och sjuk-
dom studerats i stor utsträckning. En organisms genetik kan säga mycket
om hur den troligtvis kommer bete sig i olika sammanhang. Proteinerna är
dock de molekyler som faktiskt utför m̊anga av de funktioner som krävs för
att upprättah̊alla organismen, s̊a som energiproduktion och replikation. Att
studera proteiner och hur de p̊averkar vid och p̊averkas av sjukdom är därför
naturligt. Den tekniken som p̊a senaste år visat störst potential för att mäta
proteiner i stor skala är masspektrometri. Att studerna proteiner med hjälp av
masspektrometri är dock l̊angt ifr̊an trivialt: det krävs en noggrann förberedelse
av vävnadsprovet innan det kan analyseras av instrumentet och sofistikerade
algoritmer och datorprogram för att analysera mätdatan.

En masspektrometer joniserar molekyler i ett prov och separerar dem sedan
baserat p̊a deras molekylvikt delat p̊a laddning. Utdatan efter mätning av
ett prov är ett eller flera masspektra. Ett masspektrum är en fördelning av
molekylvikter. Masspektrometrar kan analysera flera typer av molekyler, men
de som oftast studeras i medicinska sammanhang är proteiner/peptider eller
metaboliter.

I min avhandling har jag fokuserat p̊a tillämpningen av masspektrometri
inom biologisk och medicinsk forskning. Arbetet som ligger till grund för Ar-
tikel I bestod av en retroaktiv studie av patienter med metastaserat malignt
melanom. Vi analyserade tumörvävnad med masspektrometri och länkade därefter
uppmätt proteindata till patientöverlevnad. Jag har ocks̊a utvecklat tv̊a metoder
för att förfina instrumentdata med m̊alet att i slutändan kunna f̊a s̊a hög
kvalitet p̊a mätdatan som möjligt. Den första metoden (Artikel II) ökar
sensitiviteten i MSI. Den andra metoden, som vi beskriver i Artikel III, korrig-
erar sm̊a förskjutningar i mass-dimensionen mellan masspektra. Om förskjut-
ningarna inte korrigeras kan det leda till att somliga molekyler skuggas av andra
och därmed blir osynliga i masspektran. Slutligen har vi även genomfört en
fortsättningsstudie till studien som beskrivs i Artikel I. I fortsättningsstudien
(Artikel IV) tillämpade vi kemisk ”labeling” för att kvantifiera fler proteiner



POPULÄRVETENSKAPLIG SAMMANFATTNING 53

med större mätsäkerhet. Vi utökade även v̊aran statistiska analys med flera
andra metoder som är komplementära till de vi änvände i den första studien.
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Per Oksvold, Adil Mardinoglu, Åsa Sivertsson, Caroline Kampf, Evelina
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[82] Svante Wold, Michael Sjöström, and Lennart Eriksson. Pls-regression:
a basic tool of chemometrics. Chemometrics and intelligent laboratory
systems, 58(2):109–130, 2001.

[83] Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan, and
Gilbert Chu. Class prediction by nearest shrunken centroids, with applica-
tions to dna microarrays. Statistical Science, pages 104–117, 2003.

[84] Christin Christin, Huub CJ Hoefsloot, Age K Smilde, Berend Hoekman,
Frank Suits, Rainer Bischoff, and Peter Horvatovich. A critical assessment
of feature selection methods for biomarker discovery in clinical proteomics.
Molecular & Cellular Proteomics, 12(1):263–276, 2013.

[85] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements
of statistical learning: data mining, inference, and prediction. Springer
Science & Business Media, 2009.

[86] Douglas G Altman and Patrick Royston. The cost of dichotomising
continuous variables. Bmj, 332(7549):1080, 2006.

[87] David R Cox. Regression models and life-tables. Journal of the Royal
Statistical Society: Series B (Methodological), 34(2):187–202, 1972.



BIBLIOGRAPHY 65

[88] Eric Vittinghoff and Charles E McCulloch. Relaxing the rule of ten
events per variable in logistic and cox regression. American journal of
epidemiology, 165(6):710–718, 2007.

[89] Eric Bair, Trevor Hastie, Debashis Paul, and Robert Tibshirani. Prediction
by supervised principal components. Journal of the American Statistical
Association, 101(473):119–137, 2006.

[90] Danh V Nguyen and David M Rocke. Partial least squares proportional
hazard regression for application to dna microarray survival data. Bioin-
formatics, 18(12):1625–1632, 2002.

[91] Matthew D Wilkerson and D Neil Hayes. Consensusclusterplus: a class dis-
covery tool with confidence assessments and item tracking. Bioinformatics,
26(12):1572–1573, 2010.

[92] Niels-Peter Vest Nielsen, Jens Michael Carstensen, and Jørn Smedsgaard.
Aligning of single and multiple wavelength chromatographic profiles for
chemometric data analysis using correlation optimised warping. Journal of
chromatography A, 805(1-2):17–35, 1998.

[93] Noah Simon, Jerome Friedman, Trevor Hastie, and Rob Tibshirani.
Regularization paths for cox’s proportional hazards model via coordinate
descent. Journal of statistical software, 39(5):1, 2011.

[94] Lennart Martens, Matthew Chambers, Marc Sturm, Darren Kessner,
Fredrik Levander, Jim Shofstahl, Wilfred H. Tang, Andreas
Römpp, Steffen Neumann, Angel D. Pizarro, Luisa Montecchi-
Palazzi, Natalie Tasman, Mike Coleman, Florian Reisinger, Puneet
Souda, Henning Hermjakob, Pierre-Alain Binz, and Eric W.
Deutsch. mzML—a Community Standard for Mass Spectrometry
Data. Molecular & Cellular Proteomics, 10(1):R110.000133, jan
2011. ISSN 1535-9476. doi: 10.1074/mcp.R110.000133. URL
http://www.mcponline.org/lookup/doi/10.1074/mcp.R110.000133.
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Improved survival prognostication 
of node-positive malignant 
melanoma patients utilizing 
shotgun proteomics guided by 
histopathological characterization 
and genomic data
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Metastatic melanoma is one of the most common deadly cancers, and robust biomarkers are still 
needed, e.g. to predict survival and treatment efficiency. Here, protein expression analysis of one 
hundred eleven melanoma lymph node metastases using high resolution mass spectrometry is coupled 
with in-depth histopathology analysis, clinical data and genomics profiles. This broad view of protein 
expression allowed to identify novel candidate protein markers that improved prediction of survival 
in melanoma patients. Some of the prognostic proteins have not been reported in the context of 
melanoma before, and few of them exhibit unexpected relationship to survival, which likely reflects the 
limitations of current knowledge on melanoma and shows the potential of proteomics in clinical cancer 
research.

The incidence of malignant melanoma is increasing worldwide, particularly in Western countries, and survival 
does not seem to improve substantially1. Primary surgery is curative in most patients but around 10–15% of 
tumors are showing progression. Thus, it is important to early identify those patients who carry a skin tumor with 
progressive pathobiology. Currently, Breslow thickness is the most accurate tool for predicting the disease out-
come of primary melanoma2. To improve the prediction of disease outcome, more fine-tuned molecular profiling 
and data integration tools and efforts are needed to search for alternative biomarkers3.

Metastatic melanoma (MM) still remains a tumor with poor outcome4,5 despite interventions with targeted 
therapy and antibody-driven modulation of the immune response6–11.

Recent technological developments utilizing both genomic and proteomic analysis provide the opportunity 
to identify better predictive markers of melanomas12–16. It is possible to monitor the expression of certain genes 
and also gain understanding how these genes are expressed and regulated as functional proteins. Accordingly, 
detailed, personalized information on gene and protein expression and regulation, as well as data on specific 
mutations that may guide the treatment, can be monitored. Another cornerstone of prognostic predictions is 
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clinicopathological characterization based on high quality pathological and clinical information. Equally impor-
tant is to investigate the cellular composition of the tissue, to morphologically assess in detail the quality of tumor 
samples submitted for analysis and the identification of features important for disease progression.

In this study, we combine in depth histopathology analysis of melanoma lymph node metastases with 
deep-mining protein expression analysis using high-resolution mass spectrometry and a complex bioinformatics 
workflow to integrate clinical data with protein and genomics profile information. The protein data is matched to 
genomic analysis of the same tumor tissue. This information coupled with extensive clinical information on each 
subject provides an excellent opportunity to identify novel protein markers to predict progression and survival 
of melanoma.

Results and Discussion
Clinical data. A total of 111 patients diagnosed with melanoma metastasis between 1975 and 2011 were 
evaluated in the study (Table 1). There were 68 men and 43 women among the investigated cases. Average 
age ± standard deviation (range) at diagnosis of lymph node metastasis was 62.4 ± 13.7 (25–89) years. The time 
elapsed to progression from primary tumor to lymph node metastasis was 5.0 ± 5.6 (0–18.0) years and overall 
survival was 7.9 ± 6.8 (0.2–43.0) years. The dominant histotypes of primary tumors were Superficial Spreading 
Melanoma (SSN) and Nodular Melanoma (NM) (see Table 1). The cohort included 59% of patients with wild type 
BRAF status and 36% of patients with V600E mutation in the BRAF gene (4% had V600A or V600K mutation).

Histopathological data. Frozen specimens (snap frozen immediately after surgery) were subjected to this 
evaluation. In order to relate protein expression data to the tumor cellular composition, histological analyses 
were performed on the frozen tissue sections adjacent to sections used for mass spectrometry (see Methods). 
Parameters such as tumor content, surrounding lymph node area, necrosis and connective tissue percentages and 
lymphocytic infiltration were examined by a certified pathologist (Table 2).

The range of tumor content was 0 to 100%, and for most downstream analyses the inclusion criterion was to 
have at least 15% neoplasm of the tissue. The pieces for this analysis were removed from the surgically resected 
sample at macroscopic examination (grossing), thus, their content cannot represent the whole material excised 
from the patient. Nevertheless, assuming that histopathological properties in lymph node metastases display 
relatively low variation17 we correlated the information with clinicopathological and proteomic data. The samples 

Clinicopathological 
properties n

% of 
total

Gender
Female 43 39

Male 68 61

Location

trunk 47 42

head/neck 1 1

upper extremity 12 11

lower extremity 27 24

other 7 6

Histological type

SSM 27 24

NM 35 32

ALM 4 4

LMM 1 1

Mucosal 1 1

Other 1 1

Unknown 13 12

Clark level

1 1 1

2 4 4

3 25 23

4 43 39

5 5 5

Breslow scale
mm

<1.00 11 10

<2.00 26 23

<3.00 23 21

<4.00 27 24

BRAF status

V600E mut 38 34

V600K mut 3 3

V600A mut 1 1

WT 64 58

Table 1. Clinicopathological information about the patients and patient samples. Histological types: ALM - 
acral lentiginous melanoma, SSM - superficial spreading melanoma, NM - nodular melanoma, LMM - lentigo 
maligna melanoma.
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were mostly composed of epithelioid shaped melanocytes infiltrating the lymph nodes, displaying necrosis to 
various extent, the background was lymphocytic sheets of otherwise normally appearing lymph nodes, in most 
cases with connective tissue present (Fig. 1A,B, Table 2).

proteomics data. Samples were analysed by high-resolution tandem mass spectrometry. Label-free LC-MS/
MS analysis allowed the quantitation of 4963 proteins, and more than one third of them was quantified in more 
than 50% of samples (see Suppl. Fig. S1). Most analyses of protein expression data, e.g. correlation with tumor 
content/percentage and patient overall survival, were restricted to 1306 proteins, i.e. those quantified in at least 
70% of the samples.

Relationship of protein expression to tumor content. In this relatively heterogeneous sample set, 
many proteins exhibited significant correlation to histopathological features. Two hundred and five proteins were 
significantly positively correlated to sample tumor cell content (using unadjusted p-value < 0.0001) and a smaller 
number, 29 proteins, were negatively correlated. As expected, the proteins correlated to tumor cell content usually 
showed inverse correlation to connective tissue content. In principle, correlation p-values should be adjusted 
for multiple testing using Benjamini-Hochberg (BH) approach. Approximately, the conservative raw p-value of 
0.0001 used here corresponds to the value of 0.006 after the BH correction (Suppl. Table ST7).

Positive and negative correlation of protein expression to tumor cell content was connected to particular 
molecular and biological functions. A Panther18 analysis of tumor cell-correlated proteins yielded molecular 
functions such as tRNA ligases and glycogen phosphorylases for the positively correlated set, while complement 

Samples’ properties: mean sd min max

tumor % 66 33 0 99

necrosis % 5 11 0 63

lymph node % 12 23 0 97

connective tissue % 17 26 0 100

Tumor properties n %

tumor cell size

<20 microns 98 88

20–25 microns 2 2

>25 microns 1 1

tumor cell shape

epithelioid 82 74

mixed epithelioid and spindle 17 15

spindle 2 2

Tumor cell pigmentation

0 48 43

1 20 18

2 13 12

3 20 18

Lymphocyte density

0 17 15

1 37 33

2 33 30

3 11 10

Lymphocyte distribution

0 17 15

1 35 32

2 25 23

3 21 19

Immunoscore,  = sum of 
lymphocyte density and distribution

0 15 14

1 3 3

2 24 22

3 18 16

4 16 14

5 16 14

6 6 5

Table 2. Tumor and tumor samples properties. Tumor cell pigmentation (0 = absent: no melanin pigment 
discernible even at high power magnification, 1 = slight: melanin pigmentation hardly visible at low power, at 
high power, melanocytes show a faint diffuse hue or a few scattered melanin pigment granules, 2 = moderate: 
pigmentation visible at low power, the cytoplasm is translucent and appears significantly lighter than the 
hematoxylin stained nuclei, 3 = high: pigmentation is easily visible at low power, the cytoplasmic pigmentation 
reaches an intensity approximating that of the nucleus). Lymphocyte distribution (0 = no lymphocytes within 
the tissue, 1 = lymphocytes present involving <25% of the tissue cross sectional area, 2 = lymphocytes present 
in 25 to 50% of the tissue, 3 = lymphocytes present in >50% of tissue). Lymphocyte density (0 = absent, 
1 = mild, 2 = moderate, 3 = severe).
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activation, structural constituent of cytoskeleton and actin-binding characterized the proteins negatively corre-
lated to tumor content. Similarly, an Ingenuity Pathway Analysis (IPA) performed for the tumor-correlated pro-
teins provided relationship networks enriched in proteins related to transcription, translation, glycolysis, tRNA 
charging, ubiquitination, tubulins, and splicing (See Suppl. Fig. S2 and Suppl. Table ST1). Similar functional 
themes were found to be associated with tumor cell content in a smaller subset of the current cohort analysed 
previously19, thus, confirming our earlier pilot findings. These functions are in line with well-known features of 
malignant tumors and connective tissues, and suggest that proteomics data could be used for tissue discrimina-
tion and quality assessment of the sample with respect to tumor content20.

Unsupervised view of the data - pCA. A non-supervised multivariate analysis of proteome profile allows 
to explore the main components of variability between the melanoma samples. Here, a principal component 
analysis (PCA) of protein expression data did not show obvious separation with respect to clinical or histopatho-
logical parameters (e.g. BRAF mutation status, survival, see Suppl. Fig. S7A,B). The only exception was tumor cell 
content, where a clear trend was visible (see Fig. 1C,D) indicating that sample heterogeneity in terms of tumor cell 
content was a major source of variability in the proteomics data.

Relating proteomics data to survival. In order to relate protein expression in lymph node metastatic 
melanomas to patient survival, we attempted an unsupervised classification based on consensus clustering21. 
This approach, applied to the whole sample set (111 patients) produced clusters that did not differ significantly 
in survival (Suppl Fig. S3A,B). Thus, for subsequent analyses only the 96 samples with tumor content of at least 
15% were considered (choosing higher thresholds did not improve survival prediction while obviously lowered 
the number of available samples). Here, we investigated the predictive power of the protein expression data from 
metastatic melanoma using two approaches. The unsupervised approach involved hierarchical consensus clus-
tering. The supervised approach consisted of Partial Least Square (PLS) regression in combination with Cox 
Proportional Hazards modeling (PLS-Cox). Both approaches were able to produce patient clusters with signif-
icant differences in survival. Applying unsupervised clustering to the proteomic data produced three patient 
clusters which show distinct differences in survival (log-rank test p-value = 0.0028, see Fig. 2A).

The PLS-Cox model reduces the expression of the whole feature-set (~1300 proteins) to a single latent (inferred) 
variable, which explains the main part of the variability with respect of patient survival and which is then used in 
a Cox Proportional Hazards model. A high score on this latent variable is linked to a low hazard score, i.e. better 
prognosis. Furthermore, we used rank products to extract the features (proteins) which contribute most to the 
latent variable22. After cross-validation and FDR testing, we obtained 27 proteins which were strong contributors 

Figure 1. Variability of the tumor samples. (A,B) Representative histopathology images of the tumor 
samples. (A) Low tumor content sample. Ly – lymphatic cells, M – tumor. (B) High tumor content sample. C – 
connective tissue. (C,D) Unsupervised multidimensional analysis of the proteomics data. Colouring by tumor 
content (dark: high content). Samples with <15% tumor shown as triangles, others – as circles. (C) Partial Least 
Squares (PLS) analysis. (D) Principal Component Analysis (PCA).
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to the latent variable (see Suppl. Table ST2). Of these, 9 were positively correlated (thus high expression is linked to 
long survival) and 18 negatively correlated (overexpression of these is linked to short survival).

When applied to only the 27 proteins obtained from the PLS-Cox model, the same hierarchical clustering 
algorithm gave us three patient clusters, even more distinct in terms of survival (log-rank test p-value = 0.000066, 
see Fig. 2B). One of the clusters corresponded to poor survival and was characterized by downregulation of the 
9 proteins positively correlated and by upregulation of the 18 proteins negatively correlated to survival. A second 
cluster had expression profiles opposite to those of the first one and corresponded to a more favourable survival. 
A third cluster corresponded to intermediate survival and an intermediate expression pattern (see Fig. 2C).

Analogous analyses were performed using peptide quantitation data. Here, unsupervised consensus and 
supervised PLS-Cox clustering also produced clusters significantly differing in survival, albeit with weaker effect.

In order to ascertain that the 15% tumor content cutoff was not too subjective, several other cutoffs were tested 
(0, 25, 50 and 75% tumor) and the PLS-Cox survival analysis was repeated for each. The 15, 25 and 50% cutoffs 
produced very similar results in terms of candidate survival biomarker sets (Suppl. Table ST6), albeit the 15% 
threshold provided the largest number of significant candidates (twenty seven). Also, the 15% cutoff provided 
the most significant statistical model while the 25% cutoff resulted in a model of similar significance (Suppl. 
Table ST9).

Further, the Cox survival analysis was performed using several histological features of the samples instead of 
protein expression data (see Suppl. Table ST8). While some such features (related to cytoplasm features) did show 
a weak relationship to survival (univariate Cox regression model p-values 0.003–0.03), protein expression clearly 
outperformed these features in terms of survival prediction. All univariate Cox models built for the 27 candidate 
proteins were significant and most had p-values below 0.003 (minimum 3*10−6, see Suppl. Table ST10). Of note, 
tumor content was not a significant survival predictor (see Suppl. Table ST8).

The PLS-Cox based supervised clustering built on protein expression was compared with two genomics-based 
sample classifications applied previously to the same tumor samples. The four-category classification of Jönsson 
et al. (high immune, normal, pigmentation and proliferative23) and TCGA classification (immune, keratin, 
MITF-low16) were not in perfect accordance with the three survival clusters elucidated herein (see Fig. 3 and 
Suppl. Fig. S4A,B). However, there were clear differences between the longer and shorter survival clusters in 
terms of composition of the genomics categories. Interestingly, the short survival cluster 2 had largest propor-
tion of proliferative-type tumors (Jönsson’s classification23) while the long survival cluster 3 had approx. 75% 
samples of the pigmentation type. In terms of TCGA classification16, short survival cluster 2 had largest pro-
portion of MITF-low tumors while the long and medium survival clusters 1 and 3 had largest proportion of 
immune-type tumors (Suppl. Fig. S4). The long survival clusters obtained by two approaches (unsupervised and 
supervised) using protein data agreed well - they were composed mostly of the same patient samples (90% agree-
ment, i.e.: 90% of the samples from the supervised good prognosis cluster belonged also to the unsupervised 
good prognosis cluster). The same applies to the short survival clusters (78% agreement, see Suppl. Fig. S4C). The 
chi-squared test comparing the unsupervised and supervised patient sample clustering supports their consistency 
(p-value < 10−5). Interestingly, the short survival cluster (supervised) had significantly higher necrosis content 
than other clusters (Kruskal-Wallis p-value < 10−6, see Suppl. Fig. S6).

Although for the survival prediction model there was no independent proteomics validation cohort available, 
we performed a tentative validation of the candidate proteomic survival biomarkers found in our study by using a 
large transcriptomic dataset of melanoma lymph node metastases (TCGA, N = 336, see Materials and Methods). 
Several of the 27 candidate biomarkers could be validated in this independent cohort, including those positively 
related to survival (high expression in long survival): PSME1, HNRNPA2B1 and SRSF3, and those negatively 
related to survival (high expression in short survival): APOB and ORM1 (see Suppl. Table ST5). This result is 
encouraging, bearing in mind the fact that on the average the corresponding signals for mRNA and protein 
expression correlate moderately.

Figure 2. Proteomics data is related to patient survival. (A,B) 2A. Kaplan Meier plots for patient clusters 
obtained by (A) consensus clustering using 1306 proteins quantified in at least 70% of the samples (shown in 
Suppl. Fig. S3C) (B) consensus clustering using only the 27 survival-related proteins, with significant Cox scores 
(shown in Suppl. Fig. S3D). (C) Two-way hierarchical clustering of the 27 survival-related proteins and the 
patient samples. Red: high expression. Blue: low expression. Patient clusters coloured as in (B).
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Functional analysis of the survival-related clusters. The three clusters obtained by supervised 
PLS-Cox analysis24 of proteomics data and significantly differing in survival were explored in order to under-
stand the molecular differences. To this end, the current proteomic data and mRNA expression data obtained 
previously for the same melanoma samples23, were subjected to SAM analysis (a technique conceptually similar 
to ANOVA25) to obtain genes and proteins differentially expressed between sample clusters. The analyses included 
more than 1300 proteins and more than 11000 genes. At significance level of FDR < 0.0005, 419 proteins and 177 
genes were found to be differentially expressed between the three clusters (1368 proteins and 777 genes at more 
relaxed significance level of FDR < 0.05). The heatmaps in Fig. 3A,B show the genes/proteins with cluster-specific 
expression patterns. Within the three clusters, cluster 3 (long survival) clearly had underrepresentation of mela-
nomas that were stage 4 while cluster 2 (poor survival) clearly had overrepresentation of stage 4 melanomas (see 
Fig. 3A,B).

The sets of proteins and genes significantly differing between the three survival-related patient clusters were 
rather different (for FDR < 0.0005, overlap between the 419 proteins and the 177 genes was only 8, while for 
FDR < 0.05, the gene/protein list overlap was 68, see Suppl. Table ST3). This clearly shows that proteomics and 
genomics analyses capture to some extent complementary aspects of melanoma biology. Using mRNA profil-
ing data of the same patient cohort (the same tumor samples, but different sections) as previously published23, 
one can correlate mRNA and protein expression signals. For these, a median correlation of 0.306 is obtained 
(Suppl. Fig. S8). This is generally in agreement with the previous studies, however, since mRNA and protein 
data were obtained from different tissue sections of the same samples, the actual correlation is probably slightly 
underestimated.

The differential expression analysis of genes and proteins provides tumor- and survival-related functions in 
short and long survival sample clusters. Although, the differentially expressed sets of genes and proteins were 
by large different, the biological functions related to the patient clusters were to a certain extent similar (see 
Suppl. Table ST4). For the short survival cluster, the significantly downregulated genes and proteins alike were 
enriched in functions such as antigen processing and presentation, TCR and interferon signalling. The three 
survival-related patient clusters did not differ in terms of mutation burden in an analysis of genes known to often 
harbor mutations in melanoma (See Suppl. Fig. S5).

Functional analysis of the 27 proteins obtained from the PLS-Cox model. Ingenuity Pathway 
Analysis (IPA) split most of the 27 proteins that were guiding the three survival clusters into two functional 
relationship networks. The first network was mostly extracellular and included proteins negatively correlated to 
survival (low expression in tumors from patients with good prognosis, i.e. long survival). The second network was 
a nuclear/cytoplasmic one, and included proteins positively correlated to survival (high in tumors from patients 
with long survival, Fig. 4A,B). A complementary IPA analysis was executed using an extended set of 160 top 

Figure 3. Proteins and mRNA exhibit differential expression among the survival-related patient clusters. Two-
way hierarchical clustering of the transcripts (A) and proteins (B) differentially expressed between the survival-
related patient clusters as per SAM analysis. Only highly significant transcripts and proteins shown (q value 
below 0.0005). Red: high expression. Blue: low expression. Patient clusters coloured as in Fig. 2B. Additional 
annotations (coloured bars at top) indicate selected patient/sample parameters: Lund genomics cluster23, TCGA 
genomics cluster, BRAF status, Melanoma type, disease stage. Additional annotations (coloured bars on the left, 
orange or green) indicate that a given transcript or protein is significantly up- or down regulated for a given 
cluster.
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proteins most strongly related to survival albeit not all strictly significant. Of these, 80 were negatively correlated 
to survival and 80 - positively correlated. Here, the proteins positively related to survival as per Cox analysis were 
enriched in functions such as RNA post-transcriptional modifications, protein synthesis and cell death. The pro-
teins negatively correlated to survival were enriched in cell-to-cell signalling and cell movement proteins.

Proteins negatively correlated to survival (high expression in short survival). Interestingly, many of the 18 pro-
teins showing negative significant correlation to survival are high-abundance plasma proteins. This may reflect 
the vascularisation aspect of melanoma metastases as well as immune component of tumor development. One 
might speculate that the lymph nodes are thought to be filters of the circulating lymph which contains enriched 
fractions of the proteins and lipids of the blood which may show in the results. Alternatively, the tumor cells 
might be “hiding” while metastasizing and covering themselves with platelets, thus exhibiting expression of plate-
let proteins (all but one of the 18 proteins are present in platelets26). Also, the negative correlation to survival 
of coagulation-related proteins (F2, PLG, FGB, FGG, FGA, KNG1) likely reflects the well-known relationship 
between cancer and thrombosis27.

The role of the copper and iron transport protein ceruloplasmin (CP) in cancer has been reported28 and it 
was found elevated in plasma of melanoma patients29, hence a negative correlation to survival could be expected. 
Human serum transferrin is a glycoprotein which is involved in iron transport. Since neoplastic cells have a high 
requirement of iron related to their rate of proliferation30, it seems logical that we found high level of transferrin 
in the poor survival cluster.

More than 5-fold higher level of the protease inhibitor ITIH4 was reported previously in sera from patients 
with hepatocellular carcinoma with good prognosis compared to patients with poor prognosis31. The ITIH4 gene 
expression was lost in multiple human solid tumors32. However, in a rat model for colon cancer, ITIH4 was one of 
four proteins that was upregulated in sera compared to wild-type rats33. The serine protease inhibitor, SERPINA1, 
has been reported to modulate invasive and metastatic capacity in lung cancer, gastric cancer, and CRC34–36. 
Elevated expression of SERPINA1 was previously correlated with advanced stage, lymph node metastasis, and 
poor prognosis37, which is in accordance to our current findings.

Complement factor H (CFH) is the main actor inhibiting complement responses by regulating the 
Complement Alternative Pathway38. CFH binds to “self marker” structures on matrix and the cell surface, e.g. 
GAG chains and sialylated sugars, and prevents further activation/attack by the complement system39. CFH may 
have dual roles in cancer, either promoting tumor progression (by immune evasion) or supporting tumor sup-
pression (by inducing an anti-inflammatory microenvironment38). Tumor cells may “hijack” the complement sys-
tem by expressing, releasing or recruiting CFH and other complement inhibitors in high amounts, thus evading 
complement attack. This has been described in ovarian, lung, glioma and colon cancer cells40–43. In addition, CFH 
has been suggested as a marker in lung adenocarcinoma44, where shorter survival time of patients with adenocar-
cinoma was associated with increased CFH staining. Data from the TCGA cohort suggest that increased mRNA 
levels of CFH are significantly related to poor prognosis in kidney carcinoma45 and urine levels of a closely related 
protein CFHR1 were negatively related to bladder cancer survival46. To our knowledge, negative relation of CFH 
protein to survival in metastatic melanoma tissue has not been reported.

Figure 4. Pathway analysis for 27 survival-related proteins. Ingenuity Pathway Analysis (IPA) for the proteins 
identified by the PLS-Cox analysis as significantly related to survival (Cox score FDR < 0.1). Protein-protein 
relationship subnetworks shown that are enriched in the 27 query proteins. (A) First subnetwork, (B) Second 
subnetwork. Blue – proteins with expression negatively correlated to survival. Red – positively correlated to 
survival. Data were analyzed through the use of IPA (QIAGEN Inc., https://www.qiagenbioinformatics.com/
products/ingenuitypathway-analysis)109.
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A role of Vitamin D signaling and the activity of Vitamin D binding protein GC (VDBP) in melanoma is 
known47,48 and vitamin D deficiency is associated with worse prognosis49. VDBP is responsible for transporting 
Vitamin D analogues in plasma. While SNPs in VDBP were reported not to influence melanoma survival in 
a case-control study50, meta-analysis of VDBP polymorphisms suggested that VDBP rs12512631 TT genotype 
was linked to a poorer survival compared with those with TC and CC genotypes47. The involvement of VDBP in 
cancer has a complex mechanism: on one hand, VDBP enhances epithelial ovarian cancer progression51, on the 
other hand, higher circulating VDBP levels were observed in healthier melanoma patients52. Also, a meta-analysis 
including 28 studies of 12 different cancers, and analyzing VDBP protein levels vs. cancer risk found trends 
toward significance (lower risk related to high expression), suggesting a role of VDBP in cancer etiology53. The 
negative relation of VDBP expression to melanoma survival observed by us is not in agreement with some pre-
vious reports, whereas promising results were obtained by using VDBP in cancer immunotherapy54,55. However, 
these results cannot be compared directly with ours since serum levels of VDBP need not be correlated to levels 
in tumor tissue.

APG1 and 2 (Orosomucoid 1 and 2) are heavily glycosylated acute phase reactants, mainly expressed in the 
liver but also extrahepatically56,57 and increased in the circulation during acute inflammation as well as in several 
cancers including melanoma58–60. APG1 seems to be the primary acute phase responder while the proportion of 
APG1 to APG2 changes significantly in cancer59. The APGs display a multitude of biological activities such as 
acute-phase reactants, modulating immunity, and maintaining the barrier function of capillaries56,57. In addition, 
APGs are involved in binding synthetic drugs which has been described in cancer patients61–63. Aberrant gluco-
sylation of the APGs is related to pathophysiological situations including cancer64. Overall, the negative relation 
to melanoma survival of APGs detected in metastatic melanoma tissue in the current study would be in agree-
ment with previous literature describing circulating levels in cancer patients.

A recent study65 related serum albumin levels to melanoma stage in a large patient cohort showing a signifi-
cant reduction in circulating levels in stage 4 and in older patients. Albumin is a negative acute phase protein, e.g. 
levels are reduced during inflammation. The reduced levels in cancer and several other illnesses may be due to 
decreased synthesis, increased catabolism and other mechanisms66,67. In the current study, serum albumin level 
in melanoma tissue is negatively related to survival (high in patients with poor survival) which appears not in 
accordance with most other studies. However, most studies look at circulating levels and not metastatic tumor 
tissue.

Apolipoprotein B-100 (APOB) is a receptor for cholesterol which has been shown to increase melanogenesis68 
and targeting cholesterol transport in melanoma CTCs was shown to retard metastasis development69. This may 
be in line with current results of increased APOB expression in poor survival.

Alpha-1B-glycoprotein is a secreted glycoprotein with some similarity to the immunoglobulin family and 
basically very few known functions70. Interestingly, it has been described in proteomic studies of several cancer 
types like breast cancer71, oral squamous carcinoma72, in the serum of non-small cell lung cancer73, and in pancre-
atic ductal adenocarcinoma74. Here we describe for the first time a negative correlation of alpha-1B-glycoprotein 
tissue expression to melanoma survival.

Proteins positively correlated to survival (high expression in longer survival). The splicing factor SRSF3 has been 
reported as an oncogenic factor in several types of cancer75–79. However, in colorectal cancer, loss of SRSF3 was 
significantly associated with poor survival and shorter disease-free survival in early cancer stages80. It was also 
shown that loss of SRSF3 was necessary for metastatic cells to colonize the liver microenvironment in mice80. Loss 
of SRSF3 has also been shown to predispose to hepatocellular carcinoma81 and myeloid leukemia82. In this study, 
higher expression of SRSF3 was also found in the better prognosis cluster.

The transcription factor YBX1 is positively associated with a proliferative cellular state and might therefore 
be reported to be overexpressed in a variety of human cancers83–86. However, the YBX1 expression seems to be 
tightly regulated by a feedback mechanism ensuring optimal proliferation and survival of melanoma cells. The 
levels of YBX1 are also critical in melanoma cells for proliferation. High levels inhibit cell cycle progression and 
low levels induce apoptosis87. The YBX1 has been reported to correlate with bad prognosis in liver cancer88,89 
while here YBX1 is upregulated in melanoma patients with good prognosis.

Among the proteins positively correlated to survival, there are two proteasome related proteins PSMA5 and 
PSME1. The role of immunoproteasome in cancer is known90, however high expression in better prognosis 
patients is not an obvious result. In a recent meta-analysis, PSMAs were generally found to be upregulated in 
cancers, including melanoma. Expression of some members of the PSMA family correlated with poor prognosis91, 
however no melanoma prognosis data was available for the PSMA5 gene/protein that we find correlated with bet-
ter prognosis. The Proteasome activator PSME1 (PA28alpha) that has been reported to regulate presentation of T 
lymphocyte epitopes on melanoma cells92 is found here to be upregulated in good prognosis melanoma patients, 
similarly to a previous proteomics study15. Interestingly, quite to the opposite, in oral squamous cell carcinoma 
PSME1 expression has been reported to be related to poor prognosis93.

The Poly A binding proteins PABPC1 and PABPC3 function in post-transcriptional control of mRNA and 
regulate cell proliferation94. PABPC1 expression was previously reported positively correlated to survival in eso-
phageal cancer95, but this protein has also been found to be oncogenic in gastric carcinoma96.

The splicing factor HNRNPA2B1 has been reported as a candidate biomarker in lung cancer and regulator of 
epithelial-mesenchymal transition in pancreatic cancer (PDAC)97–99. Another splicing factor, HNRNPH2, was 
shown to drive anticancer drug resistance100 and to drive hepatocellular carcinoma development101. Hence, higher 
expression in good prognosis of these two factors is an unexpected result.
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Conclusion
We present a comprehensive proteomic, histopathological and genomic evaluation of malignant melanoma 
lymph node metastases. Our study is unique in applying in-depth histopathological characterisation to indi-
vidual tumor samples. This, combined with detailed clinical information, allows elucidation of an efficient set 
of proteomic prognostic biomarkers. Since many of these candidate biomarkers are known to be relatively com-
mon plasma proteins, they present a possible opportunity for development of prognostic blood-based biomarker 
panel. This work builds on our own exploratory studies19,102 as well as work by other groups15,103 but differs from 
the previous work also by a much larger study cohort. By analysing the protein data alongside the genomic data 
obtained of the same tumor tissue, we highlight the complementarity of proteomic and transcriptomic molecular 
images of melanoma.

The fact that some of the prognostic proteins have not been reported in melanoma context before, and the fact 
that some exhibit unexpected relationship to survival, only exemplifies the complexity of melanoma progression 
mechanisms.

Materials and Methods
Reagents and solutions. All chemical reagents were purchased from Sigma Aldrich (St. Louis, MO) unless 
otherwise specified. Water and organic solvents were of LC–MS quality and supplied by Merck (Darmstadt, 
Germany). All solutions were degassed by sonication before use.

tissue samples and sample preparation. 111 lymph node metastasis samples from patients with 
malignant melanoma (Stage 3 and 4), archived in the local malignant melanoma biobank were obtained from 
Skåne University Hospital, Sweden. Each sample was marked as ‘MM’ followed by identification number. Ethical 
approval was granted by Central Ethical Review board at Lund University; approval number: DNR 191/2007, 
101/2013. All patients within the study provided a written informed consent. All experiments were performed in 
accordance with relevant guidelines and regulations. The malignant melanoma biobank “Tissue bank for research 
on tumour diseases” (BD20)” is located at Barngatan 2B, 221 85 Lund, Sweden. The samples were originally snap 
frozen immediately after surgery. Frozen tissue samples from BD20 were sectioned on a cryostat into 10 µm thick 
slices (approximately 6 × 6 mm), placed into a 96 well plate and stored at −80 °C until further use. From each 
tissue, 15 to 20 slices were withdrawn for sample preparation. Patient characteristics are summarised in Table 1. 
Clinical and histopathological parameters were retrieved from patients’ clinical records, pathology reports and 
the Swedish National Population Registry. Survival was defined as time (days) from lymph node excision to 
patient’s death or censoring date.

Histopathological evaluation. Frozen sections of all lymph node metastases stained with HE were evalu-
ated by a certified pathologist. Serial sections were taken of each tumor, and at least seven slices per sample were 
examined. The tissue was assessed for its content regarding tumor, normal lymph node, necrosis, and background 
of any further component (e.g. fat or connective tissue). As previously described16,19, the tumor was then eval-
uated for its histological characteristics containing epithelioid or spindle or mixed architecture, the tumor cell 
average size (scale 1–3) and pigmentation (scale 1–3). The tumor infiltrating lymphocytes were also assessed for 
their distribution (scale 1–3) and intensity (scale 1–3) in the tumor - only those which directly infiltrated the 
metastases were taken into account. The sum of distribution and density was then summarized in a 0–6 score 
considered as immunoscore.

cDNA synthesis and BRAF DNA sequencing. Two cell lines, SK-MEL-2 and SK-MEL-28 (ATCC®, 
Manassas, USA), were used as reference BRAF wild type and V600E respectively. Total RNA was extracted from 
the cell lines or frozen tissues from the malignant melanoma patients using RNeasy mini kit (Qiagen, Venlo, 
The Netherlands). The extracted RNA were reverse transcribed to cDNA by using Superscript III First Strand 
Synthesis System kit (ThermoFisher, Waltham, MA) according to the manufacturer’s instructions. The cDNA 
was amplified with a set of primers that produced a PCR product including BRAF mutation at the position V600; 
5′-(AGCCTTACAGAAATCTCCAGGACC)-3′ and 5′-(TTGGGGAAAGAGTGGTCTCTCATC)-3′. The PCR 
conditions were 95 °C for 5 min, followed by 36 cycles of 95 °C for 30 sec, 62 °C for 30 sec, and 72 °C for 2.5 min 
with a final incubation of 72 °C for 7 min. A portion of the PCR product was amplified a second time using 
the same condition as the first PCR, and the amplification was 24 cycles, instead of 36 cycles. The PCR prod-
ucts were run on a 1% agarose gel, and DNA was extracted from the gel using a QIAquick Gel Extraction kit 
(Qiagen) according to the manufacturer’s instruction. The purified PCR products were sequenced using a primer 
5′-(TTCCACAAAGCCACAACTGG)-3′ by Eurofins Genomics (Ebersberg, Germany).

Mutation data. Mutational information for selected 1697 cancer-associated genes were obtained by targeted 
deep sequencing of the patient tumor samples with matched blood, as described previously23,104. Visualization 
of mutational information was obtained using the oncoprinter function from R package ComplexHeatmap105.

Tissue lysis and protein extraction. Frozen tissue slices were lysed with 6 M urea in 50 mM ammonium 
bicarbonate buffer (AmBic) for 30 min on ice bath. Samples were additionally vortexed for 10 min in order to pro-
mote protein extraction. After incubation with urea the lysate was sonicated for 5 min and centrifuged at 10 000 g 
at room temperature for 10 minutes. Supernatant was transferred into a new tube and the pellet was discarded. 
Protein concentration was measured using a bicinchoninic acid protein assay according to the manufacturer’s 
instructions (Micro BCA kit, Pierce/Thermo Scientific, Rockford, IL). The samples were spiked with 0.1 mg of 
internal standard – chicken lysozyme (CL, Swiss-Prot accession no. P00698).
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In-solution digestion with trypsin. A fixed amount (80 μg) of protein were reduced with 10 mM DTT 
for 1 h at 37 °C, then it was alkylated using 50 mM iodoacetamide for 30 min and kept in dark at room temper-
ature. Urea was removed from the samples using Amicon Ultra centrifugal filters (0.5 mL, 10 kDa, Millipore, 
Ireland) according to the manufacturer’s instructions. Briefly, the protein samples were mixed with 200 μL of 
50 mM AmBic, then centrifuged at 14 000 g at room temperature for 20 minutes and the eluates were discarded. 
These steps were repeated two more times. The samples were transferred to an Eppendorf tube and digested with 
sequencing grade trypsin (Promega, Madison, WI) in a ratio 1:100 w/w (trypsin:protein) overnight at 37 °C. 
The digestion was stopped by adding formic acid till 1% as final concentration. The samples were dried using a 
centrifugal evaporator and resuspended in 80 μL of 0.1% formic acid and centrifuged for 5 min at 10 000 g. The 
supernatants were stored at −80 °C until further use. Prior to injection onto LC–MS/MS, 20 µL of samples were 
mixed with 20 µL of peptide retention time calibration mixture (PRTC, Pierce/Thermo Scientific, Rockford, IL, 
20 fmoL/mL).

LC-Ms/Ms Analysis of the tumor lysate digests. Online chromatography was performed with a 
Thermo Easy nLC 1000 system (Thermo Fisher Scientific) coupled online to a Q-Exactive Plus mass spectrome-
ter (Thermo Scientific, San José, CA). The peptides were first loaded onto a trap column (Acclaim1 PepMap 100 
pre-column, 75 µm, 2 cm, C18, 3 mm, 100 Å, Thermo Scientific, San José, CA) and then separated on an analytical 
column (EASY-Spray column, 25 cm, 75 µm ID, PepMap RSLC C18, 2 mm, 100 Å, Thermo Scientific, San José, 
CA). Flow rate of 300 nL/min and a column temperature of 35 °C were utilised. A gradient was applied, using 
solvent A (0.1% formic acid) and solvent B (0.1% formic acid in acetonitrile). The gradient went from 5% to 40% 
B in the first 120 min, followed by raise to 90% B in the next 5 min, which was maintained for 10 min. To avoid 
carryover, each sample analysis was followed by a blank injection (water containing 0.1% formic acid). Mass 
spectrometry data were measured using a data-dependent top-15 method. Full MS scans were acquired over m/z 
350–1800 range with resolution of 70 000 (at m/z 200), target AGC value of 1∙106 and maximum injection time 
of 100 ms. Selected ions were fragmented in the HCD collision cell with normalised collision energy of 30%, and 
tandem mass spectra were acquired in the Orbitrap mass analyzer with resolution of 17 500 (at m/z 200), target 
AGC value of 1∙106 and maximum injection time of 120 ms. The ion selection threshold was set to 4.2∙104 and 
dynamic exclusion was 20 s.

proteomics data analysis. The LC-MS/MS raw files were analyzed with Proteome Discoverer 2.1 (Thermo 
Scientific, San José, CA) for protein identification and quantitation. The files were searched against the UniProtKB 
human database (released May 2016) excluding isoforms. The search was performed with the following param-
eters: carbamidomethylation as static modification, oxidation of methionine as dynamic modification, 20 ppm 
precursor tolerance and 0.02 Da fragment tolerance. Up to two missed cleavages for tryptic peptides was allowed. 
Filters: high confidence at peptides and protein levels were applied (FDR 0.01). Protein intensities were log2 trans-
formed, followed by sample median subtraction using R (version 2.41–3).

Multivariate survival analysis. We have used unsupervised and supervised approaches to linking 
proteomic data to survival. The unsupervised method was performed using consensus clustering in R with 
ConsensusClusterPlus library (version 1.42.0). The supervised approach is based on PLS-Cox regression sim-
ilar to that of Nguyen and Rocke24. The PLS-step of the model is used to reduce the high dimensionality of the 
proteomic data, while Cox regression was used on the first PLS component. We use a similar approach as Bair et 
al.22 to assess the performance of this model. For cross-validation, the dataset is split into two subsets; the first is 
used to fit the model, the second to evaluate its performance. This process is repeated 100 times and the results 
of all iterations are averaged. Simultaneously, we extract the most important features, i.e. proteins, using rank 
products24,106 of the PLS loadings. Correction for multiple testing with Benjamini-Hochberg approach results in 
9 proteins which are significantly positively correlated to long survival and 18 which are significantly negatively 
correlated at adjusted significance level of 0.05. We performed this analysis both for the full sample set (N = 111) 
as well as for a subset (N = 94) wherein all samples contain at least 15% tumor. The supervised survival analysis 
was performed using peptide data as well, but the identified sample clusters showed less significant relationships 
to survival.

For the Kaplan-Meier survival analysis, the survdiff function in R (version 2.41–3) was used, which imple-
ments the log-rank test.

Differentially expressed genes and proteins for the survival-related patient clusters were elucidated using the 
SAM method25, applying multiple testing correction as described107. Gene expression data for the patient samples 
analysed in the current study were obtained in a previous study using the same sample set but different tissue 
sections23.

By using the pheatmap library in R, two clustered heatmaps were built for the differentially expressed proteins 
and genes obtained from SAM analysis (FDR < 0.0005). Melanoma type, disease stage, BRAF status, TCGA clas-
sification and four-category classification of Jönsson et al.23 were used as annotation terms. Comparison of clinical 
and histopathological parameters between the sample clusters was performed by chi-squared test (categorical var-
iables) and by Kruskal-Wallis test (quantitative nonparametric variables). Differences were considered significant 
when p-value < 0.05 (without multiple testing adjustment).

The transcriptomic dataset of melanoma lymph node metastases from the TCGA database16 was used for val-
idation of the candidate proteomic survival biomarkers found in our study. The SurvExpress tool108 was applied 
to assess if query transcripts were promising predictors of survival.

protein set functional analysis. Functional analysis of the protein sets identified with PLS-Cox regression 
and correlation analysis with tumor content was conducted using IPA, Ingenuity Pathway Analysis (Qiagen, 
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Redwood City, CA, USA)109, in particular by generating networks of protein-protein functional relationships. As 
background, the set of proteins detected in >70% of the samples was used.

Functional analysis of lists of proteins mentioned above was also performed using the Panther server110. 
Overrepresentation of specific functional annotations within the protein lists was determined by Fisher’s exact 
test, the background protein set consisted of all proteins detected. Gene Ontology annotations, SwissProt key-
words, and Reactome and KEGG pathways were used as annotation terms for the enrichment analysis.

Data Availability
The proteomics dataset associated with the current article is publicly available in ProteomeXchange (http://www.
proteomexchange.org/), dataset identifier: PXD009630.
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ABSTRACT: Mass spectrometry imaging (MSI) has the potential to reveal the
localization of thousands of biomolecules such as metabolites and lipids in tissue
sections. The increase in both mass and spatial resolution of today’s instruments
brings on considerable challenges in terms of data processing; accurately extracting
meaningful signals from the large data sets generated by MSI without losing
information that could be clinically relevant is one of the most fundamental tasks of
analysis software. Ion images of the biomolecules are generated by visualizing their
intensities in 2-D space using mass spectra collected across the tissue section. The
intensities are often calculated by summing each compound’s signal between
predefined sets of borders (bins) in the m/z dimension. This approach, however, can
result in mixed signals from different compounds in the same bin or splitting the signal
from one compound between two adjacent bins, leading to low quality ion images. To
remedy this problem, we propose a novel data processing approach. Our approach
consists of a sensitive peak detection method able to discover both faint and localized signals by utilizing clusterwise kernel
density estimates (KDEs) of peak distributions. We show that our method can recall more ground-truth molecules, molecule
fragments, and isotopes than existing methods based on binning. Furthermore, it automatically detects previously reported
molecular ions of lipids, including those close in m/z, in an experimental data set.

Mass spectrometry imaging (MSI) is a technique often
used to study the localization of known and unknown

biomolecules such as lipids, metabolites, or peptides in tissue.
Today’s instruments can scan samples with both high spatial and
mass spectral resolution and, consequently, generate massive
data sets that require highly efficient and accurate processing.
Thus, one of the key components of MSI data processing is data-
reduction, which typically involves detection and extraction of
signals originating from tissue or drug compounds while
discarding noise.1,2 The peaks of each spectrum are mapped
onto a common reference, and by visualizing the intensities of
individual peaks as images the spatial distribution of
biomolecules can be revealed. The reference spectrum is
generated by detecting peaks which are common to multiple
spectra. Accurate peak detection facilitates the isolation of
signals from individual compounds which is necessary to obtain
high quality images.
Many existing MSI software, such as Cardinal3 and

MALDIquant,4 detect isotopic peaks of compounds on a data
set mean spectrum and subsequently rank them based on the
frequency of their presence in ion image pixels. This method is
fast and produces concise peak lists but has limited performance
for low-intensity peaks and those localized to small regions in the
analyzed tissue section.1 Many tools generate ion images by
binning around each peak of interest; the intensity value for each

pixel is calculated by summing ion intensities between
predefined m/z borders (bins). When doing this, however, it
is crucial to use narrow bins to avoid mixing signals from
multiple compounds in one image and to ensure that the mass of
the peak around which binning is performed is accurate.
Suits et al.5 showed that slicing the entire m/z range into ion

images of fixed mass widths enables MSI practitioners to explore
MSI data sets in a hypothesis-free manner. This approach sets no
threshold on either peak intensity or presence in a minimum
number of pixels and is thus not biased toward large or high
intensity molecules in the tissue. Choosing bin width is a
specificity-sensitivity trade off. A small bin width results in
higher sensitivity but increases the risk of peak splitting and a
higher number of empty or noninformative ion images. Larger
bin widths on the other hand result in fewer noninformative
images but are unable to discriminate between compounds that
are close in mass, resulting in ion images containing signals from
multiple compounds. Unfortunately, even when using relatively
large bin widths, slicing leads to impractically large sets of ion-
images unless the experimentalist is guided by known ion
masses. However, previous studies have demonstrated that
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incorporating information about the ion-images’ spatial
structure in MSI data analysis pipelines is an effective way to
automatically separate high and low quality images in these large
image sets.6−9

In this paper, we present a peak detectionmethod that enables
automatic detection of faint and localized signals as well as high
intensity and/or abundant signals. We show that our peak
detection can serve as a part of anMSI data analysis pipeline that
is both sensitive and specific by combining it with established
methods that filter peaks based on their spatial arrangement. A
sensitive peak detection algorithm is not only essential for
exploratory analysis but also for discovering molecules spatially
colocalized with those expected to be present, e.g., drug
compounds and metabolites. This is highly relevant in both
scientific and clinical settings where drug−tissue interaction and
tissue composition are often investigated. To assess and
compare the performance of our method to existing MSI data

processing tools, we used a rat liver section spiked with several
drugs, most of which are anticancer drugs, where the masses of
the spiked drugs are used as ground-truth. Using this data set, we
show that we are able to detect drug peaks as well as fragment
and isotopic peaks, including those that are close inm/z to more
intensive and/or abundant peaks. We also used the MSI data set
from a mouse bladder section originally presented by Römpp et
al.10 to further assess our method.

■ MATERIALS AND METHODS

Drug Compounds and Matrix Composition. For the
MALDI-MSI experiment, we selected 12 different drugs (see
chart in Supporting Information). The drugs were purchased
from the LC Laboratories (Woburn, MA; CAS numbers:
dabrafenib: 1195765-45-7, dasatinib: 302962-49-8, erlotinib:
183321-74-6, gefitinib: 184475-35-2, imatinib: 152459-95-5,
lapatinib: 388082-78-8, pazopanib: 444731-52-6, sorafenib:

Figure 1. Flowchart of our peak picking algorithm.m/z values of peaks from each individual spectrum are collected and sorted inmzall. We then identify
clusters in mzall as connected components in a directional graph. For each cluster we fit an optimized KDE to the distribution of m/z values. Data set
peaks are obtained as local maxima on the resulting KDE curve. Finally, the level of structure in the ion images corresponding to the data set peaks is
estimated and used to filter out noise peaks. The peak corresponding to the center ion image, atm/z = 494.2505, is an example of one filtered out in the
last step.
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284461-73-0, sunitinib: 557795-19-4, trametinib: 871700-17-3,
vatalanib: 212141-54-3) and from SelleckChem (Munich,
Germany; CAS numbers: ipratropium: 60205-81-4) with
>99% purity and were dissolved in methanol (MeOH,
(Chromasolv Plus for HPLC) (Sigma-Aldrich, Steinheim,
Germany) at 10 mg/mL concentration. These stock solutions
were further diluted with 50% MeOH and five mixtures were
generated, each containing four different drug compounds. The
spreadsheet in Supporting Information summarizes the
composition of the five drug mixtures. A 5 mg/mL solution of
α-cyano-4-hydroxycinnamic acid (CHCA, Sigma-Aldrich)
dissolved in 50% MeOH containing 0.1% trifluoroacetic acid
(TFA, Sigma-Aldrich, Steinheim, Germany) was used as matrix
solution.
Sample Preparation. For MALDI-MSI, a 10 μm section

was cut from frozen rat liver tissue using a cryotome and placed
on a glass slide. Then 0.3 μL from each drug mixture was
pipetted on the tissue section at predefined positions. After
drying of the tissue, CHCAmatrix solution was deposited on the
tissue surface by an automated pneumatic sprayer (TM-Sprayer,
HTX Technologies). The nozzle distance was 46 mm, and the
spraying temperature was set to 35 ◦C, the matrix was sprayed
(19 passes) over the tissue section at a linear velocity of 750
mm/min with a flow rate set to 0.1 mL/min and a nitrogen
pressure set at 10 psi. After each pass, a drying time of 30 s was
set on the spraying machine to give time for the sample to dry
completely before the next pass. The frozen rat liver tissue was
provided by Prof. Roland Andersson (Dept. Clinical Sciences
Lund (Surgery), Skane University Hospital, Lund University).
Animals were housed and bred according to regulations for the
protection of laboratory animals.
MALDI MSI. MSI data was collected by sampling the tissue

section with 50 μm raster arrays without laser movement within
each measuring position. The dimensions of the measured liver
tissue section was approximately 0.9 by 1.2 cm in x, y sampling
coordinates. A total of 23 823 sampling positions (x = 247, y =
181) were collected. Full mass spectra were collected using a
MALDI LTQ Orbitrap XL mass spectrometer (Thermo Fisher
Scientific, Bremen, Germany), equipped with a 60 Hz 337 nm
nitrogen pulse laser (LTB Lasertechnik Berlin, Berlin,
Germany). This instrument was operated at 60 000 resolution
(at m/z 400) collecting spectral data in the mass range of 150−
1000 m/z in profile mode generated by 20 laser shots at 10 μJ
with automatic gain control switched off. Data were acquired
using Xcalibur v 2.0.7. software (Thermo Fisher Scientific, San
Jose, CA). The MSI raw data contains mass spectra from all
measurement points together with their x, y coordinates.
The Thermo Scientific raw files were first converted tomzML

using msconvert and then to imzML11 format using
imzmlConverter. Finally, the imzML data was loaded into
MATLAB and analyzed with custom scripts. The mouse bladder
data set with PXD001283 ID was downloaded from
ProteomeXchange in imzML format.
Peak Picking.We propose a two-step peak picking scheme:

in the first step, candidate peaks are detected on clusters of peak
m/z values from all spectra, and in the second, the spatial
distribution of the candidate peaks is evaluated and we select
those that display a coherent structure. For the first step, we have
devised a novel method that relies on clusterwise kernel density
estimates (KDEs) of spectral peaks. KDEs are smooth
histograms and we use them to estimate the distribution of
the peakm/z values within clusters along them/z axis. The level
of smoothness is adapted to each cluster independently.

Candidates of data set peaks are then detected as local maxima
on the resulting KDE curves. For the second step, we use two
established ways to automatically estimate the quality of the
images corresponding to peaks obtained in the first step as a
means to filter out noninformative peaks. Figure 1 summarizes
all parts of our peak picking scheme.

PeakDetection. First, we collect the peakmasses from every
spectrum in one list, mzall, which is then sorted in ascending
order. Centroided spectra are taken as input and peaks with
heights below a very low intensity threshold are discarded to
reduce the impact of background noise. Consequently,mzall will
contain most peak masses from the data set. Depending on data
set size and RAM availability mzall is processed either in
segments or in its entirety. Second, peak clusters in the m/z
dimension are identified using a one-dimensional directional
graph. If the distance between an m/z value, mi, and the next,
mi+1, is smaller than dc, an edge connecting the two is added to
the graph. The connected components in the resulting graph
represent the m/z clusters. We let dc increase with m/z to
account for the peak broadening described by the known
theoretical relationship between peak width (at half-maximum)
and m/z: dc = f(m/z) where f depends on instrument type.12

Suits et al.13 summarized the relationship between peak width
and instrument type. To reduce processing time, we discard
clusters containing fewer than a minimum number of peaks. The
threshold should be set sufficiently low to retain peaks
representing meaningful anatomical structures in the tissue
and is therefore dependent on the spatial resolution of the
experiment. Finally, to test whether a cluster contains one or
more peaks, a KDE is fitted to the distribution of m/z values
within the cluster. The kernel bandwidth is optimized for each
cluster individually using the normal optimal smoothingmethod
described by Bowman and Azzalini.14 Peaks are detected on the
KDE curve in an iterative fashion: first the local maxima are
detected and added together with their corresponding heights to
a cluster-specific peak list, pkde. The m/z corresponding to the
highest peak in this list, mzmax, is added to the global peak list,
mzref, and all surrounding peaks in pkde, that fall within dkde
including mzmax, are removed. This step is repeated until pkde is
empty. The parameter dkde is proportional to the expected peak
width of the instrument in the same manner as dc. The ion
images are then generated by aligning each centroided spectrum
to the resulting reference spectrum mzref, using a nearest
neighbor method with maximum drift threshold dependent on
the expected theoretical peak width (at half-maximum),
similarly to the threshold used when generating edges between
peaks in the clustering step.

Peak Selection. Although our method is more directed than
slicing the spectra across them/z range (since it only considers a
selection of the m/z regions), it still generates many peaks
representing noise in addition to those correlated with actual
tissue structures, making it essential to separate the former from
the latter. We use the spatial chaos8 (SC) and the principal
component analysis (PCA)-based variance explained15 (VE)
measures to automatically estimate the level of structure in the
ion images. The spatial chaos counts the number of connected
objects in an ion image.More structured ion images are expected
to have fewer disconnected (separate) objects than unstructured
ones. The VE measure is the percentage of total variance
explained by the first pair of singular vectors of each ion image.
This corresponds to howmuch of the variation in intensity along
one axis of the image is explained by the intensities along the
other. The first principal component inherently explains the
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most variance and, thus, if it explains very little, so will all others.
In structured images there is typically an intensity relationship
between the axes and therefore their VE is expected to be higher
than that of images with randomly distributed intensities, i.e.,
unstructured images, in which this relationship is unlikely to
exist.

■ RESULTS AND DISCUSSION

Two data sets were used to assess the performance of our novel
MSI data preprocessing algorithm based on clusterwise peak
detection. The first MALDI-MSI data set (referred to as the
”spiked data set”) was generated by spiking a rat liver section
with 5 mixtures of 4 ground-truth drugs (12 different
compounds in total) in various concentrations. These mixtures
were spotted on a rat liver tissue section at five different locations
in circular areas of the same size (Figure S1) and, after matrix

deposition, the whole tissue section was analyzed by MALDI-
MSI using 50 μm spatial resolution. The concentrations of the
drug compounds covered an intensity range of 3 orders of
magnitude between trametinib (1.70 × 104) and ipratropium
(1.49× 107). Furthermore, some of the ground-truth drugs such
as erlotinib and dasatinib, were spotted at multiple loca-
tions in different concentrations. The second data set, originally
from Römpp et al.,10 comes from a mouse bladder section and
was downloaded from ProteomeXchange (XD001283). This
MSI data set was generated by a LTQ Orbitrap instrument with
an ion source built in-house used to scan the mouse bladder
section with 10 μm spatial resolution. The authors of this study
presented the ion images of 11 compounds. These images were
generated with a narrow bin width of 0.01 Da. For this data set,
we use the mass of these compounds as ground truth, i.e., peaks
known to be present.

Figure 2. (a) The distribution ofm/z peak values within the cluster containing erlotinib (m/z 394.176). (b−e) The ion images that correspond to the
four peaks on the KDE curve. (f) The ion image obtained by binning the spectra between 394.15 and 394.20 m/z; this image demonstrates how four
signals can be mixed in the same ion image and even when a relatively narrow m/z window is used.
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Recall of Known Compounds. We applied Cardinal,
MALDIquant, slicing the spectra into 0.05 Da bins, and our
clusterwise peak detection method to the spiked data set to
compare their ability to recall compounds. The difference
between the known mass of each ground-truth drug and the
mass of the closest detected peak is used as the measure of
accuracy for Cardinal and our method. The ion images
corresponding to the monoisotopic peak of the ground-truth
drugs were manually evaluated to confirm that a compound had
been correctly found. First, we ran Cardinal and detected 4751
peaks; we did not filter out those with too low pixel frequency.
The corresponding ion images were generated by binning
around each peak. Eight of the 12 compounds were detected
with a mass deviation ranging between 4.23 and 198.85 ppm
(mean 83.983 ppm). Figure S2 shows the ion images of the drug
compounds generated by Cardinal. The ion images of erlotinib
(394.176 Da) and geftinib (447.160 Da) are contaminated with
signal from other compounds while sunitinib (399.220 Da),
imatinib (494.267 Da), and trametinib (616.086 Da) are
completely missed. Second, we usedMALDIquant to compute a
mean spectrum on which we detected 521 peaks. Only the peak
from the drug with the highest measured intensity, ipratropium,
was found with a mass deviation of 4.7145 ppm. The ion image
corresponding to the monoisotopic peak of iptratropium
indicates that this compound has diffused from the spotting
location and because of this covers a significantly larger region of

the tissue than the other compounds; this might contribute to its
presence in the mean spectrum which favors signals that have
high intensity and/or pixel frequency. Third, we sliced the
spectra with a bin width of 0.05 Da across the 150−1000 m/z
range resulting in 17 000 slices. To asses the sensitivity of the
slicing approach we manually examined the ion images
corresponding to the slices containing the m/z of the spiked-
in drug compounds (Figure S3). The signal from trametinib
(616.086) is missed and those from erlotinib (394.176 Da) and
imatinib (494.267 Da) are mixed with others, resulting in
contaminated ion images. Finally, when applying our method,
we identified 3148 m/z clusters in the data set peak list and on
the KDEs of these we detected 6088 peaks. We used a value of
0.2 times the theoretical peak width at half-maximum for dc, the
parameter controlling the maximum distance between con-
nected points that form the m/z clusters. Decreasing or
increasing dc between 0.1 and 0.5 results in a higher or lower
number of clusters, respectively, but ultimately has little impact
on the final peak list. All of the 12 spiked-in compounds are
detected with mass deviations ranging between 1.00 and 4.29
ppm (mean 2.598 ppm). Figure S4 shows the ion images
corresponding to the monoisotopic peaks of the drug
compounds generated by our method. The signal from
trametinib is weak but detected nevertheless; it had the lowest
measured intensity which can explain its absence in some of the
spectra. Generally, the quality of images generated with our

Figure 3. Distribution of peak m/z values within the cluster containing PC (32:1) (770.5109 m/z) and SM(18:0) (770.5609 m/z). The ion images
corresponding to the two highest peaks on the KDE curve are shown in the bottom left and bottom right.
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approach is higher than that of the images generated with
Cardinal or by slicing. The drug signals are clearly visible against
the background, and there is no contamination with signals from
other compounds, background, or matrix. Table S1 shows the
mass deviations of the detected peaks corresponding to the
spiked-in drugs obtained with Cardinal and our algorithm. The
corresponding ion images are shown in Figure S2 and Figure S4,
respectively.
An example of a cluster with densely located molecule signals

is that containing erlotinib (394.176 Da) (Figure 2a). There are
four distinctive signals within this relatively narrowm/z window
(0.04 Da) at 394.161, 394.166, 394.172, and 394.176 m/z with
interpeak distances of 13, 15, and 10 ppm. The peak at 394.161
m/z is tissue-derived while those at 394.166 m/z and 394.172
come from a fragment molecule of imatinib and the matrix,
respectively. Using our method we are able separate the four
peaks and generate a clean image for each of them. Figure 2b−e
shows the ion images related to these peaks. If the spectra are
binned between 394.150 and 394.200 m/z instead, the signals
from three of the four compounds appear in the same ion image,
i.e., they are incorrectly combined into one ion-image while that
from the peak at 394.172 m/z is invisible (Figure 2f) due to its
low intensity compared to the other three. We found that a value

between 0.25−0.5 times the theoretical peak width at half-
maximum is a good choice for dkde, the parameter controlling the
minimum distance between two adjacent peaks on the KDE
curve. Using a higher value results in fewer noise peaks, however,
we lose true peaks, e.g., those from imatinib and erlotinib.
Because of this, we recommend using a small dkde to delay
filtering out noise peaks until after alignment by using one of the
spatial distribution based peak selection methods. The kernel
bandwidth used when generating the cluster KDEs is optimized
for each cluster individually to account for the variability in peak
density. This parameter determines the level of smoothing when
estimating the distribution of the peak masses within the
clusters. Similarly to dkde, using a higher bandwidth results in less
noisy data, however, may lead to losing true peaks or mixing
signals from multiple compounds.
We also applied our cluster-based peak detection method to

the high spatial resolution mouse bladder data set. In this data
set we detected 1702 m/z clusters and 6482 peaks. We then
filtered out peaks which were present in fewer than 200 of the
33 000 spectra, resulting in a final list of 1024 data set peaks. The
original paper reported 11 ion images that were manually
generated by binning around peaks with knownm/z using a very
narrow bin width of 0.01 Da. All peaks corresponding to these

Figure 4. Number of ion images surviving varying thresholds on the VE and SC scores in the two data sets. Dashed lines mark the lowest scores
(excluding the low quality image form/z 616.127) of the ion images corresponding to the drugs in the spiked data set (top) and known compounds in
the mouse bladder data set (bottom).
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ion images are found by our peak detection method in an
unsupervised fashion, including the two densely located peaks at
770.5097 and 770.5698 m/z originating from the K+ adduct of
PC(32:1) [phosphatidylcholine] and an isotope of the K+

adduct of SM(36:1), [sphingosylphosphorylcholine], respec-
tively (Figure 3). Figure S5 shows the ion images related to the
11 detected peaks.
Peak Selection. As previously mentioned, we find more

than 6000 peaks in the rat liver data set with our cluster-based
peak detection, resulting in an equal number of ion images.
Manually evaluating each image is impractically slow, but by
computing the spatial chaos (SC) and the variance explained
(VE) for all ion images, including those of the compounds
known to be present, we can estimate how much we can reduce
the number of images without losing relevant information. For
each data set, we took the VE and SC scores of the ion images
corresponding to the known compounds and used their mean
scores minus two standard deviations as low-end thresholds.
The number of peaks whose images had scores above these
thresholds indicates how many of the detected peaks should be
kept and how many can be rejected as noise. In the spiked data
set this filtering resulted in a final list of 843 and 2170 peaks
when we filtered based on VE and SC scores, respectively. The
numbers of peaks obtained for the mouse bladder data set are
418 and 288 for VE and SC, respectively. The number of ion
images whose VE or SC score is above various thresholds is
shown in Figure 4. The number of peaks can potentially be
further reduced if off-tissue regions are available; biologically
irrelevant peaks, such as those coming from solvents or the

matrix, can be filtered out since their signal often is stronger in
these regions.15

Despite its simplicity, the VE score proved to be very effective
in ranking the quality of the ion images generated from both the
spiked and mouse bladder data sets. Specifically, VE favors
images which have intensities localized to small regions, e.g., all
of the spiked-in compounds in the spiked data set and heme b,
M+ at m/z = 616 (Figure S5c) in the mouse bladder data set. In
contrast, ion images with high levels of structure across the
entire scanned region tend to be rewarded with the highest SC
scores, making it suitable as a general measure of image quality
but less effective than the VE score in identifying ion images with
localized structured intensity patterns. The two scores appeared
to be partially complementary to each other; the Pearson
correlation between the VE and SC scores in the spiked and
mouse bladder data sets were 0.6158 and 0.4821, respectively.
Tables 1 and 2 show the VE and SC scores of the ion images
corresponding to the ground truth compounds in the spiked and
mouse bladder data sets, respectively.

Detection of Fragments and Isotopes. MALDI-MSI is
an important tool often used to investigate the distribution of
drugs and drug metabolites in tissue during pharmaceutical
research, and obtaining comprehensive lists of interacting
molecules is crucial during their development. To this end, we
further assessed the performance of our peak detection method
by searching for molecules colocalized with the drugs in the
spiked data set. Colocalization analysis can be performed by
computing the Pearson correlation coefficient between the ion
image of a peak of interest and all other images.5,16,17 For each

Table 1. VE and SC Scores of the Ion Images Corresponding to the Spiked-in Drug Compound in the Spiked Data Set and Their
Corresponding Rank among the 4771 Ion Images That Remain after Removing Those with Fewer Than 400 Nonzero Pixels

compound mass VE percentile rank (VE) SC percentile rank (SC)

ipratropium 332.223 0.5997 99.43 27 0.9997 99.94 3
vatalanib 347.107 0.7183 99.79 10 0.9952 79.29 988
erlotinib 394.177 0.7837 99.85 7 0.9775 61.04 1859
sunitinib 399.220 0.6845 99.73 13 0.9921 72.23 1325
pazopanib 438.171 0.8853 99.98 1 0.9837 64.60 1689
gefitinib 447.160 0.8362 99.92 4 0.9948 78.22 1039
sorafenib 465.094 0.8328 99.90 5 0.9951 79.04 1000
dasatinib 488.164 0.6400 99.62 18 0.9980 92.10 377
imatinib 494.267 0.7611 99.81 9 0.9766 60.64 1878
dabrafinib 520.109 0.5499 97.78 106 0.9964 83.29 797
lapatinib 581.143 0.6715 99.69 15 0.9775 60.97 1862
trametinib 616.086 0.1696 70.72 1397 0.9038 53.07 2239

Table 2. VE and SC Scores of the Ion Images Corresponding to the 11 Compounds Reported by Ro ̈mpp et al.10 and Their
Corresponding Rank among the 1053 Candidate Ion Images That Remain after Removing Those with Fewer Than 200 Nonzero
Pixels

compound mass VE percentile rank (VE) SC percentile rank (SC)

LPC (16:0), [M + K]+ 535.296 0.1770 92.76 74 0.9897 94.52 56
LPC (18:0), [M + K]+ 562.327 0.2732 98.14 19 0.9964 99.12 9
heme b, M+ 616.177 0.2385 96.67 34 0.9261 70.84 298
unknown 713.452 0.0911 75.93 246 0.9444 73.68 269
SM (16:0) 742.531 0.2140 95.50 46 0.9953 98.24 18
unknown 743.548 0.1921 94.42 57 0.9691 84.34 160
PC(32:1), [M + K] 770.507 0.2688 97.95 21 0.9814 88.85 114
SM(18:0), [M + K] 770.565 0.1439 87.87 124 0.9849 90.90 93
PC (32:0),[M + K]+ 772.525 0.3177 98.83 12 0.9975 99.80 2
PC (34:1), [M + K]+ 798.541 0.3383 99.02 10 0.9979 99.90 1
PE(38:1) 812.557 0.1623 91.39 88 0.9909 95.21 49
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drug compound, we computed the correlation coefficient
between the ion image corresponding to its monoisotopic
peak and every ion image from the full image sets generated
using the peaks found with our clusterwise peak detection
method and that generated by slicing, without performing peak
filtering based on spatial distribution. We manually assessed
images whose correlation coefficient was ≥0.5 to search for
candidate fragments and isotopes with spatial intensity
distributions matching those of the drugs. The m/z of the
matching images and existing knowledge about the theoretical
fragmentation pattern of the drugs were then used to identify the
fragments. This resulted in the identification of 46 isotopes and
fragments in the ion image set generated by our method and 32
in the set generated by slicing. We gain an additional 14
fragments and isotopes when using our peak detection approach
compared to when slicing the spectra with a bin width of 0.05
Da.
The correlation analysis result of dasatinib is shown in Figure

5. In total, 12 ion images have a correlation coefficient≥0.5. The
nine most correlated images (≥0.75) consist of three isotopes of
dasatinib with an m/z of 489.165, 490.159, and 491.162, and six

fragments with an m/z of 319.133, 387.078, 401.094, 402.097,
403.091, and 427.110. The fragments’ and isotopes’ ion images
show minimal signal mixing with other compounds as shown in
Figure 5. The remaining three consist of another fragment of
dasatinib with anm/z of 429.106 and a correlation coefficient of
0.5422 and two ion images related to sorafinib. The indentified
fragments and results of the correlation analysis are presented in
Supporting Information spreadsheet and Figures S6−S16. We
also assessed the most anticorrelated images to investigate
whether there was evidence of ion suppression from any of the
ground-truth drugs. However, no images uniquely anticorre-
lated to any one of the spiking spots were found. Instead, these
images were anticorrelated to all spiking spots simultaneously,
indicating that they are the result of washing or ion suppression
from the solvent used in the drug mixtures.

■ CONCLUSIONS

In this paper we have presented an efficient peak picking
approach combining a novel peak detection algorithm with
filtering based on spatial information to automatically identify
ion images corresponding to isotopic peaks of both endogenous

Figure 5.Top: The ion images of the 12most correlated peaks to dasatinib’s monoisotopic peak. Panels a−i and l are isotopes or fragments of dasatinib
while panels j and k are related to sorafenib. Bottom: Sorted Pearson correlation between all ion images and that of the monoisotopic peak of dasatinib.
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and drug compounds in high-resolution MSI data sets. It should
be noted that these data sets were generated using high-
resolution Orbitrap MSI, which is low-pass-filtered during
acquisition by default. Applying our method to noisier data such
as that generated by QTOF MSI would require additional
preprocessing such as baseline removal and smoothing. Our
KDE clusterwise peak detection algorithm enables us to find low
intensity and localized peaks with minimal contamination from
other peaks close inm/z, resulting in high ion image quality. We
believe that implementing our MSI preprocessing algorithm in
an interactive tool would be valuable to experimentalists who
aim to identify a priori unknown endogenous compounds, reveal
drug distributions in tissue, or find compounds that spatially
correlate to known ones. Such a tool could help users gain
deeper insight into the effect of drugs in tissue and considerably
reduce the number of ion images that have to be examined
manually.
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ABSTRACT: Mass spectrometry imaging (MSI) is a technique
that provides comprehensive molecular information with high
spatial resolution from tissue. Today, there is a strong push toward
sharing data sets through public repositories in many research fields
where MSI is commonly applied; yet, there is no standardized
protocol for analyzing these data sets in a reproducible manner.
Shifts in the mass-to-charge ratio (m/z) of molecular peaks present
a major obstacle that can make it impossible to distinguish one
compound from another. Here, we present a label-free m/z
alignment approach that is compatible with multiple instrument
types and makes no assumptions on the sample’s molecular
composition. Our approach, MSIWarp (https://github.com/horvatovichlab/MSIWarp), finds an m/z recalibration function by
maximizing a similarity score that considers both the intensity and m/z position of peaks matched between two spectra. MSIWarp
requires only centroid spectra to find the recalibration function and is thereby readily applicable to almost any MSI data set. To deal
with particularly misaligned or peak-sparse spectra, we provide an option to detect and exclude spurious peak matches with a tailored
random sample consensus (RANSAC) procedure. We evaluate our approach with four publicly available data sets from both time-of-
flight (TOF) and Orbitrap instruments and demonstrate up to 88% improvement in m/z alignment.

■ INTRODUCTION

Mass spectrometry (MS) is a widespread analytical technique
used to detect and quantify ionized molecules, and it has many
applications in biology, chemistry, and medicine. In MS
imaging (MSI), molecular ions are sampled from different
locations on a surface area, such as a tissue section, allowing
the mass spectrometer to serve as a molecular imaging device.
The ability to determine the spatial distribution of thousands
of biological compounds in a single experiment makes MSI a
powerful tool for tissue characterization. There have been
extensive developments in the MSI field during the last
decades, resulting in new experimental workflows, improved
ionization and sampling methods, and advances in both the
spatial and mass resolutions of instruments.1−3 The availability
of a wide variety of ionization techniques such as secondary-
ion MS (SIMS), desorption electrospray ionization (DESI),
and matrix-assisted laser desorption/ionization (MALDI)
allows ionization of many compound classes with both
targeted and untargeted approaches.1 High-performance Orbi-
trap and Fourier transform ion cyclotron resonance (FT-ICR)
mass analyzers can scan tissue sections with a subcellular
spatial resolution and a mass resolution exceeding 500 000.
Low sensitivity has been a longstanding obstacle for high-
spatial-resolution MSI but has recently been improved by
optimizing the laser wavelength in MALDI to increase

ionization efficiency, or by post-ionizing neutral molecules to
increase ion yield.2 Novel sample preparation workflows have
led to enhanced quantification and identification of metabo-
lites, peptides, and proteins. These include protein extraction
methods, in situ protease digestion of proteins, and the use of
chemical derivatization such as labeling with photocleavable
mass tags to enhance low-intensity molecule signals.3,4

Altogether, this leads to highly complex data sets that demand
accurate preprocessing and sophisticated bioinformatic analysis
to maximize their utility in biological and clinical research.5

A persisting issue in MSI is systematic mass misalignment,
leading to slight shifts in the m/z ratio of molecule peaks across
spectra. These shifts can result in misidentified peaks or an
increased risk of mixing peaks from different molecules with
similar masses in the same ion image. Mass misalignment is
typically more severe for time-of-flight (TOF) instruments
than for FT-ICR, Orbitrap, or other Fourier transform (FT)
instruments.6 Variations in temperature throughout the
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experiment, contractions and dilatations of the ion tube,
contamination of the ion source, and tissue topography are
some factors that are related to mass shifts in spectra generated
by TOF instruments. For FT instruments, the most common
source of mass misalignment is the space-charge effect, which
causes mass shifts that increase with the number of ions in the
trap.7,8 The mass shifts in FT instruments can often be limited
using automatic gain control (AGC), but can be considerable if
suboptimal AGC settings are used.
When discussing mass misalignment and mass shifts, it is

important to distinguish between relative mass alignment and
absolute mass accuracy. Here, the former refers to how tightly
peak masses are distributed across spectra, while the latter
refers to the difference between a molecule’s theoretical peak
mass and its observed peak mass. A common approach to
correct mass shifts is to perform either external or internal
calibration by comparing the measured masses of predefined
peaks to their expected theoretical masses. External calibration
is performed by depositing a calibration standard outside the
tissue region and comparing the measured peak masses to the
known masses of the calibrants. The same calibration function
is then applied to all tissue spectra. While this approach is
simple, it does not reduce the relative misalignment or correct
mass shifts introduced during the experiment. Internal
calibration, on the other hand, relies on identifying known
peaks in each tissue spectrum. The known peaks can be either
prominent molecule peaks intrinsic to the tissue or peaks
corresponding to calibrants sprayed on the whole tissue area.
Internal calibration can improve both the relative alignment
between spectra and absolute mass accuracy but performs
poorly for spectra in which the calibration peaks are missing or
incorrectly assigned.9

An alternative approach is to align all spectra to a common
reference spectrum. Given that the absolute mass accuracy of
the reference spectrum is high, this can reduce relative
misalignment and improve absolute mass accuracy simulta-
neously. A simple approach to aligning one spectrum to
another is fitting a polynomial recalibration function to the
mass difference of their shared peaks and then using this
recalibration function to recalibrate all peak masses. While this
approach is flexible, it is highly sensitive to spurious peak
matches. Bocker and Makinen10 introduced a linear curve-
fitting approach that is robust to spurious peak matches, and
Kulkarni et al.11 later used this approach, together with spatial
information, to further improve mass alignment. More
recently, there has been increased focus on mass alignment
for TOF instruments. Raf́ols et al.6 proposed an alignment
algorithm that uses the cross-correlation between two spectra
in the upper and lower parts of the mass range to estimate
mass shift. They then use the upper and lower shifts to
recalibrate the mass axis of one of the spectra to that of the
other. Boskamp et al.9 elegantly exploit statistical properties of
the peptide background signal to improve mass alignment and
absolute mass accuracy. They estimate the mass shift across the
m/z range by comparing observed to theoretical peak masses
on the Kendrick mass scale. Unlike Raf́ols et al.’s method, their
method can correct nonlinear mass shifts, but the dependency
on the peptide background limits its generalizability.
Another aspect of mass alignment is at which stage in the

processing pipeline it is performed. It can be performed in the
time domain for TOF spectra, in the frequency domain for FT
spectra, using profile mass spectra, or using centroided mass
spectra.6,10,12,13 In principle, aligning spectra at an early stage is

advantageous in the sense that errors are not accumulated in
subsequent processing steps. In practice, however, time or
frequency spectra are often inaccessible as vendor software
typically only provide mass spectra, and the majority of data
sets uploaded to repositories are processed to some extent. FT
spectra, in particular, are often centroided to reduce their
otherwise impractical size.14 It is impossible to recover a raw
spectrum from one that has been processed. Hence, an
approach must be able to perform alignment with processed
spectra to be compatible with most MSI data sets. This
compatibility is essential; data sets generated independently in
other labs are frequently used to validate biological findings or
novel methods. A public data set may be generated with any
instrument and additional processing is sometimes required to
ensure its quality. This compatibility requirement, together
with the growing popularity of public MSI data set repositories
such as MetaboLights15 or METASPACE,16 creates a demand
for algorithms that can perform accurate mass alignment on
spectra acquired with multiple instrument types and regardless
of whether they are already partially processed.
In this work, we adapt the correlation optimized warping

(COW)17 algorithm to perform label-free MSI mass alignment
using a custom benefit function and show that we can greatly
reduce variation in peak masses between spectra. COW aligns
a pair of signals by performing local warpings on one signal so
that the global similarity relative to the other is maximized. We
have previously shown that COW is effective in reducing
misalignment in the time dimension between liquid
chromatography−mass spectrometry (LC-MS) sample
runs.18,19 Here, we instead use COW to reduce mass
misalignment between spectra by warping the mass dimension.
Crucially, our method finds the optimal warping of one

spectrum relative to another using only a list of centroided
peaks from each spectrum. We model centroided peaks as
Gaussians whose widths vary with m/z, and define the
similarity between two spectra as the total overlap of their
shared peaks. To assess and further improve COW’s
robustness for particularly peak-sparse or misaligned spectra,
we include an optional outlier detection step in the form of a
tailored random sample consensus (RANSAC)20 procedure.
The concept of our method is similar to that of Raf́ols et al.,6

but differs in two key aspects. First, we find the mass
recalibration function by maximizing the product (overlap) of
centroided peaks instead of the cross-correlation of continuous
spectra. Second, our method can, since it is derived from
COW, correct nonlinear mass shifts. Thereby, our method
utilizes information about peak height and width (not simply
mass location) while remaining compatible with most MSI
data sets. We demonstrate the effectiveness and generalizability
of our method, named MSIWarp, by applying it to four
publicly available data sets. MSIWarp performs accurate and
robust alignment with centroided spectra, is compatible with
multiple instrument types, and makes no assumptions on the
molecular composition of the sample. We provide a fast C++
implementation of MSIWarp together with a Python binding
at https://github.com/horvatovichlab/MSIWarp.

■ THEORY
The core of MSIWarp is a spectrum-to-spectrum similarity
score that is used to find an optimal warping function between
the mass axis of one spectrum and that of another. To align an
entire MSI data set, all spectra, the sample spectra, are warped
to a common reference spectrum that can be selected from the
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data set, or be a composite spectrum constructed from multiple
spectra. Similar to our previous work,19 MSIWarp deliberately
relies on centroided, i.e., peak-picked, spectra to perform
alignment. Peak-picking can improve alignment by retaining
most compound-related signals while removing background
noise that degrades performance. More importantly, however,
an alignment method that takes centroided spectra as input can
trivially be used to align profile spectra, but not vice versa.
MSIWarp relies on centroid spectra instead of profile spectra
and is thereby readily applicable to almost any MSI data set.
MSIWarp can be summarized in three steps (Figure 1): first,

we match the peaks of the sample spectrum against those of
the reference spectrum. Second, based on the peak matches
from step one, we split the m/z range in a manner that ensures
there is sufficient shared information in all segments. Finally,
we find an optimal warping function with the peak matches
and the partitioning of the m/z range obtained in steps one
and two, respectively, and use this function to recalibrate the
peak masses of the sample spectrum.
Mass Alignment. Our method aligns a pair of spectra by

warping one in the mass dimension so that its similarity to the
other is maximized. Provided that the type of mass
spectrometer used to generate the spectra is known, it requires
only a list of peak heights and m/z locations for each spectrum.
We model peak intensity as a Gaussian function of m/z with
centroid mass μ and height H. With this peak model, we can
then compute the similarity of two centroided spectra as the
sum of all pairwise peak overlaps, and use this similarity score
as a measure of alignment quality. To model peak width, σ, we
use known theoretical relationships between peak width and
m/z, together with the mass resolution of the data set. The
theoretical relationships depend on instrument type and are
summarized in Suits et al.21 If the mass resolution is unknown,

a good estimate of a single peak’s full width at half-maximum
(FWHM) is enough to model the width of all other peaks in
the data set. While not a true representation of a mass
spectrum peak, the Gaussian peak model is a sufficient
approximation for the purpose of alignment. Similarly, the
modeled peak width does not have to match the true width
exactly, since its main purpose is to provide some freedom
when matching and aligning peaks.
Equations 1−4 formally define our Gaussian peak model p,

the overlap between two peaks I, and the similarity between
two spectra, B. The intensity of a peak varies with m/z
according to
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σ
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The integral in eq 2 can be solved analytically to yield
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where

Figure 1. Conceptual description of MSIWarp. After matching the peaks in the sample spectrum against those in the reference spectrum, the
sample spectrum is warped so that its similarity to the reference spectrum is maximized. (A) Scatter of the mass shift between matched peaks across
the m/z range. The shifted warping nodes are marked with vertical arrows (the actual search space is centered around zero and extends beyond the
arrows). The orange curve shows the estimated mass shift based on our similarity score. (B) The similarity score is evaluated for the set of
candidate warpings, and the warping resulting in the highest score is used to align the sample spectrum. (C) Zoom-in of the spectra with the
centroided peaks modeled as Gaussians. Two sample spectrum peaks are matched to the reference spectrum peak at 1207 m/z, but the spurious
match (also marked in (A)) has no effect on the warping.
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The similarity score, B, between two spectra, Si and Sj, is the
sum overlap of all matched peaks

∑=
μ μ| − |<ϵ

B S S I p p( , ) ( , )i j i j
i j (4)

To compute the similarity score between a pair of spectra, the
set of peak pairs that satisfy the condition in eq 4 must be
found. A peak in the first spectrum is matched to one in the
second spectrum if their m/z locations are within a small
distance threshold, ϵ, of each other. Note that a peak in one
spectrum can be matched to multiple peaks in the other
spectrum. The threshold ϵ in eq 4 is proportional to the
modeled peak width and therefore increases with m/z.
With our definition of pairwise similarity between two

centroided spectra, we can search for an optimal warping from
a set of candidate warpings in a similar way as the original
COW implementation. This involves dividing the m/z range
into segments, evaluating B for all candidate warpings for each
segment independently, and then finding the optimal
combination of segment warpings. The analytical form of the
integral in eq 2 enables fast computation of the similarity score,
which is critical since it must be repeated for each candidate
warping. Here, we denote the lower and upper edges of an m/z
segment nl and nr, respectively, and refer to them as the
warping nodes of the segment. Note that each warping node,
except those at the lowest and highest ends of the m/z range,
are shared by two segments. To generate the set of candidate
warpings for an m/z segment, the warping nodes at its edges
are shifted a fixed number of steps upward and downward in
m/z. The set of warpings for that segment then corresponds to
all possible combinations of shifts of nl and nr. Computing B
for a particular warping and segment is then performed by
warping the peaks in the segment and then computing B with
the warped peaks and the peaks from the corresponding
segment in the reference spectrum. Peaks are warped by
updating their mass with linear interpolation according to

μ′ = · ′ − ′ + ′x n n n( )r l l (5)

where

μ= − −x n n n( )/( )l r l

μ is the original peak mass, μ′ is the warped peak mass, and nl′
and nr′ are the shifted positions of nl and nr, respectively. Note
that while segments are compressed, stretched, and/or shifted,
a peak is never warped out of its segment and its width and
height are left untouched. Finally, like in the original COW
implementation,17 the optimal combination of warping node
moves is found with dynamic programming. The shift of a
warping node is bounded by the slack parameter: |n′ − n| ≤ mn.
The slack is reflected by the amplitude of the warping function
and should be sufficiently large to capture the largest shifts.
Like the peak matching threshold (ϵ in eq 4), m is proportional
to FWHM and is computed for each warping node
individually.

By maximizing our similarity score, we find a piecewise
linear mass recalibration function with a degree of freedom
determined by the number of warping nodes. A large number
of short segments gives a flexible warping function that can
correct local m/z shifts, whereas a small number of long
segments generally results in a more stable, but less flexible,
warping function. The risk of overfitting the warping function
to noise or random variations in peak mass is smaller with
segments that have many matched peaks. Due to this, we
prefer long segments that accommodate a sufficient number of
peak matches (at least 10−20) to short segments that are
potentially more flexible.

Placement of Warping Nodes. In many MSI data sets,
there is a large variation in peak density across the m/z range.
For such data sets, the placement of the warping nodes can
greatly influence the warping quality. The same warping nodes
can be used for all spectra, or they can be placed uniquely for
each spectrum. The goal of the warping node placement is to
have a segment length that is adapted to the amount of shared
information, i.e., peak matches, between the sample and
reference spectra in all parts of the m/z range. This can be
achieved by generating a density estimate (smooth histogram)
of the peak matches between the sample and reference spectra
over the m/z range and then placing the warping nodes
between the peaks of the density curve. If the warping nodes
are uniquely placed for each spectrum, they can alternatively be
placed so that the number of peak matches is the same in all
segments. A third option is to use segments with uniform
lengths. This may work well for spectra with a high peak
density throughout the m/z range but can result in segments
without peak matches for peak-sparse spectra.

RANSAC Outlier Detection. Unlike alignment methods
that rely solely on the difference in mass between matched
peaks, MSIWarp is naturally robust to spurious matches, as
long as there are sufficiently many true matches. To confirm
this, we use a custom RANSAC procedure to detect spurious
matches, perform alignment both with the full set of peak
matches and with that obtained after having removed spurious
matches, and compare the results to evaluate whether spurious
matches degrade the alignment quality of MSIWarp in practice.
Generally, RANSAC fits a model to a minimal subset of data
points that may contain outliers. The subset is resampled
numerous times and the model is fit to each subset. The best
model, given some criteria, is then selected and all data points
that fit the model are included in the “inlier” set. We combine
RANSAC with our method to separate true matches (inliers)
from spurious matches in the following way:

(i) Generate a list of preliminary peak matches with a
permissive distance threshold proportional to peak
FWHM.

(ii) Randomly sample two matches from the preliminary set
of matches for each segment, and fit a trial warping
model to the sampled matches. Warp all other
preliminary matches according to the trial model.

(iii) Add peak matches whose mass distance after alignment
is below a strict threshold to the inlier set.

(iv) Repeat steps (i)−(iii) n times and return the largest set
of inliers. Given an estimate of the fraction of inliers
among the peak matches, n can be set to obtain a desired
probability of an outlier-free candidate model.

We use ϵ from eq 4 as the threshold in (i) and 0.3 times peak
FWHM as that in (iii). When using a large number of
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segments, the warping function found using the subset of peak
matches in (ii) is highly unstable and can sometimes fit a large
number of spurious matches by chance. Therefore, we use only
one or two warping segments in the RANSAC step. After
removing the spurious matches, more warping segments can be
added in parts of the m/z range that are supported by the
number of true matches. The final warping is then searched for
using all, or a large fraction, of the true matches.

■ MATERIALS AND METHODS
Data Sets. To evaluate MSIWarp, we applied it to four

publicly available data sets that together represent the most
common MSI experimental setups. The first data set was
generated from two mouse kidney sections with a rapifleX
MALDI TOF/TOF instrument (Bruker Daltonics).22 The
second data set was generated from human cancer spheroids
with an ultrafleXtreme MALDI-TOF/TOF instrument (Bruker
Daltonics).23 The third data set was generated from a rat liver
section with a MALDI LTQ Orbitrap XL instrument (Thermo
Fischer Scientific).24 The fourth data set was generated from a
colorectal adenocarcinoma sample using a home-built
motorized DESI ion source and an LTQ XL Orbitrap
Discovery instrument (Thermo Fischer Scientific).25 The
data sets, referred to as the TOF kidney, TOF spheroids,
Orbitrap liver, and Orbitrap DESI data sets, are summarized in
Table 1. A more detailed description of the data sets is

available in the Supporting Information, and total ion current
(TIC) images for each data set are shown in Figure S1. Before
performing mass alignment, we filtered out peaks whose
intensity was below a signal-to-noise ratio (SNR) of 2.5 from
the mouse kidney TOF data set and centroided all data sets,
except for the Orbitrap DESI, with the parabolic centroiding
algorithm by Robichaud et al.26 We downloaded the Orbitrap
DESI data set in centroid mode from the MetaboLights
repository. The data sets were preprocessed with in-house
Python scripts.
Data Analysis. To measure the effect of alignment in each

data set, we calculated the mass dispersion around a set of
reference peaks. We obtained the mass dispersion of a
reference peak by binning all spectra around its m/z and
then calculating the standard deviation of peak masses within
the resulting mass bin. By binning we mean isolating peaks
across spectra at predefined m/z locations, and we refer to the
isolation windows as mass bins. We used a bin width two times
the FWHM of the reference peak. As reference peaks, we used
the most intense peaks of the mean spectrum (100 for the

TOF kidney, Orbitrap liver, and Orbitrap DESI data sets and
50 for the TOF spheroid data set), some matrix peaks, and
peaks that were identified in the papers that originally
published the data sets. The mean spectrum was generated
after alignment with MSIWarp, and we performed the binning
and calculated mass dispersion both before and after
alignment.
To further assess the quality of the alignment, we generated

scatter plots of peak mass and spectrum acquisition time for
the mass bin of each reference peak (Figures S3−S13). The
scatter plots provide a clear view of the mass shift before and
after alignment and serve as valuable quality control for the
alignment of specific peaks. Despite the previous intensity
filtering of the TOF kidney data set based on SNR, some mass
bins were still contaminated with faint background peaks. To
reduce the influence of these, we applied an intensity threshold
to each mass bin. The threshold was defined as the lower
intensity quartile of all of the peaks in the mass bin, and peaks
whose intensity was below this threshold were excluded when
calculating mass dispersion.

■ RESULTS AND DISCUSSION

To reiterate, MSIWarp aligns a data set by maximizing the
similarity between each spectrum and a common reference
spectrum. Like any method that performs pairwise alignment,
it relies on shared information. In the ideal case, all spectra
share numerous peaks with the reference spectrum throughout
the m/z range. In a more challenging case, there are few shared
peaks overall and/or wide gaps in the m/z range without any
shared peaks. Figure 2 shows a pair of spectra from the
Orbitrap data set, another from the TOF kidney data set, and
the m/z difference between preliminary matched peaks. The
Orbitrap spectra are homogeneous, with shared peaks
throughout the m/z range, and the mass shifts are small
(<1.5 ppm). In contrast, the TOF spectra are heterogeneous,
the mass shifts are significantly larger (>200 ppm), and there is
a part of the m/z range with almost no shared peaks (1000−
1400 m/z). Note that the mass differences between shared
peaks for a pair of aligned spectra are expected to be
distributed around zero throughout the m/z range. However,
in these examples, the misalignment is apparent; the mass shift
of matched peaks consistently increases with m/z for both
pairs. To accommodate large mass shifts, we used a peak
matching threshold (ϵ in eq 4) of approximately two times the
FWHM when matching peaks. With the low mass resolution in
the TOF kidney data set, this meant matching peaks within a
window of ±0.76 m/z at 1000 m/z. A wide matching window
increases the number of spurious matches; the scatter in Figure
2b contains numerous examples, most notably those clustered
around 850 and 1050 m/z. Finally, we chose to place the
warping nodes based on the density estimate of peak matches,
since it generally resulted in a smoother partitioning of the m/z
range than when placing them so that all segments contained
the same number of peak matches. We generated the density
estimate by performing a Kernel density estimation (KDE) of
peak m/z and then placed the warping nodes between the
peaks of the density curve, resulting in 4−10 warping segments
for the four data sets. Increasing and decreasing the bandwidth
of the KDE is a flexible way to adjust the number of warping
segments and the number of peak matches in each segment.
We used a bandwidth of 15 Da for the TOF kidney and
Orbitrap data sets, and a bandwidth of 100 Da for the TOF

Table 1. Summary of the Data Setsa

TOF kidney
TOF

spheroids
Orbitrap
liver

Orbitrap
DESI

ionization
technique MALDI MALDI MALDI DESI

species mouse human rat human

no. spectra 33 242 1114 23 823 20 286
raster size (μm) 100 50 50 100
m/z range (Da) 500−2500 800−4500 150−1000 200−1000
resolution 2600 17 500 60 000 60 000
avg. no. peaks 244 57 730 701
aBoth TOF data sets were uploaded to ProteomeXchange smoothed
and with their baseline removed. Resolutions for the Orbitrap data
sets were calculated at 400 m/z.
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spheroid data set since it was significantly less peak-dense than
the other data sets.
Spurious peak matches are largely inconsequential to

MSIWarp as long as spectra are reasonably peak-dense; in
fact, most spectra are aligned accurately and reliably without
RANSAC, even those in the TOF data sets. We hypothesized
that the importance of identifying true matches increases when
aligning peak-sparse spectra. For this reason, we aligned the
TOF data sets both with and without RANSAC. When
combining RANSAC with COW, it is important to use a small
number of warping segments in this step to avoid overfitting
the candidate models to spurious peak matches; here, we used
two segments for both TOF data sets in the RANSAC step.
Manual inspection of scatter plots like those in Figure 3
suggests that RANSAC confidently filters out spurious peak
matches in almost all spectra across both TOF data sets. We
used RANSAC to filter out spurious peak matches before
searching for the optimal warping. Then, we added more
warping nodes in the peak-dense parts of the m/z range to gain
more flexibility. Thereby, we obtained a flexibility in the
warping function that was adapted to the number of shared
peaks throughout the m/z range. We provide some examples of
how RANSAC finds the true peak matches (Figure S2) along
with an animation in the Supporting Information.
When aligning a data set by aligning each spectrum to a

common reference spectrum, the quality of that reference

spectrum is essential. We tried an approach similar to that of
Kulkarni et al.,11 where the reference spectrum is continuously
updated with each aligned sample spectrum, but observed no
significant improvement over aligning against a constant
reference spectrum of high quality. The spectrum with the
highest TIC was sufficient in terms of peak coverage for all four
data sets, and we therefore chose to use it as a reference.
Although the spectra with the highest TIC were appropriate
references for the alignment of the data sets that we discuss
here, a composite spectrum may be needed to fully cover the
m/z range in other data sets.
How we dealt with segments without shared peaks also

deserves mention. We chose to interpolate the warping
function in empty regions, as is evident in Figure 3b at around
1200 m/z. This is reasonable under the assumption that some
relevant data set peaks are missing in the reference spectrum,
which is often the case, so they can be present in a sample
spectrum without being shared with the reference. An
alternative approach is to leave the empty parts of the m/z
region unaligned, which can be more appropriate if the
reference spectrum has a very high peak coverage throughout
the m/z range. When this is the case, the sample spectrum
likely has little or no information in regions where it does not
share peaks with the reference spectrum, and aligning those
regions is unnecessary.

Figure 2. Top: pair of raw spectra from the Orbitrap liver data set (a) and another from the TOF kidney (b). Bottom: scatters of m/z difference
between matched peaks with point size scaled by intensity. The Orbitrap spectra share peaks across the entire m/z range. In contrast, the TOF
spectra share no peaks in a large part of the m/z range (1000−1400 m/z). This example also highlights the severity of the mass shift in the TOF
kidney data set: at 800 m/z, the shift is close to 0.18 m/z (219 ppm) between the TOF pair compared to 0.001 m/z (1.25 ppm) between the
Orbitrap pair.
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Reduction in Mass Misalignment. After alignment with

MSIWarp, mass dispersion is reduced considerably in all four

data sets. In Table 2, the mass dispersions of the mean

spectrum peaks before and after alignment are reported in both

ppm and FWHM. The full list of dispersions of the mean
spectrum peaks is available in the Supporting Information
spreadsheet. Interestingly, we observed no significant improve-
ment when aligning the TOF data sets with RANSAC
compared to aligning it without RANSAC. This suggests that
the inherent robustness of COW is sufficient in dealing with
spurious peak matches for the majority of spectra. To assess
the sensitivity of MSIWarp to the modeled peak width, σ, and
the peak matching threshold, ϵ, we reran the analysis of the
Orbitrap liver and TOF kidney data sets for various values of
these parameters (Table S1 and S2). This parameter sensitivity
analysis suggests that MSIWarp can perform well even when σ
over- or underestimates the experimental peak width by a
factor of up to 2. It also suggests that a large peak matching
threshold is better than a small one, which is further evidence
that MSIWarp is robust to spurious peak matches and that the
most important factor is that true matches are captured

Figure 3. (a, b) Mass shift estimated by MSIWarp (orange line) overlaid on the peak match scatter from Figure 2. (b) We use more warping nodes
in the peak-dense part of the m/z range than in the peak-sparse part; the zoom-in shows that the warping function closely follows the local shifts
between 700 and 900 m/z.

Table 2. Median Mass Dispersion of Mean Spectrum Peaks
before (Raw) and after Alignment (Warped) for the Four
Data Sets

TOF
kidney

TOF
spheroids

Orbitrap
liver

Orbitrap
DESI

raw (ppm) 106.39 35.63 0.63 0.52
warped (ppm) 12.73 6.48 0.18 0.17
raw (FWHM) 0.27 0.63 0.03 0.03
warped
(FWHM)

0.03 0.11 0.01 0.01

reduction (%) 88.03 81.82 72.03 68.00
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throughout the m/z range. In addition to using the spectrum
with the highest TIC as a reference, we also aligned the TOF
kidney data set to each of the 11 spectra with TICs closest to
the data set median, resulting in median mass dispersions of
mean spectrum peaks between 11.64 and 16.10 ppm (avg.
12.53). For 9 out of 11 spectra, the median mass dispersion
was lower than when using the spectrum with the highest TIC
as a reference (12.73 ppm). In comparison, using the spectrum
with the lowest TIC as a reference resulted in a median mass
dispersion of 73.45 ppm. Altogether, this indicates that a
minimum TIC threshold can be used to filter out unsuitable

reference spectra, but otherwise, the TIC provides little or no
information about a spectrum’s suitability as a reference.
Visualization of how the peak mass varies across the

experiment gives a good overview of alignment; Figure 4a−4c
shows the scatter of the relative peak mass before and after
alignment with MSIWarp and spectrum acquisition time for
three example peaks. The same pattern is seen for the three
peaks: aligning with MSIWarp visibly tightens the peak scatter
and removes the systematic shifts related to spectrum
acquisition time. These scatter plots are effective in visualizing
time-dependent mass shift but do not provide a clear picture of
how mass shift relates to tissue location. To better visualize this

Figure 4. Scatter plots of mass shift relative to the reference peak (y-axis) and spectrum index ordered according to acquisition time (y-axis) before
(cyan) and after alignment (orange). (a−c) Scatters around reference peaks at m/z 850.80 (PI 36:7), 1403.10 (unknown), and 172.04 (matrix) in
the TOF kidney, TOF spheroids, and Orbitrap liver data sets, respectively.

Figure 5.Mass shift and TIC images from the Orbitrap liver and TOF kidney data sets. Left: the mass shift (a) of the matrix peak at 172.04 m/z in
the Orbitrap data set is correlated to TIC (c). Right: the mass shift (b) of the lipid peak (PI 38:2) in the TOF kidney data set appears to be related
to tissue structures rather than to TIC (d) or acquisition time.
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relationship, we show the relative mass shift of a matrix peak
([M − H2O + H]+, 172.04 m/z) from the Orbitrap data set as
a function of tissue location in Figure 5a. In this plot, it is
evident that the peak masses decrease with time (the tissue was
scanned from top to bottom), but also that some shifts are
related to tissue location. The blue spots in the bottom half of
the section break the trend related to acquisition time; in these
spots, peak masses are increased by more than 4 ppm,
compared to an average decrease of approximately 1 ppm in
the bottom half of the section. The blue spots appear to be
correlated to the TIC of the spectra, which could be due to the
space-charge effect. Figure 5b shows the mass shift image of
the peak at 890.8 m/z (PI 38:2) from the TOF kidney data set.
In contrast to the matrix peak from the Orbitrap data set, the
mass shift of this peak appears to be unrelated to both
spectrum acquisition time and TIC (Figures 4a and 5b).
Instead, there is a strong relationship to tissue location: in both
kidney sections, peak masses appear to be increased in the
cortex and decreased in the medulla. The “stripes” at the top
part of the left section are likely an experimental artifact (due
to tissue folding or damage) rather than being related to any
tissue structure.
The mass dispersion of some identified compounds and

matrix peaks in the Orbitrap liver and TOF kidney data sets are
shown in Tables 3 and 4, respectively. The monoisotopic peak

of the phosphatidylcholine head group (184.07 m/z) in the
Orbitrap data set has a notably lower dispersion after
alignment (0.036 ppm) than those of the other compounds
(0.086−0.435 ppm). The intensity of this peak is several
orders of magnitude larger than that of all other peaks. As a
consequence, it dominates the similarity score and effectively

acts as a lock mass for the warping function. Importantly, this
does not appear to increase dispersion for lower intensity peaks
close in m/z; the matrix peaks at 172.04 and 190.05 m/z
contribute insignificantly to the similarity score in comparison,
but still have lower dispersion than most other peaks after
alignment. This suggests that the shift in low-intensity peaks
can be estimated accurately with the shift of nearby high-
intensity peaks. In the TOF kidney data set, dispersion is
reduced consistently by more than 80 percent, except for the
peak at m/z 919.90 (PI 40:1), whose dispersion remains
relatively high after alignment (32.69 ppm). By looking at the
mass scatter of this peak, however, it is evident that it has been
mixed with another peak in the same mass bin and that this
causes the relatively high dispersion after alignment (Figure S5,
Supporting Information).
An interesting example of the utility of MSIWarp is shown in

Figure 6. Like the mass bin at 919.90 m/z, other mass bins in
the TOF kidney data set contain mixed peaks as well, including
that of the unidentified reference peak at 904.90 m/z. Before
alignment, the two peaks in this bin are indistinguishable, but
after alignment, the peaks are separated sufficiently to enable
us to generate a distinct ion image for each. The distribution of
peak mass within the bin is considerably narrower after
alignment (Figure 6b). Crucially, the density curve of the
warped peak masses reveals, albeit just barely, the second peak
as distinct from the first one. By re-binning the spectra with
two tighter windows (±10 ppm), whose respective centers are
at the main and shoulder peaks of the density estimate, two
distinct ion images can be generated (Figure 6d,6e) instead of
one in which the two compounds are mixed (Figure 6c).
Despite the low mass resolution of the TOF kidney data (the
FWHM is approximately 380 ppm), these two peaks, which are
25 ppm apart, can still be separated by looking at the mass
locations of their centroids. Note that while we separate them
on a data set level, we do not separate them in a single
spectrum; when the compounds corresponding to the peaks
are present in the same spectrum, i.e., tissue spot, the peak of
the more intensive compound masks that of the other. This is
evident in the ion images of the two peaks (Figure 6d,6e): only
the more intense peak (904.878 m/z) is visible in the pixels
where the two peaks overlap.

Implementation and Processing Time. Although our
method involves repeating the similarity score computation for
a large number of candidate warpings to align a single
spectrum, we keep the processing time for a whole data set low
by implementing the core part of MSIWarp in efficient C++.
Aligning the TOF kidney data set, consisting of 33 242 spectra
with 244 peaks on average, took approximately 150 s when
MSIWarp was run without RANSAC and in parallel mode on a
laptop with an Intel i7-6700HQ CPU (2.6 GHz) and 16 GB
RAM. Aligning the Orbitrap liver data set with the same
settings took approximately 300 s. The parameter that has the
largest impact on processing time is the number of steps by
which the warping nodes are shifted when searching for the
optimal warping. Given that the slack has been set to capture
the mass shift for all spectra, the number of steps corresponds
to the resolution of the warping function. We found that a step
size of 0.05−0.10 times the peak FWHM gives a sufficient
alignment resolution. If the search space of the warping
function is ±2 FWHM, this results in 40−80 steps for each
warping node. The source code of MSIWarp along with
Python bindings are available at https://github.com/
horvatovichlab/MSIWarp. Our goal is to make it possible to

Table 3. Mass Dispersion (ppm) of Five Matrix (α-Cyano-4-
hydroxycinnamic Acid) Peaks, the Monoisotopic Peak of
Two Spiked-In Compounds, and the Peak of
Phosphocholine before (Raw) and after Alignment
(Warped) in the Orbitrap Liver Data Set

compound m/z disp. raw (ppm) disp. warped (ppm)

[M − H2O + H]+ 172.039 0.644 0.159
[M + H]+ 190.050 0.743 0.086
[M + Na]+ 212.032 0.724 0.222
[M − H + 2Na]+ 234.014 0.998 0.435
[2M + H]+ 379.092 0.699 0.343
phosphocholine 184.073 0.706 0.036
ipratropium 332.222 0.675 0.271
dasatinib 488.164 0.475 0.364

Table 4. Mass Dispersion (ppm) of Some Identified Lipid
Peaks before (Raw) and after Alignment (Warped) in the
TOF Kidney Data Seta

compound m/z disp. raw (ppm) disp. warped (ppm)

LPS 18:0 524.19 126.83 15.24
PA 34:1 673.68 128.19 24.99
PA 36:1 701.76 123.15 16.80
PS 36:3 784.38 118.82 16.13
PI 36:7 850.80 103.38 5.70
PS 42:5 864.82 105.18 7.23
PI 40:6 907.87 103.49 6.51
PI 40:1 919.90 87.83 32.69

aAll lipids are represented as [M − H]− ions.
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interface MSIWarp with existing MSI analysis packages such as
MALDIquant,27 Cardinal,28 and rMSIproc.29

■ CONCLUSIONS

We have presented an approach, MSIWarp, that readily
improves relative alignment in both TOF and Orbitrap data
sets that together represent a large variety of MSI experimental
setups. Even the severe misalignment in the TOF kidney data
set is brought down to a level that enables separation of peaks
close in m/z. With a median mass dispersion of 6.48 ppm (and
below 5 ppm for more than half of the peaks) in the TOF
spheroid data set, MSIWarp matches the alignment perform-
ance of methods that rely on profile spectra using only
centroided spectra. While the largest improvements in relative
mass alignment can be gained for TOF spectra, our results
suggest that MSIWarp can further improve the already high
mass alignment in Orbitrap data sets. By investigating the
effect of spurious peak matches with RANSAC, we have also
shown that MSIWarp is robust and performs well even for
most peak-sparse spectra. Finally, we believe that a careful
assessment of mass alignment is critical when analyzing MSI
data sets. Tools such as scatter plots of peak mass and
acquisition time, scatter plots of mass shift between individual
pairs of spectra, and images of mass shift as a function of tissue
location for individual peaks provide a way to do this in a
simple manner.
Although MSIWarp has demonstrated significant benefits in

analyzing MSI data sets, there are several research paths that
could yield additional improvements. Currently, the output of
MSIWarp is an m/z recalibration function for each data set

spectrum. It is important to highlight that even though this
function is found by searching for the optimal alignment
between a pair of centroided spectra, it can also be used to
align the corresponding profile spectra. Conceptually, the
recalibration function could also be found by directly
computing the correlation integral between the profile spectra,
if available, instead of using our analytical expression based on
the overlap of centroided peaks. This would allow MSIWarp to
utilize subtle features in the profile data, such as peak shape,
that may be lost in the peak-picking step. Another possible
enhancement is to create a hybrid approach by combining
MSIWarp with existing calibration strategies to improve
absolute mass accuracy in addition to relative mass alignment.
To do this, a spectrum with accurate masses should be used as
a reference, and if no such spectrum is available, the reference
spectrum can be chosen based on other criteria and calibrated
prior to alignment. Together, these approaches represent a rich
area of research that would allow interesting comparisons of
related techniques and potential for even further improvements
in performance.

■ ASSOCIATED CONTENT
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The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.analchem.0c03833.

Description of the TOF kidney, TOF spheroids,
Orbitrap liver, and Orbitrap DESI data sets. Tables S1
and S2, median mass dispersions of mean spectrum
peaks from the TOF kidney and Orbitrap liver data sets
after alignment with various values of σ and ϵ. Figure S1,

Figure 6. Mass bin from the TOF kidney data set exemplifies how severe misalignment leads to mixed ion images. The scatter of peak mass and
acquisition time in (a) reveals two peaks after alignment (orange) that are indistinguishable before alignment (cyan). Alignment similarly reveals
the two peaks in the density estimate of peak mass within the bin (b): before alignment (raw), the variation in peak mass across the spectra is too
large to separate the two peaks, but after alignment (warped), the peaks appear as the main and shoulder peaks of the density curve. The left ion
image (c) was generated from the raw (unaligned) spectra with a wide bin window (±200 ppm), while the center (d) and right (e) ion images were
generated by binning the warped spectra with a narrow window (±10 ppm) around 904.855 and 904.878 m/z, respectively. The median mass of
the two peaks and the narrow windows are marked in the zoom-in on the density curve in (b). The ion images in (c)−(e) were generated by
summing peak intensities in the bin for each spectrum/pixel.
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TIC images for the four MSI data sets. Figure S2,
RANSAC outlier detection results for three example
spectra from the TOF kidney data set. Figures S3−S13,
scatter plots of peak mass and acquisition time for mean
spectrum peaks from the top 100, 50, 100, and 100
mean spectrum peaks’ TOF kidney, TOF spheroids,
Orbitrap liver and Orbitrap DESI data sets (PDF)
Ransac outlier detection animation (ZIP)
Mean spectrum dispersions (XLSX)
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A.; Brezmes, J.; Peŕez-Taboada, I.; Vallejo, M.; García-Altares, M.;
Correig, X. Bioinformatics 2020, 36, 3618−3619.

Analytical Chemistry pubs.acs.org/ac Article

https://dx.doi.org/10.1021/acs.analchem.0c03833
Anal. Chem. 2020, 92, 16138−16148

16148



Proteogenomic and Histopathologic Classification of
Malignant Melanoma Reveal Molecular Heterogeneity
Impacting Survival

Magdalena Kuras1*, Lazaro Hiram Betancourt2*, Runyu
Hong3*, Jimmy Rodriguez4, Leticia Szadai5, Peter
Horvatovich6, Indira Pla1, Jonatan Eriksson7, Beáta
Szeitz8, Bartłomiej Deszcz9, Charlotte Welinder 2? , Yutaka
Sugihara7, Henrik Ekedahl2,10, Bo Baldetorp2, Christian
Ingvar10,11, Håkan Olsson2,10, Lotta Lundgren2,10, Göran
Jönsson2, Henrik Lindberg7, Henriett Oskolas2, Zsolt
Horvath7, Melinda Rezeli7, Jeovanis Gil7, Roger
Appelqvist7, Johan Malm1, Aniel Sanchez1, Marcell
Szasz12, Krzysztof Pawłowski1,9,13 Elisabet Wieslander2**,
David Fenyö3**, Istvan Nemeth5**, György
Marko-Varga7,14,15**

*=First shared authorship
**=Last shared authorship

1 Section for Clinical Chemistry, Department of Translational
Medicine, Lund University, Skåne University Hospital Malmö,
Malmö, Sweden
2 Division of Oncology, Department of Clinical Sciences
Lund, Lund University, Lund, Sweden
3 Institute for Systems Genetics, New York University
Grossman School of Medicine, New York, USA.
4 Department of Biochemistry and Biophysics, Karolinska
Institute, Stockholm, Sweden
5 Department of Dermatology and Allergology, University of
Szeged, Szeged, Hungary
6 Department of Analytical Biochemistry, Faculty of Science
and Engineering, University of Groningen, Groningen, The
Netherlands
7 Clinical Protein Science & Imaging, Biomedical Centre,
Department of Biomedical Engineering, Lund University,
Lund, Sweden
8 Division of Oncology, Department of Internal Medicine and
Oncology, Semmelweis University, Budapest, Hungary
9 Department of Biochemistry and Microbiology, Warsaw
University of Life Sciences, Warszawa, Poland
10 SUS University Hospital Lund, Lund, Sweden
11 Department of Surgery, Clinical Sciences, Lund University,
SUS, Lund, Sweden

12 Department of Bioinformatics, Semmelweis University,
Budapest, Hungary
13 Department of Molecular Biology, University of Texas
Southwestern Medical Center, Texas, USA
14 Chemical Genomics Global Research Lab, Department of
Biotechnology, College of Life Science and Biotechnology,
Yonsei University, Seoul, Republic of Korea
15 1st Department of Surgery, Tokyo Medical University,
Tokyo, Japan

Highlights

● Proteomics classification of metastatic melanoma
defines subtypes linked to survival

● Composition of tumor microenvironment is linked
to patient outcome

● Proteogenomics of metastatic melanoma reveals
biomarkers related to patient survival

● Disease association confirmed by
immunohistochemistry in an independent cohort

SUMMARY

Study aims
The study aimed to unify melanoma proteomics,
phosphoproteomics, transcriptomics with in-depth
histopathology analysis, and relate these to clinical variables,
in particular survival parameters. Thus, molecular features
were sought that allow prediction of patient outcome.

INTRODUCTION

Malignant melanoma is the most aggressive type of skin cancers and

it has high metastatic potential (Erdmann et al., 2013; Grzywa et al.,

2017). The worldwide incidence of melanoma has increased rapidly

during the last 50 years and it is anticipated to increase profoundly in

the next 20 years according to the GLOBOCAN database (Erdmann

et al., 2013). UV-radiation seems to be the main cause of malignant

melanoma development and its significance is even more apparent in

those countries where the malignant melanoma occurrence is above

the world average, such as Australia, US, Canada and Scandinavia.

Due to its heterogeneous nature and rapid metastatic progression,

malignant melanoma poses a major challenge to the healthcare

system (Grzywa et al., 2017). There has been a huge development of

treatment options from the early less effective practices to the current

kinase and immune checkpoint inhibitor therapies (Hugo et al., 2016;



Jannin et al., 2019; Leonardi et al., 2018; Sullivan et al., 2019). The

latest generation of drugs, with new mechanisms of action, has had a

profound impact on modern healthcare resulting in nearly doubling

the five-year survival rates for patients with disseminated disease.

Preventing tumor recurrence is, however, still a struggle (Hamid et al.,

2019; Robert et al., 2019).

In 2015, The Cancer Genome Atlas (TCGA) published a study

combining genomics and transcriptomics for improving clinical

management based on discriminating features within mutation and

transcriptomic subtypes (Cancer Genome Atlas Network, 2015). The

genomic subtypes alone were not able to predict patient outcome,

however the immune transcriptomic subtype with higher amount of

infiltrating immune cells was associated with a more favorable

prognosis and a high overall response rate to inhibitors of the

PD-1/PD-L1 pathway. Nevertheless, these results alone are

insufficient to describe the alterations responsible for melanoma

recurrence and response to treatment. Another transcriptomics-based

classification was proposed by Jonsson and co-workers (Cirenajwis

et al., 2015). To increase the understanding of how changes in the

molecular landscape are influencing patient survival, we have

performed comprehensive protein profiling of malignant melanoma

metastases from 142 well-characterized patient samples (with support

from the National Cancer Institute’s Clinical Proteomic Tumor

Analysis Consortium (CPTAC)). Integration of quantitative

transcriptomic and proteomic data (including posttranslational

modifications) was used to explore changes in the proteomic

landscape during disease progression, and to identify novel protein

markers for predicting progression and survival of melanoma patients.

RESULTS

Establishment of a high-resolution proteogenomic map of
treatment-naïve lymph node melanoma metastases
In this work, 144 metastases of lymph nodes (128), cutaneous (1),

subcutaneous (7), visceral (3) and uncharacterized (3) origins were

obtained from metastatic melanoma patients. The clinical and

histopathological features of the tumors are summarized in the

Supplement. Each sample was submitted to global proteomic and

phosphoproteomic analysis. In addition, relative levels of mRNA were

extracted from a previous study which involved a larger set of

melanoma samples, including those used in this study (Cirenajwis et

al., 2015).

The proteomic and phosphoproteomic analyses identified a total of

12,695 proteins and 45,356 phosphosites with an average of 10,705

proteins and 18,722 phosphosites identified per sample. Across all

samples 8,124 proteins and 4,644 phosphosites were commonly

quantified (STAR Methods).

Classification of metastatic melanoma subtypes by
proteogenomics

Two independent studies have classified melanomas based on

transcript expression (Jonsson 2010), (Cancer Genome Atlas

Network, 2015). Due to the limited correlation between mRNA and

protein levels, we investigated whether proteomic data can provide a

further improved melanoma classification, in closer association with

clinico-histopathological features.

We performed unsupervised hierarchical consensus clustering

analysis of the 3000 proteins with the most variable expression levels,

and commonly quantified across 118 samples with tumor content

>30%. We identified five major melanoma subtypes that were named

extracellular space/region (EC, n=23), extracellular

space/region-immune (EC-Im, n=26), mitochondria (Mit, n=30),

mitochondria-immune (Mit-Im, n=23), and extracellular

space/region-mitochondria (EC-Mit, n=16) according to the top

enriched terms revealed after Gene ontology and KEGG pathway

analysis performed on the five subtypes.

A previous transcriptomic study performed on a sample set partly

overlapping with the set used here (Lund transcriptomics study)

(Cirenajwis et al., 2015) classified 110 (93%) of these metastases in

four subgroups: high-immune (n=38), pigmentation (n=53),

proliferative (n=18) and normal-like (n=1). In addition, TCGA

transcriptomic classification has also been proposed for melanoma

tumors (Cancer Genome Atlas Network, 2015). Applying this classifier

(see Materials and methods) we assigned 93% of the tumors to the

three transcriptomics subtypes: immune (n=50), MITF-low (n=32) and

keratin (n=28).

The Fisher’s exact test showed significant association between the

proteomics subtypes and the transcriptomics classifications (Figure

1). Moreover, the proteomic classification displayed a more complex

picture of melanoma tumors by revealing subjacent heterogeneities

within transcriptomic subtypes. We also found significant associations

between both transcriptomics classifications, which provided

independent validation of these classification systems.

Proteogenomic signature of MM subtypes

To gain further information about the underlying biology of this

melanoma classification, we studied the corresponding differential

expression of proteins, phosphosites, and transcripts and performed

Gene Ontology enrichment analysis on differentiated molecular

clusters between the subtypes (Figure 1).

Association between subtypes and histological and clinical
features

Associations between the proteomic subtypes and

clinico-histopathological features were also determined using Fisher's

exact test. There were no significant differences among the five

subtypes regarding tumors with BRAF mutation at V600. In contrast,

we found enrichment of the Mit (p-value=0.0410) and Mit-Immune

(p-value= 0.0213) subtypes in tumors with NRAS Q61K/R mutations

and tumors without mutations in NRAS or BRAF (WT), respectively.



The proteomic subtypes were also distinguished by cellular

composition and histological characteristics. The EC-Mit subtype was

associated with a lack of melanin pigmentation. The Mit-Immune

subtype was associated with higher lymphocyte distribution and

higher density. The opposite situation was observed for the Mit

subtype which was associated with absence of lymphocytes in the

tissue. Overall, both immune subtypes displayed a significantly higher

lymphatic score (ANOVA FDR<0.05, Post Hoc Tukey’s FDR 0.05)

than the rest group of metastases. The tumor cell content was

significantly higher in the Mit-immune, Mit and EC-Mit metastases

when compared to the EC-Immune and EC subtypes. The adjacent

lymph node and the necrosis contents were higher (ANOVA

FDR<0.05, Post Hoc Tukey’s FDR 0.05) in the EC-Immune and EC

subtypes, respectively, compared to the rest of metastasis subtypes,

while the content of connective tissue was significantly higher only in

EC subtypes compared to the Mit-Immune.

The Mit metastases were more frequently found in patients older than

60 years, while tumors from younger patients were associated with

the immune subtypes. Tumors from females were associated with the

EC and Mit-Immune subtypes, whereas tumors from males were

linked to the EC-Immune and Mit subtypes. Interestingly, we found

significant associations between this melanoma classification of

metastases and features of the primary tumors. The Mit subtype was

associated with primary tumors of NM clinical class. Both immune

subtypes were associated with Breslow classes 2 and 3, while Mit

subtype was associated with Breslow class 4. Also, the Mit and

EC-Immune subtypes were associated with primary tumors localized

in the trunk, while the EC-Mit, EC and Mit-Immune subtypes were

more associated with primary tumors detected in the extremities.

These connections mirrored the association of subtypes and gender

described above and pointed to a relationship between primary tumor

localization and patient gender as previous studies have suggested.

A statistically significant association was found between the tumors of

the Mit-Immune and EC-Immune subtypes and patients at stage 3 of

melanoma. On the other hand, the subtypes EC-Mit and Mit were

significantly correlated with patients at disease stage 4. Accordingly,

clinical features closely dependent on the disease stage were also

significantly associated with the melanoma molecular classification.

Patients with tumors classified as Mit, EC-Mit or EC had an increased

risk of developing distant metastases before 5 months from the time

of sample collection (surgery) than patients with tumors belonging to

the immune subtypes. The Mit and EC-Mit subtypes were associated

with an increased risk of patient death within 3 years from the

detection of first metastases or within one year from the first distant

metastasis. In contrast, patients with tumors classified as Mit-Immune

and EC-Immune were associated with longer times (>1year) from the

first distant metastasis to the death of the patient.

An increased risk of death from melanoma (3-year disease specific

survival, DSS) was observed for patients with metastases classified

as Mit and EC-Mit, compared to both immune subtypes. Particularly,

the Mit-Immune subtype was significantly associated with >5 years

DSS. The corresponding Kaplan-Meier analysis showed that patients

with melanoma metastases of subtypes Mit-Immune and EC-immune

had better prognosis while the melanoma subtypes Mit, EC-Mit, and

EC are associated with worse patient outcome.

In addition, we determined the association between the different

subtypes and the patient's overall survival. An increased risk of death

from melanoma (overall survival <5 years) was observed for patients

with metastases in the EC-Mit subtype, while the risk significantly

decreased for patients with tumors classified as Mit-Immune. These

results suggest a connection between early-stage melanoma and

patient outcome, where features of primary tumors are transmitted to

and also expressed by the metastases, and dependent on the

acquired subtype, the disease may become more aggressive, with

poor prognosis.

Relating the proteogenomic map to clinical and histological
variables
Independent component analysis (ICA) is the optimal feature

extraction method

Due to the high dimensionality nature of the multi-omics data,

unsupervised feature extraction methods are required to efficiently

explore the cohort in order to gain novel systematic understanding of

melanoma at the molecular level. Two analyses were conducted for

the proteomics, transcriptomics, and phosphoproteomics datasets,

applying the two most commonly used unsupervised feature

extraction methods: principal component analysis (PCA) and

independent component analysis (ICA). To keep the comparison fair,

the number of principal components and the number of independent

components were the same, which was the number of samples in

each dataset. Then, we used the dimensionally reduced

representations from both methods to perform association tests with

clinical and histopathological features. In general, we observed that

more ICA-extracted signatures were significantly associated with

various clinical and histopathological features and oftentimes showed

higher significance level than PCA-extracted features (Figure 2A).

This comparison demonstrated that ICA could extract larger quantities

and higher quality of representational components that correlated with

more specific clinical and histopathological features than PCA,

suggesting that ICA was the preferred feature extraction and

dimensionality reduction method. The outcome that ICA allows to link

basis vectors (independent components) with more clinical variables

than PCA basis vectors (principal components), which also supports

the idea that the multi-omics datasets are better explained as additive

subsets of independent non-Gaussian sources rather than pieces of

uncorrelated information. The ICA results laid ground for our

downstream data analyses.

ICA-based gene set enrichment analyses provided pathway-level

understanding of melanoma

Gene set enrichment analysis (GSEA) is a widely used bioinformatics

method for finding within a set of genes or proteins significant

enrichment in elements belonging to specific biological pathways. In



this study, we used independent components (ICs) associated with

clinical and histopathological features as the basis to identify the

relationships between clinical features and pathways across our

omics datasets (Figure 2B, Supplementary Figure 2A-B). For each of

these ICs, unlike in the conventional GSEA, the IC centroids were

used to rank the genes/proteins/phospho-sites. Searching against the

Reactome pathway database, the enrichment scores (ES) were

calculated. The statistical significance of ES of biological pathways

were determined by comparing with the null distribution using

permutation tests. Significant pathways associated with the ICs were

found by using an adjusted p-value threshold at 0.05. Since the ICs

were significantly associated with specific clinical or histopathological

features, it can be concluded that these pathways were related to the

corresponding features. To ensure the consistency of ICs, ICA was

performed 100 times for each omics dataset, which was also used as

a criterion to evaluate the reliability of associations between the ICs

and clinical features.

Using the ICA-GSEA analysis workflow, a variety of pathways were

found to be correlated with histopathological and clinical features. The

average “tumor cell” percentage of samples was significantly related

to 207 Reactome pathways, out of which 27 were supported

simultaneously by proteomics and phosphoproteomics data while

none was supported by transcriptomics data. Other notable pathways

related to “tumor cell” content included Hemostasis, Signal

Transduction and Signaling by Rho GTPases that were supported by

the largest numbers of ICs, as well as Metabolism of proteins,

Post-translational protein modification and Transcription. The

“average adjacent lymph node” percentage was significantly related

to 147 pathways, out of which eight were supported simultaneously

by proteomics, phosphoproteomics, and transcriptomics data. The

variable “average necrosis'' was related to 150 pathways, among

them Extracellular Matrix Organization was supported simultaneously

by proteomics, phosphoproteomics and transcriptomics data. When

using the strict significance criterion (p-value < 0.00001; at least 50

times in the repeated ICA trials with the same IC) for relationship

between omics data and clinical data, no ICs were linked to

survival-related variables. This likely reflects the heterogeneity of the

melanoma patient cohort and their tumors. Thus, a relaxed criterion

(0.005 for at least 30 times in the repeated ICA trials with the same

IC) was used to explore omics - survival relationships. The complex

relationships between clinical and histopathological variables and

biological pathways arising from the combined IC-GSEA analysis

were visualised (Figure 2C, Supplementary Figure 2C-D). The graphs

show, perhaps not surprisingly, close proximity between certain

histopathological variables, such as “average adjacent lymph node”

percentage and “average lymphocyte density”, which are known to be

closely related, oftentimes by definition. Also, the graph highlights a

number of pathways clearly related to a number of histopathology

variables, such as TCR signaling and cytokine signaling in the

immune system. Clearly, these ”hub” pathways are important features

of tumor heterogeneity.

Contribution of proteins to the proteogenomics subtypes revealed by

ICA

The ICA on proteomics data also harvested several independent

components that were significantly correlated with the 5 molecular

subtypes defined by consensus clustering of the proteomics dataset

(Figure 2B). Ranking the proteins with these ICs’ centroids, the top 10

contributing proteins for each of these ICs were obtained (Figure 2D).

Overall, these proteins were differentially expressed in the molecular

subtypes correlating with the ICs, which indicated that ICA were able

to capture critical proteomics features that could distinguish the

molecular subtypes. Furthermore, this finding also served as a piece

of evidence to support this novel molecular subtyping in melanoma.

Relationships between phosphosites related to clinical and

histological parameters via ICA

The large numbers of phosphosites related to clinical and

histopathological variables via the IC analysis begged the question as

to which kinases are likely responsible for the generation of the

significant phosphosites and hence involved in melanoma-related

processes. The Netphorest / NetworKIN approach (Linding et al.,

2008; Miller et al., 2008) uses consensus sequences of known

phosphorylation sites and protein-protein interaction networks to

predict likely culprit kinases. For example, the variables “survival 6

months” and “average lymphatic score” are significantly related to 3

and 6 phophosite ICs, respectively. For each of these ICs, fifty most

strongly related features (phosphosites) were selected, yielding 85

and 86 phosphosites, respectively for the two clinical/histology

parameters. Then, each set of phosphosites was subjected to the

Netphorest / NetworKIN analysis, which resulted in 57 significant

associations of phosphorylation sites with kinases for “survival 6

months'' and 136 for “average lymphatic score” variable. Here, the

major kinases appearing to be responsible for the phosposites related

to histopathological features of the samples, and to survival, are

isoforms of CK2 and CDK1 kinases (Supplementary Figure 3E). CK2

is a well-known drug target and a factor affecting drug resistance in

melanoma (Zhou et al., 2016). CDK1 belongs to the group of major

regulators of the cell cycle and is being investigated for its usefulness

in targeted therapy in breast cancer (García-Gutiérrez et al., 2019;

Kang et al., 2014). Although there were no very strong sequence

preferences in the phosphosites related to survival and histological

parameters, the most common feature of these sites was the

presence of a proline immediately following the phosphosite. Also,

often polar and acidic amino acid residues appeared in the

phosphosite motifs, e.g. at position (phospho+2) (Supplementary

Figure 3F-G).

Identification of subgroups of BRAF V600E mutated metastases
based on proteomic signature and patient survival

In a previous study, different levels of BRAF mutation were associated

with different survival rates (Betancourt et al., 2019). The BRAF

V600E mutated protein was quantified in sixteen patients with BRAF



mutation (DNA-based detection) and high expression level of this

protein was associated with a more aggressive tumor progression

and short survival. The protein profile associated with different

expression levels of BRAF V600E was linked to biological pathways

related, for instance, to the immune system and cell proliferation.

Although we could identify this protein in a small set of samples, it is

well known that the identification and quantitation by mass

spectrometry of BRAF V600E protein is challenging and is an

understudied topic for most cancerous tissues, including melanoma.

In the present study, we intended to identify subgroups of patients

with different mortality risk rates within a cohort of 49 patients with

BRAF mutation (DNA-based detection) but with missing values of the

BRAF V600E protein in 33 of them. To carry out this analysis, we

focused on the expression levels of proteins that belong to pathways

previously linked to tumors with different expression levels of BRAF

V600E (Betancourt et al., 2019). We also included the expression of

proteins that belong to pathways significantly enriched (Reactome,

adj.p < 0.05) among proteins previously described by Betancourt et.

al., as differentially expressed between groups of patients with low

and high B-raf V600E. The R package ‘InGRiD’ was utilized to

perform the analysis (Wei et al., 2019). This package provides a

pathway-guided identification of patient subgroups based on protein

expression while utilizing patient survival information as the outcome

variable.

From the cohort of 49 BRAF mutated patients, three subgroups with

different mortality risk rates were identified (Figure 3A). The median

survival times for the low, medium and high risk groups were 5.1

years, 2.3 years and 0.5 years, respectively. We joined the medium

and high risk groups to evaluate the specificity and sensitivity of the

model using different survival times; the best prediction was at 3 year

where the specificity and sensitivity are 0.82 and 0.88 respectively.

A total of 192 proteins were identified as involved in the activation of

seven risk pathways (Transcription (hazard ratio = 0.03);

Developmental Biology (hazard ratio = 0.53); Metabolism (hazard

ratio = 0.72); Ub-specific processing proteases (hazard ratio = 0.98);

DNA Repair (hazard ratio = 1.03); Signaling by TGF-beta Receptor

Complex (hazard ratio = 1.11); [Immune System, Signal transduction

and Vesicle-mediated transport] (hazard ratio = 1.52)) responsible for

the grouping of the patients. The most enriched pathways were those

related to Metabolism, Immune System and Signal transduction.

Figure 3B shows the distribution of the proteins involved in the

activation of these pathways. Most of the proteins belonging to

Immune system sub-pathways such as Neutrophil degranulation and

Complement cascade are positively related to mortality risk while

proteins involved in sub-pathways related to Signal transduction and

Vesicle-mediate transport are negatively related to mortality risk. On

the other hand, among sub-pathways related to Metabolism, proteins

belonging to Metabolism of nucleotides seem to be negatively related

to risk of mortality. Proteins from Transcription, Signaling by TGF-beta

Receptor Complex, DNA Repair and Developmental Biology

pathways increase their expression level in the group of patients with

high mortality risk.

A concert of Single Amino Acid Variants (SAAVs) in known
dysregulated pathways in melanoma is observed in metastases

To identify single amino acid variants (SAAVs) in our sample cohort,

the non-assigned MS/MS spectra were submitted to a second search

using a protein database which included somatic mutations and

variants found in 369 cases of skin cutaneous melanoma from TCGA,

in 7 melanoma cell lines from the NCI-60 cancer panel, and some

others collected from the COSMIC database (STAR Methods, Study

of SAAVs 1.). The identified spectra assigned to SAAVs were

validated using the SpectrumAI tool (STAR Methods, Study of SAAVs

2.). This resulted in the identification of 1015 unique SAAVs from 828

proteins, out of which 727 SAAVs were validated with at least 2

PSMs. To the best of our knowledge this represents the largest

number of SAAVs identified in melanoma samples. Comparison

between the number of SAAV peptide and wild-type peptide PSMs

demonstrated that about half of the variants are present at

comparable levels or are more abundant than the wild-type peptides

in our melanoma cohort. Online resources (PeptideAtlas, CanProVar,

UniProt, NCBI) were also utilized to retrieve more information on the

SAAVs (STAR Methods, Study of SAAVs 3.). 191 SAAVs were not

previously identified in another proteomic study according to

PeptideAtlas, and consistently, these SAAVs were validated generally

with a few PSMs only. Only 27 SAAVs were found previously to be

cancer-related based on CanProVar, including also key melanoma

mutations (BRAF-V600E, NRAS-Q61R/K). We were also able to

retrieve the alternative allele frequency in the European population for

950 variants, mainly using data from the ALFA project. Detailed

description of the SAAVs can be found in Table S4 and an overview is

provided on Figure S3A-B.

Gene ontology (GO) and KEGG pathway enrichment analyses of the

proteins identified with SAAVs were performed to portrait their

functional annotations (Figure 3C). Over-represented terms for

biological process, cellular compartment and molecular function were

mainly distributed in three general categories including the

extracellular matrix (ECM), cellular metabolism and the immune

system. Interestingly, the biological terms presented here are also

enriched for the 500 proteins that show the largest variation between

the proteome-based melanoma subtypes (see Figure 1A). In fact, 71

SAAVs corresponding to 57 proteins were found among these

signature proteins (11.4%). As we have 828 proteins with SAAVs

among all identified 12695 proteins (6.5%), this is a notable

enrichment according to a Chi-square test (ⲭ2 (df=1) = 17.52, p <

0.001). The data thus suggests that the proteins showing differential

expression between melanoma subtypes are more frequently affected

by SAAVs.

In addition, we identified some protein variants as members of known

signaling pathways playing a functional role in melanoma (Chamcheu

et al., 2019; Dantonio et al., 2018; Lopez-Bergami et al., 2008;

Paluncic et al., 2016). Seven pathways were outlined in Figure 3D,



including at least 3 SAAVs. Interestingly, the data revealed the largest

amount of SAAVs can be detected in the members of the PI3K/AKT

signaling pathway (37 variants from 22 proteins). Besides the

well-known role of mutations in members of MAPK pathways such as

BRAF and NRAS, an increasing number of studies have associated

gene polymorphism and genetic variants of the members of the

PI3K/AKT signaling pathway as an indicator of susceptibility or risk to

develop cancer (Li et al., 2013; Lin et al., 2010; Qi et al.).

Investigating the relationship between the alternative allele frequency

in the European population (AAF) and the PSM ratio of SAAVs (PSMr,

defined as: (nSAAV PSM)/(nSAAV PSM + nwild-type PSM)) revealed that PSMr is a

suitable indicator for the AAF (Spearman’s rank correlation, rs = 0.75,

p < 0.001, see Figure S3B). This relation allowed us to identify SAAVs

which deviate clearly from the expected PSMr/AAF trend. Briefly, the

ratios between PSMr and AAF were calculated (SAAVr), followed by

Johnson transformation to normality, and then SAAVs with extreme

values in the left and right tail were noted. The selection process is

described in more detail in the experimental section (STAR Methods,

Study of SAAVs 4.). We found 19 over-represented and 6

under-represented variants (i.e., PSMr is significantly higher or lower

than what is expected based on their AAF, respectively) in our patient

cohort (Figure 3E). As this deviation from what is observable in the

normal population might indicate a key functional process for

melanoma, the proteins of these SAAVs were searched in the

literature for their potential role in cancer. The most outstanding

over-represented variants were the well-known driver mutations of

melanoma (NRAS-Q61K, NRAS-Q61R and BRAF-V600E). Additional

SAAVs with unexpectedly high occurrence included proteins with

(proven/potential) involvement in cell growth, adhesion, proliferation,

invasion, migration of melanoma cells, tumor angiogenesis and

metastasis (ACTN4 (Shao et al., 2014), MAGEC1
(Melanoma-associated antigen 1) (Koh et al., 2012), AHNAK
(Sheppard et al., 2016), TKT (Kamenisch et al., 2016), ELN (Timar et

al., 1991), ANXA3 (Xu et al., 2021), COL4A2 (Chelberg et al., 1989).

Additionally, a few proteins promote the resistance to radio/drug

therapy, or are involved in the DNA damage response pathway (MX1
(Khodarev et al., 2009), ANK1 (Hall et al., 2016), NSUN2 (Delaunay

and Frye, 2019)). In the list we also find LZTS1, a tumor suppressor

in uveal melanoma, and 4 proteins (ARL6IP6 (Xu et al., 2016), H1-1,

RBM19 (Wang et al., 2021), GSTM1 and LSM14A) with no clear

relevance to cancer found until now, to the best of our knowledge.

Six SAAVs showed higher frequency within the normal population

(AAF > 0.50) but were detected with a significantly lower PSMr than

expected in our melanoma samples. Most interesting proteins in this

list are C6 and EXD2. C6 is part of the complement system, which

has both cancer-promoting activities and anticancer cytotoxic activity

(Fishelson and Kirschfink, 2019). EXD2 has been suggested as a

potential target for cancer therapy due to its regulatory function in

mitochondrial translation and replication stress response

(Nieminuszczy et al., 2019; Stracker, 2018). The other proteins in this

list are MYH3 with no clear relationship to melanoma (Vivancos et al.,

2016), and another muscle-related protein, TTN, that has been

reported to be mutated frequently in several tumor types (Jia et al.,

2019). ERO1B is an oxidoreductase, showing a significant

overexpression in different metastatic sites compared to primary

tissue in breast cancer (Li et al., 2020) and was identified as

prognostic marker in pancreatic cancer (low ERO1LB expression was

associated with poorer overall survival, (Zhu et al., 2017)).

Additionally, AKAP13 was also shown to be involved in cancer on a

few occasions but no clear role in the disease has been established

(Bentin Toaldo et al., 2015; Fehér et al., 2012; Molee et al., 2015).

Variants with no corresponding wild-type peptide can also be viewed

as potentially over-represented variants. Out of such 189 SAAVs, 3

were shown to have very high reference allele frequency in the

European population (> 0.89) and were verified with more than 20

PSMs. The proteins of these SAAV peptides are ITGB2, ICAM1 and

APOL2. ITGB2 is a protein involved in cell adhesion and cell-surface

mediated signalling was found under-expressed in BRAF positive

tumors (Trilla-Fuertes et al., 2019), and correlated with survival in

renal and colorectal tumors (Boguslawska et al., 2016; Cavalieri et al.,

2007). ICAM1 plays important roles in cell adhesion, in inflammation

processes and in the activation of lymphocytes (Figenschau et al.,

2018; Yang et al., 2005), and a study revealed its expression in

aggressive subtypes of breast cancer (Figenschau et al., 2018).

Lastly, APOL2 is suggested to be involved in apoptosis (Vanhollebeke

and Pays, 2006).

Analysis of tumor microenvironment

Principal Component Analysis (PCA) of the 18 samples with low

tumor content (<30% tumor cells as per histopathology assessment)

(Figure 4A), showed marked differences closely associated with the

cellular composition of the tumor microenvironment (TME). The

samples clustered in three main groups: one with the highest adjacent

lymphocyte content (6 samples, left side of the PCA), a second group

with highest connective tissue content (3 samples, right side of the

PCA) and a third group (9 samples) which was located in the middle

of the PCA map and shared characteristics with both above

mentioned groups but with a significantly higher component of

connective tissue (Figure 4B). Hence, subsequent analyses were

performed considering two groups of samples (high and low, 12 and 6

samples, respectively) in relation to the connective tissue content of

the TME.



The Kaplan-Meier analysis (Figure 4C) showed that the composition

of the TME was associated with patient outcome (p-value= 0.031).

Patients within the group of tumors with TME with low connective

tissue content had better prognosis (mean DSS 1474 days, where

more than 70% (5) of patients survived more than 2 years and 57%

survived more than 9 years after sample collection). The opposite

situation was observed for patients corresponding to the group of

tumors with TME with higher connective tissue content (mean DSS

265 days, where less than 17% (2) of patients survived more than 2

years).

T-test analysis performed with the global proteomic data from these

two groups of samples found 2,213 (FDR<0.05) proteins significantly

differentially expressed (Figure 4D). Samples with low connective

tissue content were enriched in pathways such as cell adhesion

molecules, spliceosome and ribosome, but also other pathways

intimately related to the immune response including natural killer cell

mediated cytotoxicity, B and T cell receptor signaling pathways, which

reflected the expected activity of lymph node cells. In contrast,

samples of the group with high connective tissue content were

enriched in proteins belonging to the complement and coagulation

cascades, PPAR as well as the ECM-receptor interaction pathways.

Strong relationship between proteogenomics profiles and
survival time reveal candidate biomarkers and disease pathways

Two complementary supervised approaches to relate omics data to

survival were applied. First, outlier analysis, treats survival as a binary

variable. Second, Cox analysis considers survival as a continuous

variable. 111 samples with larger than 30% tumor cell content were

included.

Outlier analyses discovered critical genes related to melanoma

patient survival and stage in multi-omics datasets

To find biomarkers related to the survival of melanoma patients, we

stratified our omics datasets based on whether the patients, at the

time of censoring, had survived over 6 months, 1 year, 3 years, or

over 5 years from the sample collection (surgery) date. Outlier tables

were then calculated for proteomics for each protein isoform,

transcriptomics for each gene, and phosphoproteomics for each

modified sequence (phosphosite). This determines if it is an outlier for

each patient sample based on extending the interquartile ranges by a

factor of 1.5. For each feature, we conducted group-wise (e.g.

survived over 6 months vs. dead before 6 months) Fisher’s exact test

on counts of patients that are outliers in each group. If a feature was

an outlier in less than 30% of patients’ data in one group, it was

skipped to make sure that our results were not driven by a small

subset of samples. Compared to other differential expression analysis

methods, outlier analysis does not assume specific underlying

distribution of the features of interest, which makes outlier analysis

more robust. In addition, outlier analysis is capable of detecting

extreme values related to increase of protein expression variability

that could imply the loss of biological functions, which may sometimes

be ignored by other methods. On the other hand, it also embeds a

dedicated coefficient to prevent a small subset of samples from

driving the whole analysis.

The FDR values of putative biomarkers found by outlier analysis of

multi-omics data were shown in Figure 5A. We found 82 proteins

significantly enriched as outliers in proteomics data of patients who

survived less than 6 months from sample collection (surgery)

(Supplementary Figure 5A). 19 genes were found in transcriptomics

data and 3 phosphosites were found in phospho-proteomics data

(Supplementary Figure 5B-C). In this 6 month survival analysis,

HMOX1 was significant in both transcriptomics and

phospho-proteomics data while XYLB was significant in both

transcriptomics and proteomics data. 6 proteins were found to be

significantly enriched in proteomics data in patients who lived less

than 1 year (Supplementary Figure 5A). Also for 1-year survival, one

gene was found in transcriptomics and one phosphosite was found in

phospho-proteomics (Supplementary Figure 5B-C). Apart from the

survival, we also conducted outlier analyses between stage 3 and

stage 4 patients, between NRAS mutant and wild-type patients, and

for the time from primary diagnosis to metastasis. Four proteins

(PDZ11, HEATR5A, SIL1, MAN1B1) were found significantly enriched

in stage 4 vs stage 3 patients in proteomics data and these proteins

were also significantly enriched in patients who survived less than 6

months from diagnosis (Supplementary Figure 5A). NRAS mutant

patients had FAM45A and TOLLIP enriched in proteomics data as

compared to NRAS WT patients (Supplementary Figure 5A).

However, outlier analysis did not discover any significant proteins or

genes differentiating between groups of patients with different

genders and BRAF mutation status.

Cox analysis discovered further features related to melanoma survival

An alternative approach to link survival to omics features, the Cox

survival analysis, is widely used in biomedical studies and uses

survival information as a continuous variable. Here, the features

(proteins, phosphosites, transcripts) that were selected by the Cox

model in at least 30 of the 100 repetitions were selected for further

analysis. Figure 5B shows the result of the Cox analysis for the three

omics datasets. The predictive power of the molecular data was

moderate, the concordance indices (C-indices) varied between 0.538

and 0.601. A C-index of 1.0 means that the model "ranks" the

samples perfectly, i.e. patients with a higher risk score (hazard score)

died earlier than those with lower scores. A C-index of 0.5 is the

expected performance of a nonsense/random model. The C-index

parameter is analogous to the AUC parameter (Area Under Curve)

used for a binary classifier. A C-index of 0.6 is considerably better

than 0.5, indicating that our molecular data can predict survival to

some extent, but not completely. Cox analysis showed a strong

relationship to disease-specific survival (time from surgery/sample

collection to death or censoring) for 12 genes (transcriptomics) and 8

phosphosites. No significant relationships between protein expression

and disease-specific survival were identified in the Cox analysis,

although fifteen proteins were related to overall survival, whereas

Cyclin-dependent kinase 4 (CDK4) was most significant. In

phospho-proteomics data, the features (phosphosites) most



significantly related to disease-specific survival included: AKAP-12

(A-kinase anchor protein 12), MARCKS (Myristoylated alanine-rich

C-kinase substrate), PTPRC (Receptor-type tyrosine-protein

phosphatase C), ADAM10, FGA and HMOX1. In transcriptomics data,

the features most significantly related to survival were: SYTL2

(Synaptotagmin-like protein 2), CCND1 (G1/S-specific cyclin-D1),

LQK1 (Putative uncharacterized protein LQK1), LATS2

(Serine/threonine-protein kinase LATS2).

Biological significance of the proteins related to survival

Biological relationships within a set of omics features of interest, e.g.

proteins related to survival, can be explored by diverse algorithms

that map gene/protein sets onto networks of relationships extracted

from sources such as literature mining, interaction databases or

pathway databases.

Here, Ingenuity Pathway Analysis (IPA) was performed for the

proteins related to survival as per the outlier and COX analyses. The

IPA algorithm provided tight biological relationship networks for the

query protein sets. For proteins related to survival as per outlier

analysis, the top three IPA relationship subnetworks produced by the

algorithm focused on proteasome, MAPK kinase signaling and

MYC-FOS signaling, respectively. Notably, the analysis highlighted a

number of targets of existing drugs among the survival-related

proteins, including the PI3 kinase PIK3CB, TXNRD1, MMP12 and

MME proteases and PSMD2. Also, for proteins related to survival as

per Cox analysis, the top IPA relationship subnetwork produced by

the algorithm focused on MAPK kinase signaling (Figure 5C-D).

Additionally, several functional themes were notable examining the

survival related proteins. Among the 82 proteins significantly enriched

(outliers in proteomics data) when comparing patients who survived

less than 6 months from sample collection (surgery) to the rest, there

are as many as eleven mitochondrial proteins whereas mitochondria

are known to have critical roles in cancer (Yuan et al., 2020). Also,

there are two members (AIMP1, IARS) of the tRNA synthetase

complex known for involvement of translation but also for

cancer-related functions (Hyeon et al., 2019). Other proteins with

known roles in cancer include atypical protein kinases involved in

cancer progression, PIK3CB (Phosphatidylinositol 3-kinase beta),

RIOK1, CSNK1G3 (Casein kinase I gamma-3), FASTKD2 (Berto et

al., 2019; Fang et al., 2020).

Interestingly, among the survival-related proteins, there are several

poorly studied, potentially druggable targets. The orphan receptor

GPR126/ADGRG6 of the Adhesion family of G protein-coupled

receptors is a member of the large group of poorly understood

emerging cancer drug targets (Gad and Balenga, 2020) that couple

cell-cell signalling to intracellular signal transduction and are

implicated in migration, proliferation, and survival of tumor cells

(Garinet et al., 2019; Musa et al., 2019). COG4 and COG3 are

components of the Conserved Oligomeric Golgi complex (COG)

which is a vesicle tethering complex that regulates retrograde vesicle

traffic within the Golgi (Blackburn et al., 2018; D’Souza et al., 2020).

CARNMT1/C9orf41, a poorly studied histidine methyltransferase,

methylates the dipeptide carnosine producing anserine, which is

believed to be proton buffer and radical scavenger (Drozak et al.,

2015). Further, xylulose kinase (XYLB), a protein whose relation to

survival is supported by two omics datasets (transcriptomics and

proteomics) is an important enzyme in carbohydrate metabolism and

as such may play an important role in metabolic disease (Bunker et

al., 2013).

Survival-related protein candidates for IHC validation

By aggregating the results from outlier analyses and Cox regression

analyses, 247 unique survival-related proteins were identified, where

112 proteins were found in outlier analyses and 198 proteins were

found in Cox regression. To narrow the list for further

immunohistochemistry validation, the survival times (DSS) were

stratified at 6 months, 1 year, and 5 years, and an attempt was made

to predict survival using expression of each candidate protein. For

each protein, the expression level that results in the maximum sum of

sensitivity and specificity was used as the cutoff point. The areas

under the receiver operating characteristic (AUROC) curves of each

protein at different survival thresholds were used as the major

indication of its relative importance (Supplementary Table 5D). In

addition, we considered each protein’s involvement in the critical

pathways found by ICA-GSEA. Based on the results of the outlier

analyses, Cox regression, AUROC, and the involvement in

melanoma-related pathways, a comprehensive evaluation and

literature search was conducted to generate a top list of 10 proteins

(ADAM10, HMOX1, FGA, DDX11, SCAI, CTNND1, CDK4, PAEP,

PIK3cB, TEX30) (Table 5E). Notably, one of these proteins, Heme

oxygenase1 (HMOX1) was supported by outlier analysis in two omics

datasets: transcriptomics and phosphoproteomics. ADAM10 (A

disintegrin and metalloproteinase 10) and FGA (fibrinogen alpha

chain) were supported by COX analysis of phosphoproteomics. FGA

was also supported by outlier analysis in proteomics. These ten

proteins were selected for IHC validation in a separate cohort.

ADAM10, FGA and HMOX1 were highlighted in the present study

based on specific phosphosites linked to survival. For FGA (Ser364)

and HMOX1 (Ser229), the phosphosites were linked to poor survival

while the ADAM10 phosphosite Thr719 was enriched in tumors from

patients surviving longer. By ICA, CTNND1 is linked to IC066

“Primary Breslow” by more than 24 phosphosites. Furthermore, the

protein expression of CDK4, CTNND1, PAEP, TEX30, DDX11, SCAI

and PIK3CB was related to a poor prognosis.

Of the three proteins highlighted by specific phosphosites, several

links to melanoma in the literature were established. ADAM10 (a

disintegrin and metalloproteinase 10) is a member of the ADAM

family, which are endopeptidases with broad specificity, and involved

in membrane shedding of several proteins. Interestingly, ADAM10

together with ADAM17 may promote membrane shedding of

immunosuppression proteins such as PDL1 and LAG3 (Andrews et

al., 2015; Lambrecht et al., 2018; Orme et al., 2020). Fibrinogen alpha

chain (FGA), is a part of the glycoprotein fibrinogen which has major



functions in hemostasis, wound healing and also immune responses.

High plasma levels of fibrinogen have been attributed to poor

prognosis in lung cancer and also in melanoma. The PTM state of

fibrinogen has earlier been linked to the disease state of cancer

(Cardinali et al., 1990; Ciereszko et al., 2019; Guida et al., 2003;

Gunji and Gorelik, 1988; Nagel et al., 2018; Ogata et al., 2006;

Palumbo et al., 2000; Ryu et al., 2015). The third selected protein,

HMOX1 (Heme oxygenase), is an antioxidant and anti-inflammatory

enzyme involved in generating biliverdin and bilirubin. HMOX1 may

promote cancer cell growth, tumor cell survival and resistance to

treatment. HMOX1 has also been linked to a poor outcome of

melanoma (Hjortsø and Andersen, 2014), (Furfaro et al., 2020),

Next, seven proteins were selected based on regulation at the protein

level. Also for these, literature links to melanoma and/or cancer were

found. The tumor suppressor SCAI (suppressor of cancer cell

invasion) is a highly conserved protein that acts on the RhoA–Dia1

pathway to regulate invasive cell migration. SCAI is downregulated in

many human tumors and high expression of SCAI correlates with

better survival in patients with breast and lung cancers (Brandt et al.,

2009; Gasparics et al., 2018). There is however little information

about SCAI in melanoma. CDK4 (Cyclin-dependent kinase 4) is a

well-known cancer target that regulates cell cycle and proliferation. In

melanoma, mutations and dysregulations are commonly seen in

CDK4 and proteins in the CDK4 pathways. Several candidate drugs

are in the clinical phase (Freedberg et al., 2008; Guo et al., 2020;

Hocker and Tsao, 2007). CDK4 was therefore considered a candidate

for further validation.

CTNND1 (catenin delta-1, isoform 1A) is a key regulator of cell-cell

adhesion. Several studies suggest a link to melanoma. The long

isoform (1A), is highlighted in our study. The longer isoforms, often

enriched in tumors, have been reported as pro-tumorigenic and

playing a role in EMT (Aho et al., 2002; Aslund-Ostberg et al., 1992;

van Hengel and van Roy, 2007; Kourtidis et al., 2015; Pieters et al.,

2012; Yanagisawa et al., 2008). The helicase DDX11 (ATP-dependent

DNA helicase DDX11) has a role in chromatid cohesion. DDX11 has

been reported upregulated with progression from noninvasive to

invasive melanoma, and expressed at high levels in advanced

melanoma (Bhattacharya et al., 2012; Li et al., 2019; Mahtab et al.,

2021; Marchese et al., 2016). 

Glycodelin or PAEP (progestagen associated endometrial protein), is

a secreted glycoprotein that regulates critical steps during fertilization

and also has immunomodulatory effects. PAEP is expressed in

melanoma and involved in tumor proliferation, migration and may

promote development of immune tolerance in the tumor. PAEP

expression is regulated in part by MITF (Liu, 2011; Luke et al., 2017;

Ren et al., 2010, 2011, 2015). The novel hydrolase TEX30 (Testis

expressed 30), is likely a lipid metabolizing enzyme (Lord et al.,

2013). It was upregulated at the gene level in a study of melanoma

compared to normal skin (Huang et al., 2019), however the role and

mechanism in melanoma remain to be established. The tenth

candidate protein, PIK3CB (Phosphatidylinositol 4,5-bisphosphate

3-kinase), is part of the PI3K–AKT cascade which is one of the most

studied pathways in cancer. This pathway has a role in cell survival,

migration and also in oncogenic transformation. In melanoma, the

PI3K–AKT pathway may be activated by mutations in NRAS or loss of

the suppressor PTEN (Gao et al., 2020; Kwong and Davies, 2013;

Yuan and Cantley, 2008).

Taken together, the ten candidate proteins in the present study can be

linked to several aspects of melanoma and/or cancer in the literature.

CDK4 and PIK3CB are well known melanoma targets and may serve

as “positive controls” for further validation. For the other proteins,

different mechanisms in melanoma development may be considered

by expression analysis in tumors from a separate cohort of melanoma

in different stages.

Clinical disease presentation of candidate biomarkers provides
evidence of tumor compartments with molecular implications for
metastasis.

In the current clinical practice of the malignant melanoma,

immunohistopathology has a crucial role in the confirmation of the

tissue-based protein characteristics of the disease. Combining the

results from immunohistochemical (IHC) validation with

proteomic/phosphoproteomic data provides a good opportunity to

identify the potential prognostic, and predictive biomarkers, for the

determination of the survival possibilities as well as for responder

state of melanoma patients.

Based on the independent IHC validation cohort of 42 patients of

primary melanomas causing locoregional or distant metastatic

disease (STAR Methods) in accordance with the proteomic results,

nine candidate biomarkers (ADAM10, SCAI, HMOX1, DDX11, FGA,

CTNND1, CDK4, PAEP, PIK3cB) served as the basis for further

immunohistochemical analysis (the IHC validation of the TEX30

marker was not carried out due to inadequate antibody performance).

The IHC expression value was determined by the application of

densitometry in the representative areas in melanoma cells and the

stromal part.

To demonstrate the prognostic/predictive impact of the listed markers

and their link to melanoma progression, first, we divided the mean

values of the expression of each protein in the melanoma cells and in

the stromal parts, then ROC curve and Kaplan-Meier survival

analyses were conducted based on the cutoff scores of the related

proteins. The tissue validation of the chosen markers on the primary

melanomas showed notable differences between the expression

values for the two groups (who survived until censoring date and

those that did not) of the patients. CDK4 (independent t-test, p <

0.001), ADAM10 (independent t-test, p < 0.05), and SCAI

(independent t-test, p < 0.05) proteins showed significant differences

in melanoma cells, based on the two groups of the patients in the IHC

validation cohort. These findings are correlated to the production of

the indicated biomarkers in the primary melanoma phase predicting

the progression of the melanoma. Furthermore, the three above

mentioned candidates, namely CDK4 (ROC curve, AUC= 0.646, p <

0.000), ADAM10 (ROC curve, AUC= 0.579, p = 0.055), and SCAI



(ROC curve, AUC= 0.591, p < 0.05) displayed the ROC curves with

the most significant differences regarding expression in melanoma

cells. Consequently, low expression (below the estimated cutoff value)

of CDK4, SCAI, ADAM10 proteins observed in melanoma cells,

predicted poor survival rate of patients in the IHC validation cohort.

Kaplan-Meier analyses elucidated the survival of the patients based

on cut off-low or high protein expression in the primary melanoma.

Although tumoral CDK4 showed almost significant association with

the DFS (early prognostic marker) together with the lower stromal

CDK4 (DFS, PFS, OS, p=0.000), it may predict an aggressive

behavior of the disease. For ADAM10 and SCAI, lower protein

expression in the melanoma cells indicated significantly poor

prognosis: DFS (ADAM10, p<0.05) (SCAI, p<0.001), PFS (ADAM10,

p<0.05) (SCAI, p<0.001), and OS (ADAM10, p<0.05) (SCAI,

p<0.001). Similar results were obtained with the low stromal SCAI

expression (PFS p=0.001; OS, p=0.002).

To complement the understanding of the candidate biomarkers, IHC

validation was also conducted in 9 cases of primary melanomas,

followed by a comparison with their corresponding metastases.

All proteins, with the exception of ADAM10, exhibited increased

protein expression in melanoma cells of the metastases compared to

primary melanoma. The protein expression was particularly higher in

the metastatic melanoma cells, in the case of six proteins: CDK4

(Wilcoxon signed-rank test, p < 0.001), FGA (Wilcoxon signed-rank

test, p < 0.05), PAEP (Wilcoxon signed-rank test, p < 0.001), SCAI

(Wilcoxon signed-rank test, p < 0.001), HMOX (Wilcoxon signed-rank

test, p < 0.001), and DDX11 (Wilcoxon signed-rank test, p < 0.001). In

contrast, ADAM10 expression did not show a significant difference in

the metastases compared to its corresponding primary melanomas,

which was also supported by the proteomic data of the Cox

regression analysis. Contrary to previous reports (Lee et al., 2010),

the low expression of ADAM10 in metastases may highlight an

immunological role in the melanoma cell recognition during

progression (Lambrecht et al., 2018), therefore further investigation is

needed.

Cox Regression on Quantified IHC Features

We built a multivariate Cox regression survival model based on

quantified melanoma cell and stroma cell scores from the IHC slides

of 9 toplist proteins (CDK4, PAEP, SCAI, CTNND1, FGA, HMOX1,

PIK3CB, ADAM10, DDX11) from the validation cohort. Another Cox

regression model was also built using the proteomics data of the

same 9 proteins from the discovery cohort. By comparing the

corresponding Cox regression coefficients, z-scores between the

melanoma cell in IHC-based model and the proteomics-based model,

the Cox coefficients of 6 toplist proteins (CDK4, PAEP, CTNND1,

FGA, PIK3CB, ADAM10) showed same directionality in both models,

suggesting their consistent effects on patients’ survival in both cohorts

(Figure 6 B and C). Taken together, the validation by IHC in a

separate cohort with both primary and metastatic melanoma

combined with the proteomic data (Figure 6) pointed to the role of

ADAM10, SCAI and CDK4 as candidate biomarkers of survival in

melanoma and suggests further clinical evaluation of their role in

melanoma disease progression and therapy.

Strategies for translating the patient survival biomarkers into the
clinic for guiding treatment and therapeutic opportunities

The high mortality of the melanoma patients is mainly due to the

rapidly disseminated visceral and cerebral metastases highlighting

the importance of the metastatic cascade of the usually

embarrassingly small primary melanoma. As metastases develop

after a certain time of wide marginal resection of the primary

melanoma with negative staging characterizes the presence of latent

clinical phase of early dissemination and forthcoming late tumorigenic

phase with the apparent lymphatic and visceral metastases. Although

some of the important drivers as BRAFV600, NRAS, NF1 mutations

are revealed, it is still unknown, how the drivers and the passenger

mutations lead the primary melanoma to provide dormant tumorigenic

information into the surrounding niche. Indeed, little is known on

tissue level about the tumorigenic shift from the dormant phase to the

fatal progressive disease. Nevertheless, more data gained about the

role of the tumor microenvironment (TME) in the formation of

melanoma-supporting stroma as well as in the premetastatic niche.

The revolutionary improvement of immune checkpoint blockade by

PD1 inhibitors targeting the antitumorigenic TME has shown up a

marked improvement compared to the disappointing response rate of

the conventional chemotherapy for metastatic melanoma patients.

As recently the two main therapeutical arms of the metastatic

melanoma are targeted (i) on the tumor cells themself aiming the

direct elimination of the tumor by BRAFV600E target therapy or (ii) on

the antitumoral TME by the indirect antitumoral action of the immune

checkpoint therapy. However, approximately 50-60% of metastatic

melanoma patients could have a benefit for these treatments

necessitating the unmet need for tissue biomarker search by

precision protein-based platforms. Compared to PCR data gained on

the summarized mutational state of the complex tumor counterparts

together, the tissue-based protein research platforms highlight not just

the quantity and quality but the tissue heterogeneity of the mutated

proteins prone to be targeted by small molecule drugs as well as by

biologics.

The present high-throughput proteomic analysis resulted in proposed

candidate tissue biomarkers which were further validated in a

metastatic primary melanoma cohort on the tissue level, compared to

the individual standardized follow up data. Each tissue array exhibited

the personalized topographic expression data endowed with the

colorimetric density and distribution of the examined biomarker

protein allowing to test its prognostic and/or predictive value. Thus,

the validated markers, in particular CDK4, SCAI and ADAM10, are

promising starting points for developing clinically useful diagnostic

and prognostic tools, as well as for understanding the biology of

melanoma. The similarities and differences in validation results

between melanoma cells and tumor environment highlights the

importance of tumor-stroma relationship.



METHODS

A total of 142 patients (48 females and 94 males) diagnosed with
metastatic melanoma between 1975 and 2011, were included in the
study. The average age ± standard deviation (range) at diagnosis of
metastases was 62.3 ± 13.7 (25–89) years. The cohort comprised
metastatic tissues from lymph node (126), subcutaneous (7),
cutaneous (1), visceral (3), while for five the origin could not be
established. The mutational status was determined for 124 of the
tumors, with 50 found mutated at BRAF (92% V600E), 37 with  NRAS
Q61K/R, and 37 tumors had wild type variants for both mutations.
Only four patients received targeted B-raf treatment with vemurafenib.
The study was approved by the local ethical committees, including the
Regional Ethical Committee at Lund University, Southern Sweden
(DNR 191/2007, 101/2013 (BioMEL biobank), 2015/266 and
2015/618). All patients provided written informed consent.

Sample preparation for mass spectrometry and data acquisition

Protein extraction was performed on sectioned (3x10 µm),

fresh-frozen melanoma metastatic tissues using the Bioruptor plus,

model UCD-300 (Dieagenode). A total of 142 MM tissue samples

were lysed in 100 µL lysis buffer containing 4 M urea and 100 mM

ammonium bicarbonate. After a brief vortex, samples were sonicated

in the Bioruptor for 40 cycles at 4°C. Each cycle consisted of 15 s at

high power and 15 s without sonication. The samples were then

centrifuged at 10,000 ×g for 10 min at 4°C. The protein content in the

supernatant was determined using a colorimetric micro BCA Protein

Assay kit (Thermo Fisher Scientific, Rockford, IL).

Protein digestion was performed on the AssayMAP Bravo (Agilent

Technologies) platform using the digestion v2.0 protocol. Protein

concentrations were adjusted to 2.5 µg/µl and 100 µg of protein from

each sample were reduced with 10 mM DTT for 1 h at room

temperature (RT) and sequentially alkylated with 20 mM

iodoacetamide for 30 min in the dark at RT. To decrease the urea

concentration, the samples were then diluted approximately seven

times with 100 mM ammonium bicarbonate. Digestion was performed

in two steps. Proteins were first incubated with Lys-C at a 1:50 (w/w)

ratio (enzyme:protein) for 5 h and then trypsin was then added at a

1:50 (w/w) ratio and the mixture incubated overnight at RT. The

reaction was quenched by adding 20% TFA to a final concentration of

~1%. Peptides were desalted on the AssayMAP Bravo platform using

the peptide cleanup v2.0 protocol. C18 cartridges (Agilent, 5 µL bed

volume) were primed with 100 µL 90% acetonitrile (ACN) and

equilibrated with 70 µL 0.1% TFA at a flow rate of 10 µL/min. The

samples were loaded at 5 µL/min, followed by an internal cartridge

wash with 0.1% TFA at a flow rate of 10 µL/min. Peptides were eluted

with 30 µL 80% ACN, 0.1% TFA and dried in a Speed-Vac

(Eppendorf) prior to TMT labelling.

For the phosphoproteomic analysis, protein digestion and C18

peptide cleanup was repeated on protein lysates. After Speed-Vac,

peptides were resuspended in 80% ACN, 0.1% TFA prior to

phosphopeptide enrichment.

The peptide amount in each sample was estimated using a

quantitative colorimetric peptide assay kit (Thermo Fisher Scientific,

Rockford, IL). Within each batch, equal amounts of peptides were

labelled with TMT 11-plex reagents. The TMT labelling was performed

according to manufacturer’s instructions. Peptides were resuspended

in 100 µL of 200 mM TEAB and individual TMT 11-plex reagents were

dissolved in 41 µL of anhydrous acetonitrile and mixed with the

peptide solution. The internal reference sample, a pool consisting of

aliquots from protein lysates from 40 melanoma patient samples, was

labelled in channel 126 in each batch. After one hour of incubation,

the reaction was quenched by adding 8 µL of 5% hydroxylamine and

incubated at room temperature for 15 minutes. The labelled peptides

were mixed in a single tube, the volume was reduced in a Speed-Vac

and then the peptides were cleaned up using a C-18 Sep-Pak

cartridge (Waters). The eluted peptides were dried in a Speed-Vac

and finally resuspended in water prior to high pH RP-HPLC

fractionation. The samples were distributed among 15 different

batches, as described in the Supplement, and in each of them the

internal reference sample was included (TMT tag 126).

The TMT-11 batches were fractionated using a Phenomenex Aeris

Widepore XB-C8 (3.6 μm, 2.1 × 100 mm) column on an 1100 Series

HPLC (Agilent) operating at 80 µL/min. The mobile phases were

solvent A: 20 mM ammonium formate and solvent B: 80% ACN - 20%

water containing 20 mM ammonium formate. Both solvents were

adjusted to pH 10 with ammonium hydroxide. An estimated amount of

200 µg was separated using the following gradient: 0 min 5% B; 1 min

20% B; 60 min 40% B; 90 min 90% B; 120 min 90% B. The column

was operated at RT and the detection wavelength was 220 nm. 96

fractions were collected at 1 min intervals and further concatenated to

24 or 25 fractions (by combining 4 fractions that were 24 fractions

apart so that #1, #25, #49, and #73; and so forth, were

concatenated), and dried in a Speed-Vac.

The Phospho Enrichment v2.0 protocol on the AssayMAP Bravo

platform was used to enrich phosphorylated peptides using 5 µL

Fe(III)-NTA cartridges. The cartridges were primed with 100 µL 50%

ACN, 0.1% TFA at a flow rate of 300 µL/min and equilibrated with 50

µL loading buffer (80% ACN, 0.1% TFA) at 10 µL/min. samples were

loaded onto the cartridge at 3.5 µL/min. The samples were washed

with 50 µL loading buffer and the phosphorylated peptides were

eluted with 25 µL 5% NaOH directly into 10 µL 50% formic acid (FA).

Samples were dried in a Speed-Vac and stored at -80°C until analysis

by LC-MS/MS.

nLC-MS/MS analysis was performed on an Ultimate 3000 HPLC

coupled to a Q Exactive HF-X mass spectrometer (Thermo Scientific,

San Jose, CA). TMT 11 labelled peptides from each fraction (1 µg)

were loaded onto a trap column (Acclaim1 PepMap 100 pre-column,

75 µm, 2 cm, C18, 3 mm, 100 Å, Thermo Scientific, San José, CA)

and then separated on an analytical column (EASY-Spray column, 25

cm, 75 µm i.d., PepMap RSLC C18, 2 mm, 100Å, Thermo Scientific,

San José, CA) using a 120 min ACN gradient with 0.1% formic acid at

a flow rate of 300 nL/min and a column temperature of 45°C. Q



Exactive HF-X mass spectrometer was set using the TMT node as

follows: full MS scans at m/z 350-1400 with a resolution of 120000 at

m/z 200, a target AGC value of 3×106 and IT of 50 ms, DDA selection

of the 20 most intense ions for fragmentation in HCD collision cell with

an NCE of 34 and MS/MS spectra acquisition in the Orbitrap analyzer

at a resolution of 45000 (at m/z 200) with a maximum IT of 86 ms,

fixed first mass of 110 m/z, isolation window of 0.7 Da and dynamic

exclusion of 30 s.

Data-dependent analysis (DDA) of phosphopeptides for spectral

library DDA building was carried out in the same LC-MS/MS system

as for the global proteome analysis. Peptides were dissolved 2%

ACN, 0.1% TFA and spiked in with iRT peptides (Biognosis AG) in a

1:10 dilution (iRT:peptides). The peptides were loaded onto a trap

column (Acclaim1 PepMap 100 pre-column, 75 µm, 2 cm, C18, 3 mm,

100 Å, Thermo Scientific, San José, CA) and then separated on an

analytical column (EASY-Spray column, 25 cm, 75 µm i.d., PepMap

RSLC C18, 2 mm, 100Å, Thermo Scientific, San José, CA) using a

120 min ACN gradient in 0.1% formic acid at a flow rate of 300 nL/min

and a column temperature of 45°C. Mass spectrometer parameters

were set as follows: selection of the 15 most intense ions for

fragmentation, full MS scans at m/z 375-1,750 with a resolution of

120,000 at m/z 200, a target AGC value of 3×106 and IT of 100 ms,

fragmentation in HCD collision cell with a normalized collision energy

(NCE) of 25 and MS/MS spectra acquisition in the Orbitrap analyzer

at a resolution of 60,000 (at m/z 200) with a maximum IT of 120 ms

and dynamic exclusion of 30 s.

For DIA-MS, the phosphopeptides were separated using the same

gradient and the MS system as for the DDA analysis and the iRT mix

was also added to the individual samples. The full scans were

processed in the Orbitrap analyzer with resolution of 120,000 at (200

m/z), injection time of 50 ms and 3×106 of AGC target in a range of

350 to 1410 m/z. Fragmentation was set in 54 variable isolation

windows based on the density distribution of m/z precursors in the

spectral library (see below, Supplementary information). MS2 scans

were acquired through the windows with a resolution of 30,000 at 200

m/z, NCE of 25, 1×106 of AGC and 200 m/z as fixed first mass.

Quality control measurements were introduced to assess the

performance of LC-MS/MS systems. A protein digest from Hela cells

(Pierce HeLa Protein Digest Standard, Thermo Fisher Scientific)

mixed with a standard peptide mixture (Pierce Peptide Retention Time

Calibration Mixture) was used as a QC sample and measured every

tenth LC-MS/MS analysis. This allowed monitoring peak width,

retention time, base peak intensity, number of MS/MS, PSMs, number

and of peptides and proteins identified, among others QC metrics.

QUANTIFICATION AND STATISTICAL ANALYSIS

Proteomic data processing and MS data interpretation

The global proteomics experiment generated a total of 375 raw files

that were processed with Proteome Discoverer 2.3 (Thermo Fisher

Scientific, San José, CA, USA) using the Sequest HT search engine.

The search was performed against the Homo sapiens UniProt revised

database (downloaded 2018-10-01) with isoforms. Cysteine

carbamidomethylation (+57.0215 Da) and TMT 6plex (+229.1629 Da)

at peptide N-terminus and lysine were set as fixed modifications while

methionine oxidation (+15.9949 Da), N-terminal acetylation (+42.0105

Da) and were set as variable modifications; peptide mass tolerance

for the precursor ions and MS/MS spectra were 10 ppm and 0.02 Da,

respectively. A maximum of two missed cleavage sites was accepted

and a maximum false discovery rate (FDR) of 1% was used for

identification at peptide and protein levels. The Proteome Discoverer

software allowed the introduction of reporter ion interferences for

each batch of TMT 11-plex reagents as isotope correction factors in

the quantification method. The database search resulted in the

identification of 12,695 proteins, corresponding to 11,468 genes. Only

the peptides that could be uniquely mapped to a protein were used for

relative protein abundance calculations.

These search results were imported into Perseus software v. 1.6.6.0

(Tyanova et al., 2016) where a filtering was applied to merely include

proteins with quantification values for all reporter ions. To correct for

experimental differences related to sample handling and other biases

such as column changes, the protein intensities were log2

transformed and centered around zero by subtracting the median

intensity in each sample. To allow for the comparison of relative

protein abundances between the different batches of TMT11 the

protein intensities from the pooled references sample (in channel 126

in each batch) was subtracted from each channel in the

corresponding batch to obtain the final relative protein abundance

values (log2 transformed and zero centered).

The TMT-based proteomic analyses of 142 metastatic malignant

melanoma samples resulted in the identification of 12,695 proteins

(11,468 genes) with an average of 10,705 proteins identified per

tumor sample. The data displayed 15.5% missing values for the

protein abundances and 8124 proteins were present across all

samples (Table SX). Long term reproducibility of the digestion

workflow was previously shown (Kuras et al., 2018). The reliability of

the TMT workflow was evaluated by repeating the entire experiment

of batch one (B1). Although factors such as sample aging and change

of RP-high pH fractionation column and MS-instrument influenced the

analysis, the overall agreement and correlation of protein abundances

between the experiments was good (Figure S-1A). In addition, good

longitudinal performance across the 15 batches was demonstrated by

the rather constant sequence coverage (Figure S-1B).

Principal component analysis, using 8124 proteins commonly

quantified among the 142 melanoma samples could separate

between high- (>70%) and low-containing (<30%) tumor samples

based on protein abundance (Figure S-1C). In addition, no batch

effects were observed for the global proteomic data. Furthermore,

Student's t-test was performed to look at the expression of known

melanoma protein markers and drivers in the high tumor-containing

samples compared to the samples containing mostly tumor



microenvironment (Figure S-1E, Table SX). Known melanoma protein

markers and drivers such as TYR, S100A1, MLNA, RB1, BRAF and

WDR12, were upregulated in the high tumor-containing samples. For

example the S100A1 and TYR were highly overexpressed in the

sample containing a high percentage of tumor cells. Furthermore,

m-RNA and protein abundances showed strong positive correlation

(median 0.408), and 84% showed significant correlation (p<0.05) for

the 6101 overlapping genes across 104 patient samples (Figure S-F).

The average correlation was in the middle of previously reported

CPTAC colorectal (r = 0.23), breast (r = 0.39), ovarian (r = 0.45) and

endometrial (r = 0.48) mRNA-protein correlations.

Phosphoproteomic data processing and MS data interpretation

The phosphoproteomic spectral library was generated from 45 data

dependent (DDA) raw files in the Spectronaut X platform (Biognosis

AG) against the Homo sapiens database from Uniprot (downloaded

2019-01-15). The following parameters were used: cysteine

carbamidomethylation (+57.0215 Da) as fixed modification and

methionine oxidation (+15.9949 Da), N-terminal acetylation (+42.0105

Da) and phosphorylation (+79.9663 Da) on serine, threonine and

tyrosine were selected as variable modifications. Maximum of two

missed cleavages were accepted. Precursor mass tolerance was set

to 10 ppm and for the MS/MS fragments it was set to 0.02 Da.

Between 3 and 25 fragments were collected per peptide. The

phosphosite localization algorithm was set so that phosphosites with

a score that was equal or higher than 0.75 were considered as Class

I. Filtering was performed at a 1% false discovery rate (FDR) for all

the peptides and proteins that were used to construct the spectral

library.

The 122 DIA raw files were analyzed in Spectronaut X. In the

transition settings, charges +2 and +3 were set for precursor ions,

and +1, +2 and +3 for b- and y- ion products with a mass tolerance of

0.02 Da. Both precursor and protein Q value cutoffs were set to 0.01

and the peptides were quantified based on the intensity of the MS1

signal precursor. In all samples, the retention time alignment was

performed with spiked-in iRT peptides.

From the database search, a total of 45,356 phosphosites in 29,484

phosphopeptides were identified with an average of 18,722

phosphosites per sample (Table SX). The data displayed 58.7%

missing values in the phosphosite abundance. The data were

exported into Perseus software v. 1.6.2.3. Valid value filtering was

applied and all phosphosites with more than 5% missing values were

removed. The data were then log2-transformed and centered around

zero by subtracting the median intensity in each sample. For those

phosphosites with less than 5% missing values, the phosphosite

abundance values were imputed by applying the K Nearest Neighbor

(KNN) method, resulting in 4644 phosphosites corresponding to 1613

proteins in each patient that could be used for further analyses.

The sample preparation workflow was previously assessed for its

reliability to produce data from malignant melanoma tissue samples

(Murillo et al., 2018). Furthermore, principal component analysis,

using 1,267 phosphosites commonly quantified among 118 patient

samples showed similar separation as for the global proteomic

dataset, separating the high- (>70%) and low-containing (<30%)

tumor samples based on phosphosite abundance (Figure S-1D).

Protein and phosphoprotein abundances showed strong positive

correlation (median 0.506), and 94% significant correlation (p<0.05)

for the 809 overlapping proteins across 94 patient samples (Figure

S-1G).

IHC Staining Analysis

For the immunohistochemical study primary metastatic (n=42)

melanoma tissues were used. Representative tissue areas from

paraffin-embedded blocks were selected based on the HE-stained

slides, then 5 mm circumferential columns were put into the tissue

microarrays (TMAs) in an ordered manner. From TMAs 3.5µm

sections were put into an automated immunostainer (Leica Bond Max,

Leica Biosystems, US, IL) for standardized deparaffinization,

rehydrating and staining protocol. Antibodies against ADAM10,

CDK4, CTNND1, DDX11, FGA, HMOX1,NBP1, PAEP, PIK3c, and

TEX30 were applied in a dilution and antigen retrieval according to

Table 1. For visualization, high affinity polymer-based, AF-linked

secondary was used, with a chromogen substrate fast red. For

negative controls open containers were filled with only primary

antibody diluent without primary antibody. Before, coverslipping slides

were counterstained with hematoxylin.

The colorimetric immunostained slides were scanned by 3D Histech

slide scanner. The digitized high resolution pictures served as the

basis for the densitometry using Image Pro Plus software. Multicolor

pictures were converted into grayscale spectrum, then 5-5

representative areas for cell cytoplasm and/or nucleus of both

melanoma and stromal cells were measured separately. The gained

continuous scale variables were collected in an Excel file for statistical

analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Study of SAAVs

1. Custom database construction and SAAV peptide identification

Custom protein sequence database was built by downloading protein

mutation data from the Cancer Mutant Proteome Database (CMPD,

http://cgbc.cgu.edu.tw/cmpd/, download date November 2018). This

included the skin cutaneous melanoma data of TCGA (369 cases)

and 7 melanoma cell lines from the NCI-60 panel. Additional data of

melanoma samples was retrieved from COSMIC. Protein IDs,

mutation positions and mutated protein sequences were extracted,

and a UniProt ID was assigned to the proteins. Then in silico mutation

was applied to the UniProt canonical protein sequences to verify the

validity of the mutated sequences. Using the matched protein

sequence a peptide that carried the mutation site was generated by

performing an in silico tryptic digestion of the protein, and allowing for

one additional missed cleavage at both sides of the mutation site.

Redundant mutations were then removed and entries with the same



mutated peptide sequence were grouped into one single entry. The

resulting database comprised 57,134 entries.

Raw files were processed with Proteome Discoverer 2.3 (Thermo

Scientific) using the Sequest HT search engine in a two-step search.

The first search was performed against the Homo Sapiens Swissprot

database, and unassigned MS/MS spectra were searched against the

above described in-house built database. Cysteine

carbamidomethylation was set as fixed modification while methionine

oxidation and TMT 11plex at peptide N-terminus and lysine were set

as variable modifications; peptide mass tolerance for the precursor

ions and MS/MS spectra were set to 10 ppm and 0.02 Da,

respectively. A maximum of two missed cleavage sites were accepted

and FDR were set at 0.01 for identification at peptide level.

2. Validation of search results and data cleanup

SAAV peptides were validated using SpectrumAI quality control tool

available as an R script (Zhu et al., 2018). SpectrumAI automatically

inspects the MS/MS spectra of the peptide sequences. In order to

pass the quality control, the matching MS2 peaks needed to be

present (within 0.02 Da fragment ion mass accuracy) for both the b

and y ions which confirm the change in the amino acid sequence. The

presence of only b or only y ions were sufficient when the peptide had

a proline residue adjacent to the substituted amino acid on its

N-terminal side, due to the thermodynamically unfavored

fragmentation on the C-terminal side of a proline residue. Additional

criterion was set for the ion intensity. The sum intensity of the flanking

MS2 ions was required to be larger than the median intensity of all

fragmentation ions. SAAVs for which the substitution occurred on the

0th position also passed the quality control if the sum intensity of the

supporting b ions was larger than the median intensity of all

fragmentation ions.

A custom R script was used for data cleanup and post processing.

The verified SAAVs pointing at the same mutation position on a

protein were merged into one entry. The reason for multiple entries

included missed cleavages as well as complementary peptides

pointing at the same mutation. The latter occurred if the amino acid

change generated a new trypsin cleavage site leading to a peptide

that cannot be predicted from the original canonical sequence. For

peptides which were assigned to an isoform of the master protein, the

mutation positions were corrected to reflect the position in the

canonical Uniprot sequence. This was performed by using a

customized script analyzing the UniProtKB isoform sequences

(accessed on 21 August 2019). Both the corrected and uncorrected

position was used for online database searches, to ensure that we

would not miss matching results due to the position disparity caused

by isoform sequences. Additionally, the matching wild-type peptide

PSMs originating from the normal database search were linked to the

corresponding SAAVs, which allowed to assess the ratio of wild type

and SAAV peptide PSMs.

3. Annotation of validated SAAVs

Merging the results of various database searches and cleaning the

data was performed with inhouse custom R scripts. First the SAAV

peptides were searched in PeptideAtlas database (Desiere, 2006)  to
find out if the SAAV peptides were already observed previously in

another study. The search was performed on the webpage

https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/GetPeptides

using the “Human 2020-01” Atlas Build and only keeping the

canonical and isoform protein accessions for which SAAVs were

identified in our study. The resulting peptide sequences were

downloaded in text format and custom R script was used to retrieve

exact and partial matches.

Validated coding SNPs and cancer-related mutations were

downloaded from the CanProVar database (Li et al., 2010)

(http://canprovar2.zhang-lab.org/datadownload.php, version 2.0). The

UniProt IDs were first converted to Ensembl IDs using the biomaRt

(version 2.42.1) R package (Durinck et al., 2005, 2009), and then the

CanProVar database was used to retrieve the variant’s reference SNP

ID (rs#) and any cancer related variation ID of CanProVar.

Additionally, the “Index of human polymorphisms and disease

mutation” document was downloaded from UniProt

(https://www.uniprot.org/docs/humsavar) and was also used to

retrieve reference SNP IDs, as CanProVar database has not been

updated since 2012.

Aggregated Allele Frequency (ALFA frequency) frequencies were

accessed using the NCBI Variation Service API as described in

https://github.com/ncbi/dbsnp/blob/master/tutorials/Variation%20Servi

ces/Jupyter_Notebook/by_rsid.ipynb. For this analysis a custom

Python script was used. Additional resources such as ExAc (Lek et

al., 2016), 1000Genomes (2015), HapMap (2003) were used to

manually retrieve allele frequency information when this information

was missing from the ALFA frequency query.

4. Selection of over- and under-represented SAAVs

Firstly, we calculated PSM ratios (PSMr) using the following formula:

PSMr = (nSAAV PSM) / (nSAAV PSM + nwild-type PSM),

where nSAAV PSM is the number of PSMs supporting the SAAV peptide,

while nwild-type PSM is the number of PSMs supporting the wild-type

peptide.

The enrichment factor of SAAVs (SAAVr) was then defined as

SAAVr = PSMr / AAF,

where PSMr is PSM ratio (see above) and AAF is alternative allele

frequency in the European population.

Log2-transformed SAAVr values (n=760) were subjected to Johnson

transformation using Minitab (vs 17) to achieve values following the

normal distribution. Significance level was set to ∝ = 0.1, and so,

values outside of the range [-1.627; 1.654] were considered outliers

(i.e., were considered under- or over-represented variants). The

obtained list was further filtered to select over-represented variants

with highly confident identification (number of PSMs supporting the

SAAV > 2, SAAVr > 4) and with AAF < 0.11. For variants where no

wild-type PSM was identified, the number of verified PSMs had to

exceed 10 and AAF < 0.11. Under-represented SAAVr variants were

not further filtered and their PSMs ranged between 1-4.



Independent Component Analysis to Connect Pathway-level Features

with Clinical Variable

Pre-processed and normalized proteomics, transcriptomics, and

phosphoproteomics data, were dimensionally reduced by

independent component analysis (ICA) separately. Unlike principle

component analysis (PCA), which assumes Gaussian distribution of

the data, ICA can be used for non-Gaussian distributed data sets. To

ensure the quality of the ICA, we only included omics data of samples

with tumor content larger than 30%, this resulted in 111 samples in

the proteomics dataset, 118 for phosphoproteomics and 134 for

transcriptomics. ICA was carried out at per-accession level for

proteomics data and per-modified-sequence (phosphosite) level for

phosphoproteomics data. An R-based package, “fastICA”, was used

for implementation. The ICA was performed 100 times for each omics

dataset to make sure that the ICs were consistent. The extracted

independent components (ICs) mixing scores of the omics data were

then passed through association tests with the joint table of clinical

features of patients in our cohort. If the clinical variable is binary, a

logistic regression model was built for association tests. Otherwise, a

linear regression model was built. The association tests were

conducted for all the 100 ICA analyses for each omics dataset and its

ICs, and the ICs showing significant correlations (p-value<0.00001)

with a clinical feature for at least 50 out of 100 ICA runs were picked

as significant ICs (these conditions were called here the strict criteria).

Alternatively, applying “relaxed criteria”, the ICs showing p-values

smaller than 0.005 for at least 30 ICA runs per 100 were picked as

significant. For each of these significant ICs, the centroid of IC

coefficients were used to rank the omics data where accessions in

proteomics and modified sequences in phosphosites were matched to

their corresponding gene names. We then used these rankings to

conduct Gene Set Enrichment Analysis (GSEA) and significant

pathways were found (adjusted p-value<0.01). The GSEA was

implemented by an R-based package, “fgsea”, and searched against

the “Reactome” database. The ICs served as links between clinical

features and pathways at this point. In order to have a systematic

understanding of the multi-omics datasets, we gathered significant

pathways from proteomics, transcriptomics, and phosphoproteomics

data that their ICs were associated with the same clinical variables

(Liu et al., 2019).

Outlier Analysis

Outlier analyses were performed for different variables of interests

including survival, BRAF mutation, NRAS mutation, gender, and

tumor stage. For the survival related variables, the dataset was

divided into 2 groups and binary variables were created based on

whether the patients lived longer than certain cutoff times (5 years, 3

years, 1 year, 6 months) from their sample collection (surgery) date or

not. Outlier analyses were conducted to find which genes (proteins)

were significantly enriched in one of two groups but not in another

group. These analyses were carried out at per-accession level for

proteomics data and per-modified-sequence level for

phosphoproteomics data. We used a python-based package,

“BlackSheep”, to implement these analyses on proteomics,

transcriptomics, and phosphoproteomics data separately with default

median and interquartile range (IQR) of 1.5. Significant genes were

picked by FDR cutoff at 0.05 in the group-wise comparisons. Genes

(protein isoforms) labeled as outliers in less than 30% of patient

samples in one group were excluded from the group-wise

comparisons. Picked outlier accessions in proteomics and modified

sequences in phosphoproteomics were matched to their

corresponding gene names (Blumenberg et al., 2019).

Cox’s proportional hazards survival analysis

We also performed survival analysis using regularized Cox regression

in a similar manner as (Yuan et al., 2014). The samples were

randomly split into a training and a test set (80-20 training-test set).

Using the training samples, a univariate Cox model was fitted for each

feature individually and the 30 features with the lowest univariate

p-values were selected and used as input to an elastic-net Cox

model. The C-index was computed on the left out test samples. This

procedure was repeated 100 times for each omics dataset. We then

considered the features that were selected by the Cox model in at

least 50 of the 100 repetitions as significant and investigated these

further (Yuan et al., 2014).

ROC curve analysis

Survival data of the samples were stratified at 6 months, 1 year, 3

years, and 5 years into binary variables. Univariate receiver operating

characteristic (ROC) curves of each binary survival variable and each

protein expression were constructed by the ‘pROC’ package in R.

Area under the ROC curve (AUC) was used as a measurement to

determine the correlation between survival and the expression of

specific proteins. For each protein, the cutoff point of expression that

gave the maximum sum of sensitivity and specificity was used to

divide the samples into a high expression group and a low expression

group. Using an R package called ‘survival’, Kaplan-Meier curves

were then introduced to explicitly reveal the survival differences

between samples in these groups. The Kaplan-Meier (log rank) test

p-values were also calculated with ‘survminer’ in R, which were used

as another statistical value to evaluate the relationship between

survival and the expression of specific proteins.

Clinical data of samples in the IHC validation cohort
(independent cohort)
The melanoma samples involved in the IHC validation cohort were

collected from the Department of Dermatology and Immunology of the

University of Szeged. 42 patients were selected from 2001 to 2020

whose primary melanoma is archived in paraffin-embedded tissue

blocks. All primary tumors resulted loco-regional and/or disseminated

disease. The tissue microarrays (TMAs) were made from

formalin-fixed, paraffin-embedded (FFPE) blocks, represented 42

primary melanomas.

A total of 42 samples were collected with the clinical information

including gender (male = 24, female = 19), age at primary tumor

(mean = 61.35 yrs, SD ± 10.158, n = 43), localization of primary tumor

(trunk = 24, lower limbs = 8, upper limbs = 7, head and neck region =

3, acral region = 1) and metastases, disease-free survival interval

(mean = 23.16, SD ± 38.77, n = 43), progression-free survival interval



(mean = 54.11, SD ± 49.73, n = 43), overall survival (mean = 58.62,

SD ± 50.29, n = 43), live status (marked by 0, meaning “dead”

patients, n = 27; marked by 1, meaning “alive” patients, n = 16),

histological subtypes (SSM, NM, ALM, LMM etc.), pathological TNM

staging (according to AJCC cancer staging system, 8th edition),

histological parameters of the tumor (Clark level, Breslow, presence

of regression and ulceration), BRAF status, and long term follow up

data (DFS, PFS, OS). The clinicopathological data of the samples

were collected in an Excel file for statistical analysis.

All patient samples were obtained with the approval of the Research

Ethics Committee in the University of Szeged with written informed

consent provided by all participants. Ethical authorization number is

MEL-PROTEO-001, 4463-6/2018/EÜIG.

P-M correlation analysis
Based on the IHC validation cohort, nine additional metastases were

observed for the purpose of protein-based correlation between the

primary melanoma and the metastasis. First, a one-sample

Kolmogorov-Smirnow test was conducted to determine the normality

of the protein expression data. For the comparison, Wilcoxon

signed-rank test was used to examine whether proteins were

differentially produced between the tumors and the matched

metastases. P-values of One-Sample Kolmogorov-Smirnow test and

Wilcoxon signed-rank test were calculated by the IBM SPSS statistics

package (26.0 version) software. P < 0.05 was considered statistically

significant.

Survival analysis - Roc curve and Kaplan-Meier analysis in the
IHC validation cohort
First, to show the predictive impact of the identified 9 markers in

progression, we performed independent T-test to assess the

differences of the production of each protein using two categorical

variables, “alive” (live status, marked by 1) and “dead” (live status,

marked by 0) patientgroups, and using one continuous dependent

variable, the means of the protein expression values. The assumption

of homogeneity of variances was tested by Levene's Test of Equality

of Variances.

The receiver operating characteristic curve (Roc curve) was used for

the graphical illustration of the expression of related proteins based

on their diagnostic ability on survival rates (binary classification). The

Roc curve was generated by plotting the True Positive Rate (TPR) (on

the y-axis) against the False Positive Rate (FPR) (on the x axis) and

was calculated based on the optimal cutpoints (coordinates of Roc

curve were measured) of each protein.

Based on the cutoff points of the indicated proteins, the area under

the curve (AUC) measures the degree of separability between two

patients’ group according to their survival rate.

Kaplan-Meier survival analyses were conducted with the DFS, PFS

and OS intervals (measured with months) and they were calculated

(KM, log-rank test) based on models generated by the optimal

cutpoint of each protein.

The independent T-test, Roc curve, Kaplan-Meier survival analysis

and figures including box plots showing p-values, quartile values,

mean values and 95% confidence intervals (CI) were produced by

IBM SPSS statistics package (26.0 version) software. P < 0.05 was

considered statistically significant.

Identification of mortality risk subgroups of BRAF V600E
mutated patients

The R package ‘InGRiD’ (Wei et al., 2019) was utilized to identify

subgroups of patients with different mortality risk rates within a cohort

of 49 patients with BRAF mutation. This package provides a

pathway-guided identification of patient subgroups based on protein

expression while utilizing patient survival information as the outcome

variable. The analysis was done using the expression of proteins that

belong to pathways previously linked to tumors with different

expression levels of BRAF V600E (Betancourt et al., 2019).

DATA AND CODE AVAILABILITY
Github repository: https://github.com/rhong3/Segundo_Melanoma



FIGURES

Figure 1. Proteomic classification of Metastatic Melanoma. A. Proteogenomic profiles of our melanoma sample cohort. Samples

are grouped based on the proteomic subtypes established in this study (EC, EC-Im, EC-Mit, Mit, Mit-Im). Transcriptomic

classifications (Lund, TCGA) as well as their important clinical and histological data are displayed for each sample. The heatmaps

show the most differentially regulated proteins (ANOVA top500, FDR<0.005), phosphosites (ANOVA top1000, FDR<0.05) and

transcripts (ANOVA top500, FDR<0.05) among the five proteomic subtypes, and the molecular clusters are annotated with

representative pathways. The subtypes exhibit similar pathway-level features on all molecular levels. B. Networks representing the

association between subtypes defined by the transcriptomic and proteomic classification systems. The subtypes are denoted by

nodes and the significance of the association was computed by Fisher’s exact test and represented by double and single lines for

FDR<0.05 and unadjusted p-value<0.05, respectively. C. Kaplan-Meier survival plots displaying the disease-specific survival

probability for patients with tumors assigned to proteomics subtypes and distributed between long survival (EC-Immune and

Mit-Immune) and short survival (EC, EC-Mit, and Mit) subgroups.The significance of comparisons is shown by the p-values derived

from log-rank (Mantel-Cox) and Gehan-Breslow-Wilcoxon tests. D. Mean scaled expression of melanoma markers in each subtype.



Figure 2. Independent Component Analysis (ICA) extracted high-level features from proteomics data. A. Correlations of

extracted proteomics signatures from PCA and ICA respectively with clinical and histological features with P-value in -log scale

threshold of 3. B. Counts of significant correlations between proteomics extracted independent components (ICs) and clinical and

histological features (P-value < 0.00001), ICA repeated 100 times. ICs with significant correlations observed fewer than 30 times are

excluded. C. Interconnections between pathways and clinical and histological features based on proteomics ICA-GSEA (P-value <

0.0005). Clinical and histological features are shown as red nodes while pathways are shown as blue nodes. The sizes of vertices

are proportional to numbers of incoming and outgoing edges. D. Top 10 proteins contributing to the ICs correlated with each of the 5

subtypes.



Figure 3. Insights from studying BRAF V600E mutated metastases and single amino acid variants in melanoma. A.

Kaplan-Meier curves of the molecularly-defined subgroups of BRAF mutated patients. Patient subgroups are color-coded according

to survival probabilities: red (high-risk of mortality, n=16), green (medium-risk of mortality, n=12) and blue (low-risk of mortality,

n=21). Median survival times for the three patient groups is shown. B. Distribution of the proteins that belong to the most enriched

significant Pathways involved in the identification of mortality risk subgroups of patients with BRAF mutation. C. KEGG and GO

enrichment analysis of the 828 proteins with SpectrumAI validated SAAVs. The 3 most significantly (Benjamini-Hochberg adjusted

p-value < 0.05) enriched GO terms in biological process, molecular function, cellular component and KEGG pathways are presented.

Similar GO terms were collapsed into one entry and adjusted p-values were then averaged. The numbers to the right of each bar

represent the p-values associated with each term. D. Representation of SAAVs in our melanoma cohort linked to signaling pathways.

The number of SAAVs are indicated for each pathway. E. Relationship between the AAF (alternative allele frequency in the

European population) and log2 SAAVr, where SAAVr is the ratio of PSMr to AAF (PSMr = (nSAAV PSM)/(nSAAV PSM + nwild-type PSM)). Out of all

the 760 SAAVs with information on AAF and PSMr, 19 were found to be over-represented (red) and 6 were found to be

under-represented (blue). The corresponding gene symbols for these variants and the amino acid changes are shown.



Figure 4. The composition and proteome profiles of surrounding TME of melanoma samples with <30% tumor cell content are

associated with patient survival. A. PCA of commonly quantified proteins shows clusters of samples associated with tissue

composition. HC, HLN, and Mix denote the clusters of samples with the highest connective tissue content (³92%), highest adjacent

lymph node content (³60%), and samples with intermediate values of these features, respectively. B. Box plot representation of the

connective tissue content for the three sample clusters. The Anova analysis showed significant differences (p-value<0.0007)

between the means of the HC and Mix compared with the HLN cluster. This result defined the subgroups of high and low connective

tissue (CT) for subsequent analyses. C. Kaplan-Meier survival plots displaying the disease-specific survival probability for patients

with tumors of high and low CT. D. Heatmap for the 2,213 significantly differentially expressed proteins (t-test, FDR<0.05) between

the groups of tumor samples of high and low CT in the TME.



Figure 5 Survival-related biomarkers discovered by outlier analysis and cox regression analysis.
A. FDR in -log scale for significant putative biomarkers associated with short survival, tumor stage, and NRAS mutation found by

outlier analysis in multi-omics data. Candidate proteins selected for validation are labeled. B. Cox coefficients of significant putative

biomarkers associated with survival in Cox regression analysis of multi-omics data. Candidate proteins selected for validation are

labeled. The direction represents whether the expression positively or negatively affects the survival. C. Ingenuity Pathway Analysis

(IPA) for proteins related to survival in the outlier analysis (red), first top relationship subnetwork. Drug targets are labeled. D. IPA for

proteins and phosphoproteins related to survival in the Cox analysis, top relationship subnetwork. Entities with expression correlated

to high hazard shown in red. Those with expression correlated to low hazard shown in blue. E. The ten proteins selected for

validation by IHC (green: significant in proteomics data, blue: significant in phosphoproteomics data).



Figure 6. Case presentation and Cox Regression Validation Models. A. left: dermoscopic image of the primary breast skin

melanoma with atypical features, focal regression; right tissue marker expression in the primary tumor (downstream) and its lymph

node metastasis (upstream); OM 112x; scale bar 50µm. Forty-two year old female melanoma patient was referred to the radiology

because of a palpable axillary lump. Its cytology revealed malignancy. Behind the metastatic diseases a suspicious mole was noted

on the breast skin. Histology and clinical staging showed AJCC –IIIB disease (primary: pT3a; lymph node: pN2b). BRAFV600E

mutational state was positive. During the induction of adjuvant PD1 blocker therapy the patient showed a metastatic cerebral

disease, therefore topical irradiation was induced followed by BRAF and MEK target inhibitor therapy. Her metastatic disease rapidly

progressed and she died (DFS=0, PFS=4, OS=14 months). B, C. Horizontal axis shows the z-score of Cox coefficients of protein

melanoma cell expression in IHC-based Cox model for the validation cohort while vertical axis shows the Cox coefficients of proteins

in proteomics (B) and phosphoproteomics (C) Cox models for the discovery cohort. Proteins with consensus of coefficient

directionality are colored in red while those with different directionality are colored in blue. Proteins with minimal z-score (between

-0.5 and 0.5) in either cohort are colored in purple.



Figure 7. The complexity and layers of melanoma as a biological disease. Primary melanoma on the skin shows a marked

heterogeneity both on melanoma cellular level but also in its microenvironmetal counterpart (TME) including lymphoid-, histiocytic-

and fibroblastic elements. The detached but still dormant derivates of the primary melanoma may be disseminated in the body in an

undetectable way forming the minimal residual disease of the latent clinical phase. For the apparent metastatic disease the

surrounding metastatic niche of TME is necessary for the progression into visceral and cerebral dissemination leading to death.

Although the steps are usually sequential, the time courses largely differ among patients highlighted by DFS, PFS and OS values in

the clinical oncology. As the clinical behaviour of each melanoma is identical, wide-range of proteomic biomarker research was

called to life by the personalized follow up and treatment strategies providing new prognostic and predictive tissue biomarkers.



ANTIBODY HIER-BUFFER DILUTION INCUBATION TIME
(min)

ADAM10 pH=9 1:300 60

CDK4 pH=9 1:100 20

CTTND1 pH=9 1:50 20

DDX11 pH=9 1:150 20

FGA pH=9 1:100 20

HMOX1 pH=9 1:100 20

NBP1 pH=9 1:200 20

PAEP pH=9 1:150 20

PIK3c pH=9 1:150 20

TEX30 pH=9 1:100 60

Table 1 represents the applied primary antibodies and their work package.



SUPPLEMENTARY MATERIALS

Supplementary Figure 1. A. Bland-Altman plot depicting the agreement across repeated experiments of batch one (B1), upper limit:

0.770, lower limit: -3.363 and mean difference: -1.297. B. Distribution of sequence coverage of the identified proteins by MS/MS

across the fifteen TMT11 plex batches, (whiskers show the 5–95 percentiles and the dots represents the outliers). C. Principal

component analysis of the TMT global proteome data after normalization and ratio calculation. The ellipses represent the 95%

confidence interval per group based on 8125 proteins. D. Principal component analysis of 1267 commonly quantified phosphosites.

The ellipses represent the 95% confidence interval per group. E. Volcano plot showing known melanoma protein markers and drivers

in the high tumor-containing samples (>70%) compared to the samples containing mostly tumor microenvironment (<30%) (p-value

0.05, log2 fold change |0.5|). F. mRNA and protein abundance correlation (median 0.408), 84% of the mRNA and protein pairs

(6101) showed significant correlation (p-value 0.05) across 104 patient samples. G. Protein and phosphoprotein abundance

correlation (median 0.506), 94% of the proteins and phosphoprotein pairs (809) showed significant correlation (p-value 0.05) across

94 patient samples.



Supplementary Figure 2. ICA and ICA-GSEA on transcriptomics and phospho-proteomics data. A, B. Counts of significant

correlations (P-value < 0.00001) in 100 times ICA between transcriptomics (A) and phospho-proteomics (B) extracted independent

components (ICs) and clinical and histological features. ICs with less than 30 times of significant correlations are excluded. C, D.

Interconnections between pathways and clinical and histological features based on transcriptomics (C) and phospho-proteomics (D)



ICA-GSEA (P-value < 0.0005). Clinical and histological features are shown as red nodes while pathways are shown as blue nodes.

The size of vertices is proportional to how many edges are pointed to and from them. E. Relationships between phosphosites related

to clinical and histological parameters via ICA and kinases predicted to generate the phosphosites. Graph shows the phosphosite

counts, colored by the kinases generating them belonging for the set of all analyzed parameters selected based on the ICA

methodounts of phosphosite-kinase relationships predicted by Netphorest/Networking for different clinical and histological

parameters. For each phosphosite, only the top predicted kinase is considered (the values of the predicted kinase refer to the

Netphorest score >0.42 or NetworKIN score >5). F, G. Graph shows the amino acid motifs for sets of the most important

phosphosites of the ICA components associated with tumor stage (F) and 3-year survival (G) (P-value < 0.0005).

Supplementary Figure 3. Overview of single amino acid variants validated in melanoma. A. Summary of the 1015 validated

SAAVs. On the circular plot, each SAAV is depicted as a separate entry. The variants are grouped by the ∑(number of batches) in

which they were verified. From outside to inside: Track 1 depicts the number of PSMs for each SAAV on a logarithmic scale. Track 2

illustrates the PSM ratio (PSMr) of the variant. Track 3, and 4 represent the results from database searches (PeptideAtlas and

CanProVar). On each track of the latter two, full lines represent “hits”, which in PeptideAtlas is interpreted as “Found in PeptideAtlas”

(824 SAAVs) and in CanProVar as “Cancer-related SAAV” (27 SAAVs). On the embedded Summary Statistics table, the bar charts

show the number of PSMs (#PSMs), the frequency of the PSMr and the distribution of the number of SAAVs per protein. Coloring

scheme corresponds to the colors on the circular plot. The table on the right summarizes the data on protein level and demonstrates,

in how many proteins were 2 or more mutated sites detectable. More than 70% of the SAAVs were detected with 2 or more PSMs

which added confidence to the identification. Additionally, 2 or more SAAVs were found for 130 canonical proteins. The PSMr could

be calculated for 80% of the SAAVs, and from these, ca. 50% (PSMr = 0.3 - 1.0) are suggested to be at comparable levels with the

wild-type or to be the predominant proteoform in the analysed melanoma sample cohort. Circular plot was generated by the R

package OmicCircos (vs. 1.28.0). B. The observed significant correlation between PSMr and AAF. The scatter plot entails 760

pairwise complete observations out of all the 1015. The result indicates that the PSMr is a valuable proxy/indicator of the abundance



of the SAAVs in comparison with the canonical sequence. AAFs were mainly extracted from the Aggregated Allele Frequency project

through the NCBI Variation Service API (STAR Methods, Study of SAAVs 3.).

Supplementary Figure 5. Outlier analysis and Cox regression analysis. A. Significant proteins associated with survival, tumor

stage, and NRAS mutation in proteomics data. B. Significant genes associated with survival in transcriptomics data. C. Significant

phosphosites associated with survival in phosphoproteomics data. D. Best AUROC and corresponding stratification criteria of the ten

proteins selected for validation by IHC (green: significant in proteomics data, blue: significant in phosphoproteomics data).



Supplementary Figure 6. Coefficients z-scores of Cox Regression Models. A, B. Horizontal axis shows the z-score of

coefficients of genes’ stromal cell quantity in IHC model of validation cohort while vertical axis shows the coefficients of genes in

proteomics (A) and phosphoproteomics (B) models of discovery cohort. Genes with consensus of coefficients’ directionality are

colored in red while those with different directionality are colored in blue. Genes with minimal z-score (between -0.5 and 0.5) in either

cohort are colored in purple.

Supplementary Figure 7a. Different expressional features of the candidate biomarkers. Tissue heterogeneity of CDK4 protein

expression was shown with low positivity on the upper left side (MM), with stronger focal expression (red arrows) in the melanoma

cells as well as in the TME highlighted by the red colorimetric (fast red) reaction. Note the native brown dyscoloration by melanin

pigment accumulation. On the upper right side a more pronounced CDK4 stromal expression was seen in the TME. Similar

heterogeneity was also noted at ADAM10 and SCAI markers.



Supplementary Figure 7b. Expressional differences of the candidate biomarkers in the primary - metastasis relation.
Metastatic melanoma patients with a changed tissue protein expression. The primary melanomas compared to their metastases,

exhibiting pronounced CDK4 and SCAI, but less ADAM10 colorimetric positivity in the lymph node metastases.
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