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Popular summary

Throughout human history we have wondered about the nature of light. Since the sev-
enteenth century scientific theories of light went back and forth between describing it as
particles or as waves. In the early twentieth century scientists realized that both descriptions
were needed: the so-called wave-particle duality. This realization led to the formulation of a
new kind of physics known as quantum mechanics. In quantum mechanics nature behaves
differently: things can be in two different states simultaneously. This is famously illus-
trated by Schrédinger’s cat, which is both dead and alive at the same time. Furthermore,
in quantum mechanics the two simultaneous states can communicate with each other.
This makes the quantum world radically different from our own, exhibiting seemingly im-
possible phenomena.

In the last few decades we are beginning to build and manipulate molecules and nano-
structures, small objects with sizes on the order of 1-100 nm close to the scale of atoms.
Structures in this range inhabit a borderland of both quantum behaviour and noisy disturb-
ances from the classical world. These structures can interact with light in different ways.
Sometimes the light might be absorbed, struggle inside the structure as an excitation, and
later be emitted again. Other times the light is not emitted but transformed into useful
energy, such as in a solar cell which generates electrical power. Finally, it is possible that
excitations created by other means eject this energy as light, such as in a laser. In this thesis
we have studied the struggles of light as it is bound inside nanostructures and molecules.

The first topic of this thesis investigated the absorption and subsequent emission of light
by molecules. The excitations makes the molecule vibrate and this affects how the light
is later emitted. By comparing how different types of incoming light are absorbed and
emitted, we can learn about how the molecule vibrates and thus figure out its behaviour
and structure. This is known as spectroscopy. In this thesis we have simulated a simple
model of a spectroscopic experiment. This allowed us to investigate two different kinds of
vibrations which emit seemingly similar light in order to learn how to distinguish them.

The second topic of this thesis dealt with the conversion of light into electrical power. When
light is absorbed by a solar cell its electrons are excited and can be extracted from the cell
as power. However, due to the physics of conventional solar cells, they can never convert
more than a third of the energy of the light into useful power. The rest is wasted as heat.
By simulating the interactions of the electrons, we modelled how the electrons redistribute
energy inside the cell in order to improve the efficiency of extraction.

The third topic of this thesis studied the creation of well-ordered light by moving energy
from a hot body into a cold body, a heat engine. We know that our homes gradually be-
come more disordered, but they never spontaneously reorder themselves. This is the second
law of thermodynamics: entropy is always increasing. By studying a quantum model of the

vi



heat engine, we showed that the second law is satisfied even when there is a mismatch
between the energy of the light and that of the engine, which otherwise seemingly violated
the second law. Unlike a car engine, which has a reliable speed, microscopic engines are
subject to random effects and their output varies. We can improve the reliability, but at the
cost of creating even more entropy. In classical systems this trade-off is bounded — there is a
limit to the achievable degree of reliability before the cost becomes insurmountable. How-
ever, quantum engines are able to violate this bound. We have investigated the connection
between the reliability of the engine and its quantum nature.

Opverall, this thesis aims at contributing to improving our understanding of the interaction
between light and matter in nanoscale systems.

vii



Populervidenskabelig sammenfatning

Gennem menneskehedens historie har vi undret os over lysets natur. Siden det syttende
drhundrede har videnskabelige teorier om lys svinget frem og tilbage mellem at beskrive
det som partikler eller belger. Tidligt i det tyvende drhundrede indsé videnskabsfolk, at
begge beskrivelser var nedvendige: den sakaldte partikel-bolge dualiter. Denne indsigt led-
te til en ny type af fysik, kendt som kvantemekanik. 1 kvantemekanikken opferer naturen
sig anderledes: ting kan vare i to forskellige tilstande pa samme tid. Et populert eksem-
pel er Schrédingers kat, der bade er levende og ded pid samme tid. De to tilstande kan
endda kommunikere med hinanden. Kvanteverdenen er radikalt anderledes og kan lede til
umiddelbart umulige fenomener.

Over de sidste par drtier er vi begyndt at kunne manipulere og bygge molekyler og nano-
strukturer, smé objekter i storrelsesordenen 1-100 nm, tet pa sterrelsen af atomer. Struk-
turer i den storrelsesorden beboer et grenseland med béde kvanteadferd og stojende for-
styrrelser fra den klassiske verden, og de kan interagere med lys pa forskellige mader. Nogle
gange kan lyset blive opslugt, kempe inden i strukturen som en anslier tilstand, og senere
udsendes igen. Andre gange bliver lyset ikke udsendt men omdannet til nyttig energi, som
f.eks. i en solcelle der danner elektrisk strom. Endelig er det ogsa muligt, at andre kilder
skaber en ansldet tilstand, hvorefter energien udsendes som lys. Det er bl.a., hvad der sker
i en laser. I denne athandling har vi studeret lysets kamp, imens det er bundet inden i
nanostrukturer og molekyler.

Athandlingens forste emne undersoger opslugning af lys i et molekyle og den deraf folgende
udsending. Den anslaede tilstand far molekylet til at vibrere, og det pavirker hvordan lyset
senere udsendes igen. Hvis vi sammenligner, hvordan forskellige typer af indsendt lys bli-
ver opslugt og senere udsendt igen, s kan vi lere noget om molekylets adfeerd og strukeur.
Det er kendt som spektroskopi. 1 denne athandling har vi simuleret en simpel model af et
spektroskopisk eksperiment. Simuleringerne gjorde det muligt at sammenligne to forskel-
lige vibrationer, der udsender tilsyneladende ens lys, for at lere hvordan vi kan skelne dem
fra hinanden.

Det andet emne betragtede omdannelsen af lys til strom. Nir lys opsluges af en solcelle, an-
slas cellens elektroner. Vi kan udvinde de anslaede elektroner som strem, men pga. fysikken
bag konventionelle solceller kan vi aldrig omdanne mere end en tredjedel af sollysets energi
som nyttig strom. Resten af energien gér til spilde som varme. Vi simulerede samspillet mel-
lem elektronerne for at modellere, hvordan de fordeler energien mellem sig. Derigennem
kunne vi undersage teknikker til at forbedre effektiviteten af elektronudvindelsen.

Afhandlingens tredje emne studerede skabelsen af velordnet lys ved at flytte energi fra en
varm til en kold krop, en varmemotor. Vi kender alle sammen, hvordan vores hjem gradvist
bliver mere og mere uordnet, men aldrig bliver ordnet af sig selv. Det er leeren af termody-
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namikkens anden lov: entropien er altid stigende. Ved at studere en kvantemodel af en var-
memotor viste vi, at den anden lov altid er gzldende, selv nér der er en uoverenstemmelse
mellem lysets energi og motorens. Tidligere udregninger havde ellers indikeret at moto-
ren iflg. konventionelle metoder ville bryde den anden lov. Vi er vant til, at en bilmotor
har en palidelig hastighed, men det gelder ikke for mikroskopiske motorer; de er under-
lagt omgivelsernes stgj, og deres effekt varierer. Vi kan forbedre pélideligheden, men med
den omkostning at motoren skaber endnu mere entropi. I klassiske systemer er den afvej-
ning bundet: der er en granse for hvor palidelig, vi kan gore motoren, for prisen bliver for
stejl. Kvantemotorer er i stand til at bryde den granse. Vi har undersogt samspillet mellem
motorens palidelighed og dens kvanteadferd.

Overordnet set har denne athandling som mél at bidrage til vores forstaelse af samspillet
mellem lys og stof i nanosystemer.
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Populirvetenskaplig sammanfattning

Genom hela minniskans historia har vi forundrats 6ver ljusets natur. Sedan sextonhundra-
talet har vetenskapliga teorier om ljuset pendlat fram och tillbaka frén att beskriva det som
partiklar eller vagor. Under tidigt nittonhundratal f6rstod forskare att bida beskrivning-
arna var nddvindiga, vilket kom att kallas vdg-partikeldualiteten. Den hir insikten ledde
till formuleringen av en ny typ av fysik kind som kvantmekanik. 1 kvantmekaniken beter
sig naturen annorlunda: saker kan befinna sig i tvi olika tillstind samtidigt. Ett populirt
exempel pd det dr Schrédingers katt, som bade ir déd och levande samtidigt. Inom kvant-
mekaniken kan dessutom tva simultana tillstind kommunicera med varandra. Det hir gor
kvantmekaniken radikalt annorlunda och kan leda till tillsynes oméjliga fenomen.

Under de senaste artionden har vi bérjat konstruera och manipulera molekyler och nano-
strukterer, smé objekt i storleksordningen 1—100 nm, vilket motsvarar storleken pa atomer.
Strukturer pa den hir nivén befinner sig i grinslandet mellan att uppvisa kvantegenska-
per och brusiga storningar frin den klassiska virlden. Dessa strukturer kan interagera med
ljus pd ménga sitt. Ibland kan ljuset absorberas, kimpa inuti strukturen som en excitation
och senare emitteras igen. Ibland emitteras inte ljuset utan transformeras till nyttig ener-
gy, som i till exempel en solcell, vilken genererar elektrisk kraft. Det dr ocksd mojligt att
excitationer skapade pd andra sitt skickar ut den energin som ljus, som i en laser. I den
hir avhandlingen, har vi studerat ljusets kamp nir det dr bundet inuti nanostrukturer och
molekyler.

Avhandlingens forsta imne, undersoker absorption f6ljt av emission av ljus i molekyler.
Excitationerna gor att molekylerna vibrerar och det paverkar hur ljuset senare emitteras.
Genom att jimfora hur olika typer av inkommande ljus absorberas och emitteras kan vi
lira oss om hur molekyler vibrerar och dirmed ta reda pa dess beteende och struktur. Det
hir dr kint som spektroskopi. 1 den hir avhandlingen har vi simulerat en enkel modell av
ett spektroskopiskt experiment. Det har gett oss mojligheten att studera tvi olika typer av
vibrationer, vilka emitterar till synes liknande ljus, for att lira oss att sirskilja dem.

Det andra dmnet i avhandlingen berér omvandlingen fran ljus till elekerisk kraft. Nar ljus
absorberas av en solcell exciteras dess elektroner. Dessa elektroner kan anvindas for gene-
rera elektrisk strom, men pa grund av fysiken bakom konventionella solceller kan dessa
aldrig leverera mer dn en tredjedel nyttig energi av den energi som ljuset bistir med. Resten
av energin gar till spillo som virme. Genom att simulera vixelverkan mellan elektronerna
modellerar vi hur elektronerna omdistribuerar energi inuti cellen for att forbattra verk-
ningsgraden.

Avhandlingens tredje del behandlar skapandet av vilordnat ljus genom att flytta energi
fran en varm kropp till en kall, en sa kallad virmemotor. Vi kdnner vil till hur vira hem
gradvis blir mer oordnade, men att de aldrig aterstiller ordningen av sig sjilv. Just det



kallas termodynamikens andra lag: entropin kar alltid. Genom att studera en kvantmodell
av virmemotorn visade vi att termodynamikens andra lag uppfylls dven nir ljusets energi
och virmemotorns energi inte dr densamma, vilket till synes bryter mot termodynamikens
andra lag. Olikt en bilmotor, vilken har ett palitligt varvtal, utsitts mikroskopiska motorer
for slumpmissighet och har dirmed en slumpmissig uteffekt. Vi kan forbittra pélidigheten,
men bara till priset av en 4n mer 6kad entropi. I klassiska system ir den hir begrinsningen
bunden, det finns en grins var den vunna palitligheten motverkas av den 6kade kostnaden.
Kvantsystem, diremot, kan passera den hir begrinsningen. Vi har studerat kopplingen
mellan en motors palitlighet och dess kvantnatur.

Framforallt har den hir avhandlingen som mal att bidra med 6kad forstaelse av ljus—materia
vixelverkan i nanosystem.
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Chapter 1

Introduction

Ich bin ein 1eil des Teils, der anfangs alles war

Ein Teil der Finsternis, die sich das Licht gebar
Das stolze Licht, das nun der Mutter Nacht

Den alten Rang, den Raum ihr streitig macht,
Und doch gelingt’s ihm nicht, da es, so viel es strebt,
Verhaftet an den Korpern klebt.

— Mephistopheles in Faust by Goethe

Humanity has always wondered about the nature of light and formulated a multitude of
theories to explain it. An early atomistic theory was proposed by the Hellenistic philosopher
Epicurus who described light as ”atoms” emitted from matter and colour as a property of
how these "atoms” were emitted [1]. Since then, different particle and wave theories of
light have been proposed, culminating in the particle-wave duality of modern physics. This
duality pawed the way for the theory of quantum mechanics which becomes relevant for
systems on the scale of atoms. The quantum world hosts a wealth of phenomena radically
foreign to our classical world. Molecules and other structures in the nanometer range (1 —
100 nm) inhabit the borderland between these realms; noisy interference and disorder from
the classical world combines with the weirdness of quantum mechanics to form entirely new
behaviour. To model structures within this borderland we assume that the system is weakly
coupled to its surroundings and extend the quantum unitary evolution with Markovian
interference from the environment, this is formalised by the Lindblad master equation [2].
While unitary evolution is reversible Lindbladian evolution is dissipative and represents the
irreversibility of the macroscopic world where entropy is always increasing.

Light can interact with these nanostructures; absorption creates excitations as the energy



ignites different patterns which might later re-emit light. Conversely, other conditions can
create excitations in the structures which result in the emission of new light. Modelling
and understanding the patterns emerging from the struggles of light bound in matter is the
subject of this thesis.

When a molecule absorbs a photon it causes optical excitations which might later emit
new light. By comparing the frequencies of the absorbed and emitted photons we can
begin to understand the internal structure and dynamics of the molecule [3, 4]. This is
known as spectroscopy, derived from a combination of the Latin spectron meaning “ghost”
and the Greek okomier meaning "to see” [s]. Through spectroscopy we study the prop-
erties of matter without ever seeing inside the material. Rather, we excite it using light
and “peck inside” by observing the light emitted later from the excitations and repeating
this experiment over a range of frequencies. Different techniques extend the possibilities
of spectroscopy. In the last two decades an extension using four phase-modulated pulses is
gaining popularity [6-10] through which we are even able to observe quantum coherences
and their evolution over time. However, a challenge in spectroscopy is how to distinguish
between different dynamical contributions at coinciding frequencies.

In other scenarios the goal is not to re-emit the light but rather the conversion of light into
useful power, such as in a solar cell. Solar cells are subject to fundamental limitations due
to the spectrum of solar light and material properties of the cell. Conventional cells are
limited to absorbing photons with energies above the band gap energy of the cell mater-
ial. From the energy of a single absorbed photon only an amount equal to the band gap
can be converted into electric power; the excess is lost as heat. This introduces a trade-off
between the amount of photons the cell can absorb and the amount of useful energy each
photon provides. Together with other physical effects inside the material this limits the
efficiency below 34% [11]. However, the limit can be circumvented in so-called hot-carrier
solar cells [12-14] where the excess energy is redistributed to multiple carriers thereby re-
ducing dissipative losses. Constructing efficient hot-carrier solar cells requires a thorough
understanding of the exciton dynamics inside the cells.

Rather than absorbing light we can create excitations by other means and do work by emit-
ting ordered light. One example is the Scovil & Schulz-DuBois three-level maser [15] a
prototypical quantum heat engine relying on coherence to do work. An active area of re-
search within quantum thermodynamics is the question of how to define work and heat
in the quantum regime [16—21]. Further, the coherent evolution of quantum heat engines
permits violations of fluctuation relations of classical statistical mechanics [22—24]. This
enables the construction of high-precision devices beyond the limitations of classical sys-
tems.

This thesis is structured as follows. Chapter 2 studies the dynamical behaviour of open
quantum systems and presents the framework upon which this thesis is built. Then, Chapter 3



presents the principles of two-dimensional spectroscopy and summarises the main result of
Paper I. Next, Chapter 4 constructs a model for a quantum dot solar cell which is the con-
tent of Paper II. Finally, Chapter s discusses the foundations of quantum thermodynamics
in the three-level maser and how the quantum-coherent dynamics affects the output stat-
istics, which is the subject of Papers III and IV.






Chapter 2

Open Quantum Systems

Throughout this thesis we will study the dynamical behaviour of different open guantum
systems. The common approach we will take to these is to formulate the influence from
surroundings as Markovian interactions, i.e. memoryless, via phenomenological operators
acting on a density matrix representing the current state of the system. In order to do
so we must establish how open quantum systems are defined, the states represented and
interpreted, and the different interactions modelled. The purpose of this chapter is to
present the framework within which these concepts operate and how they are dynamically
connected.

The chapter is structured as follows, in §2.1 quantum states and operations are defined
and discussed together with the time evolution of isolated quantum systems. Section 2.2
generalizes the time evolution to open quantum systems described with the Markov ap-
proximation and introduces an important tool in the context of this thesis, the Lindblad
master equation. Next, §2.3 considers the phenomenon of quantum dephasing and how
it is included in the Lindblad formalism. Finally, §2.4 discusses two methods of acquir-
ing higher order transport statistics, namely full counting statistics and Monte Carlo wave
functions.

2.1 Quantum States and Uncertainty

Here we introduce the fundamental concepts of quantum states and operators and discuss
the relation between ontological and epistemological uncertainty in quantum mechanics [2s5,
26]. Section 2.1.I introduces pure states and §2.1.2 generalizes these to mixed states in the
density matrix. Then $§2.1.3 discusses the creation and annihilation of particles in second
quantization.



2.1.1 Pure States and Observables

In quantum mechanics the pure state of a system is represented by a vector in a complex
vector space, i.e. a Hilbert space. A vector describing the state is denoted a ket |2) and its
corresponding conjugate transpose is the b7z (2| = |)', with the dagger denoting the con-
jugate transpose. In practical applications the ket is often implemented as a column vector
and, conversely, the bra as a row vector. For these vectors we define the inner product
(a|b) = (b|a)" where the star denotes complex conjugate. The states are assumed normal-

ized such that |a| = \/(a|a) = 1.

When subjecting a quantum system to something we represent this by applying an operaror
on the state, A |4), with expectation value for the outcome of the operator,

(A = (a| Ala) . (2.1)

If the state is an eigenstate of the operator this corresponds to multiplying with a com-
plex scalar A |a) = a|a). The eigenstate has a predetermined outcome of a measurement,
however, measurement on all other types of states can yield values from a space of pos-
sible outcomes. We interpret these states as superpositions or weighted combinations of
orthonormal eigenstates,

[v) = Zfz’ |a;) Z P =1, (2.2)

i

where ¢; = (a;]1)) represents the (probability) amplitude of the projection onto eigen-
state |2;). The expectation value for these states is the weighted average over all possible
measurements [27],

2
() = (WlAlw) =3 _lala. (23)
i
Even with complete knowledge of a pure state the outcome is only probabilistically determ-
ined. The indeterminacy of outcome from measurement on a arbitrary pure state can be
described as a fluctuation,

2
o= /{ (4= (4)*). (2.4)
If A and B are two incompatible operators, i.e. their commutator is non-vanishing,
[A,B] =AB— BA#0, (2.5)

one can derive the Heisenberg uncertainty relation [27],

O40B >

%K[A, B)|. (2.6)



An increase in the certainty of the outcome of one operator has a trade-off with a corres-
ponding increase of uncertainty in the outcome of the other operator. We interpret this
as the statement that two incompatible operators cannot have simultaneous reality. This is
one of the most significant features of quantum physics. Within the formalism of quantum
mechanics we interpret this as an ontological uncertainty of nature rather than an epistem-
ological uncertainty due to limited human knowledge about the physical world [25,26,28].

Let A be the Hamiltonian of the system. As we require its expectation values to be physically
meaningful, i.e. real rather than complex, we assume it to be Hermitian HY = H. In the
Schrodinger picture we describe the time evolution of a pure state via the Schrédinger
equation, for times # > #; this reads [29],

ih% [0(8) = H|tb(2) & [(s) = Ulr, 1) [1()) , (2.7)

—4 [ HE)ds . : . . .
where U= T_e " Jo #O% i the time evolution operator and the time ordering operator
T arranges the products of time dependent operators chronologically such that the time
argument increases from right to left.

Note that the time evolution operator is unitary, U (2, 10)U(t, 1) = T [29], where T is the
identity matrix. Considering the norm of a state after time evolution from #, to  we find,

(GO (9) = (W (00)| Ul (2, 10) Ult, 0) [ (1)) = (4 (t0)[8(10)) - (2.8)

Hence, the unitary time evolution of the Schrodinger equation entails conservation of prob-
ability. Further, the unitary time evolution likewise yields perfect conservation of informa-
tion; perfect knowledge of a pure state at one point in time allows us to exactly predict the
future and past behaviour under Schodinger time evolution [29].

2.1.2  Mixed States and the Density Matrix

In the previous section we presented pure states and touched upon the statistics of meas-
urement of an operator on a quantum state. This formalism works for cases where we can
prepare many systems in the same initial state and collect the statistics of the distribution of
outcomes after time evolution under some operation. However, in many systems working
solely with pure states under unitary time evolution proves insufficient.

To extend our description of quantum states we now introduce the density matrix, also
known as the density operator, p. The density matrix of a pure state |1)) is defined,

pi=[¥) (Y] . (2.9)

As previously stated, the pure state represents a situation where we have obtained all possible
information about a quantum system. The converse of this is a situation where the system



is actually a statistical ensemble of possible states |1y), for £ =0, 1,2, ..., with probability
distribution p; > 0. The density matrix of such an ensemble is defined, in an arbitrary
basis |n), n=0,1,2...,

Pnm ‘= Zpk <”|wk> <¢k|m> ) ZP/«: =1. (2.10)
k k

The diagonal of the density matrix is termed the system population and the off-diagonal
elements are quantum coherences between populations. A statistical ensemble cannot be
assigned a pure state representation [3]. Note that while superposition in the pure state
represents the fundamental indeterminacy of quantum behaviour, the statistical ensemble
is rather a representation of uncertainty due to our incomplete knowledge about the system.
Thus, the density matrix is a synthesis of ontological uncertainty from the quantum world
together with the epistemological uncertainty of the world with which we are familiar.

Important properties of the density matrix are [3]
* pis Hermitian,
Do = Prum - (2.11)
* The diagonal elements are non-negative,
P =0, (2.12)
and are interpreted as the state probabilities.

* 'The density matrix is normalized such that,

Trp =Y (Yl plvw) =1. (2.13)

k
* Pure and mixed states can be distinguished according to the idempotency condition,
Trp? <1, (2.14)
with equality if and only if the matrix describes a pure state.

* The expectation value of an operator 4 is given,

(Ay =Te{dp} = pu(wul Alebe) - (2.15)
k

Finally, we define the von Neumann entropy of the density matrix [27,29],

Sun = —kgTr[plog p], (2.16)

I0



which functions as the quantum analogue of the classical Boltzmann entropy,

S=—ks Zpi log p; . (2.17)
The von Neumann entropy measures the degree of mixedness of the density matrix; for
a pure state there exists a basis in which p; = d; and Syx = 0 while for mixed states
Syn > 0 [29].

From the Schrodinger equation (2.7) we obtain the density matrix at a later time,

p(r) = Uls, fo)ﬂ(fo)w(t, ), (2.18)
providing the Liouville-von Neumann equation [3],
dp i
Lo _lH,). ,
dr h[ 0] (2.19)

The Liouville-von Neumann equation can be quickly verified for the density matrix of a
pure state by employing the product rule when taking the time derivative. It retains the
unitary nature of (2.7) and, likewise, both preserves probability and information just as
described for the Schrédinger equation.

2.1.3 Second Quantisation

During our investigation in the following chapters we will be creating and annihilating
indistinguishable particles, e.g. electrons and photons. To keep track of permutations
of these we will employ Fock states or occupation number states |n) = |ng, n1,---) with
n; particles in state i (we have assumed a predefined ordering of states!). This is called
second quantisation. Creating or annihilating a particle in state 7 we apply the creation and
annihilation operators, respectively,

d:-r|ﬂo,ﬂ1,"'>ZCS)US)\/”-FH”O,M,'“ i 1)

0 (2.20)
tl,‘|ﬂ(),ﬂ1,"'> — Sn \/2|710,711,"' y 1y — 17> )
where the term,
; 1 bosons
Ur(ll) _ ) X ’ (2.21)
0,0, fermions

ensures that a single state can contain no more than one fermion, i.e. the Pauli exclusion
principle [30, 31]. Furthermore, we define the Jordan-Wigner string [32],

(i) 1, bosons (2.22)
Sn. = i—1 . 2.22
" (—1)#=0" fermions
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From the Jordan-Wigner string we realise that reversing the order of creation of fermions in
two different levels corresponds to switching the sign of the state vector. The annihilation
and creation operators adhere to the (anti-)commutator relations [27],

[ai,ﬂ;]i =6, |ai a4l = [ﬂj,ﬂ;]i =0, [a,bl+=ab+tba, (2.23)
with [, 6] _ for bosons being the commutator and [, 4]+ for fermions the anti-commutator.
]

Note that for fermions the above identity implies ; aj = 0; we cannot create two fermi-
ons in the exact same state, in agreement with the Pauli exclusion principle. Finally, from

(2.20) we construct the number operator that counts the number of particles in state 7,

N;|n) = zzjzzi In) = n;|n) . (2.24)

For a system of non-interacting particles the Hamiltonian in second quantization reads,

H= ZEl-a:-raz-, (2.25)

where E; is the single particle energy of state .

2.2 Quantum Master Equations

Above we established pure quantum states and their time evolution, and generalized the
concept of quantum states to include statistical ensembles in so-called mixed states. Fur-
thermore, we have presented the formalism for creation and annihilation of quantum
particle, be they bosons or fermions. We are now ready to expand our understanding to
cases where a limited system exchanges energy or particles with an environment: an open
quantum system. To describe the dynamics of such systems we will need to establish the
Lindblad master equation. Deriving this requires introducing two important approxima-
tions, the Born-Markov approximation and later the secular approximation. The Markov
approximation involves memory-less interactions which is applicable in only a subset of
all open quantum systems, for a discussion of non-Markovian systems see for example
Refs. [33—35]. Section 2.2.1 provides a brief outline of the ideas employed, for a more thor-
ough derivation see for instance Refs. [29,36—38]. Next, §2.2.2 discusses three different
schemes of implementing the Lindblad master equation, local, global and PERLind.

2.2.1 Lindblad Master Equation

Consider a quantum system interacting with an environment consisting of different baths
whose Hilbert space can be written as the tensor product of the respective Hilbert spaces,

H=Hs® ][ Ha, (2.26)
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(a) (b)

Unitary
p(to) p(?)
Trs Trs
HaS
Dynamical
o H ps(to) ps(?)

Figure 2.1: (a) Quantum system S connected to a bath « with interactions between them. Together the system and bath are
described with density matrix p and the Hamiltonian H. (b) The goal of the quantum master equation is to obtain a
dynamical map for the reduced system that essentially agrees with the unitary time evolution on the entire quantum
system followed by a reduction to the system of interest.

where index § represents the system itself and v enumerates the different baths. Assuming
no initial correlations between system and reservoirs the initial state is recouped via the
tensor product,

p(t) = ps(t0) @ [ [ paln) (2.27)
(e
where pg is the reduced density matrix for the system,

ps() = Trslp(d] =Y (bl p(2) [Pt} (2.28)

ak

here Trs denotes the trace over all states outside the system and [¢)o) € H,, is the £'th basis
state of bath «v in some predefined ordering. The reduced density matrices for the separate
baths, pq, are defined similarly. This system evolves according to the Hamiltonian,

H= Hs+ Z (Ha + HaS) s (2-29)

where Hys describes the coupling between a bath and the system, see Fig 2.1(a).

Formally, time evolving this amalgamation of systems is a simple matter of establishing
the appropriate Hamiltonian, identifying a suitable boundary condition p(#) and time
evolving it using the Liouville-von Neumann equation (2.19). However, in practice the
large dimensionality of the baths makes this approach impossible for all but the simplest
systems. To avoid performing calculations on the global density matrix we shift our focus to
the reduced density matrix pg. Hence, we seek to construct a dynamical map that acts as an
effective description of the interactions with the baths such that it approximately provides
the same reduced density matrix as we would have obtained from proper time evolution,

see Fig 2.1(b).
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As boundary conditions at time # we assume that each bath is in internal thermal equi-
librium po(#9) = poa- This is where we apply the Born part of the Born-Markov approx-
imation and further assume that the interactions are sufficiently weak such that the system
only has a small influence on the bath. Hence, from the perspective of the system, we can
consider the different baths at internal thermal equilibrium also at later times # > 7,

p(r) = ps(r) @ HPOa . (2.30)

This is not to say that nothing occurs inside the different baths as the Markov-approximation
will illustrate next.

Let 75 denote the time scale of typical variations within the system. Likewise, let 75 be the
typical time scale of deviations from thermal equilibrium within the baths. By the Markov
property we assume that the baths are sufficiently large and memory-less that 75 > 7.
Hence, we can treat pg as approximately constant from the perspective of the baths. From
the perspective of the system the baths constantly revert back to their respective thermal
equilibria and any information about previous interactions have practically dissipated away
— this is the memory-less or Markov property. The Markov assumption also illustrates how
the baths can exchange energy and particles with the system yet still be assumed “constant”
in Eq. (2.30).

The Born-Markov approximation is the primary assumption behind the Bloch-Redfield
master equation [39],
. i
10l = —ﬁ[H& pslas + Zd Kb cdPed (2.31)

where the commutator describes the unitary evolution of the system in it-self, which we are
familiar with from the Liouville-von Neumann equation (2.19), and the superoperator K
indicates dissipative effects from interaction with the baths. Note that the Markov-property
allows the master equation to be time local, i.e. it only depends on the state of the system
density matrix at the current time. The Bloch-Redfield equation has proven popular in the
interface between physics and chemistry where molecular dynamics is influenced by the
surroundings [40—48].

However, the Bloch-Redfield equation does have its short-comings [49—s1] one of which is
that it does not ensure positivity of the density matrix. Different variations and remedies to
the short-comings of Bloch-Redfield equations have been proposed [52—57]. One solution
is known as the secular approximation. We assume that H; has discrete eigenstates that can
be neatly grouped into discrete energies fw;. Furthermore, assume that |w; —wj|7s > 1 for
i # j, in which case oscillatory information from the transition between the two, el(wi—w)t,
vanishes, conversely, for eigenstates within the same group the contribution is constant.
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The combination of the Born-Markov and secular approximation yields a master equation

of a type described by Gorini, Kossakowski & Sudarshan, and Lindblad [2, 58],

i

. 1 1
ps=—3[Hs.ps] + 3 > Tu [L/epst — 5 {tituns+ psLLLk}} SR CX 23
k

where the jump operators L, describe interaction terms between the system and baths with
strength I'. Just as for the Bloch-Redfield master equation the first term represents unitary
evolution similar to the Schédinger equation and the second term dissipation due to the
environment. The summands of the dissipative contributions are denoted as dissipators. We
refer to (2.32) as the Lindblad master equation. This is the most general Markovian master
equation which preserves positivity and trace of the density matrix [37].

Finally, we note that (2.32) is linear in ps which suggests a convenient reformulation of the
master equation. Reshaping the NV x N matrix pg into a column vector of length N2 allows
us to rewrite the Lindblad master equation into an ordinary matrix equation,

ps = Lps, (2.33)

where £ isan N? x N? Liouvillian supermatrix. The matrix equation form further suggests
a convenient expression for the time evolved state,

ps(r) = e“ps(0) (2.34)

where ef

* is the matrix exponential. From linear algebra we know that the eigenvalues of
L provides the time scales for transient behaviour. Further, a steady state (superscript *) is

a normalized state which satisfies,
Lpd=0. (2.35)

If the steady state is unique the system converges towards it on time scales determined by
the eigenvalues.

For the remainder of this thesis we will omit the system subscript ”s” for the sake of brevity.
Thus, p refers to the reduced density matrix and / the system Hamiltonian.

2.2.2  Local, Global and PERLind

In the previous sections we introduced the Lindblad master equation for modelling a quantum
system weakly coupled to an external reservoir. Here, we continue with a description of
different approaches for how to implement the phenomenological jump operators of the
master equation. Two popular schemes to define the jump operators are the /ocal and the
global approach [59—65]. While we will not consider the global approach in subsequent
chapters of this thesis, we do include a description here for the sake of completeness.
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Figure 2.2: (a) Diagram of a quantum double dot system connected to left and right baths, quantities are described in the main
text. (b) Comparison of energy currents for the three different implementations of the Lindblad master equation for
parameters £y = Ep = kgTy, T = 0.87;, T’ = 0.02437; and p;, = pp = 0.

In the local approach the baths are coupled locally to components of the system. The con-
verse choice is the global approach where the baths couple to delocalized global eigenstates
of the entire system. We can interpret the local and global approaches as resolving inform-
ation about position and energy, respectively, and they have different regimes of validity.
For example, the global approach provides the more appropriate steady state solutions for
systems with strong internal coupling strengths while the local approach yields better results
for out-of-equilibrium systems in the limit of weak coupling [65].

As an example of the two approaches consider the double dot system of Fig 2.2(a). The
double dot system is connected to the left (Z) reservoir with temperature 77 and chemical
potential z, with transition strength I, similarly for the right (R). The two dots have
equal energies £ = Eg and the coupling strength between them is Q. Furthermore, we
assume the particles to be non-interacting. An explicit application of the two approaches
is available in Appendix A.

Figure 2.2 presents the energy current determined using the two different approaches. In
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the limit of weak couplings we observe that the global approach predicts a finite energy
current unlike the local energy current which vanishes. As this limit entails no contact
between the individual dots this is unphysical. However, the global approach, which is
based on eigenstates and -values, is “unaware” of the vanishing connection between them,
Likewise, in the opposite limit of strong couplings the local approach predicts a stagnant
energy current unlike the global energy current which decreases. With increasing coup-
ling strengths the eigenvalues move further apart until it is not energetically possible for a
transition to occur; in this limit the local approach becomes unphysical.

An interpolating scheme between the local and global approaches is the Phenomenolo-
gical Position and Energy Resolving Lindblad approach (PERLind) [66—71] To implement
PERLind we

1. Determine spatially defined jump operators L, # = 0,1,2,..., and associate to
each jump process a phenomenological energy resolving function f;(E), e.g. the
Bose-Einstein distribution when interacting with a bosonic bath.

2. Adjust the jump strengths, I';, such that the transitions rates from an initial state [i)
to final state |£), R¥, . = Tufy(Er — E)| (f|L4]i) |2, agrees with Fermi’s Golden rule

according to the microscopic bath coupling.

3. Determine the eigenbasis |2) , |) , etc. of the system Hamiltonian H with eigenval-
ues E,, Ey, etc.

4. Perform a transformation of the jump operators according to,

b = Lﬁb\/ﬁe(Eﬂ —E), (2.36)

where ¥, is the element (2|Z*|4) and similar for operator L+,

After implementation of the PERLind jump operators L we can recast the Lindblad master
equation with the transformed jump operators. An explicit implementation of the PER-
Lind approach is presented in Appendix A. In Fig 2.2(b) we see how the PERLind energy
current is able to interpolate between the local and global approaches and thus remain
physically reasonable at either limit of coupling strength.

2.3 Quantum Dephasing

An important property of open quantum systems is the phenomenon of dephasing, also
known as decoherence. When a quantum system dephases the off-diagonal coherences of
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the density matrix decay and the system mimics macroscropic non-quantum behaviour,
hence, dephasing is said to be the key in understanding how the quantum world becomes
classical [72,73]. Below we will present how to implement the dephasing operator within
a quantum master equation and compare the two implementations for Bloch-Redfield and
Lindblad master equations, respectively.

In the Lindblad master equation dephasing is implemented as measuring the individual
states,

Lieph = Z Zn|n) (n|, with strength T'geph (2.37)

where g, is a real dimensionless strength scalar associated with the observation of state 7.
Through the Lindbladian dephasing operator the system is continously inquired by the
environment about whether or not it is in state |7) which causes constant collapse of the
wave-function. This in turn destroys the coherence between the state itself and other states.

We illustrate the connection between the dephasing in the Bloch-Redfield and Lindblad
dynamics below. Let the states |#) and |m) be eigenstates of the Hamiltonian A with
eigenenergies £, and £,,. A phenomenological implementation of dephasing for the co-
herence between 72 and 7 in the Bloch-Redfield master equation reads,

Zh mn h mn s

. i

h
where 7;/I is the rate of leaving state i and 7,,,/h a pure dephasing rate for the coher-
ence. Now we write the similar implementation for the Lindblad master equation with the
Lindbladian for the £’th interaction,

1
Lylp] =Ty (Lka; — > { e+ pLLLk}) : (2.39)

The Lindblad operator for population transfer from 7 to n' # nis Ly, = |#') (n| with
strength I',,. This directly provides identity of strengths I',, = ~,,. For the pure dephasing
terms we consider the family of dephasing operators Ly = 3° ¢ |n) (n| with strengths T';.
Dephasing due to the £’th term provides,

_r, (¢ — &)’ )

2% mn - (2.40)

(pmn)f =

We can now relate the direct dephasing rates of the Bloch-Redfield master equation to the
implied dephasing of the Lindblad master equation,

AV
Ymn = Z Pe(gﬁffn) . (2.41)
¢
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For a system consisting of spin-degenerate electrons, see Chapter 4 and Paper II, we will
use the pair-wise dephasing operator for each level,

nggh = 4@ + éllél 1, (2.42)
rather than the individual operators L4/, = 4 /141/)- To realise why, note that under
dephasing of spin-degenerate electrons we want both the number of particles and total
spin to remain constant. Furthermore, we want this operation to be independent of the
choice of spin-projection axis. Consider now the three Pauli matrices (projection operators
of spin along the three Cartesian coordinates) [27],

Oy = a}@ + aIaT ,

o, = i(aIaT — 4@) , (2.43)
0, = 4@ — “I”i ,

taking the commutator between the individual dephasing operators and the first Pauli mat-
rix we find non-vanishing elements,

[Ly/y,04 = 3@4% F aIaT

. (2.44)
= F10y,
yet for the pairwise dephasing operator the terms cancel,
Ay 049

The commutator has similar behaviour for o, while all the commutators trivially vanish for
05 According to the Heisenberg uncertainty relation the pairwise dephasing operator has
reality independently of the choice of spin-projection axis while the individual dephasing
operators are only simultaneously real with o,. Hence, we regard the pairwise operator as
a more suitable choice of dephasing for spin-degenerate electrons.

2.4 Beyond the Steady State Description

Above we implemented a Lindblad master equation for a quantum system connected to
different reservoirs. During time evolution the reservoirs exchange energy and particles
with the system. While a steady state picture might provide the mean rate of transfer
between the system and a reservoir, we are also interested in higher order statistics, e.g.
the variance. Here we present two approaches for obtaining this statistics. Section 2.4.1
introduces the analytical method of full counting statistics while $2.4.2 constructs the Monte
Carlo wave functions which can be used to simulate quantum trajectories and provide the
statistics numerically.
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2.4.1 Full Counting Statistics

An analytical approach to obtain higher order statistics on the particle flow is to use full
counting statistics (FCS) [74—76] which introduces counting fields in the master equation.
In the presentation below we follow the argument outlined in Ref. [76] to describe counting
fields and the cumulant generating function. Next, we follow the technique presented in
Ref. [75] to obtain a powerful formalism for exact analytical expressions of the mean and
variance in the long time limit.

et p(n enote the density matrix of the system conditional on a total of exactly »
Let p(n,t) denote the density matrix of the syst ditional total of exactly
particles being transferred to the reservoir of interest during a time window # The master
equation can be rewritten,

p(”? t) = EOIO(”’ t) + E*p(n +1, t) + £+p(” -1, t) ) (2.46)

where £ (_) are the terms of the matrix describing absorption (emission) of a particle or
quantum of energy by the system, and £ represents the non-transfer terms. We have here
assumed that at most one particle can be transferred at the same time. We now introduce
the counting field x as the dual variable to 7 and Fourier transform the density matrix,

PO, 1) =Y pln, e ™. (2.47)

Using Eq. (2.34) an initial state py evolves as,
p(x,2) = e“Npy L(x) = [Lo+e XL +eXLy]. (2.48)

The probability of exactly 7 particles having jumped into the reservoir is,

V4

P,(t) = Tr[p(n, t)] = 217z/ dy Tr[e£ 00 pglex . (2-49)

-

From P,(#) we obtain the #th moment in the limit of vanishing x — 0, i.e. proper
Lindblad evolution,

(n'(1) =Y #*Py(r) = (10, Te[e“Np] | . (2.50)

n

Above we obtained an expression for the moments of the flow, however, rather than con-
sidering the moments directly, it turns out to be analytically more convenient to consider
the cumulants. Define the cumulant generating function,

C(x, ) = In Tr[e“0pq] (2.51)
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which provides the cumulants [76],

((n*(9))) = (10y)" Cx, 9) (2.52)

x=0 ‘

The first two cumulants are the mean and variance, respectively,

(' () = (n(9), ((2(2) = (B*(9) = (n())* = var(n(s)).  (2.53)

We are only interested in the steady-state behaviour as # — 0o and this is where the strength
of the cumulant generating function becomes apparent. Assume that the system has one
stationary state then £(x) has a single eigenvalue {(x) — 0 for x — 0. Further, for
vanishing x the remaining eigenvalues contain a nonvanishing negative real part, i.e. they
decay away. Hence, in the limit of large # the eigenvalue of the steady state dominates the
time evolution,

Clx,t) =InTr [eE(X)’po} ~ InTr [eopo} = ((x)t. (2.54)

Finally, we are often more interested in the rate of increase of the cumulants rather than
their particular values per se. The time derivative of (2.52) with (2.54) yields,

(i) = (0 0| _ - (259

x=0

In practice, the eigenvalues of all but the smallest systems are intractable or even impossible
to determine analytically. However, following the procedure presented in Ref. [75], we can
circumvent the determination of { () and directly determine its derivatives. Consider the
characteristic polynomial of £(x) given as,

D an(" =0, (2.56)

m

where a,, is the m’th coefficient of the polynomial. Define the derivative,

4 = —8>2<¢zm’

/.
dyy = 10van| .

XZO ) (2'57)

with the same notation for derivatives of ¢, From the first derivative of the polynomial we
obtain,

> (4, + (m+ Dan1¢'1¢"(0) = 0. (2.58)

m

For vanishing x we know ¢ — 0. To ensure that the eigenvalue is a root of the differentiated
polynomial the term for 72 = 0 must vanish, hence,

dy+ar(' =0. (2.59)
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This provides the mean current,

(ny=(=--=. (2.60)
Likewise, the second derivative provides,
> 1y A20m+1) 211+ (m+ Va1 (" + (m+2) m+1)2,12¢1C"(0) = 0, (2.61)
from which we obtain the variance of the current

var(i) = -2 H i) _ s iy, )
a al a

While the eigenvalue can be inaccessible to determine analytically, the quantities 4, and
their derivatives are immediately accessible for a given Liouvillian supermatrix and directly
provides the mean, variance and even higher order of cumulants.

Finally, rather than estimating the variance in itself we are often more interested in the Fano

factor F = Vazr;.y) [77] to characterise fluctuations. Using the above expansion Fis obtained
s / /
a,  a
F="0 1 2(3) [} -~ 2} : (2.63)
a, ay a

We will return to the Fano factor in Chapter 5 when considering fluctuations in a quantum
heat engine.

2.4.2  Monte Carlo Wave Functions

In §2.2 we saw how to write the Lindblad master equation into a matrix equation which al-
lows for a convenient time evolution of the system. Further, in §2.4.1 we saw how to obtain
the full counting statistics of the system, which makes not only the mean flow but also the
variance and higher order cumulants accessible to analysis. Here we present an alternative

procedure to time evolve the master equation and gather statistics on the dynamics, the
Monte Carlo wave function MCWEF) [78,79].

In §2.1.2 we wanted to expand our formalism to describe systems with epistemological
uncertainty; the system has transitions between different pure states but we do not know
when. The density matrix was introduced for this purpose as it could accommodate a
statistical ensemble of pure quantum states. With MCWF we return to the picture of a pure
state that time evolves according to the Schrédinger equation and is additionally randomly
affected by the environment. The mean of an ensemble of MCWF trajectories provides
the expectation value of an operator. A great benefit of this technique is computational,
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in the supermatrix master equation of a density matrix a Hilbert space of size /V requires a
Liouvillian supermatrix of size N> x N? = N, this quickly becomes intractable compared
to the MCWF which scales as V2. Additionally, the random fluctuations of the MCWE

trajectories provide an alternative means of acquiring flow statistics.

To obtain a MCWF trajectory we define the non-Hermitian Hamiltonian,

i f
Hvewr = H— 5 z/e: Tyl Ly, (2.64)

and time evolve a pure state |1)(#)) according to pseudo-unitary evolution of the Schrédinger
equation. Let R € (0;1) be a random uniform variable sampled at the beginning of this

iteration. During the time evolution the pure state is drained of probability and must even-

tually jump to another state. When the norm of the state has decayed R the pure state jumps

through a channel randomly chosen according to the weights w;, = I', (1(#)] LZL/e [1(2))

After this the norm of the pure state is reset to unity, R is resampled, and the pseudo-unitary
evolution can start over.

The MCWF trajectory is equivalent to the Lindblad master equation as we will show based
on the proof in Ref. [78]. Let o = [¢(¢)) (¢(#)| and consider its average value o (¢ + d#)
after an infinitesimal time step dz. The probability drain of the pure state, or probability of
a jump in that time step, is wdz = dz _, wy, hence,

T

o(r+ dr) = (1— wdy) £ (265

W2+ de)) (Y(z+ dr)| Ly [9(2) (1) L
(1 — wd) “”dtzk:” ”

Further, if no jump happens we know from the Schrodinger equation,

e+ ) = (1 4NN .60

Combining (2.65) and (2.66) we find,

olrEds) = o) — dtih H, 0()]

(2.67)
+dr) Ty [Lka(t)Lz - %{L,ZLW(;:) + U(t)LZL/e}} . =7
k

This provides the same time evolution as the Lindblad master equation performs on the
density matrix, provided that at time 7 the two are identical p(¢) = o(%).

Note that an important part of MCWF is the non-Hermitian Hamiltonian. Naively, one
could imagine a semi-classical time-inhomogeneous Poisson process where the wave func-
tion evolves according to proper unitary time evolution and decays according to classical
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decay rates. Yet, due to the nature of quantum systems, the effect of performing a meas-
urement on it, even if that measurements yields a non-event, alters the state. This effect is
included by the jump terms inside the definition of Hy\icwr. Omitting these can lead to
paradoxical results, as discussed in Ref. [78].

24



Chapter 3

‘Two-Dimensional Spectroscopy

In this chapter we will consider the non-linear interaction between light and matter in
action-detected two-dimensional (2D) spectroscopy. A fundamental spectroscopic tech-
nique is pump-probe spectroscopy [3,4] where the pump pulse disturbs the sample and later
the probe pulse excites the disturbed system further after which a signal is recorded. By
varying the pump and probe frequencies a 2D landscape forms, such as in Fig 3.1. The
diagonal peaks of the spectroscopic landscape signify populations of the individual levels of
the system formed by double excitations from the two pulses. Conversely, the cross peaks
reveal correlations between the different populations from which dynamical relations can
be derived. A family of spectroscopic techniques is action-detected 2D spectroscopy which

Wprobe

%)

w1

wi W2 Wpump

Figure 3.1: lllustration of pump-probe spectroscopy where the first pulse pumps the system and the second pulse probes it by
exciting the system further. The diagonal peaks correspond to populations of the system and cross-diagonal terms
indicate correlation phenomena, e.g. coherences, between the populations.
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builds upon the basic idea of pump-probe analysis, albeit with four pulses rather than two.
As we will see below this allows us to emulate two-pulse pump-probe spectroscopy which
can be useful in circumstances where the simple two-pulse approach might prove imprac-
tical.

An important technique in action-detected 2D spectroscopy is phase-modulation [80—82]
which has been applied in the study of various systems from molecules and aggregates
[7, 8, 83, 84] to photoelectronic devices [9, 10, 85, 86]. In these applications spectroscopy
based on four phase-modulated beams is gaining popularity [6-10]. Among these, action
signals such as fluorescence and photocurrent are being used due to their capability to
measure dynamics on very short timescales [4, 10].

This chapter is structured as follows, in §3.1 the basic principles of spectroscopy with four
pulses are introduced. Considering a specific model from Paper I §3.2 presents the com-
ponents of the Lindblad master equation for this system based on earlier work by Damtie
et al. [87]. Subsequently, §3.3 presents how to process and analyse the action-detected spec-
tra. Finally, §3.4 summarises the results of Paper I which investigates how to distinguish
mixing of linear signals due to non-linear population dynamics from the non-linear signals
due to pulse interactions.

3.1 Spectroscopy with a Four-Pulse Train

Phase-modulated action-detected 2D spectroscopy involves subjecting a sample to a train
of four inter-delayed collinear pulses, see Fig 3.2(a). These excite the system with their
respective phase modulations, Q;, Q, Q3 and Q4. In real experiments this can be done
via acousto-optic modulators in a dual Mach—Zehnder interferometer [6, 10, 88].

The first pulse generates a coherence which evolves for the first coherence time 77 until the
next pulse hits. With the second pulse the coherence is either turned into a population or
converted to a different coherence. After a population time 75 the third pulse hits and yet
another coherence state is excited from the disturbed system. Finally, after the last coherence
time 73 the fourth pulse hits and we detect the resulting action signals of interest. The shifts
between populations and coherences are illustrated in Appendix B. Common action signals
are fluorescence or photo-current which result from radiative relaxation processes. In the
present thesis we fix the population time at 75 = 0 and only consider the dependence of the
dynamics on the two coherence times. When the dephasing time scale of the system is small
compared to the processes underlying the action signals we interpret this as an incoherent
experiment. This allows us to assume that the intensity of the signal is proportional to the
population in the source state [29].

When subjecting the system to modulated pulses we can expect excited populations oscil-
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Figure 3.2: (a) The electric field of four pulses of light, a train, modulated at respective frequencies Q; for i = 1,2, 3, 4, used
in 2D action-detected spectroscopy. (b) The four main pathways of 2D action-detected spectroscopy, ground state
bleach (GSB), stimulated emission (SE), excited state absorption (ESA) and excited state bleach (ESB), demonstrated
for a three-level system. The pulses are indicated with straight arrows chronologically ordered left to right with the
final radiative relaxation signal indicated as the rightmost curvy arrow.

lating at the combination frequencies 71 Q £ 7,0, £ 73Q3 £ 74Q4 where »; are integers.
The most important combinations are the linear interference frequencies Qy; = Qy — Q)
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and Q43 = Q4 — Q3 [6]. In the picture of pump-probe spectroscopy, the pair of pulses 1
and 2 are interpreted as a pump pulse with modulation ) and pair 3 and 4 are the probe
pulse with modulation Q3.

From the pump and probe terms we form the lowest non-linear interference terms, the
rephasing (Q— = Qy3 — Qy1) and non-rephasing (O = Q43 + Q1) frequencies. For
both the rephasing and non-rephasing frequencies the relevant pathways for action signals
are Ground State Bleach (GSB), Stimulated Emission (SE) and Excited State Absorption
along two different pathways (ESAI and ESAII), see Fig 3.2(b). Appendix B describes how
these pathways relate to the rephasing and non-rehasing frequencies in particular. In GSB
the "bleaching” consists in the effect of the probe pair, where the ground state is emptied,
i.e. bleached, in preparation of the readout. For this reason, the pathway ESAII could
be interpreted as “excited state bleach” and ESAI as "proper ESA”, though we will refrain
from that naming here. Similarly, SE is named for the emission stimulated by the probe
pair. Unfortunately, the naming of these pathways is not consistent across the literature.
For instance, what is here defined as ESAI and ESAII is elsewhere grouped together as
ESA where the categories I and II denote the rephasing and non-rephasing contribution,
respectively (with similar notation for GSB and SE) [7] cf. Fig 3.2(b) where all pathways,
including ESAI and ESAII, have contributions from both frequencies. Additionally, the
SE signal as defined here should not be confused with the original concept of stimulated
emission where an incoming light field causes an excited state to relax by emitting a photon
with all properties identical to that of the incoming light [89].

As the pathways GSB, SE and ESAI all involve signals emitted from the first excited state,
their populations oscillate in phase and we expect the contributions of the three pathways to
the spectrum to have the same sign. However, the ESAII signal is emitted from the doubly
excited state, i.e. generated by draining population from the first excited state. Hence,
the doubly excited state oscillates in antiphase with the first excited state and the signal of
ESAII pathway contributes with the opposite sign of the other three. If the quantum yields
of the first and second excited states are identical we expect the ESAI and ESAII pathways
to cancel.

Of course, several other pathways also contribute to the full signal. One example is a singly
excited population due to the first two pulses and no interaction with the remaining two.
Yet, this combination would provide a modulation at the linear frequency Q5 and not the
non-linear frequencies Q.+, see Appendix B. This can be interpreted as excitation by the
pump and none by the probe. We will return to the question of how other pathways affect
the spectra in §3.4 when we consider the results of Paper I.

From the time series we can extract the components at the rephasing and non-rephasing
frequencies, i.e. the GSB, SE, ESAI and ESAII pathways, as our action signals for a set of

delay times 77, 75, 73. Note that the non-linear signals are orders of magnitude smaller
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than the linear difference signals. Fourier transforming the action signals along the two
coherence times yields a 2D action landscape in terms of frequencies or, equivalently, en-
ergies.

3.2 Lindbladian Action Spectroscopy

In order to model 2D action spectroscopy method we follow the technique used by Damtie
et al. [87]. As a toy model we use model a of Paper I, see Fig 3.3(a). The energies of this
model, 1.46eV and 1.55 €V, are similar to the excitation energies of the inner and outer
rings, respectively, of the light harvesting bacteriochlorophylls in purple bacteria [90].

The effective Hamiltonian is,

Hop = Ho+ H/(z), Hy=_ Eala;, (3.1)

where H) is the internal Hamiltonian, E; the energy of the 7th level and 4; the annihilation
operator. The interaction Hamiltonian is,

Hi(t)=—p-E(), p= Zi‘kl(”zﬂl+ a}rak) , (3.2)
k>1

where  is the electric dipole operator with non-zero elements defined in Fig 3.3(a) and E(#)
the electric field vector. The light is modelled as a series of trains of four pulses with energy

fww, for the m’th train ,

4
EN() =3 "E"(), (3.3)
=1

where the jth pulse is modulated with frequency Q; and contained within a Gaussian en-
velope function,

E](.m)(t) :Ef);”) exp cos [w(t— T, — mT) + 2zQm1] |

T

— T — mT\?
_4“n2<f77”2>

(3.4)

7 is the pulse width, 7 the time from beginning of one train to the beginning of the next,

and
j—1
T=> T, (.5)
k=0

the relative pulse delay time, i.e. the centre of the j'th pulse relative to the start of the train.

Finally, Eg;”) scales the electric field strength, they are adjusted such that #£y = 8 meV for
all pulses and all non-zero dipole elements.
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Figure 3.3: (a) Two-molecule system considered in Paper |, Model a. Dashed arrows indicate relaxation operators and dotted
lines dipole matrix elements for transitions in both directions. (b) The first 300 sampled population signals according
to (3.14) for the population of the first excited level |1) with coherence times 77 = 73 = 150 fs and no population
time 7, = 0. Next row shows the amplitudes of the Fourier components of the above time series in the vicinity of
the (c) rephasing frequency 300 kHz and (d) non-rephasing frequency 1300 kHz. Finally, the last row contains the
amplitudes for the entire landscape of coherences times for the (e) rephasing and (f) non-rephasing frequencies.

In Paper I we use light of energy w = 1.5 eV which is modulated at frequencies

Q; =51.4MHz,
Q, = 51.9MHz,
: (3.6)
Q; = 54.2 MHz,
Q4 = 55.0 MHz.
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The modulation frequencies are similar to the driving frequencies of the acousto-optic mod-
ulators in typical experiments [6,80]. As mentioned above, the linear pairwise combination
frequencies between the four waves can be regarded as a pump-probe with modulating fre-
quencies,

Qz] =500 kHZ,

Qus = 800 kHz . 6.7)

From this we determine the rephasing Q43 — Q; = 300kHz and non-rephasing fre-
quencies Q43 + Qz1 = 1300 kHz as the lowest order of non-linear combinations of the
modulation frequencies. Further, the intertrain delay is set to 7= 14 ns, the centre of the
first pulse relative to the beginning of the train 75 = 20 fs and the widths of the pulses are
settoT = 10fs.

We further include two types of Lindblad jump operators. The first type are the dephasing
operators,

iieph = d:'rdb i=0,1,2,3, (3.8)
with a common dephasing timescale 7gepn = 40 fs corresponding to the strength I'gepn =
h/Taeph = 16 meV. And the second are the relaxation operators with respective timescales,

Lielzﬂgﬂla T10 = 1HS,
l’fcl = tl11-612, T = 100 fS,
R : (3.9)
Loy = aza4, T4 = 1ns,
Lfel = 41457 Ts4 = 1001s.

Here relaxation corresponds to measurable radiative processes, e.g. fluorescence or pho-
tocurrent. The time evolution can now be solved numerically according to the Lindblad
master equation,

hp() = —ilHo + Hi(2), p(9)] + > T [Ljp(t)L}L - % {L}L]-po) + p(t)L}Lj}] . (3.10)
j

3.3 Action Detection and Analysis

The purpose of spectroscopy is to analyse the action signals from the sample after exposure
to light. We consider two types of action signals. The first are relaxation signals which are
accessible during an experiment such as fluorescence or photocurrent. These are assumed
proportional to the relaxation rates,

290 o Rylp(9)] = T [Lp()Ly] .00
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another type of action signal is the population of level |7),

s o< (i p(#) [i) = pai - (3.12)

Unlike the relaxation signals the population signals are not directly accessible in a real exper-
iment. However, we have assumed incoherent relaxation processes and thus the relaxation
is proportional to the population of the associated state,

act

7)) o si(2) (3.13)
Hence, up to a scale, one signal acts as a proxy for the other and the Fourier components
are likewise identical. In the following we will consider the signal from the population of
the first excited level py;(2).

We sample the signal at the end of the last pulse for each train, that is from time z,, =
mT + T+ %7’. For the 7/’th train the collected signal is

1

tmt+t
Sm = t/ dtpll(t) ) (3-14)
tV/l

where t is the acquisition time. For the population we average over the acquisition time in
order to estimate the average population immediately after a pulse train and set the time
to t = 50 fs. For the relaxation signals we are rather interested in the accumulated signals
and thus would not include the averaging factor 1/t. Likewise, the acquisition time for
the relaxation rates are increased in an attempt to estimate the full relaxation. Every train

is simulated for a time window of 4 ps giving a considerably larger acquisition time of
el = 4ps — T; — %7’.

Collecting the signals we obtain a discrete time series {s,,} with time steps of the intertrain
delay times 7" = 14 ns, i.e. the time from the beginning of one train to the beginning of
the next. The intertrain delay time is so big that we assume the molecule has relaxed to
the ground state at the beginning of every simulated train. The total time series is collected
over N = 5000 steps for a total simulated time of N7 = 70 ps. In the specific case of
coherence times 77 = 73 = 150 fs and zero population time 75 = 0 the first 500 steps of
the time series are provided in Fig 3.3(b) where we see how the populations oscillate with
different trains due to the modulations Q;.

In order to continue our analysis we need to decompose the time series to its spectral com-
ponents via the discrete Fourier transform. For a time series s,, with /V steps the discrete
Fourier transform at frequency # is defined,

N—1

Fls|(k) = Zsme_i%mk. (3.15)

m=0
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Figure 3.4: Real part of the sum of spectra from populations p;; and p44 in the model of Fig 3.3(a).

Continuing with our example case of 77 = 73 = 150fs and 7, = 0 the amplitudes of
the Fourier components around the rephasing and non-rephasing frequencies are provided
in Fig 3.3(c-d). We see that the non-linear combination frequencies have significant con-
tributions compared to other frequencies.

Repeating the above procedure for varying coherence times 77, 73 € {0, 10,...,300}fs
we obtain a two dimensional description of the dependence of the spectral components on
the coherence times. The spectral amplitudes at the rephasing and non-rephasing frequen-
cies for p;; are provided in Fig 3.3 (e-f).

Through the first round of Fourier transform in the train-times we have isolated the signals
stemming from the pump and probe combination of frequencies. However, in order to
extract useful information about the underlying system we must perform a second Fourier
transform over the delay time domain on the signals of Figs 3.3(e-f) and obtain the re-
phasing and non-rephasing spectra for the population signal. The full procedure is rather
technical, see §4.3.1 of Ref. [4]. An important consideration is that the two spectra contain
both absorptive and dispersive contributions. The dispersive contributions broaden the
signals which can be detrimental when investigating systems with states close in energy.
However, a convenient feature of the rephasing and non-rephasing signals is that the dis-
persive contributions from each of the respective signals cancel in the real part of the sum
of the two spectra. Hence, a common approach in 2D spectroscopy is to study the real part
of the sum of the two spectra rather than each one separately.

The real part of the rephasing and non-rephasing for sum of spectra of populations in
p11 and p4y is shown in Fig 3.4. The only peaks in the spectrum are the two along the
diagonal, these correspond to the populations p1; and ps44 in the lower left and upper
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right, respectively. The axes indicate the spectroscopic wavenumber of the photons relative
to that of the incoming light, with an energy of 1.5eV the wavenumber is 4, = 1.2 X
10%cm™!. Note that the spectroscopic wavenumber is defined as the inverse wavelength
% =  omitting a factor of 27 otherwise common in physics. Here, the distance in wave-

1

number along a single axis between the diagonal peaks, A# = 700cm™", corresponds

approximately to the distance in energy between the two singly excited states,
AE = 27zheAk = 0.09€V , (3.16)

where ¢ is the speed of light. The spectrum has no off-diagonal peaks as the two popula-
tions belong to separate, non-interacting molecules. In the next section we will consider
what patterns emerge when the molecules are allowed to interact and how to distinguish
“unwanted” mixing patterns from the others.

3.4 Differentiating Non-Linear Contributions (Paper I)

In Paper I we studied and compared the spectra from the two model systems of Fig 3.5(a-
b). From those spectra we sought to determine a method of differentiating between rrue
non-linear signals and signals due to non-linear incoberent mixing of excited states.

In incoherent spectroscopic experiments the signals are recorded over long time scales com-
pared to the fast dynamics of the system. Hence, other incoherent population mixing phe-
nomena can contribute to the recorded signals at the exact same non-linear combination
frequencies. An example of non-linear incoherent mixing is possible in model (a) where
exciton-exciton annihilation is a possibility. In exciton-exciton annihilation a population
in |1) transfers its energy to a population in |4) which is then excited to |5) while |1) is an-
nihilated, or vice versa. The interaction channel responsible for this process is not included
in our toy model but we can define a proxy signal from the two contributing populations,

Sx = P11 X P44, (317)

which provides the spectral properties of the exciton-exciton annihilation. As the popula-
tions in |1) and |4) are modulated at the linear combination frequencies Q5 and Q43 the
transferred exciton in |5) is modulating at the non-linear rephasing and non-rephasing fre-
quencies Q_ and Q. The converse signals are the true non-linear signals which originate
from the interaction between the sequence of four laser pulses and the sample.

In Fig 3.5(c-d) we compare the incoherent mixing proxy signal S, with the population signal
from p1; of model (b). As model (b) only accommodates a single exciton this cannot exhibit
exciton-exciton annihilation. Hence, we interpret the population signal from model (b) as
the true non-linear signal, which thus provides a reference for S;. Comparing Fig 3.5(c-d)
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Diagrams for the two model systems of Paper |. Model (a) is a two-molecule system and (b) the equivalent four-level

system. Dashed arrows indicate relaxation operators and dotted lines dipole matrix elements for transitions in both
directions. Next, sum of real part of signals at rephasing and non-rephasing non-linear combination frequencies: (c)
combined signals S, = p11 X pa4 for exciton-exciton annihilation of model (a), and (d) true non-linear signal from
population in state |1) of model (b). Figures are taken from Paper I.

we see that the spectra have opposite sign — the signal of S, is phase shifted by 7z from

the true non-linear signal. Further, the relative size differences of the diagonal and off-

diagonal peaks in the true non-linear signal compared to S, show that if these have a similar
amplitude, for instance if the quantum yield of S, is an order of magnitude larger than that
of p11, the combined spectra will exhibit dominant diagonal peaks and possibly weak oft-

diagonal peaks with opposite sign. Hence, we expect the incoherent mixing signal to be

negligible in systems with similar quantum yields and distinguishable when comparing the

signs of the diagonal and off-diagonal in systems of markedly different quantum yields.
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3.5 Summary and Outlook

In this chapter we have considered the time-dependent interaction between a molecular sys-
tem and classical light with modulated fields. The relevant spectroscopic pathways and their
relation with the observed spectra have been introduced. Through the model of Fikeraddis
et al. we have seen how to fully model a spectroscopic experiment on a molecular sys-
tem. In Paper I this enabled us to construct two different model systems with and without
additional incoherent mixing pathways which might affect the observed spectra. By com-
paring these two model systems we uncovered qualitatively different features between the
“true” non-linear spectra and those due to incoherent mixing. These features include dif-
ferent signs of the real part of the signal and different strength patterns between diagonal
population peaks and off-diagonal correlation peaks.
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Chapter 4

Electron Dynamics with Higher
Order Coulomb Scattering

In this chapter we introduce the second subject of this thesis, electron dynamics with higher
order Coulomb scattering in hot-carrier solar cells. While light from our sun contains a
broad spectrum of energies, conventional solar cells are limited to only absorbing photons
above a certain fixed energy, the bandgap of the material. The absorbed photon generates
an exciton, an electron-hole pair, which can be extracted to yield the bandgap energy as
useful work and the excess energy is wasted as heat [91, 92]. The number of excitons we
can generate per absorbed photon is denoted the guantum efficiency, in conventional solar
cells the quantum efficiency cannot go above unity. Furthermore, the bounded quantum
efficiency entails a trade-off: increasing the bandgap energy increases the useful energy per
absorbed photon, yet, decreases the fraction of photons that are available for absorption.
In the limit of a large bandgap we can absorb no photons while in the opposite limit of
vanishing bandgap we obtain no work from any absorbed photon. From this Shockley &
Queisser derived the ultimate efficiency limit of 44% for conventional solar cells at a bandgap
of 1.3 €V, this is close to the 1.1 eV of silicon [11]. Additionally, they showed that other
physical mechanisms, such as radiative recombination, reduce the efficiency limit further
down below 34%.

Possible designs that circumvent the ultimate efficiency limit are hot-carrier solar cells [12—
14] and multiple exciton generation devices [93—97] with quantum efficiencies above unity.
These involve rearranging the distribution of energy such that the excess energy is used
to bring the quantum efliciency above unity, thereby reducing heat waste. A promising
structure for hot-carrier solar cells are nanowire quantum dots. The restricted dimensions
of the dot slow down thermalization with the lattice [98-103] reducing energy loss [104-107]
while nanowires exhibit tunable photoabsorption above their bulk counterparts [108—113].

37



However, in constrained systems like quantum dots the confinement of the electronic wave
functions restrict the possibility of Auger processes between the carriers which increases the
time scales of cooling [95, 114]. As Auger processes are caused by Coulomb scattering a
description of excited carriers must include the Coulomb interaction.

In this chapter we will omit a description of the holes and only focus on the dynamics
of electrons in the conduction band. Section 4.1 determines the confinement levels of a
nanowire quantum dot solar cell. Next, § 4.2 determines the electron-electron interaction
and the question of thermalization, while § 4.3 constructs the jump operators in the PER-
Lind scheme and considers the entropy production under the Lindblad master equation.
Finally, § 4.4 shows how Paper II quantifies the higher order Coulomb scattering.

4.1 Confinement States and Intra-Band Interactions

We model the nanowire as an InAs-InP cylinder with axial heterostructure, see Fig 4.1 (a).
Heterostructure nanowires made from InAs and InP have been used as solar cell devices in
experiments [115, 116]. We assume the conduction band offset between InAs and InP to be
Vo = 700 meV, this has a size similar to the observed discontinuity [117-119]. The electrons
in the InAs element of the heterostructure are thus approximately confined in a cylindrical
well with finite potential wall of height Vj. This allows us to construct confinement states, or
envelope states, which reduce the intra-band dynamics to that of particles in heterostructure
confinement states. Let the length of the cylindrical well be Z and its radius R. In cylindrical
coordinates, r = (z, 7, ), axial height, radial distance and angle, respectively, the potential
and effective masses of the electrons are

1 1
Yr) = { 0, |z <3Landr<R m(r) = {mInAs, lz| < 5Landr <R ()

Vo, otherwise MInp, otherwise

where the effective masses of conduction band electrons in bulk InAs and InP are my,as =
0.023m, [120] and mp = 0.073m, [121] respectively, and s, is the free electron mass.
From the potential and effective masses of the conductions band electrons we are able to
write the time-independent Schédinger equation [27] for the confined particles,

2
STt |t = ), 42)
2 m(r)
where V is the nabla operator and we have assumed that the eigenstates can be decom-
posed into an axial and lateral wave function, ¥ (r) = Yaxial (2)V1ateral (7, ¢). Due to the
discontinuous structure of the effective mass and potential above we obtain two solutions,
for the InAs and InP segments respectively, in both the axial and lateral case. To enforce a
physically meaningful description we use the effective mass method [122] and require that
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Figure 4.1: (a) Schematics of InAs/InP cylindrical nanowire with axial heterostructure. Next, components of confinement states

in the InAs/InP nanowire quantum dot of size L = 8 nm and R = 8 nm. (b) Axial amplitude, 2A(z) and (c) radial
amplitude £(r, ¢ = 0) for three lowest confinement levels with » = 1. The vertical black dotted lines represent
the boundary of the dot. (d) Confinement levels of the dot, even single particle levels indicate electrons with spin
up and odd down.

1 and its associated particle current is conserved at the interface. Let rpyx indicate an
interface point approached from material InX,

Vip(r)|. - (4.3)

lim — Vi(r)|., = lim

r'—rip MnP ' —=TimAs MInAs
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The bound solutions of the axial system are those of the archetypical finite well [123] with

even and odd eigensolutions, we assign the quantum number » = 1,2, ... to the 5’th

2£1th if odd. The lateral equation yields an angular phase e™°? with

solution if even, and %5
angular quantization p = 0, 1,2, ... and corresponding Bessel functions /,(x,7) of order

> inside the well together with irregular modified Bessel function of the second kind outside

/out

solution of transcendental equation associated with the lateral Schrédinger equation where

the well, K[,,(/iout 7). The wavenumbers Ko

o are the wave numbers assigned to the 72’th

m=1,2,...

In Paper I we consider a nanowire quantum dot with a radius of R = 8 nm and length
L = 8 nm, this is smaller than typical systems in experiments, however, this yields a system
of fewer eigenstates and is thus more computationally feasible. The two axial eigenstates
and the three lowest lateral eigenstates are shown in Fig 4.1(b,c). Combining the axial and
lateral eigensolutions we obtain the 11 spatial confinement levels, see Fig 4.1(d). The spatial
levels are spin-degenerate, with spin up |x4) for even levels and down |x ) for odd levels.

4.2 FElectron-Electron Interactions and Thermalization

If more than one electron is present in the quantum dot, they will experience Coulomb
repulsion between each other. In second quantization we include Coulomb interaction in
terms of the elements,

62

4reey

/ drdr'w:”(rw:(r')jﬂw’)wz(r), (4.4)

v

Vot = Xl X2) (Xl X

which describe the strength of an interaction where electrons originally in levels / and 4
interact, are annihilated, and recreated at levels 7 and 7 respectively. We solved the in-
tegrals using Monte Carlo integration with importance sampling according to the VEGAS
algorithm [124, 125] as implemented in the GNU Scientific Library [126].

The three classes of Coulomb elements are direct elements V., orbital exchange V.,
and indirect elements V,,,,;; where (m, n) # ([, k). From the Coulomb elements it appears
that total angular quantization must be conserved,

ankl X 5pm+pn,p/e+p;a (45)

where 9§ is the Kronecker delta and p; indicates the angular quantization of state 7. This is
due to the rotational symmetry of our model.

Having determined both the single particle confinement energies and the electron-electron
interaction according to our model we can construct the system Hamiltonian as the sum
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of the single particle Hamiltonian and the electron-electron (ee) interaction term,

1
H=Hy+ H, = ZE,ﬂjai + 5 Z an/dﬂinﬂlﬂkﬂl, (4.6)
i mnkl

where the factor of % in the Coulomb term takes into account the double counting, V., =
Vnmlk-

As an example of unitary (isolated) time evolution in the dot we consider the test state
0,3, 4,21) = a;ala;rag |0) and determine the unitary time evolution of the probability
to measure electrons in levels 20 and 21, and 6-11, see Fig 4.2(a), which exhibits quasiperiodic
fluctuations.

From the unitary dynamics of Fig 4.2(a) we see no sign of thermalization of the occupation
numbers. We touched upon the question of thermalization in § 2.3 where we mentioned
the connection between decoherence in open systems and classical behaviour. However,
large isolated quantum systems are also capable of exhibiting behaviour in accordance with
classical thermodynamics. One mechanism for this is the Eigenstate Thermalization Hy-
pothesis (ETH) [127-130] first proposed by Deutsch and Srednicki independently of each
other [131, 132]. According to ETH in a sufficiently large system the expectation value of
an operator on an energy eigenstate approaches the thermal ensemble average, for an en-
semble whose average energy is the eigenenergy. That is, an eigenstate of a sufficiently large
quantum system implicitly contains the information of an associated thermal state.

With two particles of spin up to be distributed among 11 possible confinement levels, sim-
ilarly for spin down, we expect a total of 3025 many-particle states. Yet, in spite of the large
dimensionality we observe no thermalization of the occupation numbers. The absence of
thermalization is due to rotational symmetry of the system. The Coulomb elements van-
ish for transitions that do not conserve total p-quantum number, see Eq. (4.5). Taking
p-conservation into account restricts the time evolution to a Hilbert space of size 246 and
ETH becomes less likely to be applicable. In order to achieve thermalization and have the
hot-carrier redistribute the carrier energies we shift from an isolated to open system in the
next section.

4.3 Lindblad Jump Operators and Entropy

Having constructed the quantum dot Hamiltonian we now proceed to the Lindblad jump
operators in order to consider open quantum dynamics. We will introduce the dephasing
and extraction operators, the former of which we discussed in § 2.3. Furthermore, in § 2.2
we presented the PERLind approach to construct jump operators that resolve information
about both position and energy in the interaction between system and baths. In this section
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Figure 4.2: (a) Tracking of occupation of confinement levels in nanowire quantum dot during unitary time evolution of test
state |0, 3, 4, 21). (b) Thermalization under PERLind scheme. (c) Energy resolving dephasing functions in PERLind
scheme for coupling to phononbath at temperature 7"= 300 K, and the energy non-resolved function of the local
approach. (d) The von Neumann entropy during time evolution of the test state |0, 3, 4, 21) with dephasing defined
according to PERLind and the local approach. (e) Eigenspectrum of the Hamiltonian (vertical lines), the group of 20
eigenenergies accessible to the initial state are indicated by being taller. The Debye energy for InP is indicated by the

vertical line.

we will discuss the two jump operators, their respective PERLind transformations and how

to understand dephasing thermodynamically.
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We first consider the dephasing operator, for the o’th confinement level this reads,

o _ t t
deph = 420 T Ay 12041 - (4.7)

The dephasing strength is set at I'qep, = 6 meV for all levels corresponding to a dephasing
rate of i/T'qeph = 0.1 ps, this is a typical time scale for dephasing processes [133]. The
operator above is formulated in the local approach. To further resolve energetic information
about the transitions we assume dephasing to be due to coupling with a bath of phonons
at temperature 7' = 300 K in the InP structure. The energy resolving function is defined
heuristically as,

1

E
f(‘ieph(E) = kBiT”B(E/kBT)@(DInP - |E|)7 nB(x) = o _ 1’ (4-8)

which is a product of the Bose-Einstein distribution, 73, and the factor E/kp T reflecting the
density of states and coupling strength at energy E. The Heaviside term excludes transitions
with energy beyond the Debye energy of InP, Dr,p = 37 meV [134]. Note that the energy
resolving function (4.8) also includes spontaneous emission for £ < 0. Including dephasing
in the time evolution we find that the system departs from unitary evolution and thermalizes
to a steady state, see Fig 4.2(b).

In the PERLind formalism the local approach corresponds to using the energy non-resolving
function f; = 1, see Fig 4.2(c). To compare the two approaches we determine von Neu-
mann entropies during time evolution, see Fig 4.2(d). The calculations are done in a basis of
246 states with total angular number p = 3 from the initial state |1, 3, 4, 21). The entropy
of the PERLind system quickly saturates at an entropy around Syn =~ 2. This value can
be understood by considering the eigenenergies of the Hamiltonian, Fig 4.2(e). The initial
state has an energy of 1.579 €V, we assume that only eigenstates close to this energy are
necessary to form the initial state. Since some of the gaps of the spectrum are larger than
the Debye energy PERLind dephasing only connects to a subgroup of eigenstates indicated
in the spectrum of Fig 4.2(e). In a classical picture we assume this group of eigenstates to
be populated according to the Boltzmann distribution at room temperature, the classical
entropy of this distribution yields S; = — ), p;log p; = 2.5. The discrepancy between
our classical estimate and the observed entropy might be due to the unitary contribution of
the Hamiltonian, this regenerates quantum coherence thereby reducing the disorder below
our classical estimate.

While the system entropy in the PERLind scheme saturates around 2, the local scheme
converges above 4.7, see Fig 4.2(d). For comparison, in a basis of 246 levels the classical en-
tropy of the maximally disordered state is Sg;** = log 246 = 5.5, not far above the entropy
observed for the system under local dephasing. Similarly to PERLind dephasing the dis-
crepancy between the observed entropy and the maximally disordered state is possibly due
to regenerated coherences from the Hamiltonian. Hence, dephasing in the local approach
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corresponds to connecting the quantum system to a bath at infinite temperature which is
consistent with the energy non-resolving quality of the local approach, cf. Fig 4.2(c).

Next, we consider the extraction operators. Extracting from state 7,

i 1 E, axial

extr — 4is Vi

= . (4.9)
L\ 2minas

The strength of this process is determined using a semi-classical approximating and assum-
ing that the electrons are moving back and forth along the axial direction with a kinetic
energy corresponding to the axial energy. This yields the attempt frequencies for extraction
Vpe1 = 72ps ' and v,—, = 158 ps—! [13].

Similarly to the dephasing operator we seek to resolve the extraction operator according
to the energy of the electron. We interpret the extraction of the electrons as tunnelling
through a heterostructure barrier with multiple wells along the axis of the nanowire. The
transmission amplitude can be calculated according to Ref. [136] where we include the ef-
fective mass approximation. Considering a tunnelling process in the direction of increasing
z, we define the effective mass »2; and wave number

\/ 2mz-(Ee — I/z)

b= (4.10)

either to the left L or right R of an interface at position z. Note that we allow the wave
number to be imaginary in the case of £, < Vj. From this we can define a propagation
matrix at an interface,

M(z) ! etz 0 mpkr + mrkr  mpkp — kymg] [ 0 (4.11)

z) = —— ) . -
27}’!ka 0 kaRZ mLkR — kLmR mLkR + kLWlR 0 e—lklz 4

For the combined propagation through a series of 7 interfaces at positions 21 < zp < ... <

z, we obtain the transmission coefficient,
lepmi - M1 Moy — Ny My,
kym,’ My 7

I(E,) = |7] M = M(z,)M(zp—1) - - - M(z1) ,

(4.12)
where m; and m,, are the effective electron masses of the leads before and after tunnelling,
respectively, likewise for the wave number.

4.4 Higher Order Coulomb Interactions (Paper II)

As we saw in the previous section the time evolution of the system departs from unitary
evolution when we include dephasing which allows the system to thermalize by connect-
ing it to a thermal reservoir. We now consider the results of Paper II which studied the
thermalization of hot-carriers and quantify the effect of Coulomb scattering.
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In Paper II we study the time evolution and extraction from the two initial states |4) =
|0,3,4,21) and |B) = |0,2,3,21). During thermalization the occupation of the hot-
carrier level 20-21 is transferred to lower levels. We considered the thermalization of |A)
when introducing dephasing in Fig 4.2(b). By assuming exponential convergence towards
the steady state we extract the thermalization time scale 0.38 ps for |4). For | B) the system
thermalizes on a time scale of 20-25 ps depending on the specific levels under consideration.

For an Auger process from state 7 to fwith the Coulomb element V' and detuning AE =
Er— E; the scattering rate can be approximated according to Fermi’s golden rule,

A=Y an, sap-Lt T (4.13)
7= ~ = — — , .
h r 27 AE> 4+ T2 /4 +1

where 65 (A) is Lorentzian broadening under the dephasing of strength [ = Jaephl'deph-

To estimate the effective rate we include the multiplicity of states similar to the initial and
final states. During unitary evolution of |A) a strong beating occurs between the states,

i: {|07374721> ? ‘1737472()) ) ’07375720> ’ |17274721> ? ‘0?2?5721> Y ’1727 5720>} )

(4.14)
with multiplicity V; = 6. During thermalization these connect to the set of final states,

f=1{[0,3,8,9)11,2,8,9)}, (4.15)

with multiplicity N;j = 2 and IV, = 4 possible equivalent Auger processes connecting
i <> f. Formulating classical rate equations between these two sets and assuming an equal
probability distribution within each we find,

A N, N,
k# i\ p AE/kgT1Vp
*—E =A,, 16
< N f) lf( e Nf> (419

where the final equality is valid in the case of transitions with identical detuning and Cou-
lomb elements. The detuning is AE = 13.5meV, including charging energy, Fermi’s
golden rule provides 74 = 0.46ps, close to the value obtained from the numerical time
evolution. The discrepancy between the two estimates might stem from the thermalization
occuring on a time scale similar to the beating between different product states, which is
neglected in the classical rate equations.

Proceeding to |B) we first note that unlike |4) level 4 is not initially occupied. This causes
thermalization to be much slower for |B) as the path Vj 951 4 is no longer accessible to
|B). While related decay paths are possible, e.g. V4921, and Vi g5 3, they entail visiting
the states |2,3,4,9) and |0, 1,6,21) in transit. The energy detuning of these states are
AE = —54meV and AE = 43 meV above the Debye energy cut-off Di,p = 37 meV,
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yet, in conjunction we find AE = —14meV. While individually forbidden they become
allowed together as a second order process with rate,

N (2
A(z) Z <ﬁHff|m> <m’HL’€|Z> 2£6~(AE) ) (417)

Hf:|> E —E, hT

Similarly to |A) we consider a subset of the Hilbert space during thermalization with mul-
tiplicities V; = Nj = 2 for both the initial and final states,

i={]0,2,3,21),|1,2,3,20)}, §={|1,4,6,9),]0,5,7,8)}, (4.18)

and obtain 78

= 43 ps, a factor of two larger than the time scale for numerical time
evolution of the system as a whole. The above calculations only considered one subset of
the space of possible states that interact and share population during the time evolution.
Hence, the subset f must compete with states for population from the initial state. This

explains the faster thermalization process than our estimate.

We have found that the differences in thermalization time vary about two orders of mag-
nitude between the states |4) and |B). The difference in time scale significantly affects the
quantum efliciency of the states, where the surplus quantum efficiency, amount above unity,
can increase five-fold when comparing |A4) and |B). Due to the quick thermalization time
the hot-carrier in configuration A can redistribute its energy with the lower electrons before
it itself is extracted, which increases the quantum efficiency of the system. Conversely, in
configuration B, the long thermalization time scale entails that the hot-carrier is incapable
of redistributing a significant part of its surplus energy before extraction yielding a low
quantum efficiency gain.

4.5 Summary and Outlook

In this chapter we have seen how to model excited carriers in the conduction band of a
nanowire quantum dot. This could improve our understanding of how to engineer better
hot-carrier solar cells with increased quantum efficiency, as was the subject of Paper II. Dur-
ing the construction of the carrier dynamics we touched upon two different facets of how
the quantum world can become classical, the eigenstate thermalization hypothesis (ETH)
and dephasing by connection with a thermal bath. From studying thermalization by deph-
asing we also demonstrated the thermodynamic differences between the local and PERLind
approach. The lack of energy-resolution in the local approach proved to be equivalent to
connecting the system to a bath of infinitely high temperature due to which the system
approached a maximally disordered steady state of uniform distribution of probability re-
gardless of any energetic concerns. This is unlike the PERLind approach whose steady state
was only partially disordered due to explicit coupling with a finite temperature bath.
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In our discussion of ETH we noted how the conservation laws embedded in the system
drastically reduce the size of the Hilbert space and restricts the possibility of thermalization
in the isolated system. The most relevant conservation law is the conservation of total
angular quantum number from the rotational symmetry of the cylinder model. However,
the real world is messy and nano-structures are as well, hence, this assumption is unrealistic
and should be addressed. A fruitful addition to the model could be Random Matrix Theory
(RMT) which has been useful in the study of nuclear thermalization and quantum chaos
[137-140]. Rather than rigorously building the full Hamiltonian from a microscopic model
RMT assumes the matrix elements to be Gaussian distributed with system appropriate
mean and variance. This has already been used to describe scattering and quantum transport
in dots and nanowires [141, 142]. An RMT extension of the present basic model could
provide further insight on thermalization of hot-carriers in solar cells.

In addition to RMT other extensions of the present model are in order, a model of optical
interactions and valence band states. The initial states employed in this chapter assumed
that some incident light prior to the simulation had created excited states of electrons and
no description of holes. Here, an extended model with fully quantized light incident upon
a quantum dot, with a filled valence band and empty conduction band, would provide
a richer description of the distribution of different hot excitons and the thermalization
dynamics in such a mixed system.
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Chapter s

Heat Engines at the Quantum Scale

In this chapter we consider the third and final subject of this thesis, quantum heat engines
and quantum thermodynamics. Classical macroscopic thermodynamics often focuses on
equilibrium systems and the mean behaviour of systems in the steady-state. With the advent
of meso- and microscopic devices physicists and engineers are realizing strongly fluctuating
systems sometimes even with "weird” quantum statistical behaviour. Both the large fluctu-
ations and quantum-coherent effects provide new challenges to thermodynamic research.

One fundamental challenge is the problem of how to define work in quantum systems. In
a classical context measurements do not affect the system under consideration and work is
usually easy to define. Extending thermodynamics to quantum systems it seems reasonable
to impose three requirements onto any proposed definition of work [143]

(i) In a closed quantum system the expected energy change equals the expected work.
(ii) In the absence of quantum coherence the classical definition is recovered.

(iii) The definition describes a measurement of the system.

However, due to the nature of quantum mechanics no definition can simultaneously adhere
all three requirements [143]. For example, any measurement [(iii): v] that is consistent
with the classical limit [(ii): v"] necessarily disturbs the coherence of the system [(i): x].
As summarized in Ref. [18]: work is not an observable. In § 5.1 we consider this question
of how to define work and heat in open quantum systems and present two competing
definitions, the full and bare approaches. This is followed by § 5.2 where we compare
the two approaches in an archetypical quantum heat engine, the Scovil & Schulz-DuBois
three-level maser [15], and summarise the main result of Paper III.
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Figure 5.1: Ideal gas contained within a cylinder and pushing against a piston.

Another challenge is engineering precise nano-devices. Nanoscale systems are subject to
strong fluctuations [144,145] which can be reduced at the cost of increased entropy produc-
tion. In recent years there has been a surging interest in the 7hermodynamic Uncertainty
Relation (TUR) which quantifies the trade-off between precision and entropic cost and is
derived for classical systems [146-152]. In § 5.3 we present the TUR and its extension to
open quantum systems under continuous measurements. Finally, in § 5.4 we investigate
the relationship between quantum coherence and TUR, and summarize the main result of
Paper IV. Throughout this chapter we will set 4 = kg = 1 for notational brevity.

s.1  Work, Heat and Entropy

When studying the thermodynamics of a quantum engine, an immediate question lends
itself: how do we determine work and heat? As argued in Ref. [18]: unlike total energy,
work does not characterize a system but rather a process, hence, we cannot model work as
an observable with an associated quantum operator. How to define and measure work and
heat in the quantum regime remains an issue of active discussion and development [19—21].
In § 5.1.1 we illustrate the basic idea behind the classical definitions of work and heat in an
ideal gas. Next, in § 5.1.2 we introduce two common approaches to defining work and heat
in open quantum systems, these are termed the fu// and bare approaches. Finally, we will
build upon the von Neumann entropy of Eq. (2.16) and consider the entropy production
rate for the entire setup of a quantum system connected to heat reservoirs.
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s.1.1  Classical Thermodynamics

Before we consider two possible definitions of work and heat in open quantum systems it
is instructive to recount the classical definitions. The textbook example of classical thermo-
dynamics is an ideal gas exchanging energy with its environment, see Fig 5.1. Let the gas
have an initial volume V;, due to some process it contracts or expands to a final volume Vi
During this process the internal energy of the gas has changed by an amount AE. Per the
first law of thermodynamics the energy change of the gas during some process is given as,

AE=Q+ W, (5.0)

where Q is the heat and W the work performed on the gas (positive when entering the gas).
Work is energy exchanged due to exertion of force over a distance, in this case,

4
W= — / AV, (5.2)
i
where p is the pressure of the gas along the trajectory. In other words, work is movement
against external constraints. The remaining contribution to the energy exchange, heat, is
due to dissipative effects, such as a temperature gradient, rather than macroscopic forces.
The connection between heat and dissipation is contained within the second law of ther-

Q
T (5.3)

where AS is the entropy increase due to the heat being transferred into a system of temper-
ature 7.

modynamics [153]

AS >

s.1.2  Quantum Thermodynamics

Consider an open quantum system exchanging energy with its environment. The full
Hamiltonian is written as

H(t) = Hy+ V1), (5-4)

where Hj denotes the constant bare Hamiltonian of the system itself and V(#) an external
interaction field that drives the system. We write the Lindblad master equation for the
system,

p = —i[H(#), p|] + Z Lap, (5-5)

where £, denotes the dissipation due to bath . The full energy of the system is £ =
Tr[Hp| with time derivative.

E = Tr[Hp)| + Te[Hp] = Tx[Vp] + > Tr[HLap). (5.6)
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"The first term Tr[ Vp] represents action against external constraints while the terms Tr[HL 0]
are due to dissipation. This mirrors the classical understanding of work and heat discussed
in § s..1. Following Refs. [154-156] we define the two quantum contributions,

P=W="Tr[Vp], Qu=Tr[HLup|, (5.7)

where P is the power and Q,, heat exchanged with bath «v. This formulation of work and
heat is labelled fu// as it originates from the full energy expectation value.

A later, alternative definition [16, 66] embarks from the bare system energy, i.e. excluding
the interaction energy, £y = Tr[Hyp] with time derivative,

Ey = Tr[Hop] = —iTx[Ho[H, p]] + > Tr[HoLap] . (5.8)

Similarly to the full definition we compare with our classical understanding of work and

heat, § 5.1.1, and identify,

Py = —iTx[p|Ho, VII, Qo= Tr[HoLap]. (5.9)

As these definitions are based on the bare energy of the system, they are labelled as bare.

In the introduction of this chapter we listed three desirable properties of the definition of
work of which maximally two can be fulfilled. The full (bare) definition, W = Tr [H(O) ol,
describes an infinitesimal two-projective-energy-measurements scheme [18,157] which trivi-
ally satisfies the requirements (ii) and (iii). However, the initial measurement would disturb
any initial coherence in the system, changing the initial state into a decohered state and thus
break (i). Of course, this scheme would correctly determine the work for this decohered
state which is, nevertheless, different from the original state.

Furthermore, note that following Refs. [16, 155, 156] we assumed that the quantum system
exchanges energy with its environment but no particles, similarly to the ideal gas reference.
Due to the chemical potential of the respective baths the transfer of particles would intro-
duce a work component in the energy current from the reservoirs [38]. However, a direct
application of the full or bare definition above would erroneously account this additional
component as heat, which should be corrected for.

Having determined the work and heat of a thermodynamic process we are interested in
the entropy production rate. In a microscopic picture one can determine the entropy of a
system from the von Neumann entropy Syn = —Tr[plog p|. Extending the microscopic
picture to open systems we obtain the entropy production rate per Clausius’ theorem [158],

=5 =YL Qu=THLarl, (.10
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Figure 5.2: SSDB heat engine consisting of a three-level atom where the transition to the upper « level connects to reservoir «
and similarly for the lower /level and bath / the coupling strength is v, for £ € {u, /}. Further, the atom is subject
to an external driving field with strength e and detuning A.

where Q is the rate of heat transfer out of bath « in either the full or bare approach, and 7,
the temperature of bath . For a system in the Markovian regime the entropy production
is non-negative,

c>0, (5.1x)

in accordance with the second law of thermodynamics. As we will see next, there is am-
biguity in how to define the entropy production with different implications for quantum
mechanics and the second law of thermodynamics.

5.2 The Scovil & Schulz-DuBois Heat Engine (Paper III)

In the previous section we introduced two competing approaches on how to determine the
rate of work and heat transfer in open quantum systems. Here we demonstrate the applic-
ation of these definitions in an archetypical quantum heat engine, the Scovil & Schulz-
DuBois (SSDB) three-level maser [15]. We do this by retracing the analysis of Ref. [17] and
discuss the implications of how to interpret the energy flows in either approach.

s.2.1 Energy Flows in the SSDB Maser

Consider the SSDB heat engine of Fig 5.2 where a ground state g connects to the upper
u and lower / lasing levels via interaction with bosonic reservoirs £ € {u, [} of respective
strengths 7y, and populations 7. This engine achieves population inversion, a prerequisite
for lasing and net output, when the temperature in bath # is sufficiently hot such that
ny, > ny. Let 0j; = |i) (j| define transition elements. The system Hamiltonian is,

H(t) = Hy + V(2), (5.12)
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where Hy = w0y + wy,0,, is the bare Hamiltonian and V(¢) = e(e“#o,, + e g ,))
the external driving field. The energy scale is shifted such that w, = 0. The driving field is
allowed to be off resonance with detuning A = w; — (w, — wy). The full Lindblad master
equation becomes,

p = —i[H(2),p] + Lup + Lip, (5.13)
with the dissipator due to bath ¢,

ﬁfp = 'YZ”ZDaggP + ’Yé(l + nZ)DO'gepv

1 (5.14)
Dyp = opol — E{O'po +poto}.

Reference [17] solved this master equation for the steady state pss = 0 and determined the
steady state power and heat current in the bare formalism,

Py = —R,/(w, —wy),
QOu — +Ru—>lwu7 (515)
Qo= — R,y

where R,_,; is the average rate of transitions from level « to /,

A(Yus Vis 1y 11, €) (0 — )

R,y =26 Tm[(l] p* |u)] =
uol ‘ m[<‘p ’u>] F('}/u,’)/[,ﬂu,ﬂ[,ﬁ,A>

(5.16)

and A and F are positive constants, see Appendix A of Paper III. It follows that R,_,; has
the same sign as the thermodynamic driving 7, — 7;.

Conversely, we determine the full flows from the full Hamiltonian applying same steady
state, see Appendix C of Paper III,

P = LG5,
Qu - +Ru—>/wu 9 (517)
Q= —R, 1o,
with the effective energies,
~ Av,(1 4 n,) N Ay(1 + ny)

Wy = wy + Wy =w;— (5.18)

Y1+ 1) + 71+ )’ Y1+ m) + 71+ mp)

Comparing (5.15) and (5.17) we see the consequences of the different approaches. The bare
approach neglects interactions with the driving field when estimating the energy flow and
thus associates the energy of the level difference w, — w; with each photon. Conversely, the
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full approach includes the interaction with the driving field and predicts that the driving
field is enhanced or weakened with photons of the driving energy w,. To ensure conser-
vation of energy, P+ Q, + Q; = 0, the full heat currents thus involves correspondingly
shifted transition energies ;. For systems with finite detuning A # 0 these approaches
yield conflicting predictions. The full approach fits the physical picture that the quant-
ized monochromatic ac field must be enhanced (weakened) by emission (absorption) of
photons of the appropriate energy w,. However, a counter argument could be that per-
fect monochromaticity is impossible and a superposition of several frequencies is always
present, allowing for photons of the bare level difference energy w, — w;.

s.2.2 Positivity of Entropy Production (Paper I1I)

Above we considered the heat flow and power, another fundamental thermodynamic quant-
ity is entropy. Below we will consider the entropy production rate in the SSDB heat engine
and present the argument made in Ref. [17] concerning the second law of thermodynamics.
Building upon this we present the contribution of Paper III.

From the Bose-Einstein distribution the temperatures are,

o wWe
log (1 + n%)

Furthermore, at the steady state the system does not change, hence, Syx = 0. The entropy
production from the bare flows (s.15) yields,

1 1
00 = R, [IOg <1+”l> — log <1+”>] >0, (5.20)

with equality in the limit of vanishing thermodynamic driving 7, — #; = 0. For all possible

T, = (5.19)

parameters the entropy production defined from the bare heat flow is positive-definite in
accordance with the second law of thermodynamics.

Conversely, applying the full flows (5.17) directly in the entropy production rate yields,

Vol + m) T, + (1 4 m) T}

oL+ )+ (L ) 521)

Odirect = 00 — Ry /A

When the detuning is sufficiently large this entropy production becomes negative in viol-
ation of the second law of thermodynamics. In Ref. [17] this apparent violation was used
to argue for the strength of the bare power and heat flow for which oy is positive definite.

However, in Paper III we reconsider the full heat flows (5.17) and argue that the effective
energies must be taken seriously as the proper quanta of energy being exchanged between
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the system and baths. This interpretation further suggests the effective temperatures,

Tp=——. (5:22)

1
log <1 + 7@)

In the effective picture the entropy production rate becomes,

% Q

T, T

1 1
n 7y,

which is positive definite. Hence, in our re-interpretation of the heat flow and temperat-

g =

(5.23)

ures, the full definition is consistent with the second law of thermodynamics. Furthermore,
the full and bare definitions yield exact same quantitative predictions of the entropy pro-
duction.

s.3 Thermodynamic Uncertainty Relation

Hitherto, this chapter has been concerned with how to determine macroscopically familiar
quantities of the classical world, i.e. work, heat and entropy, in a quantum formalism.
However, unlike a car engine which can be considered to run at a constant speed, micro-
scopic processes are subject to large stochastic fluctuations [144, 145,159]. If the cost of the
engine is not a concern, then, theoretically, it is often easy to improve the engine precision.
For example, the relative fluctuations of a heat engine can usually be decreased by decreas-
ing the temperature of the cold bath. However, in the limit of vanishingly low temperature
in the cold bath the entropy production explodes; there is a trade-off between precision
and entropic cost.

In recent years there has been a growing interest in how to quantify the relation between
entropy and fluctuations in the stochastic thermodynamics of out-of-equilibrium systems.
One important result is the Zhermodynamic Uncertainty Relation (TUR) which quanti-
fies the trade-off between cost of operation and precision, i.e. a lower bound on the
product between entropy production and relative variance of the process [146-152]. The
conventional TUR was derived for classical systems with interactions satisfying the Markov
property and continuous time-independent driving that does not change sign under time-
reversal. It has been applied in biophysics [146, 148, 160, 161], heat transport [162] and
Brownian clocks [163], while experimental realizations of the TUR is an area of active
development [164-168]. Generalizations have been formulated to cover discrete or time-
dependent driving [163,169,170], underdamped Langevin dynamics [171-173], and the pres-
ence of measurement and feedback [159]. In addition to quantifying the cost-precision
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trade-off in thermodynamic processes, the TUR can be used to infer the entropy produc-
tion from fluctuations in experiments [149,164,174-176]. In'§ 5.3.1 we present the TUR and
in § 5.3.2 we discuss an extension to the quantum regime. Finally, in § 5.3.3 we demonstrate
how to evaluate the TUR in the SSDB maser both analytically and numerically.

5.3.1 Uncertainty in Classical Systems

Consider a classical stochastic heat engine and let it run for the time window 7 in which it
has produced an amount G, of an observable of interest, e.g. net work or integrated particle
current, and S; of entropy. From a large ensemble of these engines we can determine the

mean and variance per engine, (G,) and var(G,), respectively, as well as the average entropy
(S;). The finite time TUR reads [146, 149, 150],

0= ()0 2 2. (524)

We see how the TUR quantifies the trade-off between entropic cost and precision; it is

impossible to make the relative variance of the output arbitrarily small without also paying
the cost of a proportionally increased production of entropy.

Equation (5.24) is defined from the accumulated effect in finite time. However, in the
present thesis we will consider the steady state behaviour in the long time limit. Hence,
we reformulate the TUR into a differential version. Consider the differential mean and
variance, e.g. power or current, defined in the long time limit,

(G) = lim <G[>, var(G) = lim var(Gi) .

t—o0 f t—00 t

(5-25)

where the mean entropy production rate o = lim, ,+(S,)/# is defined similarly. Taking
the time derivative in the long time limit yields the differential TUR,

var(G) ) (5.26)

ST 7T

Finally, for some systems the entropy is proportional ¢ = kG and we can rewrite Q in a
convenient form,

var(o
Q= <U(> ) - KE, (5.27)
where we have introduced the Fano factor F = Va<rG(>G ) [77].



5.3.2 Uncertainty in Continuously Measured Quantum Systems

The TUR as presented above is derived for classical systems. In quantum systems the bound
is altered [167, 177-181] for instance due to particle exchange correlations [162, 177, 182]
or coherence [22—24]. A recent paper [180] suggests a quantum TUR for open quantum
systems evolving under continuous measurements by the environment, e.g. a Lindblad
master equation. In our notation the quantum TUR in differential form reads,

var(G) - H?(0)
(G2 T Y+0’

(5.28)

where //(0) is the scaling slope, T is the quantum analogue to dynamical activity and ¥
the quantum-coherent dynamics contribution, defined below.

We define the modified Hamiltonian and Lindblad jump operators
Hy=(14+0)H, Ly=V1+06L,, (5.29)

where 6 € R is a scaling parameter and v indexes the different jump operators L. Rescal-
ing the Hamiltonian and jump operators changes the speed of the system dynamics. Intro-
duce the scaling /(6) as the effect of scaling on the rate of an observable (G)g = h(0)(G).
In most cases, including this thesis, one finds #(6) = 1 + 6 and the scaling slope is unity
# (0) = 1. For an exception where » # 1 4 0 see Ref. [180].

Next, we define the quantum dynamical activity,

YT => ToTr[L Lap], (5.30)

where I, is the jump strength. We interpret Y as the average rate of jump events in the
system, analogously to the classical dynamical activity [183]. In classical Markovian sys-
tems the dynamical activity provides a loose bound on the uncertainty through the kinetic

v?é()f) > % (184, 185] which can, however, be violated in quantum

systems [180]. Hence, the kinetic relation is too tight for open quantum systems and must

uncertainty relation

be loosened due to the effect of quantum-coherent dynamics. The quantum coherent con-
tribution reads,

U = —4Tr (K1 LS Kap) + KL Ka[p]] (5.31)

where the superoperators K are given,

o
Kile] = —iHp+ 2> [LapLl, — LiLap]
(0%

(5.32)

o

Kalp] = +ipH+ 3 ) J[LapLl, — pLiLo],
«
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and L} is the subspace of L that is complementary to the steady-state density matrix,
with £ being the Moore-Penrose pseudo-inverse of the Liouvillian £. This is explicitly
presented in the supplement of Ref. [180]. With W the bound from the kinetic uncertainty
relation is loosened such that quantum systems with a Lindblad master equation adhere to
1t.

So far we have presented both a conventional (5.26) and quantum (5.28) version of TUR.
The conventional formulation of TUR directly quantifies the relation between the useful
property of the engine and to the penalty we seek to minimise, i.e. precision vs entropic
cost of operation. Compare this with the quantum TUR where the quantity T + ¥ does
not explicitly provide the entropic cost. Hence, while all quantum systems evolving under
the Lindblad master equation must adhere to quantum TUR it is still instructive to study
the quantum behaviour in terms of Q from the conventional TUR when analysing the
cost-benefit trade-off in microscopic heat engines. Rewriting Eq. (5.28) in terms of Q we
obtain (assuming /' (0) = 1),

o
> .
Q_T—i-\I/

This is the formulation of quantum TUR we will refer to for the remainder of this chapter.

(5.33)

Note that unlike its classical counterpart the quantum lower bound is parameter-dependent.

5.3.3 Uncertainty in the SSDB Maser

In § 5.2 we considered one form of the SSDB heat engine. For the sake of consistency
with § 5.4 and Paper IV we switch our attention to an alternative, yet similar, design, see
Fig 5.3(a). Here, the ground state below the lasing levels has been replaced by an excited
state x above, hence, the excitation and relaxation rates are interchanged 7y <> v¢(1+7ny).
Otherwise the Hamiltonian and Lindblad operators are formulated as presented in § 5.2.1.
Note that due to the internal reorganization this engine achieves population inversion when
the temperature of bath /is sufficiently hot such that #; > n,, cf. Fig 5.2 for which the
lasing condition is inverted. The three-level maser with the lasing-levels at the bottom is
actually the original formulation of the SSDB heat engine [15]. Here we demonstrate the
stochastic nature of the heat engine and determine Q from a Monte Carlo trajectory of the
system.

To determine Q for the SSDB heat engine we must quantify the average and variance of
power as well as the production of entropy. We first consider the full power, see § s5.2.1,
from which the power output is P = wyN, where NV is the net rate of emissions, and the
ratio of power becomes,

var(P) _ var(N)
P (N2

This ratio is identical for the bare power.

(5.34)
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Figure 5.3: (a) Original SSDB three-level maser where the lasing levels connect to an excited level above them rather than below,
cf. Fig 5.2. (b) Trajectories from an ensemble of 100 SSDB heat engines. Each diagonal line represents the cumulative
output from its respective heat engine, solid blue for each engine in the ensemble and solid black for the selected
engine. The two bottom rows of vertical lines indicate emission (upper row) and absorption (lower) events along the
selected trajectory. (c) Running mean estimate of particle rate according to the selected trajectory using MCWF (solid
line) and comparison with estimate from FCS (dashed). (d) Running estimate of the Fano factor from the selected
trajectory similarly to panel (c). For panels (b-d) the parameters are v, = 0.1, v, = 2, n; = 5, n, = 0.027, ¢ = 0.15
and A = 0.2. The MCWF implementation of the SSDB maser is described in Appendix C.

We consider the entropy next. Following a similar argument as § 5.2.2, yet keeping in mind
the reversed flow of energy between baths and system in the engine of Fig 5.3(a), the entropy

60



production rate is proportional to the emission rate,

1 1 .
o= [log (1—|—>—log <1+>]N> 0, (5.35)
ny ny

which is positive-definite as N has the same sign as 7; — n,,. Per (5.27) we obtain,

Q= [log (1—1—1> — log <1+1)]F, (5.36)
1y ny

which is independent of whether we employ the full or bare definition of work.

The mean rate of emissions and the Fano factor can be determined analytically using full
counting statistics (FCS), see § 2.4.1. Following FCS the Liouvillian supermatrix with
counting fields x, and x; for baths # and /, respectively, can be written,

_’Yu(nu + 1) - ’Yl(nl + 1) /yu”ueixu ’YlnleiX/ 0 0
V(1 + 1)e™Xu — Yty 0 0 —2¢
L(Xuwx1) = Yo+ 1)e™ X 0 =m0 2|, (537)
0 0 0 - A
0 € —€ —-A T

where I' = (v,n, + m;) /2 is the quantum decoherence rate and the matrix is formulated
in the basis p = (s, Puus pu, Re[pu], Im[p,])

We assume that the rate of emission of energy quanta into bath # equals the rate of photon
emission from the maser. The rate of emission becomes, see supplemental material of Pa-

per IV,

< A 'YcPYu'Yl(nl - ”u) (5 38)
YB3y + my A mg) 4 27930 + v + 7)) '
where we have introduced the effective transition rate,
B 26T (5.30)
et 539

Alternatively, the rate «y, can be obtained using Fermi’s golden rule with Lorentzian broad-
ening. In Fig 5.3(c) we compare the FCS mean rate with the running estimate from Monte
Carlo simulations. Next we determine the Fano factor,

71/(7’1” + 1) + ”u(”l+ 1)
n— ny,

F= - 2(V)C, (5.40)

where

2 A2
2y AT oy v i G+ g+ )

41
Y Yi(Bnpmy, 4 my, 4 np) 4 2931 4 v, + 1) (540
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Figure 5.4: The TUR for the SSDB maser Q (solid blue) and the classical model Q¢! (dashed orange) over the parameters (a)
driving strength e, (b) population #,, and (c) detuning A. The parameters are the same as for Fig 5.3. The conven-
tional TUR limit is indicated by the black dotted line and quantum TUR %< with dash-dotted green. This figure is
adapted from Paper IV.

The FCS Fano factor is also compared with the running estimate from Monte Carlo simu-
lations, see Fig 5.3. This provides the thermodynamic uncertainty Q according to (5.36). In
Fig 5.4 we present Q over different parameters and find that as a quantum system the SSDB
maser is able to violate the conventional TUR limit while adhering to quantum TUR.

In addition to the quantum heat engine we also introduce a classical reference system with
the unitary evolution of the Hamiltonian replaced by the effective coupling rates 7., details
are provided in the supplemental material of Paper IV. Following a similar procedure FCS
provides identical mean rates between the two systems,

(N = (V) (5-42)

and the classical Fano factor,

n(n,+1)+n,(n+1 .
Fel /( ) ( / ) *2<]V>CC1, (5.43)
n;— ny
where
Ccl_ 2’7€+4F+’71+7u
= : (5.44)
’Yu’)//(anlnu + ny + nl) + 2’76(3F + Yu+ ’Yl)
Comparing TUR for the quantum and classical model we find,
. 1 1
Q — Q% =2(N\) [log (1 + ) —log (1 + )]
ny nj
(5.45)

% I — A? Vu Yl 3nny, + ny+ ny,
I+ AT ’YM’W(-%nlnu + n, + nl) =+ 275(3F + Yu + 71) '

This indicates a quantum advantage, Q < 0, when |A| < T and, conversely, a quantum
disadvantage, Q > 0, when |A| > T'. This is illustrated in Fig 5.4(c).
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Figure 5.5: Heatmaps of TUR and coherence in the SSDB maser. (a) Q for the quantum model, (b) off-diagonal matrix element
|p| and its imaginary component Im[p,,] (inset), (c) Q¢! for the classical model. The engine parameters are v, = 2,
n, = 0.027, v, = 0.1 and n; = 5. The figure is taken from Paper IV.

s.4 Precision and Quantum Coherence (Paper IV)

In § 5.3.2 we noted that quantum dynamics alters the statistics such that the system can
violate the conventional TUR limit. One source of TUR violations is quantum coherence
present in the system [22—24]. In fact, Ref. [22] showed that quantum-coherence can induce
TUR violations in a fermionic double dot system which can be translated to the SSDB
maser, see Appendix D. Here we present the main results of Paper IV on the relation
between quantum coherence and TUR in the SSDB maser.

To probe the relation between TUR and coherence we compare Q and the off-diagonal ele-
ment of the steady-state density matrix p,; = (| p* |/), see Fig s.5. At resonance, A = 0
and moderate driving strength we find a particularly low value of Q < 2 violating the
TUR bound, see Fig 5.5(a). This is unlike the steady-state coherence |p,;| of panel (b)
which exhibits a V-shaped ridge extending to high detuning |A| with quantum disadvant-
age. Additionally, the classical model Q° reproduces a similar V-shaped ridge, see panel
(c). Hence, the steady-state coherence cannot directly determine the quantum effects in

Q.

Comparing Q and Im|p,], inset of panel (b), one might posit that Im|p,] is sufficient to
explain TUR violations. Here we caution against such an interpretation by noting that

(N) = 2’ Im[p,/] , (5.46)

as was shown in § 5.2.1. Nonetheless, the classical model exactly reproduces the mean rate,
hence a non-zero rate is no guarantee of coherent dynamics.

What separates TUR in the quantum model from the classical is the variance, yet, the
variance is not fully imprinted onto the steady-state coherence. Hence, while quantum-
coherent dynamics is the source of TUR violations the steady-state coherence provides an
incomplete description of the system behaviour.
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5.5  Summary and Outlook

In this chapter we have studied the thermodynamics of open quantum systems in two
respects, how to define the mean rate of work and heat in quantum mechanics, and the
relation between quantum-coherent dynamics and fluctuations of work.

In Paper III we showed that a consistent interpretation of the mean energy flows from the
conventional definitions applied to the SSDB maser does indeed adhere to the second law
of thermodynamics. This result contributes to the thermodynamic analysis of optical trans-
itions in detuned systems. Next, in Paper IV, we studied the stochastic nature of the SSDB
maser and how the quantum system violates the conventional TUR. Through comparison
with a classical reference model we argued that the quantum-coherent dynamics is only
partially imprinted onto the steady state. Hence, the steady state is insufficient to fully
describe the fluctuations and thermodynamic (dis-)advantages of quantum systems over
their classical counterparts. This suggests the need for the development of new ways of
quantifying the quantum-coherence which go beyond the mean picture of the steady-state
description.

When considering the definitions of heat and work we assumed that the system adhered
to a strict form of the first law of thermodynamics, where the finite time heat and work
terms exactly yield the energy change of the system. This assumption is not necessarily valid
for a quantum system. With the extension of thermodynamics to the microscopic regime
the second law of thermodynamics was reduced to only being probabilistically true. While
entropy must increase in the long run, finite time fluctuations might decrease entropy as
illustrated by the Jarzynski equality [186, 187] and the Crooks fluctuation theorem [188].
Now, with advances in quantum thermodynamics, the same is happening for the first law
of thermodynamics; work and heat are allowed to fluctuate, probabilistically violating con-
servation of energy in the process [143,189]. The study of these fluctuations opens up new
exciting avenues of research in quantum thermodynamics.
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Chapter 6

Conclusions and outlook

This thesis has explored the struggles of light bound in three different kinds of open quantum
systems: molecules probed by incident light, solar cells excited by sunlight and a maser heat
engine doing work by emitting ordered light. These systems reside at the borderland where
the quantum world faces the classical. The combination of quantum-coherent evolution
and classical noisy interference opens up new avenues for technologies and analysis usually
unavailable to us. We investigated these systems by assuming Markovian interactions with
the environment and including the dissipative effects via the Lindblad master equation.
This allowed us to further our understanding of the action signals from excited molecules,
the scattering of excited electrons and the fundamentals of quantum thermodynamics.

In Paper I we studied how to differentiate separate contributions to the non-linear action
signals at coinciding frequencies. This was done by constructing two different toy models of
the same molecule and comparing their spectral patterns. From these two patterns we found
qualitatively different features between the “true” nonlinear signal and that of incoherent
mixing emitted at the same frequency. These differences involve opposite sign of spectral
contributions and strength differences between the diagonal and off-diagonal peaks. This
resolved an ambiguity in the interpretation of spectroscopic signals.

In Paper II we considered electron extraction under thermalization in hot-carrier solar cells.
To do this we modelled the electron-electron interaction under the PERLind scheme and
compared the thermalization of two different initial configurations. Due to rotational sym-
metry of the system the scattering is restricted and quantified the second order effects and
their effect on the quantum efficiency of extraction. In Chapter 4 we further considered
possible extensions to this model, e.g. random matrix theory to mirror the messiness of real
nanowires, or a full exciton description of conduction band electrons together with valence

band holes.
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In Paper I1I we investigated a fundamental question of quantum thermodynamics. Through
the archetypical quantum heat engine of Scovil & Schulz-DuBois we compared two dif-
ferent definitions of heat and work in open quantum systems. Earlier work on this maser
suggested that the conventional fu// definition violated the second law of thermodynamics
and argued for an alternative bare definition which adheres to the second law. However,
in Paper IIT we argued that this violation can be cured if a consistent interpretation of the
heat flows and temperatures is applied.

Finally, in Paper IV we continued our investigation of the heat engine by studying its ther-
modynamic uncertainty. As a quantum system the maser is able to violate the conventional
lower bound described by the thermodynamic uncertainty relation. However, while the vi-
olation is enabled by quantum-coherent dynamics, we could not establish a direct relation
between violations and the steady-state coherence. The uncertainty is determined from the
system variance, a quantity which is not fully encoded into the steady state. Importantly,
this illustrates the need for new methods of quantifying the quantum coherence beyond
the steady state.

To summarize, in this thesis we have studied how the struggles of light bound in matter
can be used to probe the dynamics of nanostructures and molecules, improve the efficiency
of solar cells and illuminate questions on the fundamental nature of quantum mechanics.
It is the humble hope of this author that some part of the present work might contribute
towards furthering our understanding on the nature of things.
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