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Despite the improvements in leukemia treatment over the past decade, the 
incidence of leukemia is increasing indicating that leukemia might become 
a global health concern. While tyrosine kinase inhibitors have dramatically 
changed the paradigm of leukemia treatment, resistance developed during 
the course of therapy remains challenging which eventually results in poor 
clinical outcomes for patients with leukemia particularly acute myeloid leu-
kemia. I believe that the biggest challenge posed by leukemia is the nature 
of its heterogeneity. Dismantling oncogenic signaling mechanisms is key to 
understanding therapy resistance with respect to disease heterogeneity in 
order to develop novel therapies. 
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Abstract 

 

Acute myeloid leukemia (AML) is a highly heterogeneous blood disease which is characterized by different mutations 
and chromosomal rearrangements. Nearly 60% of genetic alterations have been found in AML patients involve in 
signaling pathways including signaling of tyrosine kinase receptor FLT3. FLT3 mutations emerged as one of the 
most common mutations in AML which represent around 35% of all AML cases, making it an attractive therapeutic 
target in AML. Among these mutations, FLT3-ITD is associated with a high risk of relapse and poor prognosis. 
Although several FLT3 inhibitors have been developed and showed promising results in clinical trials, many patients 
develop drug resistance shortly after treatment starts and display poor outcome. Therefore, understanding how 
FLT3 signaling pathways are regulated is increasingly needed in order to identify new drugs targeting the oncogenic 
FLT3 and to overcome resistance. In this thesis, we have addressed the importance of associating proteins in 
regulating FLT3 signaling as well as identified novel therapeutic targets to overcome FLT3-related resistance.  

 

We identified SLAP2 and ABL2 as potent interaction partners of FLT3 through their SH2 domain. Our results show 
that SLAP2 suppresses FLT3 downstream signaling pathways including AKT, ERK, p38 and STAT5 and facilitates 
FLT3 degradation through enhancing ubiquitination while ABL2 expression does not alter FLT3 stability or 
ubiquitination but partially suppresses FLT3 downstream signaling through the PI3K/AKT pathway. In contrast to 
the case of many kinases, we have found that the activation loop of FLT3 is not essential for its activation. Rather, 
we found that phosphorylated activation loop Y842 serves as a binding site of SHP2, which is required for FLT3-
induced activation of RAS/ERK pathway. Our results suggest that SLAP2 and ABL2 regulate FLT3 signaling and 
modulation of SLAP2 expression levels or targeting ABL2 could potentially synergize with FLT3 inhibitors to treat 
FLT3-ITD positive AML. Furthermore, Y842 is found to be critical for FLT3-mediated RAS/ERK signaling and cellular 
transformation.  

 

Using a panel of kinase inhibitors, we found ALK inhibitor AZD3463 selectively inhibited the activation and 
downstream signaling of FLT3-ITD and did not affect the wild-type FLT3 (FLT3-WT). These findings are interesting 
from a therapeutic point of view since FLT3-WT is essential for normal hematopoiesis process. Moreover, we 
showed that AZD3463 effectively overcame the secondary resistance to sorafenib in FLT3-ITD positive AML cells. 
Thus, this suggests that AZD3463 is a promising inhibitor to target FLT3-ITD positive AML. In conclusion, this thesis 
explores the mechanisms of regulating FLT3 signaling and therapeutic targeting opportunities.  
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Abstract 
 

Acute myeloid leukemia (AML) is a highly heterogeneous blood disease 

which is characterized by different mutations and chromosomal 

rearrangements. Nearly 60% of genetic alterations have been found in AML 

patients involve in signaling pathways including signaling of tyrosine kinase 

receptor FLT3. FLT3 mutations emerged as one of the most common 

mutations in AML which represent around 35% of all AML cases, making it 

an attractive therapeutic target in AML. Among these mutations, FLT3-ITD 

is associated with a high risk of relapse and poor prognosis. Although several 

FLT3 inhibitors have been developed and showed promising results in 

clinical trials, many patients develop drug resistance shortly after treatment 

starts and display poor outcome. Therefore, understanding how FLT3 

signaling pathways are regulated is increasingly needed in order to identify 

new drugs targeting the oncogenic FLT3 and to overcome resistance. In this 

thesis, we have addressed the importance of associating proteins in regulating 

FLT3 signaling as well as identified novel therapeutic targets to overcome 

FLT3-related resistance.  

We identified SLAP2 and ABL2 as potent interaction partners of FLT3 

through their SH2 domain. Our results show that SLAP2 suppresses FLT3 

downstream signaling pathways including AKT, ERK, p38 and STAT5 and 

facilitates FLT3 degradation through enhancing ubiquitination while ABL2 

expression does not alter FLT3 stability or ubiquitination but partially 

suppresses FLT3 downstream signaling through the PI3K/AKT pathway. In 

contrast to the case of many kinases, we have found that the activation loop 

of FLT3 is not essential for its activation. Rather, we found that 

phosphorylated activation loop Y842 serves as a binding site of SHP2, which 

is required for FLT3-induced activation of RAS/ERK pathway. Our results 

suggest that SLAP2 and ABL2 regulate FLT3 signaling and modulation of 

SLAP2 expression levels or targeting ABL2 could potentially synergize with 

FLT3 inhibitors to treat FLT3-ITD positive AML. Furthermore, Y842 is 

found to be critical for FLT3-mediated RAS/ERK signaling and cellular 

transformation.  
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Using a panel of kinase inhibitors, we found ALK inhibitor AZD3463 

selectively inhibited the activation and downstream signaling of FLT3-ITD 

and did not affect the wild-type FLT3 (FLT3-WT). These findings are 

interesting from a therapeutic point of view since FLT3-WT is essential for 

normal hematopoiesis process. Moreover, we showed that AZD3463 

effectively overcame the secondary resistance to sorafenib in FLT3-ITD 

positive AML cells. Thus, this suggests that AZD3463 is a promising 

inhibitor to target FLT3-ITD positive AML. In conclusion, this thesis 

explores the mechanisms of regulating FLT3 signaling and therapeutic 

targeting opportunities. 
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Hematopoiesis  
 

Introduction  

Hematopoiesis is the process by which different blood cellular 

components are generated. This process occurs throughout the embryonic 

development and during adulthood [1]. The hematopoietic stem cells 

(HSCs) are very specialized cells which are responsible to produce the 

functional mature blood cells through the entire life of vertebrates. In 

humans, the development of hematopoiesis undergoes two main distinct 

waves, primitive and definitive hematopoiesis. The primitive 

hematopoiesis occurs as early as the first few weeks of the embryo 

development in the yolk sac. This wave lacks lymphoid potential but 

provides the embryo with the essential blood cells namely erythrocytes, 

megakaryocytes, and macrophages required for tissue oxygenation, 

growth needs, and first innate defense system for the embryo [2, 3]. The 

definitive hematopoiesis occurs also at the yolk sac of the embryo where 

the first HSCs and progenitor cells are detected and subsequently migrate 

to the fetal liver and remain functional after birth as a source of 

hematopoiesis until they migrate and reside in the bone marrow (BM) [1, 

4, 5]. Since HSCs are characterized by their ability of multi-potency and 

self-renewal, they can differentiate into all functional blood cells [6]. 

HSCs are rare and exist mainly in the BM in adult and only divide once 

every 145 days on average [7, 8]. Moreover, HSCs is differentiated into 

multipotent progenitor (MPP) which give raise to common lymphoid 

progenitors (CLPs) and common myeloid progenitors (CMPs). The CMPs 

can be further differentiated into Granulocyte myeloid progenitor (GMP) 

and Megakaryocyte/Erythrocyte progenitor (MEP) which are eventually 

differentiated into mature granulocytes, platelets, and erythrocytes while  

Chapter 1 
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CLPs are eventually differentiated into mature lymphocytes that form the  

innate and adaptive immunity (Figure 1).  

 

Hematopoietic niche  

HSC presents in few numbers in the BM which have the ability for extensive 

self-renewal and differentiation into different hematopoietic lineages. 

Therefore, HSCs maintenance and expansion are highly regulated to ensure 

sufficient production of blood cells under steady and stressful conditions. 

This balance is strictly controlled by intrinsic and extrinsic factors. The 

intrinsic factors include transcriptional regulation factors and epigenetic 

modifications within each individual HSCs. For example, the transcription 

factor FOXO3a plays a role in modulating the proliferative capacity of HSCs  

Figure 1. Schematic overview of hematopoiesis hierarchy in adult bone marrow. HSC: hematopoietic 

stem cell which has the ability for self-renewal and differentiation into all mature blood cells, MPP: 

multipotent progenitor cell, CMP: common myeloid progenitor cell, CLP: common lymphoid progenitor cell, 

RBCs: red blood cells, DC: dendritic cells, NK: natural killer cells. 
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[9]. Extrinsic factors include growth factors and cytokines such as stem cell 

factor (SCF), thrombopoietin (TPO), colony-stimulating factors (CSFs), 

transforming growth factor β (TGFβ), C-X-C motif chemokine 12 

(CXCL12), and angiopoietin 1 (ANG1). These extrinsic factors are supplied 

by the BM microenvironment, also called BM niche. The concept of niche 

was introduced in 1978 by Schofield referring to a specific BM 

microenvironment that preserves the HSCs self-renewal capacity and 

contains different cells such as osteoblasts, mesenchymal stem cells, 

fibroblasts, and endothelial cells [10]. These cells collectively play a central 

role in HSCs protection from acquiring damage such as mutations. The BM 

niches provide limited nutrients and low oxygen which are important for 

HSCs maintenance and therefore prevent them from excessive proliferation.  

Stem cell factor, SCF, also known as KIT ligand, is a growth factor which 

produced by fibroblasts and endothelial cells [11]. SCF binds KIT (CD117), 

its receptor, and stimulates the development and differentiation of the HSCs 

[12]. It has been shown that mutation or deletion of SCF or KIT during 

embryogenesis results in perinatal death of mice due to severe macrocytic 

anemia [13]. Besides SCF, CSFs play an important role in promoting growth 

and differentiation of hematopoietic progenitor cells as well as enhancing the 

function of the mature blood cells, especially macrophages and granulocytes 

cells [14, 15].  

Cytokines and chemokines play an important role in regulating HSCs. For 

example, thrombopoietin (TPO) is a cytokine that is involved in HSCs 

maintenance as well as regulating megakaryocyte and platelet production 

[16]. TGF-β is family of cytokines which are implicated in the regulation of 

proliferation, quiescence, and differentiation of HSCs [17]. It has been 

reported that TGF-β upregulates the cyclin-dependent kinase inhibitor, 

p57KIP2, leading to cell cycle arrest in human hematopoietic cells [18]. 

CXCL12 is a homeostatic chemokine which plays a vital role in different 

processes such as angiogenesis, inflammation, and induces migration of 

hematopoietic precursors. In BM, CXCL12 is expressed by osteoblasts and 

binds to C-X-C chemokine receptor type 4 (CXCR4) receptor resulting in 

retention of hematopoietic progenitor cells in the BM. CXCR4 is expressed 

by Hematopoietic progenitor cell (HPC) and HSC [19]. Mice lacking either 
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CXCL12 or CXCR4 die due to BM failure [20]. Other cytokines including 

Interleukin-3 (IL-3) and Interleukin-7 (IL-7) are essential in regulating 

myeloid and erythroid cells development [21, 22]. 

 

Signaling pathways involved in hematopoiesis  

Maintenance of HSC self-renewal and differentiation depends on complex 

interactions with the BM microenvironment. In addition to growth factors 

and cytokines, several signaling pathways play a critical role during the 

hematopoiesis development. For example, RAS/extracellular signal-

regulated protein kinases (ERK), phosphoinositide-3-kinase (PI3K)/protein 

kinase B (AKT), Janus kinase-signal transducer and activator of transcription 

(JAK/STAT), and Notch signaling pathways. Receptor tyrosine kinases 

(RTKs), such as KIT and FMS like tyrosine kinase 3 (FlT3) are playing 

essential role in the development of hematopoietic precursors. The KIT has 

been reported to be expressed in all stages of hematopoiesis [23]. Binding 

KIT with its ligand SCF results in activation of its intrinsic kinase activity 

and autophosphorylation of several tyrosine residues and thereby activating 

multiple signaling pathways such as RAS/ERK, PI3K/AKT and JAK/STAT 

pathways [24]. KIT has been reported to be expressed in early hematopoiesis 

[25].  

 

FLT3 expression is essential for differentiation of the multipotent progenitors 

toward myeloid and lymphoid cells. Moreover, JAK/STAT signaling 

pathway has been shown to play a role in transducing the activity of 

cytokines and growth factors in embryonic development, hematopoiesis, and 

stem cell maintenance [26, 27]. Constitutive activation of JAK-STAT 

pathway is linked to the development of different malignancies in humans 

such as sarcomas and lymphomas [28] and mutation and activation of JAK2 

is commonly occurring in polycythemia vera [29]. Downmodulating STAT 

activation is important to maintain cellular homeostasis, and constitutive 

hyperactivation of STATs particularly STAT3 and STAT5 has been 

implicated in the development of different types of leukemias as well as solid 

tumors [30].  
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Within the BM niche, self-renewal of HSCs is regulated by Notch signaling. 

Notch is known as a major mediator of cell fate determination during 

development by regulating different cellular functions such as 

differentiation, proliferation, and survival. Notch signaling is required during 

HSCs development as well as in T cell development [31]. Mutation of β-

catenin in BM environment results in overexpression of Notch ligand, Jagged 

1, and induces AML development with chromosomal alterations [32].  

 

These signaling pathways play a crucial role in the regulation of normal 

hematopoiesis as well as HSCs quiescence and self-renewal. Dysregulation 

of these signaling pathways leads to HSC functional defect and can give rise 

to hematopoietic malignancies or BM failure. Therefore, better 

understanding on the role of BM niche in regulating the HSC fate and 

malignancy through intrinsic and extrinsic signaling pathways is key to 

develop effective treatment of hematological malignancies. 
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Leukemia 
 

Introduction  

Leukemia is a life-threatening malignant disorder of the blood and BM. The 

word leukemia, originally leukämie in German, is derived from the Greek 

words “leukos” meaning white and “haima” meaning blood, known as “white 

blood cells” [33]. It is characterized by uncontrolled proliferation of 

developing leukocytes cells which replace the normal functional cells leading 

to anemia, thrombocytopenia, and granulocytopenia. These blood findings 

are usually associated with clinical symptoms such as weakness, shortness of 

breath, bleeding tendency, and compromised immune system leading to 

frequent susceptibility to infections. According to GLOBOCAN, leukemia is 

the 11th most commonly diagnosed cancer and the 9th leading cause of 

cancer death worldwide in 2020. The etiology of leukemia remains 

unknown, but it can occur as a result of a combination of genetic and 

epigenetic alterations/translocations which can trigger genes responsible for 

the differentiation and proliferation of hematopoietic cells in the BM. Other 

risk factors have been documented to be associated with developing 

leukemia such as exposure to radiation (therapeutic or occupational), 

chemotherapy, family history, age, and some viral infections [34, 35]. 

 

Classification of leukemia 

Leukemia can be classified into myeloid or lymphoid based on the cell origin, 

and acute or chronic based on the progression of the disease. Thus, four main 

subtypes of leukemia are categorized as follows: Acute myeloid leukemia 

(AML), Chronic myeloid leukemia (CML), Acute lymphocytic leukemia 

(ALL), and Chronic lymphocytic leukemia (CLL) (Figure 2). Acute   

Chapter 2 
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leukemias are characterized by acute onset of symptoms and the presence of 

dysfunctional immature cells called (blasts) and can progress rapidly and 

fatally if untreated. Conversely, chronic leukemias are defined by the 

existence of more functional mature or relatively mature cells which expand 

slowly and may take several months to years to develop clinical symptoms 

[35, 36].  

Diagnosis and treatment of leukemia  

The diagnosis of leukemia is usually based on some clinical characteristic 

features, patient’s history, and panel of invasive and non-invasive diagnostic 

tests ranging from initial clinical examination and routine laboratory tests to 

more specific and advanced investigations to confirm and to identify the 

stage the of disease. These investigations include BM morphology 

assessment from aspirate and/or biopsy, immunophenotyping by multi-

parametric flow cytometry and/or immunohistochemistry, molecular 

evaluation of genetic aberrations, cytogenetic analysis, and/or next‐

generation sequencing [37]. The precise evaluation and classification of 

leukemia are very crucial steps in patient clinical management. Treatment of 

leukemia depends on many factors including type of leukemia, age, 

cytogenetic and molecular findings. The treatment options may include 

chemotherapy, radiation, monoclonal antibodies, hematopoietic stem cell 

transplantation, and tyrosine kinase inhibitors (TKIs) [38]. These therapeutic 

options can be conducted as a mono or combination therapy based on many 

factors such as the stage of the disease, location, and age.  

Figure 2. Classification of leukemia according to cell origin and disease progression. 
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Acute myeloid Leukemia  
  

Introduction  

Acute myeloid leukemia (AML), also called acute myelogenous leukemia, is 

a clonal hematopoietic disorder of myeloid progenitors in the BM. It is the 

second most common type of leukemia in adults in which the incidence 

increases with age [39]. AML represents approximately 80% of adult 

leukemias with median incidence age from 66 to 71 years, and 15-20% of 

childhood leukemias [40-42]. In Europe, 3.7 new cases of AML per 100,000 

inhabitants are diagnosed yearly [43]. It is characterized by excessive 

proliferation of abnormal immature blood cells, mostly blasts, which 

constitute more than 20% of the BM cells and display a high degree of 

heterogeneity [44, 45]. Once the disease is progressed, the blast cells 

accumulate in the BM, blood and organs and interfere with normal blood cell 

production leading to fatal consequences due to infection, bleeding, and organ 

infiltration if left untreated within one year after the diagnosis [46, 47]. The 

diagnosis of AML requires identification of 20% or more blasts in the BM or 

peripheral blood [48]. AML is further classified based on morphology such as 

the presence or absence of Auer rods, or by immunophenotyping using specific 

panel of cell surface antigen markers. Assessment of BM aspirate and biopsy 

morphology, immune-phenotype, and genetics/cytogenetics examinations 

remain an essential clinical routine practice for the diagnosis and classification 

of AML [49]. 

 

Etiology  

For many patients, the direct causes of AML remain unknown. However, there 

are many risk factors implicated in the development of AML including 

chemotherapy, radiation therapy, family history, smoking, and other 

Chapter 3 
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environmental exposures. Patients who are exposed to chemotherapeutics 

agents are at risk for developing therapy-related AML [50]. One study showed 

that patients received chemotherapy for a primary cancer have displayed 4.7 

folds high risk of developing AML compared to the general population [51]. 

Moreover, patients with existing clonal hematologic disorders such as 

myelodysplastic syndrome (MDS) and myeloproliferative neoplasms (MPNs) 

are at higher risk to be transformed into secondary AML [52]. In addition, 

some inherited disorders like Down syndrome and Fanconi anemia can 

increase the risk of AML development whereas previously healthy individuals 

who develop AML may be related to de novo AML causes [42, 53].  

 

Classification   

Determination of the AML subtype can be crucial as it impacts both the 

treatment option and the clinical outcome. Two major classification systems 

have been developed for AML: The French American British, also called FAB 

classification and the World Health Organization (WHO) classification system 

[54, 55] (Table 1). FAB classifies AML according to the cytochemistry and 

morphology of leukemic cells into eight subtypes, from M0 – M7. Although 

FAB classification still commonly used to divide AML, WHO classification 

becomes the system of choice because it takes into consideration the diversity 

of genetic alterations presents in AML which carries more prognostic 

information than the FAB system. The WHO system includes multiple 

recurrent genetic aberrations found in AML that can be used for following up 

such as Nucleophosmin 1 (NPM1) as well as other factors related to AML 

development such as history of other hematological malignancies or therapy-

induced AML. 

Pathophysiology 
 

AML is a highly heterogeneous blood disease which can result from different 

genetic mutations and chromosomal rearrangements leading to uncontrolled 

proliferation, prolonged survival, and impaired hematopoietic cell 

differentiation [56]. Genetic mutations are counted for 97% of AML cases [57]. 
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Table.1 Classification of AML 

FAB classification 

 

M0   Undifferentiated acute myeloblastic leukemia 

M1   Acute myeloblastic leukemia with minimal maturation 

M2   Acute myeloblastic leukemia with maturation 

M3   Acute promyelocytic leukemia 

M4   Acute myelomonocytic leukemia 

M5   Acute monocytic leukemia 

M6   Acute erythroid leukemia 

M7   Acute megakaryoblastic leukemia 

 

WHO classification 

 

AML with recurrent genetic abnormalities 

 
▪ AML with t(8;21)(q22;q22) RUNX1/RUNX1T1 

▪ AML with inv(16)(p13.1q22) or t(16;16)(p13.1;p22) CBFB/MYH11 

▪ Acute promyelocytic leukemia with t(15;17)(q22;q12) PML/RARA 

▪ AML with t(9;11)(p22;q23) MLLT3/MLL 

▪ AML with t(6:9)(p23;q34) DEK/NUP214 

▪ AML with inv(3)(q21q26.2) or t(3.3)(q21;q26.2) RPN1/EVl1 

▪ AML (megakaryoblastic) with t(1:22)(p13;q13) RBM15/MKL1 

▪ AML with mutated NPM1 

▪ AML with mutated CEBPA 

 

AML with myelodysplasia-related change 

 

Therapy-related myeloid neoplasms 

 

Acute myeloid leukemia, not otherwise specified 

 

• AML with minimal differentiation AML without maturation 

• AML with maturation 

• Acute myelomonocytic leukemia 

• Acute monoblastic/monocytic leukemia Acute erythroid leukemia 

• Pure erythroid leukemia Erythroleukemia, erythroid/myeloid 

• Acute megakaryoblastic leukemia Acute basophilic leukemia 

• Acute panmyelosis with myelofibrosis Myeloid sarcoma 

• Myeloid proliferations related to Down syndrome 
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In 2002, Kelly and Gilliland have proposed a ‘two-hit’ model for 

leukemogenesis. According to this model, AML is the consequence of at 

least two different interplaying classes of mutations. Class I mutations which 

activate signal transduction pathways and therefore induce proliferative and 

survival advantages. Class II mutations are those which affect transcription 

factors of cell cycle machinery components and cause impaired cell 

differentiation and resistance to apoptosis (Figure 3)  [58, 59]. 

The two-hit model hypothesis is supported by the observation that a single 

mutation alone is insufficient for the development leukemic transformation. 

Mouse studies with high transgene expression of the fusion protein 

AML1/ETO, t(8;21), also known RUNX1/RUNX1T1, did not develop 

leukemia [60]. In contrast, add-on mutational events such as FLT3 length 

mutations promoted the development of leukemia in an AML1/ETO mouse 

model [61].  

Other studies demonstrated that combined mutations between FLT3 and 

CEBPA accelerated the development of AML in mouse model [62]. The fact 

that many AML patients have more than one mutation in their leukemic cells 

supports the two-hit model hypothesis [63]. However, recent studies have 

identified other group of mutations that cannot be classified under the two-

hit hypothesis.  

Figure 3. The Two-Hit hypothesis of AML. This model outlines different mutations associated with 

the appearance of AML. 
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Theses mutations mostly alters genes that are involved in epigenetic 

regulation which include the DNA methylation, histone modification, and 

chromatin remodeling in AML [64]. 

In a whole genome study of 200 AML patients conducted by the Cancer 

Genome Atlas Research Network has shown that AML is characterized by 

multiple somatically acquired mutations as shown in (Figure 4) [65]. In this 

thesis, I will focus on mutation class I, mainly mutations in FLT3, as nearly 

30% of AML patients harbor oncogenic FLT3 mutations making it one of the 

most common mutated genes in AML. 

 

 

 

Figure 4. Recurrent mutations associated with de novo AML. Mutated genes and their frequencies 

of appearance are listed according to their functional groups or pathways involved in AML. (Data 

obtained from The Cancer Genome Atlas Research Network, 2013). 
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Treatment  

The treatment of AML has been well improved over the past few years due 

to an improved understanding on the molecular heterogeneity of the disease 

which aid in better therapy stratification and prognostication for patients with 

AML. Several treatment options can be used for patients with AML. 

Chemotherapy is the main treatment, also known as induction therapy. 

Combination of cytarabine and anthracyclines are used in induction therapy. 

This regimen is usually administered in a dose of 100-200 mg/m2 of 

cytarabine continuous infusion for 7 days with idarubicin at 12 mg/m2 for 3 

days or daunorubicin at doses of 45-60 mg/m2 for 3 days. This therapeutic 

regimen is commonly referred to as 7 + 3 [66, 67]. 

The goal of the induction therapy in AML is to clear blood and BM from 

malignant blast cells and bring complete remission (CR) over 7 days of 

treatment. Drugs at this phase of treatment are targeting the DNA replication 

machinery of the cancer cells. It is worth mentioning here that drug tolerance 

varies between age groups and mutational status. For example, 60-80% of 

the patients below 60 years of age achieve CR while elderly patients undergo 

cytarabine chemotherapy with low doses and display around 40-55% who 

achieve CR [68]. On the other hand, patients with cytogenetic or intermediate 

prognosis markers require more aggressive doses of cytarabine.   

Patients who do not respond to initial therapy can be offered hematopoietic 

stem cell transplantation treatment. This type of treatment has improved the 

outcomes in patients with AML who fail primary induction therapy. Targeted 

therapy is another treatment that uses monoclonal antibodies directed against 

specific cell antigens or small molecules inhibitors that target tyrosine kinase 

mutations in cancer cell such as Gemtuzumab (anti-CD33) and FLT3 

inhibitors, respectively [69, 70]. This type of targeted therapy may be added 

to the induction chemotherapy regimen for patients with AML who have 

certain genetic mutations like those found in FLT3. Other targeted therapy 

includes epigenetic modulators and mitochondrial inhibitors [71]. 
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Receptor tyrosine kinase: FMS-like 

tyrosine kinase 3 (FLT3) 
 

Introduction  

Receptor tyrosine kinases (RTKs) are signaling enzymes which catalyze the 

transfer of the adenosine triphosphate (ATP) γ-phosphate to the tyrosine 

residues of substrates. RTKs play a crucial role in regulating different cellular 

processes such as growth, differentiation, and metabolism [72]. Around 90 

tyrosine kinase genes are identified in the human genome in which 56 genes 

encode transmembrane tyrosine kinase receptors [73]. Based on protein 

homology and structure, the RTKs family can be divided into 20 subfamilies 

including Vascular Endothelial Growth Factor Receptor (VEGFR), 

Epidermal Growth Factor Receptor (EGFR), Platelet-Derived Growth Factor 

Receptor (PDGFR), and Fibroblast Growth Receptor (FGR) [74, 75]. These 

RTKs are cell surface membrane proteins and share a similar protein 

structure which composed of a ligand-binding extracellular domain, a 

transmembrane domain, a juxtamembrane region, a tyrosine kinase domain, 

and a carboxy (C-) terminal tail. The ligand-binding domains of the 

extracellular region differ in their overall structure based on the receptor 

subfamily [76]. In addition to their central role in normal cellular processes, 

RTKs have been demonstrated to be implicated in a variety of human 

diseases, most notably cancers [77]. Understanding RTKs and their 

downstream signaling effect on different cellular functions allowed the 

development of novel targeted drug therapies such as TKIs with significant 

improvement in clinical outcomes.  

 

 

Chapter 4 
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FLT3 

Structure and expression  

The FMS-like tyrosine kinase 3 (FLT3) gene, also known as the murine fetal 

liver kinase 2 (FLK2) and human stem cell kinase-1 (STK-1), is located on 

chromosome 13q12 in human, and encodes a membrane-bound RTK that has 

an important role in the growth, survival and differentiation of hematopoietic 

stem cells [78, 79]. FLT3 gene consists of 993 amino acids in length and 

exists as two forms; one more glycosylated, mature plasma membrane 

expressed form of 155-160 kDa, and a comparatively less glycosylated 

immature form of about 130-140 kDa [80]. FLT3 belongs to the type III RTK 

family together with platelet-derived growth factor α and β receptors 

(PDGFRA and PDGFRB), KIT, and colony-stimulating factor 1 receptor 

(CSF1R). They are composed of an extracellular part with five 

immunoglobulin-like domains of which some bind the ligand, a 

transmembrane region, a juxtamembrane domain (JMD), and a bipartite 

Figure 5. Schematic representation of FLT3 structure. ITD: Internal tandem duplication in the 

juxtamembrane domain which is the most common mutation in FLT3 and D835: point mutation of 

aspartic acid 835 in tyrosine kinase domain. 
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tyrosine kinase domain (TKD1 and TKD2) separated by a kinase insert 

region (KI) and a C-terminal tail [81] (Figure 5).  

In normal human cells, FLT3 is expressed predominantly by early myeloid 

and lymphoid progenitor cells. Other organs such as placenta, brain, gonads, 

and liver also express FLT3 [79, 82]. It has been reported that 90-98% of 

patients with AML and pre-B ALL express FLT3 [83]. 

 

Role of FLT3 in normal hematopoiesis 

FLT3 is an essential growth factor receptor required for proliferation, 

differentiation, and survival of hematopoietic stem cells [84]. It has been 

documented that FLT3 is required for efficient production of some immune 

cells, such as dendritic cells. Knock out mouse studies showed lethal 

development due to the lack of adequate hematopoietic cell lineage 

production including dendritic cells [85]. Studies have also demonstrated 

enhanced cell proliferation of HPCs cells after FLT3 coordination with other 

growth factors such as SCF and IL3 [86]. FLT3 receptor exists as an inactive 

monomeric form in the plasma membrane. Structural biology studies showed 

that FLT3 has a “closed” activation loop which blocks the access to 

phosphoryl active sites and ATP-binding site in the monomeric form. The 

JMD functions as an autoinhibitory loop preventing dimerization as well as 

the exposing key substrate binding sites [87]. Binding of FLT3-WT receptor 

to its ligand, FL, leads to dimerization of the receptor. Dimerization of the 

receptor activates its intrinsic tyrosine kinase activity and phosphorylates 

tyrosine residues within the receptor intracellular domain. Tyrosine 

phosphorylation creates docking sites for signaling proteins and induces 

downstream signal transduction followed by a rapid homodimerization, 

internalization, and degradation of the receptor [88]. FL is expressed by wide 

variety of tissues including hematopoietic organs, prostate, ovary, lung, 

kidney, heart, colon, and placenta. Expression of FL by most tissues in 

contrast to limited expression of FLT3, that is mainly found in early 

hematopoietic progenitor cells, indicate that FLT3 expression is a rate 

limiting step in determining the tissue specificity of FLT3 signaling pathway 

[89]. Previous studies have reported that exogenous FL increases blast 

proliferation in patients with FLT3-WT and in patients with oncogenic FLT3. 
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Therefore, FL-mediated triggering of FLT3 appears to be important for both 

WT and the mutant FLT3 signaling [90]. 

 

Downstream signaling pathways of normal FLT3 

FLT3-WT is capable of activating multiple signaling pathways when 

stimulated by FL resulting in receptor autophosphorylation at tyrosine 

residues and activation of multiple cytoplasmic molecules. The FLT3 

cytoplasmic domain interacts and phosphorylates the p85 subunit of PI3K, 

growth factor receptor-bound protein 2 (GRB2), and SRC family tyrosine 

kinase. Activation of PI3K/protein kinase B (AKT) and mitogen-activated 

protein kinase (MAPK) leads to different cellular functions such as 

proliferation and cell survival (Figure 6) [79, 91]. MAPK or ERK pathway 

is one of the best kinase cascades studied so far. These signaling are involved 

in different cellular responses including differentiation, migration, and 

survival. ERK phosphorylation can occur through interaction of GRB2/SOS 

or GRB2/GAB2 to tyrosine residues 768, 955, and 969 in FLT3 upon FLT3 

stimulation. GRB2/GAB2 association recruits SHP2 and results in ERK 

phosphorylation [92]. It should also be noted that SHP2 can interact directly 

with FLT3 through Y599 and Y842 [93, 94].  Moreover, FLT3 is unable to 

bind to the p85α subunit of PI3K in human but it can activate the PI3K 

pathway through association or phosphorylation of GAB1 and GAB2 [95]. 

PI3K-mediated activation of AKT is implicated in different oncogenic 

signaling pathways including FLT3. This transduction pathway can lead to 

cell cycle arrest and apoptosis through inactivation of FOXO3a by FLT3-FL 

dependent activation. Moreover, activation of PI3K/AKT-mTOR 

(mammalian target of rapamycin) signaling pathway has been reported in 

drug resistance as part of parallel activation pathways in AML [96, 97].  

 

FLT3 mutations in AML 

FLT3 gain-of-function mutations have been reported in 30% of AML 

patients and in a small subset of patients with ALL. Internal tandem 

duplication (ITD) is the most common mutation in FLT3 and found in 25-

35% of adult AML patients and 10-15% of pediatric AML [82, 98]. 
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Point mutation within the tyrosine kinase domain (TKD) is the second 

common type of mutated FLT3 and present in approximately 7-10% [99]. 

FLT3-ITD and FLT3-TKD mutations are ligand-independent and lead to 

constitutive activation of FLT3 signaling resulting in inhibition of apoptosis, 

differentiation, and inducing cellular proliferation [100]. Mutations in the 

kinase domain is considered less severe than the ITD mutations [101]. These 

mutations are usually associated with poor prognosis in AML [99, 102] 

(Figure 5). 

The ITD mutation has been firstly identified by Nakao et al in 1996 [103]. It 

is described by the duplication of a segment of the JMD of FLT3, which 

results in ligand-independent constitutive activation of FLT3. The ITD 

mutations always occur with reading frame maintained, and range in size 

from 3 to >400 bp [104]. The majority of ITD mutations are found in residues 

Figure 6. Downstream signaling pathways of wild-type FLT3 (FLT3-WT). Binding of FL to 

FLT3 activates the FLT3 dimerization and leads to activation of the PI3K and the MAPK pathways 

triggering cell proliferation/survival and inhibits apoptosis. 
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589-599 [105]. The size of the ITD is negatively correlated with 5-year 

overall survival of AML patients [106].  

In FLT3-WT, the JMD exerts an autoinhibitory function by preventing the 

activation loop conformational change. Crystallization studies of FLT3/ITD 

have demonstrated that this autoinhibitory function is lost due to JMD and 

kinase domain interaction disruption caused by the ITD mutation, and 

therefore the receptor activity is maintained [87]. 

The mechanism by which FLT3-ITD mutations are formed still poorly 

understood. However, Kiyoi et al. suggested that the reason behind FLT3-

ITDs formation is a DNA replication error caused by a DNA palindromic 

intermediate sequences between amino acid 593 and 602, and thereby 

inducing the tandem duplication [107]. Around 95% of FLT3-ITD mutations 

in patients have duplication of at least one amino acid in the tyrosine rich 

region Y591 to Y599 [108]. 

FLT3-ITD mutated AML patients have higher rates of relapse and short 

overall survival. The prognostic value is influenced by both mutant allele 

frequency and presence of co-existing mutations [109]. For example, high 

FLT3-ITD ratio is associated with higher risk of relapse while low FLT3-

ITD ratio is linked to favorable outcomes in patients with a co-existing 

NPM1 mutations. FLT3-ITD allele ratio is generally defined as the ratio 

between FLT3-ITD to FLT3-WT of ≥ 0.5 [110]. The observations displayed 

by poor prognosis in patients with FLT3-ITD mutations have flagged the 

demands to develop new treatment strategies to improve patient’s outcomes. 

Other less frequently occurring mutations include point mutations of aspartic 

acid 835 in the activation loop of TKD2. FLT3-TKD is found in 

approximately 7-10 % of AML patients and occurs by a substitution of 

aspartic acid 835 for a tyrosine or other amino acids such as histidine, 

glutamate, or valine [111]. Other insertion mutations have been also reported 

including the insertion mutation in exon 20 in a small subset of AML patients 

where glycine and serine residues are inserted between 840 and 842 amino 

acids [112, 113]. Unlike TDK2, TKD1 exhibits mutations to lesser extent, 

for example, mutations in residues N676 and F691 [114]. Interestingly, in 

vivo studies have shown mutational tendency towards specific hematopoietic 
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lineage. For example, mice with ITDs are associated with myeloproliferative 

disorders while mice with TKD mutants are linked to oligoclonal lymphoid 

disorders [115]. Although the presence of FLT3-TKD mutation does not alter 

the AML risk assessment, the prognostic relevance of FLT3-TKD mutations 

is speculated to be dependent on the frequency of the mutations and 

cytogenetic changes [99].  

Several point mutations associated with FLT3 such as smaller insertions 

or/and deletions have also been reported within the TKD and JMD 

constituting 2% of patients with AML. For example, Stirewalt et al. have 

identified the novel point mutations V579A, V592A, F590G, and Y591D in 

the FLT3 JMD of AML patients [116]. Moreover, Reindl et al. has identified 

additional mutations such as F594L, and Y591C and observed that these 

mutations lead to reduced stability of the autoinhibitory JMD, activate 

STAT5, and upregulate Bcl-xL leading to increased resistance to apoptosis 

[117]. 

 

Downstream signaling pathways of oncogenic FLT3 

The activation of FLT3-WT requires its respective ligand FL. However, 

FLT3-ITD is ligand-independent and can constitutively and selectively 

activate STAT5 besides PI3K/AKT and MAPK/ERK pathways (Figure 7). 

[89]. In contrast to FLT3-ITD, FLT3-WT and FLT3-TKD cannot activate the 

STAT5 signaling pathway [118]. Activation of STAT5 results in stimulation 

of several specific downstream targets that are key mediators of cell cycle 

progression and antiapoptotic signaling such as cyclin D1, BAD, c-Myc and 

the protooncogene Pim-1 [119, 120]. FLT3-ITD mutations-induced 

phosphorylation of STAT5 contributed to Pim-1-mediated overexpression of 

CXCR4 which in turn contributes to chemotherapy resistance and disease 

relapse [121]. Rocnik et al. has identified that tyrosine residues Y589 and 

Y591 play a crucial role in STAT5 activation by FLT3-ITD. Substitution of 

these two sites to phenylalanine has abolished the phosphorylation of STAT5 

and reduced the myeloproliferative disease potential in FLT3-ITD mice 

[105]. Moreover, FLT3-ITD duplication of Y591in AML blasts has been 

associated with high BCL-2 levels, a transcriptional target of STAT5 [122]. 
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This signaling renders FLT3-ITD expressing cells resistant to apoptosis 

which may explain at least in part the poor outcomes for those patients having 

these types of mutations.  

 

FLT3 inhibitors  

FLT3 mutations emerged as one of the most common mutations in AML 

which are associated with high risk of relapse and poor prognosis. Therefore, 

FLT3 is a promising therapeutic target for treatment of 

AML with FLT3 mutations. The breakthrough of TKI imatinib in the 

treatment of BCR-ABL1 in CML has led to the development of more than 

20 inhibitors directed against mutated FLT3 [123]. Although multiple FLT3 

inhibitors have been developed for the treatment of FLT3-mutated AML 

allowing fast entrance of these compounds to the clinical trials, only two 

Figure 7. Schematic view of FLT3-ITD signaling. FLT3-ITD signals STAT5 pathway as well as 

RAS/ERK and PI3K/AKT pathways leading to increase cell proliferation and survival. 
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inhibitors (midostaurin and gilteritinib) are currently approved for distinct 

clinical indications.  

Based on their mechanism of action, FLT3 inhibitors can be divided into two 

main types. type I inhibitors which act on both active and inactive forms of 

the mutated kinase and thereby preventing autophosphorylation and 

subsequent activation of downstream signaling, and type II inhibitors which 

bind only inactive kinase molecules.  

Midostaurin (Rydapt), also known as PKC-412, is a powerful type I multi-

kinase inhibitor that exerts a potential inhibitory effect on multiple signaling 

pathways involved in both ITD and TKD mutations such as VEGFR, protein 

kinase C, KIT, and PDGFR-β [124].  This inhibitor was approved by FDA 

and EMA in 2017 for the clinical therapy of newly diagnosed FLT3-mutated 

AML adults in combination with standard cytarabine and daunorubicin, and 

for maintenance therapy of AML patients who are not eligible for allogeneic 

hematopoietic stem cell transplantation (ASCT) [125, 126]. Midostaurin has 

been characterized from Streptomyces staurosporeus bacterium and was 

initially developed as an inhibitor of protein kinase C [127]. It has been 

shown that treatment with midostaurin reduced FLT3 autophosphorylation 

and diminished downstream signaling through p38, MAPK, and STAT5 

[128]. A clinical study showed that midostaurin monotherapy in 

relapsed/refractory (R/R) AML reduced blasts in 71% of patients with FLT3-

mutant AML and 42% of patients with FLT3-WT [129].   

Gilteritinib (Xospata, ASP2215) is another approved FLT3 type I inhibitor 

used as a single-agent therapy for adults with R/R FLT3-mutated AML [130]. 

Gilteritinib has a dual effect on both FLT3 and AXL [131]. AXL expression 

has been linked to some FLT3 inhibitors resistance such as midostaurin and 

quizartinib [132]. Gilteritinib has displayed an impressive result in 

preclinical studies in FLT3 and AXL-mutant tumor models by decreasing 

tumor size, blocking the activation of cellular survival pathways, and 

restoring the apoptotic pathway [133]. Moreover, clinical trials in patients 

with R/R AML, including FLT3-WT and FLT3-mutated, displayed better 

outcomes in FLT3-mutated compared to FLT3-WT patients [134].  
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Crenolanib inhibitor has been shown to overcome the secondary resistance 

through targeting both FLT3-ITD and FLT3-TKD mutated receptors. [135]. 

A phase III clinical trial of crenolanib vs midostaurin combined with 

chemotherapy in newly diagnosed FLT3-mutated AML is currently 

recruiting patients (NCT03258931). 

Lestaurtinib is another TKI that has been investigated in several clinical trials 

to target both FLT3-WT, FLT3 mutants as well as JAK2. However, 

lestaurtinib has been discontinued from clinical development due to limited 

response. In a phase III clinical trial, lestaurtinib showed no difference in OS 

when combined with frontline induction and consolidation chemotherapy in 

patients with FLT3-mutated AML [136, 137]. 

Sorafenib is a type II multi-kinase inhibitor (RAF, PDGFR, VEGFR, KIT) 

that targets FLT3-ITD but not other oncogenic FLT3 mutants. A clinical 

study showed that combination of sorafenib with induction chemotherapy 

displayed 93% CR rate [138]. A randomized phase II clinical trial using 

sorafenib as a maintenance therapy led to reduce risk of relapse and death 

after ASCT in patients with FLT3-ITD mutant AML [139]. It is worth 

mentioning here that sorafenib has been approved by the FDA for the 

treatment of hepatocellular and renal cell carcinomas. 

Quizartinib is an FLT3-selective type II TKI (AC220) that can selectivity 

inhabit FLT3 ITD but not TKD mutations. Quizartinib has demonstrated 

activity against other RTKs such as KIT and PDGFR [140]. Combinatorial 

clinical studies of quizartinib with hypomethylating drug (5-azacitidine) or 

low-dose cytarabine resulted in an overall response rate of 75% in patients 

with R/R AML harboring the FLT3-ITD mutation [141]. In 2019, Japan has 

approved the use of quizartinib for R/R AML patients with FLT3‐ITD. 

 

Mechanisms of resistance of FLT3 inhibitors 

The promising preclinical effect of FLT3 inhibitors have allowed their fast 

entry to the clinical trials. Although several FLT3 inhibitors have shown 

promising results, the vast majority of these inhibitors have displayed limited 

clinical benefits. The most common reason attributed to low therapy response 



39 

is the development of therapy resistance. Resistance to TKIs can be classified 

into two main categories namely primary and secondary, also known 

acquired, resistance based on their mechanisms.  

TKIs primary resistance to AML therapy is originated from different 

mechanisms. FLT3 mutations, persistent activation of compensating survival 

pathways, and BM-stromal cells derived resistance have been reported to be 

implicated in the TKIs resistance. For example, point or compound mutations 

in FLT-3TKD as well as co-occurrence with FLT3-ITD mutations in the 

same blast clones may develop primary resistance to several FLT3 inhibitors 

[142, 143]. In addition, FLT3-ITD627E and FLT3-ITD-TKD dual mutations 

have been shown to induce Mcl-1 and Bcl2-mediated resistance to apoptosis 

respectively [144, 145]. Moreover, the role of BM niche has been postulated 

as another mechanism of primary resistance. Expression of FL by BM stroma 

after chemotherapy stimulates AML cells with FLT3 mutations and activate 

ERK signaling pathway as well as expression of CXCR4 contributing to 

resistance development of FLT3 inhibitors [146-148]. Co-existence of some 

other mutations. which are not related to FLT3, such as those in cyclin D3 

have been reported with FLT3-ITD-positive AML patients who developed 

resistance to the FLT3 inhibitor PLX3397 [143]. 

On the other hand, secondary resistance might arise due to some specific 

mutations that alter the conformational change of the active site of the 

receptor and thereby preventing TKI binding. Single amino acid substitution 

at (N676K) within the FLT3 kinase domain displayed resistance to 

midostaurin [149]. Point mutations have been also reported to mediate 

secondary resistance of different TKIs. For instance, mutation at gatekeeper 

residue (F691) or at codon 835 of the activation loop of the FLT3 receptor 

have been documented in FLT3-ITD AML patients [150, 151]. Acquired 

mutations in JAK1, JAK2, or JAK3 in patients with FLT3-ITD mutations 

have been linked to sorafenib, midostaurin, or quizartinib resistance [152]. 

Activation of parallel signaling pathways has been suggested to mediate 

secondary TKIs resistance. A study conducted by Zhang et al. has 

demonstrated that phosphorylated FLT3 was not able to induce a significant 

inhibition of ERK, AKT, S6K, and STAT downstream effectors in sorafenib-
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resistant cell lines with acquired point mutations in the TKDs of the FLT3 

gene. This might be explained at least in part by counter activation of 

MEK/ERK and/or AKT/S6K pathways [153].  In light with these findings, 

Yang et al. has also shown that FLT3 mutant cells co-cultured with BM 

stroma or exogenous FL exhibited ERK phosphorylation that could not be 

inhibited with doses of quizartinib or sorafenib mediated full inhibition of 

AKT and FLT3 phosphorylation. Another report has pointed out the aberrant 

expression of PI3K/mTOR pathway in developing secondary resistance to 

sorafenib [97]. FLT3-ITD cells treated with FLT3 inhibitors displayed 

increased phosphorylation of the RTK AXL thereby activating STAT5 

signaling pathway leading to FLT3 inhibitor resistance [132].  

Although TKIs have provided a new class of novel therapeutic approach, 

resistance is still the main dilemma that should be addressed to further 

boosting this type of treatment strategy. Understanding the mechanism of 

developing resistance against FLT3 inhibitors would allow the development 

of better inhibitors or combination therapies that can overcome drug 

resistance.  
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Paper I  
 

Src-like adaptor protein 2 (SLAP2) binds 

to and inhibits FLT3 signaling 
 

Aim  

This paper aims to investigate the role of SLAP2 in regulating FLT3 stability 

and activation as well as effects on the downstream signaling in acute 

myeloid leukemia. 

 

Introduction 

FLT3 inhibitors have shown promising results in treating AML patients in 

clinical trials. However, many patients relapse and develop resistance 

after short-term of treatment.  Resistance linked to FLT3 is well documented, 

and therefore a better understanding of FLT3 downstream signal transduction 

pathways is key to identify an alternative target for the treatment of AML 

patients carrying oncogenic FLT3. Signal transducing adaptor proteins are 

essential intracellular transmembrane molecules that provide an important 

scaffold to initiate cascade of key signaling pathways. Autophosphorylation 

of several tyrosine residues as a result of FLT3-ligand binding provides 

docking sites for several adaptor proteins containing SH2 domains [82, 154]. 

For example, GRB2-FLT3 interaction provides a docking site for GAB2 and 

results in downstream signaling [92]. On the other hand, FLT3 binding to the 

suppressor of cytokine signaling 6 (SOCS6) initiates ubiquitination followed 

by degradation of FLT3 and therefore inhibits the downstream signaling.  

Chapter 5 
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SRC-like adaptor protein 2 (SLAP2) is an adaptor protein belongs to the 

SLAP family proteins. SLAP2 consists of 261 amino acids and shares 36% 

structural similarity with its homolog SLAP [155]. SLAP and SLAP2 have 

similar structures with SRC family kinases (SFKs) [156]. They consist of 

SRC homology 2 domain (SH2), SRC homology 3 domain (SH3), N-

terminal region, and a unique C-terminal tail that mediates association with 

the CBL ubiquitin E3 ligase but lacks tyrosine kinase domain [157]. The SH2 

and SH3 are essential for interaction with multiple proteins. For instance, 

SLAP associates with the type III RTKs FLT3, KIT, PDGFRB, and CSF1R 

after stimulation with their respective ligands [158]. This association takes 

place through binding of phosphorylated tyrosine residues in the receptor to 

the SH2 domain of SLAP. SLAP plays a fundamental role in the regulation 

of T- and B-cell development [159, 160] while SLAP2 has been shown to be 

involved in the regulation of different signaling pathways; for example, 

associating with CSF1R through its SH2 domain which leads to 

downregulation of the receptor [161]. A study conducted by Pandey et al. has 

demonstrated that SLAP2 can negatively regulate T cell receptor signaling 

transduction pathway [156]. SLAP2 is expressed in different types of 

hematopoietic cells and tissues including leukocytes, monocytes, platelets, 

T- and B-cells as well as in lung, spleen, and the thymus [162, 163]. 

However, the role of SLAP2 in regulating FLT3 signaling in AML has not 

been revealed yet. Therefore, we hypothesized that SLAP2 might take part 

in regulating the signaling of the RTK FLT3. 

 

Results and discussion  

Previous reports indicated that activation of FLT3 results in phosphorylation 

of FLT3 on several tyrosine residues which recruit SH2 domain-containing 

signaling proteins. To identify novel FLT3 interacting proteins, we used a 

panel of SH2 domain-containing proteins including VAV2, SLAP2, CRK, 

ITK, TEC, NCK2, and CRKL. Then we have transfected COS-1 cells either 

with plasmids for FLAG-tagged of these panel of adaptor proteins or FLT3-

WT and empty vector. Immunoblotting results exhibited strong SLAP2 

association with FLT3 following ligand-stimulation. Several studies have 

shown that SLAP, a close homolog of SLAP2, associates with FLT3 in a 
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phosphorylation-dependent manner as well as interacts with proximal 

components of the TCR and BCR signaling complexes. This association is 

mediated through the SH2 domain of SLAP and tyrosine-phosphorylated 

residues of the receptors [164, 165]. In order to examine the interaction 

between SLAP2 and FLT3, we transiently expressed SLAP2 and FLT3 in 

COS-1 cells. We observed that FLT3-SLAP2 interaction was a ligand-

dependent in FLT3-WT cells while oncogenic FLT3-ITD association with 

SLAP2 was ligand-independent. These results suggest that FLT3-SLAP2 

interaction is dependent on FLT3 activation.  

Several tyrosine residues in the intracellular domain of FLT3 get 

phosphorylated when its ligand binds to the receptor, leading to creating 

docking sites for predominantly SH2 domain-containing signaling proteins 

[166]. In order to identify the SLAP2 binding sites in FLT3, synthetic 

phosphopeptides corresponding to known FLT3 tyrosine phosphorylation 

sites were used in peptide fishing assay. We found that SLAP2 association 

with FLT3 occurs through different phosphotyrosine residues namely: 

pY589, pY591, pY599, and pY919 with stronger association being detected 

with pY589 and pY591. To verify our finding, we checked the SLAP2-FLT3 

association using a double phosphorylated peptide, pY589/pY591, which 

displayed higher affinity compared to either pY589 or pY591 alone. 

Moreover, mutation in pY589/pY591 residues significantly decreased this 

association. Since Y589, Y591, and Y599 were previously reported as SRC 

binding sites in FLT3 [93, 118], this suggest that SLAP2 might compete with 

SRC for binding to these sites, and loss of SLAP2 expression activates FLT3 

signaling through SRC. These results indicate that SLAP2-FLT3 association 

mostly occurs through two phosphotyrosine residues: pY589 and pY591. To 

examine whether the SLAP2 SH2 domain has a role in the association with 

the phosphotyrosine residues, we generated an SH2 domain mutant of 

SLAP2 that does not bind phosphotyrosine (SLAP2-R121E). 

Immunoprecipitation experiments showed that FLT3 and SLAP2 interaction 

in the SLAP2 SH2 domain mutant was eliminated compared to the Wild 

SLAP2 which was able to interact with ligand-stimulated FLT3-WT 

indicating that SLAP2 SH2 domain is essential for the interaction with FLT3.  
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FLT3 plays a vital role in controlling different cellular processes such as 

proliferation and differentiation [167]. To assess the biological role of 

SLAP2-FLT3 interaction, we generated Ba/F3 and 32D cells expressing 

FLT3-ITD along with an empty control vector or a vector expressing SLAP2. 

Initially, we checked whether SLAP2 plays a role in FLT3-ITD-mediated 

cell proliferation. We observed that cells expressing SLAP2 significantly 

decreased FLT3-ITD-dependent cell proliferation in both Ba/F3 and 32D cell 

compared to the empty vector-transfected cells. However, SLAP2 expression 

showed no effect on the level of apoptosis upon FL depletion. These results 

suggest that SLAP2 expression reduces FLT3-ITD-mediated cell 

proliferation without inducing apoptosis.  Next, we sought to understand the 

influence of SLAP2 in FLT3-ITD mediated cellular transformation in vitro 

and in vivo models. Our results showed that SLAP2 expression significantly 

reduced FLT3-ITD-dependent colony formation in semi-solid medium, 

tumor volume, and tumor weight in the xenograft mouse model. Thus, we 

concluded that SLAP2 acts as a negative regulator of FLT3.  

To determine whether SLAP2 is implicated in FLT3-ITD-induced aberrant 

global gene expression, we analyzed microarray data for mRNA expression 

of FLT3-ITD/empty vector and FLT3-ITD/SLAP2 cells. SLAP2-expressing 

cells have demonstrated specific gene signature, which is associated with the 

loss of STK33, ALK or PDGFR indicating that SLAP2 is involved in 

controlling oncogenic signals from FLT3-ITD. Furthermore, using AML 

patient data, we found that SLAP2 expression increased in AML patients 

with FLT3-ITD mutation and patients who have low SLAP2 expression 

displayed intermediate or poor prognosis indicating that SLAP2 plays a 

crucial role in FLT3-ITD driven AML. 

 

It has been shown that association of adaptor proteins to the activated FLT3 

receptor results in activation or inhibition of downstream signaling. For 

instance, association of GRB10 and SRC family kinases to FLT3 positively 

regulate FLT3 downstream signaling while SOCS2 and LNK inhibit FLT3 

signaling [168-171]. To study the effect of SLAP2 on FLT3 signaling, we 

stably transfected Ba/F3 and 32D cells expressing FLT3-WT with an empty 

control vector or a vector expressing SLAP2. Thereafter, we examined 
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RAS/ERK, PI3K/AKT and p38 signaling pathways using western blot. 

Interestingly, SLAP2 expression significantly reduced ERK and AKT 

phosphorylation as well as p38 phosphorylation. Moreover, because several 

studies have shown that FLT3-ITD mediates phosphorylation and activation 

of STAT5 [172, 173], we sought to examine the impact of SLAP2 expression 

on STAT5-mediated oncogenic FLT3 signaling. We used cells expressing 

FLT3-ITD/empty vector and cells expressing FLT3-ITD/SLAP2. Our results 

showed a substantial decrease in STAT5 phosphorylation in SLAP2 

expressing cells compared to empty vector-transfected cells. These findings 

suggest that SLAP2 negatively regulates FLT3 signaling by inhibiting the 

phosphorylation of signal transduction molecules of the receptor. 

Our group has previously found that SLAP modulates FLT3 and KIT 

stability [158, 165]. Therefore, we asked whether SLAP2 has a role in the 

regulation of FLT3 stability. Ubiquitination and degradation assays were 

performed and demonstrated that SLAP2 expression increased FLT3 

degradation through enhancing ubiquitination. This is in line with other 

findings where SLAP2 downregulates CSF1R signaling by recruiting the 

ubiquitin E3 ligase CBL to the receptor leading to accelerating ubiquitination 

and degradation [161]. These data demonstrate that SLAP2 expression 

decreased FLT3 stability which might explain the effect on cellular signaling. 

In our current study, we propose a mechanism of FLT3 regulation by SLAP2 

ubiquitin ligase. SLAP2 SH2 domain associates with FLT3 through 

phosphotyrosine residues Y589 and Y591 in FLT3 and results in increase 

FLT3 ubiquitination and degradation as well as inhibits ERK, AKT, and 

STAT5 phosphorylation. Taken altogether, we show that SLAP2 acts as a 

negative regulator of FLT3-mediated oncogenic signaling and this can be 

explained by competition with SRC and destabilization of FLT3. Thus, 

modulation of SLAP2 expression levels could potentially synergize FLT3 

inhibitors to treat FLT3-ITD positive AML patients. Moreover, identification 

of novel interacting proteins will contribute to our better understanding of 

FLT3 downstream signaling and will provide an alternative approach to 

develop novel therapy for FLT3-ITD positive AML.  
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Paper II 
  

 

ABL2 suppresses FLT3-ITD-induced 

cell proliferation through negative 

regulation of AKT signaling 
 

Aim  

The aim of this paper is to examine the role of ABL2 in oncogenic FLT3 
signaling.  

 
Introduction 

Although several FLT3 inhibitors have been developed and displayed 

promising results in clinical trials against acute leukemia, many patients 

develop drug resistance and have a poor prognosis. The development of drug 

resistance such as the acquisition of point mutations in the kinase domain and 

upregulation of alternative signaling pathways remains the major obstacles 

to the successful management of targeting FLT3 [174, 175]. It has been 

known that FLT3 signaling is tightly regulated by associating proteins 

including protein kinases, protein phosphatases, and adaptor proteins [162, 

176]. For example, protein kinases such as FYN [177] enhance the oncogenic 

FLT3-ITD signaling while the protein kinase CSK partially inhibits the 

mitogenic signaling [178]. Furthermore, binding FLT3 to SOCS2 adaptor 

protein leads to inhibit FLT3 downstream signaling whereas the interaction 

with GRB10 positively regulates downstream signaling [169, 179]. This line 

of evidence demonstrates the important role of the associating proteins in 

Chapter 6 
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regulating FLT3. Thus, gaining more knowledge about different adaptor 

proteins and their roles controlling FLT3 signaling might be an alternative 

approach to target mutated FLT3 in AML. 

The mammalian Abelson (ABL) kinases, ABL (ABL1), and Arg (ABL2) are 

non-receptor tyrosine kinases which have been demonstrated to play 

important roles in various biological processes including cell proliferation, 

survival, morphology, and apoptosis [180]. ABL kinases have been shown 

to be involved in regulating cell proliferation downstream signaling of the T- 

and B-cell receptors [181]. The BCR–ABL1 fusion gene has been identified 

in different types of leukemias, including CML, ALL, and rarely in AML 

[182, 183]. Furthermore, the oncogenic form of ETV6-ABL2 has been 

identified in T-ALL and to less extent in AML [180, 184]. Accumulating 

studies found that expression of ABL family kinases is upregulated in solid 

tumors; for instance, pancreatic cancer, anaplastic thyroid cancer, and 

colorectal cancer [185-187]. Several studies have shown that ABL family 

kinases are implicated in cancer cell invasion, proliferation, and survival by 

regulating EGFR, IGFR, and HER2 [188, 189]. However, the impact of ABL 

family kinases on FLT3 signaling has not been investigated yet. Therefore, 

we hypothesized that ABL2 might play a role in FLT3 signaling. 

 

Results and discussion  

Activation of RTKs results in phosphorylation of different residue sites 

which serve as binding sites for SH2 domain-containing signaling proteins 

[190]. Using SH2 domain array screening, we have identified ABL2 as an 

FLT3 binding protein. Moreover, ABL2 showed affinity to different binding 

sites in FLT3 including pY726, pY793, and pY842. To confirm the 

association between ABL2 and FLT3, we co-expressed FLAG-tagged ABL2 

with FLT3-WT or FLT3-ITD in COS-1 cells. We observed that FLT3 ligand 

stimulation exhibited a strong ABL2-FLT3 association while the association 

with FLT3-ITD was ligand-independent. Consequently, our results suggest 

that FLT3 kinase activity is essential for the interaction with ABL2, and this 

association was through the ABL2 SH2 domain.  



49 

Previous studies published by our group identified the pY793 as FLT3 

autophosphorylation site and found that GRB10-FLT3 association through 

pY793 residue phosphorylates GRB10 which binds p85 which in turn leads 

to activation of PI3-kinase and activation of AKT pathway [166, 179]. Thus, 

this suggests that binding ABL2 to FLT3 through the binding site Y793 

might influence activity of the PI3K pathway. 

It is well known that ABL kinases activate downstream signaling of growth 

factor receptors which mediates many cell responses, such as proliferation, 

migration, and cell transformation [187]. To examine the effect of ABL2 in 

oncogenic FLT3-ITD-mediated biological functions, we generated Ba/F3 

cells stably expressing FLT3-ITD and ABL2 or empty vector and performed 

cell viability, apoptosis, and colony formation assays. Compared to the 

empty vector, cells expressing ABL2 displayed significantly reduced cell 

viability as well as colony formation. On the other hand, ABL2 expression 

neither increased nor decreased the fraction of apoptotic cells. These data 

suggest that ABL2 expression negatively regulates FLT3-ITD-mediated cell 

viability and colony formation. Our findings are consistent with other reports 

showed that loss of ABL2 enhanced cell proliferation leading to accelerating 

tumor growth in vivo in breast cancer while depletion of ABL2 reduced cell 

growth in non-small cell lung carcinoma cell lines [191, 192]. These data 

indicate that the effect of ABL2 kinase in regulating cell survival and cell 

proliferation might be cell or context dependent.   

 

It has been reported that activation of the oncogenic BCR–ABL1 results in 

activating many signaling pathways including RAS, STAT3, and the 

PI3K/AKT signaling pathways [180]. To assess the role of the ABL2 in 

regulating the FLT3-induced signaling pathways, we generated Ba/F3 cell 

lines expressing FLT3-WT and ABL2 or empty vector. Immunoblotting data 

showed that expression of ABL2 selectively reduced AKT phosphorylation 

without affecting the ERK or p38 pathway. These data indicate that ABL2 

expression negatively regulates AKT phosphorylation. Since most of the 

associating proteins are implicated in the activation and stability of 

interacting receptors via recruiting the ubiquitination machinery [74, 165], 

we sought to examine the role of ABL2 in regulating FLT3 protein stability. 
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Our results showed no significant difference in FLT3 degradation in cells 

expressing ABL2 compared with the control cells. In addition, we did not 

observe any effect of ABL2 expression in the phosphorylation or 

ubiquitination of FLT3. Taken together, our findings suggest that ABL2 

expression does not influence FLT3 stability but partially suppresses FLT3 

downstream signaling through PI3K/AKT pathway. In this context, it is 

worth mentioning here that we did not study the mechanism behind 

PI3K/AKT regulation, but this can be explained by the ability of ABL2 to 

compete for binding FLT3 with proteins essential for activation of the AKT 

pathway or it could be that ABL2 can directly target FLT3 downstream 

signaling proteins. Therefore, further study is needed to investigate the 

mechanism behind PI3K/AKT regulation. 

 

In summary, this paper show that overexpression of ABL2 significantly 

decreased FLT3-ITD induced cell proliferation and colony formation. In 

contrast to ABL1 close homology, ABL2 found to be a negative regulator of 

FLT3 signaling through the regulation of AKT pathway.  
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Paper III  
 

 

Tyrosine 842 in the activation loop is 

required for full transformation by the 

oncogenic mutant FLT3- ITD  
 
Aim  

The aim of this study is to investigate the role of the Y842 residue in FLT3 
signaling.  

 
Introduction 

The activation loop is a short and well conserved amino acid located in the 

kinase domain [193]. The activation loops usually contains one to three 

tyrosine residues that can function as phosphorylation sites [194]. It is well 

known that phosphorylation of several tyrosine residues is critical for 

activating RTK signaling in many cases. For instance, phosphorylation of 

activation loop tyrosine residues increases substrate phosphorylation of the 

fibroblast growth factor receptor and activates insulin receptor [195]. 

However, although it has been shown that activation loop has no role in the 

activation and phosphorylation of some type III RTKs such as KIT, it reduces 

the transformation capacity of the oncogenic D816V mutant [196]. Point 

mutations in the TKD of FLT3 is found in 7–10% of AML patients, most 

commonly at D835, and the resulting mutants are resistant to some FLT3 

TKI [197]. Moreover, point mutations in TKD within FLT3/ITD allele is 

considered as one of the most important sources of resistance to sorafenib or 
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AC220 therapy [153, 198]. This might be due to the mutation-induced 

conformational changes of the catalytic domain which decreases its affinity 

for the FLT3 inhibitor [122]. One in vivo study conducted by Williams et al 

showed that FLT3/ITD Y842C mutation causes resistance to TKIs such as 

sorafenib and sunitinib [199]. Another study has demonstrated that FLT3-

Y842H mutation in Ba/F3 FLT3-ITD cells induces resistance to the TKI 

SU5614 [175]. In primary AML blast cells, the detection of Y842C mutation 

within the kinase domain of FLT3 constitutively activates FLT3 [113]. 

Although Y842F mutation seems to be rare in AML patients, it is still useful 

to detect and study different mutations in TKD at different residues which 

might help in developing FLT3 inhibitors that target TKD. 

 

Results and discussion  

Oncogenic mutations in FLT3 result in abnormal activation of survival and 

proliferation signaling [200]. To study the role of the activation loop Y842 

in FLT3, we generated a Y-to-F mutant (tyrosine to phenylalanine Y842F) 

and ectopically expressed in 32D myeloid cells. We observed that cells 

expressing mutant FLT3-ITD/Y842F displayed a significant reduction in cell 

proliferation compared to FLT3-ITD cells indicating that phosphorylation of 

the FLT3 activation loop is important for maintenance cell viability. Unlike 

FLT3-ITD cells, cells expressing FLT3-ITD/Y842F showed increased 

apoptosis. This is in line with previous findings showed that Y823F mutation 

of KIT, the mutation corresponding to Y842F in FLT3, decreased cell 

proliferation [201]. 

Several tyrosine residues have been implicated in oncogenic cellular 

transformation [202]. To this end, we have investigated the role of Y842F in 

FLT3- ITD-mediated cellular transformation. We used colony formation 

assay and found that expression of Y842F significantly reduced the number 

of colonies as well as the colony size compared to cells have only the FLT3-

ITD mutation. To verify our findings in vivo, we developed a mouse 

xenograft model and found that tumor formation was delayed concomitantly 

with reduced tumor weight in mice injected with mutant Y842F compared to 

the control mice. These results suggest that the phosphorylation of the 

activation loop tyrosine is important in FLT3-ITD-mediated transformation.  
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Given that Y842F mutation reduced cell viability, colony formation and 

tumor formation in FLT3-ITD cells, we hypothesized that activation loop 

mutation Y842F might impact FLT3-ITD-related genes expression. 

Interestingly, gene expression studies demonstrated that the expression of 

Y842F in cells led to suppression of anti-apoptotic genes. Furthermore, in a 

gene set enrichment analysis (GSEA), we found downregulation of several 

oncogenic pathways including KRAS, SRC and loss of p53 in FLT3-

ITD/Y842F cells compared to cells have only FLT3-ITD mutation. These 

data indicate that FLT3-ITD/Y842F has an impaired oncogenic capacity. 

Activation of FLT3 upon ligand stimulation activates intracellular signaling 

pathways including the Ras/ERK and PI3K/AKT leading to cell proliferation 

and activation. Because the oncogenic FLT3 is constitutively active, it 

induces the same signaling pathways as FLT3-WT plus STAT5 signaling 

[82]. To investigate how the Y842F affects signal transduction, the 

phosphorylation of AKT and ERK were examined using western blot. We 

found that cells expressing Y842F suppressed the RAS/ERK pathway. 

However, we have not seen any difference of AKT phosphorylation between 

cells expressing Y842F mutant and cells expressing only FLT3-WT/FLT3-

ITD. Moreover, there was no reduction of STAT5 phosphorylation in cells 

expressing Y842F mutant. Since the activation loop Y842 in FLT3 

corresponds to activation loop Y823 in KIT, we checked the effect of Y842F 

on FLT3 activation. As expected, no change was detected in the kinase 

activity of FLT3 in cells expressing Y842F similarly to previous findings of 

Y823F in KIT [196]. However, Y823F decreased ERK, AKT, and P38 

signaling while Y842F only suppressed ERK signaling.  

It is known that phosphorylation of ERK by FLT3 can be induced mainly 

through GAB2 and SHP2 [203]. Therefore, we checked the GAB2 and SHP2 

phosphorylation in presence of Y842F mutant and found that cells 

expressing Y842F mutant substantially decreased SHP2 phosphorylation but 

not GAB2 phosphorylation. Since SHP2 can associate with phosphotyrosine 

Y599 in FLT3 [93], we examined the FLT3-Y599 phosphorylation in cells 

expressing FLT3-WT or Y842F mutant. No decrease in FLT3-Y599 

phosphorylation has been detected in cells expressing Y842F indicating that 

the activation loop tyrosine does not regulate FLT3-Y599 phosphorylation.  
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However, it could be speculated that the activation loop Y842 in FLT3 

functions as a secondary binding site. Collectively, these data suggest that 

Y842 in the activation loop is important for SHP2 activity and thereby 

regulates the RAS/ERK pathway. 

In summary, our findings show that activation loop tyrosine residue Y842 in 

FLT3 plays a crucial role in SHP2 in FLT3-ITD-mediated transformation 

suggesting that drugs targeting SHP2-Y842 binding or SHP2 activity might 

improve the outcomes of patients with acute leukemia. Although Y842F 

mutation seems to be rare, we have added Y842F mutation to the list of 

mutations in FLT3 that warrant additional investigations to develop future 

targeted therapy in AML patients.   
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Paper IV  

 

 

The ALK inhibitor AZD3463 effectively 

inhibits growth of sorafenib-resistant 

acute myeloid leukemia 
 

Aim 

The aim of this paper is to investigate the efficacy of the ALK inhibitor 

ADZ3463 in FLT3 in acute myeloid leukemia  

 

Introduction 

Patients with AML FLT3-ITD mutation have a high relapse rate and poor 

overall survival after chemotherapy treatment and stem cell transplantation. 

Several FLT3 inhibitors have been identified and tested in clinical trials. 

However, FLT3 inhibitors did not achieve robust clinical outcomes due to 

acquired resistance after treatment [99]. Acquired secondary mutations 

in FLT3-TKD at D835 have been identified in FLT3-ITD patients relapsed 

after sorafenib therapy [151].  ALK inhibitor AZD3463 is an anaplastic 

lymphoma receptor tyrosine kinase inhibitor. One study showed that 

AZD3463 inhibits neuroblastoma growth by overcoming crizotinib 

resistance [204]. Recently, another study showed that AZD3463 sensitizes 

breast cancer cells to rapamycin and leads to cancer cell apoptosis [205]. 

However, the function of this inhibitor has not been examined in relation to 

FLT3 in AML. Here, we identify ALK AZD3463 as a novel inhibitor 

targeting FLT3 ITD as well as overcoming sorafenib resistance in AML. 
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Results and discussion 

The aim of this study is to identify a novel therapy for FLT3-ITD-dependent 

AML and to overcome the secondary resistance exerted by sorafenib in AML 

patients carrying FLT3-ITD mutations. It has been reported that aberrant 

activation of the PI3K/mTOR pathway induces drug resistance in leukemia 

[206]. Our group has previously reported that sorafenib-resistant cells 

acquired a secondary mutation in the kinase domain of FLT3 (D835Y) and 

displayed upregulation of the PI3K/mTOR pathway [97]. To this end, we 

have generated resistant cells derived from the AML cell line, MOLM-13, 

by subjecting the cells to long-term treatment with sorafenib. In order to 

characterize the sorafenib-sensitive and -resistant MOLM-13 cells, Peptide 

Kinase Profiling assay was performed. We observed upregulation of kinase 

activity in sorafenib-resistance cells for peptide substrates that are selective 

to PDGFRB, CSK, and FES compared to sorafenib-sensitive cells. In 

addition, treating cells with sorafenib for 16 hours inhibits tyrosine 

phosphorylation of those peptide substrates in sorafenib-sensitive cells but 

not in sorafenib-resistant cells. These findings suggest that tyrosine kinases 

phosphorylate several substrates selective for PDGFRB, CSK, and FES that 

are involved in sorafenib resistance.  

In order to determine the kinase-dependency of MOLM-13-sorafenib-

sensitive and-resistance cells, cells were treated with a panel of 378 protein 

kinase inhibitors using different concentrations of kinase inhibitors and the 

viability of cells was measured using PrestoBlue fluorescence assay. 

MOLM-13-sorafenib-sensitive and-resistant cells exhibited significant 

reduction in viability at concentrations (100 and 1000 nM). Besides AML 

cell lines, we also used a lymphoid cell line, Jurkat cell line, to exclude non-

specific inhibition on AML. We found that many inhibitors targeting protein 

tyrosine kinases including ALK inhibitor AZD3463 selectively inhibited the 

growth of both sorafenib-sensitive and-resistant cells at 100 nM and 1000 

nM concentrations. To verify our finding, we checked the EC50 of AZD3463 

for both sorafenib-sensitive and-resistant cells. AZD3463 displayed an EC50 

value around 31 nM and 26 nM respectively. Given that both cells exhibited 

similar effective inhibition by AZD3463, it was therefore selected for further 
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studies based on its lowest EC50 values among other inhibitors on MOLM-

13-Sorafenib resistant cells. Previous findings have shown that AZD3463 is 

a promising therapeutic agent against activating ALK mutations in 

neuroblastoma [204]. Therefore, we checked the ALK expression in human 

MOLM-13, MV4-11, THP-1 and murine Ba/F3 or 32D AML cell lines. 

Using western blot, we found that ALK is expressed in the human cell lines 

but not in the murine cell lines. Therefore, we used the Ba/F3 cell line lacking 

ALK expression as a control for further experiments.  

AZD3463 has been previously shown to decrease proliferation and induce 

apoptosis in neuroblastoma cells carrying ALK mutation [204]. Moreover, a 

recent publication found that combination of AZD3463 with rapamycin-

induced apoptosis in breast cancer cells [205]. These findings are in line with 

ours where AZD3463 inhibited the growth of both sorafenib-sensitive and-

resistant MOLM-13 cells as well as induced apoptosis in dose-dependent 

manner suggesting that AZD3463 plays a crucial role in cancer cell survival. 

Furthermore, treated FLT3-ITD primary AML cells with AZD3463 induced 

apoptosis. This suggests that AZD3463 is an active drug against FLT3-ITD-

dependent AML. 

Because Tyrosine kinases share a high degree of structural homology in the 

kinase domain, inhibitors targeting the ATP-binding site may not be selective 

for a single kinase. Therefore, a specific inhibitor that targets FLT3 ATP-

binding site is increasingly needed. Provided that MOLM-13 cells are 

dependent on oncogenic FLT3-ITD signaling, and AZD3463 induced 

apoptosis as well as growth inhibition, we hypothesized that AZD3463 might 

inhibit FLT3. Using molecular docking, we were able to demonstrate that 

AZD3463 occupies the ATP-binding site of FLT3 as much as it does with 

the selective FLT3 inhibitor AC220. To verify the specificity of AZD3463 

for FLT3, we hypothesized that AZD3463 might inhibit FLT3 in MOLM-13 

cells carrying oncogenic FLT3-ITD. 

To this end, we have stably transfected FLT3-ITD in Ba/F3 cell line. 

Expression of FLT3-ITD was verified by western blotting. We used Ba/F3 

cells expressing mutated ALK (ALK-F1174L) as a positive control then we 
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treated the cells with different concentrations of AZD3463 for 48h and found 

that Ba/F3-FLT3-ITD cells were more sensitive to the drug compared to 

Ba/F3-ALK-F1174L cells. These data suggest that AZD3463 is a potent 

inhibitor of FLT3-ITD.  

Next, we wanted to evaluate the specificity of AZD3463 on FLT3-ITD. A 

panel of AML cell lines expressing FLT3-ITD or FLT3 -WT namely: 

MOLM-13, MV4-11, PL-21, GDM-1, MOLM-16, NOMO-1, THP-1, KG-1, 

HL-60, and SKM-1 were examined for cell growth after AZD3463 treatment. 

We detected selective inhibition for AZD3463 in MOLM-13 and MV4-11 

cells which both express FLT3-ITD indicating that AZD3463 is a selective 

inhibitor of FLT3-ITD. Moreover, treatment of MOLM-13, Ba/F3-FLT3-

ITD and THP-1 with different concentrations of AZD3463 reduced cell 

proliferation in cells expressing FLT3-ITD but not THP1 cells expressing 

FLT3-WT. 

It is well known that FLT3-WT is an important key player for normal 

hematopoiesis [207]. To check if AZD3463 has an inhibitory effect on FLT3-

WT, we first stably transfected FLT3-WT in Ba/F3 cell line. We then 

examined the role of AZD3463 in signaling downstream of FLT3-WT as 

well as of FLT3-ITD (including AKT, ERK, and p38) in MOLM-13, MV4-

11, THP-1 as well as Ba/F3 cells transfected with FLT3-WT treated with the 

AZD3463 by western blotting. We found that AZD3463 blocked the 

phosphorylation of FLT3 and inhibited the activation of AKT, ERK1/2, and 

p38 signaling pathways in both MOLM-13 and MV4-11 cell lines in a dose-

dependent manner. However, AZD3463 was unable to inhibit ligand-induced 

FLT3 activation, as well as downstream signaling, in MOLM-13, THP, or 

FLT3-WT expressing Ba/F3 cells. This effect can be explained by the fact 

that MOLM-13 cells contain one copy of FLT3-WT in addition to the FLT3-

ITD mutation while MV4-11 cells carry only the FLT3-ITD mutation. This 

indicate that AZD3463 selectively inhibits oncogenic FLT3-ITD but not 

FLT3-WT. 

Single agent treatment by FLT3 inhibitors showed limited anti-leukemic 

activity in clinical studies and displayed secondary resistance and relapse 
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[208, 209]. Several studies highlighted that combination therapy is a way to 

enhance the treatment efficiency and overcome the resistance. For example, 

using midostaurin in combination with intensive chemotherapy has been 

shown to be associated with improved remission rates [210]. Similar data 

were also found in a clinical trial that a combination of crenolanib combined 

with chemotherapy increased the CR rate in FLT3-mutated AML patients 

[211]. In our study, we have investigated the efficacy of AZD3463 in 

combination with conventional chemotherapy agents. We combined 

different concentrations of the chemotherapeutic agents; cytarabine, 

daunorubicin, vincristine, cyclophosphamide, methotrexate, 6-

mercaptopurine and doxorubicin HCL or dexamethasone and AZD3463 in 

MOLM-13, MV4-11 cells, and using PL-21 cells as a control. We observed 

parallel effect when AZD3463 combined with cytarabine, daunorubicin, or 

vincristine in reducing the cell growth, while the rest of chemotherapeutic 

agents did not show any noticeable effect.  

To test the effect of AZD3463 on cell proliferation in vivo, we used animal 

models with xenografts, where we injected MOLM-13 cells subcutaneously. 

After one week, mice were treated by injection of 15 mg/kg AZD3463 or 

vehicle for 6 days. Interestingly, mice treated with AZD3463 showed 

significant delay of tumor growth and reduced tumor weight and volume 

compared to the vehicle group.  

Taking all together, we showed in this study that AZD3463 selectively 

inhibits the activation of FLT3-ITD and does not affect FLT3-WT 

downstream signaling. Furthermore, we showed that AZD3463 effectively 

inhibited FLT3-ITD in AML cells that were resistant to sorafenib. 

Collectively, this study suggests that AZD3463 is a promising inhibitor to 

target FLT3-ITD positive AML. However, more studies should be performed 

in vitro including gene expression for the cells treated with AZD3463 as well 

as the survival advantage and toxicity in vivo and investigate the possibility 

of developing acquired resistance to AZD3463 would give a better 

understanding about the inhibitor. 
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Concluding remarks 

 

Our understanding of AML biology has comprehensively increased over the 

last decade. While the development of FLT3 inhibitors has substantially 

improved the outcomes of FLT3-mutated AML patients, the emergence of 

resistance addresses a significant challenge. Mutations as well as persistent 

activation of downstream signaling pathways of FLT3 contribute to 

resistance to FLT3 inhibitors. Understanding the oncogenic signaling at 

multiple levels of AML is key to develop novel FLT3-targeted therapies.  

In this thesis, we highlighted the importance of associating proteins in 

regulating the FLT3 signaling pathways. We have successfully identified 

SLAP2 and ABL2 as a potent FLT3 interacting proteins and found that they 

act as negative regulators of FLT3-mediated oncogenic signaling. Our 

findings suggest that targeting FLT3 receptor indirectly by modulation of 

receptor stability, activation, and downstream signaling using adaptors 

proteins can provide an alternative approach to develop novel therapy for 

FLT3-ITD positive AML.  

We have revealed the role of activation loop Y842 in FLT3 signaling and 

found that Y842 in the activation loop is important for binding and regulation 

of SHP2 activity and thereby regulating the RAS/ERK pathway. The Y842 

mutation is less frequent in AML patients but some studies reported that 

additional Y842 mutation to FLT3-ITD leads to development of resistance 

to FLT3 drugs.  Our findings suggest an important role of the activation loop 

tyrosine residue Y842 in SHP2-FLT3-ITD-mediated malignant 

transformation addressing the possibility of targeting SHP2-Y842 binding or 

SHP2 to improve the outcomes of patients with acute leukemia. 

Finally, we have identified ALK inhibitor AZD3463 as a novel target therapy 

for FLT3-ITD-dependent AML. Moreover, AZD3463 was found to inhibit 

the signaling in FLT3-ITD in AML naïve cells and sorafenib-resistant cells. 

Thus, AZD3463 displayed a promising effect that underscore its potential 

use in FLT3-ITD AML and warrants more investigations for further clinical 

evaluation.  
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Popular science summary 

 

Blood is formed predominantly by bone marrow during the entire life of an 

individual adult. The formation of blood is called hematopoiesis. 

Hematopoiesis can give rise to different types of an early-stage blood cells 

to which we call it immature blood cells and reside mainly in the bone 

marrow after formation, and more mature cells including the so-called white 

blood cells which play a very important role in the body’s immune system 

and circulate in blood vessels, lymph nodes, and tissues. These cells are 

controlled by the DNA which regulates all cellular functions such as cell 

division, movement, programed cell death, differentiation, etc. Any defect in 

the DNA might result in uncontrolled cell division which is basically known 

as cancer.   

Leukemia is a type of blood cancer characterized by multiple genetic 

alterations results from certain damage of the DNA at specific point of the 

hematopoiesis process. Leukemia can be classified into two main types 

according to the cell origin or the disease progression. Acute and chronic 

myeloid leukemia, AML and CML respectively as well as acute and chronic 

lymphoid leukemia ALL and CLL, respectively.  

Among all leukemias, our work is concerned about the AML type. AML is 

an aggressive blood cancer of immature blood cells that has complex mix of 

different genetic defects called mutations. This type of disease is mainly 

occurred in elderlies but can also be found in other ages in a low incidence. 

The reason behind AML is not fully understood but it is believed that any 

source with potential risk to damage the DNA such as radiation, certain 

chemotherapeutic drugs used in cancer therapy can increase the risk to 

develop AML.  

In my thesis, I shed the light on a protein called FLT3 which represents one 

of the most common genetic mutations in AML. FLT3 is a cell membrane 

tyrosine kinase receptor that functions to transduce signals to immature blood 

cells to become mature. This signal is transported through different signaling 

pathways that are comprised of various cellular proteins to eventually 
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translate the signal into cell functions, for instance, cell differentiation and 

division. In normal state, FLT3 works by binding to its respective ligand (FL) 

and initiates a signal transduction cascade. Mutations in the FLT3 such as 

internal tandem duplication (ITD) result in a ligand-independent constitutive 

activation of FLT3 and thereby abnormal non-stopped signals are created and 

transduced leading to uncontrolled cell differentiation and survival.  

Despite the major advancement in leukemia therapy over the past few years, 

disease recurrence, also known as relapse, remains the main obstacle. 

Although the development of targeted therapy such as tyrosine kinase 

receptor inhibitors including those used against FLT3 mutations has 

revolutionized AML therapy, patients usually develop drug-resistance 

shortly after treatment. Therefore, another approach to develop novel therapy 

against FLT3-resistant AML is increasingly needed. It is believed that the 

heterogeneity of AML reflected by its complexity with different mutations 

in FLT3 are the main drivers of targeted therapy related failure.  

Since activation of FLT3 is regulated by associating proteins which help 

transducing the FLT3 signals to the cells, it is of high significance to 

understand how associating proteins mediate FLT3 signaling. In our research 

work, we have identified SLAP2 as an interacting protein that displayed 

higher affinity to bind FLT3. Further studies using different biochemical and 

molecular biological techniques used to define the role of SLAP2 in 

controlling FLT3-mediated signaling. We found that SLAP2 controlled 

tumor cell growth signals and reduced tumor cell transformation via 

regulation of FLT3 receptor activity. Moreover, we have also identified 

another FLT3 associating protein called ABL2 and studied its role in 

regulating FLT3 signaling. Our results showed that the presence ABL2 with 

FLT3-ITD in cells decreased tumor growth and blocked a particular FLT3 

signaling called PI3K/AKT. This is of particular interest because targeting 

interacting proteins could be a potential alternative to target AML.    

In addition, we have also demonstrated through mutagenesis studies the role 

of amino acid called tyrosine (Y) located at the 842 position of the FLT3 

receptor (Y842) in regulating FLT3 signaling. We found that mutant Y842 

has an ability to decrease survival of AML cells and reduced FLT3 signaling 
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particularly ERK signaling as well as decrease the binding of FLT3 to SHP2. 

SHP2 is a potent binding partner of FLT3 required for mediating FLT3-ERK 

signaling. Our work elucidates the important role of Y842 for FLT3-

mediated RAS/ERK signaling and cellular transformation.  

Interestingly, using a screening panel of inhibitors for AML cells, we found 

that ALK inhibitor AZD3463, an inhibitor used preclinically for 

neuroblastoma with ALK mutation, blocked the FLT3 signaling pathways 

and selectively killed FLT3-ITD positive AML cells besides those cells who 

developed secondary resistance against sorafenib, an FLT3 inhibitor.  

In summary, we have demonstrated several targeting strategies and identified 

a novel inhibitor by which FLT3-ITD positive AML can be treated. 
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Populär sammanfattning  
 

Blod bildas huvudsakligen i benmärgen under hela livet i en vuxen individ. 

Bildandet av blodceller kallas hematopoes. Hematopoesen kan ge upphov till 

olika blodceller som i det tidiga stadiet av utveckling, är så kallade omogna 

blodceller. De förekommer huvudsakligen i benmärgen efter att de bildats 

och mer mogna celler, inklusive de så kallade vita blodkropparna som spelar 

en viktig roll i kroppens immunsystem, cirkulerar i blodkärl, finns i 

lymfnoder och i vävnader. Dessa celler kontrolleras av sitt DNA som reglerar 

alla cellulära funktioner, såsom celldelning, rörelse, programmerad celldöd, 

differentiering etc. En defekt i DNA:t kan resultera i okontrollerad 

celldelning (vad som i princip är känt som cancer). 

Leukemi är en typ av blodcancer som kännetecknas av flera genetiska 

förändringar som beror på skador på DNA:t vid specifika tidpunkter under 

hematopoesen. Leukemi kan delas in i fyra huvudtyper beroende på cellernas 

ursprung eller på sjukdomsprogressionen. Akut och kronisk myeloisk 

leukemi, AML respektive CML, samt akut och kronisk leukemi (ALL 

respektive CLL). 

Bland leukemierna har vårt arbete kretsat kring den typ som kallas AML. Det 

är en aggressiv blodcancer i omogna blodceller som har en komplex 

blandning av olika genetiska defekter som kallas mutationer. Detta är 

huvudsakligen en sjukdom bland den åldrande befolkningen men den 

förekommer sällsynt även bland yngre. Anledningen till varför vi får AML 

är inte helt känd men man tror att saker som riskerar att skada DNA:t, såsom 

strålning och vissa cellgifter som används som cancerterapi, ökar risken av 

att utveckla AML. 

I min avhandling, behandlar jag ett protein som kallas FLT3, vars gen är 

utgör en av de vanligast muterade generna i AML. FLT3 är ett cell-membran-

bundet receptor-tyrosin-kinas som har som uppgift att förmedla signaler till 

omogna blodceller så att de kan mogna ut. Denna signalering sker genom 

olika signaleringsvägar vars komponenter utgörs av olika cellulära protein 

som i slutänden omvandlar signalerna till cellulära funktioner, till exempel 
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celldifferentiering och celldelning. I normalt fall aktiveras FLT3 genom att 

binda sin ligand, FL, och en signalkaskad initieras. Mutationer i FLT3 (såsom 

den så kallade interna tandemduplikationen (ITD) resulterar i ligand-

oberoende, konstitutiv aktivering av FLT3 och därigenom förmedlas en 

abnorm oreglerad signal som leder till okontrollerad celldifferentiering och 

överlevnad. 

Trots stora framsteg inom leukemi-terapi under de senaste åren återfaller 

patienter i sjukdom vilket är ett hinder för framsteg inom behandlingen. Även 

om utvecklingen av målriktad terapi, såsom tyrosin-kinas-hämmare 

(inklusive de som används mot muterad FLT3) har revolutionerat terapin, så 

utvecklar patienter typiskt resistens mot läkemedelet kort efter att 

behandlingen har startats. Därför behövs nya sätt att angripa tyrosin-kinas-

hämmar-resistent AML. Man tror att heterogenitet i AML (som återspeglas i 

dess komplexitet med olika FLT3-mutationer) är den huvudsakliga orsaken 

till misslyckad riktad terapi.  

Eftersom aktiveringen av FLT3 signaler är reglerade med proteiner som 

associerar med receptorn och som hjälper till att fortleda signalen i cellen, så 

är det mycket viktigt att förstå hur de associerande proteinerna bidrar till 

FLT3-signalering. I vårt forskningsarbete har vi identifierat SLAP2 som ett 

protein som binder med hög affinitet till FLT3.  Ytterligare studier med hjälp 

av olika biokemiska och molekylärbiologiska tekniker har hjälpt oss att 

definieras SLAP2:s roll i att kontrollera FLT3-medierad signalering. Vi fann 

att SLAP2 kontrollerar tumörens celltillväxtsignaler och minskar 

tumörcellernas transformation genom att reglera FLT3:s aktivitet. Dessutom 

har vi identifierat ett annat protein som binder till FLT3, ABL2, och utrett 

dess roll i FLT3 signalering. Våra resultat visade att närvaro av ABL2 i 

FLT3-ITD-uttryckande celler minskar tumörtillväxten och blockerar en 

specifik signaleringsväg, som kallas PI3K/AKT. Detta är av speciellt intresse 

eftersom man kan tänka sig att attackera associerade signaleringsproteiner 

som ett sätt att angripa AML. 

Dessutom har vi också visat genom mutagenes-studier att aminosyran tyrosin 

i position 842 i FLT3 (Y842) reglerar FLT3-signalering. Vi fann att om man 

muterar Y842 till fenylalanin så är receptorn fortfarande aktiv men dess 
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förmåga att signalera överlevnad i AML har minskat och FLT3-signalering 

genom speciellt ERK (såväl som bindningen av fosfataset SHP2) har 

minskat. SHP2 är nödvändigt för att FLT3 ska kunna aktivera ERK. Vårt 

arbete utredde den viktiga rollen hos Y842 i att mediera aktivering av 

RAS/ERK signaleringsvägen och cellulär transformation. 

Vi screenade en panel av kända hämmare mot våra AML-celler och fann att 

ALK-hämmaren AZD3463, en hämmare som har använts prekliniskt i 

neuroblastomceller med ALK-mutation, även hämmade FLT3-signalering 

och selektivt dödade FLT3-ITD positiva AML-celler inklusive de celler som 

var resistenta mot tyrosinkinashämmaren sorafenib. Däremot hämmades inte 

normal, vildtyps FLT3, vilket är bra om man inte samtidigt vill hämma 

normal hematopoies. 

För att summera, så har vi visat på flera strategier för att attackera AML-

celler och identifierat en ny hämmare mot FLT3-ITD-positiv AML. 
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Despite the improvements in leukemia treatment over the past decade, the 
incidence of leukemia is increasing indicating that leukemia might become 
a global health concern. While tyrosine kinase inhibitors have dramatically 
changed the paradigm of leukemia treatment, resistance developed during 
the course of therapy remains challenging which eventually results in poor 
clinical outcomes for patients with leukemia particularly acute myeloid leu-
kemia. I believe that the biggest challenge posed by leukemia is the nature 
of its heterogeneity. Dismantling oncogenic signaling mechanisms is key to 
understanding therapy resistance with respect to disease heterogeneity in 
order to develop novel therapies. 
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