
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

ComPOS - a Domain-Specific Language for Composing Internet-of-Things Systems

Åkesson, Alfred

2021

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Åkesson, A. (2021). ComPOS - a Domain-Specific Language for Composing Internet-of-Things Systems.
[Doctoral Thesis (compilation), Department of Computer Science]. Computer Science, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 06. May. 2024

https://portal.research.lu.se/en/publications/5e2cdd29-5753-4297-bd01-87e78a8fd892

COMPOS – a Domain-Specific Language for
Composing Internet-of-Things Systems

Alfred Åkesson

Doctoral thesis, 2021

Department of Computer Science
Lund University

ISBN: 978-91-7895-906-8 (printed version)
ISBN: 978-91-7895-905-1 (electronic version)
ISSN: 1404-1219
Dissertation 66, 2021
LU-CS-DISS: 2021-02
Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: alfred.akesson@cs.lth.se
Webpage: http://cs.lth.se/alfred-akesson/

Typeset using LATEX
Printed in Sweden by Tryckeriet i E-huset, Lund, 2021

c© 2021 Alfred Åkesson

i

Abstract
Internet-of-Things (IoT) systems consist of spatially distributed interacting de-
vices. In contrast to desktop applications, IoT systems are always running and
need to deal with unresponsive devices and weak connectivity. In this thesis, we
propose techniques for simplifying the development of such systems. The work
addresses IoT systems organised as reusable services connected by compositions.
We propose to program such compositions using stateful reactions that mediate
messages. To this end, we have designed a domain-specific language (DSL),
called COMPOS. To help systems operate partly in cases of weak connectivity,
we propose that COMPOS aborts older reactions when newer messages arrive.
We evaluate our DSL in home-automation and e-health scenarios.

Understanding IoT systems can be hard, and different analyses can help ex-
plain how they work. To support analysis, we propose a conceptual runtime model
based on relational reference attribute grammars. We demonstrate the approach by
formulating and implementing a Device Dependency Analysis (DDA). The DDA
finds sets of devices needed for given parts of the system to work.

The COMPOS editor supports live programming to allow development while
the system is running. We propose a methodology for live COMPOS programming
which divides the development into three, iteratively applied, phases: finding ser-
vices (explore), composing services (assemble), and abstracting compositions as
new services (expose).

When developing a DSL, it takes substantial effort to specify the syntax and
semantics, to build tools like editors, and to integrate with the environment (in
this case the underlying middleware). To reduce the effort needed to experiment
with COMPOS, we have created a tool called JATTE. JATTE is a generic projec-
tional editor that developers can tune using attribute grammars. We used JATTE to
implement the COMPOS editor.

iii

Acknowledgements
First of all, I like to thank my main supervisor, Görel Hedin, for giving me this
opportunity and for all the support. I also want to thank Görel for teaching me
about research and academic writing and presenting. I also want to thank my co-
supervisor, Boris Magnusson, for all our discussions and for taking me on as a
research assistant. I want to thank my other co-supervisor, Niklas Fors, for his
support.

Huge thanks to my co-author, travel buddy, and demo operator, Mattias Nor-
dahl. Björn Johnsson, I thank you, especially for your insight about how PALCOM
is used. Thanks, Jesper Öqvist, my go-to guy for JASTADD problems. I like to
thank all the other members of my research group, Software Development Envi-
ronment. Also, I like to thank all the members of the computer science department
for all fika and support.

Another thanks goes to my collaborators in Dresden, Rene Schöne and Jo-
hannes Mey. Unfortunately, I could not visit you because of the Covid-19 pan-
demic.

This work was partially supported by the Wallenberg AI, Autonomous Sys-
tems and Software Program (WASP) funded by the Knut and Alice Wallenberg
Foundation. Therefore I want to thank the Knut and Alice Wallenberg Foundation.
I also want to thank all my fellow batch-1-WASP-AS students and teachers and all
other people in WASP.

This work was also in part supported by the Swedish Foundation for Strategic
Research (SSF), grant RIT17-0035 SMARTY. Thanks, SSF.

I detta sista stycke, vill jag tacka mina föräldrar, Bengt och Anna-Karin Åkesson
för allt deras stöd och rådgivning. Jag vill även tacka mina syskon Albin, Alma
och Allis Åkesson samt mina far- och morföräldrar Åke och Elisabeth Andersson
och Nils-Eric och Kerstin Andersson men även min övriga släkt för allt stöd. Jag
vill tacka mina vänner som har givit mig inblick i "verkligheten". Ett tack även
till alla i equmenia Nävlinge och Rickarum som har givit mig en meningsfull fritid
och till alla mina syskon i Equmeniakyrkan Nävlinge-Rickarum för omsorg och
förböner. Ett tack till den treeniga Guden för att ha, bland annat, skapat en värld
där datorer existerar.

iv Contributions of the author

Contributions by the author
This thesis is a compilation consisting of an introduction, three papers, and a tech-
nical report. The technical report is a revisited and extended version of another
paper.

List of included peer-reviewed publications by the thesis author:

Paper I Alfred Åkesson, Mattias Nordahl, Görel Hedin, and Boris Magnusson.
“Live Programming of Internet of Things in PalCom”. In: Conference Companion
of the 2nd International Conference on Art, Science, and Engineering of Program-
ming. Nice, France, 2018, pp. 121–126

Paper II Alfred Åkessson, Görel Hedin, Boris Magnusson, and Mattias Nor-
dahl. “ComPOS: Composing Oblivious Services”. In: 2019 IEEE International
Conference on Pervasive Computing and Communications Workshops (PerCom
Workshops). Kyoto, Japan, Mar. 2019, pp. 132–138

Included as a revisited and extended version with the title: "COMPOS: Com-
posing Systems of Services".

Paper III Alfred Åkesson, Görel Hedin, Niklas Fors, Rene Schöne, and Jo-
hannes Mey. “Runtime Modeling and Analysis of IoT Systems”. In: Proceedings
of the 23rd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings. MODELS ’20. Virtual Event,
Canada: Association for Computing Machinery, 2020

Paper IV Alfred Åkesson and Görel Hedin. “Jatte: A Tunable Tree Editor
for Integrated DSLs”. In: Proceedings of the 2nd ACM SIGPLAN International
Workshop on Comprehension of Complex Systems. CoCoS 2017. Vancouver, BC,
Canada, 2017, pp. 7–12

Contributions of the author v

The table below shows the contributions of the author.

Paper Concept Implementation Evaluation Writing
I (2018) N/A
II (2019-2021)
III (2020)
IV (2017)

Lead and did almost all the work

Lead and did a majority of the work

Contributed to a majority of the work

Contributed to a minority of the work

Concept Coming up with the ideas of the paper

Implementation Implementing the software described in the paper

Evaluation Conducting the evaluation described in the paper

Writing Drafting and editing the paper

Worth noting is that the conceptualization often was done collaboratively by
all the authors during meetings.

vi Populärvetenskaplig sammanfattning

COMPOS – ett Programmeringsspråk för att
Koppla Ihop Smarta Prylar

Datorer som kan kopplas upp mot internet blir allt billigare och mindre. Detta gör
att de kan integreras i produkter för att skapa så kallade smarta prylar. Exempel på
prylar som kan vara smarta är lampor, termostater, vågar, blodtrycksmätare, lås etc.
Denna trend med uppkopplade smarta prylar kallas sakernas internet. Sakernas
internet kan utnyttjas på olika områden, så som i hemmet, sjukvården, industrin
eller inom jordbruket. Genom att koppla ihop flera smarta prylar skapas ett så
kallat sakernas-internetsystem. I dessa system samarbetar olika prylar för att bli till
större nytta än varje pryl för sig själv. Ett exempel på ett sakernas-internetsystem
är ett smart lås kopplat till smarta lampor, så att när du låser upp ditt hem, tänds
dina lampor.

I denna avhandling vill vi göra det enklare att utveckla sakernas-internetsystem.
I de system vi undersöker kan prylarna berätta vilka meddelande de kan skicka och
ta emot. Sedan finns det små datorprogram, kallade kompositioner, som kopplar
ihop prylarna. För att specificera kompositioner, har vi i avhandlingen skapat och
utvärderat ett programmeringsspråk med detta som enda syfte. Vårt programmer-
ingsspråk heter COMPOS. Genom att göra ett programmeringsspråk med ett enda
syfte kan vi bortse från många funktioner som vanligen finns i mer generella pro-
grammeringsspråk och på så sätt göra programmen enklare att förstå, använda och
analysera.

Koden nedan visar en komposition skriven i COMPOS som tänder två lampor
om någon låser upp ytterdörren. Kompositionen kan köras på vilken dator som
helst, t.ex. det smarta låset eller Wi-Fi routern. Den första raden instruerar datorn
att vänta på att låset ska meddela att någon har låst upp dörren. Rad 2-3 instruerar
datorn att skicka meddelande för att tända lampan i hallen och i köket. Att rad 2-3
är indragna betyder att de utförs först efter det på rad 1 har hänt.

1 when receive låst upp from ytterdörrens lås do
2 send tänd to lampa hallen
3 send tänd to lampa köket

En skillnad mellan ett system på en enda dator och ett sakernas-internetsystem,
är att de senare måste hantera att prylar tappar kontakten och kanske senare får
kontakt igen. Vi har designat COMPOS så att när prylar tappar kontakten, blir det
en begränsad påverkan på resten av systemet. T.ex. om lampan i hallen tappar
kontakten med systemet, ska lampan i köket fortfarande tändas när man låser upp
sitt smarta lås.

Sakernas-internetsystem blir lätt komplexa med prylar som skickar medde-
landen kors och tvärs. Genom att ha kompositioner som beskriver hur medde-
landena flödar i systemet kan vi analysera dem för att få inblick i hur ett system
fungerar. I denna avhandling har vi visat hur körande system kan modelleras och
analyseras på en hög nivå. Som exempel har vi skapat en analys som räknar ut

Populärvetenskaplig sammanfattning vii

vilka delar av systemet som fungerar när olika prylar tappar kontakten. Detta kan
till exempel vara användbart om man vill försäkra sig om att lampan i köket tänds,
även när lampan i hallen har tappat kontakten.

För att vidare underlätta utvecklingen av sakernas-internetsystem, har vi in-
tegrerat COMPOS i en programmeringsmiljö som tillåter användaren att se vilka
prylar som är uppkopplade. Användaren kan sedan "dra" en uppkopplad pryl till
COMPOS-editorn för att använda prylen i en COMPOS-komposition. Som en
del i att utveckla programmeringsmiljön, har vi skapat och utvärderat ett editor-
ramverk, som heter JATTE. JATTE kan användas till olika programmeringsspråk
och integreras i olika programmeringsmiljöer.

För att utvärdera COMPOS, har vi tagit ett sakernas-internetsystem för hem-
sjukvård av njursviktpatienter, skrivit med ett annat kompositionsspråk, och åter-
skapat kompositionerna med COMPOS. Jämnfört med ursprungliga komposition-
sspråk är meddelandeflödet i COMPOS tydligare. Fördelarna med COMPOS är att
man enklare kan programmera komplicerade meddelandeflöden och skapa anal-
yser. Med denna forskning hoppas vi kunna bidra till att göra det enklare och och
snabbare att utveckla sakernas-internetsystem.

CONTENTS

1 Introduction . 1
2 IoT Middleware . 2
3 Programming-Language Techniques 7
4 Domain-Specific Languages . 14
5 Research Approach . 15
6 Contributions . 16
7 Conclusions and Future Work . 21
References . 21

I Live Programming of Internet of Things in PALCOM 27
1 Introduction . 27
2 The PalCom Middleware Toolkit 28
3 Live Programming in PalCom 29
4 Example: Photo Booth . 30
5 Related Work . 36
6 Conclusions . 37
7 Acknowledgements . 38
References . 38

II COMPOS: Composing Systems of
Services 41

1 Introduction . 41
2 IoT Architecture . 43
3 Motivating Example . 47
4 The COMPOS Language . 49
5 Composing Scenarios . 55
6 The Abort Strategy . 60
7 Adapting Semantics with Strategy Services 71
8 Evaluation . 77

x Populärvetenskaplig sammanfattning

9 Related Work . 85
10 Conclusions and Future Work . 88
References . 89
Appendix A A COMPOS Specification 93
Appendix B Home Automation Scenarios 100

III Runtime Modeling and Analysis of IoT Systems 105
1 Introduction . 105
2 Basic Runtime Model . 107
3 Running example . 109
4 The Full System Model . 110
5 Device Dependency Analysis . 112
6 Related Work . 116
7 Conclusion . 116
8 Acknowledgements . 117
References . 117

IV JATTE: A Tunable Tree Editor for
Integrated DSLs 119

1 Introduction . 119
2 Background . 120
3 Default Tree Editor . 121
4 Customizing the Editor . 122
5 Case Study: IoT Language . 126
6 Implementation . 130
7 Related Work . 130
8 Conclusion . 131
References . 131

Introduction 1

1 Introduction

Currently, we see a trend of cheaper computers with better connectivity being em-
bedded into devices. This trend is commonly referred to as the Internet of Things
(IoT) [AIM10]. These communicating devices enable new types of systems to
emerge called IoT systems, containing multiple connected devices. An example of
an IoT system is in home care, where kidney-failure patients can weigh themselves
at home and automatically get their weight sent to the hospital [JM16]. Another
example of an IoT system is in home automation, where the colour of a light indi-
cates the home’s energy consumption [CC16].

In the paper "A Roadmap to the Programmable World" [TM17], Taivalsaari
and Mikkonen point out some challenges with programming IoT systems. Two
challenges of particular interest for this thesis are:

• IoT systems have weak connectivity where devices may disconnect and re-
connect to the rest of the system at any time.

• IoT systems are always running, even if individual devices may shut down
or disconnect.

Another challenge is to understand what happens in the system during runtime
and the different dependencies between devices [WGB99]. There is potentially a
lot of useful IoT systems that we can build. To create these IoT systems faster, we
can try to simplify the process of building them so that end-users, who typically
have no programming skills, can do so themselves [Tet+15].

How can we simplify development of IoT systems? This is the main question
that we strive to answer with this research. We take steps to answer this question by
proposing a domain-specific language (DSL) (Paper II), an analysis of IoT systems
(Paper III), a development environment with support for live programming (Paper
I), and a tool for experimenting with the DSL and the development environment
(Paper IV).

Our proposed DSL is a stateful composition language called COMPOS and is
designed to handle weak connectivity (Paper II). To help understand IoT systems,
we propose the Device Dependency Analysis (DDA) to find sets of devices that
need to be connected, in order for a specified message to be sent (Paper III). This
paper also proposes a runtime model for IoT systems to enable analysis like the
DDA. Our development environment supports live programming [Tan90; Tan13]
to allow users to explore and evolve always-running IoT systems (Paper I). To
enable us to experiment with the DSL, we have created a meta tool for generating
editors called JATTE. JATTE generates editors with support for end-user-friendly
features such as projectional editing and drag-and-drop (Paper IV).

The research we present in this thesis is built on prior work. COMPOS is
built on top of the PALCOM middleware toolkit [SF09]. JATTE and COMPOS
are implemented using reference attribute grammars [Hed00] (using the JASTADD

2 Introduction

meta-compiler [HM03]). To specify the runtime model and the DDA, we used
relational reference attribute grammars [Sch+19].

The rest of this chapter includes three sections of background (sections 2-4).
The first background section describes IoT middleware and PALCOM (Section 2).
The next section describes some of the programming-language techniques used
in this thesis (Section 3). The last background section describes domain-specific
languages and their benefits (Section 4).

Then follows a description of how we did the research in this thesis (Section 5)
and a summary of the contributions of the thesis (Section 6). Finally, we present
conclusions and future work (Section 7).

2 IoT Middleware

Middleware [Ber96] is an abstraction between an application and the underlying
platform. It often abstracts the network in order to make it easier to program dis-
tributed applications. COMPOS is built on and expands the PALCOM middleware
toolkit. In this section, we will first describe PALCOM and then look at differ-
ent classifications of IoT middleware to classify PALCOM. Lastly, we compare
PALCOM to the ZigBee standard which is commonly used in home automation.

2.1 PALCOM

PALCOM [SF09; SF+09] is a middleware toolkit for building IoT systems. A PAL-
COM system consists of services connected by compositions. When a composition
connects to a service, it receives the messages the service sends. The composition
can then adapt these messages and send them to other services. A service has an
interface describing the messages it can send and receive.

Services and compositions run on devices. A device is a running middleware
instance with a globally unique identifier called a device id. Devices automatically
discover each other over the network, using the PALCOM discovery protocol. The
discovery protocol also communicates what services and compositions a device
hosts.

One kind of services are the native services; they perform computations and
interact with the physical environment. For example, a native service can control
a light, compute a control signal, or store an image. To enable this wide range
of functionality, native services are implemented in general-purpose programming
languages, like Java or C.

Compositions are limited to mediating and adapting messages, and a DSL is
used for their specification. To provide an abstraction mechanism, compositions
can combine multiple services’ functionality into one synthesized service. For ex-
ample, a synthesized service can provide a single interface for controlling multiple
light services.

Introduction 3

*

*

*

**

*

System

Device

CompositionService
{interface}

Native Synthesized

Figure 1: Conceptual model for PALCOM systems.

n1 c1

n2

c2
d1

d2

Device Native service with API

Composition with connector

Synthesized service with API

Figure 2: An instance of the conceptual model in Figure 1.

Figure 1 shows a conceptual model for PALCOM systems. A PALCOM system
consists of devices that host native services and compositions. A composition
connects to zero or more services. A service can be either native or synthesized,
the latter being part of a composition. Each service has an interface of incoming
and outgoing messages. Messages can have parameters to transfer data between
services. Figure 2 shows an instance of the conceptual model with two devices d1
and d2. Device d1 hosts the native service n1 and the composition c1. Composition
c1 connects to n1 and n2 to provide a synthesized service. The native service n2

and composition c2 are hosted on d2, and c2 connects to n2 and the synthesized
service provided by c1.

Figure 3 shows a sketch of an interactive tool called the PALCOM Browser
used for discovering services and creating compositions. On the left in the sketch
is a view showing the discovered devices and services on the network, and on the
right is an editor for creating and editing compositions. In our work, we have
integrated a new editor for our new composition language, COMPOS, into the

4 Introduction

PalCom Browser

Network

 Composition: C1

Device: D2
 Native: N2
 Composition: C2

 Native: N1
Device: D1

 Synthesized: S1

Composition: C2 Composition: C1

Figure 3: A sketch of the PALCOM Browser with the discovered devices and
services on the left and the composition editor on the right.

PALCOM Browser.

2.2 IoT-middleware Classification

To give a better intuition about PALCOM, we will in this section describe three
different ways to classify IoT-middleware and try to fit PALCOM into these classi-
fications. We will describe the following classifications:

• Service-based, Cloud-based, or Actor-based [Ngu+17] (Section 2.2.1)

• Communication Interaction Models [Eug+03] (Section 2.2.2)

• Orchestration and Choreography [Erl05] (Section 2.2.3)

2.2.1 Service-based, Cloud-based, or Actor-based?

Ngu, Gutierrez, Metsis, Nepal, and Sheng [Ngu+17] propose to classify IoT mid-
dlewares into the following three categories:

Cloud-based A cloud-based middleware is a vendor-provided service running in
the cloud. Developers can only interact with the middleware through vendor
applications or API:s. An example of a cloud-based middleware is Google
Fit, where device manufacturers use an API to upload data from their fitness
trackers to the Google Fit cloud. Google Fit allows users to have all their
fitness data in one place and free device manufacturers from the need to have
a fitness cloud.

Service-based A service-based middleware consists of services running either “in
the cloud or on a powerful gateway” [Ngu+17]. There is no peer-to-peer
communication between the IoT devices; instead, the devices communicate

Introduction 5

with the services. Compared to the Cloud-based middleware, the devel-
oper deploys the middleware on the server and can also run custom code on
it. An example of a service-based middleware is Global Sensor Network,
which allows developers to connect data from different devices to their own
customized instance of the Global Sensor Network.

Actor-based Actors are programs that can be added dynamically to a device run-
ning the actor middleware. All devices in a system run the middleware.
Every device that fulfills the hardware requirements of an actor can run it,
e.g., a camera actor can run on every device with an image sensor. Actors
allow for an open system where new devices can enter. Calvin is an actor-
based IoT middleware that allows actors to move between devices on the
network’s edge to reduce latency.

According to this classification, PALCOM fits into the category of actor-based
middlewares. PALCOM services can be deployed on any device meeting the ser-
vice’s hardware requirements. By including a service in a composition, the service
and the hosting device are added to the system, thus creating an open system.

Paper I calls PALCOM a service-based middleware. However, we do not think
that PALCOM fits the definition of service-based middleware given by Ngu, Gutier-
rez, Metsis, Nepal, and Sheng [Ngu+17]. When we say that PALCOM is service-
based, we allude to the fact that PALCOM has services as part of the architecture.

2.2.2 Decoupling Properties

Eugster, Felber, Guerraoui, and Kermarrec [Eug+03] suggest three decoupling
properties for the interaction between a sender and a receiver. They use these
decoupling properties to classify different interaction paradigms, e.g., message
passing and publish/subscribe. The decoupling properties are:

Space decoupling Interacting parties do not need to know the identity of each
other to communicate.

Time decoupling Two interacting parties never need to be connected at the same
time to exchange messages.

Synchronization decoupling The sending and receiving of messages happen out-
side the main flow of the program. The sender of a message does not need
to block, waiting for a response, when sending a message. The receiver of a
message gets asynchronously notified when a new message arrives and does
not need to actively wait for messages to arrive.

Table 1 shows decoupling properties of PALCOM and the following paradigms:
Message passing is a low-level form of interaction where the parties interact by
sending messages to each other. Remote Procedure Call (RPC) makes the inter-
action with a remote machine look like a procedure call. RPC makes it easier to

6 Introduction

Decoupling properties
Space Time Synchronization Interface

Message passing No No Only sender N/A
RPC No No Only sender N/A

Tuple space Yes Yes Only sender No
Pub/Sub Yes Yes Yes No

PALCOM services Yes Yes Yes Yes

Table 1: Different interaction paradigms and their decoupling properties. Grey
parts are from [Eug+03]. Only sender means the sender of message does not need
to block, but the receiver of messages has to.

program distributed systems because there is no difference between calling a re-
mote procedure and a local one [Eug+03]. Tuple space [Gel85] is a set of tuples
available to all participants in the interaction. Participants can put a tuple into the
tuple set, pull a tuple out of the set, and read a tuple from the set. In Publish/Sub-
scribe (Pub/Sub), a publisher sends messages to a broker. A subscriber can then
connect to the broker and subscribe to messages. A subscriber can define what
messages it wants to subscribe to in many different ways. One way is that the
publisher tags the message with a topic and the subscriber can then subscribe to
that topic [Eug+03].

In PALCOM, two services interact with each other through a composition.
PALCOM is space decoupled because services do not know to whom they talk.
For time decoupling, we need a third party to store the message when neither the
sending service or receiving service is connected. A composition could act as such
a third party by using reliable connections and long time outs. Time decoupling
could also be accomplished by adding a caching service. In PALCOM, messages
are sent and received asynchronously, making PALCOM synchronization decou-
pled.

We also suggest another type of decoupling called interface decoupling.

Interface decoupling The interacting parties do not need to have the same inter-
face, i.e., no pre-agreed message name or format.

Two communicating services in PALCOM are interface decoupled because the
composition between them can adapt the sender’s message to fit the receiver’s
expectations. Tuple spaces are not interface decoupled because the sender and the
receiver must agree on the tuple structure. Similarly, Pub/Sub is not interface de-
coupled because the sender and receiver must agree on the message format and
maybe topic. Because messages passing and RPC are space coupled, thus already
know each other, interface decoupling is not applicable here.

Introduction 7

2.2.3 Orchestration and Choreography

Two approaches for service composition are orchestration and choreography
[Erl05; Pel03]. In service orchestration, there is a central service sometimes called
the conductor, which controls the messages sent between services. In choreog-
raphy, the services act peer-to-peer, and coordinate messages among themselves
without any central conductor. However, there is a global description describing
the different roles services can play in a choreography.

PALCOM uses a combined approach. On one hand, each composition acts as
the conductor, orchestrating services. On the other hand, devices can communicate
peer-to-peer and since compositions may provide synthesized services, the system
becomes distributed over different devices without a central conductor. This cor-
responds, at a system level, to a choreography without any description. In Figure
2, earlier shown, we see each composition as orchestrating services; at the same
time, there is no central conductor in the system.

2.3 Home Automation with Zigbee

Zigbee is a popular standard in home automation, powering smart-light solutions
from well-known brands such as Philips and IKEA. The Zigbee standard defines
a full communication stack, based on low-bandwidth wireless communication, for
building IoT system [HBE11]. Zigbee provides interoperability between IoT de-
vices through the ZigBee Cluster Library (ZCL) [Gis08]. Devices interoperate
through roles in predefined scenarios, e.g. a light bulb and a switch, in a home
automation scenario.

PALCOM does not have predefined scenarios; instead, self-describing services
can interoperate with other services using compositions. For the user, the PALCOM
approach is more flexible by not being limited to predefined scenarios.

3 Programming-Language Techniques

In this thesis, we use techniques that emerged in the programming-language com-
munity. Understanding these techniques helps with understanding the thesis. This
section gives background to some of the programming-language techniques we
use.

3.1 Abstract Syntax Tree

When developing a program, it must adhere to the programming language’s rules
for writing the source code text, i.e., the concrete syntax. The program can then be
parsed into an abstract syntax tree (AST). The AST represents the input program
inside a compiler. The nodes in the AST represent different parts of the program.
For example, the program

8 Introduction

B:A ::= C D? F* <t>;

class B extends A {
C c;

Opt<D> d;
List<F> fs;
String t;

}

Figure 4: The figure shows a JASTADD abstract grammar rule (left) and the cor-
responding (simplified) generated Java code (right).

let int b = 0 in 1 + b

can be represented by the AST in Figure 5a.
Like how the concrete syntax rules govern source code text, the abstract syn-

tax rules govern AST structure. For specifying the abstract syntax in this thesis,
we use the abstract grammar language in the meta-compilation system JASTADD.
JASTADD generates a Java class hierarchy from the abstract grammar. For exam-
ple, the abstract grammar rule:

B:A ::= C D? F* <t>;

generates the class B that inherits from A and contains a child of type C, an optional
D, a list of Fs and a string token t (see Figure 4). The abstract grammar used for
the AST in Figure 5a is shown in Figure 5b.

3.2 Reference Attribute Grammars

We use reference attribute grammars in papers II, III, and IV. Reference attribute
grammars extend attribute grammars [Knu68]. In attribute grammars, an attribute
is a computed property of an AST node. An AST node class declares an attribute,
and one or more equations define the value. The right-hand side of an equation is
an expression that can depend on other attributes. The left-hand side defines what
attribute the right-hand expresses and the expression’s evaluation context.

In its simplest form, there are two kinds of attributes: synthesized(↑) and
inherited(↓). A synthesized attribute is declared on a node class and is like a vir-
tual method: the defining equations of a synthesized attribute are in the class or
subclasses. An inherited attribute is also declared on a node class, but its defin-
ing equations are in ancestor nodes. Inherited attributes are useful for accessing
information higher up in the AST, e.g., finding visible declarations.

Reference Attribute Grammars (RAGs) [Hed00] are attribute grammars where
an attribute value can be a reference to another node in the AST. RAGs are useful
for instance in name analysis, giving every use of a name a reference to its def-
inition. It also allows information to flow across the AST via reference attribute
edges and not only along the AST tree structure.

Introduction 9

Program

Let

Type:int Def:b Num:0 Add

Num:1 Id:b

(a) Abstract Syntax Tree for let int b = 0 in 1 + b

1 Program ::= Expr;
2 Type ::= <type>;
3 Def ::= <def>;
4 abstract Expr;
5 Id:Expr ::= <id>;
6 Num:Expr ::= <num:int>;
7 Add:Expr ::= left:Expr right:Expr;
8 Let:Expr ::= Type Def Num Expr;

(b) Example grammar for the language AST above

Figure 5: AST with its corresponding grammar

10 Introduction

Listing 1: Specfication of the name analysis.
1 ↑ Id.def : Def

2 ↓ Id.lookup(id:String) : Def

3 ↓ Let.lookup(id:String) : Def

4 ↑ Def.localLookup(id:String) : Def

5 eq Id.def = lookup(this.id)
6 eq Program.Expr.lookup(id:String) = null
7 eq Let.Expr.lookup(id:String) = this.Def.define(id)
8 ? this.Def : lookup(id)
9 eq Def.define(id:String) = this.def == id

Listing 2: Specfication of the type analysis.
1 ↑ Id.type : String

2 ↓ Def.type : String

3 eq Id.type = this.def.type
4 eq Let.Def.type = this.Type.type

Listings 1 and 2 show the name and type analysis implemented using reference
attribute grammars for the language in Figure 5b. In Listing 1, line 1-4 declare
attributes (def, lookup, and localLookup), and lines 5-9 give the equations for
these attributes. Line 1 declares the synthesized reference attribute ↑def, on an
Id node, that refers to the definition, i.e., a Def node. The equation on line 5
defines the value of ↑def by calling the inherited attribute ↓lookup with the id
token as the parameter. Because ↓lookup is an inherited attribute, the equation is
defined in an ancestor node, in this case, the nearest ancestor node of type Let or
Program. The equation for ↓lookup in the Let (line 7-8) checks if its Def defines
the id using ↑define (line 9). If the Def defines the id, then the Let returns its
Def otherwise it calls ↓lookup on the nearest Let or Program ancestor. As the
base case for ↓lookup, Program (line 6) defines its equation to null.

The type analysis can leverage reference attributes by having the ↑type at-
tribute of an Id follow its ↑def attribute to the corresponding Def node and find
the type there (line 3 in Listing 2). Figure 6 shows the ↑def and ↑type attributes
of an Id node for our running example.

JASTADD

JASTADD [HM03] is the meta-compilation system we use to implement JATTE
and COMPOS. In JASTADD, the programmers specify their compilers using refer-
ence attribute grammars. Furthermore, the specification can be modularized using
aspect-oriented programming.

Aspect-oriented programming is a mechanism for modularisation of cross-
cutting concerns [Kic+97]. JASTADD supports aspect-oriented programming by

Introduction 11

Program

Let

Type:int Def:b Num:0 Add

Num:1 Id:b
↑type:int

↑def

attribute:value

Legend:

reference

Figure 6: Illustration of ↑def and ↑type on the AST for
let int b = 0 in 1 + b.

allowing different members of a class to be defined separately in different aspects,
like open classes in MultiJava and inter-type declarations in AspectJ [Cli+00;
Kic+01]. These aspects can be used to separate different parts of a compiler im-
plementation. Examples of different aspects are name analysis, type analysis, and
interpretation. Aspects allow class members to be defined in aspect files, syntac-
tically outside of their respective classes. The members are fields, methods, or
attributes that JASTADD combines into Java AST classes.

JASTADD translates attributes into Java methods that, when called, locates
and evaluates the defining equation. If the defining equation depends on other at-
tributes, they are also evaluated. JASTADD can memorize attributes for efficiency:
the first time it computes an attribute, the value is cached and used in subsequent
calls.

As an example, JASTADD combines the abstract grammar in Figure 5b with the
name and type analysis in listings 1 and 2 into AST classes containing methods for
all the attributes (see Figure 7). The generated Id class will have attribute methods
for both the ↑def and ↑type attributes.

Relational Reference Attribute Grammars

Relational RAGs extend the abstract syntax of RAGs with relations so that the
structure to attribute can be a conceptual model rather than an AST only [Mey+20].
A conceptual model can model arbitrary relations between objects compared to an
AST that only can model containment relations. For example, it is possible to
model the many-to-many relation between services and compositions in Figure 1

12 Introduction

JastAdd
metacompiler

Jast
Add

Jast
Add
Name

analysis
RAG

Type
analysis

RAG

Abstract
grammar

Java

AST
classes

Jast
Add

compiler

Figure 7: JASTADD constructs the compiler’s core by combining the abstract
grammar, name analysis and type analysis into Java classes.

using Relational RAGs. While it is possible to model non-containment relations
with ordinary RAGs by using reference attributes resolved by name analysis, it is
more straightforward with Relational RAGs.

To implement Relational RAGs, Mey et al. [Mey+20] added a preprocessor
to JASTADD that translates non-containment relations to behave like reference at-
tributes. Relational RAGs makes it possible to use attribute grammars on top of
conceptual models.

In Paper III, we use Relational RAGs to model PALCOM IoT systems. We can
then analyze PALCOM systems using attribute grammars and reuse attributes from
the COMPOS specification in Paper II.

3.3 Program Analysis

In Paper III, we use program-analysis techniques to analyse IoT systems. This
section gives an overview of static and dynamic analysis and why it is relevant for
the thesis. This section also describes what a control-flow graph is and how we
use it in Paper III.

Static vs Dynamic

Program analysis can be divided into static analysis and dynamic analysis, see
for example Ernst [Ern03]. Static program analysis is about analysing the code

Introduction 13

b = 1;
if (a > 2) {

b = 2;
}
c = 2 * b;

b = 1

if (a > 2)

b = 2

c = 2 * b

Figure 8: The figure shows a piece of code (left) and the corresponding control
flow graph (right).

without running it. Dynamic analysis is about analysing a program by running
it or during runtime, see Artho and Biere [AB05]. A static analysis considers all
possible inputs of a program while dynamic analysis can realistically only consider
a small subset of all inputs. Dynamic analysis is always precise for the given input.

It is also possible to combine static and dynamic analysis, which we do in
Paper III in this thesis. In this paper, we build a model of the system at runtime
(dynamic analysis) to find the connections between services and compositions.
We then analyse the source code of compositions (static analysis) to infer how
messages can flow. By combining static and dynamic analysis, we can consider
all possible ways messages can flow for a particular running system.

Control-flow graph

In Paper III, we use a control-flow graph for the static part of our analysis. A
control-flow graph (CFG) is a graph describing all the different paths through a
piece of code. The nodes in the CFG represent actions in the language where each
node has a set of successors, consisting of all the actions that can follow it [AP02].
An example of a CFG, with the corresponding source code, is shown in Figure 8.

In COMPOS, the CFG nodes are the AST nodes for the different actions in the
language. We have implemented our CFG using RAGs, inspired by the approach
described by Nilsson-Nyman, Ekman, Hedin, and Magnusson [NN+08].

3.4 Projectional Editing

When editing the source code of a program in an Integrated Development Envi-
ronment (IDE), the IDE parses the code and builds an internal representation, typ-
ically in the form of an Abstract Syntax Tree (AST). The AST is used in analyses
to provide feedback such as error messages and code completion. In projectional
editing [VL14], also known as structural editing [Han71], instead of interacting
with text, the user interacts with the AST. The editing is done using operations for

14 Introduction

adding, removing, moving and changing AST nodes. COMPOS scripts are edited
using a projectional editor that visualizes the AST using textual notation. This
editor is built using our meta tool JATTE, discussed in Paper IV. JATTE generates
a projectional editor from a reference attribute grammar.

3.5 Live Programming
Live programming is about editing the program while it is running. The goal of
live programming is to minimise the time from when the programmer edits the pro-
gram until the programmer sees the result. The whole development environment is
involved in supporting live programming. Paper I argues for using live program-
ming when building IoT systems, addressing the always running challenge from
Section 1.

To classify how well a development environment supports live programming,
Tanimoto has identified six levels of liveness [Tan13; Tan90]:

1. Informative To run the program, the user has to manually convert the pro-
gram to a lower level language, for example, converting a class diagram to
Java code.

2. Significant The user runs the program with a click of a button.

3. Responsive The development environment reruns the program after every
edited operation. Useful for short running programs.

4. Live The development environment updates the running program after an
edit. For example, changing colour in a game and see the result without
restarting the game.

5. Tactical predictive The development environment tries to predict the next
line the programmer will write and execute it. For example, the programmer
opens a file, and the development environment automatically starts reading
from it.

6. Strategical predictive The development environment tries to predict a large
chunk of code. For example, automatically create a parser for the file the
programmer just opened.

In Paper I, we argue that the PALCOM-development environment supports live-
ness between level 3 and level 4.

4 Domain-Specific Languages
A Domain-Specific Language (DSL) is a programming language designed for
building applications in a specific domain. A DSL has constructs, notation and

Introduction 15

abstractions tailored for the domain [Hud96; DKV00]. One of the contributions of
this thesis is COMPOS, a DSL for composing IoT services.

Völter et al. [Völ+13] discuss a number of benefits and problems of DSLs.
Below we discuss the benefits of particular interest for this thesis:

Productivity A COMPOS script would require writing less code than an equiva-
lent program in a general-purpose programming language, thus speeding up
IoT-system development.

Validation and Verification A script written in COMPOS contains much seman-
tic information that we use when analyzing IoT systems.

Productive Tooling Having COMPOS as a DSL allows us to create a custom
editor using our meta tool JATTE. We have integrated the editor into the
PALCOM Browser to support high-level domain-specific editing, e.g., al-
lowing the user to add a message send by dragging a message type from the
"Network" window (Figure 3) to the composition.

Below, we list some of the potential problems with DSLs identified by Völter
et al. [Völ+13], and discuss some ways we try to address them:

Evolution and Maintenance When experimenting with the COMPOS language,
it is often hard to have backward compatibility. However, one benefit of
using projectional editing, compared to textual editing and parsing, is that
changes in the concrete syntax are backwards compatible, as long as the
abstract syntax is not changed.

Tool Lock-in COMPOS is built using JASTADD and JATTE, and replacing these
underlying frameworks would be a considerable investment. However, this
is not unique for JASTADD and JATTE; it is always a considerable investment
to change a DSL’s underlying frameworks. COMPOS uses XML for serial-
isation, so creating a parser would be straightforward if COMPOS were to
be reimplemented in other frameworks.

Learning It takes effort to learn COMPOS, but by using projectional editing,
users do not have to learn the syntax.

Effort of Building the DSLs It takes effort to develop a DSL such as COMPOS.
We use JATTE and JASTADD to speed up the development.

5 Research Approach
The research in this thesis is exploratory using techniques, tools and scenarios. In
our context, techniques are "ideas" of how to simplify the development of IoT sys-
tems, whereas tools are the software artefacts that realise techniques. By creating

16 Introduction

techniques

tools scenarios

Figure 9: Iterative research approach where techniques, tools and scenarios influ-
ence each other.

a tool, we prove that it is feasible to implement a technique. Scenarios are example
situations where we can try the tool and see the techniques in practice.

We work iteratively to improve our techniques, tools and scenarios. Insight
from creating the tool can help us improve the techniques, and using the tool in a
scenario can help us improve both the techniques and the tool but also the scenario
itself. Techniques, tools and scenarios influence each other, as shown in Figure 9.

Our process for designing COMPOS began with a real-world scenario from
two members of our research group that use PALCOM commercially. This sce-
nario highlighted some problems with the current tools, and we discussed different
techniques for solving them. Next, we decided what techniques we should try to
implement. We then tried our tool in different scenarios. After that, we continued
to refine both the tool, the techniques and scenarios iteratively.

To evaluate the techniques and tools, we sometimes use case studies. In a case
study, we use our tool to implement a solution for real-world use-cases. Ideally,
the real-world use-case should already have an existing solution for comparison.
These kinds of case studies give knowledge about how our proposed techniques
work in the real world. One drawback of case studies is the limited generalizability
due to considering only one instance for the types of problems we want to solve
[Cob+18].

6 Contributions

This section describes the contributions of the individual papers and the artefacts
developed. But first, we describe a scenario used to relate the contributions to a
concrete system.

Introduction 17

motion

camera

Motion Sensor

Camera 1

Laptop

Remote

camera
Camera 2

TwoCams storage

birdAI

birdAICombine
BirdAI

Figure 10: The figure shows an overview of a system for automatically pho-
tographing birds in a garden.

In the scenario, we build a system for taking photos of birds in a garden. The
system with all the services and devices is shown in Figure 10. The idea is when
the motion sensor triggers, each camera takes a photo of the garden. If one of the
photos contains a bird according to one of the birdAI services, it is stored. The
system has two compositions, TwoCams and CombineBirdAI. CombineBirdAI
provides a synthesised service for determining if an image contains a bird or not.
It does this by combining the results from the two bird detection services, one local
and one in the cloud. TwoCams ensures that when the motion sensor triggers, the
cameras take photos. If these photos contain birds, according to CombineBirdAI,
they are stored.

Because ComPOS has evolved during this thesis, the syntax for it differs be-
tween papers. Also, compositions are called assemblies in papers I and IV.

Paper I: Live Programming of Internet of Things in
PALCOM

When we start building the bird watcher system, the cameras and motion sensors
are already used in a burglary detection system, meaning that we already have them
running. To program the system against these running devices, we propose using
live programming. Live programming allows the programmer to evolve running
systems. We discuss using live programming to compose IoT systems in PALCOM
in Paper I.

We divided the PALCOM live programming experience into three phases: ex-
plore, assemble and expose. The explore phase is about discovering and interact-
ing with services to explore their functionality. For example, in this phase, we
interact with Camera 1 to understand its interface. The assemble phase is about
composing services using our DSL, for example, connecting the motion sensor to
the cameras. The expose phase exposes a composition’s functionality as a new

18 Introduction

service, i.e., creating a synthesized service. We are in the expose phase when
we create CombineBirdAI’s synthesized service. We show how the PALCOM
browser supports these three phases.

In the paper, we also argue that PALCOM supports liveness between level 3
and level 4 from Tanimoto’s levels of liveness.

List of contributions in Paper I:

• A characterisation of live IoT programming as a process of three interrelated
phases: explore, assemble, and expose.

• A demonstration, showing this process in action.

• Arguing that PALCOM supports liveness between levels 3 and 4.

Paper II: COMPOS: Composing Systems of Services
In Paper II, we propose a new DSL for compositions called COMPOS. We use
COMPOS to specify the composition in the bird watching system. In the DSL,
connections to services and devices are specified, making dependencies between
devices explicit, such as the dependency between the motion sensor and the laptop.

A COMPOS script contains a list of event handlers. When a service spon-
taneously sends out a message that matches an event, e.g. motion in the garden
detected, the composition starts to execute the reaction. The reaction contains ac-
tions for sending and receiving messages, e.g. sending a request to take a photo
and receiving the photo. The reaction can also express alternatives, e.g. do differ-
ent things if a photo contains a bird or not. Moreover, it can do actions in parallel,
such as taking multiple photos.

When a event matches, we chose, in some cases, to abort an already running
reaction triggered by the same service (see the paper for the cases when we abort).
We motivate why we choose the abort strategy by using weak connectivity as an
argument. For cases where the system designer desires other semantics than to
abort, we show how strategy services can adapt compositions’ semantics.

In this paper, we build the bird watching system to illustrate the features of
COMPOS. To further evaluate COMPOS, we use it in an e-health scenario not
designed by us. We also discuss how we can implement the home automation
scenarios identified by Rodríguez-Avila, de Koster, and de Meuter [Rdd21].

List of contributions in Paper II:

• COMPOS, a new DSL for composing IoT services with nested and parallel
message sequences.

• Different extensions of a bird watching scenarios showing practical uses of
COMPOS.

Introduction 19

• Four different strategies for handling new messages when existing reactions
are blocked: abort, parallel, ignore, and queue.

• An implementation of the abort strategy using epochs for keeping track of
related reactions in different processes.

• Strategy services that can be used to implement other strategies than abort.

• A case study evaluating COMPOS in a commercial e-health scenario.

• Implementations of seven commonly occurring home automation scenarios
identified by Rodríguez-Avila, de Koster, and de Meuter [Rdd21].

Paper III: Runtime Modeling and Analysis of IoT Systems
In the bird watching system, we want to ensure that the system functions with
only one camera, if the other fails. One way to ensure such a thing is by analyzing
the whole system. Our idea is to create a runtime model of the system and then
analyze the model.

In Paper III, we present two runtime models for PALCOM systems. The first
one is the conceptual model in Figure 1 in this chapter. The second model is an
extension of the first model. We use the discovery protocol of PALCOM to instan-
tiate the model with devices, services and compositions found on the network. A
composition may have connections to services that PALCOM has not discovered.
The extended model can represent these undiscovered devices and services.

To allow for better analysis of PALCOM IoT systems, we have added the com-
positions’ AST to the model. We specify the model using Relational RAGs. Due
to Relational RAGs being a superset of RAGs, we can reuse attributes from the
JASTADD specification for COMPOS when writing our analysis.

To demonstrate analysis using the model, we specify an analysis that can en-
sure that the bird watching system works with only one camera. We call this
analysis device dependency analysis (DDA), and it finds sets of connected devices
needed for a specific event to happen. Paper III uses another example than the bird
watching system, but after reading the paper, it is hopefully clear how DDA can
ensure that the system works with only one camera.

List of contributions in Paper III:

• A basic runtime model for the PALCOM IoT architecture, formalized using
Relational RAGs.

• A home automation scenario as a motivating example.

• An extended runtime model that can handle incomplete systems (where de-
vices can be unavailable) and that includes composition scripts that enable
more fine-grained analyses than the basic model.

20 Introduction

• Introducing and formalizing the Device Dependency Analysis (DDA), and
showing how it can be specified using Relational RAGs on top of the ex-
tended runtime model.

Paper IV: JATTE: A Tunable Tree Editor for Integrated DSLs
When developing the COMPOS language, we wanted to experiment and change
the language and the editor quickly. The experimentation with the language can
be seen by the various renditions of it in the different papers. To allow this, we
created JATTE.

In Paper IV, we present JATTE, a tunable projectional editor. Using JATTE,
we show how reference attribute grammars can be used for specifying and tuning
projectional editors. JATTE generates a default editor from the abstract grammar.
The editor can then be tuned by overriding the default equations that JATTE gener-
ates. The tuning is used to specify the text, formatting, menu, and visibility of an
AST node. In the paper, we build two editors using JATTE, one for a toy language
and one for COMPOS. We also propose a way of integrating projectional editors
into applications using JATTE. This is in contrast to most other projectional editors
that come with their own interactive environment and are not intended to be inte-
grated into other applications. One way we support integration is the support for
drag-and-drop between the application and the editor. As an example of JATTE’s
support for editor integration, we integrated the COMPOS editor into the PALCOM
browser.

List of contributions in Paper IV:

• A new technique for developing projectional editors, based on reference
attribute grammars.

• Examples showing how a generic projectional editor can be tuned to support
context-sensitive editing, by overriding attribute equations.

• Examples showing how a projectional editor can be integrated into another
application.

• Experimental validation by implementing the approach and applying it to
two different languages, one of which is integrated into an existing applica-
tion.

Developed artefacts

JATTE JATTE is a framework for creating projectional editors using RAGs
and aspect-oriented programming. JATTE is built using JASTADD
and uses Java Swing for rendering. Our implementation is open
source available at https://bitbucket.org/jastadd/jatte, and an

Introduction 21

artefact evaluation is available at https://bitbucket.org/jastadd/
jatteartifactevaluation/downloads/.

COMPOS COMPOS consists of two parts, an editor and an interpreter. The inter-
preter is implemented in JASTADD and uses the PALCOM middleware for all
its communication. The editor is implemented using JATTE and integrated
with the PALCOM browser. Videos demonstrating COMPOS are available
at https://lu.box.com/s/wxc9y5psxfk91li4027r88crd1tbe1yj.
Most of the code1 for COMPOS and the PALCOM browser with COMPOS
is available at https://bitbucket.org/palcom/compos-artefact.

7 Conclusions and Future Work
In this thesis, we explore ways to simplify the development of IoT systems. IoT
systems can be hard to understand with nontrivial dependencies between devices.
Our approach is to design a DSL, called COMPOS, that makes the system’s con-
nections explicit, thereby making dependencies easier to analyze. We demonstrate
the analyzability of COMPOS by designing and implementing the device depen-
dency analysis. IoT systems may use unstable networks; hence, COMPOS is de-
signed to handle connections going up and down. We also explored how to evolve
always-running IoT systems with live programming. Implementing a DSL with
editor support takes effort. To allow us to experiment with our DSL efficiently,
we created JATTE, a tool for creating projectional editors and integrating them in
applications.

In the future, we see three main lines of continued research. The first is to
find more ways to analyze a connected system. One idea is adding more expres-
sive interface descriptions to services for analyzing how messages flow through
a system—another idea is to generate overviews similar to Figure 2. One could
also analyze security aspects of a system, such as the information flow [Den76].
The second line of research is to see how COMPOS generalizes to another IoT
framework, such as ZigBee. The third line of research is looking at the usabil-
ity aspects of the development environment. Ideally, we would like to support
that end users, without programming experience, can compose IoT systems using
COMPOS. User studies can hopefully give indications of how usable the develop-
ment environment is, and insight into how we can improve usability [NM90].

Further in the future, we may be able to reach liveness levels 5 and 6 by lever-
aging opportunistic composition engines [You+18], e.g. automatically generating
the Two Cams composition just given the services to compose.

1As of the spring 2021, you can not build COMPOS from the provided code due to PALCOM not
being publicly available at this time.

22 Introduction

References
[AP02] Andrew W. Appel and Jens Palsberg. Modern compiler implementa-

tion in Java. 2nd ed. 32 Avenue of the Americas,New York: Cam-
bridge University Press, 2002, pp. 203–204.

[AB05] Cyrille Artho and Armin Biere. “Combined Static and Dynamic
Analysis”. In: Electronic Notes in Theoretical Computer Science 131
(2005). Proceedings of the First International Workshop on Abstract
Interpretation of Object-oriented Languages (AIOOL 2005), pp. 3–
14.

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. “The Internet of
Things: A survey”. In: Computer Networks 54.15 (2010), pp. 2787–
2805.

[Ber96] Philip A. Bernstein. “Middleware: A Model for Distributed System
Services”. In: Commun. ACM 39.2 (Feb. 1996), pp. 86–98.

[Cli+00] Curtis Clifton, Gary T Leavens, Craig Chambers, and Todd Mill-
stein. “MultiJava: Modular open classes and symmetric multiple dis-
patch for Java”. In: ACM Sigplan Notices. Vol. 35. 10. ACM. 2000,
pp. 130–145.

[Cob+18] Michael Coblenz, Jonathan Aldrich, Brad A. Myers, and Joshua Sun-
shine. “Interdisciplinary Programming Language Design”. In: Pro-
ceedings of the 2018 ACM SIGPLAN International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and
Software. Onward! 2018. Boston, MA, USA: Association for Com-
puting Machinery, 2018, 133–146.

[CC16] Joëlle Coutaz and James L. Crowley. “A First-Person Experience
with End-User Development for Smart Homes”. In: IEEE Pervasive
Computing 15.2 (2016), pp. 26–39.

[Den76] Dorothy E. Denning. “A Lattice Model of Secure Information Flow”.
In: Commun. ACM 19.5 (May 1976), 236–243.

[DKV00] Arie van Deursen, Paul Klint, and Joost Visser. “Domain-Specific
Languages: An Annotated Bibliography”. In: SIGPLAN Notices 35.6
(2000), pp. 26–36.

[Erl05] Thomas Erl. “Service-Oriented Architecture: Concepts, Technology,
and Design”. In: Upper Saddle River, NJ, USA: Prentice Hall PTR,
2005. Chap. 6.

[Ern03] Michael D. Ernst. “Static and Dynamic Analysis: Synergy and Dual-
ity”. In: IN WODA 2003: ICSE WORKSHOP ON DYNAMIC ANAL-
YSIS. 2003, pp. 24–27.

Introduction 23

[Eug+03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-
Marie Kermarrec. “The Many Faces of Publish/Subscribe”. In: ACM
Comput. Surv. 35.2 (June 2003), pp. 114–131.

[Gel85] David Gelernter. “Generative Communication in Linda”. In: ACM
Trans. Program. Lang. Syst. 7.1 (Jan. 1985), pp. 80–112.

[Gis08] “CHAPTER 6 - The ZigBee Cluster Library”. In: Zigbee Wire-
less Networking. Ed. by Drew Gislason. Burlington: Newnes, 2008,
pp. 239–271.

[Han71] Wilfred J. Hansen. “User engineering principles for interactive sys-
tems”. In: AFIPS ’71 Fall Joint Computer Conference. ACM, 1971,
pp. 523–532.

[Hed00] Görel Hedin. “Reference Attributed Grammars”. In: Informatica
(Slovenia) 24.3 (2000), pp. 301–317.

[HM03] Görel Hedin and Eva Magnusson. “JastAdd–an aspect-oriented com-
piler construction system”. In: Sci. of Comp. Prog. 47.1 (2003),
pp. 37–58.

[HBE11] Olivier Hersent, David Boswarthick, and Omar Elloumi. “ZigBee”.
In: The Internet of Things. John Wiley & Sons, Ltd, 2011. Chap. 7,
pp. 93–137.

[Hud96] Paul Hudak. “Building Domain-Specific Embedded Languages”. In:
ACM Comput. Surv. 28.4es (Dec. 1996).

[JM16] Björn A Johnsson and Boris Magnusson. “Supporting collaborative
healthcare using PalCom–The itACiH system”. In: Pervasive Com-
puting and Communication Workshops (PerCom Workshops), 2016
IEEE International Conference on. IEEE. 2016, pp. 1–6.

[Kic+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jef-
frey Palm, and William G Griswold. “An overview of AspectJ”. In:
ECOOP. Vol. 2072. LNCS. Springer. 2001, pp. 327–354.

[Kic+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. “Aspect-
oriented programming”. In: ECOOP’97 — Object-Oriented Pro-
gramming. Ed. by Mehmet Akşit and Satoshi Matsuoka. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1997, pp. 220–242.

[Knu68] Donald E. Knuth. “Semantics of Context-free Languages”. In: Math.
Sys. Theory 2.2 (1968). Correction: Math. Sys. Theory 5(1):95–96,
1971, pp. 127–145.

[Mey+20] Johannes Mey, René Schöne, Görel Hedin, Emma Söderberg,
Thomas Kühn, Niklas Fors, Jesper Öqvist, and Uwe Aßmann. “Re-
lational reference attribute grammars: Improving continuous model
validation”. In: Journal of Computer Languages 57 (2020). 100940.

24 Introduction

[Ngu+17] Anne H. Ngu, Mario Gutierrez, Vangelis Metsis, Surya Nepal, and
Quan Z. Sheng. “IoT Middleware: A Survey on Issues and Enabling
Technologies”. In: IEEE Internet of Things Journal 4.1 (2017),
pp. 1–20.

[NM90] Jakob Nielsen and Rolf Molich. “Heuristic Evaluation of User Inter-
faces”. In: Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems. CHI ’90. ACM, 1990, pp. 249–256.

[NN+08] Emma Nilsson-Nyman, Torbjörn Ekman, Görel Hedin, and Eva
Magnusson. “Declarative Intraprocedural Flow Analysis of Java
Source Code”. In: Proceedings of the Eight Workshop on Language
Description, Tools and Applications (LDTA 2008). Electronic Notes
in Theoretical Computer Science. Elsevier B.V., 2008.

[Pel03] Chris Peltz. “Web services orchestration and choreography”. In:
Computer 36.10 (2003), pp. 46–52.

[Rdd21] Humberto Rodríguez-Avila, Joeri de Koster, and Wolfgang de
Meuter. “Advanced Join Patterns for the Actor Model based on CEP
Techniques”. In: Art Sci. Eng. Program. 5.2 (2021), p. 10.

[Sch+19] René Schöne, Johannes Mey, Boqi Ren, and Uwe Aßmann. “Bridg-
ing the Gap between Smart Home Platforms and Machine Learning
using Relational Reference Attribute Grammars”. In: Proceedings
of the 14th International Workshop on Models@run.time. Munich,
Sept. 2019, pp. 533–542.

[SF09] David Svensson Fors. “Assemblies of pervasive services”. PhD the-
sis. Department of Computer Science, Lund University, 2009.

[SF+09] David Svensson Fors, Boris Magnusson, Sven Gestegård Robertz,
Görel Hedin, and Emma Nilsson-Nyman. “Ad-hoc composition of
pervasive services in the PalCom architecture”. In: Proceedings
of the 2009 international conference on Pervasive services. ACM.
2009, pp. 83–92.

[TM17] Antero Taivalsaari and Tommi Mikkonen. “A roadmap to the pro-
grammable world: software challenges in the IoT era”. In: IEEE Soft-
ware 1 (2017), pp. 72–80.

[Tan90] Steven L. Tanimoto. “VIVA: A visual language for image process-
ing”. In: Journal of Visual Languages & Computing 1.2 (1990),
pp. 127 –139.

[Tan13] Steven L Tanimoto. “A perspective on the evolution of live program-
ming”. In: Proceedings of the 1st International Workshop on Live
Programming. IEEE Press. 2013, pp. 31–34.

Introduction 25

[Tet+15] Daniel Tetteroo, Panos Markopoulos, Stefano Valtolina, Fabio Pa-
ternò, Volkmar Pipek, and Margaret Burnett. “End-User Develop-
ment in the Internet of Things Era”. In: Proceedings of the 33rd
Annual ACM Conference Extended Abstracts on Human Factors in
Computing Systems. CHI EA ’15. Seoul, Republic of Korea: ACM,
2015, pp. 2405–2408.

[VL14] Markus Völter and Sascha Lisson. “Supporting Diverse Notations in
MPS’ Projectional Editor.” In: GEMOC@MoDELS. 2014, pp. 7–16.

[Völ+13] Markus Völter, Sebastian Benz, Christian Dietrich, Birgit Engel-
mann, Mats Helander, Lennart C. L. Kats, Eelco Visser, and Guido
Wachsmuth. “DSL Engineering - Designing, Implementing and Us-
ing Domain-Specific Languages”. In: dslbook.org, 2013. Chap. 2,
pp. 40–43,71,78.

[WGB99] M. Weiser, R. Gold, and J. S. Brown. “The origins of ubiquitous
computing research at PARC in the late 1980s”. In: IBM Systems
Journal 38.4 (1999), pp. 693–696.

[You+18] Walid Younes, Sylvie Trouilhet, Françoise Adreit, and Jean-Paul Ar-
cangeli. “Towards an Intelligent User-Oriented Middleware for Op-
portunistic Composition of Services in Ambient Spaces”. In: Pro-
ceedings of the 5th Workshop on Middleware and Applications for
the Internet of Things. M4IoT’18. ACM, 2018, pp. 25–30.

PA
P

E
R

IPAPER I

Live Programming of Internet of Things
in PALCOM

Abstract

PALCOM is a middleware toolkit for pervasive computing and internet-of-things.
We discuss how PALCOM supports exploration and live programming through
three phases: exploring services, assembling them into applications, and exposing
them as new services. We give an example of this workflow through the construc-
tion of a simple photo booth application.

1 Introduction

In pervasive computing, including Internet of Things (IoT), software applications
are distributed, making use of many different services on different kinds of devices,
and communicating over different underlying networks. Live programming can
play a key role in programming such systems, allowing developers to explore the
available devices and their services, and experiment with how to combine things
and how to automate tasks.

PALCOM [SF+09] is a middleware toolkit, designed to support palpable com-
puting, a variant of pervasive computing where devices are made explicit (palpa-
ble). The toolkit is used in advanced home care applications [JM16], but is still
under constant development.

In this paper, we identify key activities for live programming in PALCOM,
including exploring services, assembling them into partial applications, and ex-

Alfred Åkesson, Mattias Nordahl, Görel Hedin, and Boris Magnusson. “Live Programming of
Internet of Things in PalCom”. In: Conference Companion of the 2nd International Conference on
Art, Science, and Engineering of Programming. Nice, France, 2018, pp. 121–126

28 Paper I: Live Programming of Internet of Things in PALCOM

posing new services from such assemblies. These partial applications can again be
explored and assembled into larger applications.

We start with giving some background on PALCOM (Section 2). Then we
discuss live programming (Section 3) and give an example of how it is used in
constructing a simple photo booth application (Section 4). We end with related
work (Section 5), and conclusions (Section 6).

2 The PalCom Middleware Toolkit

PALCOM is a service-based middleware toolkit. It provides an automatic discovery
protocol which lets devices announce themselves and the services they provide, as
well as to find other devices and their services. Through an abstraction of underly-
ing network technologies, devices can communicate over different media, e.g., IP,
Bluetooth, IR, or local in-memory communication between processes. This media
abstraction makes it easy to build diverse, heterogeneous networks of devices, and
a built-in routing protocol allows multiple such networks to be interconnected.

PALCOM services communicate by asynchronously sending and receiving com-
mands, but are agnostic of whom they communicate with. Each service defines its
own commands, which serves as an API for communicating with it. To combine
two or more services, an assembly is used, i.e., a script that connects to the ser-
vices, and coordinates messages between them. Metaphorically, an assembly can
be thought of as an adapting multiway cable that plugs into the services it com-
bines. The assembly can itself provide new services, metaphorically correspond-
ing to the adapting cable itself having a port that other assemblies/cables can plug
into.

When an assembly is started, it automatically connects itself to the services it
uses. So metaphorically, this is like the cable automatically locating the service
ports and plugging itself in. The PALCOM middleware takes care of automatically
reconnecting in case parts of the network have been temporarily unavailable, e.g.
when a mobile phone has been out of reach of its cellular network.

Figure 1 shows an example application for a photo booth. The preview assem-
bly coordinates a button, a web camera, and a photo viewer service, and the print
assembly coordinates a second button, a service on the preview assembly, and a
print service. In Section 4, we will show how this application is constructed. The
separation of functionality (in the services) and the coordination and configuration
(in the assemblies), allows services to be reused for different purposes in different
applications.

A running assembly knows exactly which set of services (and on which de-
vices) it should connect to, so it can itself be run on any device in the network.
This is why we don’t show which devices the assemblies run on in Figure 1. They
could run on, for example, a tablet on the same network.

Paper I: Live Programming of Internet of Things in PALCOM 29

Laptop computer Printer

Webcam Photo
Viewer

Printer

Button 1

Button 2

preview

print

= Service

= Assembly

= Device

= Connection

Figure 1: Overview of a PalCom photo booth application with two assemblies.

The assemblies are specified in a domain-specific language. An interactive tool
called the PALCOM Browser allows users to view discovered devices and services
on the network, and also to create and edit assemblies using a projectional editor.
The user can run the assembly directly in the browser tool, or export it in order to
install it on another device.

3 Live Programming in PalCom

To program an application, the developer can connect and script live services on
live devices, using the PALCOM browser.

In general, the developer starts by exploring how available services work. The
browser shows the available devices and their services, and for each service what
input- and output commands it has, i.e., its message protocol. To explore how
a service works, the developer can bring up a remote interaction view, allowing
direct interaction with the service, i.e., sending commands to it and viewing its
response. While there may be documentation available for the commands, direct
interaction with the service typically gives a much improved understanding of its
dynamic behavior.

To combine services and automate tasks, the developer can write an assembly
script. The assembly connects to other services and can send and receive mes-
sages from those services. Its script runs in an infinite loop, reacting to incoming
messages in sequential order. The script is programmed mostly through drag-and-
drop actions, dragging input- and output commands from the discovery view to

30 Paper I: Live Programming of Internet of Things in PALCOM

the script view in order to specify the assembly’s behavior. The script can also
be edited using a projectional editor, e.g., to make use of conditionals and local
variables. The developer can switch between running and editing the assembly, to
check that it works in the intended way.

It is possible to expose functionality of an assembly, so that it can itself be
connected to by other assemblies. This is done by defining a synthesized service
of the assembly, with input and output commands. The assembly can receive input
commands and send output commands through this service interface. When the
assembly runs, its synthesized services appear in the discovery view like regular
services, allowing them to be explored using remote interaction, as well as being
used in new assemblies. This way, applications can be extended easily.

Figure 2 illustrates the activities of live programming in PALCOM, showing
that the user can go between these different activities in the development process.

Figure 2: The activities of live programming in PALCOM

4 Example: Photo Booth

In this section, we will show how to use PALCOM to program a photo booth ap-
plication by combining off-the-shelf equipment like buttons and web cameras. We
assume that all the equipment is running the PALCOM middleware, and that all
devices are connected to at least one of the interconnected networks.

The intended use of the photo booth is as a guestbook alternative at parties.
The photo booth allows guests to go inside to take some photos, print one of them
and hang the resulting photo on a wall. Here is a list of the equipment we use in
this application:

• Laptop, with a photo viewer and a webcam service

• Printer

• Two separate Buttons communicating over Bluetooth.

Paper I: Live Programming of Internet of Things in PALCOM 31

Figure 3: The PALCOM Browser. To the left, the discovery view with devices,
services, and commands. To the right, two remote interaction views. One for the
web camera, and one for the click service on one of the buttons.

Our system should work in the following way; a party guest sits in front of
the laptop and presses one of the buttons. The camera will then take a photo and
show it on the screen. The guest can take as many photos as he/she likes and
preview them on the laptop screen. When the guest is satisfied with the photo,
he/she presses the other button, and the last photo is printed.

One way of constructing this system is to connect the parts according to the
overview shown in Figure 1, where the preview assembly handles the taking and
previewing of the photo, and the print assembly controls the printing of the photo.
Arriving at this solution involves a number of steps using live programming activ-
ities in the PALCOM browser.

4.1 Explore

Our first goal is to try to connect one of the buttons to the camera. We begin by
using the browser to explore how the webcam service works, see Figure 3. In the
discovery view (to the left), we can find discovered devices and their services, as
well as the commands of the services. Expanding the discovery information for the

32 Paper I: Live Programming of Internet of Things in PALCOM

Figure 4: The PALCOM Browser in assembly code editing mode

laptop device reveals the webcam service. Double-clicking on the webcam service
opens a remote interaction view (to the right). Here, we can explore its capabili-
ties. In this case, Webcam_Service has only one input command, take_photo. By
clicking on this command, the command take_photo is sent to the camera service,
to which its response is to take a photo and send it back. The right-hand part of the
remote interaction view shows the history of commands sent to and received from
the camera. Here we can see the actual photo, which is a parameter of the received
photo command.

The next step is to explore the button. In the browser, we open the remote
interaction view for the click service on Button 1. Here we can see that it has no
input commands. On the other hand, we have a physical button that we can press.
As seen in Figure 3, pressing the button results in its click service sending a click
command.

4.2 Assemble
After exploring how the button and camera work, we can take the next step and
combine them, using an assembly.

From the browser, we create a new assembly script, here called preview, see
Figure 4. We would like the camera to take a photo whenever the button is pressed.
To script this, we simply drag the click command from the discovery view into the
editor view. An event handler when ... do ... is then automatically cre-
ated, listening to the click command from the Click_Service. We then drag the
take_photo command from the discovery view to the do part of the event handler

Paper I: Live Programming of Internet of Things in PALCOM 33

to complete the desired behavior, namely that whenever the button sends a click
command, the assembly will detect this, and send a take photo command to the
camera. The resulting code is shown in block (1) in Figure 4.

When doing the drag-and-drop of commands into the script, local declarations
of the involved device and service instances are automatically created under the
Bindings heading in the script. The developer can edit the script to rename them
to more suitable names if desired as done in the examples here.

We can now run the assembly to verify that it works as intended. Once started,
the assembly connects to the camera and click services as declared in its bindings,
and when the button is pressed take_photo commands are indeed sent to the
camera, which replies with photo commands. In this case, the camera service is
implemented in such a way that it sends the taken photo to all connected parties,
i.e. both to the assembly (which for now, does nothing with it) and the Browser’s
remote interaction view.

4.3 Extending the Assembly

The assembly is not yet complete. We want to connect the photo viewer as well,
so that each photo the camera takes is shown in the viewer. So we explore the
capabilities of the photo viewer by opening a remote view for it. We can then
observe that it has one input command that takes a photo as a parameter. We can
try out this command by invoking it with a photo selected from our computer’s
file system as the parameter. There is no command sent back. Instead, the photo
viewer service shows its latest received photo in a window on its hosting laptop.

After exploring the photo viewer, we extend the assembly script to add a new
event handler that listens for the photo from the webcam and forwards the received
photo to the photo viewer. Adding the event handler and sending the photo is done
by two drag-and-drop edit actions. After dropping the viewer’s photo command, a
placeholder for its img parameter is generated, to which the image from the camera
service (photo.img) can be assigned, by selecting it from a menu. The resulting
code is shown in block (2) in Figure 4. The when clauses need to be mutually
exclusive, and all incoming commands are handled in sequence. All the actions in
a do section are executed in sequence.

We can now test run the preview assembly, and observe that every time we
press the button, a new image is shown in the photo viewer’s window.

4.4 Expose

We are now half-way finished building our photo booth. The remaining part is to
be able to print the latest viewed photo. We would like to do this by pressing the
second button.

One way of handling this is to let the preview assembly expose the photo just
received from the camera, using a new service defined on the assembly, a so called

34 Paper I: Live Programming of Internet of Things in PALCOM

synthesized service. We can then construct an additional assembly, print, that
connects to this synthesized service and combines it with the second button and
the printer.

Figure 5 shows how a synthesized service has been added to the script
(Booth_Preview_Service), with an output command photo. The event handler that
receives the photo from the web camera has also been extended with an additional
action: to send the photo command out from the booth preview service, with the
received photo as its parameter. If there are other assemblies that are connected to
the booth preview, they will receive this command.

Figure 5: The preview assembly after adding the synthesized service

4.5 Creating the Print Assembly

Now, we can complete the photo booth application by creating the print assembly
that combines the preview assembly with Button 2 and the printer.

We start by exploring the Booth_Preview_Service service that the preview as-
sembly now exposes, again using a remote view. The service appears in the dis-
covery view, like any other service, and we can observe how photo commands
appear in the remote view every time we press the first button, see Figure 6.

We now create the print assembly, and start by adding an event handler that
saves the latest preview photo in a transient variable current_photo. A transient
variable is a global variable that can be assigned and accessed from all event han-

Paper I: Live Programming of Internet of Things in PALCOM 35

Figure 6: The remote interaction view for the synthesized service

dlers. If the assembly is restarted the transient variable is set to the default value
given in its declaration, which in this example is empty.

Should the variable still be empty when used as a parameter, it will simply be
up to the receiving service how it should be handled. Next, we add a second event
handler that sends the currently saved photo to the printer whenever the second
button is pressed. We can test run the assembly to make sure it works, and use the
remote views to explore its different parts. The resulting photo booth assembly is
shown in Figure 7.

Figure 7: The print assembly, which connects the preview service from the pre-
view assembly with the printer and the second button.

36 Paper I: Live Programming of Internet of Things in PALCOM

4.6 Possible Extensions

We have shown how services can be explored live, and their functionality com-
bined and coordinated by assembling them into useful applications. The photo
booth application could be extended further by incorporating other services, e.g.,
allowing guests to sign their photos, adding different image filters to them, or, in
addition to printing the photos, connecting the assembly to a service in the cloud
to publish the photos on a website. Regardless of what other services are available
on the network, they too can be explored and assembled as just shown.

5 Related Work

PALCOM programming is inspired by the idea of programming by example
[Hal84], in that the interactions programmed in an assembly relate to existing
physical or virtual example objects. The idea of programming-by-example might
be pushed even further by adding support for using recorded interactions in the
remote views to generate parts of the assembly scripts.

For physical objects like buttons and cameras, as in our photo booth example,
an interesting avenue of further research might be to make use of actual physi-
cal interaction in order to build assemblies. In our photo booth example, the user
might, for example, actually click on the button instead of doing a drag-and-drop
in the browser, or interacting with it via the remote view. For physical objects that
do not have built-in interaction like buttons, other interaction techniques might be
investigated, for example, the PICOntrol handheld projector suggested by Schmidt
et al. [SMC12]. However, in most PALCOM scenarios, there are also many ser-
vices that are virtual rather than physical. Examples are the assemblies themselves,
as well as purely computational services, and web services in the cloud. Further-
more, physical devices do not necessarily need to be locally available. They might
be in the next room, or in a completely different place. Making use of actual phys-
ical interaction would therefore need to integrate in a smooth way also with remote
and virtual services.

Programming in PALCOM can be compared to the read-eval-print loop (REPL)
used in many programming environments. Findler et al. discuss using the REPL
in the context of DrRacket and Scheme [Fin+97], allowing the programmer to
interact with and explore a program. After the developer has tried out some things
in the REPL, he/she can change the original program and begin to experiment with
the new version of the program. This is similar to how the developer can explore
services in a PALCOM network, and then change an assembly program to create a
new version of it. A difference from general-purpose programming is that a central
part of PALCOM programming is to interact with live devices and services.

Another relevant comparison is to the idea of liveness, as described by Tan-
imoto [Tan90][Tan13], referring to the ability to modify a running program. He
introduced four levels of liveness in 1990, going from an ancillary description, to

Paper I: Live Programming of Internet of Things in PALCOM 37

being fully live. Later he expanded the model with two more levels which addi-
tionally includes prediction[Tan13]. The levels primarily apply to general-purpose
programming, but a tangent can be drawn to the live programming of assemblies
in the PALCOM Browser. At liveness level four, a program can be modified whilst
running and will immediately reflect the change in its behavior and output. Simi-
larly, an assembly being updated will immediately change the behavior and output,
but for an entire distributed system (or parts of it), rather than a single program.
Going back to the photo booth example, if the event handler for button 2 was
changed to publish photos to a cloud-based gallery rather than printing them, this
new behavior would immediately apply the next time the user pressed the button.
It is worth noting, though, that since PALCOM’s communication is distributed and
event based, while the behavior of the system is immediately changed, the effect
of the change, and thus user feedback, only becomes apparent once a new event
occurs, e.g. by pressing the button. In this respect, assembly editing might not
fulfill the requirements for Tanimoto’s fourth liveness level.

On the surface, the interaction using Drag and Drop for the PALCOM Browser
look similar to the interactions used in Scratch[Mal+10]. Scratch is a visual block
programming language designed for children. In Scratch, you drag from a list
of blocks concerning the current program whereas in the PALCOM Browser you
drag from a dynamic list of devices and services currently present on the network.
When you drop a block in Scratch, it creates a new instance of that block, but
when you drop a command in the PALCOM Browser, it creates a reference to that
command.

OSCAR [NES08] is another IoT system supporting service composition. It
focuses specifically on supporting end users, employing an intuitive user interface.
The system allows users to connect media streams, for example, connecting a
video stream from a web camera to a particular TV screen. There is a composition
concept called a Setup which is an end-user programmed connection between two
devices, and where the endpoints (the actual devices) can be dynamically selected
based on rules. PALCOM assemblies have a different focus, namely to coordinate
a number of services, and supporting event-based communication. Furthermore,
assemblies can contain logic in order to program multi-step transactions, and they
can expose new services to be used as building blocks for other assemblies.

6 Conclusions

We have discussed how live programming of IoT applications is done in PALCOM,
by exploring live services and gradually assembling them into applications where
parts and assembled parts can be test run and changed in an exploratory fashion.
Exposing partial applications as new services allows the same kind of exploration,
using remote views, to be done as for general purpose programmed services.

38 Paper I: Live Programming of Internet of Things in PALCOM

To illustrate this way of live programming, it was discussed in detail how to
construct a simple photo booth example.

We are currently experimenting with the syntax of the assembly language, and
with naming conventions, in order to get more intuitive scripts. We are also looking
into running user experiments to guide our language design. We are also experi-
menting with how to package applications as configurations of versioned assem-
blies and services, in order to deploy and update them easily. Furthermore, we will
look into different message exchange patterns and ways to visualize and analyze a
running system of several connected services and devices.

7 Acknowledgements
This work was partially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foun-
dation. We thank Christoph Reichenbach and the anonymous reviewers for helpful
comments on earlier drafts of the paper. We also thank the PX workshop partici-
pants for valuable feedback.

References
[Fin+97] Robert Bruce Findler, Cormac Flanagan, Matthew Flatt, Shriram Kr-

ishnamurthi, and Matthias Felleisen. “DrScheme: A pedagogic pro-
gramming environment for scheme”. In: Programming Languages:
Implementations, Logics, and Programs. Ed. by Hugh Glaser, Pieter
Hartel, and Herbert Kuchen. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 1997, pp. 369–388.

[Hal84] Daniel Conrad Halbert. “Programming by example”. PhD thesis.
University of California, Berkeley, 1984.

[JM16] Björn A Johnsson and Boris Magnusson. “Supporting collaborative
healthcare using PalCom–The itACiH system”. In: Pervasive Com-
puting and Communication Workshops (PerCom Workshops), 2016
IEEE International Conference on. IEEE. 2016, pp. 1–6.

[Mal+10] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and
Evelyn Eastmond. “The Scratch Programming Language and Envi-
ronment”. In: Trans. Comput. Educ. 10.4 (Nov. 2010), 16:1–16:15.

[NES08] Mark W. Newman, Ame Elliott, and Trevor F. Smith. “Providing an
Integrated User Experience of Networked Media, Devices, and Ser-
vices through End-User Composition”. In: Pervasive Computing. Ed.
by Jadwiga Indulska, Donald J. Patterson, Tom Rodden, and Max
Ott. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 213–
227.

Paper I: Live Programming of Internet of Things in PALCOM 39

[SMC12] Dominik Schmidt, David Molyneaux, and Xiang Cao. “PICOntrol:
Using a Handheld Projector for Direct Control of Physical Devices
Through Visible Light”. In: Proceedings of the 25th Annual ACM
Symposium on User Interface Software and Technology. UIST ’12.
ACM, 2012, pp. 379–388.

[SF+09] David Svensson Fors, Boris Magnusson, Sven Gestegård Robertz,
Görel Hedin, and Emma Nilsson-Nyman. “Ad-hoc composition of
pervasive services in the PalCom architecture”. In: Proceedings
of the 2009 international conference on Pervasive services. ACM.
2009, pp. 83–92.

[Tan90] Steven L. Tanimoto. “VIVA: A visual language for image process-
ing”. In: Journal of Visual Languages & Computing 1.2 (1990),
pp. 127 –139.

[Tan13] Steven L Tanimoto. “A perspective on the evolution of live program-
ming”. In: Proceedings of the 1st International Workshop on Live
Programming. IEEE Press. 2013, pp. 31–34.

PA
P

E
R

II

PAPER II

COMPOS: Composing Systems of
Services

Abstract

Future Internet-of-Things (IoT) systems need to be able to combine heterogeneous
services and support weak connectivity. In this paper, we introduce COMPOS, a
domain-specific language for composing services into IoT systems. COMPOS
supports stateful reactions with nested and parallel message sequences. Our im-
plementation of COMPOS uses abort semantics (i.e., aborting old reactions when a
newer message arrives) to deal with weak connectivity. We show how to get other
semantics than abort by adding strategy services. We evaluated our approach on
home automation scenarios and conducted a case study based on a commercial e-
health system. In the case study, we found that COMPOS makes the control flow
more explicit than the composition language currently used in the system.

1 Introduction

Current IoT systems typically have a cloud-centric architecture, where sensor de-
vices stream data to cloud servers. In these architectures, computation and storage
takes place in the cloud, and user applications interact with the data in the cloud.
This leads to IoT platform silos, where each system works in isolation, and where
it is difficult to compose data, services, and devices from different silos into new

Extended version of Alfred Åkessson, Görel Hedin, Boris Magnusson, and Mattias Nordahl.
“ComPOS: Composing Oblivious Services”. In: 2019 IEEE International Conference on Pervasive
Computing and Communications Workshops (PerCom Workshops). Kyoto, Japan, Mar. 2019,
pp. 132–138

42 Paper II: COMPOS: Composing Systems of Services

systems [Der+15; Che+14; PLM14]. Future IoT systems are expected to contain
more powerful devices, with more computation taking place at the edge of the
network, and with a need for handling unreliable (weak) connectivity of heteroge-
neous networks in a robust way [TM17].

We are exploring how to program such new kinds of systems. Our goals are
to support flexible integration of heterogeneous services to avoid the current si-
los, and to support the programming of robust applications that continue to work
partially even if connectivity is temporarily lost.

Our work is based on the PALCOM IoT middleware [SF09; SF+09] which
supports asynchronous message passing between processes on devices.

PalCom supports a component-connector IoT architecture with two kinds of
components: services that perform computations and interact with the physical
world, and compositions that connect to zero or more services, and mediate and
adapt messages between these services. A service can only communicate with
compositions, and not directly with other services. Services do not take the ini-
tiative to connect to other processes, and are in this sense oblivious to with whom
they are communicating.

Services are normally implemented in an ordinary general-purpose language,
e.g., Java, whereas the compositions are implemented using a domain-specific lan-
guage (DSL). Two goals of using a DSL for the compositions are making it easy
to construct new applications by composing services and making it easy to un-
derstand a distributed IoT system by having connections and message sequencing
explicit in the DSL.

Compositions can also expose functionality as so called synthesized services,
allowing other compositions to connect to them, forming hierarchical composi-
tions. Ordinary services, i.e., services that are not synthesized by a composition,
are called native services.

The original composition language used in PALCOM is a simple event-driven
language [SHM07] with very limited expressibility. For example, only sequential
message composition is supported. All incoming events are handled by unrelated
stateless reactions.

In this paper, we propose a new composition language, COMPOS (Compo-
sition language for PALCOM Oblivious Services), that enables more expressive
compositions. COMPOS supports sequential, parallel, and nested message se-
quences, and has support for both request-reply and solicit-response message pat-
terns. Reactions are stateful, and may block when waiting for messages. This way,
they may be related to reactions in other compositions.

While COMPOS is more powerful than the original language, we still want to
keep the design goals of having a very simple language that is focused on handling
coordination and mediation of messages, and where computation is delegated to
native services. For this reason, COMPOS does not contain general-purpose com-
putational constructs.

Paper II: COMPOS: Composing Systems of Services 43

With the addition of stateful reactions, the question arises of how to handle
weak connectivity, when awaited replies never arrive, or arrive too late to be mean-
ingful for the application. Different strategies can be used for handling this prob-
lem. For COMPOS, we have chosen an abort semantics that removes an ongoing
blocked reaction when a new related message arrives. We demonstrate how this
strategy limits the simultaneously ongoing activity in the system, while giving
preference to newer information. We also demonstrate how other strategies can be
obtained by adding strategy services.

We start by giving some background on the component-connector IoT archi-
tecture and different message patterns used (Section 2), and a running example
for an IoT system using this architecture (Section 3). We then present the main
contributions of the paper:

• We introduce the COMPOS language with nested and parallel message se-
quences (Section 4).

• We show different practical uses of COMPOS by extending the running ex-
ample (Section 5).

• We identify four different strategies for handling new messages when exist-
ing reactions are blocked: abort, parallel, ignore, and queue. We implement
the abort strategy by introducing epochs for keeping track of related reac-
tions in different processes (Section 6).

• We demonstrate how strategy services can be used to implement other strate-
gies than abort (Section 7).

• We evaluate the language by applying it to real-world scenarios (Section 8).
First, we used COMPOS to re-implement a scaled-down version of a com-
mercial e-health application. Second, we discuss how we can implement
seven commonly occurring home automation scenarios, as identified by
Rodríguez-Avila, de Koster, and de Meuter [Rdd21].

We end the paper by presenting related work in Section 9 and conclude in Sec-
tion 10.

2 IoT Architecture
In this section, we present the component-connector architecture used in PALCOM,
and the message patterns that we will use for COMPOS.

2.1 Services and Compositions
Figure 1 shows an example PALCOM IoT system consisting of four devices, d1,
d2, d3, and d4. Each device can host a number of native services and compositions.

44 Paper II: COMPOS: Composing Systems of Services

n1 n3

n4

c1 c3

n2 c2

d1

d2 d3
d4

Device Native service with API

Composition with connector

Synthesized service with API

Figure 1: System of devices with services and compositions.

For example, d1 hosts the native service n1 and the two compositions c1 and c3.
Native services implement computations and interactions with the physical world,
whereas compositions mediate and adapt messages between services.

Each composition connects to zero or more services. For example, c3 connects
to n3 and n4. It is possible for more than one composition to connect to the same
service, e.g., both c1 and c2 connect to service n1.

Each service has an API of signatures for the incoming messages it can receive
and the outgoing messages it can send. This information is discovered by the
middleware, and can be used when designing a composition.

A composition may have a synthesized service to which other compositions
can connect. This allows reusable compositions to be built, and composed in a
hierarchy. For example, instead of c1 and c2 each handling the mediation to n3

and n4, this mediation is encapsulated in c3, and can be reused via the synthesized
service of c3.

2.2 Port and Cable Metaphor

Metaphorically, we can think of native services as ports on physical devices, and
compositions as multiway adaptor cables that connect these ports. A composition
with a synthesized service corresponds to an adaptor cable that has a dongle on the
middle, with a port into which other cables can plug in.

Metaphors from the physical world often need to be enhanced with some de-
gree of “magic” to better fit a computational system [Smi87]. An example of this
is that the “cable” (composition) knows itself what “ports“ (services) it should
connect to, and automatically connects itself to services within reach (via some
network). This is handled by the underlying middleware.

Paper II: COMPOS: Composing Systems of Services 45

2.3 Deployment and Configuration

Services and compositions are runtime processes. To connect to a service, a com-
position uses a logical address consisting of a concrete type of the service, a URI
for the device where the service runs, and an instance name, which is a device-
local name for the running service. Given this logical address, the middleware
can automatically construct the physical connection, which might go via multiple
physical devices and network tunnels, and using different transport protocols like
TCP or UDP. The physical connection can also be transparently updated during
operation, for example for a mobile phone that alternates between using Wi-Fi or
cellular networks, depending on location.

The concrete type of a service is a globally unique name for the service im-
plementation, for example a UUID [LMS05]. The URI for a device is a glob-
ally unique name for a device, constructed, for example, from the MAC address
from one of its network interfaces. The instance name is local to a device, and
constructed so that all instances of the same concrete service type have distinct
names. The instance names are persistent, so that once deployed, a service keeps
its instance name even if it is stopped and started again, or if the device is rebooted.

Services and compositions can be deployed manually by a user, or via a config-
uration script on a configuration server [Nor+20]. To make compositions reusable,
they can be parameterized by what devices and instance names to use for their
service connections. This can be defined in the configurations.

In practice, a user will typically create a new configuration manually, to test
it, and then generate a script for it in order to be able to reuse it on other devices
and for other service instances. Parameterization of compositions and scripting of
configurations is orthogonal to the composition language, and therefore not further
treated in this paper.

2.4 Acyclic Graph and Versioning

It can be noted that the graph of PALCOM compositions and services is acyclic
by construction. This is because in order to define a connection in a composition,
the concrete type of the service must already exist, since it is part of the logical
address of the service. A composition type will thus always be newer than the
types of services it connects to, and a cyclic graph cannot be formed.

This also has the consequence that in order to update a system with a new
version of a service, all compositions connecting to it need to be updated as well, in
order to use the new service type. However, such updates are possible to automate.

2.5 Message Patterns and Reactions

In WSDL [Chr+01], messages between a client and a server are categorized into
four patterns. Here, we define the following four analogous patterns, where the

46 Paper II: COMPOS: Composing Systems of Services

cmd

req

resp

notif

resp

sol

Figure 2: Message patterns with notification, command, solicit/response, and re-
quest/response.

compositions play the role of clients, and services play the role of servers. See
also Figure 2.

notification (notif) A service sends a notification to all its connected composi-
tions.

command (cmd) A composition sends a command to a specific service.

solicit/response (sol/resp) A service sends a solicit and expects to receive a re-
sponse. A composition receiving the solicit will send a response back to the
service. For simplicity we assume that at most one composition is connected
to the service if solicit/response is used.

request/response (req/resp) A composition sends a request to a specific service,
and the service will then send a response back to the composition.

A composition is purely reactive: it only takes action when it receives an in-
coming message—it does not take any spontaneous initiative in sending messages.
All activity in a system therefore starts with a native service spontaneously sending
a message to a composition: either a notification or a solicit. This starts a reaction
in the composition that may send other messages, spreading activity throughout
the system.

The first composition language used in PALCOM, called the assembly lan-
guage [SHM07], did not distinguish between different message patterns, and can
be viewed as only supporting notifications and commands. Each incoming mes-
sage to a composition started a new stateless reaction that could send other mes-
sages, but not wait for responses to arrive. Simple support for request-response
was added later, and included in the 4.0.19 release of PALCOM1. Reactions were,
however, still stateless, so an incoming response was treated as starting a new
stateless reaction.

The composition language introduced in this paper, COMPOS, supports all
four message patterns, and has stateful reactions that can wait for responses and
store variables local to a reaction.

1http://palcom.cs.lth.se/Palcom/Download/Download.html

Paper II: COMPOS: Composing Systems of Services 47

2.6 Spontaneous and Expected Messages

In COMPOS, we refer to notifications, solicits, commands, and requests as spon-
taneous messages. When a spontaneous message is received, this starts a new
independent reaction in the receiving composition. i.e., a spontaneous message is
not considered to have any causal relationship to previously received messages.
Responses, on the other hand, are expected, and will continue a reaction that was
initially started by a spontaneous message.

3 Motivating Example

As a motivating example, we will use a variant of a bird watching scenario
[Åke+18a], and discuss why a stateless composition language is not sufficient.

3.1 Bird Watching Scenario

Maria is interested in birds and likes to keep track of what birds visit her garden.
However, she cannot constantly be on the watch, so she would like to have an
automatic system that does it for her. She has an idea of building a system that will
automatically take pictures of the birds during the day, which she can check later.
She has hardware and software that she wants to use to build the system: a motion
sensor, a camera, and some artificial intelligence software that can recognize if a
bird is present in an image or not. She would like to design the system such that
it takes a photo every time the motion sensor detects that something is moving in
the garden. If the bird recognition software detects a bird in the photo, it should
get saved for later inspection.

3.2 Devices and Services Used

Figure 3 shows the hardware and software that Maria uses to implement the au-
tomatic bird watcher application. The camera, the motion sensor, and the laptop
are devices connected to the local Wi-Fi network and they can discover each other
using the PALCOM middleware.2

Using the discovery mechanism, Maria identifies the services on the network.
The services in Maria’s system are:

• A motion service that sends a notification, move, each time a movement is
detected

• A camera service that can take a photo on request (take_photo) and re-
spond with the image (photo(img)).

2The PALCOM middleware allows automatic discovery of devices and services on application-
defined networks consisting of local networks, connected using UDP or TCP.

48 Paper II: COMPOS: Composing Systems of Services

Camera
Service

Motion
Service

Bird AI
Service

Storage
Service

Camera

Motion
Sensor

Laptop

cmd store(img)

notif move

req take_photo

resp photo(img)

req has_bird(img)

resp is_not_bird

resp is_bird

Figure 3: Services available to Maria, including APIs.

• A bird AI service that can classify an image as containing a bird or not, by
receiving a request with an image (has_bird(img)) and responding with
either the message is_bird or is_not_bird.

• A storage service that can receive a command with an image (store(img))
for permanent storage.

3.3 Constructing the Application

To construct the bird watcher application from the services above, Maria creates
a composition (a COMPOS program), that connects to the relevant services, and
that includes a script for how messages should be mediated.

The composition can be created in an easy way using structure editing and
drag-and-drop from a service discovery browser [Åke+18b; ÅH17] called the
PALCOM Browser. For instance, to write an action send msg to service, Maria
locates the message in the browser, and drags and drops it to the script.

Maria writes the script such that when a move notification arrives from the
motion sensor, a take_photo request is sent to the camera, which responds with
a photo message. The composition then sends the request has_bird to the bird
recognition service which responds with either an is_bird or an is_not_bird

Paper II: COMPOS: Composing Systems of Services 49

motion

camera storage

birdAI
Motion Sensor

Camera Laptop

1

42

3

Figure 4: Overview of Maria’s bird watcher system. 1) move notification, 2)
take_photo request with photo(img) response, 3) has_bird request with is_-
bird or is_not_bird response, 4) store(img) command.

reply. In the case of an is_bird reply, the composition sends the command store
to the storage service. Figure 4 shows an overview of the resulting system.

Maria deploys the composition to the Laptop device and starts it. The system
now store images of the birds during the day and she can come home after work
and enjoy a new set of bird photos.

3.4 The Need for Stateful Reactions

It would be difficult to write this script with stateless reactions. First, the image
needs to be cached by the composition, unless we require the bird service to return
the image in its reply, which would be needlessly inefficient. Second, even if the
image is cached globally in the composition, we need to make sure that the reply
from the bird service is actually about the cached image. This can be difficult
to ensure if multiple photos are taken before the bird service has time to reply.
If we construct a slightly more complex scenario with several cameras or several
alternative bird services, the composition may need to wait for several responses
in a reaction. In the next section, we present how the COMPOS language handles
these issues.

4 The COMPOS Language

A COMPOS program contains connection declarations, declarations of synthe-
sized services, and a coordination script for handling incoming messages. To ex-
ecute COMPOS programs, we implemented an interpreter. When the interpreter
starts running a composition, it sets up connections to all currently discoverable
services that are specified in the connection part of the composition. During inter-
pretation, connections are automatically set up or taken down, as the corresponding
remote services are discovered or undiscovered, e.g., due to network errors.

50 Paper II: COMPOS: Composing Systems of Services

4.1 Connections
The connection part defines what running services the composition should connect
to, and gives them local names to use in the coordination script, as in the following
example.

1 composition Example
2 device laptop = "Maria’s Laptop"
3 service birdAI = "Bird AI Service" on laptop
4 service storage = "Storage Service" on laptop
5 ...

Here, laptop is the local name of a specific device. The URI of this device is a
long string that is omitted from view in the COMPOS editor. The string "Maria’s
Laptop" is a human-readable name of the device, used just for documentation
purposes—it does not need to be unique. Further, birdAI and storage are local
names of two running services on the laptop device. Again, the URIs for the
concrete types of these services are omitted from view, and "Bird Service" and
"Storage Service" are just human readable names for these types. Optionally,
a local instance name can be added, in case a device runs more than one instance
of the same concrete service type.

In deploying the composition, the underlying middleware automatically es-
tablishes and takes down connections, as services and devices are discovered or
undiscovered. The coordination script can send and receive messages on these
connections. In case a connection is down, any messages sent over it will simply
be lost.

It is possible to reuse the composition in another setting, binding to other de-
vices than those used in the script. This can be done by overriding the URIs of
devices in configurations, as discussed in Section 2.3. A debugger may then show
the human-readable names of those overriding devices instead of the ones defined
in the composition.

4.2 Synthesized Services
A synthesized service defines an API to which other compositions can connect, as
in the following example.

1 composition Example
2 ...

3 synthesized service Example
4 in ma (arg1:Type1, arg2:Type2)
5 out mb ()
6 out mc ()
7 pattern ma -> (mb | mc)
8 ...

A synthesized service can be given the same name as the composition, as in
the example above. But if there is more than one synthesized service, they must
have distinct names.

Paper II: COMPOS: Composing Systems of Services 51

notif

resp (from req)
sol

cmd

Incomming Outgoing

req
resp (from sol)

cmd

req
resp (from sol)

notif

resp (from req)
sol

Figure 5: Incoming and outgoing messages to/from a composition.

The API defines in messages that can be sent to the synthesized service, and
out messages that the composition can send from the service, to the compositions
that connect to it. Each message can have zero or more typed arguments. The
pattern clause defines the message patterns used. For example, in this case, ma
is a request that replies with either mb or mc. For notifications and commands, no
pattern clauses are needed. Patterns are currently not supported by PALCOM and
not enforced in COMPOS.

4.3 Message Kinds

Because of the different message patterns with in total six kinds of messages, and
the fact that a composition can both have its own connections and be connected to
via its synthesized services, there are 12 different kinds of possible messages, as
shown in Figure 5.

In COMPOS scripts, messages in send and receive constructs are tagged
with message kinds, i.e., cmd, req, resp, sol, or notif. These tags are not
strictly necessary, as they could be inferred from the APIs, and are only included
for clarity.

4.4 Coordination Script

A COMPOS coordination script consists of a set of event handlers for incoming
messages, so called when-dos. Each when part matches an input message either
from a specific service or to a synthesized service of the composition, as in the
following example.

52 Paper II: COMPOS: Composing Systems of Services

1 composition ...
2 service s = ...
3 synthesized service T ...
4
5 when notif n from s do
6 ...

7
8 when cmd c to T do
9 ...

All when parts must be mutually exclusive, so when a message arrives, there
is only one event handler that can match.

The do part, also called a reaction specification, contains a sequence of actions
to be executed when the input message is received.

Actions can be blocking or non-blocking. The following actions are supported:

send Non-blocking. Sends a message to a receiver.

receive Blocking. Waits for a response from a previous request or solicit.

select Contains a set of mutually exclusive event handlers for incoming messages,
like the when at the top level of the script. However, in a select the inputs are
responses, whereas at the top level they are spontaneous messages. Blocks
until one of the event-handlers matches.

parallel Runs a set of action sequences in parallel. Blocks until all its sequences
are finished.

finish first Similar to the parallel action, but blocks only until one of its sequences
has finished.

The following example illustrates send, receive and select.

1 service s = ...
2 when ... do
3 send req r1 to s
4 receive resp r1answ(var p) from s
5 send req r2(p) to s
6 select
7 when resp r2answ1 from s do
8 ...

9 when resp r2answ2 from s do
10 ...

11 end

Here, the do part starts by sending the request r1 to s. Then the reaction blocks
until the response r1answ is received. The r1answ includes a parameter p that is
captured in the script using the var construct. This parameter is then used when
sending a new request r2 to s. The reaction then blocks on the select action, until
one of the responses r2answ1 or r2answ2 arrives.

Paper II: COMPOS: Composing Systems of Services 53

It can be noted that request-responses are not syntactically coupled like remote
procedure calls would be. However, for each response, the corresponding send
can be statically determined from the script (the nearest previous send to the same
service). If a corresponding send is missing, there is a static error in the script,
which is flagged by the COMPOS editor.

It can also be noted that COMPOS does not include any constructs for general-
purpose computations. Such computations would need to be delegated to a service.
Conditionals are supported through the select action, by reacting differently de-
pending on which response message is received.

The listing below shows an example of the parallel construct. The parallel
branches are separated with the keyword and. The enclosing action sequence
continues to execute when all branches have finished.

1 ...

2 parallel
3 send req r1 ...
4 receive resp r1answ ...
5 ...

6 and
7 send req r2 ...
8 receive resp r2answ ...
9 ...

10 end
11 ...

The following listing shows the finish first construct. Here, the branches
are separated by or, and the enclosing action sequence continues to execute when
one of the branches has finished.

1 ...

2 finish first
3 send req r1 ...
4 receive resp r1answ ...
5 ...

6 or
7 send req r2 ...
8 receive resp r2answ ...
9 ...

10 end
11 ...

Practical use of the different constructs will be illustrated in Section 5. A
specification of the COMPOS syntax in EBNF can be found in appendix A.1.

4.5 Reactions

The COMPOS interpreter has a queue for incoming messages, and handles the
messages in order of arrival. For each message, the interpreter will either create a
new reaction, continue the execution of a previously blocked reaction, or simply
ignore the message (when there is no suitable action to take).

54 Paper II: COMPOS: Composing Systems of Services

When receiving a spontaneous message that matches a when-do clause at the
outermost level, the interpreter creates a new reaction for the corresponding re-
action specification. The reaction contains local variable values and a program
counter, keeping track of the currently executing action. The reaction may also
contain subreactions with their own program counter and local variables, see be-
low.

The interpreter continues to execute the current reaction until the reaction
blocks or finishes. If the reaction blocks, it is suspended, and the interpreter con-
tinues by processing the next message in the event queue. If the next message is
a response expected by a suspended reaction, the interpreter continues to execute
that reaction. A received message can match at most one outer when-do or blocked
reaction, and gets ignored if it has no match. Messages sent to connections that
are currently down, are by default lost.3

For parallel and finish first actions, one subreaction is created for each parallel
action subsequence, with its own program counter and local variables. The inter-
preter executes each of the subreactions until it blocks, and after that, the parent
reaction also blocks. Later, when a new message arrives that one of the subreac-
tions is waiting for, that subreaction continues to execute until it finishes or blocks.
In case the subreaction finishes, and was the last/first subreaction to finish in a par-
allel/finish-first action, the parent reaction will continue its execution.

We can note that the root reaction in a subreaction hierarchy is started by a
when-do at the outermost level in the script.

4.6 Resuming a Reaction

A reaction is resumed when a response message it is waiting for is handled. To
be able to identify the reaction to resume, each outgoing request/solicit message
is tagged with a sending-reaction-id, identifying the root reaction of the reaction
sending the message, and a send-id, identifying the send action used (a position in
the script). These values are returned by the response message.

Each reaction that is waiting for a response message is blocked at either a
receive or a select action. From this receive or a select action it is straightforward
to compute the corresponding send-id.

To handle a response, the root reaction is first identified using the sending-
reaction-id in the response message. Then, any blocked action under this root
reaction that matches the name and send-id of the response message continues to
execute. It can be noted that there can be at most one match because two subreac-
tions are not allowed to wait for the same response messages.

If a matching reaction is found, it will be resumed in order to consume the
response message. If no matching reaction is found, the response message is ig-
nored. This can happen, for example, if the composition has been restarted since

3There is also functionality for declaring connections as reliable, in which case the messages are
buffered until the connection is up again.

Paper II: COMPOS: Composing Systems of Services 55

the request/solicit was sent, or if a waiting subreaction has already terminated due
to an outer finish-first action.

Pseudocode for the interpreter can be found in appendix A.2.

5 Composing Scenarios

In this section, we will illustrate practical use of COMPOS by discussing different
variants of the birdwatcher scenario: the simple scenario from Section 3, a sce-
nario that uses the parallel construct to handle two cameras, a refactored scenario
adding a composition with a synthesized service to avoid duplication of code, and
a scenario illustrating nested parallel and finish first actions.

5.1 Simple Birdwatcher

The listing below shows the script for the simple birdwatcher composition from
Section 3. The logic is quite simple: when a move message arrives from the
sensor, a request is sent to the camera to take a photo. When the response ar-
rives, the image is sent to the birdAI. Depending on the response, the image is
stored or not. Then the reaction terminates.

1 composition SimpleBirdwatcher
2 service sensor = ...
3 service camera = ...
4 service birdAI = ...
5 service storage = ...
6 when notif move from sensor do
7 send req take_photo to camera
8 receive resp photo(var img) from camera
9 send req has_bird(img) to birdAI

10 select
11 when resp is_bird from birdAI do
12 send cmd store_image(img) to storage
13 when resp is_not_bird from birdAI do
14 end

Figure 6 shows a sequence diagram for the composition, illustrating when the
reaction is blocked (waiting for a response).

In Section 6.1 we will discuss what happens if a new move arrives before an
ongoing reaction has terminated.

5.2 Two Cameras in Parallel

To illustrate the parallel construct, we suppose that Maria adds one more camera,
to see the birds from more angles. She replaces4 the SimpleBirdwatcher com-

4In practice, Maria would typically edit the birdwatcher composition rather than replacing it. For
clarity, we use different names for all versions of the compositions.

56 Paper II: COMPOS: Composing Systems of Services

sensor camera birdAI storage SimpleBirdwatcher

move
take_photo

photo(img)

has_bird(img)

is_bird

store(img)

is_not_bird()

AltAlt

6

7

8

9

11

12

13

reaction

reaction blocked
spontaneous
expected

Figure 6: Sequence diagram for SimpleBirdwatcher. The number to the right
is the corresponding line number in SimpleBirdwatcher.

Paper II: COMPOS: Composing Systems of Services 57

position with a new composition TwoCamBirdwatcher which uses the parallel
action to take and process pictures in parallel:

1 composition TwoCamBirdwatcher
2 // declare sensor, camera_1, camera_2, birdAI, storage
3
4 when notif move from sensor do
5 parallel
6 send req take_photo to camera_1
7 receive resp photo(var img) from camera_1
8 send req has_bird(img) to birdAI
9 select

10 when resp is_bird from birdAI do
11 send cmd store_image(img) to storage
12 when resp is_not_bird from birdAI do
13 end
14 and
15 send req take_photo to camera_2
16 receive resp photo(var img) from camera_2
17 send req has_bird(img) to birdAI
18 select
19 when resp is_bird from birdAI do
20 send cmd store_image(img) to storage
21 when resp is_not_bird from birdAI do
22 end
23 end

5.3 Factor out Duplicated Code from a Composition

The TwoCamBirdwatcher composition has duplicated code that Maria would like
to avoid: the code interacting with birdAI and storage (lines 8-12 and 17-21) is
the same for both parallel branches.

It is possible to use a composition with a synthesized service as an abstraction
mechanism to solve this problem. Common code can be factored out to a separate
composition, and the combined functionality can be provided to the rest of the
system by a synthesized service.

Maria uses this approach to factor out the duplicated code into a new com-
position StoreIfBird with a synthesized service. The refactored version of the
original composition, TwoCamRefactored, interacts with StoreIfBird instead
of directly with birdAI and storage. See Figure 7.

The refactored code is shown in the following listings. Note that a reaction
in the StoreIfBird composition starts by an incoming command message on
its synthesized service. Since TwoCamRefactored sends two such commands in
parallel, this gives rise to two independent reactions in StoreIfBird.

58 Paper II: COMPOS: Composing Systems of Services

1 composition TwoCamRefactored
2 // declare sensor, camera_1, camera_2, store_if_bird
3
4 when notif move from sensor do
5 parallel
6 send req take_photo to camera_1
7 receive resp photo(var img) from camera_1
8 send cmd an_image(img) to store_if_bird
9 and

10 send req take_photo to camera_2
11 receive resp photo(var img) from camera_2
12 send cmd an_image(img) to store_if_bird
13 end

1 composition StoreIfBird
2 // declare birdAI, storage
3
4 synthesized service StoreIfBird
5 in an_image(img:jpg)
6
7 when cmd an_image(var img) to StoreIfBird do
8 send req has_bird(img) to birdAI
9 select

10 when resp is_bird from birdAI do
11 send cmd store_image(img) to storage
12 when resp is_not_bird from birdAI do
13 end

5.4 Nested Actions

We will now illustrate nested parallel and finish first actions, and show how the
decoupling of sends and receives can be utilized.

Maria finds out that her birdAI service gives too many false negatives, and
she wants to combine it with a better (but usually slower) one that she finds online.
She creates a new composition, CombinedAI that has a synthesized service with
the same interface as her local birdAI service. The new composition consults
both the local and the online services. If one of them responds positively, the
synthesized service replies with is_bird, and if both are negative, it replies with
is_not_bird. The listing is shown below:

Paper II: COMPOS: Composing Systems of Services 59

motion

camera storage

TwoCam
Birdwatcher

birdAI
Motion Sensor

Camera 1 Laptop

1

42

2

3

camera
Camera 2

motion

camera

Motion Sensor

Camera 1

Laptop

33

1

2

2
camera

Camera 2

TwoCam
Refactored

storage

birdAI

5

4Store
IfBird

refactor

Figure 7: The two-camera system before and after refactoring. The labels on the
connections indicate the order of the interaction and the direction of the messages.

60 Paper II: COMPOS: Composing Systems of Services

1 composition CombinedAI
2 service local_AI = ...
3 service remote_AI = ...
4
5 synthesized service CombinedAI
6 in has_bird(img:jpg)
7 out is_bird()
8 out is_not_bird()
9 pattern has_bird -> (is_bird | is_not_bird)

10
11 when req has_bird(var img) to CombinedAI do
12 send req has_bird(img) to local_AI
13 send req has_bird(img) to remote_AI
14 finish first
15 receive resp is_bird from local_AI
16 send resp is_bird from CombinedAI
17 or
18 receive resp is_bird from remote_AI
19 send resp is_bird from CombinedAI
20 or
21 parallel
22 receive resp is_not_bird from local_AI
23 and
24 receive resp is_not_bird from remote_AI
25 end
26 send resp is_not_bird from CombinedAI
27 end

We can note that by decoupling the sends and receives in the script, it is pos-
sible to wait for different responses at different locations in the script. This way,
the composition can respond as soon as it gets a positive result from one of the AI
services.

The CombinedAI can now be used in one of the birdwatcher compositions,
e.g., SimpleBirdwatcher, simply by replacing the binding of the birdAI service
to the synthesized service of CombinedAI.

6 The Abort Strategy

6.1 Handling Overload and Weak Connectivity

Because of weak connectivity, messages may be delayed or lost. Even if reliable
connections are used, it may happen that a remote service does not reply as ex-
pected, due to bugs or crashes. If no special measures are taken, a reaction waiting
for such a reply would be blocked forever. A related problem is message overload,
when a device does not have the capacity to handle all incoming messages. Fur-
thermore, if the capacity is limited, there is the question of what priority to give
to different reactions: should existing reactions be allowed to continue to execute,

Paper II: COMPOS: Composing Systems of Services 61

even if we do not know if they will finish, or should they be aborted, risking valu-
able work to be lost? For COMPOS, a fourth issue to consider is that reactions in
different compositions may be related, if one reaction is the result of a message
sent from another composition.

There are many possible strategies for dealing with these problems. Below,
we list four basic strategies for dealing with incoming spontaneous messages on
a connection, in the case there is already an ongoing reaction associated with the
connection.

parallel Start a parallel reaction for the new message.

queue Queue up the message and start its reaction when the ongoing reaction has
completed.

ignore Ignore the new message.

abort Abort the current reaction and start a new one.

In our interpreter for COMPOS, we have chosen the abort strategy. This
way, blocked reactions are automatically removed when the next message arrives.
Strategies parallel, queue, and ignore would need to be complemented with time-
outs to remove blocked reactions, and such timeouts may be difficult to tune. The
abort strategy furthermore automatically gives a bound on the simultaneously on-
going activity in the system. So does queue and ignore, but they prioritize older
messages, whereas abort prioritizes newer ones.

For abort to work for hierarchical compositions (connected via synthesized
services) it is important that dependent reactions are not aborted unless the original
reaction is aborted. Otherwise, the parallel and finish-first constructs would not
work correctly.

In some situations, one of the other strategies, parallel, queue, or ignore, would
be more suitable. For example, if spontaneous messages arrive very frequently,
abort might lead to ongoing reactions never getting time to complete, and ignore
would be a better option. It turns out that by choosing abort as the default strategy,
the other strategies can be implemented using additional strategy services. This
will be discussed in Section 7. Table 1 summarizes the properties of the different
strategies.

6.2 Rules for Aborting Reactions

A notification or solicit from a native service can lead to a number of reactions
in several compositions, similar to a call graph. The abort semantics applies to a
complete such call graph, so that a newer related call graph aborts a previous one,
but reactions within the same call graph never abort each other, and reactions on
unrelated call graphs should not abort each other either. We will now motivate and

62 Paper II: COMPOS: Composing Systems of Services

parallel queue ignore abort
Responsive Yes No No Yes
Bounded No No Yes Yes
Eager abort No No No Yes
Need timer Yes Yes Yes No

Table 1: Summary of the properties for the different strategies. Responsive means
that the latest message is always handled directly in the composition. Bounded
means bounded memory use without using time-outs in cases where native ser-
vices send an unlimited number of spontaneous messages. Eager abort means that
reactions that could have finished can get removed without the use of time-outs.
Need timer means that the strategy needs to use time-outs to remove reactions that
are stuck.

illustrate this semantics by a number of smaller scenarios, formulating observa-
tions for when reactions are aborted or not, and finally formulating a general rule
for the abort semantics.

6.2.1 Notifications and Solicits on the Same Connection

We begin by considering what happens when a composition connects to a service,
and more than one notification/solicit arrive on the same connection. For illustra-
tion, we use a home automation scenario taken from Rodríguez-Avila, de Koster,
and de Meuter [Rdd21]:

Send a [alert] notification when a window has been open for over an
hour.

In our solution to this scenario, we assume there are the following services:

window sends a notification when the window opens or closes

timer which can be sent a request to keep the time, and responds when the time
is up

alert which can be sent a command to alert the user

We can implement the scenario by gluing together the services using a compo-
sition, AlertWindowOpen, making use of the abort semantics:

Paper II: COMPOS: Composing Systems of Services 63

window AlertWindowOpen timer

opened

timer_start(1h)

closed

Figure 8: The closedmessage starts a new reaction, aborting the reaction started
by the opened message.

1 composition AlertWindowOpen
2 service window = ...
3 service timer = ...
4 service alert = ...
5 when notif opened from window do
6 send req timer_start("1h") to timer
7 receive resp timer_end from timer
8 send cmd alert("Window open 1h") to alert
9 when notif closed from window do

Suppose that an opened notification arrives and starts a reaction in the compo-
sition. The reaction will block, waiting for the timer to respond (line 7). Suppose
a new notification (opened or closed) arrives from window while the reaction is
blocked. The reaction will then be aborted and a new reaction started, sending a
new request to the timer. In the case of closed, the new reaction immediately
terminates, and no alert will be sent. The sequence diagram in Figure 8 depicts
this situation. However, if the window is not closed, the timer will respond after
one hour, and the reaction will send the alert.

The abort semantics is based on that we view notifications (or solicits) that
arrive on the same connection to be related, and that they can be seen as reporting
an updated newer status (or sending an updated solicit). The newest message re-
ceived therefore aborts a reaction started by an earlier message. We can make the
following observation:

Observation 1 (Abort when newer notification has same connection)
A notification or solicit will abort a reaction started by a notification or solicit on
the same connection.

64 Paper II: COMPOS: Composing Systems of Services

window window_2 AlertWindow2Open timer

opened

timer_start(24h)

opened

timer_start(24h)

closed

Figure 9: The two reactions run simultaneously because they are started by
opened messages arriving on different connections.

6.2.2 Notifications and Solicits on Different Connections

How do we handle notifications and solicits coming from different services? Be-
cause these messages are unrelated, it seemed sensible for us that they should not
abort each other. This gives the following observation:

Observation 2 (No abort when notification has different connection)
Notifications and solicits arriving on different connections should not abort each
other’s reactions.

To illustrate this, we could add another window to our composition, window_2,
by duplicating the behavior for that window as follows:

1 // Handle original window:
2 when notif opened from window do
3 send req timer_start("1h") to timer
4 receive resp timer_end from timer
5 send cmd alert("Window open 1h") to alert
6 when notif closed from window do
7 // Handle window_2:
8 when notif opened from window_2 do
9 send req timer_start("1h") to timer

10 receive resp timer_end from timer
11 send cmd alert("Window 2 open 1h") to alert
12 when notif closed from window_2 do

The sequence diagram in Figure 9 shows how an opened message from each
window results in simultaneous reactions in the composition, and how a closed
message aborts one of these reactions.

Paper II: COMPOS: Composing Systems of Services 65

window window_2 WindowAlert Timer

opened

timer_start(24h)

opened

timer_start(24h)

Figure 10: The two requests sent to Timer have different origins. Therefore,
the second request starts a new reaction in Timer, without aborting the existing
reaction.

6.2.3 Commands and Requests with Different Origin

We will now look at compositions with synthesized services. Incoming requests
and commands to the synthesized service will start reactions in the composition.
When should they abort each other?

Let us consider a composition WindowAlert which connects to window and
window_2 as in the previous example, but which uses a synthesized service Timer
instead of the native timer service. The two requests to Timer are sent on the
same connection, but they are unrelated and should not abort each other’s reactions
in the Timer composition. See Figure 10.

In general, when we have several compositions connected through synthesized
services, some reactions will be related to each other and some will be unrelated.

To talk about unrelated requests, we introduce the notions of source service,
source connection, and source reaction. A notification or solicit sent from a na-
tive service can start reactions in a composition. These reactions can lead to other
reactions by sending commands or requests to synthesized services of other com-
positions. Similarly, these new reactions can lead to more new reactions, and so
on. This creates a hierarchy of compositions sending commands and requests to
each other, similar to a call graph. In this hierarchy, every reaction can be traced
back to a native service sending a notification or solicit; we call this the source
service. In Figure 10, window and window_2 are examples of source services.
The connection that a composition sets up to a source service is called a source
connection. The reaction the composition creates when receiving a notification
or solicit on the source connection is called a source reaction. Any reaction in a
composition can be traced back to a source connection which we call the origin of
the reaction.

Using this new terminology, we have the following observation:

66 Paper II: COMPOS: Composing Systems of Services

time_trackerwindow Timer

Ventilation
Monitor alert

Figure 11: The figure shows an overview of window monitoring system. Devices
are omitted.

Observation 3 (No abort when command has different source connection)
Commands and requests originating from different source connections should not
abort each other’s reactions.

6.2.4 Commands and Requests With the Same Origin

To illustrate another situation of interest, we describe a more complex scenario in-
volving the same services. In this scenario, we want to build a system that reminds
us to open and close a ventilation window. We must open the window for five to
ten minutes every day for fresh air. An overview of the system is shown in Figure
11.

The VentilationMonitor composition composes this system and relies on
the abort semantics. When the window opens, the VentilationMonitor starts
two timers in parallel for five and ten minutes, respectively. After five minutes,
the system alerts that it is time to close the window, and sends a reminder after ten
minutes. When the window closes, VentilationMonitor sets the timer for 24h
and then alerts when it is time to open the window.

1 composition VentilationMonitor
2 // Setup omitted

3 when notif opened from window do
4 parallel
5 send req timer_start("5min") to timer
6 receive resp timer_end from timer
7 send cmd msg("Please close the window.") to alert
8 and
9 send req timer_start("10min") to timer

10 receive resp timer_end from timer
11 send cmd msg("Please close the window now!") to alert
12 end
13 when notif closed from window do
14 send req timer_start("24h") to timer
15 receive resp timer_end from timer
16 send cmd msg("Please open the window.") to alert

Paper II: COMPOS: Composing Systems of Services 67

window VentilationMonitor Timer

opened

timer_start(5min)

timer_start(10min)

closed

timer_start(24h)

1

4

2

3

5

Figure 12: The closedmessage aborts reaction 1, and timer_start(24) aborts
both reactions 2 and 3.

In this scenario, we send two requests to Timer in parallel (lines 5 and 9).
These requests are independent and should not abort each other in Timer. Hence
we state the following observation:

Observation 4 (No abort when command originates from same reaction)
Two commands or requests that originate from the same source reaction should
not abort each other.

However, we still want commands and requests to abort in all the other cases,
thus leading to the following observation:

Observation 5 (Abort when newer command has same source connection)
Two commands or requests originating from the same source connection but differ-
ent source reactions should abort each other. Commands or requests originating
from newer source reactions should abort reactions originating from older source
reactions.

This observation is illustrated in Figure 12. When window sends opened,
VentilationMonitor starts reaction 1 with two timers in parallel. Starting the
two timers leads to two reactions, 2 and 3, in the Timer. If window sends closed
before the timers are out, window’s closed will abort reaction 1 and start reaction
4. Reactions 2 and 3 will also abort because timer_start sent in reaction 4
aborts them and starts reaction 5.

68 Paper II: COMPOS: Composing Systems of Services

6.2.5 Abort Semantics Rule

In the observations in the previous sections, we have distinguished between in-
coming notifications/solicits and commands/requests. The former arrive on the
connections that a composition sets up, and the latter arrive to the synthesized
services of a composition.

If we do not make this distinction, we can generalize observations 3, 4, and 5
to discuss incoming spontaneous messages in general, instead of only commands
and requests. We can then see that observations 1 and 2 (which are about noti-
fications and solicits) are special cases of the generalized observations 5 and 3,
respectively. Furthermore, we can note that all possible cases are covered by the
generalized observations 3, 4, and 5, with 3 and 4 (no abort) being complementary
to 5 (abort). This allows us to reformulate observation 5 as a general rule for our
abort semantics:

Rule 1 (Abort semantics)
A new reaction r′ will abort an existing reaction r, if and only if reactions r and
r′ have the same source connection, but different source reactions, and where the
source reaction of r′ is newer than that of r.

6.3 Epochs for Implementing Abort Semantics

In order to implement abort semantics according to Rule 1, we will introduce the
notion of epochs. We think of an epoch as having a place and a time, like the
middle ages (Europe, 476–1453). In our case, the place is a source connection,
and the time uses a logical clock (inspired by Lamport [Lam78]) representing the
lifetime of a source reaction. An epoch represents the activity in the system caused
directly or indirectly by a source reaction. Two epochs for the same source connec-
tion are ordered in time, and the idea is that a newer epoch aborts an older epoch
for the same source connection. Epochs for different source connections are not
comparable.

More formally, we represent an epoch as a tuple (sourceId , seqNbr), where
sourceId is a universally unique id for the source connection, and seqNbr is the
logical time at which the source reaction started.

Existing native services in PALCOM are not aware of epochs, so when a source
service sends a notification or solicit to a composition, the message contains no
epoch information. Instead, it is the composition that is responsible for creating
new epochs. This is done by associating a counter, seqNbr , with each source
connection, keeping track of the starting time of the most recently created source
reaction for that connection. When the composition receives a notification or a
solicit, it increases the corresponding seqNbr counter, and creates a new reaction
with the epoch (sourceId , seqNbr), where sourceId is the universal id of the con-
nection. When a composition is started, a universally unique sourceId is created
for each connection, based on the device id where the composition is running.

Paper II: COMPOS: Composing Systems of Services 69

To determine if one epoch aborts another, we introduce the aborts relation.
Given two epochs e = (sourceId , seqNbr) and e′ = (sourceId ′, seqNbr ′), e′ will
abort e if they have the same sourceId and if the seqNbr of e′ is strictly greater
than that of e. Formally:

e′ aborts e iff sourceId = sourceId ′ ∧ seqNbr ′ > seqNbr

After creating a new source reaction with an epoch e′, the composition inter-
preter aborts any blocked reaction with an epoch e that e′ aborts.

When a reaction sends commands and requests, the interpreter adds the reac-
tion’s epoch to the messages. Furthermore, when a composition receives a com-
mand or request on a synthesized service, the new reaction gets the epoch e′ of
the received message, and all blocked reactions with an epoch e are aborted, if
e′ aborts e.

In case the opposite holds, i.e., there is a blocked reaction with an epoch e that
aborts e′, then the new reaction is not created or run at all. We can view this as
the new reaction being immediately aborted.

Note that a received command or request always has an epoch because these
messages are received on a synthesized service, and are therefore sent by another
composition.

In Figure 13, we use the window monitoring scenario to show how one new
reaction can abort two blocked reactions in the same composition. The connection
from VentilationMonitor to window has the universal id e3b0. Each message
arriving on this connection gives rise to a new reaction, aborting the previous one,
and starting a new epoch. Reaction 1 sends two messages to the Timer, leading
to two new reactions, 2 and 3. Since they belong to the same epoch (e3b0, 1),
they will both be created without one aborting the other. The new reaction in
VentilationMonitor has a newer epoch, (e3b0, 2), so when it sends the mes-
sage timer_start(24h), a new reaction (5) is created at Timer and aborts the
two earlier reactions 2 and 3, since (e3b0, 2) aborts (e3b0, 1).

6.3.1 Epoch-aware Native Services

While legacy PALCOM services are not aware of epochs, it is possible for new
native services to make use of them. If a composition receives a message with an
epoch from a native service, it will use this epoch for the new reaction, and abort
earlier reactions as discussed above. Epoch-aware services are useful in order
to implement strategy services, as will be discussed in the next section. Epoch-
aware services are also useful when a service is connected to from two different
compositions, and message flow goes from one composition through a service to
another composition. This will be discussed in Section 8.

70 Paper II: COMPOS: Composing Systems of Services

window VentilationMonitor Timer

opened(−,−)

timer_start(5min)(e3b0,1)

timer_start(10min)(e3b0,1)

closed(−,−)

timer_start(24h)(e3b0,2)

1

(e3b0,1)

4
(e3b0,2)

2

(e3b0,1)

3
(e3b0,1)

5 (e3b0,2)

Figure 13: Epochs are shown on messages and reactions. e3b0 is the universal
id for the connection between VentilationMonitor and window. The message
timer_start(24h) leads to a new reaction (5) that aborts reactions 2 and 3.

6.4 Bounded Number of Epochs

In this section, we show that the abort strategy limits the simultaneously ongo-
ing activity in a system by bounding the number of epochs in it. We show this
boundedness for systems without epoch-aware native services. To do this, we first
show that a system has a bounded number of sourceIds, then that the number of
epochs in a running composition is bounded by the number of sourceIds in the
system. Lastly, we combine these two facts and show that the number of epochs in
a system is bounded. Note that we here only consider static systems, i.e., systems
where services and compositions are not added or removed.

To show that a system has a bounded number of sourceIds, we first note that
the number of sourceIds equals the number of source connections. We also note
that every source connection is defined in the connection part of the composition
(Section 4.1); hence, a composition has a bounded number of source connections.
We then get that the the number of source connections is bounded because every
composition has a bounded number of source connections, and a system has a
bounded number of compositions.

We now want to show that the number of sourceIds bounds the number of
epochs in a running composition. All epochs with a given sourceId in a running
composition, have the same seqNbr because the epoch with the highest seqNbr
for the given sourceId aborts all reactions with the same sourceId and a lower
seqNbr . Thus, the number of epochs in a composition can never exceed the num-
ber of sourceIds in the system.

Combining these two facts, we get that the number of epochs in a running

Paper II: COMPOS: Composing Systems of Services 71

composition is bounded. With the bounded number of epochs in a running com-
position and the bounded number of running compositions in the system, we get
that the total number of epochs in the system is bounded.

It would be desirable to put a bound also on the number of reactions in a
system. This would require that each epoch only can lead to a bounded number of
reactions. Currently, we cannot guarantee this, because it is possible to construct
message loops. A simple example is a composition that sends a command to a
synthesized service, that in turn sends a notification back to the composition, which
then sends the same command to the synthesized service again. This can lead to
an infinite number of reactions, corresponding to an infinite loop. It would also
be useful to determine boundedness of systems with epoch-aware native services.
As future work, we plan to look into how both these problems can be solved by
introducing more expressive service APIs.

In this section, we have informally shown that the number of epochs in a sys-
tem is bounded. In the future, we may formalize the dynamic semantics to prove
this formally, as well as extending the work to reason formally about when the
number of reactions is guaranteed to be bounded.

7 Adapting Semantics with Strategy Services
In Section 6.1 we discussed the parallel, queue, ignore, and abort strategies for
dealing with incoming messages. For COMPOS, we have chosen abort seman-
tics, but sometimes, another strategy would be preferable. In this section, we will
sketch how the other strategies can be accomplished by adding an extra native
service, a strategy service.

7.1 Ignoring Messages
We will start by considering the ignore strategy, where incoming messages are
ignored until the composition has completed an ongoing reaction.

As an example, consider the bird-watching system from Section 3. If a second
move message arrives before the reaction for the previous move has completed,
COMPOS will abort the ongoing reaction, as shown in Figure 14. If the motion
sensor sends move messages with a sufficiently high frequency, no reaction will be
able to finish. A more desirable strategy in this case would be to ignore incoming
move messages while there is an ongoing reaction.

To implement the ignore strategy, we can use a strategy service called latch
which implements the state machine shown in Figure 15. The latch is initially
open. If it then receives a signal command, it will close and send out a signaled
solicit. After that, it will ignore all incoming signal commands until it receives a
reset response, at which it goes back to the open state.

Figure 16 shows an overview of the bird-watching system with the added
latch service. The latch in effect breaks the message flow into two parts: the

72 Paper II: COMPOS: Composing Systems of Services

sensor camera bird AI storage Composition

move
take_photo

photo(img)

has_bird(img)

move
take_photo

photo(img)

has_bird(img)

is_bird

store(img)

Figure 14: The sequence diagram shows the move notification aborting the cur-
rently blocked reaction (yellow) and initiating a new one (green).

open closed

signal/signaled

signal/∅

reset/∅

reset/∅

Figure 15: State machine for the latch service. Edges are labelled with (re-
ceived/sent message) where ∅ means sending no message.

Paper II: COMPOS: Composing Systems of Services 73

1
2

sensor

camera storage

birdAI

latch

Motion Sensor

Camera Laptop

Figure 16: Bird-watching system extended with a latch strategy service that
breaks the message flow into two separate parts.

first part goes from the sensor through the composition to the latch (flow 1), and
the second part goes from the latch through the composition to the camera, the
birdAI and the storage (flow 2). Because the two flows have separate sources,
new epochs along flow 1 (due to new move messages) cannot abort ongoing reac-
tions in flow 2.

In more detail, flow 1 starts when a move notification arrives from the sensor.
The composition then sends a signal command to the latch. If the latch is open,
it closes and starts flow 2 by sending a signaled solicit back to the composition.
However, if the latch is closed, it simply ignores the incoming signal message.
When the composition has finished handling a signaled, it responds with reset
to the latch to open it again.

To use the latch service in the composition, a when-do is added that sends a
signal to the latch every time a move is received. Further, the original when-do
is changed to listen for the signaled solicit instead of the move, and to send a
reset response at the end of the reaction. The resulting script is shown below:

1 when notif move from sensor do
2 send cmd signal to latch
3 when sol signaled from latch do
4 send req take_photo to camera
5 receive resp photo(var img) from camera
6 send req has_bird(img) to birdAI
7 select
8 when resp is_bird from birdAI do
9 send cmd store_image(img) to storage

10 when resp is_not_bird from birdAI do
11 end
12 send resp reset to latch

The change of the composition allows a reaction to run to completion, without
being aborted by any move message. Figure 17 shows a scenario where the latch
pattern prevents the abortion of a reaction.

By adding the latch, there is a risk that the reaction in the composition gets

74 Paper II: COMPOS: Composing Systems of Services

sensor camera bird AI storage Composition latch

move
signal

signaled

take_photo

photo(img)

has_bird(img)

move
signal

is_bird

store(img)

reset

move
signal

signaled

Figure 17: The sequence diagram shows the use of a latch service. When the
first signal command arrives at the latch, it sends a signaled solicit back to
the composition. However, when the second signal arrives, the latch ignores
it. When the third signal arrives at the latch, it has recently received a reset
response, and a signaled solicit is again sent to the composition. The use of the
latch ensures that the reaction dealing with the photo always finishes.

Paper II: COMPOS: Composing Systems of Services 75

stuck forever. For example, if the birdAI is on a separate device and the connec-
tion goes down, the reaction will be stuck waiting for a response that never arrives.
To handle this situation, a timeout can be added. One possibility is to add the time-
out directly to the latch service, so that after entering the closed state, the latch
will automatically go back to the open state after a certain time. At the next move
message, the latch will then send a signaled to the composition that will abort
the ongoing reaction in the composition. Instead of placing the timeout behavior
in the latch service, it is also possible put a time out in the composition using a
timeout service.

7.2 Queuing Messages

Instead of ignoring incoming spontaneous messages, it may be desirable to queue
them up, and treat them one at the time. We can implement this by using a similar
approach to ignore, but using a queue service instead of a latch. The queue is
like the latch but instead of ignoring messages it puts them in a queue. When it
receives a reset it sends the next message in the queue.

Similar to the latch, the queue can be complemented with a timeout, to abort
stuck reactions that wait for replies that have gone missing.

7.3 Parallelizing Messages

An alternative strategy can be to handle incoming notifications in parallel. For
example, if the motion sensor sends a burst of move messages, we might like to
start several reactions in parallel in order to take a number of camera shots as
soon possible, and not have to wait for each image to be processed by the birdAI
service.

To implement this strategy, we can use a parallelizer service. This service
makes use of epochs to avoid that reactions are aborted. When the parallelizer
service receives a signal command, it sends an signaled notification. In con-
trast to other native services we have discussed, the parallelizer service at-
taches an epoch to the notification. By using the same epoch for each signaled
notification, a new reaction will be started in the receiving composition, without
aborting previous reactions.

To use the parallelizer in a composition, we can add a when-do in a similar
way as for the latch. The when-do listens for the message that we want to paral-
lelize, and sends an signal command to the parallelizer. A separate when-do
listens to the signaled message from the parallelizer, and performs the desired
actions. Figure 18 shows a sequence diagram of the use of a parallelizer for
the bird watching scenario.

By adding the parallelizer service, we get two new problems. First, there may
be a system overload if the motion sensor generates very many messages. For
this reason, we might like to limit the number of ongoing parallel reactions to a

76 Paper II: COMPOS: Composing Systems of Services

sensor camera birdAI storage Composition parallelizer

move
signal(1b1b,1)

signaled(−,0)

take_photo(a0a0,0)

move
signal(1b1b,2)

signaled(−,0)

take_photo(a0a0,0)

photo(img)(a0a0,0)

has_bird(img)(a0a0,0)

photo(img)(a0a0,0)

has_bird(img)(a0a0,0)

is_bird(a0a0,0)

store(img)(a0a0,0)

is_not_bird(a0a0,0)

Figure 18: The sequence diagram shows the use of a parallelizer service. a0a0
and 1b1b are the universal ids for the connections from the composition to the
sensor and the parallelizer service, respectively. The parallelizer adds the same
epoch to all signaled messages, so that the reactions in the composition are not
aborted.

Paper II: COMPOS: Composing Systems of Services 77

maximum number, N . Second, since the reactions are not aborted, they might get
stuck like for the latch and the queue. These problems can be solved by letting the
parallelizer service use N internal latches with timeouts, and introduce a unique
sourceId for each latch. By using different sourceIds, messages from the different
latches will not abort each other. This more advanced parallelizer would route an
incoming signal message to an open latch, or ignore it if all latches are closed.
When a latch is closed, it sends a solicit signaled, using its sourceId in the epoch,
waiting for a reset as a response. A latch is reset automatically if no response
arrives within a given time, and the epoch seqNbr is increased for each reset. This
way, if a latch opens after a timeout, the next message will abort a stuck reaction
in the composition.

7.4 Discussion
In deciding the semantics for incoming spontaneous messages, we chose abort
semantics as the default. This allows us to implement alternative strategies like
ignore, queue, and parallel as strategy services. We also sketched how timeouts
can be used for such strategy services to avoid that reactions get stuck if messages
are lost, and how epochs can be used to further control the behavior. Note that we,
so far in practice, only have tested the strategy services without timeouts.

In our examples above, the original message (move) does not carry any argu-
ments. If we would like to add strategies to messages with arguments, we would
need to supply a custom strategy service. Future work could look into support-
ing some kind of genericity so that parts of the API can be parameterized. Future
work could also look into encapsulating the behavior modification in a separate
strategy composition that exposes the modified message on its synthesized ser-
vice. This way, the user composition would not have to handle the message flow
to the strategy service explicitly, but could just connect to the strategy composition
instead of to the original service. Genericity would be useful also in this case, in
order to construct compositions that can be parameterized to different services and
message types. Adding syntactic sugar to allow the end user to express different
patterns concisely is also a possibility.

8 Evaluation
COMPOS is a superset of the original stateless composition language used in
PALCOM. The main motivation for designing COMPOS was to enable more ex-
pressive compositions, capturing more complex message sequencing in an explicit
way, yet keeping the language simple.

In order to evaluate COMPOS, we were interested in finding out if and how
existing PALCOM applications can be improved by taking advantage of the new
constructs. For this purpose, we conducted a case study, reimplementing a com-
mercial e-health application, which we will discuss in Section 8.1.

78 Paper II: COMPOS: Composing Systems of Services

We were also interested in finding out if COMPOS would be suitable for popu-
lar application areas like home automation. We have developed our own home au-
tomation scenarios for illustrating the different constructs in COMPOS, but would
the language be useful also for scenarios constructed by others? To evaluate this
aspect, we sketched reimplementations of typical home automation scenarios as
identified by Rodríguez-Avila, de Koster, and de Meuter [Rdd21], which we will
discuss in Section 8.2.

8.1 Case Study in E-health
As a case study, we reimplemented a scaled-down version of a commercial e-
health system using COMPOS. The original system was built using PALCOM and
its stateless composition language called the assembly language5. The system sup-
ports weight monitoring of patients with kidney failure and under peritoneal dialy-
sis. For these patients, rapid weight changes can indicate the need for intervention
from the caregiver.

Each patient has a tablet and a smart scale at home. The patients weigh them-
selves regularly on the scale, and the measurements are sent automatically, via the
tablet, to servers at the hospital. The caregivers can access the data via a web in-
terface. The tablet has an interface where the patient can chat with the caregiver
and send pictures. The tablet interface also shows the weight history, depicted in
Figure 19.

We conducted the case study together with the system designer responsible for
the tablet. He scaled down the system for us, omitting some of the functionality,
e.g., the authentication. We then reimplemented all the 11 compositions running
on the tablet in COMPOS. After that, we compared the COMPOS reimplemen-
tations with the original implementations in the assembly language. The system
designer also checked that our reimplementation seemed correct.

8.1.1 Architecture

Figure 20 shows the architecture of the e-health system.
We will not discuss the whole architecture in detail, but only point out a few

important aspects of it:

User interface. In addition to devices, services, and compositions, the architec-
ture includes a user interface (UI). UIs in PALCOM are built using a special
tools [JM20] that allows developers to connect services to graphical inter-
active components. The UI in Figure 19 is built using these tools. A UI is
similar to a composition in that it can set up connections to services. In the
e-health system, the UI sets up connections to most other services running
on the tablet.

5An assembly here refers to a set of connected devices, and is not related to assembly languages for
processors.

Paper II: COMPOS: Composing Systems of Services 79

Figure 19: Screenshot (in Swedish) from a patient tablet showing the history of
weight measurements.

Tablet

KidneyInit

Init
PatientChat

LocalChart

LocalStaff

BeurerScale

CurrentPatient

LocalPatient
Chat

LocalConfig

LocalPatient

Measurement
Buffering

BLEManager

Device
Discovery

Current
PatientInfo

Beurer

Scale

Patient
Chat

PatientDB

Sync
PatientChat

Sync
Patient

MTDB

Fetch
FromMTDB

Sync
Measurement

ImageDB

Sync
Chart

Sync
Config Config

Sync
Staff StaffDB

User interface

Core Server

Measurement Server

Figure 20: System architecture of the e-health scenario.

80 Paper II: COMPOS: Composing Systems of Services

Synchronizing compositions. Many of the compositions simply synchronize in-
formation between the Tablet and the servers. For example, the composition
SyncPatient synchronizes patient data between the LocalPatient ser-
vice on the Tablet and a patient database (PatientDB) on the Core Server.

Bridges. External devices not speaking the PALCOM protocol are attached using
bridge services. This is the case for the scale, which only communicates
using a device-specific protocol over Bluetooth. The bridge to the scale is
implemented by the service BeurerScale (Beurer is the brand of the scale).

Buffering. The measurements from the Scale are transmitted to the Measurement
Server, but are buffered on the Tablet, since the connection between the
Tablet and the Measurement Server might not be up all the time. The buffer-
ing is handled by the service MeasurementBuffering. The UI also con-
nects to the MeasurementBuffering service in order to show if the current
measurement has been synchronized with the server yet or not. Several other
services use a similar pattern of buffering for the servers and providing in-
formation to the UI.

Care ID. For privacy reasons, all patient-specific data that is stored in server
databases, like weights, chat histories, etc., are associated with a Care ID,
a pseudonym for the patient, rather than with the patient name and/or civic
number. The Care ID number is stored on the tablet by the CurrentPatient
service. On the Core Server, the PatientDB service stores the mapping be-
tween Care IDs, patient names, and civic numbers, and all the other services
only store data connected with Care IDs.

Separate servers. As a security measure, the system separates patients’ medical
data and the rest of the system by using two servers: the Measurement Server
for medical data and the Core Server for everything else. According to one
of the system designers, they also plan to put the PatientDB on its own
separate server.

Aggregating compositions. Some compositions aggregate functionality from sev-
eral services to provide information to the UI through a synthesized service.
The CurrentPatientInfo composition is an example of this. It uses the
Care ID from the CurrentPatient service in order to lookup the actual
name and civic number of the patient so that they can be presented in the
UI.

Authentication. The KidneyInit composition initializes a tablet to work for a
specific patient. In the real system it is triggered from an authentication
part of the system, but that is removed in our scaled-down version of the
system. For testing purposes, we can trigger this composition manually in
our reimplementation (via the PALCOM browser).

Paper II: COMPOS: Composing Systems of Services 81

CurrentPatient LocalPatient

Current
PatientInfo

1
4

3
2

Figure 21: Message flow for the CurrentPatientInfo composition: 1) The UI
asks for patient information. 2) The composition asks for the Care ID of the current
patient. 3) The composition asks for patient information, using the Care ID as the
key. 4) The composition responds to the UI with the patient information.

8.1.2 Reimplementation in COMPOS

In reimplementing the e-health system, we kept the original UI and all the native
services, but replaced all the compositions on the tablet by COMPOS composi-
tions. Since COMPOS is a superset of the original PALCOM assembly language,
it is straightforward to replace the assembly compositions by COMPOS composi-
tions that use the same stateless message flow. However, we have instead tried to
design the new compositions so that they take advantage of the stateful constructs
in COMPOS as much as possible.

One of the cases where COMPOS makes a difference is the CurrentPatient-
Info composition. When the composition receives a request to its synthesized
service, it asks the CurrentPatient service for the Care ID, and then uses the
Care ID to look up various information for the patient, like the name and civic id
which it gets from the LocalPatient service. If the information is missing, the
LocalPatient replies with no_patient_info. Figure 21 shows the message
flow.

In the original stateless language, this behavior had to be implemented as four
different when-dos, treating each incoming message separately, with no apparent
connection between the different messages. See Listing 1. The reimplementation,
on the other hand, makes use of explicit sequences and alternatives using request-
responses. There is now only one outer when-do, and the dependencies between
different messages are explicit. See Listing 2.

Another example of taking advantage of COMPOS is for the synchronizing
compositions. They all have a similar structure, forwarding notifications and so-
licit/responses between the two sides (tablets and servers). For example, consider
the SyncPatientChat composition. It synchronizes the chat stored on the server
(PatientChat) with the local buffer on the tablet (LocalPatientChat). In one

82 Paper II: COMPOS: Composing Systems of Services

Listing 1: Original part of CurrentPatientInfo composition.
1 when req get_patient to CurrentPatientInfo do
2 send req get_current_patient to current_patient
3 when resp current_patient(var care_id) from current_patient do
4 send req get_patient(care_id) to local_patient
5 when resp patient_info(var name, var civic_id) from local_patient do
6 send resp patient_info(name, civic_id) from CurrentPatientInfo
7 when resp no_patient_info from local_patient do
8 send resp no_patient_info from CurrentPatientInfo

Listing 2: Refactored part of CurrentPatientInfo composition.
1 when req get_patient to CurrentPatientInfo do
2 send req get_current_patient to current_patient
3 receive resp current_patient(var care_Id) from current_patient
4 send req get_patient(care_id) to local_patient
5 select
6 when resp patient_info(var name, var civic_id)
7 from local_patient do
8 send resp patient_info(name, civic_id) from CurrentPatientInfo
9 when resp no_patient_info from local_patient do

10 send resp no_patient_info from CurrentPatientInfo
11 end

part of this synchronization, the service on the tablet sends a solicit and waits for a
response. The composition forwards the solicit as a request to the server and when
the response arrives, it is forwarded back to the tablet service.

In the original composition, this message flow has to be handled with two
independent when-dos, so the message flow is not explicit, see listing 3. In the
refactored composition, we can make the flow explicit with a single when-do, see
listing 4.

8.1.3 Adapting to Epoch-unaware Services

A problem we encountered when doing the reimplementation is that neither the
UI nor the services are epoch-aware. All their messages are sent without epoch

Listing 3: Original part of SyncPatientChat composition
1 when notif get_chat(var req_data) from local_patient_chat do
2 send cmd get_chat(req_data) to patient_chat
3 when notif chat(var resp_data) from patient_chat do
4 send cmd chat(resp_data) to local_patient_chat

Paper II: COMPOS: Composing Systems of Services 83

Listing 4: Refactored part of SyncPatientChat composition
1 when sol get_chat(var req_data) from local_patient_chat do
2 send req get_chat(req_data) to patient_chat
3 receive resp chat(var resp_data) from patient_chat
4 send resp chat(resp_data) to local_patient_chat

numbers, and the receiving COMPOS composition will then attach a new epoch to
each incoming message.

It turned out that the UI (which is similar to a composition) sends two requests
to the CurrentPatientInfo composition and waits for the responses to arrive in
any order. The UI is thus implemented using a message flow similar to the parallel
construct in COMPOS. If no special measures are taken, these requests will abort
each other. We solved this by placing a strategy service between the UI and the
CurrentPatientInfo so that the requests seem to come from different sources.
A preferable solution would be to make the UI epoch-aware and let it attach epochs
to its outgoing messages. Since it sends out two requests in parallel, it should use
the same epoch for both of them.

A similar situation occurred with some of the local buffering services. A ser-
vice may send two solicits on the same connection, and then wait for the responses
to arrive in any order. Again, the composition will attach different epochs to these
solicits so they abort each other. For these cases, we solved the issue by adding a
queue strategy service. This could be avoided if we reimplemented the services to
be epoch-aware.

8.1.4 Conclusions Case Study

Because the assembly language is stateless, the system’s services operate such
that the compositions can be stateless. Hence, we may not fully utilize the state-
ful features of COMPOS in this implementation of the system. In contrast to the
assembly language, we designed COMPOS to allow for state in the compositions.
If the system was designed using COMPOS from the start, we think the composi-
tion would use more COMPOS constructs. Despite the system being designed for
stateless reactions, our reimplementation uses stateful features not present in the
assembly language. We see this as an indication that these stateful features can be
helpful even when migrating systems from the assembly language to COMPOS.

One advantage we see of using COMPOS is the explicit control flow of the
messages, e.g., the syntactic separation of responses and notifications. In [Å+20],
we use this explicit control flow in analyses of PALCOM systems. If we would
like to extract control flow from compositions written in the original assembly lan-
guage, we would need to know how native services operate to extract their internal
control flow. We hypothesize that explicit control flow also makes compositions
easier to understand for humans, but this is future work to investigate.

84 Paper II: COMPOS: Composing Systems of Services

8.2 Smart Home Scenarios

Rodríguez-Avila, de Koster, and de Meuter [Rdd21] have identified seven smart
home scenarios that involve multiple messages from multiple devices. These sce-
narios are complex to express using ordinary distributed actor systems that only
match a single message at a time, since such systems need to introduce state vari-
ables to keep track of when different combinations of messages have been seen.
Rodríguez-Avila et al. show how to elegantly encode these scenarios in Sparrow,
a declarative DSL that can act based on complex multiple-message matching. By
polling four online forums, they show that the scenarios represent patterns occur-
ing in real-world home automation systems. Quoting directly from their paper,
these are the scenarios:

1. Turn on the lights in a room if someone enters, and the ambient
light is less than 40 lux.

2. Turn off the lights in a room after two minutes without detecting
any movement.

3. Send a notification when a window has been open for over an
hour.

4. Send a notification if someone presses the doorbell, but only if
no notification was already sent in the past 30 seconds.

5. Detect home arrival or leaving based on a particular sequence of
messages, and activate the corresponding scene.

6. Send a notification if the combined electricity consumption of
the past three weeks is greater than 200 kWh.

7. Send a notification if the boiler fires three Floor Heating Fail-
ures and one Internal Failure within the past hour, but only if no
notification was sent in the past hour.

To evaluate how well COMPOS works for these scenarios, we have sketched
COMPOS solutions for them (see appendix B). We found that we could write
all of the scenarios in a fairly straightforward way, and without using explicit state
variables. However, we should mention that we have so far not tested our solutions
in PALCOM, due to lack of time. Our solutions are not as declarative as those
in Sparrow, but we find most of the scenarios quite straightforward to express,
by relying on reaction state like sequencing, parallel, and finish-first, on the abort
semantics, and on strategy services like latches. An additional difference is that we
use external native services for time-outs and computations, but Sparrow has built-
in constructs for this which contributes to making their solutions more concise.

Scenario 3, also discussed in Section 6.2 is quite typical of how these scenarios
can be written in COMPOS in a straightforward way, and which uses the abort
semantics for resetting the timer. Scenario 7 is the most complex scenario. Here,

Paper II: COMPOS: Composing Systems of Services 85

our lack of built-in computation support gives a fairly lengthy solution which may
be a bit cumbersome to read. The solution has three extra services: a timer, a
counter, and a service to compare two numbers. In principle, we could get a shorter
solution by combining functionality of the extra services into a single service, but
that would make the new extra service less general.

Our goal has not been to provide the most concise solutions, but rather to pro-
vide a simple and yet expressive composition language. In comparing to Sparrow,
that was particularly designed to support multi-message patterns, we can note that
Sparrow does not support request-response. Thus, their solution to scenario 1
needs to listen for constantly emitted messages about the ambient light. In con-
trast, our solution can request the luminosity level from the ambient light sensor.

In our implementation, an ongoing COMPOS reaction can only wait for re-
sponses, and not for notifications or commands. By relaxing this requirement, we
would be able to simplify some of the scenarios. For example, in scenario 5, our
solution sends a request for the next open response from the door. By a relaxed
definition, we would be able to remove the request and simply let the reaction wait
for the next open notification.

9 Related Work

There are many different kinds of related work for COMPOS. We focus on briefly
discussing previous composition languages for PALCOM, composition for web
services, end-user development for IoT, other actor-based approaches, and reactive
programming.

9.1 Previous Composition Languages for PALCOM

Svensson, Hedin, and Magnusson introduced compositions and synthesized ser-
vices in the PALCOM assembly language [SHM07]. These compositions are state-
less, limiting reactions to only contain actions for sending messages and setting
global variables. The current PALCOM release (4.0.19)6 furthermore supports that
messages can be interpreted as requests or responses by piggybacking reply infor-
mation into the messages. This allows a service to reply to the correct sender, in
case several compositions connect to the same service. However, compositions are
still stateless, and replies are handled in the outermost event loop of a composition,
just like other messages.

A previous experiment of creating more advanced compositions for PALCOM
was done by Linus Åkesson [Åke16]. This language was similar to COMPOS in
that compositions had state and supported nested and parallel action sequences. It
differed in that it used the parallel strategy as the default semantics, and used time-
outs to avoid indefinitely running reactions. The language was purely text-based,

6http://palcom.cs.lth.se/Palcom/Download/Download.html

86 Paper II: COMPOS: Composing Systems of Services

without any integration with a GUI or the PALCOM browser, and was not intended
for end users. The main goal of this language was to investigate how compositions
could be automatically partitioned and distributed in order to minimize latency.
This is an interesting line of research that might be applied also for COMPOS.

9.2 Web-service Composition

Web-service composition has similarities to IoT service composition, but differs
in that web services are assumed to be always available, wheras IoT services may
come and go.

Examples of languages for web-service composition are Jolie [MGZ14] and
BPEL [Bar+07]. These languages have similar features to COMPOS, with support
for both parallel and finish-first actions. A main difference is, however, that Jolie
and BPEL support general computation rather than focusing on composition only.

9.3 AmbientTalk

AmbiantTalk [Cut+07] is a domain-specific language developed for programming
applications in mobile ad-hoc networks. AmbiantTalk is an object-oriented and
actor-based language that supports sending messages between actors on different
nodes. AmbiantTalk supports unreliable connections by buffering messages while
the connection is down. By using a leasing scheme, AmbiantTalk does not buffer
messages infinitely. A connection renews the lease every time it sends or receives
a message, and if the lease expires, it removes the buffered messages and raises
exceptions.

Like AmbientTalk, COMPOS is also designed for programming applications
in mobile ad hoc networks. However, unlike COMPOS, AmbiantTalk targets de-
velopers and does not separate services and compositions. The lease model and
the use of exceptions also differ from the “best-effort” model used in COMPOS,
where weak connectivity is regarded as normal.

9.4 End-user Development for IoT

There are different approaches for end-user development of IoT systems. Some
use programming by demonstration [Li+17], whereas others use different types of
DSLs, like TeC [Sou+11], Midgar [Gar+14], and AppsGate [CC16].

TeC [Sou+11] is a framework with the goal of allowing end users in differ-
ent domains to create IoT applications. Similar to COMPOS, TeC has a dis-
tributed programming model with services (called activities) and compositions
(called team designs). However, its computational model is quite different: activi-
ties have a kind of declarative spreadsheet semantics with input and output events,
and can be adapted by the user. The team designs wire together input and out-

Paper II: COMPOS: Composing Systems of Services 87

put events of activities, but do not themselves contain any event logic or message
adaptation.

Midgar [Gar+14] is a system that uses a graphical language to enable users to
create compositions. The programs in Midgar are compiled and run on a central
server.

AppsGate [CC16] is an end-user development environment, specifically in-
tended for programming smart homes. Similar to COMPOS, the user uses a
structure-oriented editor for programming the environment, but AppsGate uses
a pseudo-natural language resembling English as its concrete syntax. AppsGate
supports event rules similar to when-dos in COMPOS, but without any notion of
request-responses, parallel actions, or synthesized services as in COMPOS, thus
limiting the expressivity. AppsGate programs run on a central node in the network,
and the program implicitly keeps track of the states of connected components, and
supports relating them using state rules. An example of a state rule is "While
temperature < 21 then keep the heater on". In contrast, COMPOS scripts can be
executed on different nodes in the network, and all communication is based on
explicit messages.

9.5 Trigger-action Programming

A typical programming paradigm used for programming IoT systems is trigger-
action programming. In this paradigm, a program consists of a trigger with an
action. The trigger specifies an event that, when it occurs, executes the action,
e.g., when the door opens, turn on the lights [Ur+14]. Trigger-action programming
is currently used in commercial systems such as IFTTT7. The outer when-dos in
COMPOS kan be viewed as a kind of trigger-action system, where the triggers are
the outer whens, and the actions are the reaction specifications.

9.6 Reactive Programming

The reactive programming (RP) paradigm is a popular way of developing event-
driven systems [Bai+13]. In RP, sources produce signals (e.g., motion events).
These signals are combined using signal combinators to create new signals. The
signal combinators, together with the sources, form a dependency graph for the
system. So, when a source produces a new signal, it gets propagated through the
dependency graph to sinks. Using RP, programmers can create interactive systems
declaratively.

A specific kind of RP is Distributed Reactive Programming (DRP). DRP dis-
tributes sources, signal combinators, and sinks on different nodes in a network. If
we compare our work to DRP, we can see that both combine sources, either using
signal combinators or compositions. However, the signal combinators can do arbi-
trary computation and combine multiple signals originating from multiple sources.

7https://ifttt.com

88 Paper II: COMPOS: Composing Systems of Services

In comparison, every reaction in COMPOS ties only to one source. To combine
data from multiple nodes, COMPOS uses request/response.

An RP system needs a propagation algorithm to propagate the values correctly
and efficiently through the dependency graph. In a DRP system, the propagation
algorithm may need to be decentralized and handle unstable connections. Myter,
Scholliers, and de Meuter [MSd19] proposes a propagation algorithm for DRP sys-
tems called QPROP. The signals in QPROP contain something similar to epochs
called sClocks. sClocks is a dictionary where the keys are the sources, and the
values are the logical time of the source data used to derive the signal. Whereas
epochs are used to abort the right reactions, the QPROP algorithm provides glitch-
free DRP, i.e., derived signals only depend on one signal value from each source.

10 Conclusions and Future Work

In this paper, we have presented COMPOS, a DSL for composing services into
IoT systems. As a platform for our DSL, we use the PALCOM IoT middleware.
COMPOS extends the existing composition language in PALCOM by adding state-
ful reactions (Sections 4 and 5). These stateful reactions allow compositions to
wait for responses and to make use of parallel behavior.

With stateful reactions, we must have a strategy for removing reactions that
might otherwise wait forever. In this paper, we have chosen to investigate and
implement a strategy we call abort (Section 6). The basic idea behind abort is to
remove old reactions when newer messages arrive. We introduced the notion of
epochs to be able to treat reactions with the same origin together.

In some cases, the abort strategy is not desirable, and another strategy is more
useful. We have shown how to change the strategy by adding a strategy service
(Section 7).

To evaluate COMPOS with the abort strategy, we conducted a case study (Sec-
tion 8). In the case study, we reimplemented 11 compositions in a scaled-down
version of a commercial home care system built using PALCOM. We compared
our implementation with the original and saw that the message flow is more ex-
plicit in COMPOS. The fact that the message flow is explicit has been used in
Åkesson, Hedin, Fors, Schöne, and Mey [Å+20] to analyze IoT systems. We also
solved seven home automation scenarios proposed by Rodríguez-Avila, de Koster,
and de Meuter [Rdd21] using COMPOS.

In the future, we would like to investigate how COMPOS generalises by trying
it in another IoT framework than PALCOM. To make it easier to change strategy,
we want to add generic parameterization services and syntactic sugar for strategy
services. Also, we would like to continue looking into the end-user programming
perspective of COMPOS and do user studies to evaluate its usability. Another
future direction is to formalize COMPOS to prove properties, such as that a system
has a limited number of reactions or that refactorings do not change the system

Paper II: COMPOS: Composing Systems of Services 89

function. We may also look into more complex message patterns with support
for loops. Another track is to make our implementation more mature, and to use
COMPOS in the e-health company already using PALCOM. We think that using
COMPOS for building full production systems can give valuable suggestions for
further improvements.

Acknowledgements
This work was in part supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation,
and in part by the Swedish Foundation for Strategic Research, grant RIT17-0035.
We thank Björn Johnsson and Mattias Nordahl for feedback on earlier drafts of
this paper and Björn Johnsson for helping us with the case study.

References
[Åke+19] Alfred Åkessson, Görel Hedin, Boris Magnusson, and Mattias Nor-

dahl. “ComPOS: Composing Oblivious Services”. In: 2019 IEEE
International Conference on Pervasive Computing and Communi-
cations Workshops (PerCom Workshops). Kyoto, Japan, Mar. 2019,
pp. 132–138.

[Bai+13] Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cut-
sem, Stijn Mostinckx, and Wolfgang de Meuter. “A Survey on Reac-
tive Programming”. In: ACM Comput. Surv. 45.4 (Aug. 2013).

[Bar+07] Charlton Barreto, Vaughn Bullard, Thomas Erl, John Evdemon, Di-
ane Jordan, Khanderao Kand, Dieter König, Simon Moser, Ralph
Stout, Ron Ten-Hove, Ivana Trickovic, and Danny van der Rijn. Web
Services Business Process Execution Language Version 2.0. Stan-
dard. OASIS, 2007.

[Che+14] Shanzhi Chen, Hui Xu, Dake Liu, Bo Hu, and Hucheng Wang.
“A vision of IoT: Applications, challenges, and opportunities with
China perspective”. In: IEEE Internet of Things journal 1.4 (2014),
pp. 349–359.

[Chr+01] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web
Services Description Language (WSDL) 1.1. W3C Note. World Wide
Web Consortium, Mar. 2001.

[CC16] Joëlle Coutaz and James L. Crowley. “A First-Person Experience
with End-User Development for Smart Homes”. In: IEEE Pervasive
Computing 15.2 (2016), pp. 26–39.

90 Paper II: COMPOS: Composing Systems of Services

[Cut+07] T. V. Cutsem, S. Mostinckx, E. G. Boix, J. Dedecker, and W. D.
Meuter. “AmbientTalk: Object-oriented Event-driven Programming
in Mobile Ad hoc Networks”. In: XXVI International Conference of
the Chilean Society of Computer Science (SCCC’07). 2007, pp. 3–
12.

[Der+15] Hasan Derhamy, Jens Eliasson, Jerker Delsing, and Peter Priller. “A
survey of commercial frameworks for the internet of things”. In:
IEEE International Conference on Emerging Technologies and Fac-
tory Automation: 08/09/2015-11/09/2015. IEEE Communications
Society. 2015.

[Gar+14] Cristian González García, B Cristina Pelayo G-Bustelo, Jordán Pas-
cual Espada, and Guillermo Cueva-Fernandez. “Midgar: Generation
of heterogeneous objects interconnecting applications. A Domain
Specific Language proposal for Internet of Things scenarios”. In:
Computer Networks 64 (2014), pp. 143–158.

[JM20] Björn A. Johnsson and Boris Magnusson. “Towards end-user devel-
opment of graphical user interfaces for internet of things”. In: Future
Generation Computer Systems 107 (2020), pp. 670–680.

[Lam78] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Dis-
tributed System”. In: Commun. ACM 21.7 (July 1978), 558–565.

[LMS05] P. Leach, M. Mealling, and R. Salz. A Universally Unique IDenti-
fier (UUID) URN Namespace. RFC4122. Internet Engineering Task
Force, July 2005.

[Li+17] Toby Jia-Jun Li, Yuanchun Li, Fanglin Chen, and Brad A. My-
ers. “Programming IoT Devices by Demonstration Using Mobile
Apps”. In: End-User Development. Ed. by Simone Barbosa, Panos
Markopoulos, Fabio Paternò, Simone Stumpf, and Stefano Valtolina.
Cham: Springer International Publishing, 2017, pp. 3–17.

[MGZ14] Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. “Service-
Oriented Programming with Jolie”. In: Web Services Foundations.
Ed. by Athman Bouguettaya et al. New York, NY: Springer New
York, 2014, pp. 81–107.

[MSd19] Florian Myter, Christophe Scholliers, and Wolfgang de Meuter.
“Distributed Reactive Programming for Reactive Distributed Sys-
tems”. In: Art Sci. Eng. Program. 3.3 (2019), p. 5.

[Nor+20] Mattias Nordahl, Boris Magnusson, Görel Hedin, and Alfred
Åkesson. “Smart bikes: Gradual update of IoT systems”. In: 2020
IEEE 24th International Enterprise Distributed Object Computing
Workshop (EDOCW). IEEE. 2020, pp. 99–102.

Paper II: COMPOS: Composing Systems of Services 91

[PLM14] Riccardo Petrolo, Valeria Loscri, and Nathalie Mitton. “Towards a
smart city based on cloud of things”. In: Proceedings of the 2014
ACM international workshop on Wireless and mobile technologies
for smart cities. ACM. 2014, pp. 61–66.

[Rdd21] Humberto Rodríguez-Avila, Joeri de Koster, and Wolfgang de
Meuter. “Advanced Join Patterns for the Actor Model based on CEP
Techniques”. In: Art Sci. Eng. Program. 5.2 (2021), p. 10.

[Smi87] Randall B. Smith. “Experiences with the Alternate Reality Kit:
An Example of the Tension between Literalism and Magic”. In:
Proceedings of the SIGCHI/GI Conference on Human Factors in
Computing Systems and Graphics Interface. CHI ’87. ACM, 1987,
pp. 61–67.

[Sou+11] João P Sousa, Daniel Keathley, Mong Le, Luan Pham, Daniel Ryan,
Sneha Rohira, Samuel Tryon, and Sheri Williamson. “TeC: end-user
development of software systems for smart spaces”. In: Interna-
tional Journal of Space-Based and Situated Computing 1.4 (2011),
pp. 257–269.

[SHM07] David Svensson, Görel Hedin, and Boris Magnusson. “Pervasive ap-
plications through scripted assemblies of services”. In: IEEE Inter-
national Conference on Pervasive Services. 2007, pp. 301–307.

[SF09] David Svensson Fors. “Assemblies of pervasive services”. PhD the-
sis. Department of Computer Science, Lund University, 2009.

[SF+09] David Svensson Fors, Boris Magnusson, Sven Gestegård Robertz,
Görel Hedin, and Emma Nilsson-Nyman. “Ad-hoc composition of
pervasive services in the PalCom architecture”. In: Proceedings
of the 2009 international conference on Pervasive services. ACM.
2009, pp. 83–92.

[TM17] Antero Taivalsaari and Tommi Mikkonen. “A roadmap to the pro-
grammable world: software challenges in the IoT era”. In: IEEE Soft-
ware 1 (2017), pp. 72–80.

[Ur+14] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael
L. Littman. “Practical Trigger-Action Programming in the Smart
Home”. In: Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems. CHI ’14. Toronto, Ontario, Canada: As-
sociation for Computing Machinery, 2014, 803–812.

[ÅH17] Alfred Åkesson and Görel Hedin. “Jatte: A Tunable Tree Editor for
Integrated DSLs”. In: Proceedings of the 2nd ACM SIGPLAN Inter-
national Workshop on Comprehension of Complex Systems. CoCoS
2017. Vancouver, BC, Canada, 2017, pp. 7–12.

92 Paper II: COMPOS: Composing Systems of Services

[Åke+18a] Alfred Åkesson, Mattias Nordahl, Görel Hedin, and Boris Magnus-
son. “Demo: A DSL for composing IoT systems”. In: Proceedings
of the 19th ACM/IFIP Middleware Conference: Posters and Demos.
Rennes, France, 2018, pp. 17–18.

[Åke+18b] Alfred Åkesson, Mattias Nordahl, Görel Hedin, and Boris Mag-
nusson. “Live Programming of Internet of Things in PalCom”. In:
Conference Companion of the 2nd International Conference on Art,
Science, and Engineering of Programming. Nice, France, 2018,
pp. 121–126.

[Å+20] Alfred Åkesson, Görel Hedin, Niklas Fors, Rene Schöne, and Jo-
hannes Mey. “Runtime Modeling and Analysis of IoT Systems”.
In: Proceedings of the 23rd ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems: Companion
Proceedings. MODELS ’20. Virtual Event, Canada: Association for
Computing Machinery, 2020.

[Åke16] Linus Åkesson. On the design of connector languages for latency-
critical distributed applications. Licentiate thesis 2016:1. Depart-
ment of Computer Science, Lund University, 2016.

Paper II: COMPOS: Composing Systems of Services 93

Appendix A A COMPOS Specification

A.1 Syntax

In this section we describe the syntax for COMPOS used in this paper using
ANTLR style EBNF8.

composition : ’composition’ name_def bindings

synthesized_service* script;

bindings : device_variable* service_variable*;

device_variable : ’device’ name_def ’=’ device_ref;

service_variable : ’service’ name_def ’=’ service_ref

’on’ device=name_use;

synthesized_service : ’synthesized service’ name_def message_def*;

message_def :

in_message

| out_message

| pattern;

in_message : ’in’ name_def ’(’ parameter* ’)’;

out_message : ’out’ name_def ’(’ parameter* ’)’;

parameter : name_def ’:’ type;

pattern : ’pattern’ msg=name_use ’->’

’(’ msg=name_use (’|’ msg=name_use)* ’)’;

script : when_do_outer*;

when_do_outer :

’when’ ’cmd’ msg=name_use (’(’ (’var’ name_def)* ’)’)?

’to’ service=name_use ’do’ branch

| ’when’ ’req’ msg=name_use (’(’ (’var’ name_def)* ’)’)?

’to’ service=name_use ’do’ branch

| ’when’ ’notif’ msg=name_use (’(’ (’var’ name_def)* ’)’)?

’from’ synth=name_use ’do’ branch

| ’when’ ’sol’ msg=name_use (’(’ (’var’ name_def)* ’)’)?

’from’ synth=name_use ’do’ branch;

branch : action*;

action :

receive

| select

| parallel

| finish_first

| send;

receive :

’receive’ ’resp’ msg=name_use (’(’ (’var’ name_def)* ’)’)?

’from’ service=name_use

| ’receive’ ’resp’ msg=name_use (’(’ (’var’ name_def)* ’)’)?

’to’ synth=name_use;

select : ’select’ when_do_inner* ’end’;

when_do_inner :

’when’ ’resp’ msg=name_use (’(’ (’var’ name_def)* ’)’)?

’from’ service=name_use ’do’ branch

8https://www.antlr.org

94 Paper II: COMPOS: Composing Systems of Services

| ’when’ ’resp’ msg=name_use (’(’ (’var’ name_def)* ’)’)?

’to’ synth=name_use ’do’ branch;

parallel : ’parallel’ (branch ’and’)* branch ’end’;

finish_first : ’finish first’ (branch ’or’)* branch ’end’;

send :

’send’ ’cmd’ msg=name_use(’(’ arg+ ’)’)?

’to’ service=name_use

| ’send’ ’resp’ msg=name_use(’(’ arg+ ’)’)?

’to’ service=name_use

| ’send’ ’req’ msg=name_use(’(’ arg+ ’)’)?

’to’ service=name_use

| ’send’ ’notif’ msg=name_use(’(’ arg+ ’)’)?

’from’ synth=name_use

| ’send’ ’resp’ msg=name_use(’(’ arg+ ’)’)?

’from’ synth=name_use

| ’send’ ’sol’ msg=name_use(’(’ arg+ ’)’)?

’from’ synth=name_use;

arg : name_use | STRING;

To allow for comma-separated lists, we see comma as a token divider besides
whitespace.

Paper II: COMPOS: Composing Systems of Services 95

A.2 Semantics
In this section, we specify the COMPOS interpreter in pseudo-code. To only high-
light the interesting features, we have omitted some functionality, such as vari-
ables.

In addition to the AST nodes that hold the static code structure, we have two
notable run-time data structures in the pseudo-code implementation, Message and
Reaction. Below we have two tables describing the fields in these:

Message
Field Description

connection connection the message is sent over
toService service the message is sent to

reactionId sending-reaction-id of the sending service
sendId send-id of the sending service
epoch epoch from the sending service

Reaction
Field Description

connection connection to the service initiating the reaction
reactionId the sending-reaction-id

epoch the epoch of the reaction
remoteReactionId the sending-reaction-id in the message initiating

the reaction
remoteSendId the send-id in the message initiating the reaction
currentAction pointer to the current action in the reaction

childReactions a list of reactions, used in parallel and finish-first

To make the code easier to read, we have marked different types of tokens de-
pending on their role: global variable, local variable, AST node variable, AST node
type, state-changing procedure, and PROCEDURE DEFINED IN PSEUDO-CODE .

96 Paper II: COMPOS: Composing Systems of Services

Algorithm 1 Pseudo-code for the event loop handling incoming messages
messageQueue . queue of messages arriving to the composition
composition . the AST of the composition
reactions := [] . list of all started reactions
seqNbrs := (*,0) . map from sourceId to highest seqNbr, all initialized to zero
reactionId := 0 . counter used to create new reaction id
loop

message = messageQueue.waitForNextMessage()
if composition.MATCHSPONTANEOUS(message) then

. new spontaneous incomming message
reactionSpec := composition.findMatch(message)
reaction := new Reaction()
reaction.currentAction := reactionSpec.startAction()
reaction.connection := message.connection
reaction.reactionId := reactionId
reaction.remoteReactionId := message.reactionId
reaction.remoteSendId := message.sendId
if message.hasEpoch() then

reaction.epoch = message.epoch
else

seqNbr := seqNbrs[reaction.connection]
seqNbrs[reaction.connection] := seqNbr + 1
reaction.epoch.seqNbr = seqNbr
reaction.epoch.sourceId = reaction.connection

end if
UPDATEREACTIONSWITH(reaction)
reactionId := reactionId + 1

end if
for reaction in reactions do

. There will be at most one reaction that matches (currently not checked)
RUNUNTILBLOCK(reaction, message)

end for
end loop

Paper II: COMPOS: Composing Systems of Services 97

Algorithm 2 Pseudo-code for UPDATEREACTIONSWITH, RUNUNTILBLOCK,
and MATCH

procedure UPDATEREACTIONSWITH(reaction)
reactions.add(reaction)
for reactionLoop in reactions do

epochLoop := reactionLoop.epoch
if epochLoop.sourceId = epoch.sourceId then

if epochLoop.seqNbr < epoch.seqNbr then
reactions.remove(reactionLoop)

else if epoch.seqNbr < epochLoop.seqNbr then
reactions.remove(reaction)

end if
end if

end for
end procedure

procedure RUNUNTILBLOCK(reaction, message)
while reaction.currentAction.PERFORM(reaction, message) do
end while

end procedure

procedure (receive ∨ when_do_inner).MATCHRESPONSE(reaction, message)
return (message.name = this.msg

∧ (message.connection = this.service().connection
∨ message.toService = this.synth())

∧ message.seqNbr = reaction.seqNbr
∧ message.reactionId = reaction.reactionId)

end procedure

procedure composition.MATCHSPONTANEOUS(message)
for when_do_outer in this.allWhenDoOuter() do

if message.name = when_do_outer.msg
∧ (message.connection = when_do_outer.service().connection

∨ message.toService = when_do_outer.synth()) then
return TRUE

end if
end for
return FALSE

end procedure

98 Paper II: COMPOS: Composing Systems of Services

Algorithm 3 Pseudo-code for PERFORM

abstract procedure action.PERFORM(reaction, message)
. return TRUE to continue to next action

end procedure

procedure receive.PERFORM(reaction, message)
if this.MATCHRESPONSE(reaction, message) then

reaction.currentAction = this.nextAction()
return TRUE

end if
return FALSE

end procedure

procedure select.PERFORM(reaction, message)
for when_do_inner in this.when_do_inners do

if when_do_inner.MATCHRESPONSE(reaction, message) then
reaction.currentAction = when_do_inner.startAction()
return TRUE

end if
end for
return FALSE

end procedure

procedure send.PERFORM(reaction, message)
if this is (cmd ∨ req) then

send(this.service.connection, this.msg, this.args(. . .),
reaction.reactionId, this.sendId(), reaction.epoch)

else if this is resp ∧ this has to then . Respons to solicit
send(this.service().connection, this.msg, this.args(. . .),

reaction.remoteReactionId, reaction.remoteSendId, reaction.epoch)
else if this is (notif ∨ sol) then

for service in this.synth().connectedServices() do
send(service.connection, this.msg, this.args(. . .), reaction.reactionId,

this.sendId() ,reaction.epoch)
end for

else if this is resp ∧ this has from then . Respons to request
send(reaction.connection, this.msg, this.args(. . .), reaction.remoteReactionId,

reaction.remoteSendId, reaction.epoch)
end if
reaction.currentAction = this.nextAction()
return TRUE

end procedure

Paper II: COMPOS: Composing Systems of Services 99

Algorithm 4 Pseudo-code for PERFORM continue
procedure parallel.PERFORM(reaction, message)

if ¬ reaction.hasChildReaction() then
. This branch is taken the first time performed is called on this node for a epoch id.

for branch in this.branches do
childReaction := new Reaction()
childReaction.currentAction := branch.startAction()
childReaction.connection := message.connection
childReaction.reactionId := reaction.reactionId
childReaction.remoteReactionId := reaction.remoteReactionId
childReaction.seqNbr := reaction.seqNbr
reaction.addChildReaction(childReaction)

end for
end if
for childReaction in reaction.childReactions do

RUNUNTILBLOCK(childReaction, message)
end for
for childReaction in reaction.childReactions do

if ¬ childReaction.isFinish() then
return FALSE

end if
end for
reaction.removeChildReactions()
reaction.currentAction = this.nextAction()
return TRUE

end procedure

procedure finish-first.PERFORM(reaction, message)
. . . . The same beginning as Parallel
for childReaction in reaction.childReactions do

if childReaction.isFinish() then
reaction.removeChildReactions()
reaction.currentAction = this.nextAction()
return TRUE

end if
end for
return FALSE

end procedure

100 Paper II: COMPOS: Composing Systems of Services

Appendix B Home Automation Scenarios
Scenario 1 Turn on the lights in a room if someone enters, and the ambient
light is less than 40 lux.

1 composition Scenario_1
2 ...

3 // Motion sensor in the room

4 service motion = ...
5 // Sensor measuring ambient light

6 service light_sensor = ...
7 // Computation service for comparing numbers

8 service compare = ...
9 when notif movement from motion do

10 send req get_illuminance to light_sensor
11 receive resp the_illuminance(var illum) from light_sensor
12 send req greater(illum, "40") to compare
13 select
14 when resp true from compare do
15 send cmd turn_on to light
16 when resp false from compare do
17 end

We may need to add a latch service (see Section 7) if the motion sensor sends
movement notifications with such a high frequency that a reaction gets aborted
before it has time to finish.

Scenario 2 Turn off the lights in a room after two minutes without detecting
any movement.

1 composition Scenario_2
2 ...

3 // Motion sensor in the room

4 service motion = ...
5 // Light in the room

6 service light = ...
7 // Timer service for tracking time

8 service timer = ...
9 when notif movement from motion do

10 send req timer_start("2min") to timer
11 receive resp timer_end from timer
12 send cmd turn_off to light

This scenario relies on abort semantics. An ongoing reaction that is waiting
for the timer will be aborted when a new movement happens.

Paper II: COMPOS: Composing Systems of Services 101

Scenario 3 Send a notification when a window has been open for over an hour.

1 composition Scenario_3
2 ...

3 // Sensor on the window

4 service window = ...
5 // Timer service for tracking time

6 service timer = ...
7 // Service for sending notifications

8 service alert = ...
9 when notif opened from window do

10 send req timer_start("1h") to timer
11 receive resp timer_end from timer
12 send cmd msg("Window open 1h") to alert
13 when notif closed from window do

This scenario relies on abort semantics. An ongoing reaction that is waiting
for the timer will be aborted when a new opened or closed happens.

Scenario 4 Send a notification if someone presses the doorbell, but only if no
notification was not already sent in the past 30 seconds.

1 composition Scenario_4
2 ...

3 // Service for the doorbell

4 service doorbell = ...
5 // A type of strategy service

6 service latch = ...
7 // Timer service for tracking time

8 service timer = ...
9 // Service for sending notifications

10 service alert = ...
11 when notif ring from doorbell do
12 send cmd signal to latch
13 when sol signaled from latch do
14 send cmd msg("ring") to alert
15 send req timer_start("30s") to timer
16 receive resp time_end from timer
17 send resp reset to latch

The latch service is described in Section 7.

102 Paper II: COMPOS: Composing Systems of Services

Scenario 5 Detect home arrival or leaving based on a particular sequence of
messages, and activate the corresponding scene. More specifically: A person ar-
riving home is detected by first detecting motion in front of the door, then that the
door is opened, and finally that there is movement in the entrance hall, all within
60 seconds.

We only show the arrival scenario here. The leaving scenario is very similar.

1 composition Scenario_5
2 ...

3 // Motion sensor in front of the the door

4 service motion_door = ...
5 // Motion sensor in the entrance hall

6 service motion_entrance = ...
7 // Service for the door

8 service door = ...
9 // Timer service for tracking time

10 service timer = ...
11 // Service for sending notifications

12 service alert = ...
13 when notif movement from motion_door do
14 send req timer_start("60s") to timer
15 finish first
16 receive resp timer_end from timer
17 or
18 send req wait_open to door
19 receive resp open from door
20 send req wait_motion to motion_entrance
21 receive resp motion from motion_entrance
22 send cmd msg("home") to alert
23 end

In this implementation we assume that the motion_entrance and the door
receive wait requests that respond when the respective event happens.

Paper II: COMPOS: Composing Systems of Services 103

Scenario 6 Send a notification if the combined electricity consumption of the
past three weeks is greater than 200 kWh.

1 composition Scenario_6
2 ...

3 // Service for the electricity meter

4 service meter = ...
5 // Service for storing and doing computation on time series

6 service time_series = ...
7 // Computation service for comparing numbers

8 service compare = ...
9 // Service for sending notifications

10 service alert = ...
11 when notif measurement(var amount) from meter do
12 send cmd add_measurement(amount) to time_series
13 send req sum_latest("3week") to time_series
14 receive resp result(var sum) from time_series
15 send req greater(sum, "200") to compare
16 select
17 when resp true from compare do
18 send cmd msg("High electricity consumption") to alert
19 when resp false from compare do
20 end

Scenario 7 Send a notification if the boiler fires three Floor Heating Failures
and one Internal Failure within the past hour, but only if no notification was sent
in the past hour.

In addition to the boiler (that can send failures) and an alert service
(for sending notifications to), our solution makes use of an event_counter, a
comparer, and a timer service. The event_counter can record events with
time stamps, and can be requested to return the number of events of a specific
kind that have occurred during the latest n minutes or hours. The comparer can
compare numbers, for example using greater or equal. The timer service can be
set and respond with a timeout. The timer can also be requested if it is currently
running, i.e., if it has been set but not yet responded with a timeout.

104 Paper II: COMPOS: Composing Systems of Services

1 composition Scenario_7
2 ...

3 service ...
4 when notif Floor_Heating_Failure from boiler do
5 send cmd count("floor heating failure") to event_counter
6
7 send req events_during("floor heating failure", "1h")
8 to event_counter
9 receive resp events(var nbr_floor) from event_counter

10
11 send req greatereq(nbr_floor, "3") to comparer
12 receive resp true from comparer
13
14 send req events_during("internal failure", "1h")
15 to event_counter
16 receive resp events(var nbr_Internal) from event_counter
17
18 send req greatereq(nbr_internal, "1") to comparer
19 receive resp true from comparer
20
21 send req running to timer
22 receive resp false from timer
23
24 send cmd msg("Boiler problems") to alert
25 send cmd start("1h") to timer
26
27 when notif Internal_Failure from boiler do
28 send cmd count("internal failure") to event_counter
29
30 send req events_during("floor heating failure", "1h")
31 to event_counter
32 receive resp events(var nbr_floor) from event_counter
33
34 send req greatereq(nbr_floor, "3") to comparer
35 receive resp true from comparer
36
37 send req running to timer
38 receive resp false from timer
39
40 send cmd msg("Boiler problems") to alert
41 send cmd start("1h") to timer

Note that if the comparer responds false (or if the timer responds true),
there is no matching receive, and the reaction will be blocked until it is aborted.
This gives shorter code than if we had used nested select statements.

PA
P

E
R

II
I

PAPER III

Runtime Modeling and Analysis of IoT
Systems

Abstract

Internet-of-things systems are difficult to understand and debug due to their dis-
tributed nature and weak connectivity. We address this problem by using relational
reference attribute grammars to model and analyze IoT systems with unreachable
parts. A transitive device-dependency analysis is given as an example.

1 Introduction

Internet-of-Things (IoT) systems are heterogeneous distributed systems that in-
clude embedded devices with sensors and actuators, as well as edge computers
and/or servers. IoT systems can be even more difficult to understand and debug
than ordinary distributed systems, since they may include mobile devices with
weak connectivity. This results in a dynamic topology where devices are not al-
ways available [TM17].

One way of supporting better understandability and debugging is to compute a
runtime model of the IoT system, and to support analysis of such a model [BBF09].
For example, in a smart home, this could allow the network of connected devices
to be visualized. An example of an analysis could be to compute which devices
need to work in order for the lights to turn on when the door is opened. Analyses

Alfred Åkesson, Görel Hedin, Niklas Fors, Rene Schöne, and Johannes Mey. “Runtime Modeling and
Analysis of IoT Systems”. In: Proceedings of the 23rd ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems: Companion Proceedings. MODELS ’20. Virtual
Event, Canada: Association for Computing Machinery, 2020

106 Paper III: Runtime Modeling and Analysis of IoT Systems

like these can be useful both for debugging and for finding problems when testing
a system, before release.

For this approach to work well, the architecture has to be explicit in the sense
that communicating components and connectors can be extracted from the system.
In particular, it can be beneficial if the connectors have first class status [Sha93],
and are not implicit in the code of the components. In particular, if a domain-
specific language is used for specifying connectors between components, the ar-
chitecture is easy to extract. Furthermore, it is desirable to specify analyses of the
architecture in a high-level way, preferably using a declarative approach.

It is also important to note that an IoT system might not be defined by a sin-
gle description in one location, but can emerge from many partial descriptions on
different devices. The system may be constantly changing due to new components
and connectors being added or removed. Furthermore, because of weak connec-
tivity, the view of the system from any single device can be incomplete.

While most language and modeling approaches rely on conceptual mod-
eling frameworks (e.g., EMF [Ste+08]) or runtime modeling frameworks
(e.g., KMF [Fra+14]), these only explicitly support specific kinds of analysis, such
as type analysis or constraint checking, and fall back on general-purpose languages
for other kinds of analysis.

Thus, in this paper we propose using Relational Reference Attribute Gram-
mars [Mey+20] for modeling and analyzing IoT systems with an explicit archi-
tecture. Reference Attribute Grammars (RAGs) support declarative analysis over
abstract syntax trees and are used for building compilers and other language-based
tools. Relational RAGs extend the abstract syntax of RAGs with relations, so that
the structure to analyze is a conceptual model rather than an abstract syntax tree.

We evaluate the approach by developing a runtime model for
PALCOM [SF+09], an IoT middleware toolkit that uses an explicit architec-
ture. PALCOM components are called services, and connectors are called
compositions. The compositions are described by DSL scripts that define what
services to connect to, and how messages are mediated. The toolkit provides a
discovery manager that keeps track of all connected devices, and what services
and compositions that run on them.

As an example analysis, we have formulated and implemented a simple device
dependency analysis (DDA). The DDA computes what devices need to be avail-
able and connected in order for a specific event to happen, such as turning on a
light when a door opens.

Our contributions are the following:

• We present a basic runtime model for the PALCOM IoT architecture, for-
malized using Relational RAGs (Section 2).

• We present a home automation scenario as a motivating example (Section
3).

Paper III: Runtime Modeling and Analysis of IoT Systems 107

• We present an extended runtime model that can handle incomplete systems
(where devices can be unavailable) and that includes composition scripts
that enable more fine-grained analyses than the basic model (Section 4).

• We introduce and formalize the Device Dependency Analysis (DDA), and
show how it can be specified using Relational RAGs on top of our extended
runtime model (Section 5)

We end with related work and conclusions (Sections 6 and 7).

2 Basic Runtime Model

A running PALCOM IoT system consists of a set of devices running the PALCOM
middleware, together with a number of service and composition instances, each
hosted on a particular device. Each service provides an API of asynchronous mes-
sages that it can send and receive. However, a service does not set up any con-
nections on its own. Instead, compositions act as connectors, each connecting to a
number of services.

For this paper, all compositions are written in a domain-specific language
called COMPOS [Åke+19]. A composition mediates between services by receiv-
ing and sending messages from/to them. A composition can also provide synthe-
sized services that other compositions can connect to. Ordinary services (that are
not synthesized) are called native, and are typically written in a general-purpose
language like Java.

Because all connections are available in the composition scripts, which are
easy to analyze, the complete component-connector architecture is available with-
out having to analyze the general-purpose code of the native services.

Figure 1 shows the basic conceptual model of a running PALCOM IoT system,
and the corresponding abstract grammar of the Relational RAG. The grammar
specifies containment relations using grammar productions, and non-containment
relations using the rel construct.

A Relational RAG can be extended with attributes and equations in order to
declaratively specify derived properties. Each attribute of a node is defined by an
equation, either in the node itself (labelled by ↑), or in an ancestor in the contain-
ment hierarchy (labelled by ↓). (In attribute grammar terminology, ↑/↓ attributes
are called synthesized/inherited respectively.)

Listing 1 shows an attribution example (syntax slightly simplified for presen-
tation purposes). Here, the attribute ↑allServices of a device is defined as the
union of all its native services and all the synthesized services of its compositions.
The compositions and services have attributes ↓host that refer to the hosting de-
vice. This attribute is defined by an equation on the Device node, which is an
ancestor of compositions and services.

108 Paper III: Runtime Modeling and Analysis of IoT Systems

*

*

*

**

*

System

Device

CompositionService

Native Synthesized

1 System ::= Device*;
2 Device ::= Native* Composition*;
3 abstract Service;
4 Native:Service;
5 Synthesized:Service;
6 Composition ::= Synthesized*;
7 rel Composition.connectedTo* <-> Service.connectedFrom*;

Figure 1: Basic model for running PALCOM system. Upper: conceptual model
diagram. Lower: Corresponding abstract grammar.

Listing 1: Attributes defining derived properties
1 ↑ Device.allServices : P(Service)
2 ↓ Service.host : Device

3 ↓ Composition.host : Device

4 eq Device.allServices = Native ∪ (
⋃
c∈Composition c.Synthesized)

5 eq Device.**.host = this

Paper III: Runtime Modeling and Analysis of IoT Systems 109

Thermometer Hospital

Device

Temperature Encrypter

TemperatureToHospital MeasurementDB

Composition Native Synthesized

connectionprovide synthesized

mesurement encrypt

store

encrypted

Figure 2: Overview of Mark’s initial system. (See Figure 5 for example with
synthesized service.)

3 Running example

As a running example of IoT runtime models and their analyses, we tell a story
about the tech-savvy Mark and how he deploys an IoT system to communicate
measurements to his physician1.

3.1 A Simple IoT System

Mark has a chronic illness and needs to regularly inform his physician about his
body temperature. The hospital provides a database service to which measure-
ments can be sent from smart devices like thermometers, blood pressure monitors,
etc. All the hospital staff have access to the database, but Mark would like only his
physician to access his data, and would therefore like to encrypt his measurements
with the public key of his physician.

Mark has a smart thermometer with a temperature service that sends a message
whenever a measurement is taken. To build the system, Mark deploys an encryp-
tion service on the smart thermometer, and then creates a composition in COMPOS
to connect the services. An overview of the system is shown in Figure 2.

The composition script is shown in Listing 2. It specifies what services to use
and on what devices the services run (lines 2-4). Line 5 waits for the thermometer
to send a measurement, storing it in the variable t. Lines 6-7 sends the temperature
to the encryption service and receives the encrypted temperature. Line 8 sends the
encrypted temperature to the measurement database at the hospital.

1We use the example as a pedagogical tool, and thus it is not entirely realistic.

110 Paper III: Runtime Modeling and Analysis of IoT Systems

Listing 2: Composition connecting services
1 composition: TemperatureToHospital
2 service tmp = Temperature on Thermometer
3 service enc = Encrypter on Thermometer
4 service mDB = MeasurementDB on Hospital
5 when receive measurement(var t) from tmp do
6 send encrypt(t) to enc
7 receive encrypted(var et) from enc
8 send store(et) to mDB

3.2 Updating the System

The system works fine, but Mark’s illness makes it difficult for him to move around
in the apartment. He therefore gets one more thermometer, so he can have one in
his bedroom and one in the living room. He first updates the composition to work
on any thermometer by changing line 2 to service tmp = Temperature on this

(this binds to the device the composition is running on). He then copies the
composition to the new thermometer, and it seems to work.

To get more confidence in that the system works as it should, he runs a device
dependency analysis (DDA). With the DDA, he checks which devices are needed
for his new thermometer to send a store message to the database. The DDA is
run on the deployed system in order to resolve this expressions and to compute
what concrete devices the system depends on. To Mark’s surprise, the analysis
reports that not only the new thermometer and the hospital database are needed,
but the old thermometer is needed as well!

Mark looks at the composition again, and realizes that the old thermometer is
used for the encryption. While this works, it means that the new thermometer will
stop working if the old one runs out of battery. He fixes the problem by updating
the compositions on line 3 to bind to the Encrypter on the same device (using
this for the device).

4 The Full System Model

The full system model includes support for incomplete systems (due to unavail-
able devices) and composition scripts for allowing fine-grained analyses. Both the
conceptual model and its corresponding specification using Relational RAGs is
shown in Figure 3.

A System contains both a dynamic part for what is currently known about
devices, service instances, and composition instances on the network, and a static
part that contains the composition scripts. Each composition instance is related to
its corresponding script (line 13 in the grammar). There is an abstract grammar for

Paper III: Runtime Modeling and Analysis of IoT Systems 111

*

*

*
*

**

0..1
*

*

1 0..1

*

1

System

StaticPart

ComPOSscript

...

DynamicPart

DeviceHandle

deviceId

ServiceHandle

serviceId

Device

deviceId Composition

Service

serviceId

Native Synthesized

1 System ::= DynamicPart StaticPart;
2 DynamicPart ::= DeviceHandle*;
3 DeviceHandle ::= <deviceId> ServiceHandle* [Device];
4 Device ::= <deviceId> Native* Composition*;
5 ServiceHandle ::= <serviceId>;
6 abstract Service ::= <serviceId>;
7 Native:Service;
8 Synthesized:Service;
9 Composition ::= Synthesized*;

10 rel Composition.connectedTo* <-> ServiceHandle.connectedFrom*;
11 rel ServiceHandle.service? <-> Service.serviceHandle;
12 StaticPart ::= ComPOSscript*;
13 rel Composition.implementation <-> ComPOSscript.instances*;
14
15 ComPOSscript ::= ...

Figure 3: Full system model with diagram and grammar (COMPOS details omit-
ted)

112 Paper III: Runtime Modeling and Analysis of IoT Systems

the composition scripts as well, that we omit here for brevity, and that is reused
from the implementation of COMPOS [Åke+19].

The dynamic part is similar to the basic runtime model in Figure 1, but in-
troduces handles DeviceHandle and ServiceHandle. These are used for rep-
resenting devices and service instances that a composition (tries to) connect to,
regardless of if they are available on the network or not. The handles have op-
tional relations to the corresponding true Device and Service entities, that are
present in the model if they are available on the network.

4.1 Handling Unavailable Devices

Each device is identified by a globally unique id, deviceId, and each running ser-
vice instance has a device-locally unique id, serviceId. A running service is glob-
ally identified with a tuple (deviceId, serviceId).

The PALCOM middleware includes a discovery manager that can be run on
any device. It keeps track of transitively available devices, as well as services and
compositions that run on them.

To populate the model, the discovery manager is queried for its informa-
tion, adding device handles, devices, service handles, services, and compositions.
When a composition is added, it has information about each service instance it
(tries to) connect to, i.e., the tuple (deviceId, serviceId). If handles for the cor-
responding device and/or service are not already present in the model, they are
added. At a later point in time, when new devices and service/composition in-
stances are discovered, the model is automatically updated.

Figure 4 shows the object diagram from the perspective of Mark’s home. If the
hospital device is unreachable, the model will not contain the dashed elements. De-
vices, compositions, and services are shown in the same colors as in the overview
figure.

5 Device Dependency Analysis

The Device Dependency Analysis (DDA) computes what sets of devices need to
be available for a given message to be sent from a given composition and received
by a given service.

5.1 Example

Consider the IoT system in Figure 5, where Mark has added two thermome-
ters and moved the encrypter service to a router device. Because Thermome-
ter2 uses Fahrenheit, Mark has created TempC, a synthesized service provided
by TempFtoC, to convert the temperature to Celsius using a native service FtoC.
The DDA could, for example, compute which devices are needed for the store

Paper III: Runtime Modeling and Analysis of IoT Systems 113

System

DynamicPart StaticPart

ThermometerHandle

HospitalHandle

Thermometer

EncrypterHandleTemperatureHandle

TemperatureToHospital

EncrypterTemperature

Hospital MeasurementDBHandle

MeasurementDB

ComPOSscript

Figure 4: Object diagram over Mark’s system

Thermometer1

Thermometer2

Router Hospital

Temperature

TemperatureF

Encrypter

TemperatureToHospital

TempC

MeasurementDB

FtoC

TempFtoC

store

Figure 5: System with two thermometers and a router.

114 Paper III: Runtime Modeling and Analysis of IoT Systems

message to be sent. To compute this, the analysis takes into account the control
flow for both TemperatureToHospital and TempFtoC.

The analysis takes three arguments: c, m, and s, where c is the sending com-
position, m is the name of the message, and s is the receiving service. The output
of the analysis is a set of device sets {D1, D2, ...}, where each Dk is the set of
devices needed in one control-flow that leads to c sending message m to s.

For the system in Figure 5, the DDA for the store message, i.e.,
dda(temperatureToHospital, "store", MeasurementDB), would give the
result { {t1, r, h}, {t2, r, h} }, where r is the router, t1 and t2 are the thermome-
ters, and h is the hospital server. The result can be interpreted as a logical formula
on disjunctive normal form, in this case (t1 ∧ r∧h)∨ (t2∧ r∧h), where a device
is true if it is available on the network. The store message can be sent when this
formula is true, i.e., when the router and hospital servers are available, and at least
one of the thermometers.

5.2 Control-flow Analysis of Compositions

The control-flow analysis of the composition scripts is abstracted into two at-
tributes ↑ddaC and ↑ddaS, that represent two kinds of control-flow. ↑ddaC com-
putes dependencies needed for a composition to send a given message to a given
service. ↑ddaS computes the dependencies needed for a synthesized service to
send (or reply) a given message to some composition that connects to it. By in-
troducing these attributes, the rest of the DDA can treat the actual composition
language as a black box, see Listing 3. The equations for these attributes are omit-
ted for brevity.

A dependency dep ∈ Dep is relative to a given composition, and is modeled
as a tuple (serviceHandle, message), representing that a given service sends
a given message to the composition. Both ↑ddaC and ↑ddaS return a set of sets of
dependencies, i.e., a value of type P(P(Dep)), that we call a dependency expres-
sion, E. It can be thought of as a logical expression in disjunctive normal form,
similarly as for devices discussed earlier, but where a variable is a dependency.

5.3 Implementation of the DDA

We can now describe how the DDA is implemented for the conceptual model,
using Relational RAGs, as shown in Listing 4.

To correctly analyze TemperatureToHospital and TempFtoC in Figure 5, the
analysis needs to be transitive and follow dependencies between different com-
positions that are connected via synthesized services. In our analysis, we con-
sider transitive dependencies only in the forward direction, when a composition
sends a message through a synthesized service. To also consider messages re-
ceived through a synthesized service, the analysis would need to be extended.

Paper III: Runtime Modeling and Analysis of IoT Systems 115

Listing 3: Control-flow of composition language
1 ↑ ComPOSscript.ddaC(c:Composition , m:String, s:Service) : P(P(Dep))

2 ↑ ComPOSscript.ddaS(s:SynthesizedService , m:String) : P(P(Dep))

3 eq ...

Listing 4: DDA analysis
1 ↑ System.dda(c:Composition , m:String, s:Service) : P(P(D))

2 eq System.dda(c, m, s) = let E = c.implementation.ddaC(c, m, s)
3 in let res =

⋃
E∈E

⊗
e∈E e.serviceHandle.expand(e.message)

4 in toDevices(res) ⊗ { {c.host, s.host} }
5
6 ↑ ServiceHandle.expand(m): P(P(Dep))

7 eq ServiceHandle.expand(m) =
8 this.hasService ? this.service.expand(m) : { {(this, m)} }
9

10 ↑ Service.expand(m): P(P(Dep))

11 eq Native.expand(m) = { {(this.serviceHandle , m)} }
12 eq Synthesized.expand(m) =
13 let E = this.composition.implementation.ddaS(this.serviceHandle , m)
14 in let res =

⋃
E∈E

⊗
e∈E e.serviceHandle.expand(e.message)

15 in res ⊗ { {(this.serviceHandle , m)} }

The analysis makes use of the attributes ↑ddaC and ↑ddaS to compute control
flow in composition scripts, and the attribute ↑expand to compute a transitive
closure of all dependency expressions. It then projects the expanded dependency
expression down to a set of sets of devices.

The calculation of the transitive closure is done by first calculating the
ddaC (line 2) and then expanding each of the dependency sets in the re-
sulting dependency expression. The expansion on line 3 uses the opera-
tor ⊗ : (P(P(Dep)),P(P(Dep))) 7→ P(P(Dep)), where El ⊗ Er =⋃

El∈El,Er∈Er
({El ∪ Er}).

For synthesized services, the expansion leads to calls to ↑ddaS for the compo-
sition containing the synthesized service (line 13). These dependency expressions
are then expanded recursively (line 14), to compute the transitive closure.

For native services, the expansion cannot go further, and just returns the same
expression that was expanded (line 11).

For an incomplete ServiceHandle (i.e., when there is no corresponding Ser-
vice), the expansion also stops, and the same dependency expression is returned
(line 8). This lack of information is also computed, so the user can see where the
analysis is not complete, but the specification of this is left out for brevity.

The result of the DDA computation is shown on line 4: The fully expanded
dependency expression is projected to the corresponding set of sets of devices,
adding the devices of the original sending composition and receiving service to
each device set.

116 Paper III: Runtime Modeling and Analysis of IoT Systems

5.4 Discussion

The DDA analysis is not trivial, and while it would have been possible to write it
using an ordinary general-purpose language like Java, writing it using Relational
RAGs gives a concise executable high-level specification. The performance of
RAGs is on par with ordinary general-purpose languages, and a reason for this is
that RAG evaluation is optimal in that each attribute value is computed at most
once. This is achieved by automatic memoization of attributes during evalua-
tion [Jou84].

6 Related Work

A recent survey [BGS19] of works in the area of models@run.time revealed two
research challenges tackled by our approach. First, only few works directly ad-
dress uncertainty, which in our work was taken into account using handles for
both services and devices. Secondly, the need for distributed runtime models was
identified, which we tackle by incorporating the PALCOM middleware.

A similar approach in the domain of smart homes was presented in [Sch+19].
There, the problem on how to connect multiple smart home middleware systems
with different machine learning components was discussed and a runtime model
to include all necessary information was presented as solution. Similar to our
approach, RAGs were used to describe the model. However, the distributed nature
of application in the domain of Internet of Things was not considered and left to
the middleware systems.

Hartmann presented an approach in [Har16] for modeling large cyber-physical
systems. Similar to our approach, the changing nature of runtime systems was in
the focus, but they use streams to split up the complete model into atomic informa-
tion and use analysis in both time and multiple worlds to support what-if-analysis.
As an implementation basis, KMF [Fra+14] was chosen and extended to support a
fixed set of derived properties, similar to attributes of RAGs.

Dai, Covvey, Alencar, and Cowan use logic programming to implement depen-
dency analysis for workflows in [Dai+09]. Instead of having a model, they have
facts, and instead of attributes, they have rules. The use of logical programming
allows them to express different kinds of queries, which our current approach does
not support. Compared to our work, Dai, Covvey, Alencar, and Cowan do not
consider distributed systems and thus can do their analysis statically. They also
explore data dependencies, which we might want to support in the future.

7 Conclusion

We have presented how Relational RAGs can be used for modeling and analyzing
IoT systems with weak connectivity. The approach was evaluated by developing

Paper III: Runtime Modeling and Analysis of IoT Systems 117

a runtime model for the PALCOM IoT middleware, and implementing a forward
transitive device dependency analysis as an example. The analysis can be imple-
mented in a high-level compact way using the Relational RAGs.

In the future, we plan to use this work as a basis for exploring different kinds
of analysis in IoT systems, such as information flow and placement of compo-
sitions, and thus helping developers find problems before making their systems
available. It would also be interesting to implement the DDA in a conventional
model transformation tool, for comparison.

8 Acknowledgements
This work was in part supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Founda-
tion and in part by the Swedish Foundation for Strategic Research, grant RIT17-
0035. It is also partly supported by the German Research Foundation (DFG) as
part of Germany’s Excellence Strategy – EXC 2050/1 “CeTI” and the project “Hy-
bridPPS” (project number 418727532), and using tax money based on the budget
approved by the Saxon state parliament for the project “PROSPER”.

References
[BGS19] Nelly Bencomo, Sebastian Götz, and Hui Song. “Models@run.time:

a guided tour of the state of the art and research challenges”. en. In:
Software & Systems Modeling 18.5 (Jan. 2019), pp. 1619–1374.

[BBF09] Gordon Blair, Nelly Bencomo, and Robert B. France. “Mod-
els@run.time”. English. In: Computer 42.10 (Oct. 2009), pp. 22–
27.

[Dai+09] W. Dai, D. Covvey, P. Alencar, and D. Cowan. “Lightweight query-
based analysis of workflow process dependencies”. In: Journal of
Systems and Software 82.6 (2009), pp. 915 –931.

[Fra+14] Fouquet Francois, Grégory Nain, Brice Morin, Erwan Daubert,
Olivier Barais, Noël Plouzeau, and Jean-Marc Jézéquel. “Kevoree
Modeling Framework (KMF): Efficient modeling techniques for run-
time use”. In: May 2014.

[Har16] Thomas Hartmann. “Enabling Model-Driven Live Analytics For
Cyber-Physical Systems: The Case of Smart Grids”. en. PhD The-
sis. University of Luxembourg, Nov. 2016.

[Jou84] Martin Jourdan. “An Optimal-time Recursive Evaluator for At-
tribute Grammars”. In: International Symposium on Programming.
Vol. 167. Lecture Notes in Computer Science. Springer, 1984,
pp. 167–178.

118 Paper III: Runtime Modeling and Analysis of IoT Systems

[Mey+20] Johannes Mey, René Schöne, Görel Hedin, Emma Söderberg,
Thomas Kühn, Niklas Fors, Jesper Öqvist, and Uwe Aßmann. “Re-
lational reference attribute grammars: Improving continuous model
validation”. In: Journal of Computer Languages 57 (2020). 100940.

[Sch+19] René Schöne, Johannes Mey, Boqi Ren, and Uwe Aßmann. “Bridg-
ing the Gap between Smart Home Platforms and Machine Learning
using Relational Reference Attribute Grammars”. In: Proceedings
of the 14th International Workshop on Models@run.time. Munich,
Sept. 2019, pp. 533–542.

[Sha93] Mary Shaw. “Procedure calls are the assembly language of software
interconnection: Connectors deserve first-class status”. In: WSSD
1993, Studies of Software Design. Vol. 1078. LNCS. Springer. 1993,
pp. 17–32.

[Ste+08] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternos-
tro. EMF: eclipse modeling framework. Boston, MA: Pearson, 2008.

[SF+09] David Svensson Fors, Boris Magnusson, Sven Gestegård Robertz,
Görel Hedin, and Emma Nilsson-Nyman. “Ad-hoc composition of
pervasive services in the PalCom architecture”. In: Proceedings
of the 2009 international conference on Pervasive services. ACM.
2009, pp. 83–92.

[TM17] Antero Taivalsaari and Tommi Mikkonen. “A roadmap to the pro-
grammable world: software challenges in the IoT era”. In: IEEE Soft-
ware 1 (2017), pp. 72–80.

PA
P

E
R

IV

PAPER IV

JATTE: A Tunable Tree Editor for
Integrated DSLs

Abstract

Complex systems often integrate domain-specific languages to let users customize
the behavior. Developing tooling for such languages is typically time-consuming
and error-prone. We present JATTE, a tool intended to simplify this development.
JATTE works as a generic tree editor for an abstract syntax, but uses aspects and
attribute grammars to support powerful modular ways of tuning both the projected
view and the editing commands. We present the key features of JATTE, and discuss
its application in an orchestration language for internet of things.

1 Introduction

Complex systems often integrate domain-specific languages (DSLs) to let users
customize the behavior. To support close and comprehensible integration with the
application, structural/projectional editing [Han71; TR81; Rei85; Dmi04; Völ09]
can be preferable to textual editing. In particular, parts of the DSL program may
refer to entities in the system that are difficult to understand as text, and which
can be suppressed by a projectional editor. For example, in an orchestration DSL
for an Internet-of-Things (IoT) system, the globally unique name of a particular
device is typically a long string, incomprehensible to a human. A projectional
editor can instead show a human readable name.

Alfred Åkesson and Görel Hedin. “Jatte: A Tunable Tree Editor for Integrated DSLs”. In:
Proceedings of the 2nd ACM SIGPLAN International Workshop on Comprehension of Complex
Systems. CoCoS 2017. Vancouver, BC, Canada, 2017, pp. 7–12

120 Paper VI: JATTE: A Tunable Tree Editor for Integrated DSLs

Furthermore, DSL users are typically not expert programmers, and it is useful
for the integrated editor to have intelligent editing support, like drag-and-drop be-
tween visual representations of the system parts and the DSL program, as well as
context-dependent support like code completion.

Generic structural tree editors can be a good starting point for constructing
integrated DSL editors. One example is the Eclipse Modelling Framework tree
editor, EMF.Edit [Ste+08]. However, customizing such editors can be difficult.
There is an example in the EMF book on how to hide a node type in EMF.Edit,
requiring changing the generated Java code, adding 61 non-trivial lines of code.

Customization needs to be done in a much easier way, and without having to
resort to fragile practices like changing generated code. To support these needs,
we have implemented a general tool, JATTE, that supports easy and powerful
customizable tree editing, where customization is added using modular aspects.
JATTE can be tuned to customize what AST nodes are shown, how they are shown,
and what edit commands are provided. It also supports customized editing like
drag and drop from other parts of an application into which the editor is inte-
grated. We believe such customization and close integration with the application
is often vital to the comprehensibility of the DSL.

The customization is done using reference attribute grammars [Hed00] as sup-
ported by the JASTADD metacompilation tool [HM03]. We show through exam-
ples how this gives a powerful way of customizing the editor, easily supporting
context-dependent facilities like intelligent code completion.

We start by giving some brief background on JASTADD and attribute grammars
(Section 2). We then present how JATTE works out of the box as a generic tree
editor (Section 3). In Section 4 we present our main contribution: how the editor
can be customized using attribute grammar aspects.1 We then present a case study
where JATTE is used to implement an editor for an orchestration language for
the IoT middleware PALCOM [SF+09] (Section 5). Finally, we briefly discuss
the implementation of JATTE (Section 6), related work (Section 7), and conclude
(Section 8).

2 Background

JASTADD is a compiler construction system supporting aspects and attribute gram-
mars. In JASTADD, the developer specifies an abstract grammar that is equivalent
to a Java class hierarchy. A clause like

Class : SuperClass ::= Right-hand -side;
specifies an AST node class, where the right-hand side declares individual chil-
dren, list children, optional children, and tokens. The developer can then add
methods, attributes, and equations to the node classes. This is done modularly

1JATTE is open source. The tool and a video can be downloaded at https://bitbucket.org/
jastadd/jatteartifactevaluation/downloads/.

Paper VI: JATTE: A Tunable Tree Editor for Integrated DSLs 121

Program ::= Expr;
abstract Expr;
Mul : Expr ::= Left:Expr Right:Expr;
Div : Expr ::= Left:Expr Right:Expr;
Numeral : Expr ::= <NUMERAL>;

Let : Expr ::= Binding* Expr;
Binding ::= IdDecl Expr;
IdDecl ::= <ID>;
IdUse : Expr ::= <ID>;

Figure 1: Abstract grammar for tiny Calc language

using aspects with inter-type declarations, like in MultiJava and AspectJ [Cli+00;
Kic+01].

An attribute is a derived property of an AST node, defined by a directed equa-
tion whose right-hand side is a function that may access other attributes in the
AST.

Attributes are classified as synthesized or inherited. A synthesized attribute is
declared on a node class and is similar to a virtual function, with its defining equa-
tion in the class or a subclass. An inherited attribute is also declared on a node
class, but its defining equation is located in an ancestor node. Inherited attributes
are useful for accessing information higher up in the AST, like visible declara-
tions [HM03; Knu68]. The JASTADD tool weaves attributes and methods from the
aspect files into Java classes generated from the abstract grammar.

3 Default Tree Editor

By default, the JATTE tree editor displays each AST node as a row, and the node’s
children as nested rows. The displayed label for a node is derived from its name
(as seen from the parent), its actual type, and any tokens with their values:

Name : ActualType < Token = TokenValue >
The abstract grammar in Fig. 1 shows a tiny calculator language, Calc, with

Let expressions. Fig. 2 shows the corresponding default editor. The user has
added a Mul node with two children of type Numeral, one with the token value 1,
and one with the value 2. Menus for editing the tree are generated based on the
abstract grammar, an example of this is shown in Fig. 3. A node can be replaced
by a node of another type, if the change follows the grammar, and tokens can be
edited as text. For lists and optionals, there are additional generic commands to
add and remove nodes.

When adding a node, the AST is automatically completed to a full subtree. For
example, when adding a Mul node, its two operand children will be added as well.
Heuristics are used to construct a subtree with few children and tokens.

122 Paper VI: JATTE: A Tunable Tree Editor for Integrated DSLs

Figure 2: Default editor for the language in Fig. 1

Figure 3: Default menus for Mul and Numeral nodes.

The editor supports saving the AST, serializing to it XML.

4 Customizing the Editor

The default editor can be customized by, for example, changing the node labels,
hiding nodes, and changing the menu. The editor behavior is controlled by a num-
ber of attributes declared on the class ASTNode, which is an implicit superclass of
all node classes. For example, there is an attribute ed_label for specifying the
label of a node. The user can add aspect files with equations that override these
attributes for specific node classes. By introducing helper attributes, synthesized
or inherited, powerful customization is supported, as will be illustrated.

4.1 Customizing Node Labels

The editor displays nodes by using the attribute ed_label of type String. Sup-
pose we would like to change the default labels in Calc so that each expression is
shown as a complete textual version. For example, we would like the node labelled
Expr:Mul to instead be labelled 1*2. This can be done by introducing a synthe-
sized attribute pp for prettyprinting of expressions, and redefining ed_label using
pp, as shown in Fig. 4. The result of this customization can be seen in Fig. 5. With
slightly different attribution rules, we can easily define fully or minimally paren-
thesized expressions.

Paper VI: JATTE: A Tunable Tree Editor for Integrated DSLs 123

eq Expr.ed_label() = pp();
syn String Expr.pp() = "";
eq Mul.pp() =
getLeft().pp() + "*" + getRight().pp();

eq Div.pp() =
getLeft().pp() + "/" + getRight().pp();

eq Numeral.pp() = getNUMERAL();

Figure 4: Customizing the labels of expressions

Figure 5: Customized labels for Mul
and Numeral

Figure 6: The Numeral nodes have
been hidden.

4.2 Hiding Nodes

It is often the case that some nodes are uninteresting to view in the editor. For
example, we might like to hide the Numeral nodes that are children to Mul and
Div-expressions. The editor uses a boolean attribute ed_show to determine if a
node should be shown or hidden. If the value of the attribute is evaluated to true
(default), the node is shown, else it is hidden. Fig. 6 shows what the tree looks
like when Numeral nodes are hidden, using the equation:

eq Numeral.ed_show() = false;
When nodes are hidden, their menus are automatically merged into the menu

of the closest visible ancestor. Fig. 7 shows the default generated menu for the
program with hidden Numeral nodes. Here, the left and right numerals can be
edited or replaced using the menu on the Mul node.

Context-dependent Hiding. The hiding of nodes can be made conditional and
context-dependent by defining ed_show using other attributes. As an example,
consider the Let construct in Fig.1, which lets us bind a set of variables to ex-
pressions, and use these variables in the last expression. We would like the last
expression to be shown in the editor, regardless of if it is a Numeral or not, but
hide Numeral otherwise. We thus need the equation for Numeral.ed_show() to
depend on the place where it is located in the tree. The Numeral should be shown
when it is the Expr-child of a Let-node, but hidden otherwise. This can be ac-
complished by introducing an inherited attribute parentHidesMe for expressions.
Since the attribute is inherited, its value is defined by an equation in an ances-
tor. We give a default equation for parentHidesMe in ASTNode (the superclass
of all nodes in the tree), defining it to be true for all children, and then letting

124 Paper VI: JATTE: A Tunable Tree Editor for Integrated DSLs

Figure 7: The menus for the hidden Numeral nodes have been merged into the
Mul menu.

Figure 8: Context-dependent hiding of Numerals

Let override this equation for its Expr-child, defining it as false. The ed_show
attribute for a Numeral can then be defined using its parentHidesMe attribute.
These equations are shown in Fig. 8. Fig. 9 shows a Let construct where the node
for 10 inside the binding a = 10 is hidden, but the node for 5 is shown.

4.3 Customizing Menus

The menu for a node is derived from a set of attributes, making it suitable for
customization. Every node has an attribute ed_menu that represents its menu. This
attribute is a higher-order attribute, i.e., its value is a fresh AST that can itself have
attributes [VSK89]. This way, the structure of the menu is represented using an
AST.

Figure 9: The node for 10 is hidden, but 5 is visible.

Paper VI: JATTE: A Tunable Tree Editor for Integrated DSLs 125

abstract Menu ::= <name>; // Name displayed in menu
MenuList:Menu ::= Menu*;
MenuItem:Menu ::= <creator:ASTNode>; // node to act on
ReplaceType:MenuItem ::= <type:Class>;
...

Figure 10: Subset of abstract grammar for menus

Fig. 10 shows a subset of the abstract grammar for menus. A menu is either
a list containing sub-menus, or a menu item that can be selected. Each menu item
has a method perform that implements what to do when the item is selected.
Different subtypes have different behavior. For example, a ReplaceType menu
item will replace the current node by a node of another type.

The default menu contains items depending on the node-type and on its loca-
tion in the AST. For example, if the node is contained in a list or optional, there
will be a menu item for removing the node. If the node has String tokens, there
will be menu items to edit them. There are menu alternatives that enables the user
to create all trees following the abstract grammar.

If a visible node has hidden children, their menu items are merged (recursively
if needed) into the menu of the node. To handle menu items for hidden children, a
reference to the node to act on is stored in the menu item’s token creator.

The user can customize menus in several ways. Predefined attributes can be
overridden to add new menu items, or hide default ones. When defining new
menu items, the existing menu classes can be used, but the user can also define
new subclasses and override the perform method to add custom behavior. It is
also possible to override the ed_menu definition in order to define a completely
different menu.

Intelligent Code Completion Menus. Through the use of attribute grammars,
it is easy to add customizations for intelligent code completion. For example,
attributes can be added to support a menu of visible names when editing variables.
Fig. 11 shows an example of this for the Calc language, where the names in the
enclosing Let expressions are selectable from a menu. This functionality was
implemented using 48 lines of attribute code.

4.4 Drag and Drop

JATTE supports Drag and Drop (DnD), allowing the user to drag information both
between nodes inside the editor and between the editor and a surrounding appli-
cation. All AST nodes have the attributes ed_can_drag(), returning true if the
node can be dragged, and ed_can_drop(Object resource), returning true if
the resource can be dropped on the node. To define what happens when a drop
is done, the method ed_accept_resource(Object resource) is used.

126 Paper VI: JATTE: A Tunable Tree Editor for Integrated DSLs

Figure 11: Intelligent code completion

Figure 12: Using drag and drop to reorder a list

By default, these attributes are defined to allow elements in lists to be reordered
using DnD, as shown in Fig. 12. Here, the ed_can_drag() is defined as true for
all elements in the list. ed_can_drop(Object resource) is defined as true for
elements in the same list as resource. Finally, ed_accept_resource(Object
resource) is defined to move the resource node to the drop target node.

To make use of customized DnD, an aspect can be added that overrides or
refines the definitions of these attributes and methods for particular node types.
By using helper attributes, context-dependent DnD can be defined, for example,
only allowing a node to be dropped at a type-correct location.

5 Case Study: IoT Language

The primary motivation for developing JATTE was the need for fast prototyping of
a new version of an orchestration DSL for IoT. The language is called As2 (As-
sembly script 2), and is used in an IoT middleware called PALCOM [SF+09]. An
As2 script is used for connecting services on devices in a network, and mediat-
ing commands between them. Every service defines a set of in-commands that
it can receive and a set of out-commands that it can send. The user can edit a
script by dragging in- and out-commands from a panel of discovered services into
the script’s event handler. Structure editing and code completion can be used for
editing details in the script.

Paper VI: JATTE: A Tunable Tree Editor for Integrated DSLs 127

Figure 13: The PALCOM browser with a discovery panel to the left and an As2
script to the right

5.1 A Scenario

As a simple example scenario, we will show how to construct an As2 script to
connect a camera service with a database server that can store photos. Each time
the camera snaps a photo, it should be sent over the network to the database where
it is stored for later use.

In Fig. 13 we see a screenshot from an application called the PALCOM browser.
This application is used for discovering what devices and services are available on
the network. The JATTE-based As2 editor has been integrated into the browser
application. On the left in Fig. 13 we see a discovery panel with devices and
services found on the network. There is a device called Camera with a service
called PictureService. The service has an out-command called picture, and it is
sent to any connected service every time the camera snaps a photo. There is also
a device called Server with a service named ImageDB (Image database), with an
in-command storeImage.

By using As2, we can create a script that connects to the two services and
forwards the pictures from the camera to the database server.

128 Paper VI: JATTE: A Tunable Tree Editor for Integrated DSLs

Figure 14: The menu for adding when do

Figure 15: The script after dragging the picture-command

We first create a new As2 file; this gives us the initial script shown to the right
in Fig. 13. To create an event-handling case, we add a when do construct by
selecting in the context menu for the Script node, see Fig. 14.

We then drag the out-command picture from the discovery panel and drop it
on the when node, giving the script shown in Fig. 15. The event handler will react
every time it receives a picture command from the PictureService.

In addition to the picture command, the DnD command automatically adds
local declarations of the device and service under the Bindings heading. For in-
stance, the Camera device is bound to the local name d0. The DnD command also
defines a local variable local1 in the when clause, capturing the value of the image.

The next step in the As2-script is to forward the image to the Server. We do

Figure 16: The final script

Paper VI: JATTE: A Tunable Tree Editor for Integrated DSLs 129

this by adding a send to service-action and then dragging the storeImage command
to that action. This drop adds the service and device to Bindings the same way as
for the picture-command. The parameter img in the forwarded message gets its
value from local1. Now we have completed our task and can save and run the
script. In Fig 16 we see the full script.

5.2 The use of JATTE

We will now discuss how different features of JATTE are used to construct the As2
editor.

Customizing Node Labels. As an example of how we use the feature
for customizing labels, we can look at the first row of Bindings where we
bind a device to d0. The abstract grammar for this row is: DeviceDef
::= DeviceParam:NameDef <deviceRefPON>;Where <deviceRefPON> is a
string containing structured information about the device encoded in the PON-
format [NM16]. The user does not see this string; instead, we have defined the
ed_label attribute to extract the readable name of the device from the PON-
encoded string and show it to the user. Every device also has a UUID used by the
interpreter for identification of devices. Both the UUID and the readable name are
contained in the PON string and saved in the XML file. Since the UUID is irrele-
vant to the user, we think hiding it leads to better comprehension of the language.

Hiding Nodes. We use the feature for hiding nodes. In the abstract grammar,
we have a node called Definitions containing the list of ServiceDef and the list
of DeviceDef. This node is hidden from the user, and instead, the services and
devices are visible directly under Bindings.

Customized Menus. The As2 editor customizes the menus for the nodes. The
menu in Fig 14 has similar actions as the default generated menu but the actions
are reordered and renamed with the use of attributes. This is done in an attempt to
make the DSL more comprehensible and easier to use.

We have also implemented context-dependent code completion. In the abstract
grammar of As2 we have a production called NameUse. NameUse is used every
time we use an identifier. The NameUse can both refer to script-local identifiers
and to things on the PALCOM network. We have implemented code completion
for NameUse, presenting visible script-local identifiers in a menu, using a similar
method as described in Section 4.3. The visible names are defined in the ancestor
nodes and different NameUse nodes therefore get different menus depending on
their context.

Drag and Drop. JATTE’s support for drag and drop is utilized in the As2 editor
to interact with the surrounding application. The dragging of a service command
eliminates the need for the user to ensure that the correct service and device is used
for that command because all that information is inferred by the DnD action.

130 Paper VI: JATTE: A Tunable Tree Editor for Integrated DSLs

6 Implementation

JATTE is implemented using reflection. It makes use of annotations in the gener-
ated Java classes to find out about the actual abstract syntax, and communicates
with the AST by calling the predefined attributes, for example ed_label. At-
tributes are evaluated on demand, i.e., when they are used. To avoid unnecessary
recomputations during evaluation, the values can be automatically cached. How-
ever, whenever the AST is edited, the cached values could become inconsistent.
Therefore, JATTE clears all caches in the whole AST after each edit operation. The
user interface is then updated using the new values of the attributes. Because of
the on-demand evaluation, the editor is fast enough for interactive use.

7 Related Work

JATTE is similar to EMF.EDIT in that both are general AST editors. In EMF, the
AST is called a model, and containment references correspond to the tree struc-
ture. EMF.EDIT can also be customized, but this is done by changing generated
Java code, and appears to be much more complex than in JATTE. For example, in
chapter 19 of the EMF book [Ste+08], there is an example of how to hide nodes
of type USAddress in a DSL for purchase orders, and delegate the properties of
the hidden node to a parent node so they can be edited. To implement this in
EMF.EDIT requires 61 lines of code. As a comparison, we implemented a similar
example in JATTE, and the corresponding hiding and delegation was accomplished
with the following single line of code:

eq USAddress.ed_show() = false;
EMF.EDIT is, however, a mature tool, widely used, whereas JATTE is still a re-
search prototype.

There are many text and structure-based editors that have used attribute gram-
mars, starting with the Synthesizer Generator [RT84]. Our work is different in that
we target general tree editors for languages with an abstract grammar only, and no
concrete parsing grammar.

Language workbenches support development of advanced editing support for
DSLs [Erd+15], but typically generate plugins to development platforms like
Eclipse, and are therefore difficult to integrate tightly with an arbitrary applica-
tion.

EuGENia is a framework for building diagram based editors on top of the
Eclipse Graphical Modeling Framework (GMF), with the goal of having a higher
abstraction level than GMF. The developer specifies an editor by adding annota-
tions to the classes in the meta-model [Kol+09], somewhat similar to our adding of
attributes to classes. However, attributes also support general computations, which
allows more open ended customization.

Paper VI: JATTE: A Tunable Tree Editor for Integrated DSLs 131

8 Conclusion
Our work addresses the problem of how to easily develop powerful DSL editors,
integrated into complex systems. To this end, we have demonstrated how cus-
tomization is done in our tool JATTE, by overriding default behavior using attribute
grammar equations. Examples include customization of displayed node labels,
hiding nodes, customizing menus, and supporting drag and drop editing. Arguably,
this technique is both easy to use and powerful, supporting advanced customiza-
tions like context-dependent node hiding and intelligent code completion with only
a few lines of code. We have exemplified the use of JATTE for an orchestrating
DSL in a research project on IoT, showing examples of advanced customizations
like drag and drop from the application, and intelligent code completion. JATTE
is still a research prototype, and is actively being improved. Because of the ease
with which customizations can be added, JATTE is suitable for rapid prototyping
of DSLs. An interesting direction of further research is to support grammar evo-
lution, i.e., to allow existing programs following an older grammar version to be
read in by the tool and adapted to the new grammar version.

Acknowledgments
This work was partially supported by the Wallenberg Autonomous Systems and
Software Program (WASP). We thank Niklas Fors and the anonymous reviewers
for helpful comments on earlier drafts of the paper.

References
[Cli+00] Curtis Clifton, Gary T Leavens, Craig Chambers, and Todd Mill-

stein. “MultiJava: Modular open classes and symmetric multiple dis-
patch for Java”. In: ACM Sigplan Notices. Vol. 35. 10. ACM. 2000,
pp. 130–145.

[Dmi04] Sergey Dmitriev. “Language oriented programming: The next pro-
gramming paradigm”. In: JetBrains onBoard 1.2 (2004), pp. 1–13.

[Erd+15] Sebastian Erdweg et al. “Evaluating and comparing language work-
benches: Existing results and benchmarks for the future”. In: Com-
puter Languages, Systems & Structures 44 (2015), pp. 24–47.

[Han71] Wilfred J. Hansen. “User engineering principles for interactive sys-
tems”. In: AFIPS ’71 Fall Joint Computer Conference. ACM, 1971,
pp. 523–532.

[Hed00] Görel Hedin. “Reference Attributed Grammars”. In: Informatica
(Slovenia) 24.3 (2000), pp. 301–317.

132 Paper VI: JATTE: A Tunable Tree Editor for Integrated DSLs

[HM03] Görel Hedin and Eva Magnusson. “JastAdd–an aspect-oriented com-
piler construction system”. In: Sci. of Comp. Prog. 47.1 (2003),
pp. 37–58.

[Kic+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jef-
frey Palm, and William G Griswold. “An overview of AspectJ”. In:
ECOOP. Vol. 2072. LNCS. Springer. 2001, pp. 327–354.

[Knu68] Donald E. Knuth. “Semantics of Context-free Languages”. In: Math.
Sys. Theory 2.2 (1968). Correction: Math. Sys. Theory 5(1):95–96,
1971, pp. 127–145.

[Kol+09] Dimitrios S Kolovos, Louis M Rose, Richard F Paige, and Fiona
AC Polack. “Raising the level of abstraction in the development of
GMF-based graphical model editors”. In: MiSE@ICSE. IEEE. 2009,
pp. 13–19.

[NM16] Mattias Nordahl and Boris Magnusson. “A lightweight data inter-
change format for internet of things with applications in the PalCom
middleware framework”. In: Journal of Ambient Intelligence and
Humanized Computing 7.4 (2016), pp. 523–532.

[Rei85] Steven P. Reiss. “PECAN: Program Development Systems that Sup-
port Multiple Views”. In: IEEE Trans. Software Eng. 11.3 (1985),
pp. 276–285.

[RT84] Thomas Reps and Tim Teitelbaum. “The Synthesizer Generator”. In:
SIGSOFT Softw. Eng. Notes 9.3 (Apr. 1984), pp. 42–48.

[Ste+08] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternos-
tro. EMF: eclipse modeling framework. Boston, MA: Pearson, 2008.

[SF+09] David Svensson Fors, Boris Magnusson, Sven Gestegård Robertz,
Görel Hedin, and Emma Nilsson-Nyman. “Ad-hoc composition of
pervasive services in the PalCom architecture”. In: Proceedings
of the 2009 international conference on Pervasive services. ACM.
2009, pp. 83–92.

[TR81] Tim Teitelbaum and Thomas W. Reps. “The Cornell Program Syn-
thesizer: A Syntax-Directed Programming Environment”. In: Com-
mun. ACM 24.9 (1981), pp. 563–573.

[VSK89] Harald Vogt, S. Doaitse Swierstra, and Matthijs F. Kuiper. “Higher-
Order Attribute Grammars”. In: PLDI. ACM, 1989, pp. 131–145.

[Völ09] Markus Völter. “MD* Best Practices”. In: Journal of Object Tech-
nology 8.6 (2009), pp. 79–102.

