LUND UNIVERSITY

Control-Based Resource Management for Storage of Video Streams

Martins, Alexandre; Lindberg, Mikael; Maggio, Martina; Arzén, Karl-Erik

Published in:
IFAC Proceedings Volumes (IFAC-PapersOnline)

DOI:
10.1016/j.ifacol.2020.12.1564

2020

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA): .

Martins, A., Lindberg, M., Maggio, M., & Arzén, K.-E. (2020). Control-Based Resource Management for Storage
of Video Streams. IFAC Proceedings Volumes (IFAC-PapersOnline), 53(2), 5542-5549.
https://doi.org/10.1016/j.ifacol.2020.12.1564

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://doi.org/10.1016/j.ifacol.2020.12.1564
https://portal.research.lu.se/en/publications/eaee8981-1c51-4d65-8529-f37708c15ce7
https://doi.org/10.1016/j.ifacol.2020.12.1564

Control-Based Resource Management for
Storage of Video Streams*

Alexandre Martins * Mikael Lindberg** Martina Maggio ***
Karl-Erik Arzén ***

* Department of Automatic Control, Lund University and Awis
Communications
** Azis Communications
*** Department of Automatic Control, Lund University

Abstract: Distributed surveillance systems typically consist of multiple cameras that need to
store some fraction of their video streams at a central storage node. The disk space of this node
constitutes a shared resource. In the paper the disk space allocation is formulated as a PI control
problem and a new method for enforcing global resource constraints inspired by anti-windup
tracking is proposed. The approach is evaluated by simulations.

Keywords: Cameras, Computer control, Constraints, PID control, Memory applications

1. INTRODUCTION

A common scenario in many control applications is the
need to share some resource among a number of clients or
subsystems. This happens particularly often when control
is applied to computer and communication systems. In
these cases a limited shared resource, e.g., communication
bandwidth, CPU capacity, or memory, should be shared
between a number of clients. The problem, however, does
not appear only in computing systems, but can be found
in other industrial sectors as well. One example is process
automation, where common resources such as cooling wa-
ter or steam need to be shared between several subsystems
or process units.

In many cases, the amount of shared resource that should
be allocated to each client is given by the output of
a controller, i.e., by the control signal, which has the
objective to keep some quality or performance related
variable at a desired value. Hence, the overall architecture
of the system consists of a number of control loops that
interact with each other through the fact that the sum of
all the control signals, i.e., the total amount of resources
required, is limited. When there are hard or soft limitations
on the total amount of resource it is also necessary to have
some mechanism for prioritizing among the control loops
so that the most important loop should be effected the
least by the resource limitation, i.e., static priorities, or the
loop that need the resources the most should be effected
the least, i.e., dynamic priorities. We propose an approach
that supports both options.

In this paper, the focus is storage systems for video
surveillance. Video surveillance systems are increasingly
prevalent in society. They are used at different levels and
at different scales — e.g., cities, public places, companies,

* This work has been partially funded by the Wallenberg Al,
Autonomous Systems and Software Program (WASP), the ELLIIT
strategic research area on IT and mobile communications, and the
Nordforsk university hub on Industrial IoT (HI20T).

homes, etc. A typical video surveillance system comprises
multiple, in some cases several hundreds or thousands,
cameras, disseminated over an area and recording 24/7.
Today, the video industry is mainly focused on using IP
cameras, which stream videos that are compressed using
the H.264 standard (Richardson, 2010), also called MPEG-
4 part 10 AVC, which is currently the de facto standard
for video encoding and decoding.

The cameras send their video streams over a network to
one or several storage stations, where the video streams are
monitored, e.g, by a human operator looking for abnormal
events. Doing this requires the operator to have access
to a sliding window of the video stream, showing, e.g.,
the last 15 minutes or 1 hour of the video. Storing the
associated video frames requires an amount of memory
that varies depending on the size of the video frames, i.e.,
on the dynamics of the scene. Video streams from multiple
cameras typically share the available storage which then
constitutes a shared resource that all cameras in the
system compete for.

The allocation of storage to a video stream can be viewed
as a control problem (see Fig. 1) where the measured
variable is the length, or duration, of the stored video
sliding window. This is compared to the desired duration,
e.g., one hour, and the resulting error is fed to a controller,
e.g., a PI controller, that calculates the amount of memory
or disk space that the video stream may use. The frames
in the video stream and the storage that they require can
be viewed as a disturbance acting on the system.

We propose an approach for managing shared resources
that is inspired by the tracking, or back-calculation, ap-
proach for handling anti-windup in controllers with inte-
gral actions that is commonly used in PID control. In this
paper tracking is instead used to ensure that the sum of
the control signals is limited.

The objective of the approach is simplicity, i.e., the ap-
proach should fit well with simple PID control schemes,

{}Frames
@ Duration

Setpoint

TrOoT Memory

Controller

Fig. 1. Video storage feedback loop.

and to be as decentralized and asynchronous as possible.
An alternative approach would be to use conventional
Model-Predictive Control (MPC) (Rawlings and Mayne,
2009). However, this is more centralized and does not fit
well with PID control. Also, the model of the storage used
here is non-linear which would in the MPC case imply the
use of non-linear MPC techniques. The price to pay for
decentralization and lack of synchronization is that the
global control signal constraint must be soft in nature.

The following are the contributions of the paper.

e The allocation of disk space for storing a video stream
is formulated as a control problem.

e A method, that, to the best of our knowledge, is
new for enforcing global constraints on the control
signals for a set of controllers with integral action
is proposed. The method is inspired by anti-windup
tracking commonly used in PID control.

e The application of the proposed method to control
of computer and communication systems where a
limited resource is shared between a set of user or
clients.

e The method is applied to the video storage applica-
tion with promising results.

1.1 Owutline of the paper

In Section 2 the model used for the video storage is
described. Tracking-based anti-windup is shortly recapit-
ulated in Section 3. The proposed general approach for
handling global control signal constraints is presented in
Section 4 together with a linear system example. In Section
5 the result of applying this to video storage is described.
Extensions to the approach are presented in Section 6.
Finally, the paper ends with suggestions for future work
and conclusions in Section 7.

1.2 Related Work

Control has been applied to the problem of determining
the best setting for video streaming (De Cicco et al., 2011;
Cucinotta et al., 2009; Palopoli et al., 2009; Yin et al.,
2015). In this case, the focus was on optimizing the video
quality subject to bandwidth constraints. This problem is
equivalent to meeting a certain quality of service for a real-
time (Cucinotta et al., 2004) or multimedia (Palopoli et al.,
2008; Cucinotta et al., 2011) application. The problem
that we are facing is different. In fact, we are trying to
determine what is the fraction of videos that we should
store to satisfy (legal) requirements and at the same time
avoid exceeding the amount of available storage. In this
work we do not consider adapting the compression level of
the cameras, although this would be a possibility.

The general formulation of our problem is allocating a
limited resource to multiple actors. This problem has been
encountered in different circumstances when controlling
computing systems, e.g., in the management of a set of
thread (Hellerstein et al., 2004), CPU scheduling (Leva
and Maggio, 2010), or core allocation (Maggio et al., 2010).
However, the solutions that were found either require do-
main knowledge or do not scale well. We aim at providing
a general mechanism to handle the problem of partitioning
the shared resource among multiple competing actors re-
quiring the least possible amount of domain knowledge. In
our case the actors are the cameras and their associated
storage controllers. The objective has been an approach
that is as decentralized as possible and fits well into a PID
control setting.

2. STORAGE OF VIDEO STREAMS

Video storage is usually done at central locations, which
could be edge storage, e.g. a computer with hard drive(s)
at each geographical location or global storage, e.g. in a
data center. Usually, the camera system is designed/ex-
pected to stream on average a certain amount of data per
fixed duration, e.g. a Gigabit per day, week, or month.
The amount of disk space allocated is then calculated with
some safety margin. This storage behaves like a ring-buffer
where the oldest content is deleted to allow new content to
be stored. It can be deleted due to requirements (new video
frames need to be stored in the system) or for legal/policy
reasons (the video content should not be stored longer than
a certain time). In this paper we only consider the first
case: recycling for memory re-use.

The storage cost has a a large impact for companies.
Hence, they try to minimize the amount of storage needed,
while fulfilling the requirements in terms of duration,
resolution, quality, etc. This is true especially when many
video streams should be stored simultaneously.

In our work, we consider the dual problem: we are given a
fixed amount of available global storage, i.e., disk space
and we want to optimize its usage. We want to keep
as much video as possible, satisfying given quality con-
straints. Our measurement variable is the stored video
duration of the produced video, e.g. the amount of past
video being stored in memory for each video stream. This
problem can be viewed as a distributed control problem
where each camera has a video recording duration set-
point, e.g. camera 1 should save video for 2 days, while
camera 2 should save it for 1 day. Cameras will generate
video data based on their environment and configuration.
They require a certain amount of disk space to be able to
meet the recording duration set-point.

In a camera system, multiple cameras are competing for
the same pool of storage and need then to adjust also
based on the global constraint. The situation in case of
two cameras is shown in Fig. 2.

The open loop performance of the ring-buffer model is
illustrated in Fig. 3. The figure shows the stored video
time, the amount of memory/disk space allocated to the
buffer, and the frame size. We assume that initially the
buffer is full. After a while the allocated storage increases
by a step. This causes the stored video time to grow

video 1

old frames

Storage

Fig. 2. Multiple video streams sharing the same disk space.

linearly as new frames are entered into the buffer until
the buffer becomes full again. After a while the allocated
storage is decreased, again using a step. This causes the
stored video to drop instantaneously as a number of frames
will be flushed from the buffer. At ¢ = 3000 the average
frame size is decreased. This causes the stored video time
to increase linearly as more frames will fit in the buffer.
Similarly when the frame size increases the stored video
time will decrease linearly as there is room for fewer
frames. Hence the model consists of a saturated integrator
where the gain depends on the frame size and frame rate
in combination with an instantaneous change when data
is flushed.

The corresponding closed loop performance is shown in
Fig. 4. Here a discrete-time PI controller with a sampling
rate equal to the frame rate, which we assume is constant
and equal to 30 fps, is used as the controller. However,
also other controller types could be used as long as they
contain integral action. The ring buffer is implemented as a
Simulink s-function. The plot shows the stored video time
including the set-point value of 900 seconds, the allocated
storage, and the average frame size. At ¢ = 1000 the
average frame size increases and the stored video time
drops. This causes the controller to increase the allocated
storage until the stored video time returns to the set-
point. At t = 4000 the frame size decreases and the stored
video time consequently increases. The controller reacts by
reducing the allocated storage until the stored video time
is back at the set-point.

The actual size of the frames that are used in the simula-
tions varies substantially from frame to frame. A sign of
this is the rather noisy stored video time plot in Fig. 4. The
reason for this is the nature of a H.264 stream. The stream
consist of a sequence of groups of pictures (GOP). Each
GOP consist of one I-frame followed by a sequence of P-
frames and B-frames. I-frames are usually self-contained,
i.e., they contain a full image and do not need additional
information for the decoding. The P and B-frames are
encoded using information contained in other frames. As a
result of this the I-frames are substantially larger than the
P- and B-frames. In the simulation a stream consisting of

frames with the sizes shown in Fig. 5 has been used, i.e.,
the I-frames are 5 times as large as the other frames. This
has consequences for the ring buffer storage. For example,
entering a new I-frame may cause several old P- and B-
frames to be removed. The overall size of all the frames
depends on things such frame resolution, camera noise,
scene illumination, compression level, motion level, etc,
according to the model in Edpalm et al. (2018)

3. TRACKING-BASED ANTI-WINDUP

We propose a scheme for managing the allocation of shared
resources, that is inspired by the tracking approach for
handling anti-windup in controllers with integral action
that is commonly used in PID control (Astrom and Mur-
ray, 2008).

A controller with integral action together with an actuator
that becomes saturated can cause problems. If the control
error is so large that the integrator causes the control
signal to saturate the actuator, then the feedback loop
will be broken. The reason for this is that the actuator
will remain saturated also if the plant output changes.
The integrator may then integrate up to a very large
value. When the error finally becomes small again, the
integral value may be so large that it takes a considerable
amount of time until the integral assumes a normal value
again. This effect is known as integrator (or reset) windup
and typically causes over and undershoots in the output
response.

The tracking or back-calculation approach to anti-windup
is based on the addition of an extra feedback loop inside
the controller. The feedback is generated by adding a
simple saturation model of the actuator, and forming an
error signal e as the difference between the estimated,
possibly saturated, actuator output v and the output v
that the controller would like to send out. This error
is then fed back to the integrator through a gain 1/T;.
When the actuator is not saturated the error ey is zero
and the controller is not affected by the extra feedback.
When the actuator is saturated the extra feedback loop
will try to force es; to zero, by modifying the value of
the integrator. This means that the integrator is reset (or
back-calculated), so that the controller output is at the
saturation limit. The reset is done with a time constant
T}, also known as the tracking time constant, rather than
instantaneously. One reason for not this is to avoid that
the integrator is reset erroneously, for example due to
measurement noise.

A PI controller with tracking-based anti-windup is shown
in Fig. 6. The corresponding code for the continuous-time
PI controller in Equation 1

u(t) = K <e(t) + Ti /t e(s) ds) , (1)

K3
when the I-part is discretized using forward approximation
is given by the following very commonly used pseudo-
code adopted from Wittenmark et al. (2003). The code
is executed each sampling period h.

1y = readY();
2 ref = readReference();
3 e = ref - y;
4 v = Kxe + I;

Display time (seconds)
2,500

2,000
1,500

107 Storage allocated (kbits)

14| 1

0.8 L ‘ ‘ |

Frame sizes (kbits)
300 | i 1

250 | 1

200 1

0 2,000 4,000 6,000

8,000

Time (seconds)

Fig. 3. Stored video time, allocated storage, and frame size
in open loop.

. 1,000
S 800
Z2E£ 600
E2 400
= 200
&2

0

0 0.5 1 1.5 2 2.5

Time (seconds)

Fig. 5. Frame size detail in closed loop.

(99
H=
w =

Fig. 6. A PI controller with tracking-based anti-windup.

5 u = max(u_low, min(v, u_max));
6 writeU(u);
7 I =1+ (K/Ti)*e + (h/Tt)*(u-v);

If the tracking time constant T; is selected as T; = h then
the reset will be performed instantaneously. This is also
known as deadbeat tracking.

Display time (seconds)

905 | r ‘ 1
900 1T - = Ve w]---r
106 Storage allocated (kbits)
T ‘
6 |
5 |
4 |
Average frame sizes (kbits)
250 | ‘ T 1
200
150 | ‘ ! |
0 2,000 4,000 6,000 8,000

Time (seconds)

Fig. 4. Average frame size, target storage and buffer
behavior in closed loop (K=5000, Ti=0.002).

4. TRACKING FOR HANDLING GLOBAL
RESOURCE CONSTRAINTS

The proposed method is based on calculating the sum of
the control signals that the individual controllers would
like to send out and compare this value with Upay, ie.,
the maximum amount available. The difference between
these values can be viewed as a tracking error signal, eg,
that is fed back to each individual controller through the
gains Kt /w; where Kr is used to scale the gains and w; is
a weight (or priority) that gives control over the relative
importance of the controllers, i.e., which controllers that
should be affected the least and the most by the lack of
resources.

The rational behind the method is that as long as the sum
of the control signals is larger than Upax then the error
will be negative and this will cause the integral parts in
all the controllers to decrease until eventually the sum of
the control signals equals Upax. The individual rates at
which this takes place is controlled by w;. A small value
of w; will make the gain large. Hence, the rate at which
the integrator is adjusted will be large. A large value of w;
will make the gain small and, hence, the rate at which the
integrator is adjusted will be small. The result of this is
that the control loops with large weights will be affected
less by the lack of resources compared to those with small
weights.

The proposed method is shown in Fig. 7 for the case of two
controllers. The global tracking feedback loops are shown
in red. The lower limit in the global saturation block can
be set to zero and the upper limit is set to Upax. The local
saturation blocks could also have a lower limit of zero and
the upper limit can be used to further constrain the value
of the control signal.

€1
€1
1 e
T:) A
A
Kr
Kr |o e
wi - 9
€2
€2

Kr
w2

Fig. 7. A tracking-based approach for handling global
control signal constraints. The figure shows the case
for two local controllers.

4.1 A simple example

As a simple example of the approach we use three PI-
controllers that each control a first-order linear system
given by Gp(s) = 1/(s+ 1). However, note that it is not a
model of the storage system used in the simulations in 5,
it is only intended as an example of the new approach for
handling global control signal constraints.

The PI parameters are equal for the three controllers
(K =2and T; = 1) and the set-points are chosen as 10 for
all three loops. Since the closed loop systems have static
gains 1, the control signals will be equal to the reference
values as shown in Fig. 8. Here also the sum of the control
signals is shown (equal to 30) and Upax which in this case
is set to 40. Hence, in the first part of the plots the global
tracking is not invoked.

However, at time t = 6, we lower Upax to 20. Now the
amount of available resources is less than what is needed.
All the controllers have the same weight, i.e., they will
share the available resources in a fair way and all will
obtain the control signal equal to 20/3 = 6.67. Finally,
at time t = 12, we change the weights so that controller
1 has highest weight, and controller 3 lowest weight. This
will change the control signals. Controller 1 will be affected

—
[N}

-2
<
g 10
B g
=
[} 6 |
= =
7 .
g 2 Setpoints
= 0 : : : : : : : : : f
0 2 4 6 8 10 12 14 16 18 20
Time
50 ;
= 40 o
ED _USL]IH
.5 307 _Umax
£ 20 |
g
o 10 P—--— Lo -
0 |
0 2 4 6 8 10 12 14 16 18 20

Time

Fig. 8. Three identical controllers which each has a control
signal equal to 10. The upper plot shows the set-points
(all equal) and the measurement signals whereas the
lower plot shows the control signals, the sum of the
control signals (in blue) and Upax in red. At time 6
the resource constraint is activated and at time 12 the
relative weights of the controllers are changed.

50 £
= 40 | o
bgD — Usum
.;) 30 1 — Umax
2 20 4
g
O 10 N
0 L L L L L L L L L i
0 2 4 6 8 10 12 14 16 18 20

Time

Fig. 9. The same example as in Fig. 8 with only the control
signal information shown. At time 10, Kr is changed
from 100 to 1.

the least by the resource constraint and controller 3 the
most.

As shown by the example the proposed approach will
adjust the control signals of all the involved controllers. In
some cases this may be undesirable and one would prefer
to only adjust a subset of the controllers, e.g., one might
want to put the full adjustment on the control loop with
lowest priority if that is possible and, if not, then continue
with the loop with the second-lowest priority. This would
require that the tracking is done instantaneously in a
similar way as deadbeat tracking in ordinary anti-windup
tracking. Another extension could be to use dynamic
priorities instead of static. For example one could let the

50 &
Uy
g a0 p
& — UVaum
= 30 U
2 20 y
S 10 N f
Y y— y
0 : . : . : : . : : |
0 2 4 6 8 10 12 14 16 18 20
Time

Fig. 10. The same example as in Fig. 8 now with K7 = 100
all the time but with input pulse disturbances.

adjustment on the control loops depend on how much more
resources they need than what is available.

The proposed method, however, also has issues. In the
previous figure, the parameters were K = 100, w; = 1,
and ws = 0.5 and w3 = 04, ie., the corresponding
tracking time constants are substantially smaller than the
time constants of the closed loop systems. If we, however,
change this by setting Ky = 1 then the system will
converge to another, undesired, equilibrium where the
tracking error e, is different from zero and, consequently,
the control signal constraint is violated, see Fig. 9 where
the change occurs at time ¢t = 10. This equilibrium occurs
when V&, (K /Tri)er+(Kr/wk)eg = 0, i.e., the total input
to all the integral parts equal 0, while e, # 0.

In addition to this, it is possible for the control signal con-
straint to be violated due to high-frequency disturbances.
An example of this is shown in Fig. 10 where Kp = 100
all the time but pulse disturbances are introduced at the
input to the plants at time 4,8, and 14. This disturbance
again causes the control signal constraint to temporarily
be violated.

5. RESULTS

We consider three cameras with similar (but independently
generated) frame sizes but different duration set-points
and a global constraint on the amount of resources avail-
able. The simulation is started in steady state (the cameras
have filled their storage and reached their duration set-
point). At time t = 1000s the average frame size of camera
1 increases from 200 kbits to 250 kbits, followed shortly
after by camera 2 and then camera 3. At time t = 4000s
the average frame size drops down to 150 kbits until t =
7000s where it goes back to 200 kbits. We number the
different phases to ease understanding (phase 1 is from
t =0 to 1000, phase 2 from ¢t = 1000 to 4000 ...)

In the first simulation (Fig. 11), the feedback tracking
gains have been set to the the same value (100), i.e., each
camera has same priority and should react equally to the
global constraint. In this simulation both I and P/B frames
are included according to Fig. 5 although in the plots only
the average frame size is shown. At phase 2 the rise in
frame size triggers an increase of storage until the global
maximum is reached. From this point the global storage
amount does not increase anymore due to the constraint
and, thus, the duration of video stored for each camera

drops until reaching the new equilibrium. When the frame
sizes decreases again in phase 3, the amount of storage
needed decreases and, thus, the duration increases until
the duration set-point is reached. From this point, the
storage required decreases. At phase 4, the average frame
size goes back to 200 kbits and storage rises to compensate,
keeping the defined set-point. We can see in this example
that the proposed system works well.

The second simulation (Fig. 12) presents the same behav-
ior as in the first one but here the cameras have different
tracking gains. In this simulation we can see that the global
behavior is very much like the one in (Fig. 11) but the
durations are different due to that the global constraint
is affecting different cameras more or less depending on
the their tracking gain. Camera 3 with the lowest prior-
ity (highest tracking gain) will suffer the most from the
limited resources and camera 1 with the highest priority
(smallest tracking gain) will be affected the least. also this
behavior corresponds to what could be expected.

In the simulations the basic version of the approach
without any Pl-tracking is used. The maximum value
of the constraint violation is 0.04 per cent, which easily
could be managed by adding a safety margin to the global
constraint. It could also be reduced by increasing Kr.

6. EXTENSIONS

The problems mentioned in Section 4.1 motivate exten-
sions to the proposed approach. We present here two
(partly overlapping) extensions:

(1) Safety Margin, and
(2) PI-based Tracking.

The easiest way to address the problems above is to intro-
duce a safety margin, i.e., to use an Up.x that is smaller
than the true resource constraint. The problem with this
approach is that it still does not provide any guarantees
that the resource constraint will be met. However, in
practice this can work quite well.

The background for the the second extension is the risk
of ending up in the undesired equilibrium discussed in
the previous sub-section and shown in Fig. 9, i.e., where
eg 7 0. In an ordinary control loop, the remedy to remove
stationary errors is to introduce integral action. This can
be used also at the global tracking level, i.e., by introducing
a Pl-controller that aims to remove the global tracking
error e4. The approach is illustrated in Fig. 13. The input
to the PI controller is the original global tracking error and
the set-point is 0, i.e., we want the PI controller to ensure
that global tracking error really is zero. The output of the
PI controller is connected to the K /w; blocks in the same
ways as the global tracking error was in the case without
the additional PI controller.

Using this approach it is possible to remove the stationary
error as seen in Fig. 14. Here the same setup as in Fig. 9 is
used, i.e., with K7 = 1. From ¢ = 0 to ¢ = 10 the ordinary
global tracking approach is used. At ¢ = 10 a properly
tuned PI controller according to Fig. 13 is activated and
the stationary error is removed. However, also in this case
the global control signal constraint can be violated due to
measurement noise.

Display time (seconds)

800

600

400

-107

Storage allocated (kbits)

0.5 —— - S

Average frame sizes (kbits)

250 |

200

150 | ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1

Time (seconds) 104

Fig. 11. Stored video time, allocated storage, and average
frame size. The weights of the control loops are
identical. The red signals are for Camera 1, the blue
for Camera 2 and the green for Camera 3. The sum of

the control signals is shown in black and the constraint
in dashed black.

< Kr
w1
¢ Kr
wo

Fig. 13. PI-based Tracking. The blocks should replace the
right hand part of the block diagram in Fig. 7.

7. CONCLUSIONS AND FUTURE WORK

A method for enforcing soft resource constraints for the
case when the constraint is expressed as a global limitation
on the sum of the control signals has been proposed.
The method is inspired by tracking-based anti-windup
for PID control. It has been applied to storage of video
stream generated by surveillance cameras. This problem
can be modelled as a set of control loops where each
controller decides how much disk space is available for the
corresponding camera. The approach has been evaluated
in simulation with very good results.

Display time (seconds)

800

600

400

0.5

Average frame sizes (kbits)
250 [: ‘ |

200

150 | ‘ ‘ : |
0 0.2 0.4 0.6 0.8 1

Time (seconds)

104

Fig. 12. Stored video time, allocated storage, and average
frame size with different weights (w1 = 100, we =
133.3, ws = 200). The red curves are for Camera 1,
the blue for Camera 2 and the green for Camera 3.
The sum of the control signals is shown in black and
the constraint in dashed black.

50 4
= 40 o
ED —_— USHIH
.a 30 | — Umax
£ 20
3
O 10
—
O 5 5 5 5 5 5 5 5 5 |
0 2 4 6 8 10 12 14 16 18 20
Time
Fig. 14. The same example as in Fig. 9 with only the

control signal information shown. At time 10, PI-
based global tracking is activated.

The proposed method and its application to video storage
can be continued and further extended in a number of
ways. Concerning the method the following are possible
future directions. The formal properties of the approach
need further study to, e.g., analyze the multiple equilibria
that may occur. The approach can also be modified in dif-
ferent ways. The approach could be applied to controllers
without any integral part. In that case the global tracking
signal could instead be added to the control signal v. One
could also consider to instead add the global tracking
signal to the set-point, e.g.,, to reduce the set-point in
case of resource shortage. It is also likely that the approach
can be used for certain other types of global constraints,

e.g., on the process outputs. Finally, the use of dynamic
priorities needs to be further explored.

For the video storage application the most natural next
step is to implement it on physical storage and use real
video streams. Another possibility is to also include the
shared communication resource and use the potential that
the cameras have for adapting the compression rate and
the frame rate. One limitation that has not been consid-
ered in this paper is the delay between the storage set-
point request and allocation which could result in a control
limitation. This should be introduced and studied. The
communication bandwidth is also a shared constrained
resource that interacts with the storage resource in inter-
esting ways. For example, if a camera does not receive
enough storage resources then it does not need so much
bandwidth and, consequently, if it does not receive suffi-
cient bandwidth then it does not require as much storage.
A combined control approach for this is a challenging goal.

REFERENCES

Astrom, K.J. and Murray, R.M. (2008). Feedback Systems:
An Introduction for Scientists and Engineers. Princeton
University Press.

Cucinotta, T., Palopoli, L., and Marzario, L. (2004).
Stochastic feedback-based control of qos in soft real-time
systems. In IEEFE Conference on Decision and Control,
3533-3538 Vol 4.

Cucinotta, T., Abeni, L., Palopoli, L., and Lipari, G.
(2011). A robust mechanism for adaptive scheduling
of multimedia applications. ACM Trans. Embedded
Comput. Syst., 10(4), 46:1-46:24.

Cucinotta, T., Lipari, G., Palopoli, L., Abeni, L., and
Santos, R.M. (2009). Multi-level feedback control for
quality of service management. In IEEFE International
Conference on Emerging Technologies and Factory Au-
tomation, 1-8.

De Cicco, L., Mascolo, S., and Palmisano, V. (2011).
Feedback control for adaptive live video streaming. In
ACM Conference on Multimedia Systems.

Edpalm, V., Martins, A., Arzén, K.E., and Maggio, M.
(2018). Camera networks dimensioning and scheduling
with quasi worst-case transmission time. In Furomicro
Conference on Real-Time Systems, 17:1-17:22.

Hellerstein, J.L., Diao, Y., Parekh, S., and Tilbury, D.M.
(2004). Feedback Control of Computing Systems. John
Wiley &+#38; Sons, Inc.

Leva, A. and Maggio, M. (2010). Feedback process
scheduling with simple discrete-time control structures.
IET Control Theory Applications, 4(11), 2331-2342.

Maggio, M., Hoffmann, H., Santambrogio, M.D., Agarwal,
A., and Leva, A. (2010). Controlling software appli-
cations via resource allocation within the heartbeats
framework. In IEEE Conference on Decision and Con-
trol, 3736-3741.

Palopoli, L., Abeni, L., Cucinotta, T., Lipari, G., and
Baruah, S.K. (2008). Weighted feedback reclaiming for
multimedia applications. In IEEE/ACM Workshop on
Embedded Systems for Real-Time Multimedia, 121-126.

Palopoli, L., Cucinotta, T., Marzario, L., and Lipari, G.
(2009). Aquosa - adaptive quality of service architecture.
Softw., Pract. Ezper., 39(1), 1-31.

Rawlings, J. and Mayne, D. (2009). Model Predictive

Control: Theory and Design. Nob Hill Pub.
Richardson, I.E. (2010). The H.264 Advanced Video

Compression Standard. Wiley Publishing, 2nd edition.
Wittenmark, B., Astrom, K., and Arzén, K.E. (2003).

Computer control: An overview. Technical report, De-

partment of Automatic Control, Lund University.

Yin, X., Jindal, A., Sekar, V., and Sinopoli, B. (2015). A
control-theoretic approach for dynamic adaptive video
streaming over http. In ACM Conference on Special
Interest Group on Data Communication, 325-338.

