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One important step in binary modeling of environmental problems is the generation of absence-datasets
that are traditionally generated by random sampling and can undermine the quality of outputs. To solve
this problem, this study develops the Absence Point Generation (APG) toolbox which is a Python-based
ArcGIS toolbox for automated construction of absence-datasets for geospatial studies. The APG employs a
frequency ratio analysis of four commonly used and important driving factors such as altitude, slope
degree, topographic wetness index, and distance from rivers, and considers the presence locations buffer
and density layers to define the low potential or susceptibility zones where absence-datasets are gener-
ated. To test the APG toolbox, we applied two benchmark algorithms of random forest (RF) and boosted
regression trees (BRT) in a case study to investigate groundwater potential using three absence datasets
i.e., the APG, random, and selection of absence samples (SAS) toolbox. The BRT-APG and RF-APG had the
area under receiver operating curve (AUC) values of 0.947 and 0.942, while BRT and RF had weaker per-
formances with the SAS and Random datasets. This effect resulted in AUC improvements for BRT and RF
by 7.2, and 9.7% from the Random dataset, and AUC improvements for BRT and RF by 6.1, and 5.4% from
the SAS dataset, respectively. The APG also impacted the importance of the input factors and the pattern
of the groundwater potential maps, which proves the importance of absence points in environmental bin-
ary issues. The proposed APG toolbox could be easily applied in other environmental hazards such as
landslides, floods, and gully erosion, and land subsidence.

� 2021 China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. This is an open access article under the CCBY license (http://creativecommons.org/licenses/by/

4.0/).
1. Introduction

Sustainable development cannot be achieved without proper
management of natural resources and environmental hazards such
as water/groundwater (GW) resources, floods, landslides, and gul-
lies. To produce valuable information for environmental degrada-
tion, many researchers have employed several algorithms
ranging from simple models e.g., frequency ratio (FR) and
weights-of-evidence to more complicated ones like machine learn-
ing algorithms (MLAs) such as random forest (RF), boosted regres-
sion trees (BRT), and support vector machines, and even ensemble
approaches for assessing GW potential (Rahmati et al., 2016; Guru
et al., 2017; Benjmel et al., 2020), or susceptibility to floods
(Talukdar et al., 2020; Pham et al., 2021; Towfiqul Islam et al.,
2021), gully erosions (Lei et al., 2020; Pourghasemi et al., 2020),
landslides (Trigila et al., 2015; Lagomarsino et al., 2017; Park and
Kim, 2019; Akinci et al., 2020; Segoni et al., 2020) as well as forest
studies (Xu et al., 2020). In the case of groundwater potential
assessment, data scarcity is the main reason that forces researchers
to use machine learning algorithms compared to hydraulic models.
This stems from a lack of piezometric, hydrodynamic, and hydroge-
ological data, particularly in developing countries, which makes
such geospatial analysis applications important.

The majority of studies on geospatial issues have been merely
focusing on enhancing the efficacy of the classification algorithms.
Albeit there is an extent of uncertainty in those studies comprising
the provision of the input factors, modeling components, i.e., cross-
validation schemes, parameter optimization methods, as well as
the delineation of absence-datasets that are fed into the MLAs.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.gsf.2021.101232&domain=pdf
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Fig. 1. APG toolbox schematic workflow.

Table 1
Description of the inputs, user-defined thresholds, and outputs of the APG toolbox.

Model Factor Description

Inputs Layers and
folders

Presence locations, digital elevation model,
and output folder.

User-defined
thresholds

Presence locations buffer to be erased from
the boundary which could be selected
from100, 200, 300, 400, and 500 m.
Number of absence-datasets to create and
select the best dataset with five options of 5,
10, 20, 25, and 50.

Outputs Final_boundary.
shp

A part of the boundary that remains after
being erased by FR, and presence locations
buffer and density layers; is used in the
generation of absence-datasets.

fr.rst FR map obtained by the statistical analysis of
driving factors, i.e., altitude, slope degree,
distance from rivers, and TWI.

Tr_x.shp and
vl_y.shp

Selected training and validation datasets
based on accuracy, where x and y show the
number of selected datasets for training and
validation, respectively.

training.xlsx and
validation.xlsx

The calculated accuracy values for each
absence-dataset based on the FR map.
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The locations springs, floods, landslides, and gullies, are deter-
mined based upon on-site surveys and are typically more trustable
than absence-datasets (Rahmati et al., 2019). A frequently con-
ducted way for generating absence-dataset is the random genera-
tion of points in a given region. Nevertheless, this strategy cannot
be the best option since some absence-points may randomly fall in
the proximity of the presence-dataset. Apart from this, the random
method does not examine any other criteria to connect the loca-
tions of the absence-dataset to driving factors.

According to the literature, Rahmati et al. (2019) developed a
toolbox named selection of absence samples (SAS) which enhances
the efficacy of the algorithms relying on the location (e.g., spring)
and magnitude (e.g., discharges) of the presence data and con-
firmed the positive impact on the algorithm performances. Besides,
Zhu et al. (2019) introduced a similar type of method for generat-
ing absence datasets for landslide studies. They computed the reli-
ability of potential absence points according to dissimilarity in
geospatial conditions among the absence and presence points.
They reported that the best dissimilarity threshold was 0.5 while
increasing the threshold to 0.9 decreased the performance of the
algorithms. These methods follow different approaches, for
instance, Rahmati et al. (2019) generated absence points only
based on the geographic space, while Zhu et al. (2019)’s framework
depends on the feature space.

Regarding the influence of absence-dataset on the efficiency of
MLAs, this research intends to develop a novel framework called
Absence Point Generation (APG) in the Python environment as an
automated ArcGIS toolbox to generate absence-dataset for geospa-
tial studies. The APG, on the other hand, integrates both aforemen-
tioned approaches in generating absence points to improve the
performance of the algorithms. From the geographic space point
of view, the APG considers a user-defined presence locations buffer
and a pre-defined presence density function. Also, from the feature
space point of view, the APG considers the important driving fac-
tors in GW, flood, landslide, and gully erosion studies, i.e., altitude,
slope degree, distance from rivers, and topographic wetness index
(TWI), all obtainable from a Digital Elevation Model (DEM), to cal-
culate FR and remove high potentiate or susceptible zones from the
final boundary for absence point generation. Overall, the APG pro-
2

vides an efficient and easy-to-use framework for generating
absence points that requires a few input layers and factors and
implements geographical and feature spaces to limit the area for
generation of the absence points.

To test the effect of the APG toolbox on the classification effi-
ciency of MLAs, we selected RF and BRT algorithms. RF and BRT
have many advantages over other MLAs including the capability
to handle a huge amount of input driving factors, producing highly
accurate maps, and being resistant to outliers and overfitting
(Mitchell, 2011). RF and BRT have proven to be robust geospatial
estimators (Moghaddam et al., 2020). Thus, the objectives of the
current study are: (i) developing the APG toolbox to reduce uncer-
tainty in binary modeling of environmental problems through
improving absence-dataset, (ii) determining the effect of the APG
absence points on the efficacy of RF and BRT algorithms comparing
to the random and SAS methods, and (iii) determining the impact
of the APG toolbox on driving factors contribution.



Fig. 2. (a) Location of the Farsan area in Iran, and (b) the training and validation
spring locations in the Faresan region.
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2. Materials and methods

In this section, we initially demonstrate the framework of the
APG toolbox regarding its concepts, methods, inputs, user-
defined and pre-defined thresholds, and outputs. Then, the APG
absence dataset is used in a GW potential assessment and com-
pared with the SAS and random datasets. This is done utilizing
RF and BRT algorithms in a case study in Iran.

2.1. Absence point generation (APG) toolbox

The APG is a Python-based toolbox in ArcGIS relying on a statis-
tical analysis of geospatial driving factors through FR analysis, and
consideration of presence locations buffer and density to generate
3

the final boundary in which the absence-dataset is generated. The
entire process of the APG toolbox is illustrated in Fig. 1.

2.1.1. Selection, calculation, and classification of the driving factors
According to an extensive investigation of the geospatial

research on GW potential and susceptibility to flood, gully, and
landslide, we selected altitude, slope degree, TWI, and distance
from rivers for FR analysis because they were repeatedly used as
driving factors and proved to be major factors affecting the perfor-
mance of classification algorithms (Kim et al., 2018; Razavi Termeh
et al., 2018; Bui et al., 2020; Wang et al., 2020; Yousefi et al., 2020).
The APG first fills the sinks in the provided DEM, calculates flow
direction and flow accumulation layers, and then creates a stream
layer. The APG calculates the slope degree of the study area by
using the filled DEM. It calculates distance from the rivers layer,
by using the ‘‘Euclidean distance” function on the stream layer.
The APG calculates TWI as follows (Moore et al., 1991):

TWI ¼ ln b= tanað Þ ð1Þ
where b shows the upslope area and tana points to the local

slope radians.
For the FR analysis, altitude is categorized into five classes

through an equal classification scheme to reveal the changes of
presence data within various altitudes. Concerning slope degree
classification, we considered three circumstances of maximum
slope degree to extract as much useful information as possible
from the dataset. If the maximum slope degree is over 40�, the
classes will be from the minimum slope to 10�, 10� –20�, 20�–
30�, and > 30�. If the maximum slope degree is between 20� and
40�, the slope is classified into the minimum slope to 5�, 5�–15�,
15�–30�, and > 30�. If the maximum slope is < 20�, slope classes will
be from the minimum slope to 5�, 5�–10�, 10�–15�, and > 15�. TWI
is classified into 0�–8�, 8�–12�, and > 12�, respectively, to represent
the spatial pattern of the soil moisture under the best circumstance
(Kanwal et al., 2017). For distance from rivers, five classes of 0–100,
100–200, 200–300, 300–400, and > 400 m were defined based on
the literature (Pourghasemi and Beheshtirad, 2015).

2.1.2. Frequency ratio
FR is a commonly used statistical analysis approach in geospa-

tial studies produced by Bonham-Carter (1994) with interpretable
outputs. FR depicts the possibility of the presence of a certain fea-
ture, e.g., spring, flood, etc. It is in reliance on the incidence of the
phenomenon in each class of factors. FR can be computed as below:

FR ¼ s
S
=
a
A

ð2Þ

where, s refers to the number of presences in various classes, S
depicts the total number of presences, a represents the area of each
class, and A shows the total area of the region. FR has a positive
value where higher and lower values depict higher and lower
potential or susceptibility, respectively. The APG toolbox computes
FR for all classes of the driving factors. Then, it sums the FR values
of the four factors to generate the final potential or susceptibility
map. To apply this method, the APG toolbox divides the presence
locations into two groups for training and validation with a
70:30 ratio. Then, the APG uses training data for calculating FR
and generating the FR potential or susceptibility map.

2.1.3. Presence locations buffer and density layers
Geospatial phenomena are not discrete and cannot be repre-

sented by just a pixel. For instance, proximities to flood, landslide,
and gully locations tend to be more susceptible, and closer areas to
springs are more likely to have higher potential. In the same man-
ner, zones having greater presence densities tend to be more
potentiate or susceptible to the investigated phenomenon. Thus,



Fig. 3. GW spring potential driving factors in the Farsan area including (a) altitude, (b) slope degree, (c) aspect, (d) plan curvature, (e) profile curvature, (f) slope length.
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the APG considers two other criteria relied on presence locations
i.e., presence factor buffer and density eg., spring buffer and den-
sity. The APG toolbox considers these layers in obtaining the final
boundary.
4

2.1.4. Generation of absence-datasets, accuracy assessment, and
outputs

First, the boundary of the study area is eliminated by the three
shapefiles produced based on FR, presence locations buffer, and



Fig. 4. GW spring potential driving factors in the Farsan area including (a) RSP, (b) TWI, (c) distance from rivers, (d) river density, (e) distance from faults, (f) fault density.
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presence density layers considering pre-defined and user-defined
thresholds. More specifically, 25% of the watershed has the great-
est FR, and 10% of the area with the highest presence densities
are eliminated. Further, a user-defined buffer from presence is cre-
5

ated, to be eliminated from the boundary and form the final
boundary. In the next step, n absence-datasets (user-defined) for
both training and validation are randomly generated in the final
boundary. Training and validation absence and presence-datasets



Fig. 5. GW spring potential driving factors in the Farsan area including (a) land use, and (b) lithology (see Table 2 for details).

Table 2
Lithological characteristics of the study region.

Class Description Age

1 Undivided Eocene rocks Eocene
2 Grey, thick bedded, o’olitic, fetid limestone Jurassic–

Cretaceous
3 Undivided Bangestan Group, mainly limestone and

shale, Albian to Companion, comprising the following
formations: Kazhdumi, Sarvak, Surgah, and Ilam

Cretaceous

4 Grey and brown, medium bedded to massive
fossiliferous limestone

Late
Cretaceous

5 Grey thick bedded to massive orbitolina limestone Early
Cretaceous

6 Marl and calcareous shale with intercalations of
limestone

Cretaceous

7 Cream to brown weathering, feature forming, well-
jointed limestone with intercalations of shale

Miocene

8 Alternating hard of consolidated, massive, feature
forming conglomerate and low weathering cross-
bedded sandstone.

Pliocene

9 Polymictic conglomerate and sandstone Pliocene
10 Low-level piedmont fan and valley terrace deposits Quaternary
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are merged, and n datasets of training and validation are produced.
Then, the FR values for these sets are extracted. For determining
the best training and validation datasets, the accuracy index is cal-
culated for all datasets. The outputs of the APG toolbox are the final
boundary, the best training, and validation datasets, accuracy
results calculated for each training and validation dataset, and
the FR map. Table 1 gives an overview of the APG toolbox.
2.2. Creating absence points by the SAS and Random methods

To test the APG performance, two previously implemented
methods including random, and the SAS toolbox were used to gen-
erate absence points. The earlier was created by a random algo-
rithm in ArcGIS. The latter was created using the SAS toolbox
(Rahmati et al., 2019). This tool creates absence points with some
limitations regarding presence locations buffer, hotspot buffer. The
6

SAS also considers the average nearest neighbor to adjust the dis-
tribution pattern of the absence dataset.

2.3. Application of the APG toolbox on groundwater potential
assessment

2.3.1. Study area and spring dataset
The Farsan area lies in Chaharmahal and Bakhtiari Province

between 50�220E and 50�460E longitudes, and 32�000N and
32�290N latitudes occupying an area of 947 km2 with a range of
altitudes from 1650 to 3587 m above mean sea level (Fig. 2a).
The average yearly rainfall in the Farsan area is measured to be
600 mm. The average temperature in the Faresan region is
12.1 �C with average 112 frosty days. The residents in the region
are heavily dependent on agricultural activities. Spring locations
data was acquired from the Chaharmahal and Bakhtiari Regional
Water Authority (Chaharmahal and Bakhtiari Regional Water
Authority CBRWA, 2019). The spring dataset includes 817 locations
that are mainly consumed for the agriculture sector and drinking
aim. The average measured pH and electrical conductivity of the
springs are 7.67 and 641 mmhos cm�1, respectively. The springs
have an average discharge of about 2.65 L s�1, with minimum
and maximum values of 0.03 and 150 L s�1. According to the liter-
ature, we considered a 70%:30% ratio for dividing the data for train-
ing (572 cases) and validation (245 cases) (Balogun et al., 2021;
Fig. 2b).

2.3.2. Groundwater spring driving factors
To create the topographical factors of the Farsan area, a

20 m � 20 m DEM was implemented. There is a linkage between
altitude and slope, which influences soil infiltration. Steeper slopes
usually occur in mountainous regions where the altitude is greater.
The altitude layer was obtained from the DEM of the Farsan area
ranging from 1650 to 3587 m (Fig. 3a). The slope is another topo-
graphical factor that has an impact on flow velocity and soil infil-
tration. Low-slope regions own greater infiltration capacity and
tend to be more GW productive (Daher et al., 2011). The slope in
the Farsan area differs between 0� and 73.5� (Fig. 3b). The slope
aspect is a high role driving factor greatly influenced by sunshine
duration, which can affect soil moisture, water erosion, and subse-
quently soil infiltration (Fig. 3c). Plan and profile curvatures depict
the curvature along the ‘‘opposite and parallel to the slope direc-



Fig. 6. Outputs of the APG toolbox including (a) the FR map, (b) the spring buffer, (c) the spring density, and (d) the final boundary.
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tions”, respectively (Ayalew and Yamagishi, 2005). These factors
impact flow speed and erosion rate, and could subsequently impact
soil infiltration (Fig. 3d, e). Flow accumulation at various portions
of the hillside is a function of slope length that affects erosion, veg-
etation cover, and infiltration rate (Fig. 3f). Relative slope position
(RSP) is regarded as the position of every point comparing to its
surrounding points, including valleys and ridges. This factor was
7

calculated using ‘‘System for Automatic Geoscientific Analyses
(SAGA)” software (Fig. 4a). TWI is a proper indicator of soil mois-
ture, which can also be associated with infiltration rate and GW
potential (Raduła et al., 2018; Fig. 4b). Rivers are known as reliable
GW recharge origins (Xi et al., 2010), especially in arid and semi-
arid zones, because of intense rainfalls and floods that are the fre-
quent events of these climates. Distance from rivers and river den-



Fig. 7. Accuracy values calculated for the the training, and validation datasets by the APG toolbox.
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sity layers are presented in Fig. 4c, d. Structural features have a
critical function in GW recharge and movement as well as the
appearance of the springs on the ground (Assatse et al., 2016).
Since some parts of the Farsan basin are influenced by faults, this
factor was included in the assessment through distance from faults
and fault density (Fig. 4e, f). As per land use, forests and high veg-
etation cover areas are often regarded as high GW potential regions
because of the plant’s root development that facilitates surface
water infiltration (Díaz-Alcaide and Martínez-Santos, 2019). The
land-use layer is shown in Fig. 5a. Differences in lithological fea-
tures often result in changes in rock strength and also soil infiltra-
tion, which can have significant impacts on GW potential (Geology
Survey of Iran (GSI), 1997; Ozdemir, 2011) (Fig. 5b; Table 2).

2.3.3. Machine learning algorithms
RF is known as an MLA that generates many ‘‘decision trees”

through bootstrapped subsets of the training set (Breiman, 2001;
Loosvelt et al., 2012). The decision trees are created on distinct sets
of data where the nodes are categorized by the best separating fac-
tor between m randomly chosen factors (Liaw and Wiener, 2018).
This feature makes RF immune to ‘‘overfitting” and helps it to deal
with hundreds of independent factors to estimate a target factor
for both classification and regression issues (Breiman, 2001). In
each step, RF uses 66% of the data to train, and what lefts is used
to calculate the error which is named ‘‘out-of-bag error”. The ulti-
mate decision is made by simple voting of the trees’ outputs. To
map GW potential by RF, the ‘‘randomForest” script was imple-
mented in R software.

BRT is an example of various algorithms developed to create a
huge number of weak classifiers instead of setting up a single
strong one (Schapire, 2003). BRT does not require the elimination
of outliers and properly deals with missing values implementing
surrogates and can also consider the interaction impacts among
driving factors (Elith et al., 2008). It is capable of specifying the
importance of the GW driving factors to GW potential assessment
by the ‘‘relative influence” function. This can be done according to
the number of times when every driving factor is chosen in con-
structing the trees (Shafizadeh-Moghadam et al., 2018). We imple-
mented the ‘‘gbm and caret scripts” in the R software to model GW
potential.

2.3.4. Validation of the GW potential maps
To compare the APG and random approaches for the generation

of absence-datasets or non-springs, their impact on the RF and BRT
8

outputs were assessed by various validation indices such as ‘‘re-
ceiver operating characteristics (ROC) curve, accuracy, kappa, sen-
sitivity, and specificity” which were opted concerning several
previous research on natural phenomena studies (Motevalli et al.,
2019). The ROC curve plots the ‘‘true positive rate” against the ‘‘false
positive rate” (Negnevitsky, 2005). The area under the curve of ROC
varies from zero to one (Negnevitsky, 2005). Greater values show
better performances of the algorithms, whereas lower values point
to weaker performances. Sensitivity depicts the efficiency of the
algorithms in predicting springs, and on the other hand, specificity
denotes the performance of the algorithms in predicting non-
springs. The accuracy denotes the proportion of truly categorized
presence and absence cases to all cases. It is noteworthy that kappa
is a quantitative assessment of the agreement among predicted
and observed values. A kappa value of 1 represents the ideal model,
which predicts all cases correctly (Viera and Garrett, 2005). Kappa
and F1-score can be calculated as below:

Kappa ¼ Po=Pe

1� Pe
ð3Þ

Po ¼ TPþ TN=n ð4Þ

Pe ¼ TPþ FNð Þ TPþ FPð Þ þ ðFPþ TNÞðFNþ TNÞ=
ffiffiffiffi

N
p

ð5Þ

F1� score ¼ TP
TPþ 1

2 FPþ FNð Þ ð6Þ

where n displays the ratio of springs that are appropriately
labeled, N presents the total number of springs, TP shows ‘‘true
positive”, FP shows ‘‘false positive”, TN is ‘‘true negative”, FP points
to ‘‘false positive”.
3. Results

3.1. Training and validation datasets by the APG and random methods

For applying the APG toolbox and creating absence-datasets, we
introduced the needed layers and entered two user-defined thresh-
olds, including a spring buffer of 300 m, and 50 absence-datasets.
The APG toolbox was applied and initially produced three output
maps including the FR (Fig. 6a), spring buffer (Fig. 6b), and spring
density (Fig. 6c). The APG eliminated 25% of the area having the
highest FR values and 10% of the area having the highest spring



Fig. 8. The spatial distribution of the training and validation absence-datasets generated by (a) the APG toolbox, (b) the random algorithm, and the SAS method.
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densities from the boundary based on the pre-defined threshold.
Also, the APG eliminated a spring buffer of 300 m from the bound-
ary of the Farsan area. The final boundary generated by the APG,
which was used to create the random absence-datasets, is shown
in Fig. 6d. Using the final boundary, 50 (user-defined) different
absence-datasets for training and validation were randomly gener-
ated. Subsequently, 50 training and validation datasets were gen-
erated by integrating the training presence and training absence-
9

dataset for the training dataset, and the validation presence and
validation absence-datasets for the validation dataset.

To select the best datasets, the APG extracts the FR values and
calculates the accuracy index for each training and validation data-
set (Fig. 7). Accuracy values change from 0.704 to 0.746 for the
training datasets and from 0.714 to 0.783 for the validation data-
sets. Eventually, the training and validation datasets with the high-
est accuracies were selected by the APG. We also created an



Fig. 9. The optimized number of trees according to out of bag predictions of the error rate by (a) the RF-Random, (b) the RF-APG, and (c) the RF-SAS. Red lines, green lines, and
black lines represent the error for non-springs, springs, and total cases, respectively.

Table 3
Confusion matrix calculated for the training phase of the RF-APG, RF-Random, and RF-SAS.

Model/spring or non-spring RF-APG RF-Random RF-SAS

Spring Non-spring Error rate Spring Non-spring Error rate Spring Non-spring Error rate

Spring 505 67 0.117 457 115 0.201 472 100 0.17
Non-spring 79 493 0.138 138 434 0.241 125 447 0.21
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absence-dataset of the whole area using a random algorithm. The
SAS method was applied with a 300 m buffer from springs,
500 m buffer from hotspots (based on the discharge values), and
with the same number of absence points as springs to make it com-
parable with the APG dataset. The distribution of the random, APG
and SAS absence-datasets in the Farsan area are shown in Fig. 8a–c,
respectively. A visual investigation of the locations of the absence-
points by the random method reveals that several points have fal-
len on the high GW potential zones obtained by the FR, while in the
case of the APG dataset, points are located in the low to medium
GW potential zones. Also, a ratio of the generated points by the
SAS tool has been fallen into the high FR area.

3.2. RF optimization results by the random, APG and SAS datasets

Using the random dataset for the training of the RF algorithm,
node size of 5, 3 factors at each node, and 400 trees were achieved
10
with an error rate of 0.236. Whereas, by the APG dataset, the RF
was optimized with a node size of 5, 3 factors at each node, and
900 trees with an error ratio of 0.143. Further, the RF-SAS was opti-
mized with node size of 5, 2 factors at each node, and 500 trees
with an error ratio of 0.21. Fig. 9a–c illustrates the errors for
springs, non-springs, and total cases as a function of the number
of trees for the RF-Random, RF-APG, and RF-SAS. It can be observed
that the error percentages of the three algorithms decrease when
the number of trees increases (Fig. 9). However, the RF-APG depicts
relatively more stable results regarding error fluctuations between
the prediction of springs and non-springs. Further, the RF-SAS and
RF-APG have produced noticeably lower error rates and better per-
formances comparing to the RF-Random at the training stage.

The confusion matrix of the RF algorithm is depicted in Table 3.
As can be observed, the RF-Random correctly estimated 434 cases
out of 572 non-springs and 457 out of 572 springs for the training
dataset. The confusionmatrix also depicts that the RF-APG success-



Fig. 10. Optimization results for (a) the BRT-Random, (b) the BRT-APG, and (c) the BRT-SAS.

Seyed Amir Naghibi, H. Hashemi and B. Pradhan Geoscience Frontiers 12 (2021) 101232
fully predicted 493 out of 572 non-springs, as well as 505 out of
572 springs for the training dataset (Table 3). RF-APG had error
rates of 0.117 and 0.138 for spring and non-spring prediction,
while RF-Random had error rates of 0.201, and 0.241 for spring
and non-spring prediction, respectively. The stated error rates indi-
cate that the RF-APG predicted both springs and non-springs much
better than the RF-Random. Further, RF-SAS had error rates of 0.17
and 0.21 for spring and non-spring prediction, respectively. This
shows that RF-SAS predicted better than the random dataset and
weaker than the APG dataset.
3.3. BRT optimization results by the random and APG datasets

To optimize the BRT algorithm with the random and APG data-
sets, we used a grid search scheme to select the number of trees
between 100 and 1500 with 100-tree intervals, shrinkage values
of 0.1, 0.01, 0.05, and 0.001, ‘‘interaction depths” of 1, 3, 5, 7, 9,
and 11, and a fixed value of 20 for ‘‘minimum terminal node size”
(Fig. 10). The BRT-Random was tuned with 1200 trees, interaction
11
depth of 9, and shrinkage of 0.05 (Fig. 10a). The measured accuracy
and kappa values for the BRT-random were 0.781 and 0.563,
respectively. On the other hand, the BRT-APG was optimized with
1500 trees, interaction depth of 11, and shrinkage of 0.05
(Fig. 10b). The accuracy and kappa values measured for the BRT-
APG were 0.888 and 0.777, respectively. The BRT-SAS was opti-
mized with 1100 trees, interaction depth of 11, and shrinkage of
0.05 (Fig. 10c).
3.4. Validation of the RF and BRT algorithms optimized with different
datasets

The validation outputs of the RF and BRT algorithms are dis-
played in Fig. 11. Based on the stated indices, the RF-APG signifi-
cantly outperformed the RF-Random and had higher performance
than the RF-SAS. Further, the results of the accuracy, kappa, sensi-
tivity, specificity, AUC-ROC, and F1-score confirm the better perfor-
mances of the models built on the APG comparing the SAS and
random datasets. For instance, in the case of accuracy, RF-APG



Fig. 11. Validation results for the RF and BRT algorithms optimized by the APG and
Random and SAS datasets.
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had better performances than RF-SAS and RF-Random with differ-
ences of 0.061, and 0.082, respectively. In the case of kappa, RF-
APG had higher efficiencies than RF-SAS and RF-Random with dif-
ferences of 0.121, and 0.163, respectively. Also, in the case of AUC-
ROC, it is observed that the RF-APG had better performances than
RF-SAS and RF-APG with differences of 0.0485, and 0.063, respec-
tively. Regarding the BRT algorithm, it was observed that BRT-
APG has AUC differences of 0.0545, 0.084 with BRT-SAS and the
BRT-Random.

3.5. GW potential maps generated by the RF and BRT algorithms

The classified GW potential maps generated by the RF-APG, RF-
Random, RF-SAS, BRT-APG, BRT-Random, and BRT-SAS accompa-
nied by the validation spring locations are depicted in Fig. 12a–f.
The area percentages of each class of the GW potential maps are
presented in Table 4. Based on Fig. 12a–f, it can be observed that
the RF-APG and BRT-APG algorithms defined larger areas as ‘‘very
high” potential class compared to the SAS and Random datasets.
Further, it can be seen that there is a consistency between the very
high GW potential classes defined by the RF-APG and BRT-APG rel-
ative to the random-based algorithms. The greater percentages of
the ‘‘very high” GW potential classes predicted by the BRT-APG
and RF-APG, compared to the medium and high classes, facilitates
the decision-making process and assists the water professionals
and decision-makers to arrive at appropriate land use and develop-
ment plans.

3.6. Impact of the APG in factors importance by the RF and BRT
algorithms

The findings of assessing factor importance by ‘‘mean decrease in
Gini” for the RF and ‘‘relative influence” for the BRT are illustrated in
Fig. 13a, b. As illustrated, the contribution of the factors to GW
potential mapping by the RF-APG, RF-SAS, and RF-Random follows
a similar pattern, nevertheless, a more thorough investigation
reveals some variations between the scores.

For instance, the RF-APG has defined the RSP, altitude, TWI,
aspect, distance from faults, and slope degree as the five most
important driving factors in the GW potential mapping. On the
other hand, the first five important contributing factors defined
by the RF-Random are altitude, RSP, TWI, distance from faults,
and distance from rivers. The RF-SAS shows altitude, RSP, TWI, dis-
tance from faults and aspect as the most contributing factors. Addi-
tionally, the BRT-APG depicted a greater contribution of the RSP,
altitude, TWI, aspect, and distance from faults to GW potential,
while the BRT-Random depicted higher importance of the altitude,
RSP, TWI, slope length, and distance from faults. The BRT-SAS
depicted altitude, RSP, distance from faults, TWI, distance from riv-
ers as the most contributing factors.
4. Discussion

The findings depict that both the BRT and RF performed signif-
icantly better than the random-dataset in modeling GW potential
with the APG-dataset. Yesilnacar (2005) categorized the perfor-
mance of classification algorithms into 5 classes of ‘‘poor” (0.5 < A
UC < 0.6), ‘‘average” (0.6 < AUC < 0.7), ‘‘good” (0.7 < AUC < 0.8),
‘‘very good” (0.8 < AUC < 0.9), and ‘‘excellent” (AUC > 0.9). Accord-
ing to the stated criteria, the APG toolbox had a significant impact
on the BRT and RF from ‘‘good” to ‘‘very good” predictors compar-
ing to the Random and SAS datasets. The weaker performances of
the RF-Random and BRT-Random could be associated with the
uncertainties dealing with the generation of the absence or non-
spring locations. For instance, absence-points could be generated
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in any existing pixel in the study region with the same probability.
Further, absence-points could be located close to the springs where
GW potential is deemed to be higher than other zones. Moreover,
absence-points might be randomly located at higher spring density
areas where GW potential is greater than the areas with lower or
zero spring densities. Comparison of the BRT-SAS and RF-SAS with
BRT-APG and RF-APG shows that the APG tool has notably
improved the performance of the algorithms. The common feature
between the APG and SAS tools is the absence-point filter based on
the spring buffer (Rahmati et al., 2019). Nevertheless, they have
different features; the SAS mainly focuses on the geographic space
such as hotspot buffer and presence locations buffer, while the APG
takes the feature space into account through the FR analysis of
important driving factors, i.e., altitude, slope degree, TWI, and dis-
tance from rivers. This feature reduces the similarities between
presence and absence points. The other difference that leads to
better performance of the APG is the consideration of the presence
points, i.e., spring density, and removal of the areas with the high-
est presence densities. Another supplementary upper hand of the
APG toolbox is that it generates n absence-datasets and selects
the best training and validations datasets based on the accuracy
index. This is applied to reduce the uncertainties of the random
generation of absence-points within the final boundary. The per-
formance improvements of the BRT-APG and RF-APG can also be
associated with the nature of decision trees that is to predict the
new cases regarding the relationships between the target value
and its driving factors. Proper generation of the absence-dataset
assists the algorithms to detect relationships more robustly and
arrive at highly accurate predictions. The stated reasons led to
the greater efficacy of the RF and BRT in this research. The APG-
dataset also impacted the contribution of the factors reported by
the BRT and RF when they were constructed with the random,
APG, and SAS datasets. This fact emphasizes the importance of
absence point generation in such studies. With respect to model’s
performance, the BRT outperformed the RF, which is in agreement
with the study carried out by Park and Kim (2019).

Considering the higher performance of the BRT-APG, the most
effective driving factors in the current research are the RSP, alti-
tude, TWI, aspect, and distance from faults depicting the great
impact of topography on GW potential. TWI implies the chance



Fig. 12. GW potential maps produced by the (a) RF-APG, (b) RF-Random, (c) RF-SAS, (d) BRT-APG, and (e) BRT-Random, (f) BRT-SAS.
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of water flow accumulation in various regions of the watershed
and subsequently is a crucial factor in the GW modeling process.
As per altitude, its influence can be associated with the impact it
has on ‘‘slope degree, drainage system development, and flow
13
velocity”. The great role of aspect is related to the fact that it con-
trols ‘‘sunshine duration, evapotranspiration”, and snowmelt and
ultimately affects GW conditions which its significant contribution
agrees with Naghibi et al. (2020). Ozdemir (2011) stated that geol-



Table 4
Area percentage of each GW potential category obtained by the RF and BRT algorithms.

Model Low Moderate High Very high

RF-Random 30.3 28.9 26.6 14.2
RF-APG 35.4 24.5 20.3 19.8
RF-SAS 27.5 25.3 28.2 19.0
BRT-Random 60.5 14.8 10.5 14.2
BRT-APG 60 5.8 5.1 29.1
BRT-SAS 60.9 12.3 9.9 16.9

Fig. 13. Importance scores of the GW driving factors defined by the (a) RF-APG, RF-Random, and RF-SAS, and (b) BRT-APG and BRT-Random, and BRT-SAS algorithms.
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ogy impacts the infiltration of soil and rock, therefore, owns a great
influence on GW potential which could be the reason for the higher
importance of the distance from faults in the current work.
Moghaddam et al. (2020) declared that RSP and distance from
faults were the major influencing variables on GW potential in
their studies which coincides with our findings. Further, Naghibi
et al. (2020) investigated the impact of topographical variables
on GW potential and reported the higher impact of TWI and alti-
tude, and lower importance of RSP. Comparing the importance of
the factors obtained in the current study with other areas could
provide a valuable estimate of the relative importance of the fac-
tors, nevertheless, these measures are region-based and controlled
by the hydro-geological and topographical features of regions,
hence cannot be deemed as a completely fixed set of input factors
for future studies. Thus, it is critical to incorporate different effec-
tive factors in GW potential studies to assure finding as many use-
ful relationships between the target and input factors as possible to
construct the algorithms.
5. Conclusion

In classification algorithms, one of the major roots of uncer-
tainty is the generation of absence-dataset which is usually done
by random approaches though it cannot be the ideal method for
spatial issues such as gully, flood, landslide, and spring. The current
research develops a new ArcGIS toolbox based on Python language
called APG that can generate absence points considering a statisti-
cal analysis of altitude, slope, TWI, and distance from rivers in
addition to the presence of data locations. The application of the
APG toolbox in a real-world case study on GW potential in Iran
depicted that the benchmark algorithms, i.e., the BRT and RF per-
formed much better with the APG dataset comparing to the ran-
dom and SAS datasets. The outputs approved that the APG
enhanced the efficiency of the RF and BRT to a considerable extent.
Major differences of about 0.063 and 0.084 for AUC-ROC values
were achieved for the RF and BRT algorithms respectively when
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considering the APG and random datasets. This substantial
improvement in AUC approves the prosperous test of the APG tool-
box. The APG dataset also impacted the importance of the driving
factors in addition to creating different but more reliable GW
potential maps. Obviously, highly accurate algorithms trained by
the outputs of the APG toolbox could be used by the water sector
decision-makers to come up with more effective plans on GW
resources and achieve sustainable development goals. Based on
the findings, the application of the APG toolbox in GW studies min-
imizes the impact of incorrectly chosen absence points. This, in
turn, assists MLAs to extract as many useful patterns and informa-
tion as possible from input factors. We recommend the implemen-
tation of the APG toolbox in other environmental issues such as
landslides, gullies, and floods by different MLAs to test its impact.
The more trustable maps generated by the APG dataset can help
managers to have a better understanding of the environmental
issues, allowing them to allocate money and efforts to areas with
higher potential or susceptibility for exploitation and protection
purposes, respectively. Future studies are suggested to focus on
the feature space as well as involving a higher number of driving
factors to generate more suitable absence points.
6. Software availability

Name of software: Absence Point Generation (APG)
Developer: Seyed Amir Naghibi
Software required: ArcGIS Desktop 10.4 (or later)
Program language: Python
Availability and cost: Freely available at Github (https://github.

com/amir-naghibi/APG)
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