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1. Introduction

The LQ controller has a long history. The topic is treated in many text-books,
among others [Kucera, 1991]. One of the interesting questions to answer is when
there exists an optimal solution to the optimization problem. Optimal is in this
case defined as minimizing the performance index and stabilizing the closed loop
system. Other interesting questions are how to obtain the optimal controllers,
and to find out when there is only one optimal controller, i.e. uniqueness of the
solution. Most work considers only the case with no cross-coupling in the perfor-
mance index. Non-necessary conditions of detectability and full normal rank are
frequently assumed. There seems to be little previous coverage of the case with dy-
namically redundant inputs. This has many interesting applications, among oth-
ers in air-craft control, where several rudder-surfaces cooperate, see e.g. [Adams
and Banda, 1993]. In very recent papers, e.g. [Kucera, 1993], it is claimed that
weaker conditions of existence are easier to obtain using the transfer function
approach. In this report it will be shown how necessary and sufficient conditions
can be obtained along the state-space approach. The results correspond to the
ones obtained for the continuous time case in [Willems et al., 1986].

The report is organized as follows. In Section 2 the LQ problem is stated.
Then in Section 3 some examples are given that illuminates the need for theory
that covers the case of dynamically redundant inputs. In Section 4 necessary
and sufficient conditions are given for the existence of a stabilizing solution. The
optimal controller can be obtained by first making some preliminary feedback
to obtain a reduced problem, and then solving this problem using a standard
Riccati-solver. In Section 5 the results are summarized. Finally, there is in the
appendix an algorithm for obtaining all solutions to LQ-problems in the case of
non-uniqueness.

2. Control Problem

Consider the following state space description

x(k + 1) = Ax(k) + Bu(k) + v(k)
2(k) = Cx(k) + Du(k)

where v(k) € R" is a sequence of independent identically distributed zero mean
Gaussian random variables with covariance R;, which for simplicity will be as-
sumed to be positive definite. The signal u(k) € R™ is the control signal, x(k) € R"
is the state, and z(k) € R” is the signal to be controlled. It will be assumed that
(A, B) is stabilizable. If this is not the case, there will obviously not exist any
stabilizing controller. Let u(%) be given by the feedback

u(k) = —La(k)

and introduce the stationary loss function

x(R)YT [ x(k)
J(L) = E{2T(k)z(k)} = E{ [u(k)] Q [u(k)] } M

where E(-) denotes expectation, and where

Q1 Q2 ol
= = D
@ [ {2 Q2 DT [ c ]
Notice that @ > 0 if and only if it can be written as above. Consider the opti-
mization problem

min J(L) (@)



where L, is the set of L such that A — BL is stable. This problem can be solved
by introducing the so called algebraic Riccati equation defined by

S = (A-BL)TS(A-BL) + (C- DL)"(C - DL)
G =D"D +B"SB (3)
GL = DTC + BTSA

which is equivalent to

1 oyY7(s o I 0 A BY"(S 0Y(A B (3a)
[L 1] [0 G][L I]'[c D] [o I][C D] :
It will later be discussed under what conditions this equation has a solution S,
and what properties these solutions have. Denote the set of positive semidefinite
solutions S to the algebraic Riccati-equation (3) by S. For the time being assume
that it has at least one positive semidefinite solution S such that there exists a
corresponding L € L., and denote the set of such solutions by .S;.

It is well-known and easily seen from (3) that if S, is non-empty, then the
optimal L is unique if and only if G > 0, which is implied by e.g. @2 > 0. It is
actually true that the non-explicit condition G > 0 is equivalent to the explicit
condition of (A, B,C,D) being left invertible, see [Kucera, 1991]. Alternative
formulations of left invertibility of (A, B, C, D) are

maxrank H(z) = m
maxrank P(z) =m+n

maxrank Pz(z) = m + 2n

where
H(z) = C(zI -A)'B+D
2 -A -B
P =
@- (7" )
0 zZl-A -B

Pi(z)= |zl I-AT CTC C'D
_BT  DTC DD

Here H(z) is related to spectral factorization methods for solving LQ problems,
see e.g. [Kucera, 1991], and Pg(z) is related to deflating subspace methods for
solving LQ problems, see e.g. [Laub, 1990]. In this report it will be seen that
P(z) is more fruitful to work with when existence results are of interest.

Under the condition of left invertibility, or equivalently one of the full normal
rank conditions, it is possible to establish a necessary and sufficient condition
for the existence of an element in S,. This condition is that H(z), P(z) or Px(z)
should have full normal column rank on the unit circle. This will be proven in
Lemma 3. In e.g. [Kucera, 1991; Kucera, 1993] strong detectability, equivalent to
a minimum phase assumption, is used in the state-space approach when proving
the non-emptiness of S;. One reason why this non-necessary condition is imposed
there, is that all elements of .S are considered and not merely the one in §,.

In Lemma 4 the condition of left invertibility will be relaxed. Then there will
not be a unique feedback L, but the proof will be carried out in a constructive way,
and hence all solutions are obtained. Further a necessary and sufficient condition
for the existence of a solution, i.e. the non-emptiness of S;, is obtained. It says
that H(z), P(z) or Pg(z) should not lose column rank on the unit circle.



3. Examples

What happens if L is not unique? Does this correspond to any relevant non-trivial
control problems? First a trivial example will be given.

EXAMPLE 1—Statically Redundant Inputs
Let the system dynamics be given by

x(k + 1) = 0.5x(k) + bui(k) + ua(k) + v(k)
and define the performance index as
E {«?(k) + plus(k) + u2(k)]*}
By making an input signal transformation

u1(k) = ui(k) + uz(k)
ﬁz(k) = u1(k) - uz(k)

it follows that system dynamics are given by

b+l b—1._
’; (k) + 5~ ia(k)

2(k + 1) = 0.5x(k) +

and that the performance index becomes

E {s%(k) + pui(k)}

If b # 1 then it is optimal to choose i1(k) = 0, since it is possible to control the
system with only &3(k) which is not visible in the performance index. If b = 1,
then #2(k) may be taken arbitrary, since it neither influences the system nor the
performance index. In the case of & = 1 it is possible to rewrite the control
problem as a simpler problem with

x(k + 1) = 05x(k) + ity (k) + v(k)

O

This example illuminates-what happens when there are redundant input sig-

nals. Now a more relevant problem including actuator dynamics will be consid-
ered. For this example it is not as trivial to eliminate the non-uniqueness.

EXAMPLE 2—Dynamically Redundant Inputs
Let the system dynamics be given by

ap 0 O 1-a; 0
x(k+1) = [ 0 ax 0 | x(k)+ [ 0 1-az ] u(k) + v(k)
by b2 05 0 0

where b1bs # 0, and define the performance index as

E {«5(k)}

By introducing a preliminary feedback

i1(k) = (1 —ay)ui(k) + aixi (k)
ig(k) = (1 — ag)us(k) + azxa (k)



and new states via
.’21(’6) = b1x1(k) + bzxz(k)

iz(k) = b;xl(k) . b2x2(k)
fa(k) = X3 (k)

the dynamics can be written

00 0 b1 b
#(k+1) = [o 0 0 ]:E(k)+ [b, —bz] (k) + v(k)
1 0 05 0 0

By defining the control-signal transformation

121(k) = blﬁl(k) + bzl_l,z(k)
(k) = biuy(k) — baiza(k)

it is obvious that the control signal ii2(k) as well as the state x2(k) will not in-
fluence the state x3(k) the variance of which is to be minimized. Hence for this
example there is not only a redundant control signal but also a redundant state.

O

The examples given above suggest different types of non-uniqueness that
can be encountered when solving LQ-problems. The proof of Lemma 4 and the
appendix will give constructive algorithms for making control-signal and state
transformations and preliminary feedbacks in order to obtain a reduced problem
for which there exists a unique solution. Notice that the inputs and states which
are removed in this procedure represent the full non-uniqueness of the original
problem.

4, Solution

It will now be discussed how to obtain the solution of the optimization problem
(2) under the weakest possible conditions.

LEMMA 1
The set S, has at most one element.

Proof: Let S; and Sa be two elements of S;. Then A; = A—BL; and A2 = A—BLy
are both stable. Further it follows from (3) that

AT(81-82)A1 = 81 - 8>
This implies that
Si— 8y = (AD)* (81— S2)Ak 50, k—> o0

Hence S; = Ss. 0

LEMMA 2
Let S € ;. Then the optimal feedback is given by any L € L, that solves

GL = DTC + BT84
and the corresponding optimal loss is given by

J = tI‘SRl



Prooft TFor any S €S it holds by (3) that the loss function may be written

J = E{xT(k)Sx(k) - x" (k + 1)Sx(k+ 1)}
+ B {[u(k) + Lx(k))TGu(k) + Lx(k)] + vT(k)Sv(k)}
For any stabilizing control u the expectation is evaluated in stationarity and the
first two terms cancel. By taking u(k) = —Lx(k), which is stabilizing, it follows
that trSR, is the minimal value of J. O
Now it will be shown when S, is nonempty. The proof will be constructive,
and thus one explicit way of obtaining the desired solution of the algebraic Riccati
equation will be given. First an assumption will be made implying a unique so-

lution. Remember the different equivalent formulations of this assumption given
in Section 2. In the next lemma, the assumption will be relaxed.

LEMMA 3
Assume that (A, B) is stablizable, and that

maxrank P(z) = n+m 4)

Then S, is nonempty if and only if
ranky -1 P(z) =n+m

Furthermore the corresponding feedback matrix L is unique.
Proof: Define the following Kleinman-like recursion, e.g. [Kucera, 1991],

S; = (A— BL;)TS;(A—- BL;) + (C — DL;)’(C - DL;)
G, =D"D + BTS;B (5)
GiL;.1 = DTC + BTS;A
for i = 0,1,... with arbitrary initial value Ly € L. Note that L, is nonempty by
the stabilizability of (A, B). It will first be shown that the sequence of L; is well
defined, and then the question about convergence will be investigated. Assume
that L; € £,. Then there exists a unique S; > 0 that solves the first equation in

(5). This follows from the fact this equation is a Lyapunov-equation. Now there
exists an L;,; that solves the third equation in (5). This follows from the fact that

A BYT(Ss; 0y(A B
>0
C D 0 I C D
If it can be concluded that L;,; € L,, it follows by induction that L; € £, and
S; > 0for all i > 0. Assume that L;;; ¢ L,. Then there exist A and x such that

|A] 2 1 and
(A = BL,-+1)x = x4 (6)

Now rewrite (5) to obtain
Si = (A= BL;11)"Si(A~ BLi1) + (C— DLiyy)"(C— DLy ) + A (7)

where
A= (LL - Li+1)TGi(Li, - Li+1)

Combining (6) and (7) gives
(1-|A*)x*Six = x*(C — DLi41)"(C — DLjy1)x + x*(Li — Lis1)"Gi(Li — Liv1)x
Since |A| > 1 and S; > 0 it follows that

x"(Li — Lis1)TGi(Li — Liz1)x = 0



If it can be shown that G; > 0 it follows that L;x = L;,,x, and hence that A is also
an eigenvalue of A — BL;, which is a contradiction. Thus it follows that L;,, € L;
provided G; > 0. That this actually holds will now be shown. Rewrite (5) and (7)

as
[ I 0]T S;i—A; 0 [ I o]
Ly, 1 0 G; Ly, 1

(6 5) (5 ) (6 »)

‘I’;z) ]

(8)

Let W(z) = (2 — A)~1B, and let

H(z) = [c D] [

Notice that v
(A B] [ ;z)] = 2z¥(2)

¥
Thus by multiplying (8) by [ ;z) ] from the right and its adjoint from the left
the following equality is obtained
H*(2)H(2)+ ¥*(2)Ai¥(2) = [ + Lin1P(2)]"Gi[I + L1, ¥ (2)] 9

Now the rank condition (4) implies that there exists z such that rank H(z) = m,
which by (9) and A; > 0 implies that G; > 0. Thus it is proven that the sequence
of L; is well defined and that L; € L, for all { > 0.

It will now be shown that the sequence S; converges to some limit S. Further
manipulations show that the following Lyapunov-equation holds

Si— Si+1 = (A= BLi11)7(Si ~ Sit1)(A— BLiyy) + A; (10)

Since L;,; € L, and since A; > 0 it follows that S; — S;;; = 0. Thus it holds
that 0 < S;;1 < S;, which implies that the sequence of S; converges to some
limit S > 0 as i goes to infinity. From (10) it also follows that (A — BL;,;)7(S; —
Si+1)(A— BL;41) —> 0 and A; — 0, since both matrices are positive semidefinite.
The second equation in (5) implies that G; - G = DTD + BTSB. Since

[A B]T [S o] [A B]
>0

C D 0 I C D
there exists L such that GL = DTC + BTSA. Thus S € S, and similarly to (9) it
holds that

H*(z)H(2) = [I + L¥(2)]'G[I + LY (2)] (11)
Now the rank condition (4) implies that G > 0, and hence L is a unique solution.
The sequence L; therefore converges to L. Since the eigenvalues of A — BL;
are inside the unit circle, it follows that in the limit the eigenvalues of A — BL
are inside or on the unit circle. Now these closed loop poles are the zeros of
I+ L¥(z) =1+ L(zI — A)™1B, and from (11) it follows that any closed loop pole
on the unit circle would also be a zero of H(z). Converse it also follows that any
zero of H(z) on the unit circle would show up as a closed loop pole. Therefore L is
stablizing if and only if H(z) has no zeros on the unit circle, or equivalently that

rank, -1 P(2) = n+m

This concludes the proof of Lemma 3. O

Remark. From the proof of the lemma it follows that there always exists L € L,
giving a performance index that is arbitrarily close to the optimal value.

Now the full normal rank condition will be relaxed. The approach taken here
is to find a reduced problem with lower dimensions, such that the full normal
rank condition is fulfilled.

6



LEMMA 4
Assume that (4, B) is stabilizable. Then it holds that S, is nonempty if and only
if

rankp, - P(z) = maxrank P(z)

Proof: The proof will be carried out by making input signal-transformations,
state-transformations, preliminary feedbacks, removal of signals in the perfor-
mance index which are identically zero, and removal of stabilized states which
are not observable in the performance index. These operations do not influence
whether S, is nonempty or not.

Consider the following representation

(') = (e o) ) @

Use an input signal-transformation that brings (12) to the form

[x(k+1)] ) [A B, 0 ] {:1((12)]
z(k) C Dy D, us (k)
where B; has full column rank. Make a further transformation such that
x(k +1) A B o0 oy [*®
[ z1(k) ]: Ci Dy 0 o] ;‘211((72))
Zz(k) Cz D21 0 I uzz(k)

It is now possible to use ug; arbitrary, while the optimal us is given by
uzz(k) = —-sz(k) — D21u1(k)
Hence the problem has been reduced to the case
[x(k+1)] ~ [ A B ] [ x(k) ]
z1(k) Ci Dn ui(k)
where B; has full column rank. rank. Make further u- and z-transformations
such that
x(k + 1) A B;; Bipe x(k)
[ z11(k) ] =|Cu I 0 ] [ u11(k) ]
le(k) C12 0 0 ulz(k)
Introduce a preliminary feedback u11(k) = @11(k) — Cu1x(k). This results in

x(k+1) A—-B;1Cii B Brg x(k)
[ z11(k) ] = [ 0 1 0 ] [ u11(k) ]
Z12(k) Clz 0 0 U12(k)

Thus it is possible to assume from the start that the problem is given on the form

x(k+ 1) A B:_ 32 x(k)
[ z1(k) ] = ] [ul(k)] (13)
z2(k) uz(k)

where ( B, B ] has full column rank.



By state coordinate change, state feedback, and us-transformations simi-
lar to [Kailath, 1980, Ch. 7.6] it is possible to split the state space, so that

T
(sz (k) xg'(k)] represents the maximal unobservable subspace, while x3(k)

represents the maximal controllability subspace. Thus P(z) is strongly equiva-
lent with

2l — A11 0 0 —Bn —Blz 0
—A21 2l — A22 0 —le 0 0
—As —Agp 2zl—Azy —Byy 0 —Bg (14)
0 0 0 I 0 0
Co1 0 0 0 0 0

T
Only x; is observable in the loss, and only [ uf ug‘ ] gives any contribution to

the controllability of x;. The dynamics of x2 and x3 is not influenced by feedback

T
from x, via [uf ul | , and us can be used to place the eigenvalues corre-

sponding to x3 without any influence on the loss. Feedback from x; via u; maybe
needed in case of unstable eigenvalues in Age, making the corresponding modes
observable, but Agsy is still not influenced.

Now uj represents the arbitrariness of this LQ-problem, and it could therefore
be solved as a reduced problem neglecting the x3 and ug portions. There are
optimal solutions if and only if there are optimal solutions to the reduced problem.

The loss of normal column rank in | zI — Ags Bgss ] is equal to the dimen-

sion mg of ug, and the same loss is found in the big pencil (14) and thus in P(z2).

The fourth block column in (14) has full rank and is linearly independent
of the other columns. The first and fifth block columns have full normal rank
by the construction. Otherwise the (A, Bz)-invariant subspace in Ker(Cs) could
have been expanded. The second block column has full normal rank, and by the
independence it thus follows that the normal rank of P(z) is equal to n + m — ms.
The rank criterion for the reduced problem, characterizing no zeros on the unit
circle, is thus applicable for the full problem, so

ranki, -1 P(z) = n+m —my

is hence a necessary and sufficient conditions for optimal LQ-controllers. O

Remark 1. Notice that the solution S to the non-reduced problem can easily be
obtained by solving the Lyapunov-equation

S =(A-BL)'S(A-BL) + (C-DL)T(C-DL)

where L is one solution to the non-reduced problem. Then all solutions to the
non-reduced problem can be obtained by solving

GL = DTC + BTSA

Remark 2. Similar approaches of removing states and input-signals have been
taken in [Silverman, 1976; Clements and Anderson, 1978]. In [Clements and
Anderson, 1978] all states and inputs corresponding to j-constant directions, i.e.
states which corresponds to dead-beat control in optimality, are removed. With
that approach more states are removed than with the approach taken here, and
hence the removed states do not correspond to the non-uniqueness. However,
by Remark 1 it is possible to generate all optimal solutions to the non-reduced
problem also with the approach taken in [Clements and Anderson, 1978]. In the
appendix a similar algorithm is presented. It is believed that this algorithm is
easier to implement, although it may give less insight than the approach taken
above.
The results obtained are now summarized



THEOREM 1
Assume that (A, B) is stabilizable. Then it holds that Ss contains exactly one
element S if and only if

ranky, -1 P(z) = maxrank P(z)

The optimal control is given by
u(k) = —Lx(k)
where L is any solution of
GL = DC + B'SA
in L. The corresponding loss is given by
J = trSR,

Under the assumption that S, is nonempty, the feedback matrix L is unique if
and only if
maxrank P(z) = n+m

Remark. Also when S, is empty there exists a solution S to the algebraic Riccati
equation, e.g. defined by the Kleinman algorithm, and some L € £, giving a loss
arbitrarily close to the infimum J = trSR;.

5. Conclusions

In this report stationary discrete time LQ control has been studied. Especially
necessary and sufficient conditions for existence and uniqueness have been given.
The proofs were constructive, and hence implementable algorithms have been
obtained.

Very little is new. However, there seems to be a lot of confusion and no
good previous coverage of both the stability and uniqueness investigations. In
[Clements and Anderson, 1978] the uniqueness is partly addressed, but more
states and input-signals are removed than the ones corresponding to the non-
uniqueness. The approach taken in this report is more close to the approach in
[Willems et al., 1986], where the continuous time case is investigated. Assum-
ing left invertability the transfer function approach in [Kucera, 1991] gives the
necessary and sufficient conditions for stability of the optimal controller. How-
ever, there seems to be no previous proof using the state-space approach. Fre-
quently non-necessary conditions of strong detectability are imposed, equivalent
to a minimum-phase condition.

The main contribution of the report is the necessary and sufficient condition
of Lemma 4 stating when there exists a stabilizing optimal controller. Further
it is believed that the simple algorithm in the appendix will remove unnecessary
restrictions imposed when using most available software tools for solving LQ-
problems.
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7. Appendix

Here an algorithm related to the one in [Clements and Anderson, 1978] will be

presented. Consider
z-A -B ]

SR

Make an input-signal transformation such that
-B -B; 0
D D, 0

1 ] having full column rank equal to m,;. The inputs corresponding to

with [ D
1
the zero-column can be taken arbitrary. Now consider the reduced problem

[zI—A —Bl]

=1 ¢ p

If rank P1(0) = n + m; then the algorithm is terminated, and the problem can be
solved using Lemma 3. Otherwise form the null-space basis

(o)

[2]X+:gilU=0 (15)

It follows that X has full rank, i.e. X = 0 implies @ = 0, since otherwise it
holds by (15) that
—B;)
Uax =0

D, |

for P1(0),i.e.

-B X
which is a contradiction either to [ D ! having full rank or to [ U ] having full

1
rank. From X having full rank it follows that there exists L such that - LX = U

- () (B)ee e

10



where the last equality follows from (15). Introduce the feedback u = —Lx + .
This corresponds to defining

1 0] B [zI—A+B1L —Bl]

Pi(z) = Pi(2) [—L I C-DiL D,

By the PBH rank test and (16) it now follows that the modes corresponding to X
are unobservable in C — D; L. By defining the state-transformation

(e ) (2

2l — A1 0 -Bix ]

it follows that

I_’l(z) ~ —A21 2zl -—Blz

C] 0 D1
Now the x3-states are stable and unobservable and can be removed. Repeat the
above procedure with state feedback now only from x; until rank P;(0) = n + m;.

The procedure thus gives one optimal state feedback L, and to obtain S and all
L apply Remark 1 of Lemma 4.
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