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1. Introduction

The LQG or H controller has a long history. Much work was done during the 60:s
and 70:s. The topic is treated in many text-books, among others [Kucera, 1991].
The singular cases were, however, not fully understood. This was discovered when
people started to work on the optimal H,, controller, where similar singular results
were needed. In e.g. minimum variance velocity control of a servo motor, where
the position is measured, the integrating property from velocity to position makes
the problem singular. A good understanding of singular LQG controllers also
facilitates the analysis of the so called minimum upcrossing controller, [Hansson
and Hagander, 1994].

Two different types of singularities are encountered in H; problems. The
first type is related to non-uniqueness due to redundant control signals and mea-
surement signals. This type of singularity can be taken care of by certain trans-
formations, see e.g. [Hagander and Hansson, 1994]. The non-uniqueness will
in the present work be parameterized by a simple equation related to the @-
parameterization of all stablizing controllers.

The second type of singularities is related to poles on the stability boundary of
the closed loop system. In most such cases there exists no optimal controller cor-
responding to the infimal cost. It will, however, be shown that if and only if all the
unstable modes of the closed loop system are in the controller and such that they
are canceled by zeros of the controller, then this reduced order controller is indeed
an optimal controller. This was actually discussed already in [Kucera, 1980]. To
illustrate the result a minimum variance example is given as an introduction.

EXAMPLE 1—-Minimum Variance Control
Consider the process model

A(q)y(k) = B(q)u(k)+ C(q)e(q)

where y(k) is the measurement signal, u(k) the control signal, e(k) is a sequence
of independent zero mean Gaussian distributed random variables, and A(q), B(q),
and C(q) are polynomials in the forward shift operator ¢q. Assume that C(g) has
all its zeros inside or on the unit circle, that degA(q) = degC(q) = n, and that
degB(q) = n—d. It is then well-known, see [Astrﬁm and Wittenmark, 1990], that

the controller that minimizes
E {*(k)}

is given by u(k) = —~S(q)/R(q)y(k), where S(q) and R(q) satisfys the following
Diophantine equation

A(q)R(q)+ B(q)S(q) = P(q)C(q)

with R(0) = S(0) = 0, and

8 n—-d
P(q) = ¢*[J@-=) [] (a-1/2)
i=1

i=s+1

where z; are the stable and unstable zeros of B(q) respectively. If in addition
B(q) and C(q) have no zeros on the unit circle, then the controller will also be
stabilizing. The converse is, however, not always true, as the following example
shows. Specialize the process polynomials to

Aq) = ¢*
B(g) = (¢—-1)(¢g-2)
C(q) = q(g - 1)(¢* + 8/21q + 4/21)



There are two closed loop poles at ¢ = 1 due to the presence of a factor (g —1) in
both B(q) and C(g). The Diophantine equation becomes

q'R(q) + (g - 1)(g— 2)2S(q) = g(g — 1/2)%(q — 1)q(g — 1)(¢* + 8/21q + 4/21)

with solutions R(q) = g(g — 1)%(q + 51/84) and S(g) = —1/844*(q — 1)°. Here the
two closed loop poles at ¢ = 1 are in the controller, i.e. (g—1)? are factors of R(g).
Furthermore they are canceled by the same factors in S(gq), and the reduced order

controller a
is optimal. O

This example will later on be further investigated using state space descrip-
tions and Riccati-equations instead of polynomial descriptions and Diophantine
equations. It will be seen that the cancellation of the factor in B(g) can be inter-
preted as loss of controllability in the controller, and that the cancellation of the
factor in C(q) can be interpreted as loss of observability in the controller.

It is almost trivial to see that the presence of all unstable closed loop poles
in the optimal H; controller together with cancellation is a sufficient condition
for it to be stabilizing. That it is also a necessary condition, is more tricky. The
derivation will relay on a very general version of the separation principle. In
[Trentelman and Stoorvogel, 1993] a geometric approach is taken to give necessary
and sufficient conditions for a stabilizing H, controller. It will be seen that the
conditions given there are equivalent to the more explicit ones given in this report.
In [Trentelman and Stoorvogel, 1993] the more general case when the controller
is not unique is also covered.

In [Chen et al, 1993] an algorithm is given for constructing all stabilizing
H, controllers. There the modes of the controller are not canceled, but instead
moved to an arbitrary position inside the unit circle. This then enables the use
of the @-parametrization of all stabilizing controllers in order to give a necessary
and sufficient condition for uniqueness of the optimal controller.

The report is organized as follows. In Section 2, first, the problem formulation
is given together with the main results, Theorem 1. Then the example of this
section is revisited. In Section 3 the proofs are carried out. In Section 4 an
example of velocity control of a servo motor is investigated, and in Section 5
some concluding remarks are given. Some useful results on solutions of Riccati
equations are given in an appendix.

2. Control Problem and Solution

In this section the Hz control problem will be formulated. Equations for deriving
the solution will be given together with conditions under which there exists an
optimal solution. Finally, the results are applied to Example 1.

Control Problem

Consider the following state space description

x(k +1) A B, B, x(k)
[ Z(k) ] = C. D,y D ] [ w(k) ] (2)
y(k) Cy Dyw Dyu u(k)

where w(k) € R' is a sequence of independent zero mean Gaussian random vari-
ables with covariance I, u(k) € R™ is the control signal, x(k) € R" is the state,
y(k) € RP is the measurement signal, and z(k) € R7 is the signal to be controlled.
It will be assumed that D,, = 0. Denote by D the set of linear, proper, and time-
invariant controllers, and by 2; the subset of D which stabilizes (2), i.e. the set
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of controllers which are such that the eigenvalues of the closed loop system have
absolute values strictly less than one. Let the control signal be given by

u(k) = —H(q)y(k)
where H € D. Further introduce the following performance index:

J(H) = im E {T(k)2(k)}, H €D, (3)

Since H € D, it is no loss in generality to assume that x(0) = 0 when evaluating
J. Consider the following optimal control problem

}1;16%1 J(H) 4

which is known as the Hy problem. This is a convex problem, and hence the
infimum always exists. However, the set D; is open, and thus the infimum will
not always be a minimum, i.e. the smallest value of the performance index J
may be attained by a controller which does not internally stabilize the closed loop
system. This is one of the questions that will be dealt with in the present report.
The other question is uniqueness of the solution, and how to parameterize all
candidate solutions in case of non-uniqueness.

Main Results

Introduce the following matrices:

2 -A —-B,

Pe(z) = [ c, D ]
z-A -B,

Polz) = [ c, D ]
y yw

and the following standing assumptions:

(A1) : (A, B,) stabilizable

(A2) : (Cy,A) detectable

If (A1) and (A2) do not hold, then D, will be empty, and hence there will be no
optimal controller.

It will be shown that the optimal controllers, whenever they exist, can be
obtained by solving the Riccati equations

S = (A-B,L)'S(A- B,L) + (C; — D;,L)"(C. - D,,L)
G = BISB, + DL D,, (5)
G [L z, L,,,] = (B,TSA+D3,',CZ BTS DZ,"]
and

P=(A-KC,)P(A- KC,)T + (By — KDy,)(Bw— KDy)"

H = C,PCT + D,, DI,
k7 (APCT+B,DLNT ©)
T
al & | - PC!
K, B,DY,
Ko D DL,

using for instance the Kleinman iteration procedure described in e.g. [Hagander
and Hansson, 1994]. These are the unique real symmetric matrices S > 0 and
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P > 0 such that there exist L and K such that A — B,L and A — KC, have all
their eigenvalues inside or on the unit circle. They are also the maximal solutions.
Let

A,=A-B,L-KCy,+B,D.C,

B.=K-B,D,
C.=L-D.C,
D, =LK, +L,K, + L,K,

(7

and define the controller
Hnam(Q) = Crom (qI - Anom)_anom + Dyom = Ce (qI - Aco)_ch + D, (8)

where all uncontrollable and unobservable modes in Hyom(q) should be canceled.
How to cancel these modes will be described in Theorem 3 and the proof of
Lemma 5. Some of the results will be derived under the assumptions

(A3) : max,rankP.(z) = n+m

(A4) : max,rankP,(2) =n+p

which are actually equivalent to the uniqueness of the optimal controller, i.e.
G > 0 and H > 0 see e.g. [Hagander and Hansson, 1994], and usually referred to
as left and right invertibility of (A, B,, C;, D.,) and (A, By, Cy, D,,,) respectively,
e.g. [Silverman, 1976].

THEOREM 1

Assume that the uniqueness conditions (A3) and (A4) hold. Then there exists a
solution to (4) if and only if Huom(g) as defined in (8) is in D,, i.e. is stabilizing.
Further, this solution is unique. a

Remark. The proof of this theorem will be carried out in Theorem 3 below, where
the structure of the cancellations is further investigated.

The existence of an Hj controller is thus easily investigated when the con-
troller is unique. The parametrization of all Hy controllers is slightly more tricky,
and it will be postponed to the end of next section. Further there are no simple ex-
istence conditions available for the general case, see [Trentelman and Stoorvogel,
1993] for a non-explicit one.

Example Revisited

The process model in Example 1 can be casted as in (2) with

(01 0 0| 1821 | 1)
0010/ 421 | 5
A By B 0001 ]| 421 | 8
CzDztzu]= 0000 0 4
Cy Dy Dy 1000 1 0
(100 0 1 0

Notice that assumptions (A3) and (A4) are fulfilled. The solutions of the Riccati
equations are given by

L 1 (0 4 -12 3
S“(*)’ [L,,]=6_[4 ~12 3 *]’ e = 0
T
K,

1
P=0, K,=0, K= =%[—13 —4 4 o] , K,=1



Thus

0.6071 09375 0.1875 —0.0469 —0.6071
A 02500 03125 0.0625 0.2344 B —0.2500
= | 0.0952 -05000 15000 0.6250 |’ “7 | —0.0952

0.0476 02500 —0.7500 0.1875 —0.0476
C, = [0.0119 0.0625 —0.1875 0.0469] , D, = —0.0119

where the controllable and observable part is only of first order, and it is easily
verified that this gives the same controller as in (1). Notice that

P(q) = det[qI — (A— B,L)]
C(q) = det[qI - (A— K Cy)]

3. Derivation of the Results

In this section Theorem 1 will be proved. In the first subsection the separation
principle will be shown to hold under very weak conditions. This will enable the
stochastic approach to solve the H, problem presented in this report. Then in the
second subsection a well-known sufficient condition for the existence of a solution,
stating “no zeros on the unit circle”, will be given. This will be utilized to derive
a both necessary and sufficient condition in case of uniqueness of the controller.
In the third subsection the conditions derived in this report will be related to
the ones presented in [Trentelman and Stoorvogel, 1993]. The assumptions on
uniqueness will be relaxed in the fourth subsection, where the @-parametrization
will be utilized to give a parametrization of all Hs candidate controllers in case
of non-uniqueness. The results are more explicit than the ones in [Chen et al.,
1993]. However, no simple existence results are known when assumptions (A3)
and (A4) are not fulfilled.

The Separation Principle
The approach taken in this report is the classical stochastic approach for solving

LQG or H; problems utilizing separation. To this end introduce the following

observer
#(k + 1) = AZ(k) + B,u(k) + K3(k), %(0)=0

y(k) = y(k) — Cyi(k)

usually called a stationary Kalman filter, where K is a solution of (6) such that
eig(A — KC,) < 1. Define (k) = x(k) — Z(k). It then holds that

(9)

i(k + 1) = A %(k) + Byw(k), %(0)=0 (10)
J(k) = Cyx(k) + Dyw(k)

where A, = A~ KC,, and By = B, — KD,,. Since there is no guarantee for A,

being stable, some care has to be taken in order to get orthogonality between (k)

and %(k). The following lemma will clarify.

LEMMA 1

It holds that £(k) and %(k) as defined in (9) and (10) are orthogonal in stationarity,
ie. E{#(k)2T(k)} = 0, k — oco. Further the stationary covariance of #(k) is
given by the solution P of (6).

Proof: It is well-known that there exists a time-varying Kalman filter, i.e. K =
K (k), which computes an estimate (k) of x(k) such that (k) and %(k) are or-
thogonal, provided that the initial value £(0) is correctly chosen. Further if A4, is
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stable then there also exists a stationary Kalman-filter with the properties given
above. However, if #(0) = 0, then it can be shown that there still exists a sta-
tionary Kalman-filter, even if A, is not stable. This follows from the fact that the
unstable modes of A, are not controllable from By, and hence these modes will
be identically zero, provided that %(0) = 0, which make them uncorrelated with
the corresponding £(k)-modes. That the unstable modes of A, are not controllable
from By is the dual of Lemma 7 in the appendix. O

Remark. It can be shown that %(k) = E{x(k)|7(k—-1)}, where
k-1 = (k-1 yk-2)
In order to allow for not only strictly proper controllers but also for proper

controllers, an estimate of x(k) based on 9 (k) is needed as well as estimates of
ex(k) = Byw(k) and e,(k) = D,,w(k).

LEMMA 2
It holds that

x(k) K, (k)
E{ ex(k)]‘y(k)}—{[K,,]&(k)+[ 0 ]}—>0, k— o0
ez(k) K, 0

Proof: The result follows by Lemma 1 and [Astrtim, 1970, Theorem 3.2. and
Theorem 3.3]. |

THEOREM 2—Separation Principle
For any H(q) € D; it holds that

J(H(q)) = Jim E{[u(k) + L(k) + D R)]" G [u(k) + La(k) + Dej(R)]} + J°

where J* is independent of H(q).

Proof* The first step of the proof is a tedious completion of squares utilizing
(5) and the fact that limy o E {7 (k + 1)Sx(k + 1) — xT (k)Sx(k)} = O for any
stabilizing controller yielding

J(H(9)) = B{ [u(k) + Lx(k) + Loes(k) + Lue:(k)]"
- Gu(k) + La(k) + Lyey (k) + Lwez(k)]} +dJ

where J is independent of H(g). Then by (6), (7), Lemma 2, and the orthogonality
between the estimates and the estimation errors the result follows. O

Sufficient and Necessary Conditions for Existence

Let A = A — B,L, and introduce the following assumptions as an alternative to
(A3) and (A4)

(A5) : ranky, -1 P.(z) = max, rankP.(z)

(A6) : ranky,-1P,(2) = max, rankP,(z)

which are equivalent to no zeros on the unit circle. Notice that these conditions
were not fulfilled in Example 1. Then the following sufficient condition holds:

LEMMA 3

Under assumptions (A5) and (A6) the controller Hyom(q) as defined in (8) is a
solution to (4).

Proof* By Theorem 2 and since G > 0 it holds that u(k) = —Lx(k) — D.y(k)
minimizes the performance index J. This is the same control signal as the one

6



defined by Hy,r. Further this controller is stabilizing, since the closed loop system
is governed by

[x(k+1)] _ [Ac B,,Cc] [x(k)] . [BN+Bchw

#(k+1) 0 A, (k) By ]w(k) (11)

where A, and A, are stable under conditions (A5) and (A6) by e.g. [Hagander
and Hansson, 1994, Theorem 1] and its dual version. 0

It is possible to relax assumptions (A5) and (A8), i.e. to treat the case with
zeros on the unit circle. This will, however, only be done under the uniqueness
assumptions here. Hence assume that (A3) and (A4) hold for the rest of this
subsection. Let U, and U, be transformations that bring A, and A,, respectively,
to block diagonal form

AU, = U, [J” g ]
clUe — c 0 qu
J 0 (12)
Ao o= Uo ”
U [ 0 Jou]

where J., and J,, contain the stable parts. The theorem that follows characterizes
the solutions of Hy problems and proves the results of Theorem 1.

THEOREM 3

Assume that (A3) and (A4) hold. Then there exists a solution to (4) if and only if
there exists a state transformation T' such that

Jeo O *
AT =T [ *  Jou ¥ ]
0 0 Ju

*)
T_ch = B;

0
C.T = (c1 0 ca]

where J,, and J,, are given by (12). Further the controller is unique and given
by (8),1i.e.

Hnom(Q) = Cl(qI - Jco)—lBl + Dc

Remark 1. In words this means that there exists an optimal controller if and
only if all unstable closed loop modes are in the controller (7) and such that the
ones from A, are unobservable in C, and the ones from A, are uncontrollable from
B.. It will be seen that in the case of uncontrollability in the controller there are
modes in the closed loop system which are not influenced by the noise, and hence
do not influence the other modes. In the case of unobservability in the controller
there are modes in the closed loop system which are not influencing the rest of
the dynamics, although they are influenced by the noise. As well as providing a
proof of Theorem 1 this contains a state space description of the properties of the
controller (7).

Proof* The first part of the proof will be done along ideas from [Trentelman and
Stoorvogel, 1994] by considering a sequence of controllers H; € D;, i > 0, which
are such that for all € > 0, there exists N such that J(H;) < J*+¢, foralli > N,
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Consider the perturbation of (2) obtained by the following replacements
By (Bu eI
Dyw ¢ (D 0 )

C.
C. e [sI]

()
D, &
0

Denote the value of the performance index for the perturbed system and any
H € D, by J.(H). Notice that the perturbation does not influence the feedback
loop, so D, is also the set of controllers that stabilize the perturbed system. This
system satisfies (A5) and (A6) and has an optimal controller H; € D, for alle > 0
by Lemma 3. Denote the corresponding optimal value of the performance index
by J2. Since the perturbation is linear it holds that J* < J(H) < J(H) for all
H e D;. Especially this holds for H = H,, i.e.

J* < J(H;) < J;

By Lemma 9 in the appendix it holds that S; and P, converge to S and P, which
are solutions of (5) and (6), respectively. Hence J; — J*, € — 0, which by
Theorem 2 implies that one control signal minimizing J is given by

u(k) = —L&(k) — D.j(k)

Since G > 0 by assumption (A3), this control signal is unique. It can also be

expressed as
2(k+1) = Ax(k)+ B.y(k)

—u(k) = C.&(k) + Dey(k)

where A;,, B., C., and D, are unique by assumptions (A3) and (A4), see e.g.
Lemma 8 in the appendix and [Hagander and Hansson, 1994]. Further the closed
loop system is governed by (11). Hence there exists an optimal controller if and
only if all unstable closed loop modes are in the controller and such that they do
not have to be implemented, i.e. are either unobservable in C. or uncontrollable
from B.. It only remains to show that uncontrollable modes in the controller are
modes of A, and that unobservable modes of the controller are modes of A,. To
this end let
(v v)

be a state transformation that brings A., to Jordan form, i.e.

to(w 0) = (v v) (7 0]
()

be the inverse of ( u U ] . Further assume that A is uncontrollable, i.e.

[ vT B - 0
vl) ™ |B
Introduce the new state £ via

- (2)- ()

and let



It holds that 0

A
earn= (1 0] eme (5])om
Since £(0) = 0, it follows that £, (k) = O for all k. Hence
#(k+1) = UIVT (k) + UBy(k) = A.z(k) + B: [CyZ(k) + Dyw(k)]

where ) )
A, =UJVT + UBC,

The estimation error is governed by
#(k+ 1) = A%(k) + A Z(k) + Byw(k)
where ) 1 0 o7
Ac = (“ U] [* o] [VT]

Hence the closed loop system has the system matrix

0 0 0 0
A, B.C, ByCyu J + BC,U BeCyu B2C,U
[Ac A, ] ~ A 0 vTA,u vTAU
* 0 VTAuu VTAU

which has the eigenvalues 0, eig(J + B2C,U) and eig(A,). Since the eigenvalues
of A, are given by A and eig(J + B2C,U), it follows that all uncontrollable eigen-
values of the controller are also eigenvalues of the closed loop system. Further
they are eigenvalues of A,, and they can be positioned arbitrarily, e.g. at zero as
with the realization related to A,.

Now follows a dual version to prove that the unobservable modes of the con-
troller are modes of A,. To this end let

= )

be a state transformation that brings A, to Jordan form, i.e.

e v)- () (53]
()

be the inverse of [ u U ] . Further assume that A is unobservable, i.e.

c.(z v)=[(0 C)

seen= (B3] ew (n) B

u(k) = —Coy (k) — Doy(k)

and let

It holds that



Hence any &, (k) will yield the same control signal. Let £x(k + 1) = v B.y(k),
which implies

#(k + 1) = UJVT&(k) + B.y(k) = A&(k) + Buu(k) + K5(k)

where
A=A+UJVT - A,

It is easily verified that the estimation error is governed by
Z(k+ 1) = AZ(k) + Ax(k) + Byw(k)

where

By &
I
B B

~KC,
—A

Further the state x is governed by
x(k + 1) = A.x(k) + B,C.X(k) + (B.Dy, + Byn)w(k)

Hence the closed loop system has the system matrix

vTA,u vTA.U O vTB,Cs

A, B.C, VTA.u VTAU 0 VTB,C,
{A A, ]N A « 0 uIB,Cy
0 0 0 J+VTB,Cy

which has the eigenvalues 0, eig(J + V7 B, C;) and eig(A.). Since the eigenvalues
of A, are given by A and eig(J + V7 B, Cy), it follows that all unobservable eigen-
values of the controller also are eigenvalues of the closed loop system. Further
they are eigenvalues of A,, and they can be positioned arbitrarily, e.g. at zero as
with the realization related to A,. This concludes the proof. O

Remark 2. It is obvious from the transformations in the proof above that the
modes corresponding to the change of eigenvalue from A to 0 are the ones which
are removed from the closed loop system when implementing the controller as a
reduced order controller. It should be stressed that what is novel in the approach
in this report as compared to the approach in [Chen et al., 1993] is that the
unstable modes of the closed loop system are not only moved but that they are
actually removed from the closed loop system by cancellations in the controller.

Remark 3. How to compute the state transformation T' of Theorem 3 is described
in Lemma 5 below.

Relation to Trentelman and Stoorvogel

Throughout this subsection it will be assumed that (A3) and (A4) hold. Let 7
be the invariant subspace associated with the stable eigenvalues of A, and let .S,
be the invariant subspace associated with the unstable eigenvalues of A,.

THEOREM 4—Trentelman and Stoorvogel

Assume that (A3) and (A4) hold. Then there exists a solution to (4) if and only if
(C1) : ImB, c vV,

(C2) : 84 cKerC,

(C3) : (A—B,D.C,)S; cV,

(C4) : Sg =y

10



Proof: This follows immediately from the conditions given in [Trentelman and
Stoorvogel, 1993]. m]

It will now be shown that these conditions are equivalent to the ones given
in Theorem 3. To this end let

U = (Ve Un)

(U Ua)

and denote the inverses of these transformations by

VT

- (3

ch

VT

o (i

Vou
LEMMA 4

Assume that (A3) and (A4) hold. Then the conditions (C1)—(C4) of Theorem 4 are
equivalent to :

(I) : All unstable modes of A, are uncontrollable from B, i.e. VLB, = 0.

(II) : All unstable modes of A, are unobservable from C., i.e. C.U,u = 0.

() : ImU,, c ImU,,

Proof: 1t is trivial that (C2) is equivalent to (II), and that (C4) is equivalent to
(II1). That (C1) is equivalent to (I) follows from the fact that (C1) is equivalent
to ImB, c ImU,,, which is equivalent to ImV,, c KerBT, which is equivalent to
(I). Further it holds that (A — B,D.C,)Uo = (Ac + B.Cc)Uouw = A.Uou by (II)
or equivalently by (C2). By (III) or equivalently by (C4) there exist o such that
Uw = Ua. Hence (A — B,D.Cy)Up, = A Uesx = Ugedesx, where the second
equality follows by the definition of U.. Hence conditions (C2) and (C4) imply
condition (C3). O

LEMMA 5

Assume that (A3) and (A4) hold. Then the existence of a transformation T' satis-
fying (13) of Theorem 3 is equivalent to conditions (I)—(III) of Lemma 4.

Proof: Assume that the condition for existenyqe in Theorem 3 holds. Then multi-

ply the first equation of (13) by ( 010 ) from the right. This implies that

U,

T
Up =T [0 1 o] . Multiplying the first equation of (13) by (0 0 1] -1

from the left implies that V7, = (o 0 I] 7-1. Hence C,Uy = 0, VLB, = 0

and VZU,, = 0, which are equivalent to conditions (I)—(IIT). Now assume the
converse, i.e. that the conditions of Lemma 4 hold. Condition (III) implies that
there exists a such that U,, = U,«a. Notice that the columns of & are linearly
independent, and that

ViU, «a
viu,= | .57
1o (i o)
Consider
Jos O
VIALU, = VfU,,{[ o ] ~VIB, (C.Uas 0]}

* Odoy
* 0

Ju O VIB, r
{[ 0 Jm]_[ 0 ]C’U°}V°U"

+ (Jos—VIB.CyU)a
* 0

11



This implies that
(Jes — VEB.CyUs)a = 0o

Let # be such that (,B o ] is a basis, and such that

(Jos = VEB.CyU.s) [ﬁ “] = ["3 “) [J* J(,),.,]

Now, consider

U Ao Ue [g f; ?] = [Jcs_VCTsoBCCyU“ J*] [(ﬂoa] 3]
=[[ﬂ a) 0][[J* Jo] *]
o I 0 Tou

Hence with

it holds that
Jeo O *
A,T=T [ *  Jo  * ]
0 0 Ju
and by condition (II) it holds that

C.T = (c1 0 Ca)

for some C; and Cz. Further

-1
71 = [('B “] olv,
0 I

and hence it follows by condition (I) that

B

T-'B, = [ B, ]

0

for some B, and Bs. This concludes the proof. ]

This shows that the conditions of theorems 3 and 4 for existence of a solution
to (4) are equivalent. Notice that the conditions of Theorem 3 are formulated in
terms of A.,, while Theorem 4 relates to A, and A,.

Parameterization of all Solutions

In this subsection assumptions (A3) and (A4) will be relaxed. The discussion will
be intuitive.

When assumptions (A3) and (A4) are not fulfilled, there are redundant con-
trol signal or measurement signals, respectively. Further there is no unique Hz-
controller. The conditions for existence get more involved, see [Trentelman and
Stoorvogel, 1993], and the main concern of this section is to give a parametriza-
tion of all controllers yielding the infimum of the performance index. The question
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of when there exists an optimal controller, and which controllers are the optimal
ones will not be dealt with here.

Also in case of non-uniqueness, controllers defined by (8) yields the infimal
performance index, see the proof of Theorem 3, but they are not necessarily sta-
bilizing. S and P are still unique, see appendix, but L and X are not unique.
Further the closed loop system is governed by (11), and L and K can be chosen
such that all modes of the closed loop system are stable except the ones corre-
sponding to loss of rank in conditions (A5) and (A6). Hence the closed loop has
all its eigenvalues inside or on the unit circle for any such choice of the con-
trollers defined by (8). Now a version of the Q-parametrization with @ being a
transfer function matrix with all its poles inside or on the unit circle will yield
all closed loop systems with eigenvalues inside or on the unit circle. This follows
from the fact that the @-parametrization holds for any “stability” region. Hence
all controllers yielding a “stable” closed loop system are given by

u(k) = —Li(k) - D.5(k) + @(q)¥(k)

which results in the following value of the performance index:
* _ 13 ~ T ~ _ 1 . dz
J(H(@) - " = Jim E{[Q@3®I GIR@IFI} = 5-tr § Hel@)Ha(e) S

where Hq(z) = vVGQ(z)vH. Hence all controllers corresponding to the infimum
of the performance index can be obtained as the ones solving the equation

GQ(z)H =0 (14)

It is obvious that @(z) = 0 is the unique solution of this equation if and only if
G > 0 and H > 0, which is equivalent to conditions (A3) and (A4). Further the
controller defined by (8) is unique under the same conditions. This shows that the
solution to the Hy-problem is unique, whenever it exists, if and only if conditions
(A3) and (A4) hold. Notice that this was proven already in Theorem 3 without
considering the “Q”-parameterization above. In the general case it may happen
that @(q) = 0 gives closed loop poles on the unit circle, that are canceled in the
controller for some Q(q) # 0 satisfying (14).

4. Velocity Control of a Servo Motor

In this section is given an example of minimum variance velocity control of a
servo motor based on a position sensor. For this control problem it is inherent
that a closed loop pole is positioned at plus one due to the integrating property
from velocity to position. It will be seen that it is possible to remove this unstable
mode from the closed loop system in case of a special noise process. Notice that
this rather artificial noise demonstrates the cancellation of the unstable mode.

ExaMPLE 2—Velocity Control
Let the process be a sampled version, sample interval h = —In0.75 = 0.2875, of
the generic servo with transfer function

Y(s) = s(s—il)U(s)

which corresponds to the following discrete time state space description:

075 0 | 025
A B, 025 1 | 0.0377
Co Dau | = |77 0
CJ' Dzy

0 1 0

13



Further introduce the following artificial noise description
T
B, =B, = (0125 00188) , Du=1, Du=0
The solutions of the Riccati equations are given by S = CZT C,, P =0,and

L= (3 o], L, = [4 o], L, =0
K=K,=B, K,=K,=0
The closed loop system eigenvalues are then the eigenvalues of

0 0 075 -0.256
¢ = ’ Ao =
A [ 0.1370 1 ] [ 0.25 0.9623 ]
Three of them are inside the unit circle, while there is one at plus one. Further
the controller realization is

Aco = 0 0 ’ Bc =0
0.1370 1

C. = ( 3 -1 ] , D, =
which corresponds to the transfer operator description S(q)/R(q), where

R(q) = det(qI — Ac) = ¢*—q, S(@)=d*—q

and it is obvious that the closed loop pole at one is in the controller and uncon-
trollable. Hence the optimal controller is proportional and given by

u(k) = ~y(k)

5. Conclusions

In this report the existence of Hy controllers has been investigated. Special at-
tention has been given to the case of “zeros on the unit circle”, assumptions (A5)
and (A6). Intuition about cancellation in the controller from the polynomial SISO
minimum variance case has been shown to carry over to the more general H,
case.

For the case of uniqueness of the controller it has been shown that there
exists an Hj controller if and only if all unstable modes of the closed loop system,
when applying the controller obtained by solving the Riccati equations, are modes
also of the controller and such that they are unobservable or uncontrollable. This
condition is a striking interpretation of the conditions (C1)—(C4) in [Trentelman
and Stoorvogel, 1993], and it is easier to check. Further it shows that the optimal
controller given in [Chen et al., 1993] is nonminimal. There unobservable or
uncontrollable modes of the controller are not removed, just moved inside the
unit circle.

When the controller is not unique, i.e. when assumptions (A3) and (A4) are
not fulfilled, the approach taken in this report has not been as fruitful as for the
case of uniqueness of the controller. However, it has been possible to give a pa-
rameterization of all candidates for optimal controllers, i.e. a parameterization
of all controllers yielding the infimum of the performance index by means of a
slight extension of the so called @-parameterization. It is believed that this pa-
rameterization could be utilized to give a sufficient and necessary condition for
the existence of a solution also in the case of non-uniqueness.

Further it is believed that the insight gained in this report may be fruitfully
utilized when analyzing other singular control problems, such as e.g. the optimal
H,, controller.
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7. Appendix—Some Results on Riccati Equations

Some maybe novel results on solutions of Riccati equations are collected in this
appendix. Consider the Riccati equation (5) which for ease of reference is given

below:
S =(A-B,L)"S(A-B,L) + (C. — D,,L)*(C. - D,,L)

G = BT’SB, + DL.D,, (15)
GL = BfSA + DI,
Let the stabilizability (A1) be a standing assumption, and remember that A; =
A — B, L. Introduce the notation Cy = D,,L — C,. Then (15) can be written as

S =ATSA, + CCy

LEMMA 6
There always exists a solution (S, L) to (15) such that S is real, symmetric and
S > 0 and such that the eigenvalues of A, are inside or on the unit circle.

Proof: See [Hagander and Hansson, 1994] O
For any real symmetric solution § > 0 to (15) and any corresponding A,

introduce the state transformation T' = ( T. To T, ] such that

ATT = T diag(J-, Jo,J+)
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where J_, Jy, and J, are blocks with eigenvalues outside the unit circle, on the
unit circle, and inside the unit circle, respectively.

LEMMA 7
For any solution S > 0 to (15) it holds that

ey (- To) =0
s (- To] =0

Proof: For any real symmetric S > 0 solving (15) it holds by

k-1
S = (AT)kSAk + ) (Al)iCRCnAlL k21

i=0

that Cy ( T. Tp ] = 0 and ST- = 0. The equation for L in (15) implies that
BTSA, = DT Cy. Since CyTo = 0, it follows that BT ST, = 0. Further

TTS = JITESA, + TICECy = JETESA,

Now by the stabilizability of (A, B,) there exist Lo such that A — B, L, is stable.
Summing up gives

TTS = JF [TFS(A - BuLo) + TE SBu(Lo — L)] = J§ Tg S(A — BuLo)

which is equivalent to X(A — B,Ly) = JX, where X = TOT Sand J = Jo'l. Since
the eigenvalues of J are on the unit circle, and since A — B, Ly is stable, it follows
that X = 0. Hence it has been shown that

ey (1 m) =0
s (- TO] =0

for any real symmetric solution S > 0 of the Riccati-equation. O

LEMMA 8

Let (S, L) be a solution to (15) such that S is real, symmetric and S > 0 and such
that the eigenvalues of A, are inside or on the unit circle. Then S is unique.
Proof* Such an S certainly exists by Lemma 6. Further there exists a state

transformation T = ( Ty T, ] such that

ATT = T diag(Jo,J+)

where Jy, and J, are Jordan blocks with eigenvalues on the unit circle, and inside
the unit circle, respectively. Further it is straight forward to show that TfS T, is
unique, [Hagander and Hansson, 1994, Lemma 1]. Since STy = 0 by Lemma 7,
and since T is invertible, it follows that S is unique. O

Remark. Tt can be shown that this solution is also the maximal solution.
Finally the continuity of the solution of the Riccati equation with respect to
the input data will be proven.

LEMMA 9

Assume that (A5) holds, and that A, B,, C;, and D,, are continuous functions of
a parameter p. Then the solution S of the Riccati-equation (15) that stabilizes
A, will also be a continuous function of p.
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Proof: The algebraic Riccati-equations can be written

T
S = (A- B,L)TS(A—B,L) + [I —LT] Q [I -LT]
G = Q;+BTSB,
GL = Q%, + BTSA

Q1 Q12] [CZT ]
I = Cz Dzu
< [sz )= on) )
Consider the Lyapunov-equations

S1(p) = Ac(p1)7S1(p)Ac(p1) + C(P1)Q(P)C(p1)”
S2(0) = A.(02)7S2(0)Ac(p2) + C(p2)Q(p)Cp2)”

where

where C(p) = [1 _LT(p)]. It is easily verified that Ai(p1,p2) = Si(p2) —
S1(p1) and Az(p1,p2) = S2(p1)—S2(p2) satisfies the following Lyapunov-equations

A1(P1,P2) = Ac(p1)TA1(01,02)Ac(p1) + C(01)[Q(p2) — Q(P1)]C(p1)T
Ag(p1,p2) = Ac(p2)T Ag(p1,p2)Ac(p2) + C(02)[Q(p1) — Q(P2)1C (p2)T

Since A.(p) is stable it follows that the solutions A;(p1,p2) and Az(p1,p2) are
continuous functions of pz and p; respectively. Further they approach zero as
lp1 — p2| = 0. By the optimality it follows that S(p1) = S1(p1) < S2(p1) and
S(p2) = S2(p2) < Si(p2), which implies

—A1(p1,p2) < S(p1) — S(p2) < A2(p1,p2)

Hence S(p1) — S(p2) — 0 as |p1 — p2| — 0, from which the continuity follows. O
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