

LUND UNIVERSITY

Toolbox for enhanced fMRI activation mapping using anatomically adapted graph wavelets

Behjat, Hamid

2016

Link to publication

Citation for published version (APA):

Behjat, H. (2016). *Toolbox for enhanced fMRI activation mapping using anatomically adapted graph wavelets.* Poster session presented at 22nd Annual Meeting of the Organization for Human Brain Mapping (OHBM 2016), Geneva, Switzerland.

Total number of authors: 1

General rights

Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study

or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117 221 00 Lund +46 46-222 00 00

Toolbox for enhanced fMRI activation mapping using anatomically-adapted graph wavelets

LUND UNIVERSITY

Hamid Behjat^{1*}, Leif Sörnmo¹, Dimitri Van De Ville^{2,3}

Biomedical Signal Processing Grroup, Dept. of Biomedical Engineering, Lund University, Sweden
 Institute of Bioengineering, École polytechnique fédérale de Lausanne, Switzerland
 Dept. of Radiology and Medical Informatics, University of Geneva, Switzerland

The method

Abstract

In fMRI studies with evoked activity, brain activity is detected by voxel-wise GLM fitting, followed by statistical hypothesis testing. Statistical parametric mapping (SPM), one of the most popular classical methods, relies upon Gaussian smoothing to deal with the multiple-comparison correction. As an alternative, we have recently introduced a graph-based framework for fMRI brain activation mapping [1]. The graph is designed such that it encodes the topological structure of the gray matter (GM). The approach exploits the spectral graph wavelet transform [2] for the purpose of defining an advanced multi-scale spatial transformation for fMRI data. The use of spatial wavelet transforms has the benefit of providing a compact representation of activation patterns. The framework extends wavelet-based SPM (WSPM) [3], which is a framework that combines wavelet processing of non-smoothed data with voxel-wise statistical testing while guaranteeing strong FP control. Here, we present an implementation of the proposed framework as a user-friendly, SPM-compatible toolbox that deals with multi-subject studies.

Anatomically-adapted graph wavelets*

first-level analysis contrast maps subject 1 subject 2 subject N

Mapping an fMRI contrast map to a graph signal

* wavelet = a spatially localized function

Realizations of six wavelets that are adapted to the topological structure of the gray matter is illustrated. For ease of visual interpretation, the wavelets are overlayed on a template gray matter. Note that the wavelets are constructed in 3D space, and diffuse in 3D space, but only a single coronal slice of each is displayed.

The wavelets shown in each row are centered around the same location in the gray matter, the ones on the left have a smoother spatial profile compared to the ones on the right. A distinct set of wavelets is constructed for each location in the gray matter, but those of only three locations are displayed here.

The toolbox

Inputs to the algorithm:

T1 structural scans & first-level analysis contrast maps for

-	step 1	

	gwspm_extract
4	
Interactive Extraction of	Cerebellum GM Template (to be clicked on)
	Mark
Cerebrum & Cerebellum GM Temp	es

a set of subjects. The data for each subject should be co-registered.

template construction

Gray matter (GM)

Construction of	The graph consists of two subgraphs that separately encode the structural connectivity of the cerebral and cerebellar GM.
& graph signals	The graph signals are constructed from first-level contrast maps after their normalisation to the template space.
Second-level	Input: first level contrast maps that were normalised to the defined template domain.
analysis with SPIVI	Output: the resulting SPM.mat is used in the following steps.
GM-adapted wavelet transform design & decomposition of data	User interaction features: tunning of graph wavelet design; construction & visulazation of realizations of wavelets at different scales, centered at different locations in GM.
5 5 Integrated	The wavelet denoising and statistical

'Check' this box when you are satisfied with the settings. You can then:

