LUND UNIVERSITY

Simulation of Process Systems - A PhD Course

Nilsson, Bernt

1996

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Nilsson, B. (1996). Simulation of Process Systems - A PhD Course. (Technical Reports TFRT-7550).
Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://portal.research.lu.se/en/publications/c2488a2c-376c-415d-ae22-0de3eba8d245

ISSN 0280-5316
ISRN LUTFD2/TFRT--7550--SE

Simulation of Process Systems
— a PhD course

Bernt Nilsson

Helght: u

Department of Automatic Control
Lund Institute of Technology
August 1996



Document name

Department of Automatic Control TECHNICAL REPORT

Lund Institute of Technology Date of issue
Box 118 August 1996
S-221 00 Lund Sweden Document Number
ISRN LUTFD2/TFRT--7550--SE
Author(s) Supervisor

Bernt Nilsson

Sponsoring organisation

Title and subtitle
Simulation of Process Systems — a PhD course

Abstract

This report contains a set of lecture notes of a PhD course in Simulation of Process Systems for primary
PhD students in Chemical Engineering. The course gives an overview of steady-state and unsteady-state
simulation methods for lumped and distributed parameter systems. The lectures covers following areas:
Linear and nonlinear algebraic equation systems, initial-value problems for ordinary differential equations,
boundary-value problems for ordinary differential equations based on discrete variables and finite elements,
simulation of parabolic and hyperbolic partial differential equations in one space dimension, partial differential

equations in more then one space dimension. 5 computer exercises cover the material using MATLAB with
ODE Suite and PDE toolbox.

Key words

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient's notes
English 71

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
5-221 03 Lund, Sweden, Fax 446 46 110019, Telex: 33248 lubbis lund.



Simulation of Process Systems

PhD course at Department of Chemical Engineering II
april and may1996.

Aim

The course gives an overview of common simulation methods in process engineering. The
simulation methods are introduced and exemplified on chemical engineering problems. Examples
are dynamic and static simulation problems as well as problems with lumped and distributed space
descriptions. Mathematically this means algebraic equations (AE), ordinary and partial differential
equations (ODE and PDE) both in initial value problem, IVP, and boundary value problem, BVP.
The benefits and drawbacks of the methods are briefly discussed. Different classes of methods are
tested on chemical engineering problems using MATLAB with ODE Suite and PDE-toolbox.

Lectures:

1. Introduction to Simulation of Process Systems, notes (pdf-format)
10.15 Wed. 10/4, K:I
O Process Modelling, Problem Formulations and Problem Solving Methods,
O Simulation: History and State-of-the-Art
O Computer Aided Process Engineering (CAPE) and Software Tools

2. Steady-State Simulation of Algebraic Equations (AE), notes (pdf-format)
10.15 Mon. 15/4, K:N

O Linear Equation Systems - LU decomposition and iteration methods
O Sparseness

O Stability of difference equations

O Nonlinear Equation Systems - Fix-point and Newton methods

O To read: Froberg, chap 10 and 11, Davis, app C, E and B

3. Dynamic Simulation of Ordinary Differential Equations (ODE) (notes not available here)
10.15 Mon. 22/4, K:N

O Initial Value Problem (IVP) for ODEs.

O Explicit and implicit solvers

O One step and multistep methods

O Stiff ODEs and Differential-Algebraic Equations (DAEs)
O the MATLAB ODE Suite

O To read: Davis, chap 1

4. Steady-State Simulation of ODEs I - Discrete Variables notes (pdf-format)
10.15 Mon. 29/4, K:N

O Boundary Value Problem (BVP) for ODE:s.

O Shooting Methods

O Finite Difference Method (FDM)

O Spacial Differentiation and Boundary Condition Approximations
O To read: Davis, chap 2

5. Steady-State Simulation of ODEs II - Finite Elements notes (pdf-format)
10.15 Mon. 6/5, K:N

O Finite Element Method (FEM) and Methods of Weighted Residuals (MWR)
O Piecewise Polynomials and B-splines
O Galerkin and Collocation methods



O To read: Davis, chap 3 and app D

6. Dynamic Simulation of PDEs - Method of Lines notes (pdf-format)
10.15 Mon. 13/5, K:I

O C(lassification of PDEs.

O Method of Lines (MOL) for the Heat Equation (parabolic PDE) in one space dimension
O Finite Difference based MOL

O Finite Element based MOL

O Simulation of the Wave Equation (hyperbolic PDE)

O MATLAB, ode suite, PDE-toolbox

O To read: Davis, chap 4

7. Simulation of PDEs in Higher Dimensions notes (pdf-format)
10.15 Mon. 20/5, K:K

O PDE:s in 2 (and 3 space) dimensions

O Steady state PDEs (Elliptic PDE)

O Finite Differences and Boundary Conditions
O Finite Element Methods

O Irregular Boundaries

O MATLAB PDE-toolbox

O To read: Davis, chap 5

Lecture Problems:

1. Methods for AE and ODE Systems notes (pdf-format)
O Methods for algebraic equations
O Initial value problem methods for ODE:s (Davis chap 1)
O Boundary value problem methods for ODE:s (Davis chap 2)
O Hand-in 13/5
2. Methods for PDE Systems notes (pdf-format)
O Finite element methods (Davis chap 3)
O Method of lines for parabolic PDEs (Davis chap 4)
O Elliptic and other PDE problems (Davis chap 5)
O Hand-in 31/5

Computer Exercises:

The exercises can be done in the computer rooms on freday 8.30 (exercises 1-3 and 5).
The exercises can also be done at home and they require MATLAB 4 with ODE Suite. Some
problems may require additional software.

1. Steady-State Simulation of AEs notes (pdf-format)
Fre. 19/4, Babaorum
O Linear equations - LU-decomposition, pivoting, iteration methods
O Nonlinear equations - Newton methods.
O additional functions: £solve (optimization toolbox), gseid(Mathews, chap3)

2. Dynamic Simulation of ODEs (notes not available here)
Fre. 26/4, Babaorum

O Dynamic simulation with MATLAB

O Explicit and implicit solver behaviour

O non-stiff and stiff problems

O Solvers in ODE Suite

O additional functions: eulers, rk4(Mathews, chap9)



3. Steady-State Simulation of ODEs notes (pdf-format)

Fre. 3/5, Babaorum
O Shooting Methods
O Finite Difference and boundary conditions
O Sparse equation solving and sparse storage
O MATLAB, sparse matrix technique

4. Dynamic Simulation of PDE using FD based MOL notes (pdf-format)
Wed. 15/5, Lutetia

O Finite difference and Method of Lines

O Parabolic PDEs in one space dimension

O Sparse ODEs

O MATLAB with ODE Suite

O additional functions: finedif, forwdif, crnich (Mathews, chapl0)

5. Simulation of PDEs using FEM notes (pdf-format)
Fre. 24/5, Babaorum

O Finite Element Method - Galerkin
O Static and Dynamic problems
O MATLAB - PDE toolbox

Literature:

® Davis (1984), Numerical Methods and Modeling for Chemical Engineers, Wiley
® Froberg (1985), Numerical Mathematics, chap 10 and 11 , Benjamin/Cummings
® A short bibliography

Examination:

1. Passive: the lectures and hand-in on the lecture problems (2 marks).
2. Active: 1 and hand-in on a selection (3) of the computer exercises (5 (2+3) marks).
3. Research interested: 2 and one theoretical seminar and one minor project (7 (2+3+2) marks).

Process Simulation extension (part 3, research interested): In the case of interest, a continuation
of the course is possible. The extension will then be a set of seminars with active students. Examples
on seminars:

® Nonlinear equation solvers

® Flowsheeting methods, partitioning and tearing
® DAE-solvers

® MOL - accuracy and stability

® Adaptive regridding in PDE-solvers

Projects after own choice.

Bernt Nilsson
Dept. of Chemical Engineering II, Lund Institute of Technology, Box 124, 221 00 LUND, Sweden

URL: http://www.chemeng.lth.se/Pers/Bernt, E-mail: bernt .nilsson@chemeng.1lth.se, phone: +46 46 22 236
27
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Simulation of Process Systems

PhD course at Department of Chemical Engineering 11
april and may 1996.

A short Bibliography
A (not complete list of) number of references and personal reflections

Course Literature:

Davis (1984), Numerical Methods and Modeling for Chemical Engineers, Wiley
A well organized book which gives an introduction to numerical methods for ODE and PDE
problems. The whole book is used in the course. Sometimes to breif.

Froberg (1985), Numerical Mathematics, chap 10 and 11 , Benjamin/Cummings
A book that breifly discuss many areas in numerics (to breif in my opinion). Two chapters are used
in the course which gives a breif presentation of methods for linear and nonlinear equation systems.

books in Chemical and Process Engineering:

Finlayson (1980): Nonlinear Analysis in Chemical Engineering, A book that could be used as the
course book. More detailed then Davis.

Ramirez (1989): Computational Methods for Process Simulation, A well organized book and an
interesting contents but are based on sequential thinging and FORTRAN coding which makes the
text minor interesting (an old book in a new cover).

Villadsen and Michelsen (1978): Solution of Differential Equation Models by Polynomial
Approximations , Prentice-Hall

books in Numerical Mathematics:

Mathews (1992), Numerical Methods for mathematics, science and engineering, Prentice-Hall.
Gives a detailed presentaion of simple methods. There is a supplement with MATLAB examples
and MATLAB codes, which are used in the course.

Golub and van Loan (1982): Matrix Computations, A bible in numerical linear algebra!

Dahlqvist and Bjork (1974): Numerical Methods, A well written and condensed material. A
dominating book on the subject in Sweden.

Schiesser (1991): The Numerical Methods of Lines, Academic Press. A book focused upon MOL
and finite difference. (to focused)

Ames (1992 (from 1969)): The Numerical Methods for Partial Differential Equations, Academic
Press, A book that covers a lot but the new book contains both new and old methods and it is not



obvious whats of interest today.

Hairer, Norsell and Wanner (1992): Solving Ordinary Differential Equations I, nonstiff problems
Springer-Verlag, THE book on the subject. A good reference with detailed presentations and
discassion

Hairer and Wanner (1992): Solving Ordinary Differential Equations II, stiff and
differential-algebraic problems Springer-Verlag, part 2 of the previous one.

other good references:

Soderlind (1987), Numerical Analysis of Ordinary Differential Equations (lecture notes PhD
course).

Soderlind (1989), Stiff Differential Equations (article).

Marquardt (1994), Numerical Methods for the Simulation of Differential-Algebraic Process Models
(article).

Software Tools and Manuals:

MathWorks, MATLAB manuals.

Shampine and Reichelt: the MATLAB ODE Suite. Detailed presentations of the methods in the suite
Optimization toolbox contain a nonlinear equation solver fsolve

Spline toolbox contain piecewise polynomials and B-splines. There is an example how to solve
ODE with BVP using the collocation method.

PDE-toolbox contains a well written chapter introducing Galerkin based Finite Element Method.

Back to
Simulation of Process Systens

Last update: May 23, 1996.
Bernt Nilsson
bernt.nilsson @ chemeng.lth.se



SIMULATION OF PROCESS SYSTEMS

Introduction

Bernt Nilsson, Chemical Engineering |
Bernt.Nilsson@chemeng.1lth.se

SIMULATION

from NATIONALENCYKLOPEDIN:

Simulering, att representera ett system med ett
annat i avsikt att studera dess dynamiska uppforan-
de eller for att under laboratorieforhallanden trana
beharskandet av systemet. Motiven for simulering
ar att systemet ar alltfor komplext for en analytisk
undersokning, annu inte ar tillgangligt, ar for dyrbart
eller for farligt. etc.

Simulator, apparat eller anlaggning som helt eller
delvis efterliknar komplicerade hi3ndelseforlopp och
maskiner i samspel med manniskor. En simulator kan
direkt upplevas och paverkas pa samma satt som sin
forebild av forare eller operatér. etc.
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SIMULATION SIMULATION OF PROCESS
SYSTEMS
Contents:

e When is simulation useful?
e How is it done? History and State-of-the art.
e Simulation methods presented in this course

e Relations to other courses

— Simulation of Process Systems — 9 april 1996 Introduction p 3

When is simulation useful?

o Understanding
Verify that model and system agree. Understan-
ding of model/system behaviour.

e Virtuell experiments
make "experiments” on the system/model that
are hard to do, expensiv, takes long time, dange-
rous,etc.

e Numerical studies
Make detailed studies and analysis of the system.

e Design
Design and configuration studies of a new system

e Training of operators
Special design simulators for training

e games and entertainment

— Simulation of Process Sy — 9 april 1996 Introduction p 4




SIMULATION OF PROCESS
SYSTEMS

How is simulation done?

® "Physical” simulator
Representation of the system in another physi-
cal system. (diffusion problem rep. in a heating
problem)

e Analog computers
The mathematical model of the system is repre-
sented in an electrical circuit with the same beha-
viour.

¢ Digital simulation
The use of numerical methods for equation solving
of the mathematical model of the system.

e "Hybrid” simulators
A combination of digital simulation and the use of
"physical" simulation. (aircraft simulation using
the real instrumentation)

— Simulation of Process Systems — 9 april 1996 Introduction p 5

SIMULATION |
Analog Computers

Electrical circuit components used in analog compu-
ter setups

Amplifier Summator

ut @ o _y1 u21 1
- y2
y1 = K*u1 u22 10
y2 = 1*u21 + 10*u22

Integrator Multiplier

uai 1 ust |
y3
uz2 10 ua2 >< _y'4
y3= —J(u31 + 10*u32)dt y4 = udi1*u42

— Simulation of Process Systems — 9 april 1996 Introduction p 6

SIMULATION 1l
Analog Computers

The concentration dynamics of an ideal mixed tank
model (constant flow and volume) can be described
by the following first order differential equation

@_q(_ )
dt -~ yen T

The corresponding analog computer configuration
becomes

y =K(u-y)

u_1 =

_r (U—Y)® y 1 = @ Y_
1
@. _
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SIMULATION 111
State-of-the-art

Digital simulation of today:

¢ Conventional programming languages
Creation of special designed programs with the

use of public numerical routines
ex. FORTRAN, C

e Technical computing environments

Environments for mathematical problem solving.
ex. MATLAB, Maple

e Simulation environments
Special designed enviroments for simulation
ex. MAX, Simnon (Omola and Dymola)

¢ Real time control enviroments
General system for real time applications and ope-
rator support
ex. G2, Sattline

— Simulation of Process Systems — 9 april 1996 Introduction p 8




SIMULATION 1V
State-of-the-art

A CSTR example in MATLAB:

function [dx] = cstr(t,x)

% Adiabatic continuous stirred tank reactor
% reaction: A + 3B -> 2C ; r=k[Al

% states: 1=A, 2=B, 3=C and 4=T

kO = 7.94e7; ea=49.46; R=8.314e-3; dh = -210;
q = 1.15e-3; V=20%q; m=1000%V; cp=4.17e-3;
nu = [-1; -3; 2; -dh/(m*cp)];

gin = [10.61 40 0 25]’;

k = kO.*exp(-ea./(R.*(x(4)+273));

prod = kxx(1) .*nu;

dx = q/V.*(xin - x) + prod;

This description of a reactor is simulated with the
following command:

ode23s(’cstr’,[0;50],[0;0;0;25])

— General numerical tool

— Toolboxes for simulation, optimization, splines
etc.

— User M-file libraries

— Simulation of Process Systems — 9 april 1996 Introduction p 9

SIMULATION Vv
State-of-the-art

Power plant simulation using OMSIM

18] Adwied Fukiee ¢ W]
2

— High level model description

— Object-oriented modeling

— Differential-algebraic equation solvers
— Continuous and event simulation

— Simulation of Process Systems — 9 april 1996 Introduction p 10

SIMULATION VI
State-of-the-art

Sue 2L

ar crystalization plant simulator using
e - <

- o2 . A e = T

£H (g A2 1 LA AL e A

- - I ! “ m ! .
¢ b , L - e I - r s

OO0 ODOD 00 0000000000 |

| oo

Ex

Different programming styles
Integrated graphical interface
Real-time simulator
Animation

—- Simulation of Process Systems — 9 april 1996 Introduction p 11

SIMULATION PROBLEMS |
Algebraic System

Ny
Ha
NH3

In a system the following simple reaction occures.
No+3Hy, — 2N Hj

case 1: Static overall model
Assume

— static behaviour

— overall model

Put up three static species balances over the system

MB: ACC = N - OUT + PROD
Ny: 0 = Ny, - N+ (-Dr
Hy 0 = Nj - Ngt 4+ (-3)r
NH;: 0 = Niu, - N, + (+2r

We have an algebraic equation set with 7 unknowns
and 3 equations.

— Simulation of Process Sy — 9 april 1996 Introduction p 12




SIMULATION PROBLEMS II
Algebraic System

Ny N2
—

Hy Hay

NHy m ouT s

Assume the following
—~ N* is known
— Specify the production of NH;

Now the problem can be expressed as a linear equa-
tion system!

Lo ][ N N
ou 3 an
0 1 3| Nge =] N B

or on a more compact form

Ax =1b
Steady-state simulation solves the algebraic equa-
tions for a set of different specifications, eg a number

of different Nl(ﬁntlg‘

General case, nonlinear equation: f(z) =0

— Simulation of Process Systems — 9 april 1996 Introduction p 13

SIMULATION PROBLEMS 111
Dynamic Lumped System

Ny N2
Ky Hy

1 NH
HE g IN ouT 3

case 2: Dynamic overall model

Assume lumped descriptions of the amount of the
species in the system

Put up species balances over the dynamical system

MB: ACC = IN - OUT + PROD
dnp. 1 ou
Ny de = Ny, - NP+ (SDr
. TLH. e n ou
HQ. dTZ = NH2 - NH; + (—3)r
nNH.
NHz: —g = Ny, - Nggho + (42
This results in 10 unknowns and 3 equations.
— Simulation of Process Systems — 9 april 1996 Introduction p 14

SIMULATION PROBLEMS IV
Dynamic Lumped System

Assume the following

— homogenous concentrations and ideal mixing
— first order reaction kinetics
— constant volume

ACC IN - OUT + PROD
d .

vl = qcn, - 4CN, - kVep,
v = qcﬁ?z - qcm, - 3kVep,

chH. ;
V—&r——i = qCWHS - qgCNH, -+ 2]{:VCN2

If we know the inflow concentrations and assume a
value on the concentrations inside the system at time
ty we can calculate the derivitives of the concentra-
tions.

— Simulation of Process Systems — 9 april 1996 Introduction p 15

SIMULATION PROBLEMS V
Dynamic Lumped System

Ny N2
Hy L5}
NH 3 N NHy

A description like this is called a state-space descrip-
tion of first order ordinary differential equation
system (ODE)

ACC = IN - OuUT + PROD
Z;zb . %Cl}\rflz - Fen, - ken,
ﬁ = icinz - icH2 - 3kenw,
= = VCNH; -~ VCNH; + 2kCN2

This can be rewritten as

x = Ax 4+ Bu
Dynamic simulation solves a set of ordinary diffe-
rential equations (ODE) based on the initial values

of the "states”, the so called initial value problem
(IVP)

Nonlinear state-space case: £ = f(z, u)

— Simulation of Process Systems — 9 april 1996 Introduction p 16




SIMULATION PROBLEMS VI
Distributed Parameter System

Ny Ny
Hy Ha
NH3 ™ oot NH 3

case 3: Static space dependent model
Assume the following

— one space dimension

— constant cross area (tube geometry)
— space dependent concentrations
first order reaction kinetics

Species balances over a slice in the "tube" gives the
following, if one assumes steady-state conditions in
the system

ACC = IN - OouUT + PROD
0 = q’cy, q"mc;;‘" - Adzken,
= qchj,2 - qz+dzcj::: - Adz3kcp,
= d’cip, - q”dzc:i,*}’,‘; +  Adz2kcp,
Let dz — 0
— Simulation of Process Systems — 9 april 1996 Introduction p 17

SIMULATION PROBLEMS Vi
Distributed Parameter System

Ny Ny
Hy —
NH3 m ouT Eitla

We get a set of ODEs in space

d(chz)
dz

d(gcn,)
_dz—z‘ = —3I€CN2

d(genmy)
dz

= —A‘,CN2

= 2]CCN2

Mathematically this is representaed as x = Ax.

We have 6 unknowns and 3 equations and we can
assume that we know the variables at the inlet or/and
at the outlet.

— ¢ known at z = z;, = IVP
— otherwise we have a boundary-value problem
(BVP) where ¢ at z = z,,; is known

— Simulation of Process Systems — 9 april 1996 Introduction p 18

SIMULATION PROBLEMS VIl
Distributed Parameter System

Ng Ny
Hy Hp
NH3 m our M3

case 4: Dynamic space dependent model
Assume the following

— one space dimension

— constant cross area (tube geometry)
— space dependent concentrations
first order reaction kinetics

Dynamic species balances over a slice

ACC = IN - ouT + PROD

drAd b]

(A ::‘Nz - qzcivz _ qz+dchvq;dz . Ade:CN2

d( Adzdey,

, (r StCH: — qchqz _ qz+dzcilzdz B AdZBkCNZ
Adzde .

SNy e = Cehm, - TP+ Adz2ken,
Let dz — 0

— Simulation of Process Systems — 9 april 1996 Introduction p 19

SIMULATION PROBLEMS IX
Distributed Parameter System

We get a set of Partial Differential Equations in
time and one space dimension

den, _ Agen,) Ky
ot az Rl
Ocy, dgen,) -
(’)t ] —T == 3!»(,;\12
Ocng,  O(genmy)
8~ T oy Tikem

Mathematically this is expressed as a linear (parabo-
lic) PDE

ox 9%*x ox

— =A——4+BZ 4B

5t “om T Py X
We have 9 unknowns and 3 equations and we need

to specify

— initial values in time
— boundary values in space

— Simulation of Process Systems — 9 april 1996 Introduction p 20




SIMULATION PROBLEMS X
Problem Formulations

The different cases show that the same application
results in a number of different simulation problems.
Depending on the choice of model description the
simulation problem is changed

e Overall and steady-state
= Algebraic equations, AE

e Overall and dynamic
=> Ordinary differential equations with initial value
problem, ODE-ivp

e One space dimension and steady-state
= Ordinary differential equations with boundary
value problem, ODE-bvp

e Two or more space dimension and/or dynamic
= Partial differential equations with boundary
and /or initial value problem, PDE

— Simulation of Process Systems — 9 april 1996 Introduction p 21

COURSE CONTENTS
What the course contains

Main topics of the course:

o AE-systems

— Linear: LU decomposition and iterativ methods
— Nonlinear: Fix-point and Newton methods

o ODE-systems with VP

— Explicit: Runge-Kutta and multi step
— Implicit: Gear and DAE-solvers

e ODE-systems with BVP

— rewrite as [VP: Shooting methods
— Discretization: Finite difference and finite ele-
ment

e PDE-systems

— Parabolic: Method of lines

e How to do it in MATLAB

(This list is not complete)

— Simulation of Process Systems — 9 april 1996 Introduction p 22

COURSE CONTENTS
What the course do NOT contain

e Modelling

e Flowsheeting

e Numerical analysis of method behaviour
e Implementation issues

e Stochastic simulation

e Discrete simulation

— Simulation of Process Sy — 9 april 1996 Introduction p 23

SIMULATION COURSES
at LTH

* Process simulation (at Chemical engineering )

Numerical analysis

o Numerical methods, advanced course

o Finite element method (at Solid or structural
mechanics)

- Simulation (SAM)

~— Simulation of Process Sy — 9 april 1996 Introduction p 24




SIMULATION
References

Books that covers the course:

FINLAYSON: Nonlinear Analysis in Chemical Engine-
ering

RAMIREZ: Computational Methods for Process
Simulation

Books that covers numerical aspects in the course:

DAHLQVIST AND BIORK: Numerical Methods

— Simulation of Process Systems — 9 april 1996 Introduction p 25

SIMULATION
Requirements for PhD points

Lecture Problems 1 and 2: )
Solved by paper and pen (sometimes with the brain).
No need for computer solutions. Hand-In

Computer Exercises, part A:

A number of problems to be solved by the use of
MATLAB ( and additional toolboxes) to illustrate
theory and methods.

Computer Exercises, part B:
One problem to be solved by the use of MATLAB
(or similar programs).

Passive (2 p): Hand-In of 2 lecture problems

Active (5 p): Hand-In of 2 lecture problems and
of 3 computer exercises (select 3 out of 5)

Recommendation: for you that is not familiar with
MATLAB go through the MATLAB-course material
before Computer Exercise 1!

— Simulation of Process Systems — 9 april 1996 Introduction p 26

SIMULATION
MATLAB course

Lectures

Computer Exercises, part A:

A number of problems to be solved by the use of
MATLAB ( and additional toolboxes) to illustrate
theory and methods.

Computer Exercises, part B:
One problem to be solved by the use of MATLAB
(or similar programs).

— Simulation of Process Systems — 9 april 1996 Introduction p 27

SUMMARY
Simulation of Process Systems

Summary of lecture:

e Simulation: What, When, How?
e History and State-of-the-art

e Motivation for different methods

e Methods presented in this course

— Simulation of Process Sy — 9 april 1996 Introduction p 28




SIMULATION OF PROCESS SYSTEMS

Steady-State Simulation
of
Algebraic Equations

Literature: Froberg, chap 10 and 11

Bernt Nilsson, Chemical Engineering Il
Bernt.Nilsson@chemeng.lth.se

— Simulation of Process Systems — 10 april 1996 AE systems p 1

STEADY-STATE SIMULATION
OF ALGEBRAIC EQUATIONS

Contents:

e Linear Equations

Gaussian elimination

LU decomposition and pivoting
Error analysis and condition numbers
Iteration methods

e Sparseness
e Difference Equations

e Nonlinear Equations

— Fixed-point methods
— Newton methods

— Simulation of Process Systems — 10 april 1996 AE systems p 2

LINEAR EQUATIONS |

A set of linear equations

a11Z1  +aere +... Haiyry =bh
a21%1  +agZz: +... Hasyry =bo
aNllxl +anzzy +... +annzy =bn
can be written on matrix form
a1 412 ... Q1N ] by
agi Gz ... dan Ty | _ | b2
aNi aN2 ... ANN TN bn
and on a more compact form
Az =10
— Simulation of Process Systems — 10 april 1996 AE systems p 3

LINEAR EQUATIONS 11

Methods to solve Az = b.

e Direct methods

— Invert A and calculate z = A1

— Gaussian Elimination (LU decomposition)
e Indirect methods (iteration methods)

— Jacobi
— Gauss-Seidel
— Succesive Over-Relaxation (SOR)

— Simulation of Process Systems — 10 april 1996 AE systems p 4




LINEAR EQUATIONS Il
Gaussian Elimination

[llustration of Gaussian elimination on one example
from Froberg

1 —2 3 —4][z= 0
3 -2 3 -7||y]|_ 5
5 —18 29 —23 || 2z |~ 1
4 —4 0 -29 || w —25

Write in a form used in the linear algebra course;

1 -2 3 -4 0
3 -2 3 =7 5
5 —18 29 -23 1
4 -4 0 =29 =25

Multiply row 1 with 3 and subtrac it from row 2 and
so on...

0|1 -2 3 —4 0
310 4 -6 5 5
o 0 -8 14 -3 1
410 4 —12 -13 | —-25
— Simulation of Process Systems — 10 april 1996 AE systems p 5

LINEAR EQUATIONS IV
Gaussian Elimination cont.

Continuation of the elimination example

1 -2 3 -4 0
3 0 4 -6 5 5
5 =210 O 2 7 11
4 110 0 -6 —-18 | —30
1 -2 3 —4 0
3 0 4 -6 5 5
5 -2 0o 0 2 7| 11
4 1 -3 0 0 0 3 3

We have obtained a triangular system, which can be
solved by backsubstitution.

The diagonal elements, 1,4,2,3, are called pivots.
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LINEAR EQUATIONS V
LU Decomposition

Gaussian elimination is also called LU decomposition
A=LU

where L is Lower triangular and U is Upper triangular

From the previous example we get

1 0 0 0
3 1 0 0
L= 5 =2 1 0
4 1 -3 1
1 =2 3 =4
0 4 —6 5
U= 0 0 2 7
0 0 0 3
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LINEAR EQUATIONS Vi
Pivoting and Permutations

Gaussian elimination is unstable because of the possi-
bility of abitarily small pivots (diagonal elements).
This is avoided by the permutation of A, i.e. make
LU decomposition of PA where P is the permuta-
tionmatrix

Pivoting:

e Complete pivoting: search for the larges entry in
the submatrix, both row and column permuta-
tions, stable,

e Partial pivoting: search for the largest entry in
column, only row permutations
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LINEAR EQUATIONS ViI
Error Analysis

The condition number, u, is defined as

=14l [|Aa7Y]

The "relative” error can now be expressed as

7
e < €
< 1—51P«( 1+ €2)

_ 5= _ 118A] _ lIss|]
where e = et L €1 = T and &2 =
This means
e n>1

e ¢ — oo when g —

e A s ill-conditioned if u is large
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LINEAR EQUATIONS VIII
Direct Methods in MATLAB

e [L,U,P]= 1u(A) makesa LU decomposition with
partial pivoting.

e x = A\b uses lu
e cond(A) calculates the condition number,

e rcond(A) calculates the relative condition num-
ber. This is normally used as an indicator in MAT-
LAB routines.

e inv(A) inverts the matrix A.
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LINEAR EQUATIONS IX
Iteration Methods

Iteration methods can be used when

o A is diagonally dominant: a;;| > 3., |as;]
e A matrix is large and sparse

Simple version of iteration: Jacobi method.

¥ = (b) — 1928 — ay32%) /ay;
25T = (by — amaf — a232%)/an

.'12§+1 = (bg — agla:’f bt a32:1:’2“)/a33

Previously calculated z* are used to calculate new
zk+1
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LINEAR EQUATIONS X
Iteration Methods cont.

Assume the following decomposition of th A matrix:
A=L,+D+Uy

Lower triangular matrix

0 0 ... 0
LL = a:21 0 e 0
anyi1 ayz ... O -
The diagonal matrix
D = diag(au,agg, e ,CLNN)
Upper triangular
0 apn ... ain
UU _ 0 0 ven AN
0 0 0
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LINEAR EQUATIONS XI
Jacobi Iteration Method

The simple Jacobi iteration can now be rewritten on
matrix form
Dzl = (L + Uy)zF + b
e It is easy to invert D
e Do not use the latest z-values

o Can be extended to nonlinear iterations
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LINEAR EQUATIONS XII
Gauss-Seidel Iteration Method

Makes use of the new z-values

35‘1C+1 = (b1 - ‘1125’312C = 013$§)/011

:1:’2chl = (by — aglxlfﬂ — agga:’g)/azg

x’§+1 = (b3 — a31X11(+1 - a32Xl2(+1)/a33

This can be expressed on matrix form
(D+ L)z = —Uya® + b

e It is easy to invert (D + L), (triangular)
o Use the latest z-values

e Can be extended to nonlinear iterations
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LINEAR EQUATIONS XIIl
Successive Over-Relaxation

The Gauss-Seidel method can sometimes converge
very slow. To increase the convergence, different
relaxation methods are developed.

The successive over-relaxation method (SOR) is
expressed on matrix form as follows:

(D +wLp)zF*! = (1 —w)D — wUy)z* + wb
e w > 1 means over-relaxation

e 0 < w < 1 means under-relaxation

e Theory for optimal w
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LINEAR EQUATIONS XIV
Summary: lteration Methods

Iteration methods solve Az = b with the following
iteration procedure

Mz**! = Nz* +b

e Jacobi:
MJ=Dand NJ:_(LL+UU)

o Gauss-Seidel:
Mgs = (D+Ly) and Ngs = —Uy

e Succesive over-relaxation, SOR:
Msor = (D+wLp), Nsor = (I —w)D —wUy
and bSOR =wb
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SPARENESS

Banded matrix is an example of a sparse matrix.
. zeros

!

| nonzeros

Properties of sparse matrices

e Majority of the elements are zero

(Sparseness) density is the relation non-zero and
zero elements, nnz

Sparse matrix technique only store and handle
non-zeros.

MATLAB has sparse matrix technique

sparse convert a matrix to sparse form

full do the opposite
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DIFFERENCE EQUATION |
Eigenvalues and Stability

Assume the following linear difference equation
system
P+l = ok 4 Tk
Steady-state solution for u°:
Ik-i—l — .’Ek — (I . (I))fll'\uo
Dynamic behaviour is captured in the eigenvalues A
Sz = zA = det(A\ ] — @) =0
e |\ < 1, stabil system

e |A] > 1, unstabil system

e )\ < 0, x changes sign every iteration
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DIFFERENCE EQUATION H
First Order System

One linear difference equation with constant input,
u® =1

oFtl = azF 4 (1 — a)

A=—a
1—a
xoo = —t
l—a
[HJ _l} BratOndar]

Config Erase fescale ||Rie

e left: negative real eigenvalues, A = —0.9,-0.4

e right: positive real eigenvalues, A =0.9,0.7,0.2
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DIFFERENCE EQUATION Il
Second Order System

Assume the following difference equation

k+1 ain 1 & 0 k
i s T

||[fAe _Config Ermse  Rescale

o left: eigenvalues, A == 0.85+ 0.3
e middle: eigenvalues, A = 0.7 4+ 0.6

e right: eigenvalues, A = —0.8 £ 0.4¢
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NONLINEAR EQUATIONS
Iteration Methods

e Fix-point iteration
— Jacobi
— Gauss-Seidel

e Bracketing methods
— Bisection
— Regula falsi

o Newton methods

— Newton-Raphsson
— Secant
— Acceleration methods

e Minimization methods

— Newton modifications, Broyden
Gradient methods
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NONLINEAR EQUATIONS i
Fix-point Iteration

Nonlinear equations can be written as
flz)=0
In the general case it is hard or impossible to find an
analytical solution. Rewrite the nonlinear functions
as
z=g(z) (=f(z)+2)

Guess a starting value of z¥ and iterate until it
converges

e Convergence: |¢'(z)] < 1

e [llustration: see p 179 in Froberg
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NONLINEAR EQUATIONS II
Fix-point Iteration cont.

Methods for nonlinear equation systems

o Jacobi: zF*! = g;(zk, ..., z%)
o Gauss-Seidel: xf“ = gi(:c’fH, - ,xfj'll,xf, R
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NONLINEAR EQUATIONS 111
Newton Methods

Make a Taylor expansion of the function f:

5@ = £+ Lo a0+ oo

Make following assumptions

— Neglect second order and higher terms
= f(z)=0
= (= = (§D)x0

Let us use this expression and create an iteration

procedure
okl — ok f(*)
f!(z*)
This is the Newton-Raphson method
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NONLINEAR EQUATIONS IV
Newton Methods cont.

The Newton method can easily be generalized for
nonlinear equation systems with the following nota-
tion

e function vector: f(z)

e Jacobian: J(z) = %ﬂé

Iteration procedure

or more computational correct

0

J(xk):rkﬂ

@) + T (@) (@ - 2h)
) = J(ah)at

Interpreted as A¥z**1 = p¥ where A and b change
in each interation step.
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NONLINEAR EQUATIONS V
Secant Method

The secant method can be seen as a modification
of the Newton method with an approximation of
derivitive

 (fe¥) = f(z*1))
ok

f(at) = (zk — ak-1)

This give us the following iteration procedure

(:L‘k _ :I:k_l)

(f(¥) = fzk=1)

ghtl =gk — f(a*)
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NONLINEAR EQUATIONS VI
Minimization Methods

Rewrite the equation as a minimization problem
f(x)=0 = minf2(z)

Notation

e function vector: g(x) = f?(x)

e Jacobian: J(z) = gg

2

e Hessian: H(z) = g—%

T

Taylor expansion in several dimensions

g(z) = 9(930)4‘(33—930)TJ($0)‘%(m*mo)TH(wo)(x—iﬂo)‘*‘- »

The iteration procedure now becomes
.'I)k+1 — :Ek _ H(:ck)_lj(a:k)
Newton method in optimization
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NONLINEAR EQUATIONS VI
MATLAB routines -

e fzero, zero of a function of one variable
(combination of bisection,secant and interpolation
methods)

e roots finds the roots to a rational polynomial.

e fmins minimize a function of several variables
(Nelder-Meade simplex search)

e fsolve uses a least square minimization met-
hod. (in optimization toolbox: Gauss-Newton or
Levenberg-Marquardt)
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SUMMARY
Simulation of AE Systems

Summary of lecture:

Linear Equations

— LU Facorization
— lteration methods

Sparseness

Difference Equations

Nonlinear Equations

— Fixed-point methods
— Newton methods
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SIMULATION OF PROCESS SYSTEMS

Dynamic Simulation
of
Ordinary Differential Equations

Literature: Davis, chap 1

Bernt Nilsson, Chemical Engineering I
Bernt.Nilsson@chemeng.lth.se
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DYNAMIC SIMULATION
OF ORDINARY DIFFERENTIAL
EQUATIONS

Contents:

e Integration Method Classes

— Explicit Methods
— Implicit Methods
— Multistep Methods

e Stiffness
e Methods in MATLAB
e Differential-Algebraic Equations

e OmSim and Dymola
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DYNAMIC SIMULATION 1|
Initial Value Problem of ODEs

Initial value problem of ODE is expressed mathemati-
cally on state-space as

W) — f(z,y)
y(iUo) =Y

which represents a set of nonlinear differential equa-
tions on matrix form.

y1(x) fi(z,y)
x x,
yo) = | O | pw= | POV
Ym () fm(z,y)
y1(zo)
x
T yz(E 0)
Ym (IB())
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INTEGRATION METHODS |
Euler Method

Assume an ODE on state-space form

dy(z) _
a4 flz,y)

Make a Taylor expansion of the solution y at a point

($i+1 - Ii)z

y(ziv1) = y(@:)+y () (zis1—z)+y" (&) o

where z; < & < x;41. Use the ODE in the Taylor
expression and truncating after the second term. We
get an approximation u; = y; and

Uip1 =u; +hf;

This is the Euler method.
- h = (=n—m0)

— his called the step-size
— N is the number of steps
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INTEGRATION METHODS I
An Overview

e Explicit methods
Uses only old values to calculate new ones
(Euler: w11 = u; + hfi)

e Implicit methods
Uses new values to calculate new ones, requires
iterations
(Implicit Euler: w11 = u; + hfiz1)

e One-step methods
Uses only the prevouis step ¢ to calculate the new

one

e Multistep methods
Uses several steps (k-step method)

e Low/High order methods
Refers to accuracy/step-size relation

Euler is an explicit, one-step, low order method (first
order)
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EULER METHOD |
Error Analysis

Assume that u; is exact, the we compute u; 1 which
creates an error called local truncation error,

€i+1 = Z($i+1) — Uiy

This gives in this case

2(z) = f(=,2)
2w+ h) = s + b (ms, ) + 22" (8)

eiy1 = ’;—fz”(&) = o(h?)

We say that a method is pth-order accurate
€iy1 = O(h,p+1)

Which means that Euler is first order accurate!
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EULER METHOD 1I
Error Analysis and Stability

The global error is defined as

€i+1 = y($i+1) — Uit

and is difference between the true solution and the
numerical solution

Stability: Assume a first order ODE with the true
solution and the corresponding Euler approximation

y'(z) = —ay
y(x) = yoe™**

Ui41 = u; — hau; = (1 — ha)u;
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EULER METHOD 11|
Stability

This means that
w1 = (1-ha)u; = (1-ha)’uiy = ... = (1-ha)*ug
The global error now becomes (assume ey = yo—ug)

€i+1 = y($i+1) — Ui+l
yoe” DR (1 — ha)™(yo — eo)

(e—(i-{—l)ha . (1 o ha)i-i—l)yo + (1 . ha)i-Heo

We see that the global error becomes abitarily targe
if |1 — ha| < 1, which means for stability

0<ha<?2 = h <

Qo

(see table 1.1 in Davis p. 8)
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RUNGE-KUTTA METHODS |
General Description

RK-methods are explicit, one-step methods which
uses function evaluations at points between z; and
Zi41 to increase the accuracy.

v
Uip1 = Ui + g w;i K
=1

where
-1
Kj . hf(fl? -+ th,ui + E aj[Kl)
=1
T = 0
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RUNGE-KUTTA METHODS 1i
General Description

Euler: is the simplest RK-method with v = 1,w; = 1
and K1 = hf(z;,u;)

RK2: v =2 means K| = hf(zi,u;), Ky = hf(z; +
coh,u; + az1 K4) and

Uiyl = Uitw1Af (T, us) Fwoh f (T +coh, witan K1)

and w, ¢ and a are derived after the selection of
function evaluation points and comparision with the
Taylor expansion.

(see the steps in proof of two RK2-methods discussed
on p. 12-13)

(see Figure 1.2 p. 13)
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RUNGE-KUTTA METHODS IlIlI
Accuracy

pth order accuracy requires v (function evaluations)
large enough for available parameters for obtaining
agreement with the Taylor expansion (truncated after

)
[5]6]...
618 ..

Notice the jump from 4 to 6 and the increase in
number of function evaluation over order 4.

p (order) | 2|3] 4
4

5
v (points) || 2 | 3] 6

e Runge-Kutta-Gill is a 4th order RK (RK4).

e More efficient to increase the accuracy then decre-
ase the step-size (see table 1.4)

Higher order methods increase accuracy!
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RUNGE-KUTTA METHODS IV
Error Control

Error estimation for error control and step-size selec-
tion

. * h
- caIFuIate ui+1 and u;,  for h and ok
— estimate e;11 & U, | — U4

Runge-Kutta-Fehlberg (RKF) is a method that effi-
ciently makes a error estimate (see 1.36).
Note:

e "real" step is 4th order accurate

e error estimate is of 5th order

A method like this is called RK45-method
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IMPLICIT METHODS |
Implicit Euler

Assume an ODE on state-space form

dy(z)
dt

= f(xay)

Make a Taylor expansion of the solution y at the new
point

Y(@i) = Y(Tir1)+Y (Tig1) (@i—zig1) +y" (&) 51

where z; < & < x;41. Use the ODE in the Taylor
expression and truncating after the second term. We
get an approximation u; & y; and

Uitr1 = Ui + hfit1

This is the implicit Euler method.

— Nonlinear equation
— Newton iteration in each step
— Converge fast (u; often near u;y1)
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(i = Zig1)?

IMPLICIT METHODS I}
Implicit Euler cont.

Use Newton and make a Taylor expansion f;; over
different iteration steps s

s
fs+1__ s +g (us+1_us )
i+1 = Jiv1 By sy i+ i1

i

and replace f in the implicit Euler algorithm

of® s
uify = wi+ h(ff + BN wifl —uiyy))
Yit1

Express it as a linear equation A%zst! = p°

8 S
(L~ ha_z-—{—l)ufj:ll =ui+hfi, —h

of" s
8yi+1 1+1

Note the use of a Jacobian!
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IMPLICIT METHODS Il
Stability

Assume the following first order linear ODE (a > 0)

dy(z)
dt

= —ay
and put it in the implicit Euler approximation
Uit1 = u; — hauiy

Calculate the eigenvalue of this difference equation

1

(1+ha)ui+1 = U; = Azm

The eigenvalue is always 0 < A < 1 which means
always stable

Implicit methods increase the stability
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IMPLICIT METHODS 1V
Implicit Runge-Kutta

Runge-Kutta methods can also be rewritten on impli-
cit form.

The Runge-Kutta family

ERK is explicit RK

IRK the implicit RK

DIRK is a diagonally IRK (a;; # 0)
SDIRK a special DIRK

Note the need for a Jacobian, analytical or numerical.
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MULTISTEP METHODS |
General Description

A k-step linear multistep method has the form

QoUirr  + U+ .. Uik
= h(Bof(wir1, vig1) + Bof (x4, usi)
+ o Bef(Tivi—k, Yir1-k))

or more compact

k1 ko
Do antiriog =k > Bipf (Tis1—spr Uir1-j,)

Jj1=0 J2=0

The coefficients, «, [, are derived after matching
with the Taylor expansion

— Right hand side is a sum of solution points
Left hand side is a sum of function evaluations
—ki=1and ks =1,8y=0s a Euler

— k1 =1, 89 = 0 are explicit Adams-Bashforth
— Bo # 0 means an implicit method

— k1 =1 and ko = 0 is an implicit Euler

High order explicit multistep methods have poor
stability
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MULTISTEP METHODS 1!}
Predictor and Corrector Methods

Example of a simple implicit 2-step method

h
Uit = wi + 5 ({20 %) + f(@irn, uiga))
Predict a first approximation
o _
Uipr = Ui+ hf;

Then compute a corrected value

h
ulll = u+ S+ f(ui)

Iterate to convergence (one or two iterations).

A predictor-corrector method like this is called
Adams-Moulton.

Implicit multistep methods have high accuracy
but are not good at stiff problems.
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MULTISTEP METHODS Il
BDF Methods

Backward difference formula (BDF) of a k-step met-
hod is

ki

Z QUir1—5 = hf{Tig1, uig1)
=0

— Right hand side is a sum of solution points

— Left hand side in only one function evaluation
— Implicit methods, also called Gear methods

Gear methods have high stability and are good at
stiff problems
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STIFFNESS |
Problem

Assume a linear differential equation system
= Az

The solution of the system is

z(t) = zge

Assume that we solve the problem with an expli-
cit Euler then the step-size depends on the largest
eigenvalue of A,

1
h < —
Al

max

Stiffness problem:

— largest step-size is governed by the largest
eigenvalue
— solution is govern by the smallest eigenvalue
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STIFFNESS 11

Solution
Stiffness ratio:
Y -
SR — s
I)\'mm

which means that
— non-stiff: SR = 20

— stiff: SR =103
— very stiff: SR = 106

Implicit methods outperform explicit methods
on stiff problems because in explicit methods sta-
bility control the step-size and not accuracy
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MATLAB ROUTINES |
Pure MATLAB

Two simple Runge-Kutta solvers are available.

e ode23 is a Runge-Kutta with 2nd order accuracy

e oded45 is a Runge-Kutta with 4nd order accuracy

Function call:
0de23(’fun’,t0,t1, [x0 x1])
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MATLAB ROUTINES il
SIMULINK and s-files

e culer

e rk23, is a Runge-Kutta with 2nd order accuracy
e k45, is a Runge-Kutta with 4nd order accuracy
e adams, multistep method for non-stiff problems
e gear, BDF method for stiff problems

e linsim

Function call with the use of a s-file funs:
adams (’funs’, [t0 t1], [x0 x1]1)
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MATLAB ROUTINES II
the ODE Suite

A suite of 5 new ODE solvers by Shampine and
Reichelt

e ode23, is a 2nd order Runge-Kutta (new)
e ode4b, is a 4nd order Runge-Kutta (new)

e odel13, explicit variable order Adams-Bashforth-
Moulton method for non-stiff problems

e ode23s, an implicit one-step method (Rosen-
brock) with 2nd order accuracy

e odelbs, variable order BDF method for stiff pro-
blems

e odesl, uses SIMULINK methods

Function call with M-file, fun:
ode23s(’fun’, [t0 t1], [x0 x1])
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DIFFERENTIAL-ALGEBRAIC
EQUATIONS |
Problem and Solvers

Extreme stiff problem is when one eigenvalue goes
to infinite.

dy _
0 = g(z,9)

(Part of the dynamics are so fast that it is described
as instantanous or algebraic)

Available DAE solvers

— BDF based solvers like DASSL
— Implicit Runge-Kutta
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OMOLA
OmSim Numerical Solvers

OMOLA is an object-oriented Modelling language
and Omola models can be simulated in OMSIM.
OMSIM contains the following solvers:

e dasrt, is a DASSL (BDF) version
e radaub, is an implicit Runge-Kutta for DAEs
e dopridb, a RK45 method

e RKsuite, a variabel order Runge-Kutta
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DYMOLA
DymoSim Numerical Solvers

DYMOLA is a commercial dynamic modelling labo-
ratory which contains DymoSim for simulation

e deabm, variable order method
e lsode, variable order methods
e dopri-methods (RK)

e dassl, mexx, are DAE solvers
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SUMMARY
Dynamic Simulation of ODEs

Summary of lecture:

o Low/High order Methods

— low order are simpler
— high order increase accuracy

e Explicit/Implicit Methods
— explicit are simpler
— implicit has better stability
e One-step/Multistep Methods
— One-step is simpler
— Multistep increase accuracy
e Stiffness
— Use implicit methods like Gear of IRK

o DAE problems
— DASSL is the most famous
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Steady-State Simulation
of
Ordinary Differential Equations

PART I: DISCRETE VARIABLE METHODS

Literature: Davis, chap 2

Bernt Nilsson, Chemical Engineering !l
Bernt.Nilsson@chemeng.lth.se
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SIMULATION OF PROCESS SYSTEMS

STEADY-STATE SIMULATION OF
ODES

Contents:

e Boundary-Value Problems, BVP

e Initial-Value Methods for BVP

— Shooting methods
— Superposition

e Finite Difference Methods

— Difference Approximations
— Boundary Conditions

e Finite Element Methods (next lecture)
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STEADY-STATE SIMULATION
Boundary-Value Problem for ODEs

A set of linear ODEs on state-space form are expres-
sed as (for a < z < b)

g—z — F(2)y + 2(z)

with the boundary conditions, BC
Ay(a) + By(b) =~
(separated BCs: Ay(a) = 1 and By(b) = v2)

e number of ODEs = number of BCs
NODE = NBC

o only BCs at z = a results in pure IVP
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INITIAL-VALUE METHODS

e Shooting methods

— Linear problems
— Nonlinear problems
— Multiple shooting

e Superposition

Solve the fundamental and particular solutions
and add them to fulfil the BCs
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SHOOTING METHODS |
Linear Problems

Linear second-order equation
—y"(2) + p(2)y'(z) + q(z)y(z) = r(z)
with the linear two-point (separated) BC

agy(a) — ary'(a) = @
boy(b) — b1y’ (b) = B

e by=b=0= ODE-IVP

e by # 0 or/and b; # 0 = ODE-BVP
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SHOOTING METHODS 1l
Linear Shooting

Define two functions y(z) and y!%(z) as the solu-
tion of two initial-value problems

e first IVP
yla) = —aCy
yW(a) = -aG
e second IVP
y[2](a) = a1
ylz]/(a) = a

with the following BC-relation (initial-values)

a100 - aoCl =1

— Typeset by Foil TgX — Simulation - BVP

SHOOTING METHODS 11l
Linear Shooting

The solution now becomes
y(z) = y(z) + syP)(2)
and it satisfies BC at z =«
apy(a) — a1y’ (a) = «
and will be a solution if s is chosen such that
0(s) = boy(b; 5) + b1y (b;s) ~ =0
This equation is linear in s and we get

B — (boy™ (b) + by (b))
(boy!2I (b) + byy @' (b))
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SHOOTING METHODS IV
State-Space Description

The linear second order ODE-BVP is rewritten on
state-space form and results in' a system with four
states.

17! 1

w 0100 w 0
vl g p OO0 vl T
w | Tlooo 1 ||w|T]o
v? 0 0 p ¢q v? 0

with the following initial-values

w(a) —aC)
vi(a) | | —aCh
w?(a) | ay
v*(a) ap

The solution becomes
y(z) = w'(z) + sw(z)
where

_ B — (bow* (b) + byv' (b))
(bow?(b) + b1v?(b))
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SHOOTING METHODS V
Multiple Shooting

Assume that the solution grows in magnitude as
xz — b and that b = 0.

_ B—bow'(b)  w'(b)
T bow?(h) | w2(b)

If 18] < ‘bowl(b)' we get numerical problems when
z—b

UI
V(e) = wia) - Lpplut(z)

Multiple shooting decrease this problem:

1. divide the interval into subintervals
2. adjust the initial values to satisfy BC
3. satisfy continuity conditions
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SHOOTING METHODS VI
Nonlinear Problems

Nonlinear second-order ODE

y' = f(z,y,9)

with the linear two point BC

aoy(a) —a1y'(a) = «
boy(b) —bry'(t) = B

is rewritten as an IVP on state-space form

i)=Y |

with the initial values

w(a) = a18s— o

v(a) = aps— co
and the relations ajcg — age; = 1
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SHOOTING METHODS VII
Nonlinear Problems cont.

The solution becomes y(z) = w(z) if s is a root of
6(s) = bou(b; s) + biu'(b;8) — =0

This is a nonlinear function in s! Iteration procedure
is required, for example Newton

(k]
slE+1] — gkl _ 0(s*™)
0/ (s1H)

How can we find 6'(s)

o o’ 3} 3}
—u+b1—u=b0—w+b1—v=bof+b177

(o) —
7'(s) = bo Os Os Os Os

The two new states are expressed by a linearization
of the original nonlinear ODEs

{ 5 }IZ [ @y + (@ ]
with the &(a) = a1 and 7n(a) = ag
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SHOOTING METHODS Vil
Summary

The shooting method procedure

1. rewrite as two initial-value problems
e linear: particular and fundamental ODEs
e Nonlinear: original ODEs and linearized ODEs

2. solve the two initial-value problems

3. adjust to satisfy the boundary conditions

e Linear: solve one equation
e Nonlinear: iteration procedure and resolve the
IVPs
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SHOOTING METHODS IX
MATLAB

There are no direct methods for shooting problems
in MATLAB and in toolboxes.

e Linear case can be solved directly

1. Use odexx to solve the two IVPs.
2. Adjustment to fit BC using the simulation end-
point.

e Nonlinear case requires iteration.

1. Simulate the two IVPs with odexx.

2. Make new calculation of the BC and resolve
IVP.

o Mathews routines

— Linear shooting method using a RK4-method.
(rks4, Mathews, chap9)
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FINITE DIFFERENCE METHODS |
General Description

Consider the linear second order ODE again
—y"(z) + p(2)y'(z) + q(2)y(z) = r(z)
with the Dirichlet BC

y(a) = o
yb) = B

Impose a unitform mesh on the interval [a, b]

a+ih, i=01,... N+1
b—a
N+1

Z;

(h = mesh-size, N = interior mesh points)

— Typeset by Foill TgX — Simulation - BVP

FINITE DIFFERENCE METHODS 11l
General Description

The problem now becomes a linear equation system
Au=2
where

® u = [uj,...,un| are the approximated solutions
on the mesh points.

e z contains constant part of ODE and the BC.

e A represents the derivative approximations
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DIFFERENCE APPROXIMATIONS |
First-Order Approximations

Consider the following two Taylor expansions

y(z + h) = y(2) + hy'(z) + By (z) + By (&)
y(z — k) = y(z) — hy'(z) + By (z) — By (&)

From these expansions we develop forward and
backward (Euler) difference equations

( ) |:+fl-) ylw) ﬂy”(m)—g—?y”’(&)
( ) ylz)— y{m —h) + //(x)_g_!zy///(gz)

These approximations are first-order accurate
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DIFFERENCE APPROXIMATIONS II
Second-Order Approximations

Take the mean of the two first-order approximations

2y’(az) y('c+h}2 y(x)_i_y(f) J($ h)
y(z+h)—y(z—h)
2h

3! ylll(é-)
y'(z) = —o(h?)

This centered-difference approximation is second-
order accurate

Second order derivatives are approximated in a similar
way. Add the previous two Taylor expansions

2y(z) + h*y'(z) +

h4
Z(y""(&) + y""(&2))

y(z+h)+y(z—h) =

y'(z) = ('c+h)—2il(2)+1(1—h)

o(h?)
and this is a second-order accurate approximation
of the second order derivative.
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FINITE DIFFERENCE METHODS I1lI
Linear Problems

Consider the linear second order ODE

—y"(2) + k1y/'(2) + kay(z) =
Apply the second-order approximations u of y

_u«x+1

— 2u; + ui—y Ujpl — Ui—1
+ Ky

h? 2h houi = 2

with the boundary conditions

Ug = &

un+1 =0
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FINITE DIFFERENCE METHODS IV
Linear Problems cont.

This can now be described on matrix form

u1'|
U2

J
]

[ 2 -1 0
1, -1 2 -1 ... 0
'h_2I .

l un
U1
U2

B
i
i

oY

u2

J
ul]
J

——— —

N
+
»

UN

Or written more compact

Au= =z
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R

ey |

FINITE DIFFERENCE METHODS V
Boundary Conditions

Classification
e Dirichlet: Ay(a) + By(b) = vp
e Neumann: Ay'(a) + By'(b) =

e Robin or mixed:
Ary(a) + Asy'(a) + Bry(b) + Bay'(b) = g

Implications on finite difference method, FDM:

o Dirichlet BCs are values on the boundary and
therefore specifies the values of ug and wp i1

o Neumann BCs describe relations between solution
points round the boundary. ug and uy;1 becomes
unknown and different approximation techniques for
the BC can be used.
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BOUNDARY CONDITIONS |
Method of False Boundary

Assume a Neumann BC:

dy _

=0 =}
dz ¥ v

Create a fictitious point at NV + 2 and use a center-
difference approximation of a first-order derivative

UN — UN42
oN T UN+2 g
2h

In this simple example the fictitious point is expressed
in known points as

UN4+2 = UN

This is now used in the governing equation of the
problem.
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BOUNDARY CONDITIONS II
Taylor Series based Method

Another method, that avoid fictitious points are
based on Taylor expansions for points near the
boundary.

Assume a Neumann BC:

dy
@—0, r=>

Put up the following Taylor series

2
y(zn) = y(@ns1) + by (zng) + 51y (anve) + -
(2h)

y(zn-1) = y(@n41) + 20y (v i) + Sy (@nv) + -0

A second-order accurate approximation of the Neu-
mann BC are the following

4y(zn)—3y(zn+1)—y(zn_1) = 2hy (TN41)+o(h®)
which results in

dy(zn) — 3y(en+1) —y(zn-1)
2h

Y(zny1) =
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FINITE DIFFERENCE METHODS VI
Nonlinear Problems

Consider the nonlinear second order ODE

-y + f(z,y,9') =0
yla)=o, yb)=p

Uniform mesh and centered-difference approxima-
tions

w120t Uig ) —=Ug1y _
= hil : +f(xiau’ia * 2;;: )_O

Uy = Q, un+1 =0
This is a set of nonlinear equations in u
O(u) =0
Iteration required, for example Newton
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FINITE DIFFERENCE METHODS VII
State-Space Problems

A system of ODEs on state-space form

¥ = f(z,y)
Ay(a) + By(b) = o

Uniform mesh and centered-difference approxima-
tions

Ui—Uj—1] Ui-+ug_1

5 = [z, 5

Uy = @, Uny1 =0

This is a nonlinear equation system which requires
a nonlinear solver.
Dimension:

— m states or number of ODEs

— m number of BC

— N + 2 gridpoints

= m(N + 2) discrete variables to find
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DIFFERENCE APPROXIMATIONS Ili
High Order Methods

Fourth-Order Approximation can be found directly
by the use of Taylor series.
(as in the previous discussed approximations)

y'(x) = ﬁ(—2ui+2 + 16ui+1 — 16'U,i_1 + 211,7;_2)

+o(h?)
y"(m) B ﬁg(—ZuH_z + 32uiy1 — 60u; + 32u;—1 — 2ui_2)
+o(h?)

This is also called 5-point differentiation formula

e To increase the accuracy even futher we require
more gridpoints in the approximation.

e There are 7, 9 and 11 point approximations

e Note that BC-approximations also must have the
same accuracy!
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DIFFERENCE APPROXIMATIONS 1V
High Order Methods

Richardsson extrapolation uses two BVP solutions
with mesh-sizes h and % to increace the accuracy.
Express the error in a gridpoint as

Ei eSS h2a1(:r:i) + h4a2(mi) + ...
Use this error expression for the two FD-solutions
y(zi) —ui(h) = hPai(z;) + hlas(w) + . ..
Y—ud) = D) + Eaz) +
y(m,) — U 5 . 2 a1(T; 5 asg ml)
Eliminate ai-term and we get

y(o:) = 248G~ | o

Futher subdivition increase the accuracy to o(hS)
and so on.

Pereyra’s method is proven to be superiour, which is
an iteration procedure that estimates the truncation
error in each step to increase the accuracy.
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FINITE DIFFERENCE METHODS
MATLAB

e Linear case: Ax = z is sparse or very sparse

— sparse(A) convert to sparse notation
— x = A\Db solve the problem
(sparse or non-sparse)

e Nonlinear case: ®(u) =0

— fsolve is a multi-dimensional nonlinear solver
— There is no Newton method, based on sparse
matrix technique, in MATLAB

e Mathews routines
findiff is a second-order FDM for linear pro-
blems
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SUMMARY

Steady-State Simulation of ODEs:

e Initial-Value Methods for BVP

— Shooting methods
Rewrite the ODE-BVP as two ODE-IVP and
adjust the solution to fulfil BC

e Finite Difference Methods

— Approximations of ODEs and BCs into discrete
variables
— Solve an algebraic equation system

e Finite Element Methods (next lecture)
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Steady-State Simulation
of
Ordinary Differential Equations

PART II: FINITE ELEMENT METHODS

Literature: Davis, chap 3, app D

Bernt Nilsson, Chemical Engineering Il
Bernt.Nilsson@chemeng.1lth.se

Simulation: finite element methods 5maj 1996 —p. 1

SIMULATION OF PROCESS SYSTEMS

STEADY-STATE SIMULATION OF
ODES

Contents:

e Boundary-Value Problems, BVP
o [nitial-Value Methods for BVP
e Finite Difference Methods

e Finite Element Methods

General Description

Method of Weighted Residuals
Basis Functions

— Galerkin

Collocation

Simulation: finite element methods 5 maj 1996 — p. 2

STEADY-STATE SIMULATION
Finite Elements for ODE-BVP

Assume one second order linear ODE (for 0 < = < 1)

d%y
w=y+f(x)

with the homogenous Dirichlet boundary conditions

Approximate the solution, y(z), with a set of
piecewise polynomials (pp).

u(@) = 3 as5(@)

— A piecewise polynomial is a function defined on
a partition of the interval

— ¢; is piecewise continuously differentiable

— ¢; are called basis functions

~ a; is unknown constants
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FINITE ELEMENT METHODS |
Collocation Method

The set of unknown a; is determined by satisfying
BVP exactly at m points, x;, the collocation points.
The problem becomes

u(2:) — w(z;) — f(z:) =0
and using the pp-approximation

> ;16 (@) — ¢i(ai)] = f(@) = 0

and by the use of matrix notation

ACa=f
where
- AG = ¢ (z:) — ¢i(:)
- a=[a1,. -, am)T

= f=1f(z1),- . flam)]”
ODE-BVP becomes an algebraic equation system

Simulation: finite element methods 5 maj 1996 — p. 4




FINITE ELEMENT METHODS Il
Galerkin Method

Put up the following integrals for i = 1,...,m.

1
./0 [y () — y(=) — f(2)]$i(z)dz =0

(Use the following integral to rewrite the above)

il 1
/ ¥ (@) i(2)ds = [y (2)i(2)]— ] ¥ (2)¢!(z)ds
0 0

We now get (BC = 0)

1 1
| v@s@as+ [ e+ s@ioors=o
0
and use the following notation for convenience

(yla ¢;) + (ya ¢1) + (f7 ¢1) =0
This is called the weak form of the ODE
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FINITE ELEMENT METHODS 111
Galerkin Method

The set of unknown a; is determined by satisfying
BVP in the integral,

(W, ¢}) + (u,¢:) + (f,6:) =0

and using the pp-approximation we get

O aighd) + O asbs ) + (f,4:) =0
j=1

=1

and on matrix form

A= —g
where
- A = (8}, 91) + (65, ¢4)
-a= [9_1,...,am]T

- g= [fl,"wf_m]T Whereﬁ: (fa¢1)
ODE-BVP becomes an algebraic equation system
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METHODS OF WEIGHTED
RESIDUALS

Apply the pp-approximation in the ODE which crea-
tes a residual

3" ai[¢ (@) — d;(2)] — f(z) = R(z)
i=1

Let us tune the unknown coefficients a in order to
fulfil the integral of weighted residuals

/01 WirR(z) =0

How to choose the weights, W7

— Wi = 6(x — zx), pulses at collocation points
= Collocation method.

Wi = ¢(z), weights are the basis functions

= Galerkin method.

Wi =28

= Least-square minimization.

Other MWR are; method of moments, subdo-
main method etc
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PIECEWISE POLYNOMIALS |
Definitions

Interval partition 7
a=$1<.'L'2<...<.’Eg+1=b
Piecewise polynomial (pp) function, F(z)

F(z) = Pj(z),
T; KB L Tit1, J= luemal
— Pj(z) where j = 1,...,¢, are any sequence of
£ polynomials.

— P;(x) are of order k (degree < k — 1)
— ¢+ 1 breakpoints of F'(x) at z;

By convention

| P(z), z<1
Flz) = { Py(z), =2>z041

and with right continuity F'(z;) = P;(x;)
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PIECEWISE POLYNOMIALS 11
Basis Functions

Assume a set of functions
S={\@)i=1,...,L}

The class of functions g is the set of all function
L
f(@) =) a)(@)
=1

g is called a linear function space.

If X; in § are linearly independent then

— S is a basis for p
— L is the dimension of the space p
— ); is a basis function

pr(m) is the set of all pp-function of order k with
the dimension

dim py(7) = ket
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PIECEWISE POLYNOMIALS 11l
Continuity

Let v = {v;;5 = 2,...,£} such that

i—1

jump,,, ——[f(2)] =0
(fori=1,...,v;andj =2,...,4)
The jump condition is defined as

jump, L[ f(2)] = L (2] — el (2)]

v specifies the continuity of f and its derivatives at
the breakpoints.

pr(m) is a subspace of p;(7) that satisfies the
jump condition specified by v

Simulation: finite element methods 5 maj 1996 — p. 10

PIECEWISE POLYNOMIALS IV
Linear Basis Functions

©3() is a space of piecewise linear functions.

241
Fl@) =) ajuw,
j=1
e see table 3.1
e see figure 3.2 (a)

e no continuity at breakpoints for derivatives of

f(=)
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PIECEWISE POLYNOMIALS V
Hermite Cubic Basis Functions

The Hermite cubic space, p3(7), has a basis of value,
v;, and slope, s;, functions.

+1
f() = lojv; + als;]
=1
e see table 3.2

o see figure 3.2 (b)

e continuity of the first derivative

Simulation: finite element methods 5 maj 1996 —p. 12




PIECEWISE POLYNOMIALS VI
B-splines

For higher continuity specifications B-splines are used
for i ().

N
f@) =Y ;Bj(z)
7j=1
where N = dimgp}(7)(< k¢)
A spline f is specified by its knot sequence ¢ and by

its B-spline coefficient sequence a.
Properties:

e Each B;(z) = 0 when z < t; or > t;4 (local
support)

o > i Bilz) =1
e Each B; satisfies 0 > B;(z) > 1 in the subinterval
e can have continuity up to the (v —1) derivative

e see appendix D for more details
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PIECEWISE POLYNOMIALS ViI
B-splines cont.

A spline f is specified by its knot sequence ¢ and by
its B-spline coefficient sequence a.

e the coefficients a are control points for the curve
e a spline is pp of order k

e knots are almost as breakpoints ¢
(but knots are different in that they may be repe-
ated)

e knot multiplicity + condition multiplicity =
order

e see figure D.2 in appendix D

Simulation: finite element methods 5 maj 1996 — p. 14

GALERKIN METHOD I
Linear Problems

Example 1:
Second-order ODE with homogenous Dirichlet BCs.

—y'(z) =
y(0)
y(1) =

o O =

Set up the matrix problem, A%a = —g, using p3()
(piecewise linear function space).

£+1

u(z) = Z a;w;

For homogenous BCs the first and last basis functions
¢—1
are excluded, u(z) = ;"7 ajw;.
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GALERKIN METHOD II
Linear Problems cont.

The elements in the AG-matrix are
1
G
Aij = / ¢9¢§dw
0
Each basis function is supported on only two subin-
tervals AZ =0, |i—j]>1

AC becomes tridiagonal with the following diagonal
elements

AS = [} (¢)2d =
Jo P+ [ Pl =+ 5

Ti—1lw—Ti) Bif1— T4 hit1

and following super diagonal elements

a _rl _
AT = [y didhde =

Titl -1 1 _ __1
fwil [xi—ﬂ-‘i—1][$f":ﬂs‘—1]dm— hiy1

Simulation: finite element methods 5 maj 1996 — p. 16




GALERKIN METHOD IH
Linear Problems cont.

and to follow up the last page the subdiagonal ele-
ments becomes

@ a1
A=

The g-vector are [f,..., fn)*

1 1
Ti= [ f@a)a = [ dutadde = Gt hin)
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GALERKIN METHOD IV
Linear Problems cont.

The linear ODE-BVP problem are written as
A% = —g

where the a:s are the unknowns which results in

[ ity : 0 ]
L= s tn5) —m 0 !
| 15 hg T Ry k3 ' :
Lo » Gt |

[ar ] [ 3ha+hy ]

} a2 1 — : 2(’12 + h3) 1'

t ae.—t ] L %(he—z.ﬂ'he-ﬂ J

and for a uniform grid the equation system becomes

U IR NN
Rl N R I
[ o IR A R

which corresponds to a second-order correct finite
difference method.
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GALERKIN METHOD V
Accuracy and Nonlinear Problems

In general, the Galerkin method using pj(m) gives
an error such that

lly —ull < CH*

which means that the order of accuracy of the
Galerkin method are equal to the order of the basis
functions

Nonlinear ODEs with homogenous BCs
y' = f(z,y,9)

Generates a nonlinear matrix problem like
Aa+H(a)=0

which must be solved by a nonlinear equation solver
(for sparse systems).
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GALERKIN METHOD VI
Boundary Conditions

Assume an ODE-BVP

(a(2)y'(z)) + b(z)y(z) + c(z) =0
y(0) = ¥y, y(1) = Vo

which results in the integral using B-splines

1
fo (a(@)y' (=)' — b@)y(z) - o(z))Bi(z)dz = 0

Rewrite to weak form using

1 1
/0 (a(z)y () Bi(z)dw = [a(m)y'(w)Bi(m)](l)—/O a(z)y'(z) Bi(z)dz
and the weak form now becomes
[a(z)y (z)Bi(z)]g— (ay', B]) + (by, B;) + (¢, B;) = 0
The BC defines the first term
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GALERKIN METHOD Vil
Boundary Conditions cont.

For B-splines the following is valid

Bi(0)=1, ¥ ,B;(0)=0

Sic1 Bi(0)=0

o]
b4
S

I
v)—‘

Dirichlet: this gives direct that a; = ¥y and ay = ¥,
which is used in the futher evaluation of the integrals.
(number of unknowns becomes N — 2)

Neumann: requires a manipulation if the BC before
using it in the integrals.
(number of unknowns becomes N)
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COLLOCATION METHOD 1|
General Description

Consider the nonlinear ODE-BVP

v’ = f(z,9,9)
my + by’ =, rT=a
ney + Boy’ = o, z=>

Use a PP-approximation in ().

Collocation defines {a;;j = 1,..., N} by satisfying
the ODE at N points
How many and where?

—~k=4andv=2then N=2£42

— Satisfy two BC

— Satisfy ODE at 2 points in each ¢ subinterval

— Optimal position for 2 (k — M) Gaussian
points are —% and % round the middle of

the subinterval.
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COLLOCATION METHOD Il
Linear Problems and Accuracy

A linear problem results in a linear equation system
ACa = f

with the dimension

o N = 2/ for Dirichlet

e N = 2/ 4 1 for one Dirichlet and one Neumann
(or Robin)

e N = 2¢+ 2 for Neumann (or Robin)

and with the accuracy same as the order of the
basis function (same as for Galerkin).
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FINITE ELEMENT METHODS
in MATLAB

e Spline toolbox handles both pp-functions and B-
splines. Can be used to solve nonlinear ODE-BVP
using the collocation method

— spmak makes a spline
— sperv display a spline
— spcol spline collocation

e Partial Differential Equations can be handles in
MATLAB by the PDE toolbox which uses the
Galerkin method.

Will be discussed in the following lectures and
used in exercise 5.
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SUMMARY

Steady-State Simulation of ODEs:

o [nitial-Value Methods for BVP
e Finite Difference Methods

e Finite Element Methods

— Method of Weighted Residuals is the general
framework

— Uses piecewise basis functions as approxima-
tions of the solution

— Galerkin match the ODE with an integral

— Collocation satisfy the ODE at a number of
points

— Hard to use by hand. Use computer tools!

— MATLAB support: Spline and PDE toolboxes
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SIMULATION OF PROCESS SYSTEMS

Dynamic Simulation
of
Partial Differential Equations

PART I: METHOD OF LINES

Literature: Davis, chap 4

Bernt Nilsson, Chemical Engineering Il
Bernt.Nilsson@chemeng.1lth.se

Simulation: methods of lines 17 maj 1996 —p. 1

DYNAMIC SIMULATION OF PDES
in One Space Dimension

Contents:

e Classifications of PDEs
e Method of Lines (MOL)

e Parabolic PDEs

— Finite Difference based MOL
— Finite Element based MOL

e Hyperbolic PDEs

Simulation: methods of lines 17 maj 1996 —p. 2

PARTIAL DIFFERENTIAL
EQUATIONS

Linear second order partial differential equation

a82w + b 8w + Cazw N d(_?g N eé‘w
0x? dxdy 0% 0x Oy

+fw=g

e parabolic PDE: b2 —4ac =0
— also called Diffusion Problem or Heat Equation
— first order in time and second order in space

o hyperbolic PDE: b2 — 4ac > 0

— also called the Wave Equation
— second order in time and space or
— (first order in time and space)

e elliptic PDE: % — 4ac < 0

— also called the Laplace’s Equation
— steady-state problems

Simulation: methods of lines 17 maj 1996 —p. 3

DYNAMIC PDEs
in One Space Dimension

Parabolic PDE: Dynamic diffusion

de H%¢
a5~ Pars

First-order Hyperbolic PDE: Perfect plug-flow
model

or _va_T

ot oz
Second-order Hyperbolic PDE: Gas dynamics
(small disturbances)

0% ,0%
—_— = =
ot? 0%z

Parabolic-Hyperbolic PDE: Dynamic dispersion
model of a tubular reactor in one space (axial) dimen-
sion

Oc d%c Oc

=D———v——kc

ot 0%z Ox
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METHOD OF LINES |
General Description

In general:

e Solution to an algebraic equation is one (or many)
point

e Solution to an ODE is a function of one variable,
a line (not a strait line).

e Solution to a PDE in two variables is a surface

Method of Lines discretize the PDE into a set
of ODEs and the solution will be a set of lines.

e Finite difference in space

e Finite element in space of the time-variable solu-
tion

The surface is approximated with a set of lines.

Simulation: methods of lines 17 maj 1996 —p. 5

METHOD OF LINES 1l
General Description

Consider a simple diffusion problem

w(0,t) =a, w(l,t)=p
w(z,0) =a+ (6 —a)x

Define a uniform grid and make a centered-
difference approximation of the space derivative
w(z;, t) ~ u;

dui _ plitl ~ 2u; + ui—q

dt h?

— This results in a set of ODEs.
— Boundary conditions in space
— Initial conditions in time
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METHOD OF LINES Il
Example

A uniform grid and a centered-difference approxima-
tion of the space derivative on the previous diffusion
problem using the following BCs

-BCGui=aanduyr1 =0
-1ICuy=a+(f—a)r;att=0

results in

TE= %(ug — 2ug + @)
G = Hiuir1 — 2us + uia)

d—s,fl = 5(8 — 2un +un_1)

and on matrix form

-2 1 0 0 a
y 1 -2 1 ... 0 0
#-%| | wrf| |
0 0 1 -2 B

Simulation: methods of lines 17 maj 1996 —p.7

FINITE DIFFERENCES |
Forward Euler Approximation

Make a Forward Euler Approximation of the time
derivative

i+l = Wiy _ D

o = ﬁ(uiﬂ,j — 2u4,5 + Ui-1,5)

Rewrite as a difference equation

At At

Uijr1 = (1= 2D=5)usj + Doy (i + im1,5)

Explicit integration method:

— eigenvalue: \; =1— ZD%

— stability: |X;] < 1

= & < & (Courant condition)

— first order accurate in time and second in space.
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FINITE DIFFERENCES Il
Backward Euler Approximation

Make a Backward Euler Approximation of the time
derivative

Uigbl— W45 D

% = ﬁ(ui+1,j+1 — 241+ Uz’—l,j+1)

Rewrite on matrix form (7 = D%é)

1+ 27 —T 0 s 0
—T 1427 —1 ... 0
y Ujt+1 =
0 - 0 —7 1+27
U1,j+1
u; + T 0
UN+1,5+1

Implicit integration method:

— Linear: solve Au = b in each iteration step

— Nonlinear: iteration to solve f(u) =0

— Unconditional stable

— first order accurate in time and second in space.
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FINITE DIFFERENCES 11l
Crank-Nicolson Method

Make a trapezoidal approximation in time (order 2)

dui  _ Uig1 — Uiy
dt j+1 At

Together with centered-difference space approxima-
tion this results in the following

Ui j4+1 — Uij D
T ES 2—h2((ui+1,j+1 +ui+1,j)
—2(wi,j+1 + Ui,g)

F(Ui-1,541 + Ui1,5))

Implicit integration method:

Unconditional stable

It is called the Crank-Nicolson method

The Theta method is a generalization of the
Euler methods and CN method.

second order accurate in time and space.

Simulation: methods of lines 17 maj 1996 — p. 10

METHOD OF LINES IV
High-Order Methods

The Euler and Crank-Nicolson methods are inte-
resting of historical reasons and that they can be
numerically analysed.

In practice high-order ODE solvers, presented ear-
lier in the course, (chap 1) are used to solve the set
of ODEs.

e one-step or multistep solvers
e high or low order methods
e explicit or implicit solvers

o Note different orders of accuracy in time and space

The selection rules for ODE-solvers should also
be used in MOL!

Simulation: methods of lines 17 maj 1996 —p, 11

METHOD OF LINES V
Nonlinear, Stiff and Sparse

Nonlinear problems occur frequently. Can cause
problems for boundary value approximations and in
discretization.

Stiff problems occur often. Stiffness can occur due
to discretization effects.

Ex: unitform discretization of the radius of a sphere
results in smaller and smaller volumes.

Sparse problems occur always. The space discreti-
zation results (almost) always in a sparse problem.
Sparseness is important for implicit solvers.
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METHOD OF LINES VI
Boundary and Initial Conditions

Mass transfer in a pipe is described by a parabolic
PDE, see p. 137. (Note two dimensions in space)

Odya _ DO, Oya
"ot = Torlor)
Oya _
W(O,Z) =0
dy >
~D 52 (run 2) = y(ya - 43)

ya(r,z=0) =ya,

Inconsistency in the initial and boundary conditions

1. Use the IC in BC at the wall
—DFA = ky(ya, — y%)
This indicated that there is a gradient i the
r-direction

2. 1C defines y4 to be contant inr at z2=10

= 1 and 2 are inconsistent!

Recommendation: choose the boundary condition
and change the inital condition to y4 = y9 at the
boundary.
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MATLAB |
Finite Difference based MOL

e No direct support for space discretization

-2 1 0 0

d%c 1 -2 1 0

9z2 ; ¢
0 0 1 =2

e Describe ODEs (in M-file) using sparse matrices

>> e=ones(n,1)
>> A=gpdiags([e -2*e el,-1:1,n,n)
>> dx=A*x

e Solvers for ODE on state-space form (ODE suite)

— o0de23s, odelb5s can use information about
the sparseness of the Jacobian.
>> odelbs(’fun’, [t0 t1],Y0, ’sparse]’,S)
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FINITE ELEMENTS |
Method of Lines

Finite element methods for static problems are
based on the piecewise polynomial (pp) approxima-
tion of the solution in space.

u(z) =) ajd;(x)
j=1

In dynamic problems basis functions in the pp-
approximation are assumed to be time independent
and that the dynamics is captured by the unknown
coefficients.

u(z,t) = Z ;i (t) g5 ()
Note: ”

e Time independent basis functions

e Time-variable a-coefficients
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FINITE ELEMENTS I
Galerkin-MOL

Assume the following piecewise polynomial (pp)
approximation of the solution

u(z,t) = Y a;(t)¢5(e)
j=1

and consider the parabolic PDE

ow d ow
Bt 'a—x[a(wa w)a]

The weak form becomes

(a‘(m7w)g—1;)a¢;) + (%%ﬂbt) =0
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FINITE ELEMENTS Il
Galerkin-MOL

The MOL formulation of the problem becomes

( waZaJQSJ Zaﬂb (2), ¢z

(z Qe ij :'5) ‘f):) =

Write the problem on matrix form and we get an IVP
with a set of ODEs

Bd/(t) + D(a)a(t) =0
where
e D;; = (ady, ¢})
B, = (¢;,¢i)
* Ba(0) = = [(wo,41), .- ., (wo, pm)]"
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FINITE ELEMENTS IV
Collocation-MOL

Consider a nonlinear parabolic PDE

ow Ow 8%w
E — f(mat,wagaW)

Make the following pp-approximation

u(z,t) = o;(t)g;(z)

J=1

Used the pp-approximation in the PDE and we get
the following equation

z a; t)gj(z:) =

j=1
f(xz,t,ZaJ t)di(xi), ZO‘J d’g Ti), Zaj(t 5 (z4))
j=1 Jj=1
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FINITE ELEMENTS V
Collocation-MOL

Write the problem on matrix form and we get
Ad/'(t) = F(t,a)
e ¢ is local and A becomes sparse

e order of accuracy is o(AtP + hF)

~ k is the order of the basis function g}
— p is the order of accuracy in the integration
method

Simulation: methods of lines 17 maj 1996 — p. 19

MATLAB |l
Finite Element based MOL

e ODE solver for FE-MOL

— A is sparse and should not be inverted directly.
— ODE suite: ’mass’-option to specify A.

e PDE-toolbox

— Can solve Parabolic and Hyperbolic PDEs

— parabolic and hyperbolic uses Galerkin-
MOL

o (no convection terms in current version)
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HYPERBOLIC PDE |
Finite Difference

First-Order hyperbolic PDE

dc _ _ 0c
ot~ oz

has the following simple solution
x
clwt) = ft =)

e Propogates finite discontinuities along the tube.

e Finite difference approximations of second and
fourth order creates numerical oscillations.

o One of the most difficult classes of PDE to integ-
rate numerically.
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HYPERBOLIC PDE 1l
Up-wind Approximations

To solve numerical oscillations there are a number of
approaches

e First order Up-wind approximation creates
numerical diffusion

or _Tij—Tioa,y

oz h

e Recommendation by Scheisser is a combination
of five-point approximation and a three-point up-
wind approximation
W.E. Schiesser: The Numerical Method of Lines.
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HYPERBOLIC PDE I
Hopscotch Methods

Approximation of hyperbolic PDEs (waves) are close
to the stability limit.
(Undamped waves oscillates)

Lax-Wendroff methods add an artificial second
order term to the hyperbolic PDE which results in a
hyperbolic-parabolic PDE

Oc dc kb2

ot~ ‘oz 2022
e The diffusion term damp oscillations

e k is used to tune stability.

(Note: not directly a method of lines)
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METHOD OF LINES VII
Adaptive Grids

o Moving grid is used to move the grid points to
the parts of the solution that have large changes.

(can be viewed as changing dynamics in the
ODEs)

e Regridding is used to change the number of grid
points, change the number of ODEs.
If the second order derivative in a grid point
becomes large, new gridpoints are inserted.
(can not use ordinary ODE solvers)
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SUMMARY

Dynamic Simulation of PDEs in one space dimension:
e Classification of PDEs

Method of Lines (MOL)

— Discretize the solution surface in a set of solu-
tion lines

— Finite Difference-MOL

— Finite Element-MOL

Inconsistent boundary and initial conditions can
occur

Parabolic PDEs

— Can be solved successfully by MOL
— MATLAB: FD-MOL using ODE suite
— MATLAB: Galerkin-MOL using PDE-toolbox

Hyperbolic PDEs

— Can be hard to integrate.
(propagation of discontinueties)
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SIMULATION OF PROCESS SYSTEMS

Simulation of
Partial Differential Equations

PART II: TWO SPACE DIMENSIONS

Literature: Davis, chap 5
Bernt Nilsson, Chemical Engineering Il
Bernt .Nilsson@chemeng.1lth.se

Simulation: PDEs in 2 dimensions 18 maj 1996 —p. 1

SIMULATION OF PDES
in Two Space Dimension

Contents:

e Classifications of PDEs (again)

e Steady-State Simulation or
Elliptic PDEs

— Finite Difference Methods
— Finite Element Methods

e Irregular Boundaries

e Dynamic Simulation of PDEs or
Parabolic and Hyperbolic PDEs

e MATLAB PDE-toolbox
o Summary of Course

o Beyond the Scope
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PARTIAL DIFFERENTIAL
EQUATIONS

Linear second order partial differential equation

0w 49 w + 0%w + da_w + ea_w
@522 Ozdy CBQy oz Ay

+fw=g

e parabolic PDE: b? —4ac =0
— also called Diffusion Problem or Heat Equation
— first order in time and second order in space

e hyperbolic PDE: b2 — 4ac > 0

— also called the Wave Equation
— second order in time and space or
— (first order in time and space)

e elliptic PDE: % — 4ac < 0

— also called the Laplace's Equation
— steady-state problems
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PDEs
in 2 and 3 Space Dimensions

Elliptic PDE: Steady-State diffusion (in 2 dimen-
sions)

8¢ 8%
0= D(—ﬁ? + 3_y2)

Parabolic PDE: Dynamic diffusion (in 2 dimensions)

Oc B 8% %

2~ Pt o)
Hyperbolic PDE: Gas dynamics (in 3 dimensions)

0%v 0% B%w

0%v o O O,
0z2  0Oy? 022

2
Eiail
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PDEs
in 2 and 3 Space Dimensions

Simulation methods

o Elliptic PDE: Steady-State Problems
— Finite Difference Methods
— Finite Element Methods

e Parabolic PDE: Method of Lines with
— Finite Differences
— Finite Elements

e Hyperbolic PDE:

— MOL with Up-wind corrections
— Lax-Wendroff (hopscotch) methods

In other words:

Generalization of previously discussed methods.
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ELLIPTIC PDE
in 2 space dimensions

One example of an elliptic PDE in z — y plane

o) ow 0 ow ow Ow
%[a’l(m;y)a] + 8_y[a‘2(mﬂy)a_y] - f(x7y7w) %a 8_y)

with associated boundary condition (BC):

e Dirichlet BC: w = f(z,y)

e Neumann BC: g—‘: =g(z,y)
% refers to the normal direction of the boundary.)

e Robin BC: a(z,y)w + f(=z, y)g—ﬁ = v(z,y)
(or generalized Neumann)
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FINITE DIFFERENCE METHOD |
Laplace’s Equation

Laplace's equation in a square plane

2w H*w

922 Tz =0

A uniform grid with mesh-size h results in (N —1)2
internal grid points.

Centered-difference approximation:

1
Ayttt = 2ig + vim1] +
i
—(Ay)z[“i,jﬂ = 2uij + Uij-1] =0

For the square problem we get (Az = Ay = h)
Uitd,j + Uijr1 = dij + Ui1,5+ Ui j—1 =0
(order of accuracy o(h?).)
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FINITE DIFFERENCE METHOD I
Dirichlet Problem

Dirichlet BC means known values on the boundary

u;j = f(®i,9;)

where (z;,y;) is on boundary and together with
the difference approximation we get following matrix

problem
Au= fp

— Space discretization is captured by A

— The unknown internal grid point values are
found in the u-vector.

— The Dirichlet BC is described in fp.

— Number of equations are (N — 1)2

o See the matrices on page 179.
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FINITE DIFFERENCE METHOQOD llI
Neumann Problem

Discretize the Neumann BC and use method of false
boundaries (square plane).

1
ﬁ[U—l,j —u1,5] = go,j,

1

“Q—h'[ui,—l - Ui,1] = 9,0
and together with the difference approximation we
get following matrix problem

Anu = 2hg

— Space discretization together with Neumann
BC is captured by Ay

—~ The unknown internal and boundary grid
point values are found in the u-vector.

— The right hand side of the Neumann BC is
described in g.

— Note that mesh-size h becomes a parameter.

— Number of equations are (N + 1)2

o See the matrices on page 180.
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FINITE DIFFERENCE METHOD IV
Example 1

Laplace's equation describing steady-state heat con-
duction. Assume a square plate and uniform grid.

0T  8°T
R i
0x?2 = Oy?
The boundary conditions are
T(07y) = T17 T(lvy) =T
orT oT
8—y(x,0) =0, a—y(:c, 1) = k[T(z,1) — Ts]

Dirichlet BC in the z-dimension
Neumann BCaty =0

Robin BCaty =1

See Figure 5.1 on page 182.
See the matrices on page 183.

[elNe]

Simulation: PDEs in 2 dimensions 18 maj 1996 — p. 10

FINITE DIFFERENCE METHOD V
Practical Problems

Elliptic PDE in z — y plane

0 ow 15} ow ow ow
%[al(%y)%] + a—y[az(x,y)a—y] = f(a:,y,w, Bz’ a_y)

e Variable Coefficients change the values of the
elements in the A-matrix of the linear equation
system.

e Nonlinear Terms, as f, creates a nonlinear equa-
tion system and requires a nonlinear solver and
iteration.

e Nonuniform Grids require careful discretization.
(straightforward centered-differences not valid.)
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FINITE DIFFERENCE METHOD VI
Irregular Boundaries

Dirichlet Conditions

1. Unequal mesh spacing.

e Grid points on the boundary

2. Boundary interpolation.

e interpolation of the real boundary to a new
boundary on the uniform grid points

o See Figure 5.4 on page 190.
Neumann Conditions

e Line segment approximation,

— Nonuniform grid points on the boundary
—~ Approximate boundary segments as straight
lines

o See Figure 5.5 on page 191.
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FINITE ELEMENT METHOD |
General Description

Assume the PDE, 2 W + W = —f(x,y), with the
piecewise polynomial (pp) approximation of the
solution in the  — y plane

z,y) = Y a;¢i(z,y)
j=1

Collocation method satisfies the PDE at m col-
location points

ACa=—f
c 24, &%¢;
- Azy - E?l(mh y]) + wl(m‘n y])
- a= [al,...,am]T

- f = [f(mhyl)a"').f(mm’ym)]T

Galerkin method satisfies the integral of the weak
form of the PDE

ACa =g
- A = (Vi V)
—a=[og,...,om]"
- g= [gla L 7gm]T where gi = (fa ¢'L)
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FINITE ELEMENT METHOD 11
Basis Functions

Basis functions can be created by straightforward
generalization

e Tensor product of one-dimensional basis functions
e Creates rectangles of piecewise polynomials

e Linear basis function see page 201 and Figure 5.7
e Hermite cubic space, pz, results in 4 collocation

points
4(Ny + 1)(INy + 1) unknown coefficients
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FINITE ELEMENT METHOD it
Collocation

Elliptic PDE in Example 3 defined on a square

w  0%w
el B
ox? = Oy

with homogenous Dirichlet on one side and Neumann
on the other in both x and y-direction. Make a
partition of the square into 4 subrectangles and use
Hermite cubic space p?

(o]

4(Ngz + 1)(Ny + 1) = 36 unknown coefficients
4 collocation points in each subrectangles
results in 16 equations

8 internal boundary equations (4 * 2)

12 boundary corner equations (4 * 3)

— See Figure 5.6

Put up all these equation and the result is an linear

equation system
ACa =
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FINITE ELEMENT METHOD IV
Galerkin

Consider a similar problem
0w N Pw
0x2 = Oy?

with homogenous Dirichlet which gives the weak
form

6w6q$! Ow B; _ '
//[E)x 9z T oy 6y]dmdy—/R¢zdmdy

Use the linear pp-approximation on a 2x2-partition
of the square (3x3 breakpopints)

3 3
= E E U mz,yg Wi, g

i=1 j=1

and the resulting problem becomes,
Agouz = go

where
Az = fﬂ%%ﬁ”‘%%ﬂdm dy, g2 = [[wadzdy
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FINITE ELEMENT METHOD V
Galerkin cont.

Instead of integration of the whole domain, one solves
the problem element by element. and the resulting
problem becomes, (see Figure 5.8)

4

Z shliz = 292=92

e;=1 e;=1

Agoug =

and for element 1 we get, h = 0.5
(from the book, check these calculations, wrong?)

A= [ [ 182+ Eamay
WA

1 1 1 h2
- 1—2)(1—y)dedy = —
h/5/< 2)(1~y)ddy ="

18 maj 1996 — p. 17

+(1—=x) ]d:cdy:%

and

Simulation: PDEs in 2 dimensions

FINITE ELEMENT METHOD I
Triangular Elements

The Galerkin method can be formulated on trian-
gular elements

e lrregular regions can be covered by triangular ele-
ments, see Figure 5.9

e TN vertices ("internal nodes”)

e associated basis function,
see Figure 5.10

Example 5 shows the use of triangulation. Only one
internal vertex, all other on the boundary.
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PARABOLIC PDEs
Method of Lines

Consider the unsteady-state diffusion problem in the
plane

Define a uniform grid and make a centered-
difference approximation of the space derivatives

’U)(CL'i, Yjs t) ~ Uy

duij

o ﬁ((um,j 2u4; + Uij-1)

— 2ui 5 + Uim,5) + (Uiger —

— Straightforward generalization of Method of
Lines

— This results in a set of ODEs.

— Boundary conditions in space

— Initial conditions in time

o Galerkin-MOL is just a generalization of 1-
dimensional case
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MATLAB
PDE-toolbox

PDE-toolbox in MATLAB is based on the finite
element method

e Triangular elements
e Piecewise linear basis functions

e Galerkin method

The toolbox can be command-driven or be
used though an interactive graphical interface,
pdetool.

— Geometry and boundary conditions defined in
M-files or by graphics

assempde generates/solves KU = F (elliptic)
parabolic solves M{;ﬂU +KU=F

hyperbolic solves M‘d-?zU +KU=F
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SUMMARY
Chapter 5

Simulation of PDEs in two space dimension:

e Classification of PDEs

e Elliptic PDEs - Steady-State Problems

— Finite Difference Methods
— Finite Element Methods

e Nonuniform Grids and Irregular Boundaries

e Parabolic PDEs
— Method of Lines

e MATLAB PDE-toolbox
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SUMMARY |
Simulation of Process Systems

Introduction to Simulation Methods for Process
Systems

e Algebraic Equations

— Linear - LU-decomposition
— Nonlinear - Newton method

e Initial-Value Problems of Ordinary Differential
Equations

~ Explicit - Runge-Kutta/Adams
— Implicit - IRK/Gear

e Boundary-Value Problems of Ordinary Differential
Equations

— Shooting methods
— Finite difference
— Finite elements
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SUMMARY I
Simulation of Process Systems

Introduction to Simulation Methods for Process
Systems

e Parabolic Partial Differential Equations

— Method of Lines
* Finite difference
* Finite elements

e Hyperbolic Partial Differential Equations
— Method of Lines
— (in general hard to solve, special methods)

e Elliptic Partial Differential Equations

— Finite difference methods
— Finite elements methods
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SCOPE

Scope of the course:

Deterministic models are the basis for all the
methods discussed in the course with no exeption.

Steady-state and Unsteady-state responses
are the ways to study the performances of the
models.

Extensions of the course must go beyond these sta-
tements
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EXTENSION I
Events and Noise

Extensions into Discrete and Stochastic simulation

e State-driven events in continuous time.

— indicator functions (gstop)

e Sampling systems (digital devises)

— one-step methods

e Stochastic systems
— random number generation
— one-step methods (Euler)
e Discrete systems

— (another framework)
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EXTENSION Il

Extensions in Continuous simulation

e Differential-Algebraic Equation systems
— equilibrium problems
— DAE and PDAE-solvers

e Integral Partial Differential Equations

— IPDE and IPDAE - The state is continuous
distributed.

Extensions into frequency domain and frequency
responses

e Complex functions

— Amplitude and argument functions

e Power spectrum

- FFT
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WHAT'S LEFT?

e Computer Exercise 5 - PDE-toolbox

e Soderlind-lecture?

Hand-In discussion (informal)

o

For you that would like to do part /1]

— "theoretical” seminar
— "practical” project
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SIMULATION
part Il

Suggestions on subjects are detailed discussion on
material in the course or extensions of the material

e Nonlinear equation solvers
e DAE-solvers

e Collocation in MATLAB
o Adaptive griding in MOL

e Solvers for hyperbolic problems
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SIMULATION OF PROCESS SYSTEMS
Lecture Problems 1: Methods for AEs and ODEs

Aim: Some theoretical exercises to do by paper and pen and to hand-in 13/5.

Problem 1: A separator is fed with a mixture of 60 % A and 40 % B. 90 % of all
entering B is condensed and removed in stream 2 and all A together with the rest
of B is removed in stream 3. The resulting algebraic equation system is as follows
(equation order: separation demand, A-mole and B-mole balances)

10 0][nNY 36
00 1 || NP |=]60
110]| N 40

Calculate the flows, N, and do a LU-decomposition of the A-matrix. Note that you
have to make a partial pivoting.

Problem 2: The enthalpy in a liquid mixture is related to the temperature as a
polynomial

H(T) = Qg + alT + azTZ + a3T3

Assume that we know the enthalpy and we want to find the temperature. Put up
the Newton-Raphson iteration formula for this problem.

Problem 3: A continuous stirred tank, CST, with cooling and constant volume and
flow has the follows ODE describing the temperature dynamics (assume constant
o dr kA
q
—==(To-T
A I pVC,

(Tc - T)

For simplicity assume { = 0.15 and p"j—‘é = 0.1. What are the restrictions on the

step-sizes for an explicit and on an implicit Euler for this ODE?

Problem 4: What is a stiff problem? When does it occur? What implications has
it on the integration methods? What is a DAE system? Give a process example of
a stiff or DAE problem!

Problem 5: A heat transfer problem is discussed in Example 3 in Davis, chap 2,
on pages 72-75. Formulate it as a shooting problem. (do not solve it!)

Problem 6: Follow the solution of the heat transfer problem on pages 72-75 and
put up the resulting linear equation system, Az = b, for N = 5. How does A4, = and
b look like? Assume H = 1. How is the boundary value 92(1) = 0 approximated?

Bernt Nilsson, Chemical Engineering II and Automatic Control
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SIMULATION OF PROCESS SYSTEMS
Lecture Problems 2: Methods PDEs

Aim: Some theoretical exercises to do by paper and pen and to hand-in 31/5.

Problem 7: One way to solve a parabolic PDE by the use of method of lines
requires an approximation of the space dimension. The resulting problem that
needs to be solved is a set of ODEs. Make a centered-difference approximation
in space and put up the ODE system on state-space form, £ = Az + b, for the
following PDE (0 < z <1 and ¢t > 0).

de d%c

at D8$2 +1
¢(0,t) =0
c(1,t) =
c(z,0) =

as an algebraic equation system. Use piecewise linear basis functions g3 to
approximated the solution. Solve the problem with the mesh-size 1/4 (3 internal
breakpoints). Plot (by hand) the solution and its pp-functions.

Problem 9: Use the Galerkin method in method of lines to rewrite the parabolic
PDE in problem 7 into a set of ODEs. Use piecewise linear basis functions
©3. Write the problem as Bi = Az + b with the mesh-size 1/4 (3 internal
breakpoints).

Problem 10: Solve Problem 1 on page 222 (Davis, chap 5) which is finite
difference approximation of an elliptic PDE.

Problem 11: Describe a problem that you have encountered in your research,
teaching or education that can be solved by a method presented in the course.
(A solution is not necessary, but desired)

Bernt Nilsson, Chemical Engineering II and Automatic Control



SIMULATION OF PROCESS SYSTEMS
Computer Exercise 1:
Algebraic Equation Systems

Aim: The computer exercises in this course are composed of two parts, A
and B. Part A introduce different methods, process application and the use
of MATLAB. Part B is a home exercise to hand-in.

Part A: Algebraic Equations

Exercise 1: LU-decomposition

A purification system with recycle is used to recover the solvent DMF from
a waste gas containing 55 % DMF in air. The product is to have only 10 %
DMF. Calculate the recycle fraction assuming that the purification unit can
remove two thirds of the DMF in the combined feed to the unit. (see the
material balance problem 2.24 in Reklaitis.)

If you put up the species balances over the mixer, separator and splitter and

DMF
air
separator

DMF 55 % —

— DMF 10 %
air — T~ ( )_’alr

DMF

Figur 1. The purification system of DMF

the purification relation one get 7 linear equations. The outflow is assumed
to be N5 =1 (the basis).

Solve the material balance problem seen below, Az = b. Whats the relative
condition number? Make a 1u-decomposition of the A matrix. How does the
permutation matrix P look like and what does it mean? Make a MATLAB
function that plots the recycle fraction, %6-, as a function of the separation

relation, ie change the value of A(7,2). N

(055 =1 0 0 0 o0 o01][N! [ o

045 0 =1 0 0 0 09 || N3y 0
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Exercise 2: Ill-condioned problems

Two fuels are mixed and burned with air to produce a flue gas analyzing 7%
CO4, 1% CO, 7% O and the rest N,. If the fuel compositions are 80% C H,
and 20% Ny and 60% CHy, 20% Cy2Hg and 20% Nj, calculate the ratio of
the feed rates of the two fuels. (see example 4.5 in Reklaitis.)

This can be solved by the use of element balances solving the equation
aAN = b, where « is the atom matrix, A is the component change matrix
and N is the unknown molar flows of the second fuel, air, dry flue gas and
water. The molar flow of the first fuel is set to one (basis).

N=[N2 N3 N% N ]T b=[0.4 0 08 3.2]T

Solve the linear problem. Study the stability of the solution by making small
pertubuations of the air composition, nitrogen, A(1,2), and oxygen, A(2, 2).
What is the relative condition number, rcond, of the A matrix.

Exercise 3: Gauss-Seidel iteration method
Gauss-Seidel is suited for diagonal dominant matricies. Create an linear
equation system Az = b with the following A and b

Al = [zeros(1,n);eye(n-1) zeros(n-1,1)];
A = -2xeye(n) + Al + A1’;
b =-[1; zeros(n-1,1)];

Solve it by the use of the Gauss-Seidel method gseid. (Implemented by
Mathews.) How does this system converge?

(extra exercise: Solve the same problem as in Exercise I with the Gauss-Seidel itera-
tion method, gseid. Notice that this method requires non-zero diagonal elements.
(suggestion: use the following column order 1,7,2,3,5,6,4). Does the iteration con-
verge? Plot the iteration results (of one variable).)

Exercise 4: Nonlinear equation

Phase equilibrium between liquid and vapour can be expressed as y =
K (T)z. The equilibrium polynomial is of third order, K = a+bT+cT?+dT3.
Calculate the bubble point in a liquid, with 20% n-hexan, (z1), and 80% n-
heptan, (z3), using fzero. Unknowns are the vapour compositions, y; och



ya, and the temperature. The three equations needed to solve the problem
are the two equilibrium relations and that the vapour mole fractions must
sum to one.

v = Kz
y2 = Koxo
nty=1

where the equilibrium relations are

K = 1.584 + 5.247 1072T — 4.067 10~*T?% + 7.259 10777
Ko = 1.415 + 3.955 10727 — 2.976 1072 + 5.056 10~ "7T3.

(This is the same ezercise as 11.2 in the MATLAB cource. For you that
have done this exercise solve it by using roots instead.)

Exercise 5: Nonlinear equation system

In a continuous stirred tank reactor, CSTR, a first order exothermic reaction
occurs. A mass balance over reactant A and an energy balance give the
following algebraic equations at steady-state.

g(ca, —ca) —kcaV =0
qpCp(To —T) —kcaAVAH =0

Assume Arrhenius temperature dependency, k = koe#ﬁf%ﬂ

Find the steady-state conditions for ¢4 and T, by the use of fsolve. Use
the following data: c4, = 3, p = 1000, V = 18e — 3, Cp = 4.19, Ty = 25,
q = 60e—6, AH = —2.09¢5, Ko = 4.48¢6, E, = 62800 and finally R = 8.314.



Part B: Process Example

In a process for the catalytic hydration of ethylen to etyl alcohol, only a
fraction of the ethylen is converted.

CyHy + HyO — CyHsOH.

The majority of the product is condensed and removed after each pass
through the converter and the unconverted gases are recycled. (modifica-
tion of example 3.11 in Reklaitis.)

Assume the following data

mixer reaktor separator

Figur 2: Flowsheet for etylen hydration process

e The recyle gases will contain 6.5 % water vapor.
e The convertion of ethylen per pass through the converter is 4.5 %.

o The molar ratio of water to ethylen in the feed to converter, after
mixing the recycle gas with fresh feed, is 0.55.

90 % of all alcohol that enters the separator is condensed.

e Assume the product flow of alcohol to be 100

Application problems: Put up the species balances of ethylen, water and alco-
hol over the mixer, converter and separator together with the information
relations above. Calculate all streams in the process.

Plot the recycle fraction as a function of the conversion.

Numerical problems: Solve this problem using lu-decomposition. The pro-
blem is quite sparse. Define the matricies as sparse and solve it using 1u
again. What is the sparseness (density) of the A matrix, nnz. Count the
number of floating point operations, £lops, needed for the solution using
full and sparse matrices respectivly.

Bernt Nilsson, april 10
Chemical Engineering 11, LTH



SIMULATION OF PROCESS SYSTEMS
Computer Exercise 2:
Dynamic Simulation of ODEs

Aim: The computer exercises in this course are composed of two parts, A
and B. Part A introduce different methods, process application and the use
of MATLAB. Part B is a home exercise to hand-in.

Part A: Initial value problems of ODEs

Exercise 1: Dynamic Simulation

A tank with constant volume has_one inlet and one outlet and are cooled
by a coil with constant temperature. The temperature of the tank, 7', can
be modelled with a first order ODE.

dT kA

UL
i = v, e D

To—T
VpCp( 0—T)

where

— initial value T' = 50
— T, = 25 is the cooling temperature.

— Ty =50 is the inlet temperature.

— assume V C =1

a) Simulate the tank with no inlet, Vors C = 0. Study changes of the initial
value of T.
0ode23(’tank21’,[0 10],50);

b) Simulate the tank with an inlet, Vol C = lu

c) Assume that the inlet is opened after 10 time units. = 1. Study the

VpCp
dynamic behaviour.
function [dtemp]=tank21(t,temp);
“A, Tank model in exercise 2.1
= 2b5; TO = 50; k1 = 1;
if t<1O k2=0; else k2=1; end;
dtemp = k1*(Tc - temp) + k2*(TO - temp);



Exercise 2: Step-sizes and Stability

The example 1 in Davis on page 5 to 7 results in the following ODE. ¢ =
—21.6y. Verify the numbers in table 1.1 and plot the result using an Euler
method with fix step-size, eulers (from the Mathews library). What is the
largest step-size for stability and for non-oscillations?

Do the same simulation with a Runge-Kutta method with fix step-size, rk4
(from the Mathews library). Use 10 steps.

extra: Make an implicit Euler approximation of the equation and simulate it for
some different step-sizes. Make a M-file that do it (no predefined methods).

Exercise 3: Stiffness

Simulate the problem discussed on page 29 to 31 in Davis. Compare one
explicit and one implicit method for the problem. Choose for example ode23
and ode23s.

Exercise 4: Methods in ODE Suite

Different methods are good at different things. One can measure the number
of floating points operations, f1lops, used by a solver in MATLAB. This is
a measurement of how efficient the solver is for a particular problem.
Example:

>> flops(0); %reset counter
>> [t,x]=0de23(’ex2’,[0 1],1); %ode solver
>> nf23 = flops %flops measurement

Do a comparision of all available methods in MATLAB by running the
examples in exercise 2 and 3 and count the floating point operations, flops.
ODE ex.2 ex.3
methods | non-stiff | stiff
ode23
oded5
odel13
ode23s
odelbs
odesl




Exercise 5:

In a continuous stirred tank reactor, CSTR, a first order exothermic reaction
are taking place, see Exercise 1.5 (previous Computer Exercise). A mass
balance over reactant A and an energy balance give the following nonlinear
ordinary differential equations.

d( Ve A
dt

dr
gpCp(To — T) — kcaVAH = VpC'pEt—

q(ca, — ca) — kcaV =

Assume Arrhenius temperature dependency, k = koe_m%?ﬁ).

The steady-state conditions for ¢4 and T was found by the use of fsolve
in exercise 1.5. Use the following data: c4, = 3, p = 1000, V = 18 — 31
Cp=4.19, Ty = 25, ¢ = 60e — 6, AH = —2.09¢5, Ko = 4.48¢6, E, = 62800
and finally R = 8.314.

Make dynamic simulations of the tank reactor and simulate the behaviour
round the different steady-states. Make a phase-plan flot (cq vs. T).

Part B: Heated Vessel Example

Do the Problem 5 in Davis on page 47 and 48.

Numerical problems: Solve this problem using different ODE-solvers, one
non-stiff, one stiff and one stiff with defined jacobian function. What is the
stiffness ratio?

Application problems: The parameters in the example are not so realistic.
(the tank and the termocouple have the same time constants). Assume the
the termocouple are 10 times faster. Assume also that the flow/mass ratio
is between 10 and 50.

Eztra problems: Add dynamic mass balance (rewrite the old ones) and study
the behavior of the temperature control at different tank levels.
(extra ++: Add integral action in the temperature controller).

Bernt Nilsson, april 18
Chemical Engineering II. L TH



SIMULATION OF PROCESS SYSTEMS

Computer Exercise 3: Steady-State Simulation of ODEs

Aim: Some computer exercises (Part A ) to introduce different methods, process
applications and how to do it in MATLAB. Part B is a home exercise to hand-in.

Part A: BVP for ODEs

Exercise 1: Linear shooting method
Dispersion model of an isothermal tubular reactor at steady-state with first-
order kinetics is a linear second order ODE in one space dimension, 0 > x > 1,
d’c dc
— —v——kc=0
dx? dx
where D is the dispersion, v is the velocity, & is the reaction constant and ¢
is the concentration. Assume D = v = k = 1 (for simplicity) and the feed
concentration ¢(0) = 1. The general linear boundary conditions can be written
as:

apc(0) — a1 (0) = a
boc(l) + blc’(l) =4

Solve the boundary-value problem (BVP) for the ODE using the linear shooting
method. Rewrite the problem as two IVPs. Here follows a suggestion of a state-
space representation in a M-file.

function [dx]=tubivp(t,x)

% tub-BVP rewritten as two IVPs
k=1; D=1; v=1;

A={0 1; k/D v/D];

dx=[A zeros(2,2); zeros(2,2) Al=*x;

a) Assume the additional boundary condition ¢(1) = 0.1 (separated Dirichlet
BCs). Thismeansag =1, a; =0, a=1, b =1 b =0, B=01and
the IV-relation becomes a1Cy — a9pC71 = 1 which results in C; = —1 and Cj can
be anything. Simulate the two IVP with the following inital-values

z1(0) = —aCy=-1(-1)=1
.’EQ(O) = —aly=0

z3(0) = —a; =0

z4(0) = —gg=1

It is now straightforward to solve the problem. (note that z5(0) can be chosen
to anything.)



[t,x]=0de23(’tubivp’, [0 1],[1 0 0 11);

n= max(size(x));

s=(beta-(b0*x(n,1) + bl*x(n,1)))/(b0*x(n,3) + bl*xx(n,4));
y=x(:,1) + s*x(:,3);

b) Assume the additional Neumann boundary condition ¢’(1) = 0. Solve the
problem using the technique above.

extra problem: The problem becomes nonlinear if the reaction is of second-order ... —
kc® = 0. Make a nonlinear shooting, see page 57 in Davis, to solve the same problem
as above!

Exercise 2: Finite difference method

An isothermal plug-flow tubular reactor, PTR, with first-order reaction is mod-
elled by a linear first order ODE, vj—; = —kc. Assume a feed concentration
c(0) = 1.

Make a backward differentiation approximation of the ODE and solve the prob-
lem as a linear equation system. (Note that this is the simplest finite difference
approzimation and it is sometimes called the static tank-series model.)

function [x,u,A,b]=tubfdm(n)
% PTR solved by backward finite difference
k=1; v=1; ul0=1;

h = (1-0)/(n+1); Ymesh-size
x=0:h:1; %gridpoints

Ah = [zeros(1,n); eye(n-1) zeros(n-1,1)];%help matrix

A0 = eye(n); %I-matrix

A1 = AQ - Ah; %1st der. approx

A = Al*v/h + AO*Kk; %0DE to AE

b = [v/h*u0; zeros(n-1,1)]; %BC

ui = A\b; %solve gridpoints
u = [u0; ul]; %boundary and grid

Solve the problem with 3,10 and 20 interiour gridpoints and plot the result in
the same plot. Plot u for different &, D, v!

Exercise 3: Finite differences becomes sparse

For a large number of gridpoints the problem becomes sparse or very sparse.
Solve the problem with 100 and 400 points and count the number of flops
and the sparseness density for full and sparse matrix calculations. How many
gridpoints are required in order to make sparse matrix technique superior?

extra problem: Solve this problem using the Gauss-Seidel method, gseid. Can it
compete with LU-decomposition?



Exercise 4: Centered-difference approximation
Let us go back to the dispersion model in exercise 1.
d’c dc
— —v— —kc=0
dzr i ¢
Use the same parameters. Solve the problem using centered-difference approxi-
mation for the following BCs:
a) ¢(0) =1 and ¢(1) = 0.1. See tubCD below.
b) ¢(0) =1 and /(1) = 0. Modify tubCD for Neumann BCs.

function [x,u,A,b]=tubCD(n)

% Tube model solved by centered-difference
% Dirichlet BCs

k=1; D=1; v=1; u0=1; ulL=0.1;

h = (1-0)/(n+1);

x=0:h:1;

Ah = [zeros(1,n); eye(n-1) zeros(n-1,1)];
A0 = eye(n);

A1l = Ah’ - Ah;

A2 = -2%A0 + Ah + Ah’;

A = A2*D/h"2 - Al*xv/(2xh) - AO*k;

b = [(-D/h~2-v/(2*%h))#*ul; zeros(n-2,1); (~D/h~2+v/(2%h))*ul];
ul = A\b;
u = [u0; uil; ull;



Part B: Dispersed Plug Flow Tubular Reactor

Assume a tubular reactor modelled by a dispersion model as in the last exercise
with two reactions A —» B — C which are described as first-order reactions.
This results in two coupled ODEs.

dgc,«, dCA

DAL TA  hiea = 0
Adgr T Vdr A
d26;3 dCB

B TV —kacg = —kica

The BCs at the inlet are c4(0) = 1 and ¢g(0) = 0. Solve the problem using
centered-difference approximations of second-order accuracy {or own choice).
Select a BC at the outlet , i: Dirichlet c4(1) = 0,¢p(1) = 0.2 or #%: Neumann

4 (1) = cx(1) =0.

Application problems: How does the tube profiles look like for different k-values
(begin with k; = 20, he = 1)7 Put up the problem as Au = b. How does A look
like for the two different u-vectors. Show it for n = 5. Visualize the A-matrix
with spy.

i) Uband = [Ue,Ucy)T Where ue, = [Uey1--- U, N]T

%) Uplock = (U1 - .. un]T where u; = (e, juc, ;)7

Make the first reaction reversible, A = B — C and solve the problem. How
does A look like using upand

Numerical problems: Exercise 3 focus on the need for sparse matrix technique to
efficiently solve problems with large numbers of gridpoint. Both of the suggested
functions for finite differences in Exercises 2 and 4 creates 4 to 5 full matrices
before solving. Make a function that never creates a full matrix and that uses
sparse storage together with sparse solving. See the command sparse, speye
etc. Visualize a large A-matrix with spy.

Bernt Nilsson, Chemical Engineering II and Automatic Control



SIMULATION OF PROCESS SYSTEMS

Computer Exercise 4: Dynamic Simulation of PDEs

Aim: Some computer exercises (Part A ) to introduce different methods, process
applications and how to do it in MATLAB. Part B is a home exercise to hand-in.

Part A: Method of Lines

Exercise 1: Euler and Centered-Difference Approximations
Unsteady-state diffusion is described by a parabolic PDE (0 < 2 < a and
0<t<h)

dl" o d*T

dt ~ © da?
A centered-difference approximation in space and forward Euler in time is im-
plemented in the M-file forwdif (from Mathews, chap 10). To simulate the
problem three M-files must be defined, one for the initial value, £, and two for
the boundary conditions, g1 and g2.

u=forwdif (’£’,’gl’,’g2’,a,b,c,n,m);
function z=f(x)

% Initial values for forwdif
Z = 4%x - 4%x"2;

function z=gi(x)
% Boundary condition 1 for forwdif
z = 0;

function z=g2(x)
% Boundary condition 2 for forwdif
z = 0;

Simulate the diffusion problem and make a mesh plot of u using two parameter
sets. What are the Courant condition in the two cases, A =1 — 2c2%?
a) Gridpoints in space are 6 (n = 6) and in time 11 (m = 11)

u=forwdif (°£’,’gl’,’g2’,1,0.2,1,6,11);
b) Simulate to 1/3.

u=forwdif (°£’,’gl’,’g2’,1,0.3333,1,6,11);



Exercise 2: Diffusion and Nonlinear Kinetics

Chemical kinetic models are often benchmark problems in numerical analysis
and you find a number of them in ODE suite. One is the Brusselator model
described in brussex with its Jacobian defined in brussjac. The model is a
parabolic PDE with nonlinear terms, diffusion and nonlinear kinetics, and with
Dirichlet boundary conditions

dea =D%§1—4CA+CBC?4+1
%—f— = D—Jldj; +3ca —cpch
ca(0,t) =ca(l,t) =1, calz,0)=1 +sin((1\,211x)
¢s(0,t) = ep(1,t) =3, cp(x,0)=3

The number of gridpoints in the space discretization is defined in the global
variable N. To get the right starting values for simulation, run brussex with
empty arguments. This command returns tspan, IC and options for ODE solvers
in ODE suite. Simulate the Brusselator and plot the time responses.

global N

N = 10;
[outl,out2,out3]=brussex([],[]);
[t,x]=0de23(’brussex’,outl,out2,out3)

Use the solution above to make surface or mesh plots of c4(z,t) and cp(z,t).
The result in x are c4(z,t) and cp(z,t) for the 10 gridpoints.

nl=(];

for i=1:2:2*N, ml=[ml x(:,i)]}; end;
m2=[];

for i=2:2:2%N, m2=[m2 x(:,i)]; end;
[tt,xx]=meshgrid(t,1:N);
mesh(tt,xx,mi’)

Exercise 3: Stiff and Sparse problems

For the problem in exercise 2 the explicit ode23 take the fewest floating point
operations. That is not the case if N and tspan is increased and the implicit
odel5s becomes the most efficient. An implicit ODE solver needs a Jacobian
to solve an implicit equations system one or many times during the simula-
tion. This Jacobian can be defined analytically or derived numerically. For the
Brusselator the analytical Jacobian is defined in brussjac. If the analytical
Jacobian is not defined the implicit solvers uses a numerical Jacobian calcu-
lated by numjac. If the problem is sparse one can help numjac by defining the
sparseness. The two ways are examplified in the MATLAB code on the next
side.



options=odeset(’analyticJ’,’brussjac’);
[t,x]=0del15s(’brussex,outl,out2,options);

B = ones(2*N,5);

B(2:2:2%N,2) = zeros(N,1);

B(1:2:2*N-1,4) = zeros(N,1);

S = spdiags(B,-2:2,2+N,2%N);
options=odeset (’sparse]’,8);
[t,x]=odel5s(’brussex,outl,out2,options);

Exercise 4: Centered-difference approximation
Let us go back to the dispersion model in exercise 3.4 and modify it to capture
dynamic changes of the concentration.

d*c dc dc

Dw - ’Ua—{; —kc = E
Use D = v = k = 1. Solve the problem using centered-difference approximation
in space and simulate the resulting ODE system with a solver in ODE suite.
Assume Dirichlet BC at the inlet, ¢(0,t) = 1, Neumann at the outlet, ¢/(1,¢) =0
and the initial condition to be ¢(z,0) = 1.
The tube model below can now be simulated with the following command
0de23(’tubMOL’, [0 1],ones(1,11)). Visual the result in a plot(t,u) and
in a mesh(u).
Notice the similarities between tubMOL below and tubCD in Exercise 3.4.

function du=tubMOL(t,u)

% Dispersion tube model with centered-difference
% in space and Dirichlet at the inlet and Neumann
% at the outlet

nn=10; % internal gridpoints
n = nn +1; % nn plus outlet boundary
k=1; D=1; v=1; u0=1; % parameters

h = (1-0)/(nn+1); % mesh-size

x=0:h:1; % space dimension

Ah = [zeros(1,n); eye(n-1) zeros(n-1,1)]; % help matrix

A0 = eye(n); % O-order terms

Al = Ah’ - Ah; % l-order terms

A2 = -2xA0 + Ah + Ah’; % 2-order terms
A2(n,n-1) = 2; % Neumann BC

A = A2xD/h"2 - Alxv/(2%h) - AOxk; % space discretization

b = [(-D/h"2-v/(2%h))*ul; zeros(n-1,1)]; % Dirichlet BC
du = A*%u - b;



(Extra) Exercise 5: Dynamic Dispersion Model

(This extra problem is discussed in more detail in Ramirez, Computational Methods
for Process Simulation, pp 365-376. The exothermic reaction can cause very large
temperature changes, hot spot.)

A dynamic tubular reactor is modelled by one species balance and one energy bal-
ance, both with dispersion. A simple exothermic reaction is assume to occur with

— B,
temperature dependent reaction coefficient k = koe T .

dea _ pdiea  dea
dt — 7 dx? dz 4
dT T dT
pC’,,—d? = )\W - pva—‘E + (—AH)kca

The model in Ramirez assumes a Neumann BC at the outlet, in other words no
gradients at the outlet boundary. At the inlet a Robin BC is used to describe diffusion
and conduction at the inlet boundary, example —A3L(0) = pCpv(Tin — T(0)). The
model is nondimensionalized and discretized into the MATLAB code, dyntub, found
on the next page. See Ramirez for futher details.

[t,x)=0del5s(’dybtub’, [0 1],ones(1,22));

Part B: Hand-In Problems

Select one of the following problems. Based the solution on the material in
chapter 4 and use MATLAB with ODE suite.

a) Simulate the spherical catalyst pellet example discussed and presented on
pages 147-154 in Davis and in Problem 6 on page 169. Make a similar
table as Table 4.4 based on flops in MATLAB.

b) Simulate diffusion in two immiscible solvent system. Solve Problem 3 and
4 on pages 167 and 168.
extra problem: assume another relation between C} and C% then the one
used in the book.

¢) Diffusion and adsorption in an idealized pore. Solve Problem 5 on pages
168 and 169. Discuss discretization, stiffness, sparseness and the use of
ODE solvers in the problem.

Bernt Nilsson, Chemical Engineering IT and Automatic Control



function[du]=dyntub(t,u)

% Dynamic dispersion model of a tubular reactor with species and energy
% balances approximated with centered-FD and MOL

% BC: Robin at the inlet and and Neumann at the outlet

% (code for extra exercise 5) from: Ramirez, Computational Methods for PS

% reactor parameters

a=1; D=1;

ri1=30; r2=30; cp=1;

C0=0.5; T0=510;

L=100; rho=60;

k=1.2e4; q=17.6; dH=4e4;

% a second set

%k=1.2e6; q=23; dH=4.32e4;

% equation parameters

Bl = (dH*k*CO*L"2)/(rho*cp*TO*D);
B2 = k*L"2/D;

Tin = 1;

% step responce after 0.1

if t<0.1 Cin=1; else Cin=1.1; end;

% grid

ni=20; n=ni+2; % Neumann/Robin grid

h=(1 - 0)/(ni+1); % mesh-size

x=0:h:1; % grid points
=u(1l:n); % temp.var.
=u(n+1:2*n); % conc.var.

% FD-matrices
Ah=[zeros(1,n);eye(n-1) zeros(n-1,1)]; % help matrix

A0 = eye(n); % O-order
Al = -Ah + Ah7; % 1-order
A2 = -2%A0 + Ah + Ah’; % 2-order

% Neumann at x=L

ben=zeros(n,1); ben(n)=1;
Tben=(a/(D*¥h~2) - r2/(2+h))*T(n-1).*bcn;
Cbcn=(1/(h~2) - r2/(2*h))*C(n-1).%*bcn;

% Robin at x=0

bcO=zeros(n,1); bc0(1)=1;

TbcO=(a/ (D*h~2)+r2/(2%h) ) * (T(2) -2%h*ri* (T(1)-Tin) ) . *bc0;
Cbc0=(1/(h"2) +r2/(2%h))*(C(2)~-2*h*r2*(C(1)-Cin)) .*bcO;

% ODEs

olin = C.*exp{(-q./T); % temp dep. r

dT = (a/(D*h~2).*A2 - r2/(2¥h)*A1)*T + Bl*olin + TbcO + Tbcn;
dc = ( 1/h~2.%A2 - r2/(2xh)*A1)*C - B2*0lin + CbcO + Cbcn;
du=[dT;dC];



SIMULATION OF PROCESS SYSTEMS

Computer Exercise 5: Simulation of PDEs

Aim: Some computer exercises (Part A ) to introduce different methods, process
applications and how to do it in MATLAB. Part B is a home exercise to hand-in.

Part A: PDE toolbox

PDE-toolbox in MATLAB is based on Finite Element Method using Galerkin,
linear basis functions and triangular elements.

The toolbox can be used through the ordinary command-line in MATLAB or
in the interactive graphical interface

>> pdetool

PDEtool is a window which consists of a set of menus, one toolbar and one
drawing area. The toolbar is just push buttons for some menu choises and it is
optional.

Exercise 1: Steady-State Heat Transfer or Elliptic PDE
Solve Example 1 in Davis, page 181-183, using PDE-toolbox. Consider a square
plate, (0 <z <1 and 0 <y < 1), with the heat conduction equation (Laplace’s
equation)

0T ‘ o0°T _

ox? T By

with the boundary conditions

T(O7 y) = Tl T(l y) = TQ
oT oT

—(z,0) =0 %5

By (2,1) = k[T(z,1) — T1)

Choose for simplicity T3 =2, 75 = 1 and & = -5.

1. Select the rectangle button on the toolbar. Draw a square from (0, 1) to
(1,0). You get a gray rectangle with a name (R1).

2. Select the boundary button (92). The segments of the boundary be-
comes red arrows. By dubble clicking on the boundaries a dialog window
oceurs.

(a) Dubble click on the (z = 0) boundary. Define a Dirichlet boundary
condition with the value r = 2.



(b) Dubble click on the (r = 1) boundary and define a Dirichlet with
r =1

(¢) Dubble click on the (y = 0) boundary. Define a homogenous Neu-
mann, ¢ = ¢ = 0. Note that the boundary arrow change colour to
blue

(d) Dubble click on the (y = 1) boundary. Define a Robin BC (general-
ized Neumann), ¢ = ¢ = 5.

3. Choose an elliptic PDE equation in the dialog window under PDE.
Coeflicients are c=1 and a = f =0.

4. Intitialize the mesh by clicking on the triangle button, A. It takes some
seconds before the blue triangular mesh shows up.

5. Solve the problem by clicking on =.
6. Visualize the result by clicking on the “mesh-plot” icon.

(a) Color indicate temperature by the use of colors
(b) Contour results in a contour plot

(c) Height results in a 3D plot. You can rotate the 3D plot by grabbing
the plot with the cursor.

(d) there is many ways to plot the result.

Exercise 2: Elliptic PDE and Boundary Conditions
Play around with the coefficients in the PDE and the BC definitions.

a) Assume that heat is constantly generated inside the plate. This means that
the right-hand side of the PDE gets a constant value, f = 10. Solve and plot
the result.
°T  9°T n
9% B

b) Assume that heat is removed from the plate in the z-direction (vertical from
the plate), Q, = k1(T — Tp). Select k1 = 5 and Ty = 0 which means ¢ = 5 and
f = 0. Solve and plot the result.

o?°T  9°T

W+O—y2+21—20

c) Assume that the heat conduction coefficient is space dependent, ¢ = 0.1 +
0.92. Solve and plot the result.



d) Go back to the original PDE, @ = f = 0 and ¢ = 1. Change k = 2 in the
Robin BC at y = 1, (g = ¢ = —2) Solve and plot the result.

e) Change the Dirichlet BC at = 0 to 7 = 1 + 0.3sin(10y). Solve and plot the
result.

f) Go back to the original problem once again. Add a nonlinear term

T 9T

— 4+ ——-15T%=0

Oz? + dy?
and in PDE window add a = —1.5u. Go to the Solve menu and select
Parameters.... Click on Use nonlinear solver and define an initial solu-

tion, starting value for the Newton solver (damped Gauss-Newton). Solve and
plot the result.

Exercise 3: Unsteady-state Heat Transfer or Parabolic PDE

A dynamic version of the square plate, (0 < z < 1 and 0 < y < 1), with
the unsteady-state heat conduction, a parabolic PDE or heat equation, is seen
below

o _ o1, T
ot ox?  Oy?
with the boundary and initial conditions
T(t,0,y) =T T, 1,y) =T,
or oT
—(t,2,0) =0 —(t,z,1) = k[T(t,z,1) = T
ay(’x) ) ay(’xu ) k[ (7'7:7 ) 2]
T(07 T, y) =T
Choose for simplicity 73 = 2, 7o = 1 and k = —5.
1. Define your boundaries as in Exercise 1.
2. Select PDE and parabolic PDE with c =d = 1.

3. Initialize the mesh.

4. Select Solve menu and Parameters. .. Define the simulation time [0:0.02:0.2]
and the inital value 1 in u(¢0).

5. Solve, =.

6. Plot the result for different times, like 0.02, 0.1, 0.2. (You can also do
animation of the solution)



Exercise 4: Catalyst pellet or Nonlinear Elliptic PDE System
Rewrite the spherical catalyst pellet model in Problem 4.6 (chap 4, page 169)
to a steady-state elliptic PDE.

—div[(z* 4 y*)gradc] = (z* + y2)B2e7(1-T)¢
—div|(z? + y?)gradT] = (22 + 42)P2 - T)¢
Solve the problem with the nonlinear solver for elliptic PDEs.

1. Select Generic system on the toolbar (menu choice after the zoom but-
ton).

2. Define a circle with the radius 1.
3. Define Dirichlet BC to be equal to 1.
4. Select PDE and parabolic PDE

(a) ¢ = x."2+y."2 for both PDEs (cy; and c2)
(b) £1 = = (x.72+y."2) .*xexp(18%(1-1./u(2))) .*u(1))
(c) £2 = 0.04#(x."2+y."2) .*exp(18*(1-1./u(2))) .*u(1)

5. Initialize the mesh.

6. Select Solve menu and Parameters... and select nonlinear solver with
initial value 1

7. Solve, =.

8. Plot the result for v and v.

Part B: Hand-In Problem

A Newtonian fluid flow example is discussed on page 215-218. Solve the problem
in a number of different ways using the PDE-toolbox.

e Rewrite the problem as a steady-state elliptic PDE.

— Solve it for the duct geometry

— Solve only one corner (and use symmetry to derive BCs).
e Simulate the unsteady-state parabolic PDE for the case discussed in Davis.
e Animate the transient.
e Animate the solution for a sinusoidal pressure change over the duct.

Bernt Nilsson, Chemical Engineering IT and Automatic Control
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