LUND UNIVERSITY

Implementation of a PID Controller on a DSP

Astrém, Karl Johan; Steingrimsson, Hermann

1990

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Astrom, K. J., & Steingrimsson, H. (1990). Implementation of a PID Controller on a DSP. (Technical Reports
TFRT-7466). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
2

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/42638785-aabe-45e6-bb7b-615cb73b69f1

CODEN: LUTFD2/(TFRT-7466)/1-34/(1990)

Implementation of a
PID Controller on a DSP

Karl Johan Astrom
Hermann Steingrimsson

Department of Automatic Control
Lund Institute of Technology
October 1990

Department of Automatic Control
Lund Institute of Technology

P.O. Box 118

S-221 00 Lund Sweden

Document name

INTERNAL REPORT

Date of issue

October 1990

Document Number

CODEN: LUTFD2/(TFRT-7466)/1-34/(1990)

Author(s)
Karl Johan Astrdm

Hermann Steingrimsson

Supervisor

Sponsoring organisation

Title and subtitle
Implementation of a PID Controller on a DSP

Abstract

This report describes implementation of PID controller on a digital signal processor using fix point calculations.
Particular emphasis is given on scaling and testing of the algorithm.

Key words

PID control; DSP; Fix point calculation; Scaling; Testing

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title

ISBN

Language Number of pages
English 34

Security classification

Recipient's notes

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,

S-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

Implementation of a PID Controller on a DSP'

Karl Johan Astrém
Department of Automatic Control
Lund Institute of Technology
Lund, Sweden

1. Introduction

The PID controller is by far the most com-
monly used control algorithm. [Deshpande 1981]
Although it is of limited complexity it can be used
to solve a large number of industrial control prob-
lems. The textbook version of the PID controller
can be described by the equation

u(t) = K. (e(t) + % / e(s)ds + T d‘jﬁ) (1)

where u is the control variable and e is the control
error, defined as e = y,, — y, where y,, is the set
point and y is the process output. The parameters
of the controller are: gain K., integral time 7}, and
derivative time Tj.

The purpose of the integral action is to in-
crease the low-frequency gain and thus reduce
steady-state errors. Derivative action adds phase
lead, which improves stability and increases sys-
tem bandwidth.

Implementation of a PID controller using a
DSP will be discussed in this paper. A lot of expe-
rience has accumulated over many years of use of
the algorithm. This has led to significant modifica-
tion of the algorithm (1). These modifications will
be discussed in Section 2, where the discretization
issues are also dealt with. The result is a nonlinear
digital algorithm that is suitable for implementa-
tion on a general purpose digital computer.

The algorithm can be implemented in a
straightforward way in a DSP with floating point
hardware. Implementation using an ordinary DSP
does, however, require special considerations, be-
cause all calculations have to be made in integer
arithmetic. These issues are discussed in Section 3.

! Part of this work was done when the first author was
visiting professor and the second author a graduate student
at the University of Texas at Austin.

Hermann Steingrimsson
Graduate School of Business
University of Wisconsin
Madison, Wisconsin, USA

Some special problems related to quantization in
AD- and DA-converters are discussed in Section 4.
An overview of the DSP code for a PID controller is
described in Section 5. The complete code is given
in the Appendix. In Section 6 it is described how
the code can be tested. The tests given include both
linear and nonlinear behavior.

2. Modification and
Discretization

The algorithm (1) has several drawbacks. Signifi-
cant modifications of linear and nonlinear behavior
are necessary in order to obtain a practically use-
ful algorithm. See [Astrém and Higglund 1988].
To obtain equations that can be implemented us-
ing computer control it is also necessary to replace
continuous time operations like derivation and in-
tegration by discrete time operations. See [Astrdm
and Wittenmark 1990)]. These modifications will be
described in this section.

Proportional Term

The proportional term K e(t) is implemented sim-
ply by replacing the continuous time variables with
their sampled equivalences. One additional modifi-
cation set point weighting [Astrom and Hagglund
1988] has been found useful. This means that the
proportional term only acts on a fraction b of the
command signal. The proportional term then be-
comes

P(tk) = Kc(byap(tk) - y(tk)) (2)

where {t;} denotes the sampling instants. The
parameter b admits independent adjustment of set
point and load disturbance responses. It may also
be viewed as “zero-placement”.

Integral Term

When a controller operates over a wide range of op-
erating conditions, the control variable may reach
actuator limits. The feedback loop is then broken
and the system effectively runs open loop. When
this happens in a controller with integral action,
the error will continue to be integrated and the
integral term may become very large. The integra-
tor “winds up”. The error must then change sign
for a long period of time to “unwind” the integra-
tor and bring the system back to normal. Windup
can also cause problems when the controller is im-
plemented on a microprocessor having finite word
length. Since the processor can only store numbers
limited in magnitude, windup may cause overflow
oscillations in the control variable, unless satura-
tion arithmetic is used.

There are several ways to avoid windup. One
possibility is to introduce an extra feedback loop
by measuring the output from the actuator and
forming an error signal as the difference between
the controller output v, and the actuator output u.
If the output of the actuator is not available, the
signal may be computed by using a mathematical
model of the actuator. The error signal is fed
to the input of the integrator through the gain
1/T:, where the constant 7} is called the tracking
time constant. The extra feedback will ensure that
the integral obtains a value so that the controller
output tracks the saturated output. Tracking is
accomplished with the time constant 7}. Using
this method of avoiding windup the integral term
becomes

I(t) = %/e(s)ds + %/(u(s) —v(s))ds (3)

To obtain an algorithm that can be implemented
on a computer, the integral term I(t) is differenti-

ated dI(t) K 1
T = T + et

where e,(t) = wu(t) — v(t). Approximating the
derivative by a forward difference gives
I(tey1) — I(te) K. 1
A = T, e(tk) + T e,(tk)

t

where A is the sampling period. Finally, by rear-
ranging terms, we get the following equation to
compute the integral term

Htnsa) = 1(t4) + 2 e(t) + prea(te) ()

Derivative Term

A pure derivative should not be implemented,
because the controller gain becomes very large at
high frequency. This leads to amplification of high-
frequency noise. The derivative term is therefore
approximated by :

8Ty
sTa~ 14 sTy/N ()
Notice that the approximation is good for signals
whose frequency contents are significantly below
N/Ty. Also notice that the approximating transfer
function has a maximum gain of N. Parameter
N is therefore called maximum derivative gain. In
analog controllers N is given a fixed value, typically
in the range of 5-20.

It is also advantageous not to let the derivative
act on the set point signal. The set point is constant
for most of the time and its derivative is therefore
zero. A step change in the set point may, however,
cause an undesirable jump in the control variable
if the derivative acts on the set point. With these
modifications the derivative term can be written as

TydD dy
Prya = Khg)

There are several methods to approximate the
derivative. Common methods are the forward dif-
ference approximation, the backward difference
approximation, Tustin’s approximation and ramp
equivalence. See [Astrom and Wittenmark 1990].
These approximations all have the same form

D(tr) = aD(tr-1) — b(y(te) — y(te-1)) (7)

and are stable only if |a] < 1. The forward differ-
ence approximation is stable if Ty > Nh/2. It thus
becomes unstable for small values of Ty. Tustin’s
approximation has the disadvantages that a goes to
1 as T4 goes to zero. This gives a ringing response
for small Tj. The ramp equivalence approximation
gives exact outputs at the sampling instants if the
signal is continuous and piece wise linear between
the sampling instants, but it requires computations
of an exponential. The backward difference approx-
imation gives good results for all values of T, The
parameter a goes to zero as Ty goes to zero. Here
the backward difference approximation is chosen.

The following is obtained when Equation (6)
is approximated by a backward difference:

D(t,) + % . D(t) _hD(tk_l)
- _K.T, y(t) —hy(tk—l)

Rearranging terms, gives (7) with

_ Tq d b K.TyN
“CTaNe ™ T TE A

which is the formula that will be used to compute
the derivative term.

The PID Algorithm

Summarizing we find that a practical version of the
PID algorithm can be described by the following
equations:

P(te) = Kc(byop — y(ts))
D(tk) = aaD(tk—1) + ba(y(tr-1) — y(ts))
v(te) = P(tx) + I(t) + D(tx) ®)
u(te) = f(v(ts))
I(tei1) = I(tr) + b:i(yap — y(ta))
+ be ((te) — v(ts))

This algorithm has anti-windup reset, limitation of
derivative gain (N) and set point weighting ().

The function f describes the nonlinear charac-
teristic of the actuator. For a linear actuator with
saturation at u,,;, and u,,,, we have

Umaz if V(tk) > Umas
f('l)(tk)) = Umin if ‘U(tk) < Upin (9)
v(t) otherwise

For actuators with other limitations the function f
should be modified. The parameters ad, by, b; and
b; are related to the primary parameters K., T;,
T4, T; and N at the PID controller as follows:

= T I Nk

by — K.NTy

d = T_4+Nh (10)
b; = Kch/ﬂ

bt = h/Tt

Since Equations (10) have to be updated only
when the controller parameters are changed, the
code should be organized so that parameters aq,
b4, b; and b; are computed initially and when the
PID parameters are changed. This will reduce the
computational load during the execution of the
PID algorithm. The structure of the PID algorithm
given by Equation (8) is shown in Figure 1. Notice
that the algorithm is in parallel form.

The PI algorithm

In many cases the derivative action is not neces-
sary. The algorithm then reduces to

P(ty) = Ke(by.p — y(ts))
v(tr) = P(te) + I(ty)
u(te) = f(v(ts)) (11)
I(thy1) = I(te) + bi(¥ap — y(te))
+ be (U(tk) - ”(tk))

which is a PI controller with anti-windup reset and
set point weighting (b).

The function f is the same as in Equation 9)
and the parameters b; and b, are related to the
parameters K., T; and T, as follows:

b; = K.h/T;
/ (12)
be = b/ Ty

which is the same as Equation (10). The reason for
considering this special case is that PI controllers
are in fact more common than controllers with
derivative action.

€=Ysp—Y — +
A . |

Figure 1.
anti-windup.

Structure of the PID controller with

Table 1. Number of arithmetic operations for PI
and PID control.

PI PID

2
b
2
>

Hrd gy
N Moo
o= O
N MO NN
LN TRy

&
L
'S
(-]
(-]
w0

Operations Count

It is a common practice to estimate computation
times by a simple operation count. This can be
strongly misleading when using fixed point calcu-
lation, because much of the computation time may
be spent on overflow handling and scaling. Table 1
shows the minimum number of multiplications and
additions required for the PID and PI algorithms.
The PID algorithm requires 15 arithmetic opera-
tions, while the PI algorithm requires 10 opera-
tions.

3. Implementation Issues

Implementation of a PID-controller using a DSP
with fixed point will now be discussed. General
practice on implementing algorithms for DSP are
given in [Texas Instruments 1986], [Texas Instru-
ments 1989a], [Texas Instruments 1989b], [Texas
Instruments 1990a] and [Texas Instruments 1990b).

To perform fix-point calculations it is neces-
sary to know orders of magnitude of all variables.
Simulations were performed to get this informa-
tion. In the simulations the process model

was used. Figure 2 shows the step response of
the system with parameters K. = 0.6, Ty = 0.5,
T:=22,T, =05, N =8,and a sampling period
of 0.1 s. At the time ¢ = 0.3 s a load disturbance
of 0.3 V is introduced.

Two C-programs were written to test the ef-
fects of scaling and roundoff. One program imple-
ments the PID controller in double precision arith-
metics with no attempt to simulate the effect of
finite word length. The other program simulates

0/"' 1 1 1 [} i 1
0 5 10 15 20 25 30 35 40

Figure 2. Step response of the system.

the Texas Instruments DSP by using a 32-bit ac-
cumulator and a 16-bit word length. The effect of
using different resolution of the A/D- and D/A-
converters can also be simulated.

Selection of Sampling Period

There are several rules of thumb for choosing the
sampling period for digital controllers. For a PI-
controller the sampling period is related to the
integration time. A rule of thumb [Astrém and
Wittenmark 1990] is

h
=~01-0.3
P 0
A PID controller requires a much shorter sam-
pling period. The sampling period should be short
enough so that the pole s = — N /Ty, introduced to
limit the high frequency gain of the derivative, can
be approximated appropriately. This leads to the
following rule of thumb:
hN

— =~ 0.2-0.
T, 0 0.6

See [Astrom and Wittenmark 1990].

Integral Offset

Roundoff may give an offset when the integral term
is implemented on a computer with a short word
length. This can be understood as follows. Consider
the equation for the integral term in Equation (8).
The correction term b.e(t) = K h/T: -e(t) is usu-
ally small in comparison to I(#;) and may there-
fore be rounded off. With fractional arithmetic, the
largest magnitude of the correction term is K h /T;.
To avoid roundoff, it is therefore necessary to have
a word length of at least

log(K h/T;)

number of bits = — o (2)

More bits are of course required to obtain meaning-
ful values. For example, with h = (.02 s, T;=10s
and K. = 0.1 the number of bits required to obtain
less than 5% error in the integral requires a word
length of at least

log(0.0002 - 0.05)
- = 17
log(2)

Longer sampling periods for computing the inte-
gral may be used to avoid the offset. This can be
done simply by adding the error over each sam-
pling period and updating the integral term in reg-
ular intervals. Another way to avoid offset due to
roundoff is to store the integral with higher preci-
sion. In most DSPs (like the TMS320xx) values can
be stored in double precision, with little overhead.

number of bits =

Scaling

The PID controller given by Equations (8) is
already in parallel form, with the modules of zero
and first order. Figure 1 illustrates the realization
of the controller. Because of the parallel form, the
P, I and D terms can be scaled and computed
separately and then unified to form v.

Coefficient Scaling

Because of the wide number range of the param-
eters, some restrictions must be imposed on the
magnitude of coefficients. It follows from Equation
(10) that by is the largest parameter. A limit should
therefore be set on the gain K., and the high-
frequency derivative gain N. If K and N are lim-
ited to 16, we have by < K.N = 256 and K. < 16.
These parameters must therefore be divided by 256
and 16 respectively before they are stored. To re-
store the magnitude of the signal, the derivative
term must be shifted left by 8 bits and the propor-
tional term shifted left by 4 bits.

The other parameters, ag, b; and b; are within
the number range, but because b; and b, may
become very small, it is advantageous to also set a
lower limit on k/T; and A/T;.

Signal Scaling and Saturation Arithmetic

It must be insured that overflow does not occur
when computing the states of the controller. With
the structure of the PID controller shown in Fig-
ure 1 the states are D(#;) and I(txy;). Care must
also be taken so that overflow does not occur when
the P, I and D terms are added to obtain .

Figure 3.

The terms of the PID controller.

The proportional term will always be within
the number range, since the multiplication of a
fraction with a fraction gives a fraction. Overflow
can occur if K is Jarger than 1 when the magnitude
of the signal is restored. It is therefore necessary
to use saturation arithmetic when computing the
proportional term.

One additional advantage of using the anti-
windup reset when computing the integral term
is that the integral is within the number range.
Saturation arithmetic is therefore not necessary.
Integration can result in overflow if anti-windup
is not used or if 7y is chosen poorly. Saturation
arithmetic should therefore be used before the
integral is stored.

Since the derivative depends only on the pro-
cess output, it is difficult to use analytic scaling
methods effectively. It is easy to predict the worst
possible input, but for most processes that would
be too pessimistic. A good engineering approach is
therefore to simulate the closed loop system and
store the output of the derivative for a few repre-
sentative examples. The derivative should normally
not account for more than 20% of the control sig-
nal. Since by can take large values, saturation arith-
metic should be used before storing the derivative.
A number of simulations were made in order to
obtain typical orders of magnitude of the propor-
tional, integral and derivative term. It turns out,
that under normal operation conditions, the vari-
ables are within the number range. Since we are
allowing a gain larger than one, it is very likely
that an overflow will occur under some operation
condition, for example during start-up. Saturation
arithmetic is therefore used on both states and on
the control signal v. Figure 3 shows Simnon plots
of the P, I and D terms for step response and load
disturbances, for the process and the controller pre-
viously used. '

Gain, Input and Output Scaling

To implement a high gain (K. > 1) one can
either include the gain in the digital algorithm
or move the gain “outside” of the DSP by using
a linear amplifier. The advantage of the latter
approach is that the control algorithm can be
scaled to eliminate the danger of overflow and
therefore avoiding the large overhead associated
with saturation arithmetic. This gives a shorter
code and a faster controller. But there is also a
disadvantage. Under normal steady-state operation
the error is small and any changes in the control
signal will be a relatively small part of the whole
dynamic range. A change in the control signal of
one quantization step will be amplified, resulting
in a large jump. It may also give rise to limit
cycles. When a high gain is incorporated in the
DSP code, saturation arithmetic must be used on
internal calculations.

4. Quantization Effects

Issues related to the interfacing of the DSP to the
plant will now be considered. The key questions
are related to quantization of A/D- and D/A-
converters

Quantization of the Set-Point Value

When implementing the controller the set point
should be quantized in the same way as the
controller input. That is, the set-point value should
either be read through the same, or a similar, A/D-
converter as is used for the input signal (if A/D-
converter is being used) or quantized internally by
using the same resolution as of the A/D-converter.
If this is not done there may be an offset or a
limit cycle due to the quantization. Figure 4 shows
the result of a simulation, when a 6-bits A/D-
converter is used for the input signal but the set-
point value of 0.455 V is represented with a 16-
bit accuracy. The system goes into a limit cycle
with a period of 6.77 seconds and an amplitude
of 3.8 mV. The reason for this is that the set-
point value of 0.455 V can not be represented by
the 6-bits A/D-converter. In steady-state the error
between the process output and the set-point value
will be either 17.5 mV or -13.8 mV. This error
will be summed up by the integrator, resulting in
a limit cycle.

0.55 7 - T —

0.45]
0.4
1 1 1
0‘3520 25 30 35 40

Figure 4. Limit cycles due to high resolution of
the set point.

Because the limit cycle is very close to a si-
nusoid it is reasonable to assume that the period
and the amplitude of the limit cycle can be pre-
dicted by using describing function analysis. Since
the system is in steady-state and the oscillation
corresponds to one quantization step of the A/D-
converter, we can assume a zero set-point value and
model the A/D-converter by a relay nonlinearity
centered around zero with the quantization limits
+0.00157 and -0.00157. The describing function for
this nonlinearity is

2¢ _ 0.0199

Ta a

N(4) =

where a is the amplitude of the input signal and ¢/2
is half the quantization step. The calculations are
simplified if the digital PID-controller is approxi-
mated by a continuous-time PI-controller with the
transfer function

K
GC(S) =K+ E

where K = 0.6 and T = 2.2. Possible limit cycle is
given by the equation

14+ Yo(A)L(jw) =0
Which is equivalent to
L(jw) = 5 (13)
N(a)
where L is the loop transfer function of the con-

troller and the process, in cascade, i.e.

K +TKs

I(s) = gt 7 (14)

Since the describing is real-valued, one simply has
to find the intersection of L(jw) with the negative
real axis. When jw is substituted for s in Equation
(14) we get, after separating the real and the
imaginary part

K(A(w) + iB(w))
T'(4w* — 4w?)? + (w5 — 6w3 4 w)?

L(jw) = (15)

where 4 = T(w® — 6w* + w?) 4 4w* — 4w? and
B = T(4w® — 4w®) — w® + 6w® — w). The problem
is therefore reduced to finding the frequency where
the imaginary part is zero, i.e.

T8w* - 28w —1=0 (16)
The equation has one positive real root w = 0.7616,
which corresponds to a limit-cycle period of 8.25 s.
This is longer than the period T' = 6.77 s, obtained
in the simulation. The amplitude of the limit cycle
is then determined by solving Equation (13) for
w = 0.7616, which gives a = 5.6 mV. The value
a = 3.8 mV was obtained in the simulation.

A/D- and D/A-Conversion

If the controller is interfaced to the plant by A/D-
and D/A-converters the effect of the resolution
of the converters has to be determined. Figure 5
shows the result of one of several simulations where
the A/D-converter has a higher resolution than the
D/A-converter. A limit cycle was observed in those
simulations. Because of the higher resolution of
the A/D-converter, the controller produces control
signals which are not representable by the D/A-
converter. This results in an oscillation over one
quantization step of the D/A-converter. This phe-
nomenon can also be predicted by using describing
function analysis, where we assume a zero set-point

0.46 T T T T T

0.455 - 7]

0.45

0.445

0.44 1 1 ! 1 1
20 25 30 35 40 45 50

Figure 5.
bit D/A.

Response with a 10-bit A/D and a 8-

0.46 T T T T T

0.455 N

0.45 - -

0.445 -

1 1] 1 1
0‘4420 25 30 35 40 45 50

S

Figure 6. Response with a 8-bit A/D and a 10-
bit D/A.

value and the D/A-converter is approximated by a
relay. The problem can be avoided by replacing the
function f given by Equation (9) by a function that
also models the roundoff in the D/A-converter.

Figure 6 shows a good result when an 8-
bit A/D-converter and a 10-bit D/A-converter is
used when a step input of 0.45 V is applied.
These observations indicate that using a D/A-
converter with a lower resolution than the A/D-
converter may give rise to a limit cycle. It should
be emphasized that there are of course many other
factors which may be responsible for limit cycles.
There are also many other factors that influence
the selection of the resolution of the A/D- and
D/A-converters, e.g. the required accuracy of the
system.

Simulations also showed that a very low res-
olution (down to 4-bits) of the converters did not
have much effect on the step response of the sys-
tem. The accuracy of the system is, of course, less
with low resolution converters. Figure 7 shows the
response of the same system when a load distur-
bance of 0.3 V is introduced at ¢ = 20 s.

Figure 7. Same as Figure 6 but with a load
disturbance.

5. The DSP-Code

To develop and test assembly code of the PID-
controller on the Texas Instruments Family of
DSPs the Texas Instruments Software Develop-
ment System (SWDS) was used. This system con-
sists of a PC-board with a TMS320C25 signal pro-
cessor and PC development environment, which
has many features. It is possible to set break-points
and single-step through the program. One useful
feature is the possibility to specify an input file (or
files) to the DSP and to direct the output (or out-
puts) of the DSP to an ocutput file. This feature
makes it easy to test an algorithm, since a prede-
fined input signal can be fed to the controller to
test its open loop response.

Programs for PI- and PID-controllers were
written for the signal processors TMS32010 and
TMS320C25. The complete codes are given in
Appendices A, B, C and D. The code for the PID-

controller is organized in the following way:

INITIALIZE
load constants from program memory
to data memory
clear variables
load y(n-1) and ysp
reset external devices (f.ex. analog board)
PID
wait for input y(n)
compute derivative (D)
round off, check for overflow and store D
compute proportional part (P)
add D, P and I
round off, check for overflow and store in v(n)
compute u(n) from saturation function
output u(n)
compute I
check for overflow and store 1
in double precision

GOTO PID

The code for the PI-controller is obtained by
deleting the computations of the D-term.

Initialization

After reset the program jumps into the initial-
ization routine. This part disables interrupts, sets
overflow mode and loads coefficients from program
memory (where they are stored permanently) into
data memory. Then the states of the controller are

cleared, the set point value (ysp) is read from PA3
and the process output (y(n — 1)) from PAO. By
filling up the y-vector before entering the PID loop
a jump due to the derivative is avoided. The pro-
gram then goes into an infinite loop, to compute
the control signal.

PID Calculations

The magnitude of the coefficient by of the deriva-
tive term is less than 256. To represent it in the
DSP it must be scaled by dividing by 256. This can
be done by shifts. Before the derivative is stored it
is therefore Shifted left by 9 bits (8 bits plus one
left shift to account for the extra sign bit which is
generated in the multiplication).

The largest proportional gain is 16. The pro-
portional term is therefore divided by 16. It was
advantageous also to divide the D and I terms by
16 and restore the signal after the control signal v
has been calculated. The same saturation, round-
ing and shifting can then be applied to both the
derivative term and the control signal. Since the
derivative must be divided by 16 before it is added
to the proportional part, it is advantageous to store
aq divided by 16. A little trick was used to calculate
the correct derivative. After agD(;_;) has been
calculated and stored in the accumulator the term
ba(y(tk—1) — y(tk)) is calculated, and the result is
stored in the P register. The value of the P register
is then added 16 times to the accumulator to form
the correct derivative divided by 16. By doing this
in overflow mode, overflow results in saturation of
the accumulator. This would not be the case if the
value in the accumulator were simply shifted left.
With the TMS320C25 adding is easily done using
the repeat instruction. After these calculations the
derivative is in the accumulator. The proportional
term is then added to the accumulator to obtain
(P+D)/16. In this way the proportional term does
not have to be stored separately.

To obtain the output v, the integral computed
previously is divided by 16 by shifting the value
right 4 bits. It is then added to P+D in the accu-
mulator. The output then goes through the satura-
tion arithmetic. It is rounded and shifted before it
is stored as a 16-bit number. The saturation func-
tion f is called to form the final output u.

Since the control signal u depends on the inte-
gral from the previous sample, it can be converted
to analog form before the integral is updated. This
shortens the computational delay between the A/D

Table 2. Cycle count and maximum sampling
frequency for PI- and PID-controllers.

PI PID
DEVICE cycles KHgy cycles KHg
TMS32010 94 53 145 34
TMS320C14 94 66 145 43
TMS320C25 89 112 141 70

and D/A-conversions. To avoid integral offset, the
integral is computed and stored in double preci-
sion. Saturation arithmetic is performed before it
is stored, although it is actually not necessary if
proper anti-windup is used.

With the chosen method of organizing the
calculations the P, D and I terms are added, to
form v, with a precision of 27 bits. The terms D
and v are then stored with a precision of 16 bits
and the integral is calculated and stored with a
precision of 31 bits.

Saturation Arithmetic. Before the derivative
or the control signal v is stored in memory as a 16-
bit value, it must by shifted left by 5 bits, because
the signal is divided by 16 in internal calculations
and an additional left shift must be performed to
account for the extra sign bit generated in the mul-
tiplication. The value is rounded and checked for
overflow before shifting it. If overflow is detected,
the value is replaced by the largest positive or neg-
ative number.

Set-Point Value. The set point is read via
interrupt. This interrupt is disabled when the
control value is computed, but is allowed for a short
period, before the next process output is read.

Computation Time

By using the timer on the TMS320C25 it was pos-
sible to count the cycles required for one execution
of the PID (or PI) loop. To find the number of
cycles required for one execution of the TMS32010
(TMS320C14) code, a simple cycle count was done.
In all instances it is assumed that the internal
memory of the DSPs are used.

Table 2 shows the number of cycles for each
controller and the maximum sampling frequency
which can be used. From this table we see that the
calculation of the derivative consumes a large por-
tion of the total cycles, approximately 50%. The
reason for this is that the shifting and saturation
arithmetic on the derivative is complicated, be-
cause the coefficients of the controller are scaled

Table 3. Cycles count for different parts of the
PID-controller.
TMS32010 TMS320C25
OPERATION cycles cycles
Derivative 9 9
-" . srss 43 45
Proportional 7 T
Integral shifting 12 8
SIss on v 23 23
anti-windup 12 12
Integral 15 13
Integral s.a. 10 10
I/O and other 14 14
Total 145 141

srss = saturation, round, shift, store
8.a. = saturation arithmetic

differently. If the coefficients would all have the
same upper limit the same scaling constant could
be used and the shifting and saturation arithmetic
would be simpler and faster. Table 3 shows how
the cycles are divided between different functions of
the algorithm. Notice that the division is somewhat
arbitrary, because it is not obvious when one op-
eration begins and the other ends. The saturation
arithmetic-, rounding- and shifting-function used
on the derivative and the output v uses 19 cycles,
the saturation arithmetic on the integral uses 10
cycles and the anti-windup function uses 12 cycles,

Notice that the code must be modified if K,
and N are to be larger than 16. Also notice that
the code can be improved if the parameters of
the controller can be limited to smaller ranges.
For specific applications, where tighter bounds on
parameters and controller states are available, the
code can be shortened drastically by removing
saturation arithmetic and by simplifying scaling.

It is interesting to note that a crude time
estimate, based on the operation count in Table 1,
underestimates the computation time by an order
of magnitude.

6. Testing

To obtain high quality code it is necessary to
develop good testing procedures. The DSP code for
the PI and PID controllers were tested by simple
laboratory experiments to verify that the controller
worked as a proper PID controller. To ensure that
the code gives the correct numerical results, the
following procedure was introduced. Since a PID

Figure 8.
actions.

Test of the proportional and integral

I T T T T T

0.2 =

0.1F] =

0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 9. Test of the derivative action.

controller is a dynamical system, its behavior can
be tested by computing its response to given input
data with known responses. The test can easily
be automated by storing the data in files. This
was easily done using the facilities in the Texas
Instrument Software Development System. This
section describes how the testing was done. The
parameters used were K = 0.6, Ty = 0.5, T} = 2.2,
T; = 0.5 and N = 8. Parameters aq, by, b; and b,
were calculated by assuming a sampling period of
0.1s.

To test proportional and integral action a
symmetrical square wave with a period of 40 s
and an amplitude of 0.1 V was used as an input
sequence. To get a simple case the parameters of
the derivative term were set to zero (which is really
not necessary, since the derivative dies out very
quickly). This sequence can therefore also be used
to test a PI controller. Figure 8 shows the input
and the resulting output. For a constant input the
output of the controller at the time ¢ should be

u(t) = t,llic e+ I(0) + K e

With I(0) = 0 the output should be equal to
—0.6055 V after 20 seconds. The line y = —0.6055

e
=]
T

ooo
N Wb D
T

0
—0.2 : -
—0.4] 5

5 10 15 20 25 30 35 40

5

Figure 10. Test of the saturation arithmetic.

0.3 T T T T T

0.2 |- -1

0.1} i =

0
! /)
—-0.2 |- =
—0.3 L L : :
0 10 20 30 40 50 60
s
Figure 11. Test of the anti-windup.

is also drawn in Figure 8 indicating that the
proportional and the integral term work properly.

To test the derivative action two impulses,
lasting one sampling period, of magnitude -0.1 V
and +0.1 V where applied to the input at the time
t =1 sec. and t = 3 sec. Figure 9 shows the result.
The formula for the derivative term is

D(tx) = aaD(tk—1) + ba(y(te_1) — y(tx))

If an impulse of magnitude 0.1 V is applied to the
derivative we get the sequence: —0.2446, 0.1136,
0.0437, 0.0168, 0.0065,.... The first numbers of
this sequence are also plotted on the Figure 9,
showing that the derivative action works properly.
The small error in the beginning of the second
response is due to the integral of the first impulse.
This integral is canceled out by the second impulse
resulting in a final output equal to zero. To test the
saturation arithmetic the amplitude of the input
square wave was increased to 0.7 V. Figure 10
shows good results. When the output reaches
the limit it is saturated without causing overflow
oscillations. Finally, Figure 11 shows the result
when the anti-windup reset function is used to limit
the output to £0.3 V. All versions of the PI- and
PID-controller were tested by using these input

sequences. Once a correct set of output files have
been obtained one can test modified algorithms
simply by comparing the output files, either by
plotting the output or by using a file-compare
program.

Other testing procedures were also developed
using ideas similar to the ones described above.

7. Conclusions

This paper has given algorithms for high quality
PI and PID controllers with features like set-point
weighting, limitation of derivative gain and anti-
windup. It has also been demonstrated how the
code can be implemented on a DSP using fix-point
calculations. Such an implementation necessarily
requires some a priori knowledge of signal and pa-
rameter ranges. This means that the code given
here only works well in cases that fit the assump-
tions made.

We have attempted to describe our reasoning
in sufficient detail so that the code can be easily
adapted to other situations. Some test procedures
that we have found useful are also presented. The
performance estimates show that PI controller can
be executed at 53 kHz on a TMS32010 and at
112 kHz on a TMS320C25.

11

8. References

Astrom, K. J., and T. Hagglund (1988): Auto-
matic Tuning of PID Controllers, ISA, Research
Triangle Park, NC.

Astrom, K. J., and B. Wittenmark (1990): Com-
puter Controlled Systems — Theory and Design,
Second edition, Prentice-Hall, Englewood Cliffs,
NJ.

Deshpande, P. B., and R. H. Ash (1981): Com-
puter Process Control, ISA, Research Triangle
Park, NC.

Texas Instruments (1986): Digital Signal Process-
ing A pplications with the TMS320 Family — The-
ory, Algorithms, and Implementations, Digital
Signal Processing, Semiconductor Group.

Texas Instruments (1989a): TMS320Cix /
TMS320C2x — User’s Guide, Digital Signal Pro-
cessor Products.

Texas Instruments (1989b): TMS320 Family De-
velopment Support — Reference Guide, Digital
Signal Processor Products.

Texas Instruments (1990a): Digital Signal Process-
ing — Applications with the TMS320 Family,
Application book volume 3, Digital Signal Pro-
cessor Products.

Texas Instruments (1990b): TMS320C3x — User’s
Guide, Digital Signal Processor Products.

Appendix A: PI-Controller for TMS32010

; PI Controller for TMS32010 Version 1.0
; Author: Hermann Steingrimsson
; Date: 3-26-1990

; RESERVE SPACE IN DATA MEMORY FOR CONSTANTS AND VARIABLES

DTend

.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss

HTE1,1 ; Temporary storages
LTE1,1

HTE2,1

LTE2,1

IH,1 ;Integral high
IL,1 ;Integral low
KC,1 ;Coeff for P
KCB,1

BI,1 ;Coeff for I
BT, 1

UMAX,1 ;Maximum output
UMIN,1 ;Minimum output
MODE, 1 ;Extra constant
CLOCK,1 ;Sampling rate
ONE, 1 ;One

MAXNUM,1 ;Maximum number
MINNUM,1 ;Minimum number
MINUS,1 ; FFFF

;End of parameters in data memory

.bss
.bss
.bss
.bss
.bss
.bss

YN,1 ;y(n)

YNM1,1 ;y(n-1)

YSP,1 ;¥ set point

UN,1 ; Qutput

VN,1 ;0utput before £

STAO,1 ;Space to store status register

;Begin program memory

.sect
B
B

"IRUPTS"
START ;Branch to start of program
ISR ;Interupt service routine

;Store parameters in program memory

Ptable

Ptend
SCALE

.data
.set
.word
.word
.set
.set

$
1229,1229,894,6554,9830,-9830,1,1,1,32767,-32768
-1

$-1

15

PI Controller for TMS32010

;Initialize
.text

START DINT
NOP
SOVM

Version 1.0

;Disable interupts

;Set overflow mode

;Load coeff from prog. mem to data mem. use TBLR (mot BLKP) for 1. generation

;devices

LARK
LARK
LACK
LOAD LARP
TBLR
SUB
BANZ

ARO,DTend

;ARO points to end of data block

AR1,Ptend-Ptable ;Counter

Ptend
ARO
*- AR1
ONE
LOAD

;Initialize variables

LDPK
ZAC

SACL
SACL

0uT
ouT

WAIT1 BIOZ
GET1 IN
WAIT2 BIOZ
B
GET2 IN
;Begin PI
WAIT BIODZ
B
GET IN
ZAC

;P-section

LT
MPY

IH

IH
IL

MODE,PA4
CLOCK,PAS

GET1
WATT1
YSP,PA3

GET2
WAIT2
YNM1,PAO

GET
WAIT
YN,PAO

YSP
KCB

;Beginning address in program memory
;Point to ARO

;Move, decr. ARO and point to AR1
;Subtract one from accumulator

;AR1 not 0 then decr. AR1 and branch
;=> Coeff loaded into data memory

;Point to correct data page
;Clear variables

:Init analog board

;Load ysp

;Load y(n-1)

;Wait for imput

;Clear accumulator

;y(n) * KCB

Page 2

PI Controller for TMS32010 Versionm 1.0

LTA
MPY
SPAC

SACH
SACL

ZALH
ADDS
SACH
SACL
LAC
SACH
LAC
XO0R
AND
ADD

ADDS
ADDH

LARK
LARP
CALL

CALL
ouUT

;:I-section

ZAC
LT
MPY

LTA
MPY
SPAC

LT
MPY

LTA
MPY
SPAC

ADDS
ADDH

KC

HTE1
LTE1

IH

IL

HTE2
LTE2
LTE2,12
LTE2
MINUS,12
MINUS
LTE2
HTE2,12

LTE1
HTE1

ARO,VN
ARO
ROUOF4

FUNCT
UN,PA1

YSP
BI

YN
BI

BT

BT

IL
IH

;acc = y(n)*KCB - ysp*KC

;Store P temporarily

;Shift integral right 4

;I in acc rigth shifted 4

;Add P to acc to form P + I

;Point ARO to VN
;Round off and overflow check

;Actuator saturation function
;0utput control signal

;Add old I with double precision

Page 3

PI Controller for TMS32010 Version 1.0

SACH
SACL

BLZ
SUB
BLEZ
LAC
SACH
SACL
B

INEG SUB
BGEZ
LAC
SACH
SACL

0UT4 NOP
NOP
NOP
NOP
NOP

0UTS5 EINT
NOP
NOP
DINT
B

;Rounding and

ROUOF4 BLZ
ADD
SACH
SACL
SuB
BLEZ
ZALS
SACL
RET

RNEG ADD
SACH
SACL
SUB
BGEZ
ZALS
SACL
RET

IH
IL

INEG

MAXNUM, SCALE
0uUT4
MAXNUM,SCALE
IH

IL

0UTS

MINNUM, SCALE
0UT4

MINNUM, SCALE
IH

IL

0UT5

WAIT

overflow function

RNEG

ONE, SCALE-5
HTE1

LTE1
MAXNUM,SCALE-4
RNO

MAXNUM

*

ONE,SCALE-5
HTE1

LTE1
MINNUM,SCALE-4
RNO

MINNUM

*

;Store integral

;0verflow check (10 instr. cycles)

;Subtract maximum pos. number
;If acc <= 0 then no overflow
;else store maximum number

;Subtract maximum neg number
;If acc >= 0 then no overflow
;else store minimum number

;Enable interupt

;Disable interupt
;Loop again

(11 cycles)

;Check if number negative
;Round
;Store value

;Subtract scaled max pos number
;If acc <= 0 then no overflow
;else store max num

; Round
;Store value

;Subtract scaled min neg number
;If acc >= 0 then no overflow
;else store min neg number

Page 4

PI Controller for TMS32010 Versiomn 1.0

ZALH HTE1 ;Shift number left 4 before store
ADDS LTE1

SACR HTE1,4

SACL LTE1

ZALH LTE1

SACH LTEi,4

ZALH HTE1

ADDS LTE1

SACH *,16-SCALE

RET

;Saturation function (14 instr. cycles)

FUNCT

LOWER1

SAME

HIGHER

ZALH VN ;Load VN

SUBH UMIN

BLZ LOWER1 ;Branch if v < umin
ZALH VN

SUBH UMAX

BLZ SAME ;Branch if v < umax
B HIGHER 3V >= umax

ZALH UMIN

SACH UN ;4 = umin

NoP ;Always same time
NOP

NOP

NOP

NOP

NOP

RET

ZALH VN

SACH UN U=V

NOP

NOP

RET

ZALH UMAX

SACH UN ;U = umax

RET

;Interupt service routine. To read set point value

ISR

SST STAO ;Save status

IN YSP,PA3 ;Load ysp

LST STAO ;Restore status
RET ;Return

.enda

Page 5

Appendix B: PI-Controller for TMS320C25

; PI Controller for TMS320C25 Version 1.0
; Author: Hermann Steingrimsson
; Date: 3-26-1990

; RESERVE SPACE IN DATA MEMORY FOR CONSTANTS AND VARIABLES

.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
DTend .bss

HTE1,1 ; Temporary storages
LTE1,1

HTE2,1

LTE2,1

14,1 ;Integral high
IL,1 ;Integral low
KC,1 ;Coeff for P
KCB,1

BI,1 ;Coeff for I
BT,1

UMAX,1 ;Maximum output
UMIN, 1 ;Minimum output
MODE, 1 ;Extra constant
CLOCK,1 ;Sampling rate
ONE,1 ;0ne

MAXNUM, 1 ;Maximum number
MINNUM, 1 ;Minimum number
MINUS,1 ;FFFF

;End of parameters in data memory

.bss
.bss
.bss
.bss
.bss
.bss
.bss

YN,1 ;y()

YNM1,1 ;y(n-1)

YSP,1 ;y set point

UN,1 ;Output

VN,1 ;Output before f

STAO,1 ;Space to store status register
STA1,1

;Begin program memory

.sect
B
B

"IRUPTS"
START ;jBranch to start of program
ISR ;Interupt service routine

;Store parameters in program memory

.data
Ptable .set

.word

.word
Ptend .set
SCALE .set

$
1229,1229,894,6554,9830,-9830,1,1,1,32767,-32768
-1

$-1

15

PI Controller for TMS320C25 Version 1.0

;Initialize
.text
START DINT ;Disable interupts
NOP
SOVM ;Set overflow mode
SSXM ;Set sign-extension mode
SPM 0 ;No shifting from P register

;Load coeff from prog. mem to data mem.

LRLK ARO,DTend ;ARO points to end of data block

LARK AR1,Ptend-Ptable ;Counter

LALK Ptend ;Beginning address in program memory
LOAD LARP ARO ;Point to ARQO

TBLR *-,AR1 ;Move, decr. ARO and point to AR1

SUBK 1 ;Subtract one from accumulator

BANZ LOAD ;AR1 not O then decr. AR1 and branch

;=> Coeff loaded into data memory

;Initialize variables

LDPK IH ;Point to correct data page
ZAC ;Clear variables

SACL 1IH

SACL 1IL

0UT MODE,PA4 ;Init analog board

0UT CLOCK,PA5

;WAIT1 BIOZ GET1 ;Load ysp
H B WAIT1
GET1 IN YSP,PA3

;Begin PID
sWAIT BIOZ GET ;Wait for input
% B WAIT
WAIT IN YN,PAO ;Change WAIT to GET when ; are removed
;P-section
LT YSP
MPY KCB ;y(n) * KCB
LTP YN ;acc = y(n)*KCB - ysp*KC
MPY KC

SPAC

Page 2

PI Controller for TMS320C25 Version 1.0

SACH
SACL

ZALH
ADDS
SFR
SFR
SFR
SFR

ADDS
ADDH

LRLK
LARP
CALL

CALL
ouT

;I-section

LT
MPY

LTP
MPY

LTS
MPY

LTA
MPY
SPAC

ADDS
ADDH

SACH
SACL

BLZ
SUB
BLEZ
LAC
SACH
SACL

HTE1
LTE1

IH
IL

LTE1
HTE1

ARO,VN
ARO
ROUOF4

FUNCT
UN,PA1

YSP
BT

YN
BI

BT

BT

IL
IH

IH
IL

INEG

MAXNUM, SCALE
0UT4

MAXNUM, SCALE
IH

IL

0UT5

;Store P

;Shift integral right 4
;because coeff of P where divided by 16

;Add P to acc to form P + I

;Point ARO to VN
;Round off and overflow check

;Actuator saturation function
;O0utput control signal

;Add old I with double precision

;Store integral

;0verflow check (10 imnstr. cycles)
;Subtract maximum pos. number

;If acc <= 0 then no overflow
;else store maximum number

Page 3

PI Controller for TMS320C25 Version 1.0

INEG SUB
BGEZ
LAC
SACH
SACL
B

0UT4 NOP
NOP
NOP
NOP
NOP

0uTs EINT
NOP
NOP
DINT
B

MINNUM,SCALE
0UT4
MINNUM,SCALE
IH

IL

0UTS

WAIT

;Subtract maximum neg number
;If acc >= 0 then no overflow
;olse store minimum number

;Enable interupt

;Disable interupt
;Loop again

; Rounding, overflow and shifting function (13 cycles)

ROUOF4 BLZ
ADD
SACH
SACL
SUB
BLEZ
ZALS
SACL
NOP
RET

RNEG ADD
SACH
SACL
SUB
BGEZ
ZALS
SACL
NOP
RET

RNO ZALH
ADDS
SACH
RET

RNEG
ONE,SCALE-5
HTE1

LTE1
MAXNUM,SCALE-4
RNO

MAXNUM

*

ONE,SCALE-5
HTE1

LTE1L
MINNUM,SCALE-4
RNO

MINNUM

*

HTE1
LTE1
*,5

;Check if number negative
;Round
;Store value

;Subtract scaled max pos number
;If acc <= 0 then no overflow
;else store max num

;Round
;Store value

;Subtract scaled min neg number

;If acc >= 0 then no overflow
;else store min neg number

;Shift number left 4+1 before store

;Saturation function (12 instr. cycles)

Page 4

PI Controller for TMS320C25 Version 1.0 Page b

FUNCT ZALH VN ;Load VN
SUBH UMIN
BLZ LOWER1 ;Branch if v < umin
ZALH VN
SUBH UMAX
BLZ SAME ;Branch if v < umax
ZALHE TUMAX ;V >= umax
SACH UN ;1 = umax
RET

LOWER1 ZALH UMIN
SACH UN ;1 = umin
NOP ;Always same time
NOP
NOP
NOP
RET

SAME ZALH

VN
SACH UN HO
RET

;Interupt service routine. To read set point value

ISR SST STAO ;Save status
SST1 STA1
IN YSP,PA3 ;Load ysp
LST STAO ;Restore status
LST1 STA1
RET ;Return

.enda

Appendix C: PID-Controller for TMS32010

; PID Controller for TMS32010 Versiomn 1.0
; Roundoff Corrected

; Hermann Steingrimsson

; Date: 3-26-1990

; ad and Kc must be divided by 16 before stored
; bd must be divided by 256 before storage

; RESERVE SPACE IN DATA MEMORY FOR CONSTANTS AND VARTABLES
.bss HTE1,1 ; Temporary storages
.bss LTE1,1
.bss HTE2,1
.bss LTE2,1

.bss IH,1 ;Integral high

.bss IL,1 ;Integral low

.bss DH,1 ;Derivative high

.bss KC,1 ;Coeff for P

.bss KCB, 1

.bss BI,1 ;Coeff for I

.bss BT, 1

.bss BD,1 ;Coeff for D

.bss AD,1

.bss UMAX,1 ;Maximum output

.bss UMIN,1 ;Minimum output

.bss MODE, 1 ;Extra constant

.bss CLOCK,1 ;Sampling rate

.bss ONE, 1 ;One

.bss MAXNUM, 1 ;Maximum number

.bss MINNUM,1 ;Minimum number
DTend .bss MINUS,1 ;FFFF

;End of parameters in data memory

.bss IN,1 ;y(m)

.bss YNM1,1 ;y(n-1)

.bss YSP,1 ;¥ set point

.bss UN,1 ;Output

.bss VN,1 ;0utput before f

.bss STAO,1 ;Space to store status register

;Begin program memory

.sect "IRUPTS"
B START ;Branch to start of program
B ISR ;Interupt service routine

;Store parameters in program memory

PID Controller for TMS32010 Version 1.0 Page 2

.data

Ptable .set $
.word 1229,1229,894,6554,236,788,9830,-9830,1,1,1,32767,-32768
.word -1

Ptend .set $-1

SCALE .set 156

;Initialize
.text

START DINT ;Disable interupts
NOP
SOVM ;Set overflow mode

;Load coeff from prog. mem to data mem. use TBLR (not BLKP) for 1. generation
;devices

LARK ARO,DTend ;ARO points to end of data block

LARK AR1,Ptend-Ptable ;Counter

LACK Ptend ;Beginning address in program memory
LOAD LARP ARO ;Point to ARO

TBLR *-,AR1 ;Move, decr. ARO and point to AR1

SUB ONE ;Subtract one from accumulator

BANZ LOAD ;AR1 not 0 then decr. AR1 and branch

;=> Coeff loaded into data memory

;Initialize variables

LDPK IH ;Point to correct data page
ZAC ;Clear variables

SACL IH

SACL 1IL

SACL DH

OUT MODE,PA4 ;Init analog board

0UT CLOCK,PAS

WAIT1 BIOZ GET1 ;Load ysp
B WAIT1
GET1 IN YSP,PA3

WAIT2 BIOZ GET2 ;Load y(n-1)
B WAIT2

GET2 IN YNM1,PAO

;Begin PID

WAIT BIOZ GET 5 ;Wait for input
B WAIT

PID Controller for TMS32010 Version 1.0 Page 3
GET IN YN,PAO ;Change WAIT to GET when ; are removed
;D-section

ZALH YNM1 ;y(n-1) - y(n)
SUBH YN

SACH HTE1 ;Store difference
DMOV YN ;Copy YN into YNM1

LT DH ;ad*D (ad was divided by 16)
MPY AD
PAC

LT HTE1 ;difference * bd
MPY BD

APAC
APAC
APAC
APAC
APAC
APAC
APAC
APAC
APAC
APAC
APAC
APAC
APAC
APAC
APAC
APAC

;Since bd was divided by 256, bd*diff is
;added 16 times to the accumulator to
;form D divided by 16. By doing this the
;overflow mode will take care of overflow

- wme W

. wma

- - - - - - - - - - - -
O T R e R N N R
O D WN RO

SACH HTE2 ;Store derivative

SACL LTE2

LARK ARO,DH ;Point to DH

LARP ARO

CALL ROUQF4 ;Check for overfl. shift and store
ZALH BTE2 ;Restore the derivative

ADDS LTE2

;P-section

LT YSP
MPY KCB ;y(n) * KCB

LTA YN ;acc = y(n)*KCB - ysp*KC
MPY KC

PID Controller for TMS32010 Version 1.0

SPAC

SACH
SACL

ZALH
ADDS
SACH
SACL
LAC
SACH
LAC
I0R
AND
ADD

ADDS
ADDH

LARK
LARP
CALL

CALL
ouUT

;I-section

ZAC
LT
MPY

LTA
MPY
SPAC

LT
MPY

LTA
MPY
SPAC

ADDS
ADDH

SACH
SACL

HTE1 ;Store P + D
LTE1

IH ;Shift integral right 4
IL

HTE2

LTE2

LTE2,12

LTE2

MINUS,12

MINUS

LTE2

HTE2,12 ;I in acc right shifted 4

LTE1 ;Add P + I to acc to form P + I + D
HTE1

ARO,VN ;Point ARO to VN
ARO
ROUOF4 ;Round off and overflow check

FUNCT ;Actuator saturation function
UN,PA1 ;0utput control signal

YSP
BT

BI

BT
VN
BT
IL ;Add old I with double precision

IH

IH ;Store integral
IL

Page 4

PID Controller for TMS32010

BLZ
SUB
BLEZ
LAC
SACH
SACL
B

INEG SUB
BGEZ
LAC
SACH
SACL
B

0UT4 NOP
NOP
NOP
NOP
NOP

0UTS EINT
NOP
NOP
DINT
B

INEG

MAXNUM, SCALE
0UT4

MAXNUM, SCALE
IH

IL

0UT5

MINNUM,SCALE
aUT4
MINNUM,SCALE
IH

IL

0UTS

WAIT

Version 1.0

;Overflow check (10 imnstr. cycles)
;Subtract maximum pos. number

;If acc <= 0 them no overflow
;else store maximum number

;Subtract maximum neg number
;If acc >= 0 then no overflow
;else store minimum number

;Enable interupt

;Disable interupt
;Loop again

; Rounding, overflow and shifting function (19 cycles)

ROUOF4 BLZ
ADD
SACH
SACL
SUB
BLEZ
ZALS
SACL
NOP
NOP
NOP
NOP
NOP
NOP
NOP
RET

RNEG ADD
SACH
SACL
SUB

RNEG
ONE,SCALE-5
HTE1

LTE1
MAXNUM,SCALE-4
RNO

MAXNUM

%

ONE, SCALE-5
HTE1

LTE1

MINNUM, SCALE-4

;Check if number negative
;sRound
;Store value

;Subtract scaled max pos number

;If acc <= 0 then no overflow
;else store max num

; Round
;Store value

;Subtract scaled min meg number

Page 5

PID Controller for TMS32010 Version 1.0 Page 6

BGEZ RNO ;If acc >= 0 then no overflow
ZALS MINNUM ;else store min neg number
SACL

NOP

NOP

NOP

NOP

NOP

NoP

NOP

RET

RNO ZALH HTE1 ;Shift number left 4 before store
ADDS LTE1
SACH HTE1,4
SACL LTE1
ZALH LTE1
SACH LTE%,4
ZALH HTE1
ADDS LTE1
SACH *,16-SCALE
RET

;Saturation function (12 instr. cycles)

FUNCT ZALH VN ;Load VN
SUBH UMIN
BLZ LOWER1 ;Branch if v < umin
ZALH VN
SUBH UMAX
BLZ SAME ;Branch if v < umax
ZALH UMAX ;V >= umax
SACH TUN ;U = umax
RET

LOWER1 ZALH UMIN
SACH UN ;U = umin
NOP ;Alvays same time
NOP
NOP
NOP
RET

SAME ZALH
SACH
RET

=g
e

;Interupt service routine. To read set point value

PID Controller for TMS32010

ISR

SST STAO

IN YSP,PA3
LST STAO
RET

.end=

Version 1.0

;Save status
;Load ysp
;Restore status
;Return

Page 7

Appendix D: PID-Controller for TMS320C25

; PID Controller for TMS320C25

; Roundoff Corrected

; Author: Hermann Steingrimsson

; Date: 3-26-1990

; ad and Kc must be divided by 16 before stored
; bd must be divided by 256 before storage

; RESERVE SPACE IN DATA MEMORY FOR CONSTANTS AND VARIABLES

.bss
.bss
.bss
.bss
.bss
.bss
.bss
DTbeg .bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
DTend .bss

HTE1,1
LTE1,1
HTE2,1
LTE2,1
IH,1
IL,1
DH,1
KC,1
KCB,1
BI,1
BT,1
BD,1
AD,1
UMAX,1
UMIN, 1
MODE, 1
CLOCK, 1
ONE, 1
MAXNUM, 1
MINNUM,1
MINUS,1

;Temporary storages

;Integral high
;Integral low
;Derivative high
;Coeff for P

;Coeff for 1
;Coeff for D

;Maximum output
;Minimum output
;Extra constant
;Sampling rate

;0One

sMaximum number
;Minimum number
; FFFF

;End of parameters in data memory

.bss
.bss
.bss
.bss
.bss
.bss
.bss

IN,1
YNM1,1
YSP,1
UN,1
VN, 1
STAO,1
STA1,1

;Begin program memory

.sact
B
B

"IRUPTS"
START
ISR

;y(n)

;y(n-1)

;¥ set point

;Output

;0utput before £

;Space to store status register

;Branch to start of program
;Interupt service routine

;Store parameters in program memory

PID Controller for TMS320C25 Version 1.0 Page 2

.data

Ptable .set $
.word 1229,1229,894,6554,236,788,9830,-9830,1,1,1,32767,-32768
.word -1

Ptend .soet $-1

SCALE .set 15

;Initialize
.text
START DINT ;Disable interupts
NOP
SOVM ;Set overflow mode
SSXM ;Set sign-extension mode
SPM 0 ;No shifting from P register

;Load coeff from prog. mem to data mem. use BLKP

LRLK ARO,DTbeg ;ARO points to end of data block
LARP ARO

RPTK Ptend-Ptable ;Set up counter

BLKP Ptable,x*+ ;:Move data

;=> Coeff loaded into data memory

;Initialize variables

LDPK IH ;Point to correct data page
ZAC ;Clear variables

SACL IH

SACL IL

SACL DH

0UT MODE,PA4 ;Init analog board

0UT CLOCK,PAS

WAIT1T BIOZ GET1 ;Load ysp
B WAIT1
GET1 IN YSP,PA3

WAIT2 BIODZ GET2 ;Load y(n-1)
B WAIT2
GET2 IN YNM1,PAO

;Begin PID
WAIT BIOZ GET ;Wait for imput
B WAIT

GET IN YN,PAO ;Change WAIT to GET when ; are removed

PID Controller for TMS320C25 Versiomn 1.0

;D-section

ZALH
SUBH
SACH
DMOV

LT
MPY

LTP
MPY

RPTK
APAC

SACH
SACL
LRLK
LARP
CALL
ZALE
ADDS

;P-section

LT
MPY

LTA
MPY
SPAC

SACH
SACL

;P + D are now divided by 16 =>

;to P + D

ZALH
ADDS
SFR
SFR
SFR
SFR

YNM1

HTE1

DH

HTE1
BD

15

HTE2
LTE2
ARO,DH
ARO
ROUQF4
HTE2
LTE2

YSP
KCB

N
KC

HTE1
LTE1

IH
IL

;y(@-1) - y(n)

;Store difference
;Copy YN into YNM1

;ad*D (ad was divided by 16)

;difference * bd, and store previous product

;Since bd was divided by 256, bd*diff is
;added 16 times to the accumulator to
;form D divided by 16. By doing this the
;overflow mode will take care of overflow
;Store derivative

;Point to DH

;Check for overfl. shift and store
;Restore the derivative

;y(n) * KCB

;acc = y(n)*KCB - ysp*KC

;Store P + D

shift integral right 4 bits before adding

;Shift integral right 4

Page 3

PID Controller for TMS320C25

ADDS
ADDH

LRLK
LARP
CALL

CALL
ouT

;I-section

LT
MPY

LTP
MPY

LTS
MPY

LTA
MPY
SPAC

ADDS
ADDH

SACH
SACL

BLZ
SUB
BLEZ
LAC
SACH
SACL

INEG SUB
BGEZ
LAC
SACH
SACL

0UT4 NOP
NOP
NOP

LTE1
HTE1

ARO,VN
ARO
ROUOF4

FUNCT
UN,PA1

YSP
BI

YN
BI

BT

VN
BT

IL
IH

IH
IL

INEG
MAXNUM,SCALE
0UT4

MAXNUM, SCALE
IH

IL

0UT5

MINNUM,SCALE
0UT4
MINNUM,SCALE
IR

IL

0UTS

Version 1.0

;Add P + I to acc to form P + I + D

;Point ARO to VN
;Round off and overflow check

;Actuator saturation function
;0utput control signal

;Add old I with double precision

;Store integral

;O0verflow check (10 instr. cycles)
;Subtract maximum pos. number

;If acc <= 0 then no overflow
;else store maximum number

;Subtract maximum neg number
;If acc >= 0 then no overflow
;else store minimum number

Page 4

PID Controller for TMS320C25

0UT5

; Rounding, overflow and shifting function (19 cycles)

NOP

NOP

EINT

NOP

NOP

DINT

B WAIT

ROUOF4 BLZ RNEG

RNEG

RNO

;Saturation function (12 instr.

FUONCT

ADD ONE,SCALE-5
SACH HTE1

SACL LTE1

SUB MAXNUM,SCALE-4
BLEZ RNO

ZALS MAXNUM

SACL *

NOP

RET

ADD ONE,SCALE-5
SACH HTE1

SACL LTE1

SUB MINNUM,SCALE-4
BGEZ RNO

ZALS MINNUM

SACL *

NOP

RET

ZALH HTE1
ADDS LTE1
SACH *,5
RET

ZALH VN
SUBH UMIN
BLZ LOWER1
ZALH VN
SUBH UMAX
BLZ SAME
ZALE UMAX
SACH UN
RET

LOWER1 ZALH UMIN

Version 1.0

;Enable interupt

;Disable interupt
;Loop again

;Check if number mnegative

;Round
;Store value

;Subtract scaled max pos number
;If acc <= 0 then no overflow

;else store max num

; Round
;Store value

;Subtract scaled min neg number
;If acc >= 0 then no overflow
;else store min neg number

;Shift number left 4 before store

;+1 shift because of sign

cycles)

;Load VN

;Branch if v < umin
;Branch if v < umax

;v >= umax
;1 = umax

Page 5

PID Controller for TMS320C25 Version 1.0

SAME

SACH
NOP
NOP
NOP
NOP
RET

ZALH
SACH
RET

UN

VN
UN

;1 = umin
;Always same time

LS

n
L~

;Interupt service routine. To read set point value

ISR

SST
SST1
IN
LST
LST1
RET
.end=

STAO
STA1
YSP,PA3
STAO
STA1

;Save status

;Load ysp
;Restore status

;Return

Page 6

f:& 0@:0/1} t,//

TFRT-74bt

Nl

€ =Yep—Yy
—_—

ot

L 1 1 1 1 1

0 5 10 15 20 25 30 35 40

[=4

o)
Figure 4.7% Step response of the system

|
bt
=
T

0 5 10 15 20 25 30 35 40

Figure 4.3: The terms of the PID controller

055 T = T Ll

LTI
g
it LT

:
&_

0.45

Z

L e
AR

L et

& 1 I L
035, 25 30 35 40

Figure 4.4: Limit cycles due to high resolution of the set-point

0.46 T T T T T

0.455

0.45 ,

0.445 F

1 1 1 1 1
0'4'420 25 30 35 40 45 50

Figure 4.5: Response with a 10-bit A/D and a 8-bit D/A

0.46 T T T T T

0.455

0.45

0.445

-44 1 1 1 1 1
o 20 25 30 35 40 45 50

s

Figure 4.6: Response with a 8-bit A/D and a 10-bit D/A

Figure 4.7: Same as 4.6 but with a load disturbance

25 30 35 40

Figure 4.8: Testing proportional and integral action

02 -

0.1F , .

11—

|
|
L

(=]
(=]
<]
—
o
3]
3]
[\
[=4]
[}

3.5 4

0.8
0.6

T
1

T
1

0.4
0.2

~0.2
—0.4
—0.6
-0.8

-1

30 35 40

Figure 4.10: Testing saturation arithmetic

0.3 . , . . .
0.2 | -
0.1 (-

0

“an / _
-0.2 -

—0.3 ' ' ' :
0 10 20 30 40 50 60

5

Figure 4.11: Testing anti-windup reset

0/:1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

S

. 2
Figure 4.7: Step response of the system

0.6 T T T T T T T
0.5 — T m
0.4 - ;__, =!

0.3 % -
0.2 - .

0.1 7/ 5

0 D
-0.1 V -
—0.2 1 I 1 1 1 1 1
0 5 10 15 20 25 30 35 40
s
Figure 4.3: The terms of the PID controller
0.55 T | T
0.5 = ; ; g —
045 e T i ————
0.4 :
0.35 ' : '
20 25 30 35 40

8

Figure 4.4: Limit cycles due to high resolution of the set-point

0.46 | T T | T

0.455 |- -
0.45 |
0.445 [e -
0.4 1 1 1 1 I

%20 25 30 35 40 45 50

Figure 4.5: Response with a 10-bit A/D and a 8-bit D/A

0.46 T T T T T
0.455 |- _
0.45 i
0.445 - 1
0.44] 1 1 1 1

20 25 30 35 40 45 50

S

Figure 4.6: Response with a 8-bit A/D and a 10-bit D/A

0.7 T T T T T T T

0.6 |- i
05 N, //\5_7-
0.4 7('\ -
03¢ / a“&. i
oaf | \ _

0.1F ; i

Figure 4.7: Same as 4.6 but with a load disturbance

T ' I I I I
0.2 |
0.1 F - .
0 -~ S L
—0.1} J
~02 4
| 1 1 1 1 1 1

0 0.5 1 1.5 2 2.5 3 3.5 4
s
Figure 4.9: Testing derivative action
1 I I I I I I
08 .
0.6 - 4
04 E
02| /i -
0
—0.2 |- / e
—0.4 k
-0.6 i .
—0.8 -\ J E
_1 1 [l 1 1 1 1
0 5 10 15 20 25 30 35 40

S

Figure 4.10: Testing saturation arithmetic

0.3 T T T T

02
0.1 u
0
-0.1 p /
-0.2F
-0.3 : . .
0 10 20 30 40

S

Figure 4.11: Testing anti-windup reset

}‘ﬁ ~09ma/ bl
TERT-776

RS

15x10-6

| Head position (m)

10x10°6

5x10°6

0

| Control signal (V)

15x10™ 6

} Head position (m)

ya

T
0.005

0.010

=204
) O.I.R:\

I
0.015
Time

10x10-6

5x10~6 -

+20%

0
0

T
0.005

I
0.010

[
15%x10~6 -

Head position (m)

[

10x1078 1

5x1076 -

v

i

Control signal (V)

0.005

T
0.010

0.015
Time

0-6 1] 1 I |] I i T
0.4 F Y4
0.2 -
i
;

0 IE
—02}F 4
0.4} -
—0.6 fix., .
—08F 4

] 1 |)| 1 1 1 |

—4-3.5-3-25-2-15-1-050 0.5 1

(a)

(b)

SERERNR - o e RRIBEE TR et o SgriiEinasi

0.2

0.1

—0.1

-0.2

5-107°

b1

T T T T lla T T
" : .
& i .
L 9 N
L .]
I, i
.g I "
! -
i 1 1 1 1 1 1 1 i
T T T T T L T m
C ,lf! i -
- b -
= th‘ s W nlu,_]
el h 2 g
T Ty =
= 1 i 1 1 1 I 1 7
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

(2) 08 ¥ - T
0.6 | Fa]
L o
0.4 r;r 1
02 | 4
¥

0= ;
—02} L"' ‘r \

r_:'

3

04} LL
L

—0.6
-0.8 -

(b) 0 ;

—0.01 E 1 /

—0.02 - 2

—0.03 |-

DR R

R

—0.04

1
0.001

1
0.002

1
0.003

0.004

1
0.005

08 |
0.6 -

>

—-0.2 -
—0.4
—0.6

~0.8

(b)

—0.005

N

2

]

0

! 1 ! !
0.001 0.002 0.003 0.004 0.005

0.0008

0.0007

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

—0.0001

0

1
0.001

]
0.002

1]
0.003 0.004 0.005

(P

0.1 : -

0 . . o
£ ol -
—0.1 B

Hit —i
ik 1
iy 4 iy =
i. .!:2 [3 n
e "'i T
L AR -
- | 1 1 | 1 | 1

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

S

(a) 08 j‘ T T T I
0.6 = .—’J

0.4 [_'_’_,—'? L!" n
0 . 2 i _r:_l‘f i: =

_0.2 B ': —;_i \ —_

-’i.
—0.4 T—
—0.6 1 |
—0.8 i I 1 1 1

(b) 1 I 1 I T

—-0.01 It
—0.02 |- :

5

i]

—0.03 |- 1 j,,a/ -
_ L }

—0.04 1 1 1 1 i
0 0.001 0.002 0.003 0.004 0.005

(a) 1
0.8
0.6
0.4
0.2

—0.2
-0.4
—0.6
-0.8

(b)

—0.005

5T I | 1 1
L Ly |
i £ |
" g y
L | i
= J'J.I' -
e g
L "‘u“\\;
1 1 1 1 1
I 1 I 1 T
| w
: Lt
i i f,af” i
- ='I-,_.‘_‘_._-]
1 1 1 1 1
0.001 0.002 0.003 0.004 0.005

0.0008

0.0007

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

—0.0001

a5
-
i
- H —
- rr:
A -
o
E
5
o =
i " -
L. Fl A o1 Pl
£y Ty EO e R PR, S|
W T i plas ™ O Ll [T H
it !-"‘ et art

Bty o
k=4

0

L !
0.002 0.003

L
0.004

!
0.005

