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1
Introduction

T
oday we use digital communication systems without taking much notice
about it, e.g., when we listen to music on a CD, make a call using a

cellular phone, or send an e-mail. Soon we will watch television programs
that are broadcasted digitally. Unfortunately, contrary to the impression in
the media, digital signals are a�ected by noise as much as analog signals.
We still have disturbances in the transmission and we still have errors in
the received signals. It can be due to scratches on the surface of the CD or
background noise for a satellite link, just to mention some sources of noise.

This motivates the use of error correcting codes. In a digital system it
is quite easy, compared to analog systems, to add redundant data to the
transmitted information that makes it possible to detect and correct some of
the occurred errors. There will always be patterns of errors that we cannot
correct and the codes can be more or less e�ective in its work, which often
result in more or less complex encoders and decoders. One way to construct
good codes is to combine several simpler ones, i.e., to concatenate codes.
In this thesis a new type of concatenated convolutional codes, called woven
convolutional codes, in which the constituent codes are woven together will
be described.

In the �rst section of this chapter we will consider a simple, but general,
block diagram of a communication system and in Section 1.2 the ideas of
error correcting codes are introduced. Finally, in Section 1.3 the outline of
the thesis is given.

1



2 1. Introduction

1.1. A Communication System

In 1948 Claude E. Shannon published his paper A Mathematical Theory

of Communication [45]. This was the beginning of the information theory.
Shannon showed that without loss of optimality a communication system can
be considered to be digital and that we can divide the transmission into two
parts, source coding and channel coding. A block diagram of such model is
shown in Figure 1.1. The source in the �gure produces the information that
will be sent, e.g., speech, pictures, music, computer programs etc.

Source
m Source

encoder

u Channel
encoder

v

Channel

rChannel
decoder

ûSource
decoder

m̂
Destination

Figure 1.1: The block diagram of a communication system.

Almost without exceptions, the messages from the source contains re-
dundancy. For example, we can in most cases still read a text were every
fourth letter is missing or even replaced. The source encoder removes the
redundancy in such a way that the messages can be recreated by the receiver.
There are speci�c source coding algorithms for di�erent kinds of data. For
example, in computers text �les are often compressed with a variant of the
Lempel-Ziv algorithm, e.g., zip, while pictures are often stored with the jpeg
standard. It can be devastating if the compressed data are corrupted by
errors. To cope with this, the channel encoder introduces redundancy. This
is added in a controlled way that follows some simple1 rules that a computer
can handle. Then some of the errors that occur on the channel can be de-
tected and even corrected. In this thesis we will only be interested in channel
coding and, therefore, assume perfect source encoding, which means that we
have equally likely symbols in the information sequence.

1Simple compared to for example natural languages.



1.1. A communication system 3

The channel of the communication system is a statistical model of the
in�uence the noise has on the transmitted data. The simplest, and also most
well-known, channel is the binary symmetric channel. Each bit from the
transmitter side has a probability, p, of being received erroneously. Thus,
if a '0' is transmitted we will receive a '1' with probability p and a '0' with
probability 1− p. Similarly, if a '1' is transmitted we receive a '0' with prob-
ability p and a '1' with probability 1− p. This can be illustrated graphically
as in Figure 1.2.

1− p

1− p

p

p

0

1

0

1

Figure 1.2: The binary symmetric channel.

Another, somewhat controversial, result in [45] was the interpretation of
the channel capacity, C. It was stated that it is possible to achieve arbitrary
low error probability as long as the rate�information bits per code bits�is
less than the channel capacity. For a binary symmetric channel the capacity
is

C = 1− h(p),(1.1)

where2

h(p) = −p log p− (1− p) log(1− p)(1.2)

is the binary entropy function.
A straight forward way to improve the channel of Figure 1.2 is to use a

channel with more than two outputs. In Figure 1.3 a discrete memoryless
channel with binary inputs and 8-ary outputs is shown. The output symbols
are ordered with increasing certainty of the transmitted bit. If the symbol 04

is received we can be almost certain that is was a '0' transmitted, while if we
receive 01 it is much more uncertain. In this way we obtain more information
about the noise on the channel and the receiver can make more reliable
estimates of the transmitted symbols. Often, such channels are assumed to
be symmetric, i.e., P (04|0) = P (14|1), P (03|0) = P (13|1), . . . , P (14|0) =
P (04|1).

The channels described in Figures 1.2 and 1.3 are both memoryless, i.e.,
the transition probabilities are independent from time to time. This is a

2Here and hereafter log(·) denotes the logarithm of base two.



4 1. Introduction

0

1

04

03

02

01

11

12

13

14

Figure 1.3: A binary input, 8-ary output discrete memoryless
channel.

good model when describing for example satellite communication. However,
if we like to model the channel for a mobile communication system like the
transmissions between a cellular phone and a base station it becomes more
complicated. If there is a house in between it is not likely to disappear
within the next milliseconds. We get a model with memory and it depends
on factors like the surrounding areas and the speed of the object.

1.2. Channel Coding

The simplest error correcting code is the repetition code. Instead of trans-
mitting one binary symbol once we transmit it three times. If one of the
transmissions is erroneously received we can detect this and still be able to
say what was transmitted. In this coding scheme we transmit three code
symbols for each information symbol, and we say that the rate of the code is
R = 1/3.

If blocks of several symbols are used it is possible to construct more
e�cient codes. Consider the case when an information word consists of four
bits, u = (u1u2u3u4). Given the generator matrix

G =




1 0 0 0 1 1 1
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 0


(1.3)
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the codewords are constructed as v = uG. Thus, the codeword is the binary
7-tuple v = (u1u2u3u4v5v6v7), where the parity symbols are calculated as




v5 = u1 + u3 + u4

v6 = u1 + u2 + u4

v7 = u1 + u2 + u3

(1.4)

and the additions are carried out modulo 2. The complete list of information
words and codewords is given in Table 1.1. The rate is R = 4/7 which is
signi�cantly higher than for the repetition code. Since any two codewords
di�er in at least three positions we can still correct all single errors.

u v u v

0000 0000000 1000 1000111
0001 0001110 1001 1001001
0010 0010101 1010 1010010
0011 0011011 1011 1011100
0100 0100011 1100 1100100
0101 0101101 1101 1101010
0110 0110110 1110 1110001
0111 0111000 1111 1111111

Table 1.1: The encoding scheme generated by (1.3).

One way to construct good codes is to combine several simpler encoders
such that they work together. Consider a simple parity check code where for
each four bit information word a parity bit is attached such that the �ve bit
codeword has an even number of ones. For example, the information word
u = (0110) is encoded into the codeword v = (01100) and u = (1110) into
v = (11101). This construction can only detect one error but not correct it.
To construct a concatenated encoder from this we let the information word
be a block of 4 × 4 bits. Attach �rst a parity symbol to each row, and then
to each column, e.g., the information block

u =




1 0 1 1
1 1 0 0
0 0 1 1
1 1 1 0


(1.5)
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is encoded into

v =




1 0 1 1 1
1 1 0 0 0
0 0 1 1 0
1 1 1 0 1

1 0 1 0


 .(1.6)

The construction has the encoding rate R = 16/24 = 2/3. If one symbol
is erroneously received we can correct it since we detect both the row and
the column. Also, some patterns of two errors can be corrected (if they are
located in di�erent rows and columns).

We will conclude this section with some historic landmarks that are im-
portant for the contents of this thesis. In [45] Shannon showed that there
exist error correcting codes and how much we can gain by them. The �rst
constructed code was the Hamming codes [21] that were published in 19503.
In this thesis we will consider convolutional codes. They were �rst intro-
duced by Elias in 1955 [10]. The idea to concatenated codes was presented
by Forney in his Ph.D. thesis [11]. Forney also invented the concept of the
trellis [12,14] in 1967 and began the structural analysis of convolutional codes
in 1970 [13]. Concatenated convolutional codes are often suitable to be de-
coded by an iterative scheme. Iterative decoding is a topic that dates back
in the history of coding theory, e.g., [17], but until recently we did not have
the computer power to exploit it. For concatenated convolutional codes it
was �rst performed for Turbo codes in 1993 by Berrou, Glavieux, and Thiti-
majshima in [6] (see also [5]).

1.3. Outline of the Thesis

This thesis is divided into three major parts, viz., the active distances, cas-
caded convolutional codes, and woven convolutional codes. The part about
active distance builds upon [29]. Most of the material about cascaded con-
volutional codes can be found in [23,30,32]. Woven convolutional codes were
introduced in [25] and further developed in [27]. These studies will continue
here and in [26].

In Chapter 2 convolutional codes is introduced together with its generator
matrices and encoders. The basic properties of their structure and distances
are de�ned. The concept of the trellis, which is used several times throughout
the thesis, is de�ned, and a short review on time-varying convolutional codes
is given.

3Hamming actually invented the codes earlier and they were mentioned in [45].
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In, for example, [36,50], the extended distances [46] were used to analyze
concatenation of convolutional codes with unit memory. Chapter 3 is devoted
to the active distances which is a generalization of the extended distances to
convolutional codes with arbitrary memories. It is shown that important
properties of convolutional codes can be obtained from the active distances.
Also lower bounds on the active distances are derived.

To start the analyzes of concatenated convolutional codes the simplest
construction is considered in Chapter 4, viz., a cascade of two convolutional
encoders. First, structural properties for cascaded convolutional codes are
derived for two cases: with and without matched rates. In Sections 4.4 and
4.5 speci�c examples are studied and analyzed. Finally, lower bounds on
the active distances are derived for �xed time-invariant and for time-varying
cascaded convolutional codes.

In Chapter 5 woven convolutional codes are introduced. In its general
form, the twill, it is a cascade of two sets of parallel convolutional encoders.
Also two degenerated but important special cases are considered, viz., woven
convolutional codes with outer warp and with inner warp. The generator
matrices together with some important structural properties of the building
blocks, the warps, are derived. Then, the generator matrices for the wo-
ven construction follows together with their structural properties. The free
distance and the active distances are bounded for �xed constituent codes.
Woven convolutional codes can, as mentioned, be seen as a generalization of
cascaded convolutional codes. It can also be looked upon as concatenated
convolutional codes inspired by generalized concatenated codes [7].

Chapter 6 is devoted to decoding of woven convolutional codes. The
BCJR algorithm is �rst rederived. It is used to decode the constituent codes.
Then an iterative decoding scheme for woven convolutional codes is described
and simulation results are given.

The structure of woven convolutional codes invites to theoretical ana-
lyzes. Chapter 7 gives a survey of bounds on time-varying woven convo-
lutional codes. First a short review of the error exponents for block and
convolutional codes is given. This leads to the error exponents for woven
convolutional codes with outer and inner warp. Finally, lower bounds on the
active distances for woven convolutional codes with outer and inner warp are
given. This chapter has the structure of an overview and the bounds are
given without proofs.

Finally, some concluding remarks and a short discussion on future inves-
tigations are given in Chapter 8.
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2
Convolutional Codes

T
o grasp the contents of this thesis, some knowledge about binary convolu-
tional codes is required. The basic theory used in the thesis is described

in this chapter. It is important to distinguish between the convolutional
code, the convolutional encoder, and the convolutional generator matrix. In
Section 2.1, the convolutional code is de�ned together with the generator
matrices and the encoders. In Section 2.2, important structural properties
of the generator matrices and encoders are explained and, in Section 2.3,
some well-known distance measures for convolutional codes are considered.
In Section 2.4, the trellis structure is introduced.

Sections 2.1 to 2.4 deals with time-invariant convolutional codes. In some
cases it is necessary to consider time-varying convolutional codes. An intro-
duction to this topic is given in Section 2.5.

This chapter only gives a brief introduction to the theory of convolutional
codes. For a more thorough survey refer to, e.g., [35, 38, 44]. The notations
in this thesis follow [35].

9



10 2. Convolutional codes

2.1. Binary Convolutional Codes

This section is divided into two parts. First convolutional codes with polyno-
mial generator matrices are introduced in an intuitive way. Then, the formal
de�nitions follow. The aim is to �rst get some understanding of the concepts,
so it will be easier to understand the de�nitions.

In general, a rate R = b/c, b 6 c, convolutional encoder input (informa-

tion sequence) is a sequence of binary b-tuples,

u = . . . , u−1, u0, u1, u2, . . . ,(2.1)

where ui = (u(1)
i . . . u

(b)
i ). The output (code sequence) is a sequence of binary

c-tuples,

v = . . . , v−1, v0, v1, v2, . . . ,(2.2)

where vi = (v(1)
i . . . v

(c)
i ). The sequences must start at a �nite (positive or

negative) time and may or may not end. The relation between the informa-
tion sequences and the code sequences is determined by the equation

v = uG,(2.3)

where

G =




G0 G1 . . . Gm

G0 G1 . . . Gm

G0 G1 . . . Gm

. . .
. . .

. . .


(2.4)

is the semi-in�nite generator matrix, and where the sub-matrices Gi, 0 6
i 6 m, are binary b× c matrices. The arithmetic in (2.3) is carried out over
the binary �eld, F2 , and the parts left blank in the generator matrix G are
assumed to be �lled in with zeros.

The right hand side of (2.3) de�nes a discrete-time convolution between
u and g = (G0 G1 . . .Gm), hence, the name convolutional codes. As in
many other situations where convolutions appear it is convenient to express
the sequences in some sort of transform. In information theory and coding
theory it is common to use the delay operator D, the D-transform. The
information and code sequences becomes

u(D) = · · ·+ u−1D
−1 + u0 + u1D + u2D

2 + · · ·(2.5)

and

v(D) = · · ·+ v−1D
−1 + v0 + v1D + v2D

2 + · · · .(2.6)
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They are related through the equation

v(D) = u(D)G(D),(2.7)

where

G(D) = G0 + G1D + · · ·+ GmDm(2.8)

is the generator matrix.
The set of polynomial generator matrices is a special case of the ratio-

nal generator matrices. Hence, instead of having �nite impulse response in
the encoder, as for the polynomial case, we can allow periodically repeating
in�nite impulse responses. To make the formal de�nitions for this case it
is easier to start in the D-domain. Let F2 ((D)) denote the �eld of binary

Laurent series. The element

x(D) =
∞∑

i=r

xiD
i ∈ F2 ((D)), r ∈ Z,(2.9)

contains at most �nitely many negative powers of D. Similarly, let F2 [D]
denote the ring of binary polynomials. A polynomial

x(D) =
k∑

i=0

xiD
i ∈ F2 [D], k ∈ Z+,(2.10)

contains no negative powers of D and only �nitely many positive. Given
a pair of polynomials x(D), y(D) ∈ F2 [D], where y(D) 6= 0, we can obtain
the element x(D)/y(D) ∈ F2 ((D)) by long division. All non-zero ratios
x(D)/y(D) are invertible, so they form the �eld of binary rational functions,
F2 (D), which is a sub-�eld of F2 ((D)).

We are now ready for the following de�nitions [34].

De�nition 2.1: A rate R = b/c (binary) convolutional transducer over the
�eld of rational functions F2 (D) is a linear mapping

τ : Fb
2 ((D)) →Fc

2 ((D))
u(D) →v(D),

(2.11)

which can be represented as

v(D) = u(D)G(D),(2.12)

where G(D) is a b×c transfer function matrix of rank b with entries in F2 (D)
and v(D) is called the code sequence corresponding to the information se-

quence u(D). �
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De�nition 2.2: A rate R = b/c convolutional code C over F2 is the image
set of a rate R = b/c convolutional transducer. �

We will only consider realizable (causal) transfer function matrices, which
we call generator matrices.

De�nition 2.3: A transfer function matrix of a convolutional code is called
a generator matrix if it is realizable (causal). �

It follows from the de�nitions that a rate R = b/c convolutional code C
with the b× c generator matrix G(D) is the row space of G(D) over F((D)).
Hence, it is the set of all code sequences generated by the convolutional
generator matrix, G(D).

We have now de�ned the convolutional code and its generator matrix and
continue with the encoder.

De�nition 2.4: A rate R = b/c convolutional encoder of a convolutional
code with rate R = b/c generator matrix G(D) over F2 (D) is a realization
by linear sequential circuits of G(D). �

Example 2.1: Consider the (polynomial) generator matrix

G(D) =
(

1 D 1 + D
D2 1 1 + D + D2

)
.(2.13)

An encoder for this generator matrix can be built as in Figure 2.1. �
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+

+ +

+

+

+

u(1)

u(2)

v(1)

v(2)

v(3)

Figure 2.1: An encoder for the generator matrix in (2.13).

2.2. Structural Properties of Convolutional Codes

To be able to say more about the convolutional code and its encoders we
need to take a closer look at some properties of the generator matrices.

We say that two generator matrices are equivalent [41] if they generate the
same code C. Thus, we have the following de�nition of equivalent generator
matrices.

De�nition 2.5: Two convolutional generator matrices G(D) and G′(D) are
equivalent if they encode the same code. Two convolutional encoders are
equivalent if their generator matrices are equivalent. �

In several parts of this thesis we shall exploit the well-known result that
two generator matrices, G(D) and G′(D), are equivalent if and only if there
exists a rational invertible matrix T (D) such that

G′(D) = T (D)G(D).(2.14)

An explanation1 of this property is as follows. Let the two generator matrices
G(D) and G′(D) be related via (2.14). The code sequence v(D) = u(D)G(D)

1It is not a proof of (2.14). It is more an interpretation of the concept of equivalence.
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can be generated by G′(D) as

v(D) = u(D)G(D) = u(D)T−1(D)T (D)G(D)
= u′(D)G′(D),

(2.15)

where u′(D) = u(D)T−1(D). All code sequences that can be generated by
one generator matrix can also be generated by the other, but not necessarily
by the same information sequence.

De�nition 2.6: A convolutional generator matrix is systematic if the in-
formation sequence appear unchanged in the corresponding code sequence.

�

As shown by the next example, every generator matrix has an equivalent
systematic generator matrix.

Example 2.2: Let G(D) be the same generator matrix as in Example 2.1
and choose T (D) as the inverse of the �rst non-singular sub-matrix of G(D),

T (D) =
(

1 D
D2 1

)−1

=
1

1 + D3

(
1 D

D2 1

)
.(2.16)

An equivalent systematic generator matrix for G(D) is

Gsys(D) = T (D)G(D) =

(
1 0 1+D2+D3

1+D3

0 1 1+D+D3

1+D3

)
.(2.17)

�

In Figure 2.2 and Figure 2.3 two di�erent encoders for the systematic
generator matrix in (2.17) are shown. The encoder in Figure 2.2 is realized
on controller canonical form and the encoder on Figure 2.3 is realized on
observer canonical form. The controller canonical form has one shift register
for each input (row of G(D)) while the observer canonical form has one shift
register for each output (column of G(D)).

A catastrophic [41] generator matrix is a generator matrix that encodes
some information sequence with in�nitely many non-zero symbols into a code
sequence with �nitely many non-zero symbols. This gives that a �nite num-
ber of channel errors may result in in�nitely many errors in the receiver.
Naturally, all codes have both catastrophic and non-catastrophic generator
matrices.
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u(1)

u(2)

v(1)

v(2)

v(3)

Figure 2.2: A realization on controller canonical form of the sys-
tematic generator matrix in (2.17).

+ + + +

u(1)

u(2)

v(1)

v(2)

v(3)

Figure 2.3: A realization on observer canonical form of the sys-
tematic generator matrix in (2.17).
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The physical state of an encoder is the contents of the delay elements in
the realization. The set of abstract states of a generator matrix is the set
of possible continuations of code sequences when the encoder starts in an
arbitrary physical state and is fed with the all-zero sequence. The set of
physical states is an encoder property, it depends on the realization of the
encoder, while the set of abstract states is a property of the generator matrix
and does not depend on the realization. The number of abstract states is
a measurement of the complexity of the generator matrix. Therefore, it is
desirable to �nd a generator matrix with as few abstract states as possible.

De�nition 2.7: A generator matrix, G(D), is minimal [13] if it has a min-
imum number of abstract states among all equivalent generator matrices. �

An encoder realized from a minimal generator matrix with a minimum
number of delay elements is called a minimal encoder. Such minimal en-
coders have a minimum number of delay elements over all encoders that
generate the code. It is easy to show that all systematic generator matrices
are minimal [35]. Thus, Gsys(D) in Example 2.2 is a minimal generator ma-
trix and the encoder in Figure 2.3 is a minimal encoder, while the encoder
in Figure 2.2 is not minimal.

Let

G(D) =


g11(D) · · · g1c(D)

...
...

gb1(D) · · · gbc(D)


(2.18)

be a generator matrix. The ith row of G(D) can be written as

gi(D) =
(
gi1(D) · · · gic(D)

)
=
(

fi1(D)
q(D) · · · fic(D)

q(D)

)
=

1
q(D)

(
fi1(D) · · · fic(D)

)
,

(2.19)

where fi1(D), . . . , fic(D), and q(D) are polynomials and

gcd (fi1(D), . . . , fic(D), q(D)) = 1.(2.20)

The constraint length of the ith row is de�ned as

νi , max {deg fi1(D), . . . ,deg fic(D), deg q(D)} .(2.21)

De�ne the overall constraint length as the sum of all constraint lengths,

ν ,
b∑

i=1

νi,(2.22)
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and the memory and minimum constraint length as

m , max
16i6b

{νi} and νmin , min
16i6b

{νi},(2.23)

respectively.
A realization on controller canonical form of a generator matrix uses ν

delay elements. Hence, one way to minimize the complexity of the encoder
is to minimize the overall constraint length of the generator matrix.

De�nition 2.8: A generator matrix is canonical [16] if it has minimum
overall constraint length over all equivalent generator matrices. �

It is possible to show that a canonical generator matrix is minimal and
that a realization on controller canonical form of a canonical generator matrix
is a minimal encoder.

The constraint lengths νi, 1 6 i 6 b, are invariant, up to rearrangements,
over the set of canonical generator matrices. Therefore, when we talk about
the constraint lengths, the overall constraint length, or the memory of a con-
volutional code, they are understood to be derived for a canonical generator
matrix for the code.

For the class of polynomial generator matrices the constraint length of
the ith row is, according to (2.21), de�ned as

νi , max
16j6c

{deg gij(D)}.(2.24)

The de�nitions for the overall constraint length, memory, and minimal con-
straint length are identical to (2.22) and (2.23).

Other important properties of the class of polynomial generator matrices
are basic [13] generator matrices and minimal-basic [35] generator matrices.

De�nition 2.9: A generator matrix is basic if it is polynomial and has a
polynomial right inverse. �

The generator matrix G(D) from Example 2.1 and Example 2.2 is basic
since it is polynomial and has a polynomial right inverse, viz.,

G−1(D) =


1 + D3 + D4 D + D2

D2 + D4 1 + D2

D4 D2


 .(2.25)

De�nition 2.10: A basic generator matrix is minimal-basic if it has min-
imal overall constraint length over all equivalent basic generator matrices. �
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A minimal-basic generator matrix is a polynomial and canonical genera-
tor matrix, and vice versa. Therefore, a minimal-basic generator matrix is
minimal and a realization on controller canonical form is a minimal encoder.

Remark: Although every minimal-basic generator matrix is basic and
minimal, minimal-basic is not the same as basic and minimal. It is easy
to construct an example [35] where the generator matrix is both basic and
minimal but not minimal-basic.

2.3. Distance Properties of Convolutional Codes

The Hamming weight of a sequence, wH(x), is the number of positions in
which a sequence x di�ers from zero. Similarly, the Hamming distance be-
tween two sequences, dH(x1, x2), is the number of positions in which they
di�er from each other,

dH(x1, x2) = wH(x1 − x2).(2.26)

The most important distance property of convolutional codes is the free
distance [8].

De�nition 2.11: The free distance, dfree, of a convolutional code, C, is the
minimum Hamming distance between two code sequences,

dfree , min
v1,v2∈C

{dH(v1, v2)}.(2.27)

�

Since convolutional codes are linear, all non-zero code sequences can be
compared with the all-zero sequence to get the same result,

dfree = min
v∈C\0

{wH(v)}.(2.28)

The free distance determines the error correction capability of the convo-
lutional code. A minimum distance decoder can always correct an error
sequence, e, if

wH(e) <
dfree

2
.(2.29)

Other well known distance measures are the column distance [8] and the
row distance [9].
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De�nition 2.12: The jth order column distance is

dc
j = min

u, u0 6=0
{wH

(
v[0,j]

)},(2.30)

where u is a causal information sequence with the �rst symbol non-zero, and
v[0,j] the corresponding code sequence truncated after time j. �

The column distance is the minimum Hamming distance of the �rst j +1
symbols between two code sequences when the information sequences di�er in
the �rst position. If, instead of the code sequence, the information sequence
is truncated we get the row distance.

De�nition 2.13: The jth order row distance is

dr
j = min

u[0,j], u0 6=0
{wH (v)},(2.31)

where u[0,j] is a causal information sequence with the �rst symbol nonzero
and otherwise freely chosen symbols up to time j, after which the encoder is
driven back to the zero state, and v the corresponding code sequence. �

The column distance is a non-decreasing function that converges to the
free distance. Similarly, the row distance is a non-increasing function and,
if the generator matrix is non-catastrophic, it converges to the free distance.
Hence, for non-catastrophic generator matrices

dc
0 6 dc

1 6 . . . 6 dc
∞ = dfree = dr

∞ 6 . . . 6 dr
1 6 dr

0.(2.32)

For catastrophic generator matrices the asymptotic value of the row distance
is lower bounded by the free distance, dr

∞ > dfree.

2.4. The trellis

It is often helpful to view the information sequences and code sequences in
a tree structure. In Figure 2.4 such tree is shown for the generator matrix

G(D) =
(
1 + D + D2 1 + D2

)
.(2.33)

In the �gure time passes from left to right The nodes are labeled with the
corresponding (physical) states of the encoder. The encoder is realized in
controller canonical form, see Figure 2.5, and starts in the zero state.

The state represents all the encoder knows about the past. Therefore,
the continuation of two paths with the same state at time t will be identical.
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Figure 2.4: A tree structure representing the generator matrix
in (2.33). If the input is 0 choose the upper branch and if it is 1
choose the lower. The labels of the branches are the corresponding
code symbols and the nodes are labeled with the encoder states.
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Figure 2.5: Encoder in controller canonical form of the generator
matrix in (2.33).
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Figure 2.6: The trellis for the generator matrix (2.33).

Instead of having such identical paths, for each time they can be merged.
The tree then collapses into a trellis [14]. The trellis for the generator matrix
(2.33) is shown in Figure 2.6.

Each path in the trellis describes an information sequence and the cor-
responding code sequence. Also, each path can be represented by a state
sequence,

σ = σ0σ1σ2 . . . ,(2.34)

where σi are binary matrices.

2.5. Time-varying Convolutional Codes

So far we have considered only time-invariant convolutional codes, i.e., con-
volutional codes encoded by time-invariant generator matrices. We can often
obtain powerful results if we study time-varying convolutional codes instead.

Assuming polynomial generator matrices, then from (2.3)

vt = utG0 + ut−1G1 + · · ·+ ut−mGm,(2.35)

where Gi, 0 6 i 6 m, are binary b× c time-invariant matrices.
In general, a rate R = b/c, binary convolutional code can be time-varying.

Then (2.35) becomes

vt = utG0(t) + ut−1G1(t) + · · ·+ ut−mGm(t),(2.36)

where Gi(t), 0 6 i 6 m, are binary b × c time-varying matrices. As a
counterpart to the semi-in�nite matrix G given in (2.4) we have

Gt =


G0(t) . . . Gm(t + m)

G0(t + 1) . . . Gm(t + 1 + m)
. . .

. . .


 .(2.37)
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Let E(b, c, m) be the ensemble of binary, rate R = b/c, time-varying
convolutional codes with generator matrices of memory m in which each
digit in each of the matrices Gi(t) for 0 6 i 6 m and t = 0, 1, 2, . . . is chosen
independently and is equally likely to be 0 and 1.

Remark: With a slight abuse of terminology we callGt a generator matrix
although it might not have full rank.

As a special case of the ensemble of time-varying convolutional codes
we have the ensemble of binary, rate R = b/c, periodically time-varying
convolutional codes encoded by a polynomial generator matrix Gt of memory
m and period T , in which each digit in each of the matrices Gi(t) = Gi(t+kT )
for 0 6 i 6 m, t = 0, 1, . . . , T − 1, and k = 1, 2, . . . , is chosen independently
and is equally likely to be 0 and 1. We denote this ensemble E(b, c, m, T ).

With this new tool we can obtain powerful bounds for convolutional
codes. Here we give, without proof, Costello's lower bound on the free dis-
tance [9].

Theorem 2.1 [Costello]: There exists a binary, periodically time-varying,
rate R = b/c convolutional code encoded by a polynomial generator matrix
of memory m that has a free distance satisfying the inequality2

δC ,
dfree

mc
>

R

− log(21−R − 1)
+ O

(
log m

m

)
.(2.38)

�

If the period is chosen to T = 1 we get the ensemble of binary, rate R =
b/c, time-invariant convolutional codes encoded by a polynomial generator
matrix G of memory m.

2Here and hereafter f(x) = O(g(x)) means |f(x)| 6 Ag(x) for x su�ciently large, where
A is a positive constant and g(x) > 0, i.e., that the asymptotic behavior of f(x) is upper
bounded by Ag(x).



3
Active Distances for
Convolutional Codes

T
he column distance [9] has the property that it will not increase any more
when it has reached the free distance. In this chapter we introduce a

family of distances that stay �active� in the sense that we consider only those
codewords which do not pass two consecutive zero encoder states. These
distances, called the active distances [29], determine the error correcting
capability of the code and they are of particular importance when we consider
concatenated convolutional encoders.

The active distances can be regarded as (non-trivial) generalizations to en-
coder memories m > 1 of the extended distances introduced for unit-memory
convolutional codes by Thommesen and Justesen [46].

In Section 3.1 the active distances will be de�ned for time-invariant con-
volutional codes. Some important properties for convolutional codes are
obtained via the active distances in Section 3.2, and in Section 3.3 lower
bounds on the active distances for �xed time-invariant convolutional codes
are derived. In Section 3.4 restricted sets of information sequences are used
to de�ne the active distances for time-varying convolutional codes. In the
�nal section of this chapter, Section 3.5, these de�nitions are used to ob-
tain lower bounds on the active distances for the ensemble of periodically
time-varying convolutional codes.

23
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3.1. Active Distances for Convolutional Codes

For each information sequence,

u = . . . u−1u0u1u2 . . . ,(3.1)

there is a corresponding state sequence,

σ = . . . σ−1σ0σ1σ2 . . . ,(3.2)

where σi is a binary b×m matrix representing the contents of an encoder in
controller canonical form of the generator matrix.

Let S�1,�2
[t1,t2]

denote the set of state sequences σ[t1,t2] that start at depth
t1 in state σ1 and terminate at depth t2 in state σ2 and do not have two
consecutive zero states in between, i.e.,

S�1,�2
[t1,t2]

,
{
σ[t1,t2]

∣∣∣σt1 = σ1, σt2 = σ2 and

(σi, σi+1) 6= (0,0), t1 6 i < t2

}
.

(3.3)

The notation x[t1,t2] means the part of the (in�nite) sequence in the interval
t1 6 t 6 t2,

x[t1,t2] = (xt1xt1+1 . . . xt2).(3.4)

De�nition 3.1: Let C be a convolutional code encoded by a rational gen-
erator matrix G(D) of memory m which is realized in controller canonical
form. The jth order active row distance is

ar
j , min

S0,�
[0,j+1],�

(1,i)
j+1+i=0,16i6m

{wH(v[0,j+m])},(3.5)

where σ denotes any value of the state σj+1 such that σ
(1)
j+1 6= 0, and σ

(1,i)
j+1+i

denotes the i �rst positions of the shift registers (counted from the input con-
nections) at depth j + i + 1, i.e., σ

(1,i)
j+1+i = σ

(1)
j+1+i . . . σ

(i)
j+1+i. �

The active row distance of order j is the minimum weight of paths that
diverge from the zero state at depth 0, possibly �touches� the all-zero path
only in non-consecutive zero states at depth k, where 1 + νmin 6 k 6 j, and
the input at time j is such that the �rst column of the following state is
non-zero, and, �nally, the encoder is driven directly back to the zero state.
The paths will remerge with the zero state at depth l, where j + 1 + νmin 6
l 6 j + 1 + m.
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For a polynomial generator matrix realized in controller canonical form
we have the following equivalent formulation,

ar
j = min

uj 6=0,S0,�
[0,j+1]

{
wH

(
u[0,j]G

r
j

)}
,(3.6)

where σ denotes any value of the state σj+1 with σ
(1)
j+1 = uj and where

Gr
j =




G0 G1 . . . Gm

G0 G1 . . . Gm

. . .
. . .

. . .
G0 G1 . . . Gm


(3.7)

is a (j + 1)× (j + 1 + m) truncated version of the semi-in�nite matrix G in
(2.4). The active row distance of order j for a polynomial generator matrix
is the minimum weight of a code sequence corresponding to a burst of length
j + 1 in the information sequence.

Notice that the active row distance sometimes can decrease but, as we
shall show in Section 3.5, in the ensemble of convolutional codes encoded
by periodically time-varying generator matrices there exists a convolutional
code encoded by a generator matrix such that its active row distance can be
lower bounded by a linearly increasing function.

From the de�nition follows the triangle inequality. Let G(D) be a rational
generator matrix with νmin = m. Then its active row distance satis�es the
triangle inequality

ar
j 6 ar

i + ar
j−i−1−m,(3.8)

where j > i + m and the sum of the lengths of the paths to the right of the
inequality is

i + m + 1 + (j − i−m− 1) + m + 1 = j + m + 1,(3.9)

i.e., equal to the length of the path to the left of the inequality. Furthermore,
we have immediately the following important theorem.

Theorem 3.1: Let C be a convolutional code encoded by a non-catastrophic
generator matrix. Then

min
j
{ar

j} = dfree.(3.10)

�
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The following simple example shows that the triangle inequality (3.8)
would not hold if we do not include state sequences that contain isolated
inner zero states in the de�nition of S�1,�2

[t1,t2]
.

Example 3.1: Consider the memory m = 1 generator matrix

G(D) =
(
1 D

)
.(3.11)

The code sequences corresponding to the state sequences (0, 1, 0, 1, 0) and
(0, 1, 1, 1, 0) are (10, 01, 10, 01) and (10, 11, 11, 01), respectively. It is easily
veri�ed that ar

0 = 2, ar
1 = 4, and ar

2 = 4, which satisfy the triangle inequality

ar
2 6 ar

0 + ar
0.(3.12)

If we consider only state sequences without isolated inner zero states the
lowest weight sequence of length four would pick up distance 6 and exceed
the sum of the weight for two length two sequence, which would still be four,
in violation with the triangle inequality. �

The jth order active row distance is characterized by a �xed number of
almost freely chosen information tuples, j +1, followed by a varying number,
between νmin and m, of zero state driving information tuples (�almost� since
we have to avoid consecutive zero states and assure that σ

(1)
j+1 6= 0). Some-

times it is useful to consider a corresponding distance where the total length,
j +1, is �xed, but with a varying number of almost freely chosen information
tuples. Hence, we introduce the active burst distance.

De�nition 3.2: Let C be a convolutional code encoded by a rational gen-
erator matrix G(D) of memory m. The jth order active burst distance is

ab
j , min

S0,0
[0,j+1]

{wH(v[0,j])},(3.13)

where j > νmin. �

For a polynomial generator matrix we have the following equivalent for-
mulation,

ab
j , min

S0,0
[0,j+1]

{wH(u[0,j]G
b
j)},(3.14)
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where j > νmin and

Gb
j =




G0 G1 . . . Gm

G0 G1 . . . Gm

. . .
. . .

. . .
G0 G1 . . . Gm

G0 Gm−1

. . .
...

G0




(3.15)

is a (j + 1)× (j + 1) truncated version of the semi-in�nite matrix G given in
(2.4). Notice that the active burst distance is unde�ned for j < νmin.

The active row and burst distances are related via

ab
j > min

i
{ar

j−νi
}(3.16)

and

ar
j > min

i
{ab

j+νi
},(3.17)

where νi is the ith rows constraint length of the generator matrix G(D).
Clearly, when νmin = m, we have

ar
j = ab

j+m.(3.18)

For a non-catastrophic generator matrix

min
j
{ab

j} = dfree.(3.19)

From the de�nition it is obvious that the active burst distance satis�es the
triangle inequality,

ab
j 6 ab

i + ab
j−i−1.(3.20)

From this follows easily the triangle inequality for the active row distance
(3.8), since for νmin = m

ar
j = ab

j+m 6 ab
i+m + ab

j−i−1 = ar
i + ar

j−i−1−m.(3.21)

Next we consider the active counterpart to the column distance.

De�nition 3.3: Let C be a convolutional code encoded by a rational gen-
erator matrix G(D) of memory m realized in controller canonical form. The
jth order active column distance is

ac
j , min

S0,�
[0,j+1]

{wH(v[0,j])},(3.22)
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where σ denotes any encoder state. �

For a polynomial generator matrix we have the following equivalent for-
mulation:

ac
j = min

S0,�
[0,j+1]

{
wH

(
u[0,j]G

c
j

)}
,(3.23)

where σ denotes any encoder state and Gc
j = Gb

j .
It follows from the de�nitions that

ac
j 6 ab

j ,(3.24)

and, if νmin = m for j > m

ac
j 6 ar

j−m.(3.25)

The reverse of the active column distance is when we consider paths that
start in an arbitrary state and remerges with the all-zero path after j + 1
steps.

De�nition 3.4: Let C be a convolutional code encoded by a rational gen-
erator matrix G(D) of memory m. The jth order active reverse column

distance is

arc
j , min

S�,0
[m,m+j+1]

{wH(v[m,j+m])},(3.26)

where σ denotes any encoder state. �

For a polynomial generator matrix we have the following equivalent for-
mulation to (3.26),

arc
j = min

S�,0
[m,m+j+1]

{
wH

(
u[0,j+m]G

rc
j

)}
,(3.27)

where σ denotes any encoder state and

Grc
j =




Gm

Gm−1 Gm

... Gm−1
. . .

G0

... Gm

G0 Gm−1

. . .
...

G0




(3.28)
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is a (j + m + 1) × (j + 1) truncated version of the semi-in�nite matrix G
given in (2.4).

The active reverse column distance of a generator matrix G(D) is equal
to the active column distance of the reciprocal generator matrix. For a poly-
nomial generator matrix, G(D), the reciprocal generator matrix is de�ned
as

Grec(D) , diag (Dν1Dν2 . . . Dνb)G(D−1),(3.29)

where diag(x) is a diagonal matrix with the vector x on its diagonal.
Our �nal de�nition for the family of active distances is the active segment

distance.

De�nition 3.5: Let C be a convolutional code encoded by a rational gen-
erator matrix G(D) of memory m. The jth order active segment distance

is

as
j , min

S�1,�2
[m,m+j+1]

{wH(v[m,j+m])},(3.30)

where σ1 and σ2 denote any encoder states. �

For a polynomial generator matrix we have the following equivalent for-
mulation,

as
j = min

S�1,�2
[m,m+j+1]

{
wH

(
u[0,j+m]G

s
j

)}
,(3.31)

where σ1 and σ2 denote any encoder states, and Gs
j = Grc

j .
If we consider the segment distances for two sets of consecutive paths of

lengths i + 1 and (j − i− 1) + 1, respectively, then the terminating state of
the �rst path is not necessarily identical to the starting state of the second
path. Hence, the active segment distance for the set of paths of the total
length j + 1 does not necessarily satisfy the triangle inequality. Instead it
satis�es the inequality,

as
j > as

i + as
j−i−1,(3.32)

where j > i and the sum of the lengths of the paths to the right of the
inequality is

i + 1 + j − i− 1 + 1 = j + 1,(3.33)

i.e., equal to the length of the path to the left of the inequality.
The start of the active segment distance is of special interest.
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De�nition 3.6: Let js
0 denote the largest j for which

as
j = 0,(3.34)

i.e., js
0 +1 is the largest number of information tuples that can give an output

with Hamming weight zero, given that we do not have two consecutive zero
states among the corresponding js

0 + 2 states. �

Example 3.2: In Figure 3.1 we show the active distances for the generator
matrix

G(D) =
(
1+D+D2+D3+D7+D8+D9+D11

1+D2+D3+D7+D8+D9+D11
)
.

(3.35)

Notice that the active row distance of the 0th order, ar
0, is identical to the

row distance of the 0th order, dr
0 = 15, which upper bounds dfree = 12. The

start of the active segment distance is js
0 = 9. �
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Figure 3.1: The active distances for the generator matrix in Ex-
ample 3.2.

From the de�nitions follow that the active distances are encoder proper-
ties, not code properties. However, it also follows that the active distances
are invariants over the set of canonical (or minimal-basic) generator matrices
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for a convolutional code C. Hence, when we in the sequel consider active
distances for convolutional codes it is understood that these distances are
evaluated for a corresponding canonical (minimal-basic) generator matrix.

3.2. Properties of Convolutional Codes

We de�ne the correct path through a trellis to be the path determined by
the encoded information sequence and we call the (encoder) states along the
correct path correct states. Then we de�ne an incorrect segment to be a
segment starting in a correct state σt1 and terminating in a correct state
σt2 , t1 < t2, such that it di�ers from the correct path at some, but not
necessarily all, states within this interval. Let e[k,l) denote the number of
errors in the error pattern e[k,l), where e[k,l) = ekek+1 . . . el−1.

For a convolutional code C with a generator matrix of memory m consider
any incorrect segment between two correct states, σt1 and σt2 . A minimum
distance (MD) decoder can output an incorrect segment between σt1 and
σt2 only if there exists a segment of length j +1 c-tuples, νmin 6 j < t2− t1,
between these two states such that the number of channel errors e[t1,t2) within
the interval is at least ab

j/2. Thus, we have the following theorem.

Theorem 3.2: A convolutional code C encoded by a rational generator
matrix of smallest constraint length νmin can correct all error patterns e[t1,t2)

that satisfy

e[t1+k,t1+1+i) < ab
i−k/2(3.36)

for 0 6 k 6 t2 − t1 − νmin − 1, k + νmin 6 i 6 t2 − t1 − 1. �

We have immediately a corollary.

Corollary 3.3: A convolutional code C encoded by a rational generator
matrix of memory m and smallest constraint length νmin = m can correct all
error patterns e[t1,t2) that satisfy

e[t1+k,t1+1+i) < ar
i−k−m/2(3.37)

for 0 6 k 6 t2 − t1 −m− 1, k + m 6 i 6 t2 − t1 − 1. �

Both the active column distance and the active reverse column distance
are important parameters when we study the error correcting capability of a
convolutional code. As a counterpart to Theorem 3.2 we have
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Theorem 3.4: Let C be a convolutional code encoded by a rational gener-
ator matrix of memory m and let e[t1,t2) be an error sequence between the
two correct states σt1 and σt2 . A minimum distance decoder will output a
correct state σt at depth t, t1 < t < t2, if{

e[i,t) < ac
t−i−1/2, t1 6 i < t

e[t,j) < arc
j−t−1/2, t < j 6 t2.

(3.38)

�

Proof: Assume without loss of generality that the correct path is the all-
zero path. The weight of any path of length t− i diverging from the correct
path at depth i, i < t, and not having two consecutive zero states is lower
bounded by ac

t−i−1. Similarly, the weight of any path of length j − t, j > t,
remerging with the correct path at depth j and not having two consecu-
tive zero states is lower bounded by arc

j−t−1. Hence, if e[i,t) < ac
t−i−1/2 and

e[t,j) < arc
j−t−1/2, then σt must be correct. �

Since

ac
t−i−1 + arc

j−t−1 6 ab
j−i−1(3.39)

it follows that we can regard Theorem 3.2 as a corollary to Theorem 3.4.

Example 3.3: Assume that the binary, rate R = 1/2, memory m = 2
convolutional generator matrix

G(D) =
(
1 + D + D2 1 + D2

)
(3.40)

is used to communicate over a binary symmetric channel and that we have
the following error pattern

e[0,20) = 1000010000000001000000001000000000100001(3.41)

or, equivalently,

e[0,20)(D) = (10) + (01)D2 + (01)D7 + (10)D12 + (10)D17 + (01)D19.

(3.42)

The active distances are given in Figure 3.2. From Theorem 3.2 it is easily
seen that if we assume that σ0 is a correct state and that there exists a
t′ > 20 such that σt′ is a correct state then, despite the fact that the number
of channel errors e[0,20) = 6 > dfree = 5, the error pattern (3.41) will be
corrected by a minimum distance decoder.
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The error pattern

e′[0,20) = 1010010000000000000000000000000000101001(3.43)

or, equivalently,

e′[0,20)(D) = (10) + (10)D + (01)D2 + (10)D17 + (10)D18 + (01)D19(3.44)

contains also six channel errors but with a di�erent distribution. We have
three channel errors in both the pre�x and su�x 101001. Since νmin = m = 2
and ab

2 = 5, Theorem 3.2 does not imply that the error pattern (3.43) is cor-
rected by a minimum distance decoder. In fact, the states σ1, σ2, σ18, and
σ19 will be erroneously decoded. From Theorem 3.4 follows that if σ0 is a
correct state and if there exists a t′ > 20 such that σt′ is a correct state,
then at least σ10 is a correct state. �
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Figure 3.2: The active row, column, and segment distance for the
generator matrix in (3.40).

We will now study the set of code sequences corresponding to encoder
state sequences that do not contain two consecutive zero states. From the
properties of the active segment distance it follows that such code sequences
can contain at most js

0 + 1 zero c-tuples, where js
0 is the start of the segment

distance. Lower bounds on the number of non-zero code symbols between
two bursts of zeros are given in the following theorem.
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Theorem 3.5: Consider a binary, rate R = b/c convolutional code and
let vc

[0,j′], v
rc
[0,j′], and vs

[m,j′+m] denote code sequences corresponding to state

sequences in S0,�
[0,j′+1],S�,0

[0,j′+1], and S�1,�2
[m,m+j′+1], respectively, where σ, σ1,

and σ2 denote any encoder states.

(i) Let wc
j denote the number of ones in (the weight of) a code sequence

vc
[0,j′] counted from the beginning of the code sequence to the �rst burst

of j consecutive zero c-tuples. Then wc
j satis�es

wc
j > ac

j+dwc
j /ce−1.(3.45a)

(ii) Let wrc
j denote the number of ones in (the weight of) a code sequence

vrc
[0,j′] counted from the last burst of j consecutive zero c-tuples to the

end of the code sequence. Then wrc
j satis�es

wrc
j > arc

j+dwrc
j /ce−1.(3.45b)

(iii) Let ws
j1,j2 denote the number of ones in (the weight of) a code sequence

vs
[m,j′−m] counted between any two consecutive bursts of j1 and j2 con-

secutive zero c-tuples, respectively. Then ws
j1,j2 satis�es

ws
j1,j2 > as

j1+j2+dws
j1,j2

/ce−1.(3.45c)

�

Proof: (i) The sub-sequence up to the beginning of the �rst burst of j
consecutive zero c-tuples consists of at least dwc

j/ce c-tuples. Thus, the length
of the sub-sequence that includes the �rst burst of j consecutive zero c-tuples
is at least j + dwc

j/ce c-tuples and, hence, wc
j must satisfy (3.45a).

(ii) Analogously to the proof of (i).
(iii) Since ws

j1,j2 is the weight of the sub-sequence between the two bursts
of j1 and j2 consecutive zeros, respectively, the total length including these
bursts of zeros is at least j1 + dws

j1,j2
/ce+ j2. Clearly, the weight of a sub-

sequence of this length is lower bounded by the corresponding active segment
distance, which completes the proof. �

Example 3.4: In Figure 3.3 the active distances for the generator matrix

G(D) =
(

D2 1 + D 1 + D + D2

1 + D + D2 1 + D + D2 1

)
(3.46)

are shown. From this the lower bonds on wc
j , wrc

j , and ws
j1,j2

can be calcu-
lated as shown in Table 3.1. From the state paths in Figure 3.4 the minimum
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j
1 2 3

wc
j 2 3 3

wrc
j 2 2 3

j2
ws

j1,j2
1 2 3

1 0 0 1
j1 2 0 1 1

3 1 1 1

Table 3.1: The lower bounds on wc
j , wrc

j , and ws
j1,j2 from Theo-

rem 3.5 for the generator matrix in (3.46).

j
1 2 3

min{wc
j} 2 3 3

min{wrc
j } 2 2 3

j2
min{ws

j1,j2
} 1 2 3
1 0 0 1

j1 2 0 1 1
3 1 1 1

Table 3.2: The minimum values of wc
j , wrc

j , and ws
j1,j2 for the

generator matrix in (3.46).

values of wc
j , wrc

j , and ws
j1,j2 are calculated in Table 3.2. The calculated lower

bounds are tight. �

Example 3.5: Consider the generator matrix

G(D) =
(
1 + D + D4 1 + D2 + D3 + D4

)
.(3.47)

From its active distances in Figure 3.5 the lower bounds on wc
j , wrc

j , and
ws

j1,j2
in Table 3.3 can be derived. Compared with the minimum of the true

values in Table 3.4, we see that the bound on ws
j1,j2

is not tight. �



36 3. Active distances for convolutional codes

5

10

15

10 20 30 40

10

aj

j

ar
j = ab

j+m

ac
j , arc

j

as
j

Figure 3.3: The active distances for the generator matrix in
(3.46).
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Figure 3.4: The state paths used to calculate wc
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j , ws
j1,j2 in

Example 3.4.
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j
1 2 3

wc
j 3 4 4

wrc
j 3 3 3

j2
ws

j1,j2 1 2 3
1 0 0 1

j1 2 0 1 1
3 1 1 2

Table 3.3: The lower bounds on wc
j , wrc

j , and ws
j1,j2 from Theo-

rem 3.5 for the generator matrix in (3.47).

j
1 2 3

min{wc
j} 3 4 4

min{wrc
j } 3 3 3

j2
min{ws

j1,j2
} 1 2 3
1 0 0 1

j1 2 0 1 1
3 1 3 3

Table 3.4: The minimum values of wc
j , wrc

j , and ws
j1,j2 for the

generator matrix in (3.47).
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Figure 3.5: The active distances for the generator matrix in
(3.47).
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3.3. Lower Bounds on the Active Distances

The active row and burst distances typically have parts where they decrease,
while the active column, reverse column, and segment distances are non-
decreasing functions. However, for non-catastrophic generator matrices the
active distances are in average increasing functions and can be lower bounded
by a�ne functions, 



ar
j > f r(j) , αj + βr,

ab
j > f b(j) , αj + βb,

ac
j > f c(j) , αj + βc,

arc
j > f rc(j) , αj + βrc,

as
j > fs(j) , αj + βs,

(3.48)

where α is the asymptotic slope of the active distances and the β:s are chosen
as large as possible. It follows that βr > βb > βc > βs and βr > βb > βrc >
βs. To see why βr > βb assume that j is such that ar

j = αj +βr (clearly such
a j exists). Then, for some constraint length νi, there is a sequence of length
j + 1 + νi starting in the zero state and ending in the zero state, without
consecutive zero states in between, with Hamming weight ar

j . This sequence
bounds the active burst distance as ar

j > ab
j+νi

> α(j +νi)+βb, and we have

αj + βr > α(j + νi) + βb(3.49)

or, equivalently

βr > ανi + βb > βb.(3.50)

If m = νmin, then we have directly βr = αm + βb.
Let A denote the set of parameters {α, βr, βc, βrc, βs, βb} of the lower

bounds (3.48). In the following two examples we calculate A for two di�erent
rate R = 1/2 generator matrices with memory m = 5. These results will be
used in Chapter 5 to �nd the set A for woven convolutional codes.

Example 3.6: In Figure 3.6 the active distances for the generator matrix

G(D) =
(
1 + D + D2 + D3 + D5 1 + D2 + D3 + D5

)
(3.51)

are shown together with the lower bounds de�ned by A, where

A =
{

α =
1
3
, βr =

19
3

, βb =
14
3

, βc = 2, βrc = 1, βs = −1
}

.(3.52)

The di�erence between βrc and βc is due to the fact that the distance pro�le
of the reverse generator matrix, D5G(D−1), is not as good as the distance
pro�le of G(D). �
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Figure 3.6: The active distances and the lower bounding a�ne
functions for the generator matrix in (3.51).

Example 3.7: In Figure 3.7 the active distances and their lower bounds
are shown for the generator matrix

G(D) =
(
1 + D + D2 + D3 + D5 1 + D2 + D3 + D4 + D5

)
(3.53)

where

A =
{

α =
2
7
, βr =

46
7

, βb =
36
7

, βc = βrc = 2, βs = −6
7

}
.(3.54)

The reciprocal generator matrix has the same distance properties as G(D)
since D5G(D−1) = G(D)

(
0 1
1 0

)
, hence, ac

j = arc
j and βc = βrc. �
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Figure 3.7: The active distances and the lower bounding a�ne
functions for the generator matrix in (3.53).

3.4. Active Distances for Time-varying Convolutional

Codes

Before we de�ne the active distances for periodically time-varying convolu-
tional codes encoded by time-varying polynomial generator matrices we in-
troduce the following sets of information sequences, where we always assume
that t1 6 t2.

Let Ur
[t1−m,t2+m] denote the set of information sequences

u[t1−m,t2+m] = ut1−mut1−m+1 . . .ut2+m(3.55)

such that the �rst m and the last m sub-blocks are zero and such that they
do not contain m + 1 consecutive zero sub-blocks, i.e.,

Ur
[t1−m,t2+m] ,

{
u[t1−m,t2+m]

∣∣∣u[t1−m,t1−1] = 0,

u[t2+1,t2+m] = 0, and

u[i,i+m] 6= 0, t1 −m 6 i 6 t2

}
.

(3.56)

Let Uc
[t1−m,t2]

denote the set of information sequences

u[t1−m,t2] = ut1−mut1−m+1 . . .ut2(3.57)
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such that the �rst m sub-blocks are zero and such that they do not contain
m + 1 consecutive zero sub-blocks, i.e.,

Uc
[t1−m,t2]

,
{
u[t1−m,t2]

∣∣∣u[t1−m,t1−1] = 0 and

u[i,i+m] 6= 0, t1 −m 6 i 6 t2 −m
}
.

(3.58)

Let Urc
[t1−m,t2+m] denote the set of information sequences

u[t1−m,t2+m] = ut1−mut1−m+1 . . .ut2+m(3.59)

such that the last m sub-blocks are zero and such that they do not contain
m + 1 consecutive zero sub-blocks, i.e.,

Urc
[t1−m,t2+m] ,

{
u[t1−m,t2+m]

∣∣∣u[t2+1,t2+m] = 0 and

u[i,i+m] 6= 0, t1 −m < i 6 t2

}
.

(3.60)

Let Us
[t1−m,t2]

denote the set of information sequences

u[t1−m,t2] = ut1−mut1−m+1 . . .ut2(3.61)

such that they do not contain m + 1 consecutive zero sub-blocks, i.e.,

Us
[t1−m,t2]

,
{
u[t1−m,t2]

∣∣∣u[i,i+m] 6= 0, t1 −m < i < t2 −m
}
.(3.62)

Next we introduce the (j+m+1)×(j+1) truncated, periodically time-varying
generator matrix of memory m and period T :

G[t,t+j] =




Gm(t)
Gm−1(t) Gm(t + 1)

... Gm−1(t + 1)
. . .

G0(t)
...

. . . Gm(t + j)
G0(t + 1) Gm−1(t + j)

. . .
...

G0(t + j)




,(3.63)

where Gi(t) = Gi(t + T ) for 0 6 i 6 m.
We are now well-prepared to generalize the de�nitions of the active dis-

tances for convolutional codes encoded by polynomial generator matrices to
time-varying convolutional codes encoded by polynomial time-varying gen-
erator matrices:
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De�nition 3.7: Let C be a periodically time-varying convolutional code en-
coded by a periodically time-varying polynomial generator matrix of memory
m and period T .

(i) The jth order active row distance is

ar
j , min

06t<T
min

Ur
[t−m,t+j+m]

{
wH

(
u[t−m,t+j+m]G[t,t+j+m]

)}
.(3.64a)

(ii) The jth order active burst distance is for j > m

ab
j , min

06t<T
min

Ur
[t−m,t+j]

{
wH

(
u[t−m,t+j]G[t,t+j]

)}
.(3.64b)

(iii) The jth order active column distance is

ac
j , min

06t<T
min

Uc
[t−m,t+j]

{
wH

(
u[t−m,t+j]G[t,t+j]

)}
.(3.64c)

(iv) The jth order active reverse column distance is

arc
j , min

06t<T
min

Urc
[t−m,t+j]

{
wH

(
u[t−m,t+j]G[t,t+j]

)}
.(3.64d)

(v) The jth order active segment distance is

as
j , min

06t<T
min

Us
[t−m,t+j]

{
wH

(
u[t−m,t+j]G[t,t+j]

)}
.(3.64e)

�

For a periodically time-varying convolutional code encoded by a peri-
odically time-varying, non-catastrophic, polynomial generator matrix with
active row distance ar

j we de�ne its free distance by a generalization of (3.10)

dfree , min
j
{ar

j}.(3.65)

When we in the next section we derive lower bounds on the active distances
we need the following theorem.

Theorem 3.6: Consider a periodically time-varying, rate R = b/c, polyno-
mial generator matrix of memory m and period T represented by Gt, where
Gt is given in (2.37).
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(i) Let the information sequences be restricted to the set Ur
[t−m,t+j+m].

Then the code symbols in the segment v[t,t+j+m] are mutually indepen-
dent and equiprobable over the ensemble E(b, c, m, T ) for all j, 0 6 j <
T .

(ii) Let the information sequences be restricted to the set Uc
[t−m,t+j]. Then

the code symbols in the segment v[t,t+j] are mutually independent and
equiprobable over the ensemble E(b, c, m, T ) for all j, 0 6 j < max{m+
1, T }.

(iii) Let the information sequences be restricted to the set Urc
[t−m,t+j]. Then

the code symbols in the segment v[t,t+j] are mutually independent and
equiprobable over the ensemble E(b, c, m, T ) for all j, 0 6 j < max{m+
1, T }.

(iv) Let the information sequences be restricted to the set Us
[t−m,t+j]. Then

the code symbols in the segment v[t,t+j] are mutually independent and
equiprobable over the ensemble E(b, c, m, T ) for all j, 0 6 j < T . �

Proof: It follows immediately that for 0 6 j < T the code tuples vi, i =
t, t+1, . . . , t+j, are mutually independent and equiprobable in all four cases.
Hence, the proof of (iv) is complete. In cases (ii) and (iii) it remains to show
that the statements hold also for T 6 j 6 m when m > T .

Consider the information sequences in the set Uc
[t−m,t+j], where 0 6 j 6

m. Let t 6 i 6 t + j, then, in the expression

vi = uiG0(i) + ui−1G1(i) + · · ·+ ui−mGm(i)(3.66)

there exists a k, 0 6 k 6 m, such that at least one of the b-tuples ui−k is
non-zero and all the previous b-tuples ui−k′ , k < k′ 6 m, are zero. Hence,
vi and vi′ , t 6 i < i′ 6 t + j, are mutually independent and equiprobable.
This completes the proof of (ii).

Consider the information sequences in the set Urc
[t−m,t+j], where 0 6 j 6

m. Let t 6 i 6 t + j, then, in (3.66) at least one of the b-tuples ui−k, 0 6
k 6 m, is non-zero and all the following b-tuples ui−k′ , 0 6 k′ < k, are
zero. Hence, vi and vi′ , t 6 i < i′ 6 t + j, are mutually independent and
equiprobable, which completes the proof of (iii).

For (i) it remains to show that vi and vi′ are mutually independent and
equiprobable also for T 6 i′−i < T +m. From the de�nition of Ur

[t−m,t+j+m]

it follows that u[t−m,t−1] = 0, ut 6= 0, ut+j 6= 0, and u[t+j+1,t+j+m] = 0. For
j = T , we can choose, e.g., u[t−m,t+m] = u[t+T−m,t+T+m] ∈ Ur

[t−m,t+T+m]

which implies that v[t,t+m] = v[t+T,t+T+m]. However, for T − m 6 j < T ,
vi, t 6 i < t + m, and vi′ , t + j < i′ 6 t + j + m, are mutually independent
and equiprobable. �
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From Theorem 3.6 we have two corollaries.

Corollary 3.7: Consider a periodically time-varying, rate R = b/c, polyno-
mial generator matrix of memory m and period T represented by Gt, where
Gt is given in (2.37). Let the information sequences be restricted to the set
Ur

[t−m,t+j]. Then the code symbols in the segment v[t,t+j] are mutually inde-
pendent and equiprobable over the ensemble E(b, c, m, T ) for all j, 0 6 j < T .

�

Corollary 3.8: Consider a rate R = b/c polynomial generator matrix of
memory m represented by G, where G is given in (2.4).

(i) Let the information sequences be restricted to the set Uc
[t−m,t+j]. Then

the code symbols in the segment v[t,t+j] are mutually independent and
equiprobable over the ensemble E(b, c, m, 1) for all j, 0 6 j 6 m.

(ii) Let the information sequences be restricted to the set Urc
[t−m,t+j+m].

Then the code symbols in the segment v[t,t+j] are mutually independent
and equiprobable over the ensemble E(b, c, m, 1) for all j, 0 6 j 6 m. �

3.5. Lower Bounds on the Active Distances for

Time-Varying Convolutional codes

In this section we shall derive lower bounds on the active distances for the
ensemble of periodically time-varying convolutional codes. First we consider
the active row distance and begin by proving a lemma.

Lemma 3.9: Consider the ensemble E(b, c, m, T ) of binary, rate R = b/c,
periodically time-varying convolutional codes encoded by polynomial gen-
erator matrices of memory m. The fraction of convolutional codes in this
ensemble whose jth order active row distance ar

j , 0 6 j < T , satis�es

ar
j 6 âr

j ,(3.67)

where âr
j < (j + m + 1)c/2, does not exceed

T 2

�
j+1

j+m+1 R+h

�
âr

j
(j+m+1)c

�
−1

�
(j+m+1)c

,(3.68)

where h(·) is the binary entropy function (1.2). �
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Proof: Let

v[t,t+j+m] = u[t−m,t+j+m]G[t,t+j+m],(3.69)

where u[t−m,t+j+m] ∈ Ur
[t−m,t+j+m] and assume that

âr
j < (j + m + 1)c/2.(3.70)

Then, it follows from Theorem 3.6 that

(3.71) P
(
wH(v[t,t+j+m]) 6 âr

j

)
=

âr
j∑

i=0

(
(j + m + 1)c

i

)
2−(j+m+1)c

< 2

�
h

�
âr

j
(j+m+1)c

�
−1

�
(j+m+1)c

, 0 6 j < T,

where the last inequality follows from the standard inequality

k∑
i=0

(
n

i

)
< 2h( k

n )n, k 6 n/2.(3.72)

Notice that we need the denominator �2� in the right hand side of (3.70) in
order to be able to apply (3.72). The cardinality of Ur

[t−m,t+j+m] is upper
bounded by ∣∣∣Ur

[t−m,t+j+m]

∣∣∣ 6 2(j+1)b = 2(j+1)Rc.(3.73)

Thus, we have

(3.74) P

(
min

Ur
[t−m,t+j+m]

{
wH(v[t,t+j+m])

}
6 âr

j

)

< 2(j+1)Rc2

�
h

�
âr

j
(j+m+1)c

�
−1

�
(j+m+1)c

= 2

�
j+1

j+m+1 R+h

�
âr

j
(j+m+1)c

�
−1

�
(j+m+1)c

for each t, 0 6 t < T . Using the union bound completes the proof. �

For a given f , 0 6 f < 1, let j0 be the smallest integer j satisfying the
inequality (

1− j + 1
j + m + 1

R

)
(j + m + 1)c > log

T 2

1− f
.(3.75)
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For large memories m such a value always exists. Let âr
j ,

0 < âr
j < (j + m + 1)c/2,(3.76)

denote the largest integer that for given f , 0 6 f < 1, and j, j > j0, satis�es
the inequality

(
j + 1

j + m + 1
R + h

(
âr

j

(j + m + 1)c

)
− 1
)

(j + m + 1)c 6 − log
T 2

1− f
.

(3.77)

Then, from Lemma 3.9 follows that for each j, j0 6 j < T , the fraction of
convolutional codes with jth order active row distance satisfying (3.67) is
upper bounded by

T 2− log T2
1−f =

1− f

T
.(3.78)

Hence, we use the union bound and conclude that the fraction of convolu-
tional codes with active row distance ar

j 6 âr
j for at least one j, j0 6 j < T ,

is upper bounded by

T−m−1∑
j=j0

1− f

T
< 1− f.(3.79)

We write this as a lemma.

Lemma 3.10: In the ensemble E(b, c, m, T ) of periodically time-varying
convolutional codes, the fraction of codes with active row distance

ar
j > âr

j , j0 6 j < T,(3.80)

is larger than f , where for a given f , 0 6 f < 1, j0 is the smallest integer
satisfying (3.75) and âr

j the largest integer satisfying (3.77). �

By taking f = 0, we have the following corollary.

Corollary 3.11: There exists a binary, periodically time-varying, rate R =
b/c, convolutional code encoded by a polynomial generator matrix of period
T and memory m such that its jth order active row distance for j0 6 j < T
is lower bounded by âr

j , where âr
j is the largest integer satisfying(

j + 1
j + m + 1

R + h

(
âr

j

(j + m + 1)c

)
− 1
)

(j + m + 1)c 6 −2 logT(3.81)
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and j0 is the smallest integer satisfying(
1− j + 1

j + m + 1
R

)
(j + m + 1)c > 2 logT.(3.82)

�

In order to get a better understanding for the signi�cance of the previous
lemma we shall study the asymptotic behavior of the parameters j0 and âr

j

for large memories.
Let the period T grow as a power of m, say T = m2. Then, since j0 is

an integer, for large values of m we have j0 = 0. Furthermore, the inequality
(3.81) can be rewritten as

h

(
âr

j

(j + m + 1)c

)
6 1− j + 1

j + m + 1
R− 4 logm

(j + m + 1)c
,(3.83)

or, equivalently, as 1

âr
j 6 h−1

(
1− j + 1

j + m + 1
R

)
(j + m + 1)c + O(log m),(3.84)

Combining this with Lemma 3.10 we have the following theorem.

Theorem 3.12: There exists a binary, periodically time-varying, rate R =
b/c, convolutional code encoded by a polynomial generator matrix of memory
m that has a jth order active row distance satisfying the inequality

ar
j > h−1

(
1− j + 1

j + m + 1
R

)
(j + m + 1)c + O(log m),(3.85)

for j > 0. �

From the de�nitions of the active distances, De�nition 3.7, it is clear that
ab

j = ar
j+m, and we have the corresponding theorem.

Theorem 3.13: There exists a binary, periodically time-varying, rate R =
b/c, convolutional code encoded by a polynomial generator matrix of memory
m that has a jth order active burst distance satisfying the inequality

ab
j > h−1

(
1− j −m + 1

j + 1
R

)
(j + m + 1)c + O(log m),(3.86)

for j > m. �

1Here and hereafter we write h−1(y) for the smallest x such that y = h(x).
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The main term in (3.85) can be obtained from the Gilbert-Varshamov
bound for block codes using a geometrical construction that is similar to
Forney's inverse concatenated construction [15].

Consider the Gilbert-Varshamov lower bound on the normalized mini-
mum distance for block codes [39], viz.,

dmin

N
> h−1(1 −R),(3.87)

where N denotes the block length. Let

δr(j) =
h−1

(
1− j+1

j+1+mR
)

(j + 1 + m)c

mc
(3.88)

denote the main term of the right hand side of (3.85) normalized by mc.
The construction is illustrated in Figure 3.8 for R = 1/2. The straight

line between the points (0, δr(j)) and (R, 0) intersects h−1(1−R) in the point
(r, h−1(1− r)). The rate r is chosen to be

r =
j + 1

j + 1 + m
R,(3.89)

i.e., it divides the line between (0, 0) and (R, 0) in the proportion (j +1) : m.
Then we have

δr(j)
h−1(1− r)

=
j + 1 + m

m
,(3.90)

which is equivalent to (3.88).
We shall now derive a corresponding lower bound on the active column

distance. Let

v[t,t+j] = u[t−m,t+j]G[t,t+j],(3.91)

where u[t−m,t+j] ∈ Uc
[t−m,t+j] and let âc

j be an integer satisfying the inequality

âc
j < (j + 1)c/2.(3.92)

Then, as a counterpart to (3.71) we have

(3.93) P
(
wH(v[t,t+j]) 6 âc

j

)
=

âc
j∑

i=0

(
(j + 1)c

i

)
2−(j+1)c

< 2

�
h

�
âc

j
(j+1)c

�
−1

�
(j+1)c

, 0 6 j < T.
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Figure 3.8: Geometrical construction of the relationship between
the lower bound on the active row distance for convolutional codes
and the Gilbert-Varshamov lower bound on the minimum distance
for block codes.

The cardinality of Uc
[t−m,t+j] is upper bounded by |Uc

[t−m,t+j]| 6 2(j+1)Rc and
we obtain

(3.94) P

(
min

Uc
[t−m,t+j]

{
wH(v[t,t+j])

}
6 âc

j

)

< 2(j+1)Rc2

�
h

�
âc

j
(j+1)c

�
−1

�
(j+1)c

= 2

�
R+h

�
âc

j
(j+1)c

�
−1

�
(j+1)c

,

for each t, 0 6 t < T . Minimizing over 0 6 t < T and using the union bound
complete the proof of the next lemma.

Lemma 3.14: Consider the ensemble E(b, c, m, T ) of binary, rate R = b/c,
periodically time-varying convolutional codes encoded by polynomial gen-
erator matrices of memory m. The fraction of convolutional codes in this
ensemble whose jth order active column distance ac

j , 0 6 j < T , satis�es

ac
j 6 âc

j ,(3.95)

where âc
j < (j + 1)c/2, does not exceed

T 2

�
R+h

�
âc

j
(j+1)c

�
−1

�
(j+1)c

.(3.96)

�
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Choose j0 to be the smallest integer j satisfying the inequality

(1−R)(j + 1)c > log T 2.(3.97)

Let âc
j,

0 < âc
j < (j + 1)c/2,(3.98)

denote the largest integer that for given j, j > j0, satis�es the inequality(
R + h

(
âc

j

(j + 1)c

)
− 1
)

(j + 1)c 6 − logT 2.(3.99)

Then, from Lemma 3.14 follows that for each j, j0 6 j < T , the fraction of
convolutional codes with a jth order active column distance satisfying (3.95)
is upper bounded by

T 2− log T 2
=

1
T

.(3.100)

Hence, we use the union bound and conclude that the fraction of convolu-
tional codes with active column distance ac

j 6 âc
j for at least one j, j0 6 j <

T , is upper bounded by

T−1∑
j=j0

1
T

< 1.(3.101)

Thus, we have proved the following lemma.

Lemma 3.15: There exists a periodically time-varying, rate R = b/c, con-
volutional code encoded by a polynomial generator matrix of period T and
memory m such that its jth order active column distance for j0 6 j < T is
lower bounded by âc

j , where âc
j is the largest integer satisfying

(
R + h

(
âc

j

(j + 1)c

)
− 1
)

(j + 1)c 6 −2 logT(3.102)

and j0 is the smallest integer satisfying

(1 −R)(j + 1)c > 2 logT.(3.103)

�
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If we as before choose T = m2, then j0 = O(log m), and the inequality
(3.102) can be rewritten as

h

(
âc

j

(j + 1)c

)
6 1−R− 4 logm

(j + 1)c
(3.104)

for j = O(m) or, equivalently, as

âc
j 6 h−1(1−R)(j + 1)c + O(log m).(3.105)

This together with Lemma 3.14 gives the next theorem.

Theorem 3.16: There exists a binary, periodically time-varying, rate R =
b/c, convolutional code encoded by a polynomial generator matrix of memory
m that has a jth order active column distance satisfying the inequality

ac
j > h−1(1−R)(j + 1)c + O(log m),(3.106)

for j = O(m) > j0 = O(log m). �

Analogously we can prove

Theorem 3.17: There exists a binary, periodically time-varying, rate R =
b/c, convolutional code encoded by a polynomial generator matrix of mem-
ory m that has a jth order active reverse column distance arc

j which is lower
bounded by the right hand side of the inequality (3.106) for all j > j0 =
O(log m). �

For the active segment distance we have the following

Theorem 3.18: There exists a binary, periodically time-varying, rate R =
b/c, convolutional code encoded by a polynomial generator matrix of memory
m that has a jth order active segment distance satisfying the inequality

as
j > h−1

(
1− j + m + 1

j + 1
R

)
(j + 1)c + O(log m),(3.107)

for j = O(m) > js
0 , where

js
0 <

R

1−R
m + O(log m).(3.108)

�
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Proof: Consider the ensemble E(b, c, m, T ). First we notice that the cardi-
nality of Us

[t,t+j] is upper bounded by

|Us
[t,t+j]| 6 2mb2(j+1)b = 2(j+m+1)Rc.(3.109)

Using (3.109) instead of (3.73) and repeating the steps in the derivation of
the lower bound on the active column distance will give

h

(
âs

j

(j + 1)c

)
6 1− j + m + 1

j + 1
R− 4 logm

(j + 1)c
(3.110)

for all j = O(m) > js
0 , or, equivalently,

âs
j 6 h−1

(
1− j + m + 1

j + 1
R

)
(j + 1)c + O(log m),(3.111)

where

0 < âs
j < (j + 1)c/2,(3.112)

instead of (3.104), (3.105), and (3.98), respectively, and the proof is complete.
The parameter js

0 is the start of the active segment distance (cf. Fig-
ure 3.1). �

Next we consider our lower bounds on the active distances, viz., (3.85),
(3.86), (3.106), and (3.107), and introduce the substitution

` =
j + 1
m

,(3.113)

then we obtain asymptotically�for large memories m�the following lower
bounds on the normalized active distances.

Theorem 3.19: In the ensemble of binary, periodically time-varying, rate
R = b/c, convolutional codes encoded by polynomial generator matrices of
memory m,

(i) there exists a code whose normalized active row distance asymptotically
satis�es

δr
` ,

ar
j

mc
> h−1

(
1− `

` + 1
R

)
(` + 1) + O

(
log m

m

)
(3.114a)

for ` > 0.
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Figure 3.9: Typical behavior of the lower bounds on the normal-
ized active distances of Theorem 3.19.

(ii) there exists a code whose normalized active burst distance asymptoti-
cally satis�es

δb
` ,

ab
j

mc
> h−1

(
1− `− 1

`
R

)
` + O

(
log m

m

)
(3.114b)

for ` > 1.
(iii) there exists a code whose normalized active column (reverse column)

distance asymptotically satis�es

δc
` ,

ac
j

mc

δrc
` ,

arc
j

mc


 > h−1(1−R)` + O

(
log m

m

)
(3.114c)

for ` > `0 = O
(

log m
m

)
.

(iv) there exists a code whose normalized active segment distance asymp-
totically satis�es

δs
` ,

as
j

mc
> h−1

(
1− ` + 1

`
R

)
` + O

(
log m

m

)
(3.114d)

for ` > `s
0 = R

1−R + O
(

log m
m

)
. �
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The typical behavior of the bounds in Theorem 3.19 is shown in Fig-
ure 3.9. Notice that by minimizing the lower bound on the normalized active
row distance (3.114a) or, equivalently, the lower bound on the normalized ac-
tive burst distance (3.114b) we obtain nothing but the main term in Costello's
lower bound on the free distance [9], viz.,

δC(R) =
R

− log(21−R − 1)
.(3.115)



4
Cascaded Convolutional

Codes

C
oncatenation is a both powerful and practical method to obtain com-
munication systems with low error probabilities. In this chapter the

simplest such construction is considered, viz., a cascade of two convolutional
encoders [23, 30] (see also [31]). The aim is to understand the basics of a
concatenated construction. However, to get a system with good error perfor-
mance for low signal to noise ratios some sort of symbol-wise permutations
of the sequence between the encoders is required.

In Section 4.1 cascaded convolutional codes are introduced. Structural
properties are considered �rst for cascaded convolutional codes with matched
rates in Section 4.2 and then for unmatched rates in Section 4.3. In Sec-
tion 4.4 the constituent generator matrices are replaced by equivalent ones
and in Section 4.5 those equivalent generator matrices are systematic. In
Section 4.6 lower bounds on the active distances for �xed time-invariant cas-
caded convolutional codes are derived, while Section 4.7 is devoted to ensem-
ble properties, where lower bounds on the active distances and free distance
are derived for time-varying cascaded convolutional codes.

55
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4.1. Cascaded Convolutional Codes

A cascaded convolutional encoder is a cascade of one outer rate Ro = bo/co

encoder of memory mo and one inner rate Ri = bi/ci encoder with mem-
ory mi, see Figure 4.1. Each binary bo-tuple of the information sequence
is encoded into a binary co-tuple. The encoded sequence is serialized and
directly, without any permutations, fed as the information sequence for the
inner encoder, where each binary bi-tuple is encoded into a binary ci-tuple.
Thus, the overall rate of the cascaded encoder is

Rc =
bc

cc
=

bo
co

bi
ci

=
bobi

coci
= RoRi.(4.1)

We say that the outer and inner encoders have matched rates if the outer
code tuples serve directly as information tuples for the inner encoder, i.e., if
bi = co. Then the overall rate is Rc = bo/ci.

uc

[bo]
Go

vo

[co]

ui

[bi]
Gi

vc

[ci]

Figure 4.1: A cascade of two convolutional encoders.

A cascaded convolutional code is a convolutional code encoded by a cas-
caded convolutional encoder. From

vc = uiGi = ucGoGi(4.2)

we see that the cascaded generator matrix Gc is given by

Gc = GoGi,(4.3)

where Go and Gi are the generator matrices for the outer and inner encoders,
respectively.

If the constituent encoders have matched rates, then equation (4.3) can,
equivalently, be expressed as

Gc(D) = Go(D)Gi(D).(4.4)

When the rates are not matched, i.e., bi 6= co, the matrix multiplication in
(4.4) is not de�ned, but (4.3) is still valid.
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4.2. Structural Properties of Cascaded Convolutional

Codes

In this section we will show some structural properties for cascaded convo-
lutional generator matrices and encoders. We assume that the constituent
generator matrices have matched rates. In the next section we will consider
the situation when the encoders have unmatched rates.

Let Gc
can(D) be a canonical generator matrix equivalent to the cascaded

generator matrix,

Gc(D) = Go(D)Gi(D),(4.5)

and denote by mcan and νcan its memory and overall constraint length, re-
spectively. An obvious way of realizing the cascaded generator matrix Gc(D)
is to realize both Go(D) and Gi(D) on controller canonical form. Such a re-
alization requires νo + νi memory elements, where νo and νi are the overall
constraint lengths for the outer and inner generator matrices, respectively.
We know that an encoder realized on controller canonical form of a canonical
generator matrix is a minimal encoder, i.e., it requires a minimum number
of delay elements over all encoders for the code. Since such a realization of
Gc

can(D) has νcan delay elements we have the following theorem.

Theorem 4.1: LetGc
can(D), with overall constraint length νcan, be a canon-

ical generator matrix equivalent to the cascaded generator matrix Gc(D) de-
�ned by the product of the two generator matrices Go(D) and Gi(D), with
matched rates and overall constraint lengths νo and νi, respectively, then

νcan 6 νo + νi.(4.6)

�

A similar theorem for the memory of a cascaded generator matrix can be
stated.

Theorem 4.2: Let Gc
can(D) of memory mcan be a canonical generator ma-

trix equivalent to the cascaded generator matrix, Gc(D), of memory mc

de�ned as the product of the two generator matrices Go(D) and Gi(D) with
matched rates and of memories mo and mi, respectively, then

mcan 6 mc 6 mo + mi.(4.7)

�
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Proof: It can be shown that the memory of a canonical generator matrix is
minimal over all equivalent generator matrices [35]. Thus, mcan 6 mc, where
mc is the memory of the cascaded generator matrix, Gc(D). Furthermore,
the product of two generator matrices cannot have larger memory than the
sum of the constituent memories, thus,

mcan 6 mc 6 mo + mi.(4.8)

�

The next example [43] on polynomial generator matrices further explains
the two theorems.

Example 4.1: Consider the rate Ro = 2/3 outer generator matrix

Go(D) =
(

1 D 1 + D
D2 1 1 + D + D2

)
(4.9)

of memory mo = 2 and overall constraint length νo = 3 and the rate Ri = 3/4
inner generator matrix

Gi(D) =


1 1 1 1

0 1 + D D 1
0 D 1 + D2 1 + D2


(4.10)

of memory mi = 2 and overall constraint length νi = 3. The corresponding
cascaded generator matrix is

(4.11) Gc(D) = Go(D)Gi(D)

=
(

1 1 D + D3 D2 + D3

D2 1 + D3 1 + D2 + D3 + D4 D + D2 + D3 + D4

)
of rate Rc = 2/4, memory mc = 4 (= mo +mi), and overall constraint length
νc = 7 (> νo + νi).

Both Go(D) and Gi(D) are minimal-basic (canonical), while Gc(D) is
not. As expected, the product of two canonical generator matrices is not
necessarily canonical. The generator matrix

Gc
can(D) =

(
1 1 D + D3 D2 + D3

D + D2 1 + D + D3 1 + D3 D + D2

)
(4.12)

of memory mcan = 3 and overall constraint length νcan = 6 is a minimal-
basic (canonical) equivalent of Gc(D). Comparing the memories and overall
constraint lengths for the constituent generator matrices with this one we
get mcan = 3 < mo +mi = 4 and νcan = νo + νi = 6. Thus, the upper bound
on the constraint lengths in Theorem 4.1 is tight. �
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Example 4.1 shows that the overall constraint length of the cascaded
generator matrix can actually exceed the sum of the overall constraint lengths
for the constituent generator matrices, i.e., νc 
 νo + νi. To get an estimate
of the overall constraint length for the cascaded generator matrix we take
a closer look at the multiplication of the constituent generator matrices.
Let νo,k, 1 6 k 6 bo, be the constraint length of the kth row of the outer
generator matrix and νT

i,l, 1 6 l 6 ci, the �constraint lengths� of the lth
row of the transpose of the inner generator matrix, (Gi(D))T . Now, the kth
constraint length of the cascaded generator matrix can be bounded by

νc,k 6 max
16l6ci

{
νo,k + νT

i,l

}
= νo,k + mi, 1 6 k 6 bo.(4.13)

Therefore, the overall constraint length for the cascaded generator matrix
satis�es

νc =
bo∑

j=1

νc,k 6
bo∑

j=1

(νo,k + mi) = νo + bomi,(4.14)

which we state as a theorem.

Theorem 4.3: Let Gc(D) of overall constraint length νc be a cascaded gen-
erator matrix de�ned by the product of the rate Ro = bo/co outer generator
matrix Go(D) of overall constraint length νo and the rate Ri = bi/ci inner
generator matrix Gi(D) of memory mi where bi = co, then

νc 6 νo + bomi.(4.15)

�

In Example 4.1 this gives νc 6 3 + 2 · 2 = 7 and we see that the bound in
(4.15) is tight. Note that the sum νo + bomi can be less than νo + νi. Thus,
we can actually strengthen the bound of Theorem 4.1 to be the minimum of
those two values.

The generator matrix Gc(D) in (4.11) is not canonical, but the next
theorem shows that it is in fact minimal.

Theorem 4.4: If Go(D) and Gi(D) are two minimal generator matrices
with matched rates, then the cascaded generator matrix de�ned by their
product, Gc(D) = Go(D)Gi(D), is also minimal. �

Proof: The span of a Laurent series in D is the set of indices from the �rst
non-zero component to the last non-zero component, if there is one, otherwise
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to in�nity. In [16] it is shown that a generator matrix G(D) is minimal if
and only if the span of the information sequence is contained in the span of
the code sequence,

span(u(D)) ⊆ span(u(D)G(D)).(4.16)

If both the outer and inner generator matrices are minimal, then

span(uc(D)) ⊆ span(uc(D)Go(D))

⊆ span(uc(D)Go(D)Gi(D))
= span(uc(D)Gc(D)),

(4.17)

where the �rst inclusion is equivalent to the minimality of Go(D) and the
second to the minimality of Gi(D). �

In Example 4.1 both the outer and inner generator matrices were basic,
as was the cascaded generator matrix. The next theorem will show that this
was not a coincident.

Theorem 4.5: If Go(D) and Gi(D) are two basic generator matrices with
matched rates, then the cascaded generator matrix de�ned by their product,
Gc(D) = Go(D)Gi(D), is also basic. �

Proof: Since Go(D) and Gi(D) are basic, they are both polynomial and have
polynomial right inverses. The cascaded generator matrix will, of course, be
polynomial and it will have a polynomial right inverse, viz.,

(Gc(D))−1 = (Go(D)Gi(D))−1 = (Gi(D))−1(Go(D))−1.(4.18)

�

The last example in this section will show that also the bound in Theo-
rem 4.2 is also tight.

Example 4.2: Consider the rate Ro = 1/2 outer generator matrix

Go(D) =
(
1 D

1+D

)
(4.19)

of memory mo = 1 and overall constraint length νo = 1 and the rate Ri = 2/3
inner generator matrix

Gi(D) =
( 1

1+D
1

1+D
D

1+D

1 D
1+D

1
1+D

)
(4.20)
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of memory mi = 1 and overall constraint length νi = 2.
Both constituent generator matrices are canonical and, in contrast to

Example 4.1, so is their product

Gc
can(D) = Gc(D) =

(
1 1+D+D2

1+D2
D2

1+D2

)
.(4.21)

Here the overall constraint length is νcan = 2 = νo + bomi < νo + νo = 3.
The memory mcan = mo + mi = 2, and the upper bound on the memories
in Theorem 4.2 is tight. �

4.3. Cascaded Convolutional Codes with Unmatched

Rates

In the case when bi 6= co the product of Go(D) and Gi(D) is not de�ned.
We can, however, still multiply the semi-in�nite matrices Go and Gi to get
the cascaded generator matrix Gc = GoGi. We will start by taking a closer
look at the rate for this generator matrix. A block of bi information symbols
(binary bo-tuples) will be encoded into bi outer code symbols (co-tuples). This
binary bico-tuple can be represented as co inner information symbols which
will be encoded into co inner code symbols. Assume that d = gcd(co, bi).
Then, in the same way, bi/d outer information symbols will generate co/d
code symbols from the inner encoder. We write this as a lemma.

Lemma 4.6: The rate of a cascaded generator matrix de�ned by Gc =
GoGi is

Rc =
bobd

cdci
(4.22)

where bd = bi

gcd(co, bi)
and cd = co

gcd(co, bi)
. �

For matched rates, bi = co, we get bd = cd = 1. From Lemma 4.6 it is
clear that the matrix Gc(D) has size bobd × cdci. This matrix can be found
by enlarging the sub-matrices in Go by a factor bd, and in Gi by cd, in a
similar way as when deriving the unit memory representative of a generator
matrix [37]. The resulting matrices Go

[bd](D) and Gi
[cd](D) then have matched

rates and can be multiplied. The next example will explain the procedure.
For simplicity we use polynomial generator matrices.

Example 4.3: Let

Go(D) =
(
1 + D + D2 1 + D2

)
(4.23)
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and

Gi(D) =


1 + D D D 1 + D

D2 1 + D 0 1 + D + D2

0 D 1 + D2 1 + D2


 .(4.24)

These minimal-basic (canonical) matrices cannot be multiplied directly,. We
have d = gcd(co, bi) = 1, and the enlargement factors are bd = 3 and cd = 2.
The rate of the cascaded convolutional generator matrix is Rc = 1

2
3
4 = 3

8 .
The outer generator matrix can be written as

Go =




11 10 11
11 10 11

11 10 11
11 10 11

11 10 11
11 10 11

. . .
. . .

. . .




.(4.25)

Instead of 1 × 2 sub-matrices we consider three times larger ones, 3 × 6,
and express the matrix in the D-transform representation. The three times
enlarged variant of Go(D) is

Go
[3](D) =


11 10 11

00 11 10
00 00 11


+


00 00 00

11 00 00
10 11 00


D

=


 1 1 1 0 1 1

D D 1 1 1 0
D 0 D D 1 1


 .

(4.26)

The inner generator matrix is

Gi =




1001
0101
0011

1111
0101
0100

0000
1001
0011

1001
0101
0011

1111
0101
0100

0000
1001
0011

1001
0101
0011

1111
0101
0100

0000
1001
0011

. . .
. . .

. . .




.(4.27)

To double the size of the generator matrix in the D-transform representation
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we get

Gi
[2](D) =




1001
0101
0011

1111
0101
0100
1001
0101
0011


+




0000
1001
0011
1111
0101
0100

0000
1001
0011


D

=




1 0 0 1 1 1 1 1
D 1 0 1 + D 0 1 0 1
0 0 1 + D 1 + D 0 1 0 0
D D D D 1 0 0 1
0 D 0 D D 1 0 1 + D
0 D 0 0 0 0 1 + D 1 + D


 .

(4.28)

Using these enlarged matrices, the semi-in�nite matrix multiplication Gc =
GoGi can be equivalently represented by

(4.29) Gc(D) = Go
[3](D)Gi

[2](D)

=


 1 + D 1 1 + D 1 + D 1 + D 0 D 0

D2 D 1 1 + D + D2 1 0 D D
D + D2 D2 D D D 1 1 0


 .

This matrix is actually minimal-basic (canonical), thus Gc
can(D) = Gc(D).

�

The same principle of enlarging generator matrices can easily be applied
on rational generator matrices. The multiplication v = uG represents the
convolution v = u ∗ g, where g is the impulse response of the encoder.
The generator matrix G(D) is the D-transform of g. For rational generator
matrices we have an in�nite (periodical) impulse response instead of a �nite
as for polynomial generator matrices. The enlarging procedure for rational
generator matrices will be shown by the next example.

Example 4.4: Consider the generator matrix

G(D) =
(
1 1+D2

1+D+D2

)
.(4.30)

We wish to enlarge it by a factor two. The impulse response is

g = (10) [(01) (01) (00)]∞,(4.31)
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where [·]∞ denotes in�nitely many repetitions. The generator matrix G is
therefore

G =




11 01 01 00 01 01 00 · · ·
11 01 01 00 01 01 · · ·

11 01 01 00 01 · · ·
. . .

. . .
. . .

. . .
. . .


 .(4.32)

Consider 2 × 4 sub-matrices instead of 1 × 2 sub-matrices, and write the
impulse response,

g[2] =
(

1 1 0 1
0 0 1 1

)[(
0 1 0 0
0 1 0 1

)(
0 1 0 1
0 0 0 1

)(
0 0 0 1
0 1 0 0

)]∞
.(4.33)

In the D-transform representation this gives

G[2](D) = D(g[2]) =

(
1 1+D2

1+D+D2 0 1+D
1+D+D2

0 D+D2

1+D+D2 1 1+D2

1+D+D2

)
.(4.34)

�

From the de�nition of abstract states it is clear that they are not a�ected
by the enlargement. Especially, if G(D) has a minimum number of abstract
states, so does G, and consequently also G[e](D). That is, if G(D) is minimal,
so is G[e](D). Thus, Theorem 4.4 still holds for unmatched rates.

Theorem 4.7: If Go(D) and Gi(D) are two minimal generator matrices,
then the cascaded generator matrix de�ned by the product of the enlarged
variants of Go(D) and Gi(D) is also minimal. �

Let G(D) be a generator matrix with the set of abstract states S. De�ne
µ as the logarithm of the number of abstract states, µ = log |S|, then a
minimal realization of G(D) must consist of µ memory elements. Since S is
preserved while enlarging it is clear that a minimal realization of the enlarged
generator matrix also consists of µ memory elements. Thus, the cascaded
generator matrix can be realized with µo + µi memory elements. Since we
always have that µ 6 ν, for canonical generator matrices equality, and that
canonical generator matrices have a minimum number of abstract states, we
conclude that

νcan = µcan 6 µo + µi 6 νo + νi.(4.35)

Thus, Theorem 4.2 holds for unmatched rates.
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Theorem 4.8: Let Gc
can(D) of overall constraint length νcan be a canonical

generator matrix equivalent to the cascaded generator matrix Gc(D) de�ned
as the product of the enlarged variants of the two generator matrices Go(D)
and Gi(D) of overall constraint lengths νo and νi, respectively, then

νcan 6 νo + νi.(4.36)

�

So far we have mostly dealt with rational generator matrices. We can,
however, say a little bit more about polynomial generator matrices. One
interesting subject is the polynomial inverse of a basic generator matrix.
This can be enlarged in the same way as described before.

Example 4.5: The outer generator matrix in Example 4.3,

Go(D) =
(
1 + D + D2 1 + D2

)
,(4.37)

has the polynomial right inverse

(Go(D))−1 =
(

D
1 + D

)
,(4.38)

or as a semi-in�nite generator matrix

(Go)−1 =




0 1
1 1

0 1
1 1

0 1
1 1

. . .




,(4.39)

which gives us the 3 times enlarged variant

(Go
[3](D))−1 = (Go(D))−1

[3] =




0 1 0
1 1 0
0 0 1
0 1 1
D 0 0
D 0 1


 .(4.40)

�
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Since Go(D)(Go(D))−1 = I1 = 1 we have that Go(Go)−1 = I∞ and
Go

[3](D)(Go
[3](D))−1 = I3, where In is the identity matrix of size n× n. It is

also clear that enlarging a polynomial matrix only give us another polynomial
matrix, thus the enlarged variant of a basic generator matrix is basic. This
means that Theorem 4.5 is still valid when bi 6= co.

Theorem 4.9: If Go(D) and Gi(D) are two basic generator matrices, then
the cascaded generator matrix de�ned by the product of the two enlarged
variants of Go(D) and Gi(D) is also basic. �

In Example 4.4 the rational generator matrix G(D) has overall constraint
length ν = 2, while the overall constraint length for the enlarged variant,
G[2](D) is ν[2] = 4. Thus, the overall constraint length is not preserved
when enlarging a rational generator matrix, but, as the next lemma show,
for polynomial generator matrices it is.

Lemma 4.10: If G(D) is a polynomial generator matrix with overall con-
straint length ν and G[e](D) is an enlarged variant with overall constraint
length ν[e]. Then

ν[e] = ν.(4.41)

�

Proof: Assume that the b × c generator matrix G(D) is enlarged e times.
Consider an arbitrary row, say row i, of G(D) with constraint length νi, and
examine how this row contributes to ν[e]. Let this number be ν′i. Thus,

ν[e] =
b∑

i=1

ν′i.(4.42)

The ith row of G, i < b is

gi = g0g1 . . . ge−1ge . . . gke−1gke . . . gνi0 . . . ,(4.43)

where gj is the ith row of the sub-matrix Gj . This row contributes to ν[e]

with bνi/ec. The next time νi contributes is on row i+ b, which is a one step
shifted version of gi

gi+b = 0g0g1 . . . ge−1ge . . . gke−1gke . . . gνi0 . . .(4.44)

thus it gives b(νi + 1)/ec in contribution. This continues e times, and we
conclude that

ν′i =
e−1∑
l=0

⌊
νi + l

e

⌋
.(4.45)
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We need to show that this sum is equal to νi. First rewrite the constraint
length as νi = ke + n, where 0 6 n < e and k ∈ N, then⌊

νi + l

e

⌋
=
⌊
k +

l + n

e

⌋
=

{
k, 0 6 l 6 e− n− 1
k + 1, e− n 6 l 6 e− 1

(4.46)

The sum in (4.45) becomes

ν′i =
e−1∑
l=0

⌊
νi + l

e

⌋
=

e−n−1∑
l=0

k +
e−1∑

l=e−n

k + 1

= (e− n)k + n(k + 1) = ek + n = νi.

(4.47)

�

Corollary 4.11: If G(D) is a minimal-basic generator matrix then its e
times enlarged variant, G[e](D), is also minimal-basic.

Proof: From Example 4.5 we know that if G(D) is basic, so is G[e](D). If
G[e](D) is not minimal-basic there exists an equivalent basic generator ma-
trix, G′

[e](D) with overall constraint length ν′[e] < ν[e] = ν. That is, we can
construct an encoder for the code with fewer than ν delay-elements, which
contradicts that G(D) is minimal-basic. �

Again, it is seen from Example 4.4 that this corollary only holds for
minimal-basic generator matrices and not for all canonical generator matri-
ces.

Parts of the proof of Lemma 4.10 can be used to estimate the memory
for the cascaded generator matrix.

Theorem 4.12: Let Gc
mb(D) be a minimal-basic generator matrix of mem-

ory mmb that is equivalent to the generator matrix Gc(D) de�ned as the
product of the enlarged variants of the polynomial generator matrices Go(D)
of memory mo and Gi(D) of memory mi. Then,

mmb 6

⌈
mo

bd

⌉
+
⌈

mi

cd

⌉
,(4.48)

where bd = bi/ gcd(bi, co) and cd = co/ gcd(bi, co). �

Proof: Consider a polynomial rate R = b/c generator matrix G(D) and
enlarge it e times into G[e](D). Choose i to be a row in G(D) with νi = m.
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Then the row i + b(e − 1) of G[e](D) will have a constraint length equal to
the memory, i.e., ν[e],i+b(e−1) = m[e]. Thus,

m[e] =
⌊

m + e− 1
e

⌋
=
⌊

m

e
+

e− 1
e

⌋
=

{
m
e , e | m⌊
m
e

⌋
+ 1 , e - m

(4.49)

which is equivalent to

m[e] =
⌈m

e

⌉
.(4.50)

Enlarge the outer and inner generator matrices by the factors bd and cd, re-
spectively, and apply Theorem 4.2 to complete the proof. �

In Example 4.3 we had mo = 2, mi = 2, and mc = 2. Inequality (4.48)
in Theorem 4.12 states that

mmb 6

⌈
mo

bd

⌉
+
⌈

mi

cd

⌉
=
⌈

2
3

⌉
+
⌈

2
2

⌉
= 1 + 1 = 2.(4.51)

Thus, the bound in Theorem 4.12 is tight.
In the remaining parts of this chapter it will be assumed that the con-

stituent rates are matched. Generalizations to cascaded convolutional codes
with unmatched rates are straight forward.

4.4. Non-equivalent Cascaded Encoders Obtained

from Equivalent Constituent Encoders

In this section we shall analyze various examples of cascaded convolutional
codes. Replace the outer generator matrix Go(D) with the equivalent gen-
erator matrix Go′(D) = T o(D)Go(D) and the inner generator Gi(D) matrix
with Gi′(D) = T i(D)Gi(D), where T o(D) and T i(D) are non-singular. Then
the generator matrix for the cascaded encoder is

Gc′(D) = T o(D)Go(D)T i(D)Gi(D).(4.52)

We shall see that Gc′(D) and Gc(D) = Go(D)Gi(D) are, in general, not
equivalent.

If only the outer generator matrix Go(D) is replaced by an equivalent
generator matrix, then the new cascaded generator matrix Gc′(D) will be
equivalent to the cascaded generator matrix Gc(D) since

Gc′(D) = Go′(D)Gi(D)

= T (D)Go(D)Gi(D) = T (D)Gc(D).

(4.53)
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It is the code sequences from the outer encoder that serve as information
sequences for the inner encoder. Therefore, the cascaded convolutional code
is a proper (assuming Ro < 1) subset of the inner convolutional code, Cc ⊂ Ci.
Replacing the inner encoder with an equivalent inner encoder changes the
mapping from the inner information sequences to the inner code sequences
and, consequently, also the subset of the inner convolutional code. In general,
we will obtain a di�erent cascaded convolutional code when we replace the
inner encoder by an equivalent one. This fact is illustrated by the following
two examples.

Example 4.6: Choose as outer and inner generator matrices

Go(D) =
(
1 + D D

)
(4.54)

and

Gi(D) =
(

1 1 D
1 + D D 1

)
,(4.55)

respectively. The cascaded generator matrix is

Gc(D) = Go(D)Gi(D)

=
(
1 + D2 1 + D + D2 D2

)(4.56)

which encodes a rate R = 1/3 convolutional code with dfree = 6.
Let

Tj(D) =
(

1 0
0 Dj

)
(4.57)

and replace the inner generator matrix with the equivalent generator matrix
Tj(D)Gi(D). Then for j = 1 the new cascaded generator matrix is

Gc
1(D) = Go(D)T1(D)Gi(D)

=
(
1 + D + D2 + D3 1 + D + D3 D

)
,

(4.58)

which gives dfree = 8. For j = 3 we have

Gc
3(D) =

(
1 + D + D4 + D5 1 + D + D5 D + D2 + D4

)
,(4.59)

which gives dfree = 10.
In Figure 4.2 the active row distances for the cascaded generator matrices

are plotted. The active row distances for Gc(D) and Gc
1(D) have the same

slope, but the free distance for Gc
1(D) is superior to that of Gc(D). The

active row distance for Gc
3(D) starts o� better than the other two, i.e., it
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has a larger free distance, but the others have steeper slope. The active row
distance for Gc

1(D) is above that of Gc
3(D) after j = 17. Similarly, the active

row distance for Gc(D) is above that of Gc
3(D) after j = 22. This will only

have e�ect on very poor channels. For good and mediocre channels it is the
early part of the active row distance that determines the error correcting
capability. �

Clearly, as Example 4.6 shows, the cascaded convolutional code is changed
when the inner encoder is replaced by an equivalent inner encoder. Further-
more, for a given generator matrix Gi(D) there exists an in�nite number
of cascaded convolutional codes encoded by generator matrices of the type
Gc

j(D) = Go(D)Tj(D)Gi(D). The generator matrices Go(D), Gi(D), Gc(D),
Gc

1(D), and Gc
3(D) in Example 4.6 are, surprisingly enough, all minimal-

basic, but Gi
j(D) = Tj(D)Gi(D), j = 1, 3, are neither basic nor minimal.

10 20 30

10

20

30

40

ar
j

j

Gc
1(D)

Gc(D)
Gc

3(D)

Figure 4.2: The active row distances for the generator matrices
in Example 4.6.

Our next example deals with catastrophic generator matrices. Since Cc ⊂
Ci for Ro < 1, catastrophicity of the inner generator matrix does not imply
catastrophicity of the generator matrix for the cascade.

Example 4.7: Choose the outer and inner generator matrices as in Exam-
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ple 4.6 and let

Tj(D) =
(

1 + Dj 0
0 1

)
.(4.60)

Then Gi′(D) = Tj(D)Gi(D) is catastrophic, i.e., the in�nite weight input

u(D) =
(

1
1+Dj 0

)
(4.61)

generates the �nite weight output

v(D) =
(
1 1 D

)
.(4.62)

However, the cascaded generator matrix, Gc
j(D) = Go(D)Tj(D)Gi(D) is

non-catastrophic for j > 1. In Figure 4.3 the active row distances for
Gc(D) = Go(D)Gi(D) and Gc

6(D) are plotted. We see that for j = 6 we
even get a larger free distance than in Example 4.6, viz., dfree = 11. �

Remark: Although we do not discuss decoding in this chapter we re-
mark that if the decoding is performed in two steps, i.e., �rst we decode
the inner convolutional code and then the outer convolutional code, the
catastrophicity of the inner generator matrix might still be harmful.

Can the inner generator matrix be chosen such that we obtain the same
cascaded convolutional code, i.e., such that Gc′(D) is equivalent to Gc(D)?
Indeed it can, which is illustrated by the following simple example.

Example 4.8: Let the outer generator matrix be

Go =
(
1 + D + D2 1 + D2

)
(4.63)

and let the inner generator matrix Gi(D) be of rate Ri = 2/ci.
If Gi′(D) = T1(D)Gi(D), where

T1(D) =
( 1

1+D+D2 0
0 1

1+D+D2

)
,(4.64)

then the cascaded generator matrix is

Gc
1
′(D) = Go(D)T1(D)Gi(D) =

(
1 1+D2

1+D+D2

)
Gi(D)

=
1

1 + D + D2
Go(D)Gi(D) =

1
1 + D + D2

Gc(D),

(4.65)

Hence, Gc
1
′(D) and Gc(D) are equivalent generator matrices.
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Figure 4.3: The active row distances for the generator matrices
in Example 4.7.

On the other hand, if we choose

T2(D) =
( 1

1+D+D2 0
0 1

1+D2

)
,(4.66)

then we obtain

Gc
2
′(D) = Go(D)T2(D)Gi(D) =

(
1 1

)
Gi(D),(4.67)

which clearly is not equivalent to Gc(D). �

As a straight-forward generalization of Example 4.8 it follows that if
Gc′(D) and Gc(D) are equivalent generator matrices, then for some invertible
bo × bo matrix S(D)

Gc′(D) = Go(D)T (D)Gi(D)

= S(D)Gc(D) = S(D)Go(D)Gi(D),

(4.68)

or, equivalently,

Go(D)T (D) = S(D)Go(D).(4.69)
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4.5. Systematic Cascaded Encoders

Example 4.6 shows that we can change the cascaded convolutional code with-
out violating the restriction on the overall constraint length ν′c 6 νo + νi.
Below we use systematic generator matrices to obtain a general construction
that obeys this restriction. Furthermore, for decoding it might be desirable
to let both the inner and outer generator matrices be systematic rational
generator matrices.

From a generator matrix we can easily obtain an equivalent systematic
generator matrix. Hence, we can easily �nd invertible bo × bo and bi × bi

matrices T o and T i, respectively, such that

Gc
sys(D) = Go

sys(D)Gi
sys(D) = T o(D)Go(D)T i(D)Gi(D),(4.70)

where Gc
sys(D), Go

sys(D), and Gi
sys(D) all are systematic generator matrices.

In general, Gc
sys(D) is not equivalent to Gc(D) = Go(D)Gi(D).

Forney [13] showed that systematic generator matrices are always mini-
mal. Thus, it follows that the systematic cascaded generator matrix

Gc
sys(D) = Go

sys(D)Gi
sys(D),(4.71)

where Go
sys(D) and Gi

sys(D) are equivalent to Go(D) and Gi(D), is a minimal
generator matrix for Cc

sys. Furthermore, if Go(D) and Gi(D) are minimal,
then a minimal realization of Gc

sys(D) has at most the same number of delay
elements as the cascaded encoder Gc(D) has when realized as a cascade of
the two minimal encoders Go(D) and Gi(D).

Example 4.9: Choose as outer generator matrix

Go(D) =
(
1 + D + D2 1 + D2

)
(4.72)

and as inner generator matrix

Gi(D) =
(

D2 1 + D 1 + D + D2

1 + D + D2 1 + D + D2 1

)
,(4.73)

which both are minimal-basic. The cascaded generator matrix yields

Gc(D) = Go(D)Gi(D) =
(
1 + D + D2 D + D4 D4

)
,(4.74)

which is minimal-basic and encodes a rate R = 1/3 convolutional code with
dfree = 6.

With the invertible matrices

T o(D) =
(

1
1+D+D2

)
(4.75)
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and

T i(D) =
1

1 + D2 + D4

(
1 + D + D2 1 + D
1 + D + D2 D2

)
(4.76)

we can �nd the systematic outer and inner generator matrices

Go
sys(D) = T o(D)Go(D) =

(
1 1+D2

1+D+D2

)
(4.77)

and

Gi
sys(D) = T i(D)Gi(D) =

(
1 0 D+D2+D4

1+D2+D4

0 1 1+D4

1+D2+D4

)
,(4.78)

which are equivalent to Go(D) and Gi(D), respectively. The generator matrix
for the cascade of the systematic generator matrices is

Gc
sys(D) = Go

sys(D)Gi
sys(D)

=
(
1 1+D2

1+D+D2
1+D+D2+D4+D5

1+D+D3+D5+D6

)
,

(4.79)

which encodes a rate R = 1/3 convolutional code with dfree = 12. Since
Go(D) and Gi(D) both are minimal-basic (canonical) we know that their
minimal encoders consists of 2 and 4 delay elements, respectively. Therefore
a minimal encoder for the convolutional code Cc

sys can be realized by at most 6
delay elements, i.e., the systematic generator matrix Gc

sys(D) can be realized
by at most 6 delay elements. As a matter of fact, it is easily seen that a
realization of Gc

sys(D) requires 6 delay elements.
In Figure 4.4 we have plotted the active row distances for the generator

matrices Gc(D) and Gc
sys(D). The active row distance for Gc

sys(D) is superior
to that of Gc(D) up to j = 25, where they cross. �

Remark: The cascaded generator matrix Gc(D) can be systematic even
if neither the outer nor the inner generator matrices are systematic. If, for
example, the inner generator matrix is chosen as

Gi(D) =
�
(Go(D))−1 A(D)

�
,(4.80)

where (Go(D))−1 is the right inverse of the outer generator matrix Go(D),
then the cascaded generator matrix is systematic, i.e.,

Gc(D) = Go(D)Gi(D) =
�
I Go(D)A(D)

�
.(4.81)

It is, however, preferable from a decoding point of view that both the outer
and the inner generator matrices are systematic.
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Figure 4.4: The active row distances for the generator matrices
in Example 4.9.

4.6. Lower Bounds on the Active Distances

The active distances are in general di�cult to calculate. In this section we
will derive lower bounds on the active distances for polynomial time-invariant
cascaded convolutional generator matrices. We will use the lower bounds in
(3.48).

Assume that both the outer and the inner generator matrices are minimal-
basic and that the corresponding encoders are realized on controller canonical
form. The cascaded encoder is considered to be in the zero state if both the
inner and outer encoders are in the zero state.

A sub-sequence of the inner information sequence consisting of all-zero bi-
tuples, preceded by a non-zero bi-tuple and followed by a non-zero bi-tuple,
such that it drives the inner encoder to the zero state is called a burst of

zeros. The length�the number of bi-tuples�of a burst of zeros depends on
the encoder state but, clearly, it is lower bounded by

lburst > νi
min,(4.82)

where νi
min is the minimum constraint length of the inner generator matrix.

If the outer encoder must not get to the zero state the length of a burst of
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zeros can also be upper bounded by

lburst 6

⌊
jso
0 co + 2(co − 1)

bi

⌋
,(4.83)

where jso
0 is the longest sequence of all-zero co-tuples generated by the outer

encoder when it does not have consecutive zero states. Denote this maximum
length by lb.

From Theorem 3.5 we can get some knowledge about the output of the
outer encoder. Let wb be the lower bound on the weight between the begin-
ning of the sequence and the �rst burst of zeros occupying lb symbols, i.e.,
the least wc

lb
that satis�es (3.45a). Similarly, let we be the minimum weight

from the last burst of zeros to the end of the sequence, i.e., the least wrc
lb

that
satis�es (3.45b), and let ws be the minimum weight between two bursts of lb
zeros, i.e., the least ws

lb,lb
that satis�es (3.45c).

To simplify the notation, let ji denote the degree of the inner information
sequence when the degree of the outer information sequence is j, where we
assume that the information sequences are written as Laurent series. Since
the outer generator matrix is minimal-basic it has the predictable degree
property and, hence, ji is lower bounded by

ji > (j + νo
min)

co

bi
.(4.84)

When the cascaded encoder is not in the zero state we might still have
either the outer or the inner encoder in the zero state. If the inner encoder is
not in the zero state, then a rough estimate of the minimum output weight
from the inner encoder is ari

ji
both when the outer encoder is allowed to reach

the zero state and when it is not. On the other hand, if the inner encoder
is in the zero state the outer encoder must not be in the zero state. Hence,
there are two di�erent cases to consider:

(i) The inner encoder is not in the zero state.

(ii) The inner encoder is in the zero state, but the outer is not.

From (4.82) and (4.83) we know the range for the length of a zero sequence
that will drive the inner encoder to the zero state. Since the output from
the encoder is zero, while in zero state, the burst should be chosen as long as
possible to get an estimate of the minimum output weight. De�ne ϕb as the
reduction in Hamming weight when a burst of zeros is inserted. If the burst
starts after k information symbols this reduction will be, see Figure 4.5,

ϕb = f ri(ji)−
(
f ri(k − 1) + f ri(ji − k − lb)

)
= αi(lb + 1)− βri,

(4.85)
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Figure 4.5: One burst of zeros splitting the sequence into two
sub-sequences.

where f ri(j) is the a�ne function, de�ned in (3.48), that lower bounds the
active row distance for the inner generator matrix.

If ϕb is positive, then we have the same reduction for a second burst of
zeros. Finally, assume that the sequence has been split by Nr bursts of zeros.
Then,

I the length before the �rst burst of zeros is at least dwb/bie.
I the length after the last burst of zeros is at least dwe/bie.
I the length between two (consecutive) bursts of zeros is at least dws/bie.

Consequently, the largest number of bursts of zeros is the largest Nr such
that

Nrlb + (Nr − 1)
⌈ws

bi

⌉
+
⌈wb

bi

⌉
+
⌈we

bi

⌉
6 ji + 1.(4.86)

Hence, the active row distance for the cascaded encoder can be lower bounded
by

(4.87) arc
j > min

{
f ri(ji),

f ri
(⌈wb

bi

⌉
− 1
)

+ (Nr − 1)f ri
(⌈ws

bi

⌉
− 1
)

+ f ri
(⌈we

bi

⌉
− 1
)}
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and the free distance by

dc
free > min

j
{arc

j }.(4.88)

The lower bound on the active burst distance can be derived analogously.
The largest number of bursts of zeros is the largest number Nb such that

Nblb + (Nb − 1)
⌈ws

bi

⌉
+
⌈wb

bi

⌉
+
⌈we

bi

⌉
6 j

co

bi
+ 1.(4.89)

The active burst distance for the cascaded encoder can be lower bounded by

(4.90) abc
j > min

{
f bi(j

co

bi
),

f ri
(⌈wb

bi

⌉
− 1
)

+ (Nr − 1)f ri
(⌈ws

bi

⌉
− 1
)

+ f bi
(⌈we

bi

⌉
− 1
)}

.

When calculating the active column distance and the active reverse col-
umn distance we consider the same cases, i.e., when the inner encoder does
not have consecutive zero states and when it is fed with as many bursts of
zeros as possible. For the active column distance the minimum number of
bursts of zeros is the largest Nc such that

Nclb + Nc

⌈ws

bi

⌉
+
⌈wb

bi

⌉
6 j

co

bi
+ 1.(4.91)

Similarly, when lower bounding the active reverse column distance the max-
imum number of bursts of zeros is given by the largest Nrc such that

Nrclb + Nrc

⌈ws

bi

⌉
+
⌈we

bi

⌉
6 j

co

bi
+ 1.(4.92)

Then, the bounds on the active column distance and the active reverse col-
umn distance for the cascaded code can be calculated as

(4.93) acc
j > min

{
f ci

(
j
co

bi

)
,

f ri
(⌈wb

bi

⌉
− 1
)

+ (Nc − 1)f ri
(⌈ws

bi

⌉
− 1
)

+ f ci
(⌈ws

bi

⌉
− 1
)}

and

(4.94) arcc
j > min

{
f rci

(
j
co

bi

)
,

f rci
(⌈ws

bi

⌉
− 1
)

+ (Nrc − 1)f ri
(⌈ws

bi

⌉
− 1
)

+ f ri
(⌈we

bi

⌉
− 1
)}

,
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respectively.
The �rst case to consider when deriving the active segment distance is,

as before, when there are no bursts of zeros. For the second case one burst of
zeros splits the information sequence into two sub-sequences. Each of these
sub-sequences can be split further. Then, the maximum number of bursts of
zeros is the largest Ns such that

Nslb + Ns

⌈ws

bi

⌉
6 j

co

bi
+ 1.(4.95)

Thus, to calculate the active segment distance there are three di�erent cases
to consider, which results in

(4.96) asc
j > min

{
f ci

(
j
co

bi

)
,

f rci
(⌈wb

bi

⌉
− 1
)

+ f ci
(
j
co

bi
−
⌈we

bi

⌉
− lb

)
,

f rci
(⌈wb

bi

⌉
− 1
)

+ (Ns − 1)f ri
(⌈ws

bi

⌉
− 1
)

+ f ci
(⌈we

bi

⌉
− 1
)}

.

4.7. Time-varying Cascaded Convolutional Codes

Consider the ensemble EC(bc, cc, mc, Tc) of periodically time-varying, cas-
caded convolutional codes constructed in the following way:

Choose as an outer convolutional code a binary, periodically time-varying,
rate Ro = bo/co convolutional code with period T , encoded by a polynomial
generator matrix of memory mo and whose starting point of its active seg-
ment distance is

jso
0 =

Ro

1−Ro
mo + O(log mo).(4.97)

The existence of such a convolutional code was shown in Chapter 3.
The ensemble of inner convolutional codes is the ensemble of binary, pe-

riodically time-varying convolutional codes with period T , rate Ri = bi/ci,
where bi = co, encoded by time-varying polynomial generator matrices of
memory mi > jso

0 . Clearly, we have bc = bo, cc = ci, mc = mo + mi, and
Tc = T .

To derive bounds on the active distances for the ensemble of periodically
time-varying cascaded convolutional codes we need a counterpart to Theo-
rem 3.6.

Theorem 4.13: Consider a periodically time-varying, rate Rc = bc/cc, cas-
caded convolutional code encoded by a convolutional encoder of memory mc.
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(i) Let the information sequences be restricted to the set Ur
[t−mc,t+j+mc]

.
Then the code symbols in the segment v[t,t+j+mc] are mutually inde-
pendent and equiprobable over the ensemble EC(bc, cc, mc, Tc) for all
j, 0 6 j < Tc.

(ii) Let the information sequences be restricted to the set Uc
[t−mc,t+j]. Then

the code symbols in the segment v[t,t+j] are mutually independent and
equiprobable over the ensemble EC(bc, cc, mc, Tc) for all j, 0 6 j < Tc.

(iii) Let the information sequences be restricted to the set Urc
[t−mc,t+j]. Then

the code symbols in the segment v[t,t+j] are mutually independent and
equiprobable over the ensemble EC(bc, cc, mc, Tc) for all j, 0 6 j < Tc.

(iv) Let the information sequences be restricted to the set Us
[t−mc,t+j]. Then

the code symbols in the segment v[t,t+j] are mutually independent and
equiprobable over the ensemble EC(bc, cc, mc, Tc) for all j, 0 6 j < Tc.

�

Proof: Analogously to the proof of Theorem 3.6. �

If we let

` =
j + 1
mc

,(4.98)

then, asymptotically�for large memories mc�we obtain the following coun-
terpart to Theorem 3.19 for the ensemble of periodically time-varying con-
volutional codes E(b, c, m, T ).

Theorem 4.14: In the ensemble EC(bc, cc, mc, Tc) there exists

(i) a cascaded convolutional code whose normalized active row distance
asymptotically satis�es

δrc
` ,

arc
j

mccc
> h−1

(
1− `

` + 1
Rc

)
(` + 1) + O

(
log mc

mc

)
(4.99a)

for ` > 0.

(ii) a cascaded convolutional code whose normalized active burst distance
asymptotically satis�es

δbc
` ,

abc
j

mccc
> h−1

(
1− `− 1

`
Rc

)
` + O

(
log mc

mc

)
(4.99b)

for ` > 1.



4.7. Time-varying cascaded convolutional codes 81

(iii) a cascaded convolutional code whose normalized active column (reverse
column) distance asymptotically satis�es

δcc
` ,

acc
j

mccc

δrcc
` ,

arcc
j

mccc


 > h−1

(
1−Rc

)
` + O

(
log mc

mc

)
(4.99c)

for ` > `0 = O
(

log mc

mc

)
.

(iv) a cascaded convolutional code whose normalized active segment distance
asymptotically satis�es

δsc
` ,

asc
j

mccc
> h−1

(
1− ` + 1

`
Rc

)
` + O

(
log mc

mc

)
(4.99d)

for ` > `o
s = Rc

1−Rc
+ O

(
log mc

mc

)
. �

The theorem shows that the performance for all active distances for the
ensemble of time-varying cascaded convolutional codes is the same as for the
ensemble of time-varying convolutional codes although the former ensemble
is essentially smaller. Thus, we have the same typical behavior for the bounds
as in Figure 3.9

The free distance for a convolutional code is obtained as the minimum
weight of the non-zero codewords. The only restriction on the input sequence
is that it should be non-zero. Since the inputs to the inner encoder are
restricted to be codewords of the outer encoder we will not obtain a useful
estimate of dc

free from the free distance of the inner code, di
free.

It is somewhat surprising that, given only a restriction on the memory of
the inner code, there exists a convolutional code obtained as a cascade with
a free distance satisfying the Costello bound [9].

Theorem 4.15: In the ensemble EC(bc, cc, mc, Tc) there exists a cascaded
convolutional code whose free distance satis�es the inequality

dc
free >

mcccRc

− log(21−Rc − 1)
+ O(log mc)

>
mocoRo

− log(21−Ro − 1)
+

miciRi

− log(21−Ri − 1)
+ O(log mo) + O(log mi).

(4.100)

�
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Proof: By minimizing (4.99a), we obtain

dc
free >

mcbo

− log(21−Rc − 1)
+ O(log mc)

=
mcciRc

− log(21−Rc − 1)
+ O(log mc)

=
mobo

− log(21−Rc − 1)
+

miciRc

− log(21−Rc − 1)
+ O(log mc)

>
mocoRo

− log(21−Ro − 1)
+

miciRi

− log(21−Ri − 1)
+ O(log mc),

(4.101)

where we in the last inequality have used that

− log(21−R − 1)(4.102)

is an increasing function and

R

− log(21−R − 1)
(4.103)

is a decreasing function of R. �

Assume that for the cascaded encoder in Theorem 4.15 we have νmin,o =
mo and νmin,i = mi and that mi = Ro

1−Ro
mo holds. Then the total number

of states in the outer and inner encoders are

2mobo + 2mibi = 2mobo(1 + 2mibi−mobo)

= 2(mo+mi)bo(1 + 2−mibo),

(4.104)

which is essentially equal to the total number of states of a generator matrix
Gc(D) with νmin,c = mc. The second equality follows from the equalities
mi = Ro

1−Ro
mo and bi = co. Thus, given the restriction on the ratio mi/mo,

from the Costello lower bound point of view we do not lose in free distance by
splitting a given amount of convolutional encoder memory into two cascaded
convolutional encoders!



5
Woven Convolutional

Codes

I
n the previous chapter a cascade of two convolutional encoders were inves-
tigated. The error performance of such construction is not very promising.

On the receiver side in a communication system the inner decoder will group
the errors in bursts, which the outer decoder cannot handle. The bursts of
errors from the outer decoders must in some way be split. The traditional
way to accomplish this is to feed the sequence into a bu�er where the bits are
permuted. We will consider a further development of cascaded convolutional
codes. Instead of letting one inner encoder follow one single outer encoder,
we put a set of parallel encoders in the place of the outer and inner encoder.
In the constructions convolutional codes are woven together in a manner
that resembles the structure of a fabric. We call these constructions woven
convolutional codes [25] and distinguish between outer and inner warp.

In Section 5.1 the encoders for three types of woven convolutional codes
will be described, woven convolutional codes with outer warp, with inner
warp, and the twill. In Sections 5.2 and 5.3 structural properties of the
generator matrices for the warp will be investigated, and in Section 5.4 the
same is done for the woven convolutional codes. In Section 5.5 the free
distance and the active distances for the constructions are lower bounded.

83
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5.1. Introduction to Woven Convolutional Codes

We will introduce three related woven constructions, woven convolutional
codes with outer warp, woven convolutional codes with inner warp, and the
twill. The two �rst constructions are degenerated special cases of the latter.
For simplicity we describe the two special cases of the twill �rst.

In the �rst construction we consider lo rate Ro = bo/co, outer, binary,
convolutional encoders in parallel. The information sequence is divided into
sub-blocks of lobo information symbols each. These sub-blocks are fed in
parallel into the lo parallel outer encoders. The co code sequences from each
outer encoder are serialized and written row-wise into a bu�er consisting of lo
rows. These lo code sequences constitute the warp. The binary code symbols
are read column-wise and used as inputs to one rate Ri = bi/ci, inner, binary,
convolutional encoder�the weft1, see Figure 5.1 This woven convolutional

code with outer warp has overall rate Row = bow/cow, where bow = lobo and
cow = lococi/bi = loco/Ri. Hence, we have

Row =
bow

cow
=

lobo

loco
ci

bi

=
bobi

coci
= RoRi.(5.1)
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Figure 5.1: Woven convolutional encoder with outer warp.

The second construction is reversed compared with the previous one. Use
one outer convolutional encoder as the weft. The code sequence is written
column-wise into a bu�er with li rows and the binary symbols in the rows
are regarded as information symbols for the li parallel inner convolutional
encoders�the warp of the construction, see Figure 5.2.

1The words warp and weft are borrowed from the art of textile handicraft. In a loom the
parallel threads that build the foundation of the cloth is named warp, while the inserted
thread is called weft (also �lling or woof ).
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Figure 5.2: Woven convolutional encoder with inner warp.

If we consider ciw = lici as an output tuple, then the corresponding
input tuple is biw = libibo/co, and, hence, the overall rate for the woven

convolutional code with inner warp is

Riw =
biw

ciw
=

libi
bo

co

lici
=

bobi

coci
= RoRi.(5.2)

Both constructions can be considered as special cases of the twill which
has both outer and inner warp. The outer warp consists of lo rate Ro = bo/co

outer encoders and the inner warp of li rate Ri = bi/ci encoders. The infor-
mation sequence is divided into sub-blocks of btw = lolibo binary information
symbols each. These sub-blocks are fed into the lo parallel encoders. After
encoding and serializing, these lo code sequences constitute the outer warp.
Then li binary code symbols from each of the outer warp sequence are read
column-wise and used as inputs to the li inner encoders, see Figure 5.3.
Hence, each sub-block of btw = lolibo binary information symbols is encoded
by the twill encoder into a sub-block of ctw = lolicoci/bi binary code symbols
and we have

Rtw =
btw

ctw
=

lolibo

lolico
ci

bi

=
bobi

coci
= RoRi.(5.3)

Clearly, the woven convolutional code with outer (inner) warp is a twill
with li = 1 (lo = 1). When lo = li = 1 we have a cascaded convolutional
code.

The next example implies that lo and li should be chosen relatively prime,
i.e.,

gcd(lo, li) = 1.(5.4)
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Figure 5.3: Encoder for the twill.

Example 5.1: First, consider a twill with lo = 10 and li = 3. Then the
bu�er between the outer and inner warps can be viewed as in Figure 5.4.
The ten arrows on the left in the �gure represent the outer encoders, and the
output from each of them is written row-wise into the bu�er. The bu�er is
read column-wise, and the �rst bit goes to the �rst inner encoder, the second
bit to the second encoder, the third bit to the third encoder, the fourth bit,
to the �rst encoder, and so forth. The grey shaded squares in the �gure
represent the information sequence for the �rst inner encoder. We see that
the bits of the information sequences for each of the inner encoders are taken
from all the outer code sequences.

Next, add one inner encoder to get li = 4. In Figure 5.5 the bu�er
structure is redrawn. We still write row-wise into the bu�er and read column-
wise. Thus, bits number 1, 5, 9, 13, . . . serve as input for the �rst inner
encoder. These bits are marked with dark grey shaded squares in the �gure.
Likewise, the light grey shaded squares represent the bits that serve as input
for the third encoder.

We see that the sequences from the odd outer encoders are distributed
over the odd inner encoders, while the sequences from the even outer en-
coders are distributed over the even inner encoders. This scheme is actually
split into two completely separated parallel twills with �ve outer and two
inner encoders each. To avoid such splits the number of outer and inner
encoders should be chosen relatively prime. �

The name twill comes from the pattern of the shaded squares in the bu�er
of Figure 5.4. That same pattern is used when weaving the fabric twill, e.g.,
the fabric of jeans.
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lo = 10 li = 3

Figure 5.4: The bu�er structure of a twill with ten outer and
three inner encoders.

lo = 10 li = 4

Figure 5.5: The bu�er structure of a twill with ten outer and four
inner encoders.
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5.2. The Generator Matrix of the Warp

The warp can be considered as the main building block of a twill. Assume
�rst that all constituent encoders are identical. In Figure 5.6 we show a warp
with lw constituent rate R = b/c encoders, each with generator matrix G(D).
The rate of the warp is the same as the rate of its constituent encoders.

uw(D)

uw
1 (D)

G(D)
vw

1 (D)

uw
2 (D)

G(D)
vw

2 (D)

...

uw
lw

(D)
G(D)

vw
lw

(D)

vw(D)

Figure 5.6: A warp with lw identical parallel encoders.

The information sequence of the warp is divided into sub-blocks of blw
information symbols. Then we have

uw(D) =
(
u(1)(D) . . . u(b)(D)

)
,(5.5)

where

u(i)(D) =
(
u

(i)
1 (D) . . . u

(i)
lw

(D)
)
.(5.6)

The information sequence of the lth constituent encoder is

uw
l (D) =

(
u

(1)
l (D) . . . u

(b)
l (D)

)
(5.7)

and the corresponding code sequence

vw
l (D) = uw

l (D)G(D)

=
(
uw

l (D)g1(D) . . . uw
l (D)gc(D)

)
=
(
v
(1)
l (D) . . . v

(c)
l (D)

)
,

(5.8)
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where gj(D) is the jth column of the generator matrix G(D), i.e.,

G(D) =


g11(D) . . . g1c(D)

...
...

gb1(D) . . . gbc(D)


 =

(
g1(D) . . . gc(D)

)
.(5.9)

Each of these lw code sequences are serialized and written row-wise into a
bu�er. The code sequence for the warp, vw(D), is read column-wise from
the bu�er and we obtain

vw(D) =
(
v(1)(D) . . . v(c)(D)

)
,(5.10)

where

v(i)(D) =
(
v
(i)
1 (D) . . . v

(i)
lw

(D)
)

=
(
uw

1 (D)gi(D) . . . uw
lw(D)gi(D)

)
.

(5.11)

To obtain a compact notation for the generator matrix of the warp we use
the matrix (Kronecker) tensor product. This is a matrix consisting of all
possible products with one element taken from each matrix.

De�nition 5.1: Let A and B be two matrices of size m × n and p × q,
respectively. The tensor product A⊗B is the mp× nq matrix

A⊗B =


 a11B · · · a1nB

...
...

am1B · · · amnB


 .(5.12)

�

If the matrix products are de�ned, then

(A⊗B)(C ⊗D) = AC ⊗BD.(5.13)

This immediately gives that the inverse of the tensor product is the tensor
product of the inverses,

(A⊗B)−1 = A−1 ⊗B−1.(5.14)
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Equation (5.10) can now be rewritten as

vw(D) =
((

u
(1)
1 (D)g11(D)+· · ·+u

(b)
1 (D)gb1(D)

)
. . .

(
u

(1)
lw

(D)g11(D)+· · ·+u
(b)
lw

(D)gb1(D)
)

. . .
(
u

(1)
1 (D)g1c(D)+· · ·+u

(b)
1 (D)gbc(D)

)
. . .

(
u

(1)
lw

(D)g1c(D)+· · ·+u
(b)
lw

(D)gbc(D)
))

=
(
u

(1)
1 (D) . . . u

(1)
lw

(D) . . . u
(b)
1 (D) . . . u

(b)
lw

(D)
)

×




g11(D)

. . .
g11(D)

· · ·
g1c(D)

. . .
g1c(D)

...
...

gb1(D)

. . .
gb1(D)

· · ·
gbc(D)

. . .
gbc(D)




= uw(D)
(
G(D)⊗ Ilw

)
,

(5.15)

where uw(D) is given by (5.5) and Ilw is the lw × lw identity matrix. From
(5.15) we conclude that the blw × clw generator matrix Gw(D) for a warp
with lw identical constituent encoders with a rational generator matrix G(D)
is

Gw(D) = G(D)⊗ Ilw .(5.16)

Clearly, we also have

Gw = G⊗ Ilw ,(5.17)

where the generator matrix G is

G =


G0 G1 · · · Gm

G0 G1 · · · Gm

. . .
. . .

. . .


(5.18)

if G(D) is polynomial, otherwise

G =


G0 G1 G2 · · ·

G0 G1 G2 · · ·
. . .

. . .
. . .


 ,(5.19)
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where the sequence G0 G1 G2 . . . is ultimately periodic.

Let m and ν be the memory and constraint length, respectively, of the
constituent generator matrix. Then the generator matrix for the warp has
memory

mw = m(5.20)

and overall constraint length

νw = lwν.(5.21)

The right inverse of Gw(D) is

(Gw(D))−1 = (G(D) ⊗ Ilw )−1 = G−1(D)⊗ Ilw .(5.22)

In Figure 5.7 we show a warp with lw di�erent encoders of rate Rl =
bl/cl = b/c. To be able to do bit-wise multiplexing of the information and
code sequences the rates must be identical.

uw(D)

uw
1 (D)

G1(D)
vw

1 (D)

uw
2 (D)

G2(D)
vw

2 (D)

...

uw
lw

(D)
Glw (D)

vw
lw

(D)

vw(D)

Figure 5.7: A warp with lw constituent encoders with identical
rates.

For this case calculations similar to those above can be performed, and
we obtain
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Gw(D) =




g
(1)
11 (D)

. . .
g
(lw)
11 (D)

· · ·
g
(1)
1c (D)

. . .
g
(lw)
1c (D)

...
...

g
(1)
b1 (D)

. . .
g
(lw)
b1 (D)

· · ·
g
(1)
bc

(D)

. . .
g
(lw)
bc (D)




=
lw∑
l=1

Gl(D)⊗ diag(el),

(5.23)

where el denotes an lw long binary vector with a one in the lth position
and zeros otherwise, and diag(el) a diagonal matrix with el as diagonal. Let
ml and νl be the memory and overall constraint length, respectively, of the
lth constituent generator matrix, Gl(D). Then the generator matrix for the
warp has memory

mw = max
16l6lw

{ml},(5.24)

and overall constraint length

νw =
lw∑
l=1

νl.(5.25)

Clearly, when all generator matrices are identical, (5.23) is equivalent to
(5.16). In the sequel we will consider only warps with identical generator
matrices but similar derivations can be performed for warps with di�erent
generator matrices.

5.3. Structural Properties of the Warp

We shall now show that the generator matrix for the warp with identical con-
stituent encoders inherit many of the structural properties of the constituent
generator matrices.

Theorem 5.1: Let Gw
1 (D) = G1(D) ⊗ Ilw and Gw

2 (D) = G2(D) ⊗ Ilw .
Then Gw

1 (D) and Gw
2 (D) are equivalent if and only if G1(D) and G2(D) are

equivalent. �
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Proof: Assume �rst that G1(D) and G2(D) are equivalent. Then there
exists a non-singular matrix T (D) such that G1(D) = T (D)G2(D). We have

Gw
1 (D) = G1(D)⊗ Ilw = T (D)G2(D)⊗ Ilw

= (T (D)⊗ Ilw)(G2(D)⊗ Ilw )
= T w(D)Gw

2 (D),

(5.26)

where

T w(D) = T (D)⊗ Ilw(5.27)

is non-singular since T (D) is non-singular. Hence, Gw
1 (D) and Gw

2 (D) are
equivalent.

Next we assume that Gw
1 (D) and Gw

2 (D) are equivalent. Then there exists
a non-singular matrix T ′(D) such that

Gw
1 (D) = T ′(D)Gw

2 (D)(5.28)

or, equivalently,

G1(D) ⊗ Ilw = T ′(D)(G2(D)⊗ Ilw ).(5.29)

Multiplying (5.29) by the right inverse of G2(D)⊗ Ilw yields

T ′(D) = (G1(D)⊗ Ilw )(G2(D)⊗ Ilw )−1

= (G1(D)⊗ Ilw )(G−1
2 (D)⊗ Ilw )

= G1(D)G−1
2 (D)⊗ Ilw

= T ′′(D)⊗ Ilw ,

(5.30)

where T ′′(D) = G1(D)G−1
2 (D) is non-singular since T ′(D) is non-singular.

Hence, G1(D) and G2(D) are equivalent. �

Theorem 5.2: Let Gw(D) be the generator matrix of a warp consisting
of lw identical constituent encoders with a rational generator matrix G(D).
Then

(i) Gw(D) is basic if and only if G(D) is basic.

(ii) Gw(D) is minimal if and only if G(D) is minimal.

(iii) Gw(D) is canonical if and only if G(D) is canonical.

�
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Proof: We begin with the proof for part (i). If G(D) is a basic generator
matrix it is polynomial and it has a polynomial inverse, G−1(D). Clearly,
if G(D) is polynomial so is Gw(D) = G(D) ⊗ Ilw . From (5.14) it is also
clear that there exists a polynomial inverse for Gw(D) = G(D) ⊗ Ilw , viz.,
(Gw(D))−1 = (G(D) ⊗ Ilw)−1 = G−1(D)⊗ Ilw . Hence, Gw(D) is basic.

Similarly, if Gw(D) = G(D) ⊗ Ilw is polynomial G(D) is polynomial.
From (5.14) follows that if (Gw(D))−1 = (G(D) ⊗ Ilw)−1 = G−1(D) ⊗ Ilw

is polynomial, which implies that G−1(D) is a polynomial inverse of G(D).
Hence, if Gw(D) = G(D)⊗ Ilw is basic so is G(D).

Next consider part (ii) of the theorem. We will exploit that fact that a
generator matrix is minimal if and only if [16]

span(u(D)) ⊆ span(u(D)G(D))(5.31)

for all information sequences u(D). The span is the interval from the �rst
non-zero symbol to the last non-zero symbol.

Assume �rst that Gw(D) = G(D) ⊗ Ilw is minimal. Then it follows that

span(uw(D)) ⊆ span(uw(D)(G(D) ⊗ Ilw )).(5.32)

From the construction of the warp (Figure 5.6) we conclude that for all indices
l, 1 6 l 6 lw, we have

span(uw
l (D)) ⊆ span(uw

l (D)G(D))(5.33)

and, hence, that G(D) is minimal.
Next we assume that G(D) is minimal. Then, for all information se-

quences for the lth encoder, 1 6 l 6 lw, we have

span(uw
l (D)) ⊆ span(uw

l (D)G(D)).(5.34)

Again, from the construction of the warp we conclude that for all infor-
mation sequences uw(D) we have

span(uw(D)) ⊆ span(uw(D)(G(D) ⊗ Ilw )),(5.35)

and, hence, that Gw(D) = G(D)⊗ Ilw is minimal.
Finally, we show part (iii) of the theorem. Assume that G(D) is a canoni-

cal generator matrix with overall constraint length ν. Then the number of ab-
stract states of G(D) is equal to 2ν . Since the code sequences of di�erent con-
stituent generator matrices do not a�ect each other, the number of abstract
states of Gw(D) = G(D)⊗Ilw is (2ν)lw = 2lwν . Since Gw(D) = G(D)⊗Ilw is
minimal (follows from (ii)) it is not possible to �nd an equivalent generator
matrix with fewer abstract states. Thus, we cannot �nd an equivalent gener-
ator matrix with less overall constraint length than lwν, which is the overall
constraint length of Gw(D) = G(D)⊗ Ilw . Hence, Gw(D) is canonical.
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Next, assume that Gw(D) = G(D) ⊗ Ilw is canonical. Then its overall
constraint length, ν, is minimal over all equivalent generator matrices. Es-
pecially, from Theorem 5.1 it is minimal over all generator matrices of the
form G′(D)⊗ Ilw , where G′(D) is equivalent to G(D). Since there is a direct
connection between the overall constraint length of the constituent generator
matrix and the generator matrix of the warp, this is the same as saying that
the overall constraint length of G(D) is minimal over all equivalents. Thus,
G(D) is canonical and the proof is completed. �

We immediately have the following two corollaries.

Corollary 5.3: The generator matrix G(D) ⊗ Ilw is minimal-basic if and
only if the generator matrix G(D) is minimal-basic. �

Proof: Follows from Theorem 5.2, parts (i) and (iii). �

Corollary 5.4: If the warp consists of identical minimal encoders, then the
warp is a minimal encoder itself. �

Proof: Let Gcan(D), with overall constraint length νcan, be a canonical gen-
erator matrix equivalent to the generator matrix of the constituent encoders,
G(D), and let Cw be the code encoded by the warp. Then (Gcan(D)⊗ Ilw ) is
equivalent to (G(D)⊗Ilw ). Since (Gcan(D)⊗Ilw ) is canonical we know that a
minimal encoder for Cw consists of lwνcan delay-elements. The warp consists
of lw identical minimal encoders, each with νcan delay-elements. Hence, the
total number of delay-elements in the warp is lwνcan. �

Similar to Theorem 5.2 the next theorem follows from the structure of
the warp.

Theorem 5.5: The generator matrix Gw(D) = G(D)⊗Ilw for a warp with
identical constituent generator matrices, G(D), is non-catastrophic if and
only if G(D) is non-catastrophic. �

5.4. Structural Properties of the Twill

From the generator matrices of the warp it is easy to obtain the generator
matrices for the woven encoders. The twill is a cascade of one outer warp
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with lo encoders and one inner warp with li encoders. The generator matrix
for this construction can be written as

Gtw = (Go ⊗ Ilo)(G
i ⊗ Ili).(5.36)

The special cases woven convolutional codes with outer warp and with
inner warp are obtained by letting li = 1 and lo = 1, respectively. Thus,
the generator matrix for a woven convolutional code with outer warp of lo
encoders can be written as

Gow = (Go ⊗ Ilo)G
i,(5.37)

and the generator matrix for a woven convolutional code with inner warp of
li encoders as

Giw = Go(Gi ⊗ Ili).(5.38)

The same matrices can be derived as rational functions in D. Let eo and
ei be the least integer scaling factors for the generator matrices for the outer
and inner warps, respectively, such that the multiplication is de�ned. Then,

Gtw(D) =
(
Go(D)⊗ Ilo

)
[eo]

(
Gi(D)⊗ Ili

)
[ei]

,(5.39)

where (Go(D)⊗ Ilo)[eo] is the eo times enlarged variant of (Go(D)⊗ Ilo) and
(Gi(D)⊗ Ili)[ei] the ei times enlarged variant of (Gi(D)⊗ Ili).

From Chapter 4 we can state some properties of the woven generator
matrices. This will be done for the twill but is valid also for the other
constructions.

Theorem 5.6: Let Go(D) and Gi(D) be the generator matrices for the
outer and inner constituent encoders, and Gtw(D) the generator matrix for
the twill. Then,

(i) Gtw(D) is minimal if Go(D) and Gi(D) both are minimal.

(ii) Gtw(D) is basic if Go(D) and Gi(D) both are basic.

�

Proof: From Theorem 5.2 part (ii) follows that the generator matrices for
the outer and inner warp, (Go(D)⊗ Ilo) and (Go(D)⊗ Ilo), respectively, are
minimal. Theorem 4.7 then shows that the corresponding cascade is minimal.

Theorem 5.2 also shows that the generator matrices for the outer and
inner warp are basic if their respective constituent generator matrices are
basic. Theorem 4.9 completes the proof. �
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We can, however, not make a similar statement for canonical or minimal-
basic generator matrices. It was shown in Example 4.1 that the cascade of
two minimal-basic generator matrices is not necessarily minimal-basic itself.
This also means that we do not know if a woven construction consisting of
minimal encoders is a minimal encoder or not. What we do know is that it
is minimal and therefore can be realized with a minimum number of delay
elements. Hence, if we �nd a canonical equivalent to Gtw(D),

Gtw
can(D) = T (D)Gtw(D),(5.40)

its overall constraint length can be upper bounded by

νtw 6 loνo + liνi.(5.41)

This follows from (5.21) and Theorem 4.8.

5.5. Distance Properties

We will start by estimating the free distance and the active distances for
woven convolutional codes with outer and inner warp, respectively. Then
the estimates for the free distances will be generalized to the twill.

To estimate the free distance and the active distances of a woven convo-
lutional code with outer warp we need two new de�nitions derived from the
active distances. We will use the a�ne functions from Section 3.3 that lower
bound the active distances,



ar
j > f r(j) , αj + βr,

ab
j > f b(j) , αj + βb,

ac
j > f c(j) , αj + βc,

arc
j > f rc(j) , αj + βrc,

as
j > fs(j) , αj + βs.

(5.42)

where α is the asymptotic slope of the active distances and the β:s are chosen
as large as possible.

De�nition 5.2: Let jb
2free denote the smallest j for which

f b(j) > 2dfree,(5.43)

i.e., jb
2free+1 information tuples guarantee an output whose Hamming weight

is at least 2dfree, given that the encoder starts in the zero state and we do not
have two consecutive zero states among the corresponding jb

2free + 2 states,
after which the encoder is back in the zero state. �
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Consider the case when the output sequence from one of the outer en-
coders have two consecutive non-zero bits. The bu�er is read column-wise
to form the (binary) inner information sequence. This causes the two bits
to be parted by lo − 1 bits. If the inner encoder has feedback, then the �rst
non-zero bit can cause it to leave the zero state, while the second non-zero
bit can cause it to remerge with the zero state. To guarantee that those two
non-zero bits generate an output of at least 2di

free from the inner encoder we
must have

lo > (jbi
2free + 1)bi.(5.44)

Furthermore, to guarantee that three or more consecutive non-zero bits will
generate at least di

free each in the output from the inner encoder we use the
following de�nition.

De�nition 5.3: Let jα
free denote the smallest j for which

αj > dfree,(5.45)

i.e., jα
free + 1 additional information tuples guarantee an increase of at least

dfree in the bounds on the active distances. �

Theorem 5.7: There exist woven convolutional codes with outer warp such
that their free distances dow

free satisfy the inequality

dow
free > do

freed
i
free(5.46)

where do
free and di

free denote the free distances of the outer and inner convo-
lutional codes, respectively. �

Proof: Assume that the lo outer encoders encode the same convolutional
code and that lo is large enough so each non-zero bit in a given row will
generate the Hamming weight di

free at the output,

lo > max
{
(jbi

2free + 1)bi, (jαi
free + 1)bi

}
.(5.47)

Then the inequality in (5.46) is satis�ed with equality. �

Corollary 5.8: There exist woven convolutional codes with outer warp
with polynomial constituent generator matrices such that their free distances
dow
free satisfy the inequalities

do
freed

i
free 6 dow

free 6 do
freed

ri
0 ,(5.48)
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where do
free and di

free denote the free distances of the outer and inner con-
volutional codes, respectively, and dri

0 denotes the 0th order row distance of
the inner convolutional encoder. �

Proof: If all generator matrices are polynomial and lo > (mi + 1)bi the
free distance of a woven convolutional code with outer warp cannot exceed
do
freed

ri
0 . �

If we use at least two di�erent outer convolutional codes with identical
do
free, then the free distance of the combination might exceed the product of
the free distances of the outer and inner convolutional codes!

Example 5.2: Use

Go
1(D) =

(
1 + D + D2 1 + D2

)
(5.49)

and

Go
2(D) =

(
1 + D2 1 + D + D2

)
(5.50)

as the outer encoders and

Gi(D) =
(
1 + D + D2 + D3 1 + D2 + D3

)
(5.51)

as the inner encoder. Their free distances are do
free = 5 and di

free = 6,
respectively, and dri

0 = 7. If we let the warp consist of 16 encoders with
Go

1(D) and Go
2(D) alternating, then this woven convolutional code with outer

warp has free distance

dow
free = 35,(5.52)

which equals the upper bound in (5.48) and exceeds the product

do
freed

i
free = 30.(5.53)

�

The next example shows that the upper bound in the corollary does not
hold for all rational inner generator matrices.

Example 5.3: Let Go
1(D) and Go

2(D) be the same generator matrices as in
Example 5.2. The warp consists of repeated blocks of four encoders: Go

1(D),
Go

1(D), Go
2(D), and Go

2(D). Use

Gi(D) =
(
1 1+D+D2

1+D2

)
(5.54)
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as inner generator matrix. The 0th order row distance for this generator
matrix is the same as the free distance, and is generated by the information
sequence ui

free = (1 0 1 0 0 . . . ). Assume that the �rst outer encoder generates
the sequence with weight dfree, then the corresponding code sequence is vo

1 =
(11 10 11 00 00 . . . ). To produce the weight do

freed
ri
0 the inner encoder must

receive the sequence ui
free for each non-zero bit in vo

1. Thus, the third outer
encoder must also produce the code sequence vo

3 = (11 10 11 00 00 . . . ), but
this encoder has Go

2(D) as generator matrix and vo
3 is not a valid codeword.

The same reasoning hold if we start with any other outer encoder. Therefore,

dow
free > do

freed
ri
0 .(5.55)

�

Next we will lower bound the active distances for woven convolutional
codes with outer warp. The number of bits per information tuple for the
woven encoder is (by de�nition) bow = lobo. One information tuple for the
woven encoder gives one information tuple each for the lo outer encoders.
Each of these encoders generates co bits to be fed into the inner encoder,
which gives cow = lococi/bi bits per code tuple.

Theorem 5.9: Consider a rate Row = bow/cow woven convolutional code
with outer warp where

lo > max
{
(jbi

2free + 1)bi, (jαi
free + 1)bi

}
.(5.56)

The rate of the outer and inner encoders are Ro = bo/co and Ri = bi/ci,
respectively, where bow = lobo and cow = lococi/bi. The active distances for
this woven convolutional code are lower bounded by

arow
j > αodi

freej + βrodi
free,(5.57a)

if βco > αo + 1 or βrco > αo + 1,

abow
j > αodi

freej + βbodi
free,(5.57b)

if βco > αo + 1 or βrco > αo + 1,

acow
j > αodi

freej + βcodi
free,(5.57c)

if βco 6 βbo + βso − αo − 1 or βco > αo + 1,

arcow
j > αodi

freej + βrcodi
free,(5.57d)
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if βrco 6 βbo + βso − αo − 1 or βrco > αo + 1, and

asow
j > αodi

freej + βsodi
free,(5.57e)

if βco > αo +1 or βrco > αo +1. The parameters αo, βro, βbo, βco, βrco, and
βso de�nes the lower bounds on the active distances for the outer convolu-
tional codes, and di

free is the free distance of the inner convolutional code. �

Proof: We will only consider the case when all the encoders of the warp do
not have consecutive zero states at the same time. Thus, we let the states
of the encoders of the warp represent the state of the woven convolutional
encoder with outer warp. Then there will be long (about jso

0 colo/bi bi-tuples)
sub-sequences of the inner information sequence that are zero, which allow
the inner encoder to be in the zero state for that time. This will give a result
that is less than the case when it is the inner encoder that is not allowed to
have consecutive zero states.

Assume that the �rst non-zero bit in the information sequence, uow, is
fed to the �rst outer encoder, Eo

1 . Start by lower bounding the active column
distance when the path followed by one of the outer encoders di�ers from the
all-zero path during the total interval. The �rst encoder Eo

1 diverge from the
all-zero path and remerges after j +1 steps. Its output sequence will have at
least weight aco

j . Each of these non-zero bits will generate at least di
free ones

in the output sequence from the woven encoder, vow. Thus,

acow
j > aco

j di
free > (αoj + βco)di

free = αodi
freej + βcodi

free.(5.58)

Similar calculations can be carried out for the remaining active distances,
and we get 



αow = αodi
free

βrow = βrodi
free

βbow = βbodi
free

βcow = βcodi
free

βrcow = βrcodi
free

βsow = βsodi
free.

(5.59)

Next consider the situation when all outer encoders have consecutive zero
states. When one encoder remerges with the all-zero path some other must
di�er from it. Alternatively, if one encoder diverges from the all-zero path
another must di�er from the all-zero path up to that point. We will lower
bound the active distances for these cases and �nd restrictions for which the
formulas in (5.59) still holds.
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Again we begin with the active column distance. All encoders are in the
zero state at time zero and at least one diverges in the next step. When
this encoder remerges with the all-zero path, at time k + 1 say, there is
another encoder that di�ers from the all-zero path and we assume that this
will continue until time j +1. From the �rst part, from time zero to k+1, we
get at least weight abo

k and from the second part, from k+1 to j+1, we get at
least aso

j−k−1. If the �rst part is due to the last encoder, Eo
lo
, and the second

part to the �rst encoder, Eo
1 , the last bit in the �rst part will be directly

followed by the �rst bit in the second part in the information sequence for
the inner encoder. Thus, they will generate at least weight di

free, instead of
2di

free. The number of columns that give rise to di
free non-zero bits in the

inner encoder is then at least abo
k + aso

j−k−1 − 1, so

acow
j > (abo

k + aso
j−k−1 − 1)di

free

> (αo(j − 1) + βbo + βso − 1)di
free

= (αoj + βco − βco + βbo + βso − αo − 1)di
free

> αodi
freej + βcodi

free,

(5.60)

where the last inequality requires βco 6 βbo + βso − αo − 1. Alternatively,
assume that the second part starts in the zero state at time k + 1,

acow
j > (aco

k + aco
j−k−1 − 1)di

free

> (αoj + βco + βco − αo − 1)di
free

> αodi
freej + βcodi

free,

(5.61)

if βco > αo + 1. Since both cases occur simultaneously only one of the
requirements needs to be ful�lled for (5.58) to be true. Note that both those
cases cover bounces at the zero state, since the active segment distance can
start in the zero state and the active column distance can end in the zero
state.

The active reverse column distance can be calculated in the same way.
Let the last encoder Eo

lo
start in an arbitrary state and the encoder Eo

1 diverge
from the all-zero path at time k + 1. Then,

arcow
j > (aso

k + abo
j−k−1 − 1)di

free

> (αoj + βrco − βrco + βso + βbo − αo − 1)di
free

> αodi
freej + βrcodi

free,

(5.62)

if βrco 6 βso + βbo −αo − 1. Alternatively, let the last encoder remerge with
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the zero path at time k + 1,

arcow
j > (arco

k + arco
j−k−1 − 1)di

free

> (αoj + βrco + βrco − αo − 1)di
free

> αodi
freej + βrcodi

free,

(5.63)

if βrco + αo + 1.
To lower bound the active segment distance the derivation is again split

into two parts. First, let an encoder start in an arbitrary state and remerge
with the all-zero path at time k + 1. From that point until j + 1 there is
another encoder that di�ers from the all-zero path. This gives

asow
j > (arco

k + aso
j−k−1 − 1)di

free

> (αoj + βso + βrco − αo − 1)di
free

> αodi
freej + βsodi

free,

(5.64)

if βrco > αo +1. The second case gives the active segment distance from time
zero to k + 1 and the active column distance from k + 1 until j + 1. Thus,

asow
j > (aso

k + aco
j−k−1 − 1)di

free

> (αoj + βso + βco − αo − 1)di
free

> αodi
freej + βsodi

free,

(5.65)

if βco > αo + 1.
The same cases can be considered for the active row distance. Let one

encoder diverge from the all-zero path at time zero and remerge at time
k + 1. Another encoder di�ers from the all-zero path during the remaining
time until j + 1 + m when all outer encoders are in the zero state,

arow
j > (aro

k−m + arco
j−k−1+m − 1)di

free

> (αoj + βro + βrco − αo − 1)di
free

> αodi
freej + βrodi

free,

(5.66)

if βrco > αo + 1. For the second case, an encoder diverges from the all-zero
path at time k + 1 and remerges at time j + 1 + m. Before that another
encoder diverged from the all-zero path at time zero and did not remerge
until after time k,

arow
j > (aco

k + aro
j−k−1 − 1)di

free

> (αoj + βro + βco − αo − 1)di
free

> αodi
freej + βrodi

free,

(5.67)
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if βrco > αo + 1. Hence, we end up with the same restrictions as for the
active segment distance.

Finally, we have again the same cases for the active burst distance. The
�rst case gives

abow
j > (abo

k + arco
j−k−1 − 1)di

free

> (αoj + βbo + βrco − αo − 1)di
free

> αodi
freej + βrodi

free,

(5.68)

if βrco > αo + 1. The second case gives

abow
j > (aco

k + abo
j−k−1 − 1)di

free

> (αoj + βbo + βco − αo − 1)di
free

> αodi
freej + βbodi

free,

(5.69)

if βco > αo + 1, and the proof is complete. �

Example 5.4: Construct a woven encoder with lo outer encoders corre-
sponding to

Go(D) =
(
1 + D + D2 + D3 + D5 1 + D2 + D3 + D5

)
(5.70)

and one inner encoder corresponding to

Gi(D) =
(
1 + D + D2 + D3 + D5 1 + D2 + D3 + D4 + D5

)
.(5.71)

From Example 3.6 and Example 3.7 the lower bounds on the active distances
for the outer and inner encoders are de�ned by

Ao =
{

αo =
1
3
, βro =

19
3

, βbo =
14
3

, βco = 2, βrco = 1, βso = −1
}

.

(5.72)

and

Ai =
{

αi =
2
7
, βri =

46
7

, βbi =
36
7

, βci = βrci = 2, βsi = −6
7

}
,(5.73)

respectively. Both the outer and the inner generator matrices give the free
distance dfree = 8. Equation (5.73) yields that jbi

free = 38 and jαi
free = 28, and

we must use at least lo > max{39, 29} = 39 outer encoders.
The requirements for the inequalities in (5.57) are ful�lled since

7
3

= βbo + βso − αo − 1 >

{
βco = 2

βrco = 1
(5.74)
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and

2 = βco > αo + 1 =
4
3
.(5.75)

The lower bounds for this woven convolutional code with outer warp are
given by 



αow = αodi
free =

8
3

βrow = βrodi
free =

152
3

(≈ 50.7)

βbow = βbodi
free =

112
3

(≈ 37.3)

βcow = βcodi
free = 16

βrcow = βrcodi
free = 8

βsow = βsodi
free = −8.

(5.76)

The slope, αow, is calculated per information tuples for the woven en-
coder, i.e., per bolo bits. Calculated per bo bits,

αow
(bo) =

αow
(bolo)

lo
6

8/3
39

=
8

117
,(5.77)

which is about one �fth of the slope for the outer encoders. Since the outer
encoders are identical, the free distance is

dow
free = do

freed
i
free = 64.(5.78)

�

There exist also woven convolutional codes with inner warp whose free
distances satisfy the inequalities given in Theorem 5.7 and Corollary 5.8. To
show this we �rst need two de�nitions derived from the active distances, cf.
De�nition 5.2 and De�nition 5.3.

De�nition 5.4: Let jc
free denote the smallest j for which

f c(j) > dfree,(5.79)

i.e., jc
free +1 information tuples guarantee an output whose Hamming weight

is at least dfree given that the encoder starts in the zero state and we do not
have two consecutive zero states among the �rst jc

free + 2 states. �
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De�nition 5.5: Let jrc
free denote the smallest j for which

f rc(j) > dfree,(5.80)

i.e., jrc
free +1 information tuples guarantee an output whose Hamming weight

is at least dfree given that the encoder terminates in the zero state and we
do not have two consecutive zero states among the last jrc

free + 2 states. �

Theorem 5.10: There exist woven convolutional codes with inner warp
such that their free distances diw

free satisfy the inequality

diw
free > do

freed
i
free(5.81)

where do
free and di

free denote the free distances of the outer and inner convo-
lutional codes, respectively. �

Proof: Assume that the li inner encoders are identical and that lo is large
enough so a non-zero output from the outer encoder will give rise to non-zero
inputs for at least do

free inner encoders,

li > min {(jco
free + 1)co, (jrco

free + 1)co} .(5.82)

Then the inequality in (5.81) is satis�ed with equality. �

Corollary 5.11: There exist woven convolutional codes with inner warp
with polynomial constituent generator matrices such that their free distances
diw
free satisfy the inequalities

do
freed

i
free 6 diw

free 6 do
freed

ri
0 ,(5.83)

where do
free and di

free denote the free distances of the outer and inner con-
volutional codes, respectively, and dri

0 denotes the 0th order row distance of
the inner convolutional encoders. �

Proof: If all generator matrices are polynomial and li satis�es (5.82) the
free distance of a woven convolutional code with inner warp cannot exceed
do
freed

ri
0 . �

Example 5.5: Let the outer encoder be

Go(D) =
(
1 + D + D2 1 + D2

)
(5.84)
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and let the inner warp consist of six encoders;

Gi
1(D) =

(
1 + D2 + D4 1 + D + D2 + D3 + D4

)
(5.85)

and

Gi
2(D) =

(
1 + D + D3 1 + D + D2 + D3 + D4

)
(5.86)

alternating. The free distance for the outer code is do
free = 5 and both of the

inner codes have di
free = 6. The 0th order row distance for both of the inner

encoders are dri
0 = 8. The free distance for this construction is

diw
free = 34,(5.87)

which exceeds the product

do
freed

i
free = 30.(5.88)

�

As for woven convolutional codes with outer warp the upper bound in the
corollary does not hold for all rational inner generator matrices.

Example 5.6: Let the outer generator matrix be

Go(D) =
(
1 + D + D2 1 + D2

)
,(5.89)

and let the inner warp consist of the two systematic rational generator ma-
trices

Gi
1(D) =

(
1 1+D2

1+D+D2

)
(5.90)

and

Gi
2(D) =

(
1 1+D+D2

1+D2

)
(5.91)

alternating. The 0th order row distance for Gi
1(D) is generated by ui

1 =
(1 1 1 0 0 . . . ) and for Gi

2(D) by ui
2 = (1 0 1 0 0 . . . ). To get an overall

code sequence of weight do
freed

ri
0 the outer encoder gives the free distance

sequence, vo
1 = (11 10 11 00 00 . . . ), in the �rst column of the bu�er. If li

is large enough the outer encoder is back in the zero state when starting to
produce the symbols for the second column. To achieve dri

0 in each non-zero
row it must give vo

2 = (10 10 10 00 00 . . . ) which is impossible. Thus,

diw
free > do

freed
ri
0 .(5.92)

�
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Assume that when the outer encoder di�ers from the zero state in li/co

steps it will generate at least do
free non-zero rows in the bu�er, i.e., li satis�es

(5.82). This implies that at each time either all of the inner encoders are in
the zero state, or at least do

free of them di�ers from it. In our investigation of
the active distances we will look into the state paths for the inner encoders
corresponding to these non-zero rows.

We begin with the active column distance and let all encoders start in
the zero state. Then there are always some of the inner encoders that di�er
from the all-zero path. If a non-zero row is such that the corresponding state
sequence for the inner encoder di�ers from the all-zero path in j +1 steps its
contribution to the total Hamming weight is at least aci

j .
On the other hand, if the encoder remerges with the all-zero path there

is another encoder that diverges or already di�ers from it. The contribution
from these two encoders is at least

abi
k + asi

j−k−1 > αi(k + j − k − 1) + βbi + βsi

= αij + βci − βci + βbi + βsi − αi

> αij + βci,

(5.93)

if βci 6 βbi +βsi−αi. Alternatively, let the second encoder diverge from the
zero state at time k + 1. Then the least contribution is

abi
k + asi

j−k−1 > αij + βci + βci − αi

> αij + βci,

(5.94)

if βci > αi. Since there are at least do
free non-zero columns at each time we

get

aciw
j > do

free(α
ij + βci) = do

freeα
ij + do

freeβ
ci,(5.95)

if either of the restrictions is ful�lled. The derivations for the bounds on the
remaining active distances will be similar. Therefore, if the restrictions

βci 6 βbi + βsi − αi or βci > αi,(5.96)

βrci 6 βbi + βsi − αi or βrci > αi,(5.97)

and

βrci > αi or βci > αi(5.98)
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are satis�ed the lower bounds on the active distances are described by


αiw = do
freeα

i

βriw = do
freeβ

ri

βbiw = do
freeβ

bi

βciw = do
freeβ

ci

βrciw = do
freeβ

rci

βsiw = do
freeβ

si.

(5.99)

We summarize the lower bounds as a theorem.

Theorem 5.12: Consider a rate Riw = biw/ciw woven convolutional code
with inner warp and with

li > min
{
(jco

free + 1)co, (jrco
free + 1)co

}
(5.100)

inner encoders. The rates of the outer and inner encoders are Ro = bo/co

and Ri = bi/ci, respectively, where biw = libibo/co and ciw = lici. The active
distances for this woven convolutional code are lower bounded by

ariw
j > αido

freej + βrido
free,(5.101a)

if βci > αi or βrci > αi,

abiw
j > αido

freej + βbido
free,(5.101b)

if βci > αi or βrci > αi,

aciw
j > αido

freej + βcido
free,(5.101c)

if βci 6 βbi + βsi − αi or βci > αi,

arciw
j > αido

freej + βrcido
free,(5.101d)

if βrci 6 βbi + βsi − αi or βrci > αi, and

asiw
j > αido

freej + βsido
free,(5.101e)

if βci > αi or βrci > αi. The parameters αi, βri, βbi, βci, βrci, and βsi de�ne
the lower bounds on the active distances for the inner convolutional codes,
and do

free is the free distance of the outer convolutional code. �
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Example 5.7: Let the generator matrices for the outer and inner encoders
be the same as in Example 5.4. It is easily checked that the conditions in
Theorem 5.12 are satis�ed. From (5.72) we get jco

free = 18 and jrco
free = 21 and

the inner warp must consist of li > min{38, 44} = 38 encoders. The lower
bounds on the active distances for this woven convolutional code with inner
warp are given by 



αiw = αido
free =

16
7

βriw = βrido
free =

368
7

(≈ 52.6)

βbiw = βbido
free =

288
7

(≈ 41.1)

βciw = βcido
free = 16

βrciw = βrcido
free = 16

βsiw = βsido
free = −48

7
(≈ −6.9).

(5.102)

�

The bounds on the free distance for woven convolutional codes with outer
and inner warps can be viewed as special cases of the following theorems with
bounds on the free distance for the twill.

Theorem 5.13: There exist twills with relatively prime numbers of outer
and inner encoders such that their free distances dtw

free satisfy the inequality

dtw
free > do

freed
i
free,(5.103)

where do
free and di

free denotes the free distance of the outer and the inner
convolutional codes, respectively. �

Proof: The code sequences from the lo outer encoders are serialized and
written row-wise into a bu�er with lo rows. The bu�er is read column-wise
and the corresponding sequence is split bit by bit into the li information
sequences. Any lo consecutive symbols read column-wise from the bu�er
arise from di�erent encoders. Furthermore, since lo and li are relatively
prime, any li consecutive symbols from a speci�c row of the bu�er will be
read by di�erent inner encoders. Therefore, if lo is large enough so each
non-zero bit in a given row will generate at least the Hamming weight di

free

at the output, i.e., if

lo > max
{
(jbi

2free + 1)bi, (jαi
free + 1)bi

}
,(5.104)
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or li is large enough so a non-zero output in any row give rise to non-zero
inputs for at least do

free inner encoders, i.e., if

li > min
{
(jco

free + 1)co, (jrco
free + 1)co

}
,(5.105)

we get at least free distance dtw
free > do

freed
i
free. �

Since the information sequences for the inner encoders are not read from
a single row or a single column (at a time) we do not, as in the case of
single warps, necessarily have equality in (5.103) when the warps consists of
identical encoders.

Corollary 5.14: There exist twills with polynomial constituent generator
matrices and relatively prime numbers of outer and inner encoders, such that
their free distances diw

free satisfy the inequalities

do
freed

i
free 6 dtw

free 6 do
freed

ri
0 ,(5.106)

where do
free and di

free denote the free distances of the outer and inner con-
volutional codes, respectively, and dri

0 denotes the 0th order row distance of
the inner convolutional encoders. �

Proof: If all generator matrices are polynomial and lo and li are chosen
such that (5.104) or (5.105) is satis�ed and gcd(lo, li) = 1, the free distance
of the twill cannot exceed do

freed
ri
0 . �
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6
Decoding of Woven
Convolutional Codes

T
he encoder of a woven convolutional code can be regarded as a two
step encoder. Therefore, it is suitable to apply an iterative decoding

scheme. Iterative decoding became popular in 1993 when Turbo codes [5,22]
were introduced. It uses soft decision decoding and information from one
constituent decoder is passed on to another. For the decoder of woven con-
volutional codes a windowed soft-in-soft-out constituent decoder is needed.
Here the BCJR algorithm [2] is considered. This is an algorithm that can be
used for example when performing maximum a posteriori (MAP) decoding
or as here in an iterative decoding scheme for calculating the a posteriori

probabilities (APP).
A windowed variant of the BCJR-algorithm will be described in Sec-

tion 6.1 and in Section 6.2 it will be used to construct an iterative decoding
scheme. In Section 6.3 simulation results will be shown for the twill and for
woven convolutional codes with outer warp. To decrease the decoding error
probabilities, an additional interleaver will be introduced.

113
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6.1. The BCJR Algorithm

In order to apply an iterative decoding scheme we need a soft output de-
coding algorithm for the constituent codes. The most well known such al-
gorithms are the BCJR1 algorithm [2] and the soft output Viterbi (SOVA)
algorithm [19]. Here we will use a variant of the BCJR algorithm. Given the
received sequence r and the a priori probabilities for the bits of either the in-
formation sequence or the code sequence, P (u(j)

t ) or P (v(j)
t ), respectively, we

will calculate the corresponding bit-wise a posteriori probabilities, P (u(j)
t |r)

or P (v(j)
t |r), see Figure 6.1. This can be used as an a posteriori probability

(APP) module in an iterative scheme or together with a maximizing device
as a maximum a posteriori (MAP) decoder.

r

P (v) APP P (v|r)

Figure 6.1: The module used to calculate the a posteriori prob-
abilities (APP).

In its original form the BCJR algorithm must be applied to truncated
frames and it has substantial numerical problems. By changing the notation
slightly, see also [3], we are able to normalize the values at each time as well
as using a windowed variant of the algorithm. The windowed version is, of
course, sub-optimal but it can work on arbitrarily (in�nitely) long frames.

When deriving the algorithm we will �rst consider a trellis for a trun-
cated time-invariant convolutional code, and then apply a sliding window
technique. Denote the information sequence, including the zero state driving
sequence, by

u[0,T ) = (u0, u1, . . . ,uT−1),(6.1)

where each symbol ut is a binary b-tuple and T is the length of the frame.
The corresponding code and state sequences are

v[0,T ) = (v0, v1, . . . , vT−1),(6.2)

1The name is taken from the initials of the inventors. It is also called the forward-
backward algorithm or the two-way algorithm.
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where vt are binary c-tuples, and

S[0,T ] = (σ0, σ1, . . . , σT ),(6.3)

respectively. The state σt is a binary matrix representing the physical state
at time t of the encoder. We will denote the set of all possible states by S.
Similarly, the received sequence is denoted by

r[0,T ) = (r0, r1, . . . , rT−1),(6.4)

where each received symbol rt is a c-tuple of channel symbols. We will as-
sume a memoryless AWGN-channel, quantized into a �nite number of levels,
e.g., eight levels. Given the submitted code sequence the probability for the
received sequence r[0,T ) is

P (r[0,T )|v[0,T )) =
T−1∏
t=0

P (rt|vt) =
T−1∏
t=0

c∏
j=1

P (r(j)
t |v(j)

t ),(6.5)

where P (r(j)
t |v(j)

t ) are the channel transition probabilities.
From the a priori probabilities of the information or code symbols it

is easy to obtain the a priori probabilities for the branches of the trellis,
P (St+1 = σ′|St = σ) or P (St = σ|St+1 = σ′). Consider a branch from
state σ at time t to state σ′ at time t + 1. Let U(σ) and V(σ) be the set of
information and code symbols, respectively, corresponding to the branches
leaving state σ in the trellis. Naturally, U(σ) is the set of all binary b-tuples.
Similarly, let U ′(σ′) and V ′(σ′) be the set of information and code symbols,
respectively, corresponding to the branches leading to state σ′ in the trellis.
We will use rational systematic generator matrices with maximum ac

0 and
arc
0 . Then, it follows that U(σ) = U ′(σ′) and V(σ) = V ′(σ′). With the
initial condition P (S0 = σ) = 1/|S|, where |S| is the number of states, we
have P (St = σ) = 1/|S|, t = 1, 2, . . . , which leads to the conclusion

P (St+1 = σ′|St = σ) = P (St = σ|St+1 = σ′).(6.6)

To simplify notation in the algorithm we introduce the following four
variables:

αt(σ) , P (St = σ|r[0,t)),(6.7a)

βt(σ) , P (St = σ|r[t,T )),(6.7b)

γt(σ, σ′) , P (St+1 = σ′; rt|St = σ),(6.7c)

and

δt(σ, σ′) , P (St+1 = σ′; St = σ|r[0,T )).(6.7d)
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The �rst three will be used to calculate the forth, which can be used to get
the a posteriori probabilities as

P (u(i)
t = u|r[0,T )) =

∑
(�,�′):� u→�

′

P (St = σ; St+1 = σ′|r[0,T ))(6.8)

=
∑

(�,�′):� u→�
′

δt(σ, σ′),

and

P (v(i)
t = v|r[0,T )) =

∑
(�,�′):� v→�

′

P (St = σ; St+1 = σ′|r[0,T ))(6.9)

=
∑

(�,�′):� v→�
′

δt(σ, σ′).

The notation (σ, σ′) : σ
u→ σ′ means that σ and σ′ is taken from the set of

state pairs such that there is a branch in the trellis from state σ at time t
to state σ′ at time t + 1 with the ith bit of the corresponding information
symbol equal to u

(i)
t = u. Similarly, (σ, σ′) : σ

v→ σ′ denotes the state pairs
such that there is a branch in the trellis from state σ at time t to state σ′ at
time t+1 with the ith bit of the corresponding code symbol equal to v

(i)
t = v.

We will also make use of notations like σ : σ → σ′ and σ′ : σ → σ′, which
means the set of states at time t leading to the state σ′ at time t+1, and the
set of states at time t + 1 stemming from the state σ at time t, respectively.

The joint branch and received symbol probability, γt(σ, σ′), can be cal-
culated as

γt(σ, σ′) = P (St+1 = σ′; rt|St = σ)

= P (rt|St = σ; St+1 = σ′)P (St+1 = σ′|St = σ)

= P (rt|v(σ, σ′))P (St+1 = σ′|St = σ),

(6.10)

where v(σ, σ′) is the code symbol corresponding to the trellis branch from
state σ at time t to state σ′ at time t + 1.

If, at time t, the values αt(σ), ∀σ ∈ S are known we can derive the
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corresponding values at time t + 1 as

αt+1(σ′) = P (St+1 = σ′|r[0,t+1))

=
∑

�:�→�
′
P (St+1 = σ′; St = σ|r[0,t); rt)

=
1

P (rt|r[0,t))

∑
�:�→�

′
P (St+1 = σ′; St = σ; rt|r[0,t))

= kα
t+1

∑
�:�→�

′
P (St = σ|r[0,t))P (St+1 = σ′; rt|St = σ)

= kα
t+1

∑
�:�→�

′
αt(σ)γt(σ, σ′).

(6.11)

In the second last equality we used that given the state at time t the con-
tinuation does not depend on the past received sequence, r[0,t) i.e., the state
at time t represents all that is known to the encoder about the past. The
constant term, kα

t+1 = 1/P (rt|r[0,t)), can be determined by the relation∑
�
′∈S

αt+1(σ′) = 1.(6.12)

The derivation of the α-values is sometimes referred to as the forward
recursion. Similarly, there is a backward recursion for deriving the β-values.
If, at time t + 1, the values βt+1(σ′), ∀σ′ ∈ S are known we can derive the
corresponding values at time t as

βt(σ) = P (St = σ|r[t,T ))

=
∑

�
′:�→�

′
P (St = σ; St+1 = σ′|rt; r[t+1,T ))

=
1

P (rt|r[t+1,T ))

∑
�
′:�→�

′
P (St = σ; St+1 = σ′; rt|r[t+1,T ))

= kβ
t

∑
�
′:�→�

′
P (St+1 = σ′|r[t+1,T ))P (St+1 = σ′; rt|St = σ)

= kβ
t

∑
�
′:�→�

′
βt+1(σ′)γt(σ, σ′).

(6.13)

In the second last equality we used that the state at time t+1 represents the
future, and given this the received sequence from time t +1 and forward can
be dropped. The constant term kβ

t = 1/P (rt|r[t+1,T )) can be determined by
the sum ∑

�∈S
βt(σ) = 1.(6.14)
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For the branch de�ned by the states (St, St+1) = (σ, σ′) αt(σ) represents
the a posteriori information of the sequences up to time t and βt+1(σ′) from
time t+1 and forward. The information about the branch between the states
is found in γt(σ, σ′). Collecting these things together results in

δt(σ, σ′) = P (St = σ; St+1 = σ′|r[0,T ))

=
1

P (r[0,T ))
P (St = σ; r[0,t))P (St+1 = σ′; r[t,T )|St = σ)

=
P (r[0,t))
P (r[0,T ))

αt(σ)P (St+1 = σ′; rt|St = σ)P (r[t+1,T )|St+1 = σ′)

= kδ
t αt(σ)γt(σ, σ′)βt+1(σ′),

(6.15)

where the constant term

kδ
t = |S|P (r[0,t))P (r[t+1,T ))

P (r[0,T ))
(6.16)

can be obtained by the relation∑
(�,�′):�→�

′
δt(σ, σ′) = 1.(6.17)

In the second equality of (6.15) we used that the past is represented by the
state at time t, and in the third equality that the future is represented by
the state at time t + 1.

In Algorithm 6.1 we summarize the above calculations.
So far we have only considered the algorithm for truncated convolutional

codes. If the frames are long it is desirable to have a windowed version. This
would also permit us to use in�nite sequences, which is a natural way of
viewing convolutional codes.

In Figure 6.2 we have a sketch of a section of a trellis where the times T1,
T2, T3, and T4 are marked. Assume that the a posteriori probabilities are
calculated up to time T1 and the α-values to time T2. Continue the forward
recursion from time T2 to time T4. Now we would like to start the backward
recursion from time T4 to time T1, but we do not know the distribution of the
β-values that starts the recursion. However, the distribution of the α-values
and the distribution of the β-values are related. Thus, initialize the beta
values at time T4 by the corresponding alpha values,

βT4(σ) = αT4(σ), ∀σ ∈ S,(6.18)

and start the backward recursion. After a couple of steps the β-values will
approach the values we would have had if the recursion started at the end of



6.1. The BCJR algorithm 119

Initialization:
α0(0)← 1; βT (0)← 1
γt(�,�′)← P (rt|v(�,�′))P (St+1 = �

′|St = �),
0 6 t < T ; (�,�′) ∈ S × S

Forward recursion: t from 0 to T − 1; � ∈ S ;
αt+1(�

′)← kα
t+1

P
�:�→�′ αt(�)γt(�,�′)

Backward recursion: t from T − 1 to 0; � ∈ S ;
βt(�)← kβ

t

P
�
′:�→�′ βt+1(�

′)γt(�,�′)

Gather information: 0 6 t < T ; (�,�′) ∈ S × S ;
δt(�,�′)← kσ

t αt(�)γt(�,�′)βt+1(�
′)

Get a posteriori information 0 6 t < T

P (u
(j)
t = u|r[0,T ))←

P
(�,�′):� u→�′ δt(�,�′), 1 6 j 6 b

P (v
(j)
t = v|r[0,T ))←

P
(�,�′):� v→�′ δt(�,�′), 1 6 j 6 c

Algorithm 6.1: The BCJR algorithm.

the trellis. How many steps it takes for the recursion to converge depends on
a number of factors, e.g., how close the distributions should be, the rate and
memory of the code, and the channel. For relatively good channels and the
codes considered in this chapter it seems like six or seven times the memory
is enough. In Figure 6.2 the interval between T3 and T4 lets the β-vales
converge. After the backward recursion we can calculate the δ-values and
the corresponding a posteriori probabilities from time T1 to time T3. To
continue add T3 − T1 to the values T1, T2, T3, and T4 and start all over.

Let WD be the decision window, the length of the part where decisions
are made, i.e., T3 − T1, and WB the backtrack window, the length needed
for the β-values to converge, i.e., T4 − T3. Then we can write the windowed
BCJR algorithm as in Algorithm 6.2.
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· · ·

· · ·

· · ·

· · ·
T1 T2 T3 T4

P

σ

β
α

α

Figure 6.2: The section of a trellis in which the windowed BCJR
algorithm works.

Initialization:
T1 ← 0; T2 ← 0
T3 ←WD

T3 ←WD + WB

while (not end of trellis)
APP-algorithm:

γt(�,�′): T2 6 t 6 T4

αt(�): for t from T2 to T4

βT4(�)← αT4(�): � ∈ S
βt(�): for t from T4 to T1

σt(�,�′): T1 6 t 6 T3

P (v
(i)
t |r): T1 6 t 6 T3

Update T:

T
(new)
1 ← T3

T
(new)
2 ← T3 + WB

T
(new)
3 ← T3 + WD

T
(new)
4 ← T4 + WD

end while

Algorithm 6.2: A windowed version of the BCJR algorithm.
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6.2. Iterative Decoding

The idea behind iterative decoding is that information retrieved by one de-
coder can be used by the next in a chain of successive decoders [20]. The
decoder for a woven convolutional code consists of two blocks of decoders,
one for the inner warp and one for the outer warp. The two warps have the
intermediate sequence in common, i.e., the code sequence for the outer warp
is used as information sequence for the inner warp. Therefore, the a poste-

riori information about the inner information sequence from the decoder of
the inner warp should be used as a priori information about the the outer
code sequence for the decoder of the outer warp. Then we get an estimate
of the a posteriori probability for the outer information sequence.

From the decoder for the outer warp we can also get a posteriori infor-
mation about the outer code sequence. This can be used as a priori informa-
tion about the inner information sequence by the decoder for the inner warp.
That is the start of the second iteration. Continuing, each new iteration will
give an estimate, hopefully improved, of the a posteriori probability for the
information sequence for the woven convolutional code.

Denote by rI\(j)t
the received sequence where the ith channel symbol of

the c-tuple at time t is excluded, i.e.,

rI\(j)t
=
(
r0 . . . rt−1 (r(1)

t . . .r
(j−1)
t r

(j+1)
t . . .r

(c)
t ) rt+1 . . .

)
.(6.19)

Then the a posteriori probability can be split as

P (v(j)
t |r) =

1
P (r)

P (v(j)
t ; r(j)

t ; rI\(j)t
)

=
1

P (r)
P (r(j)

t ; v(j)
t )P (rI\(j)t

|r(j)
t ; v(j)

t )

=
1

P (r)
P (v(j)

t )P (r(j)
t |v(j)

t )P (rI\(j)t
|v(j)

t ).

(6.20)

Both the a priori probability, P (v(j)
t ), and the channel transition probability,

P (r(j)
t |v(j)

t ), serve as inputs for the algorithm. The last factor of (6.20) is
called the extrinsic information and can be derived from the a posteriori

probability as

Pext(v
(j)
t ) = P (rI\(j)t

|v(j)
t ) = P (r) · P (v(j)

t |r)

P (v(j)
t )P (r(j)

t |v(j)
t )

,(6.21)

where P (r) can be derived by normalization. It is the extrinsic information
that should be sent as a priori information to the next decoder in the chain.
It represents the change in a posteriori information obtained by the decoder.
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In Figure 6.3 we show the APP-module that is used in an iterative decoding
scheme.

r

P (v) APP

P (v|r)

Pext(v)

Figure 6.3: The APP-module with outputs for both a posteriori

probability and extrinsic information.

Assume that all encoders in the two warps are systematic. Then from
the received sequence we can easily extract the part that corresponds to the
received sequence for the outer warp. That means that both the decoder
for the outer warp and the decoder for the inner warp will have access to
the corresponding received sequences and a priori information. Since the
encoders of a warp are independent, the corresponding decoder can be built as
a warp of APP-modules. In Figure 6.4 we show a block diagram of a decoder
for the twill. To start the iterations initialize the a priori probabilities to be
equally distributed, i.e., P (ui(j)

t = 0) = P (ui(j)
t = 1) = 1/2.

ri
1

P (ui
1)

APPi
1
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Pext(ui
1)
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)
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2 |ro
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...
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lo

P (vo
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) APPo
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P (vo
lo
|ro

lo
)

Pext(vo
lo

)

r ri

r 7→ ro

ro

Pext(ui) P (vo)

P (ui|r) P (uo|ro) = P̂ (uw|r)

Pext(vo)P (ui)

Figure 6.4: Block diagram for a decoder of a twill.
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The decoder in Figure 6.4 only works when the transmitted data are
divided into frames. If the data are transmitted as an in�nite sequence (or
in very long frames) we cannot wait until the decoders are �nished before
starting the next iteration. Instead we can use the windowed BCJR algorithm
and send the extrinsic information from the decoders for the outer warp to a
new, identical, set of decoders as the one in the �gure. These decoders will,
of course, work on the same received sequence, only a bit delayed compared
with the �rst decoders. In such pipelined manner we get a decoder like the
one in Figure 6.4 for each level of iterations.

In the simulations the data have been divided into frames. However,
we still need the windowed algorithm. Consider a woven convolutional code
with outer warp, where the warp consist of 100 parallel encoders. We will use
outer encoders with rate Ro = 2/3 and inner encoders with rate Ri = 1/2. If
the frame length for each of the outer encoders is 300 information symbols,
the frame length for the inner encoder will be about 300 · 3 · 100 = 90000
information symbols. Such frames are too long to be handled by the BCJR
algorithm for truncated convolutional codes.

6.3. Simulation Results

In the simulated communication system we have used an eight level (three
bit) quantized AWGN channel. The quantization is such that the cut-o�
rate, R0, is maximized [40]. For such channels the capacity equals 1/3 for
the signal to noise ratio [Eb/N0]C = −0.37dB, and the cut-o� rate equals
1/3 for [Eb/N0]R0 = 2.2dB. In the results presented here the outer encoders
are of rate Ro = 2/3 and have the generator matrix

Go(D) =

(
1 0 1+D2+D3

1+D3

0 1 1+D+D3

1+D3

)
(6.22)

with overall constraint length νo = 6 and memory mo = 3. The corre-
sponding code has free distance do

free = 4. The generator matrix for the rate
Ri = 1/2 inner encoders,

Gi(D) =
(
1 1+D+D2+D3

1+D+D3

)
,(6.23)

has the overall constraint length and memory νi = mi = 3 and generates free
distance di

free = 6. The woven convolutional code is of rate Rw = 1/3 and if
lo or li are large enough its free distance satis�es dtw

free > do
freed

i
free = 24.

Since the generator matrices are systematic they are minimal. Further-
more, the inner generator matrix is canonical and, therefore, the realization
on controller canonical form with three delay elements is a minimal encoder.
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A realization on observer canonical form of the outer generator matrix is a
minimal encoder with three delay elements, see Figure 2.3.

The length of the frames used in the outer encoders is about 300 symbols,
including the zero state driving sequence. This, together with the numbers
of encoders, lo and li, determines the frame length for the inner encoders.
Given the frame length for the outer encoders, FLo, the frame length for the
inner encoders is

FLi = FLo
loco

libi
+ mi.(6.24)

Likewise, the outer frame length can be derived from the inner frame length
as

FLo = (FLi −mi)
libi

loco
.(6.25)

Since FLo and FLi are integers we have to ful�ll the following conditions{
loco | (FLi −mi)libi,

libi | FLoloco.
(6.26)

Our �rst simulation is for a woven convolutional code with outer warp.
For the chosen generator matrices we have libi = 1 and the outer frame
length can be set to FLo = 300. Let the number of encoders in the warp be
lo = 30, then the inner frame length is FLi = 27003. In Figure 6.5 we show
the bit error rate (BER) versus the signal to noise ratio (SNR), Eb/N0, in
dB for the �rst ten iterations. The curves tend to �atten out after a while,
i.e., there is a bend on the curves at about 1.6dB, and the improvement for
each iteration decrease. The bend is probably due to the relatively low free
distance, dow

free = do
freed

i
free = 24 (equality since the encoders of the warp are

identical and that there is only one warp).
In Figure 6.6 the number of encoders in the warp is varied. The curves

show the BER after ten iterations when lo = 1, lo = 10, lo = 30, and lo = 100.
The result for the cascaded convolutional code (lo = 1) is, as expected, poor,
but already with a warp of ten encoders the curve is signi�cantly better. The
improvements for each added encoder diminish fast though, and the small
di�erence between the curves for lo = 30 and lo = 100 is probably due to
inaccuracies in the results.

To improve the performance we include an extra interleaver in the scheme.
Consider again Figure 5.1 where we have the encoder for a woven convolu-
tional code with outer warp. The code sequences from the outer encoders
are, as before, written row-wise into a bu�er. Before reading a column its
bits are permuted, i.e., the bits in the bu�er are permuted within each col-
umn before the bu�er is read column-wise to form the information sequence
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Figure 6.5: BER versus SNR for a woven convolutional code with
outer warp, where lo = 30 and the generator matrices are de�ned
by (6.22) and (6.23).
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Figure 6.6: BER for a woven convolutional code with outer warp,
when lo is varied.
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for the inner encoder. It is important that not all columns have the same
permutations.

There are a number of interleavers to choose from. The one used here
is taken from [1]. Let the number of outer encoders be such that lo + 1 is
a prime number, and let α be a primitive element in the �eld Flo +1. The
positions of the kth column are then permuted according to the rule

i+ = iαk mod lo + 1,(6.27)

where i, 1 6 i 6 lo are the positions and i+ the permuted positions. In
Figure 6.7 we show an encoder for a woven convolutional code with outer
warp and column-wise permutations.

Go

Go

...

Go

Πt
...

Gi

Figure 6.7: An encoder for a woven convolutional code with outer
warp and column-wise permutations.

For lo = 10 with α = 6, lo = 30 with α = 11, and lo = 100 with α = 50 the
BER for the scheme with column-wise permutations are shown in Figure 6.8.
For lo = 10 there is not much improvement compared to the scheme without
permutations (Figure 6.6), but for lo = 30 and lo = 100, the results are
considerably better. We do not have the bend of the curves anymore, at
least not in the plotted intervals, which means that we have increased the
free distance.

Next we will consider the twill with the same number of encoders in the
outer warp, viz., lo = 10, lo = 30, and lo = 100. To have the number of outer
and inner encoders relatively prime let li = lo − 1. From (6.24) and (6.25)
we get 


FLo = 306 and FLi = 1023, if lo = 10
FLo = 319 and FLi = 993, if lo = 30
FLo = 297 and FLi = 903, if lo = 100.

(6.28)
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Figure 6.8: BER for a woven convolutional code with outer warp
and column-wise permutations for di�erent lo.

The BER after ten iterations for various lo are shown in Figure 6.9. We still
have a �attening due to the relatively low free distance. Compared to the
curves for the woven convolutional code with outer warp in Figure 6.6 the
bend is lowered. An explanation could be that the free distance for the twill
is greater than the product of the outer and inner free distances. It could also
be that the number of paths corresponding to the free distance has decreased
due to the extra interleaving e�ect in the twill.

For woven convolutional codes with outer warp the results were improved
signi�cantly when an interleaver was inserted. To obtain the same for the
twill the permutation scheme has to be modi�ed a bit. Viewed over li columns
of the bu�er, the input bits for each of the inner encoders are taken one
from each row, i.e., one from each of the lo output sequences of the outer
encoders. Thus, the li sequences of lo bits read from an lo × li block of the
bu�er correspond to the columns in a bu�er for a woven convolutional code
with outer warp. For the block that starts at column k and for the sequence
corresponding to the lth inner encoder apply the permutation rule

i+ = iαk+l−1 mod lo + 1.(6.29)

We will still call it column-wise permutations since for li = 1 it will be
equivalent to (6.27). With the extra permutations we get the results shown
in Figure 6.10. Again we see that the bend has disappeared within the
considered intervals, and by the permutations we have increased the free
distance.
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Figure 6.9: BER for a twill with li = lo − 1 and di�erent lo.
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Figure 6.10: BER for a twill with column-wise permutations.
The number of encoders in the outer warp lo varies while li = lo−1.
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In Figure 6.11 we have collected the four di�erent cases (woven convolu-
tional codes with outer warp with and without permutations and the twill
with and without permutations) when lo = 30.
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Figure 6.11: BER for the four schemes of woven convolutional
codes when lo = 30.

We conclude this section with a plot, Figure 6.12, showing the results for
a twill with column-wise permutations and lo = 30, where the memories of
the constituent encoders are varied. The new generator matrices are selected
from the same tables as (6.22) and (6.23), i.e., from [33,42]. These tables list
polynomial generator matrices for convolutional codes with maximum free
distance. We use systematic generator matrices equivalent to the ones listed.
For mo = mi = 2 we have the generator matrices

Go(D) =

(
1 0 1

1+D+D2

0 1 1+D2

1+D+D2

)
(6.30)

and

Gi(D) =
(
1 1+D2

1+D+D2

)
,(6.31)

and for mo = mi = 4 we have

Go(D) =

(
1 0 1+D3+D4

1+D+D4

0 1 1+D+D2+D4

1+D+D4

)
(6.32)

and

Gi(D) =
(
1 1+D2+D3+D4

1+D+D4

)
.(6.33)
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We still get minimal encoders by realizing the outer generator matrices on
observer canonical form and the inner on controller canonical form.
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Figure 6.12: The resulting BER for twills with di�erent con-
stituent memories.



7
Bounds on Woven

Convolutional Codes

I
n the previous chapters we have de�ned the woven convolutional codes.
First the encoder properties were examined and then an iterative scheme

for decoding was de�ned and simulated. The structure of woven convo-
lutional codes with outer and inner warp, respectively, are well suited for
analytical examination. In the papers [28, 48, 49] the error exponents and
bounds on the active distances were derived for woven convolutional codes.
This chapter gives a survey over these bounds. The bounds are given without
proofs.

The �rst two sections are devoted to error exponents. In Section 7.1 a
compact review of the error exponents for block and convolutional codes is
given, while in Section 7.2 we give the error exponents for woven convolutional
code �rst with outer and then with inner warp. In Section 7.3 lower bounds
on the active distances for woven convolutional codes with both outer and
inner warp are given.
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7.1. Error Exponents

To formulate the theorems on error exponents for block and convolutional
codes we �rst need to de�ne three parameters from information theory.
Firstly, the cut-o� rate, R0, for the binary symmetric channel is

R0 , 1− log
(
1 + 2

√
p(1− p)

)
,(7.1)

where p is the channel crossover probability. Similarly, the expurgation rate
and critical rate are de�ned as

Rex , 1− h

(
2
√

p(1− p)
1 + 2

√
p(1− p)

)
(7.2)

and

Rcr , 1− h

( √
p√

p +
√

1− p

)
,(7.3)

respectively, where h(·) is the binary entropy function.
We are now ready to state a well-known theorem about the error proba-

bility for block codes [18].

Theorem 7.1 [Gallager bound]: There exists a binary block code B with
rate R and block length N such that when used to communicate over a binary
symmetric channel together with maximum likelihood decoding, the error
probability is upper bounded by

PE 6 2−(EB(R)+o(1))N ,(7.4)

where the error exponent for block codes is de�ned as

EB(r) ,



−δGV log

(
2
√

p(1− p)
)

, 0 6 R < Rex,

R0 −R, Rex 6 R < Rcr,

δGV log δGV

p + (1− δGV ) log 1−δGV

1−p , Rcr 6 R < C,

(7.5)

where δGV = h−1(1−R) is the normalized Gilbert-Varshamov bound on the
minimum distance for block codes and C the channel capacity. �

From the error exponent for block codes we can derive the error exponent
for convolutional codes [35].
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Theorem 7.2 [Yudkin bound]: There exists a convolutional code of rate
R = b/c, encoded by a polynomial, periodically time-varying generator ma-
trix with memory m and period T , such that when used to communicate over
a binary symmetric channel together with maximum likelihood decoding the
burst error probability is upper bounded by

PB 6 2−(EC(R)+o(1))mc,(7.6)

where the error exponent for convolutional codes is de�ned as

EC(R) , −δC(R) log(2
√

p(1− p)), 0 < R < R0(7.7a)

and {
EC(R) = G(s), 0 6 s 6 1
R = G(s)

s , R0 6 R < C,
(7.7b)

where δC(R) is the main term of the normalized Costello bound on the free
distance (2.38) and

G(s) = s− (1 + s) log
(
p

1
1+s + (1− p)

1
1+s

)
(7.8)

is the so-called Gallager function. �

7.2. Error Exponents of Woven Convolutional Codes

Consider the case when the codewords of a woven convolutional code with
outer warp are transmitted over a binary symmetric channel (BSC). The
decoder �rst carry out the hard decisions Viterbi decoding of the inner code.
Then, the estimated information symbols are fed into the corresponding lo
parallel outer decoders, see Figure 7.1, where we again use hard decisions
Viterbi decoding. The estimated information symbols of all outer codes are
delivered as the output of the woven communication system.

In [49] the error exponent for this construction was derived.

Theorem 7.3: There exists a woven convolutional code with outer warp
of rate Row = RoRi, encoded by lo outer rate Ro = bo/co periodically time-
varying generator matrices with memory mo and period T and one inner
rate Ri = bi/ci periodically time-varying generator matrix with memory mi

and period T , such that when used to communicate over a binary symmetric
channel together with maximum likelihood decoding the burst error proba-
bility is upper bounded by

PB 6 2−(Eow(Row)+o(1))`omomicoci ,(7.9)
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ûow

Figure 7.1: Block diagram of a communication system using wo-
ven convolutional coded with outer warp.

where the error exponent for woven convolutional codes with outer warp is
de�ned as

Eow(Row) , max
Ri

{
1

2`o
EC(Ri)δC

(
Row

Ri

)}
,(7.10)

and where `o = lo/mibi is the normalized number of outer encoders and
δC(R) the main term of the normalized Costello bound on the free dis-
tance (2.38). �

The error exponentsEB(R), EC(R), andEow(R) are all given in Figure 7.2
for the binary symmetric channel with crossover probability p = 0.01.

The error probability for woven convolutional codes with outer warp de-
creases exponentially with µcoci`o , momicoci`o and the error exponent
de�ned by (7.10). If the decoder of the woven convolutional code with outer
warp consists of Viterbi decoders the decoding complexity is proportional to

Γ ≈ 2mi + lo2mo .(7.11)

Choose mi = mo =
√

µ. Then, asymptotically, the decoding complexity
increases only as 2

√
µ.

For woven convolutional codes with inner warp, Zyablov, Shavgulidze,
and Johannessson showed [48] that the corresponding error exponent is de-
�ned as

Eiw(Riw) , max
Ri

{
1
2
EC(Ri)δGV

(
Riw

Ri

)}
,(7.12)

where δGV (R) = h−1(1−R) is the normalized Gilbert-Varshamov bound on
the minimum distance for block codes. Thus, there exists a woven convolu-
tional code with inner warp such that the burst error probability is bounded
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Figure 7.2: Error exponents for block codes, EB(R), convolu-
tional codes, EC(R), and woven convolutional codes with outer
warp, Eow(R).

by

PB 6 2−(Eiw(Riw)+o(1))`imomicoci ,(7.13)

where `i = li/moco.
When `o = 1, the error exponent for woven convolutional codes with

inner warp is slightly better than that of woven convolutional codes with
outer warp.

7.3. Bounds on the Active Distances

In [28] lower bounds on the active distances for woven convolutional codes
with outer and inner warps were presented. Those are derived from the
bounds in Theorem 3.19 together with Theorem 5.9 and Theorem 5.12.

Introduce the normalized length

` =
j + 1
mo

.(7.14)

Then, the asymptotic (mo → ∞ and mi → ∞ and, hence, mow → ∞)
lower bounds on the active distances normalized by mowcow is given by the
following theorem.
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Theorem 7.4: In the ensemble of binary, periodically time-varying, rate
Row = RoRi, woven convolutional codes with outer warp encoded by poly-
nomial generator matrices of memory mow 6 mo + 1,

(i) there exists a code whose normalized active row distance asymptotically
satis�es

δrow
` ,

arow
j

cowmow
> max

Ri

{
δC(Ri)
lo(Ri)

h−1

(
1− `

` + 1
Row

Ri

)
(` + 1)

}(7.15a)

for ` > 0,

(ii) there exists a code whose normalized active burst distance asymptoti-
cally satis�es

δbow
` ,

abow
j

cowmow
> max

Ri

{
δC(Ri)
lo(Ri)

h−1

(
1− `− 1

`

Row

Ri

)
`

}
(7.15b)

for ` > 1,

(iii) there exists a code whose normalized active column (reverse column)
distance asymptotically satis�es

δcow
` ,

acow
j

cowmow

δrcow
` ,

arcow
j

cowmow


 > max

Ri

{
δC(Ri)
lo(Ri)

h−1

(
1− Row

Ri

)
`

}
(7.15c)

for ` > O
(

log mo

mo

)
,

(iv) there exists a code whose normalized active segment distance asymp-
totically satis�es

δsow
` ,

asow
j

cowmow
> max

Ri

{
δC(Ri)
lo(Ri)

h−1

(
1− ` + 1

`

Row

Ri

)
`

}
(7.15d)

for ` > O
(

log mo

mo

)
,

where δC(R) is the main term of the normalized Costello bound on the free
distance (2.38) and lo(Ri) the solution of

h−1

(
1− lo(Ri) + 1

lo(Ri)
Ri

)
lo(Ri) = δC(Ri)(7.16)

for lo(Ri) > Ri

1−Ri
. �
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In Figure 7.3 the typical behavior of the bounds in Theorem 7.4 is shown.
By minimizing the active row distance (7.15a) we get the following lower
bound on the normalized free distance for woven convolutional codes with
outer warp

δow
free ,

dow
free

cowmow
> max

Ri

{
1

lo(Ri)
δC(Ri)δC

(
Row

Ri

)}
.(7.17)
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` = δrcow
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`

Figure 7.3: The behavior of the lower bounds on the normalized
active distances of the woven convolutional codes with outer warp
(Row = 0.5).

To write the corresponding bounds for active distances of woven convo-
lutional codes with inner warp let

` =
j + 1
mi

.(7.18)

Theorem 7.5: In the ensemble of binary, periodically time-varying, rate
Riw = RoRi, woven convolutional codes with inner warp encoded by poly-
nomial generator matrices of memory mow 6 1 + mi,

(i) there exists a code whose normalized active row distance asymptotically
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satis�es

δriw
` ,

ariw
j

ciwmiw
> max

Ro

{
δC(Ro)
li(Ro)

h−1

(
1− `

` + 1
Riw

Ro

)
(` + 1)

}(7.19a)

for ` > 0,

(ii) there exists a code whose normalized active burst distance asymptoti-
cally satis�es

δbiw
` ,

abiw
j

ciwmiw
> max

Ro

{
δC(Ro)
li(Ro)

h−1

(
1− `− 1

`

Riw

Ro

)
`

}
(7.19b)

for ` > 1,
(iii) there exists a code whose normalized active column (reverse column)

distance asymptotically satis�es

δciw
` ,

aciw
j

ciwmiw

δrciw
` ,

arciw
j

ciwmiw


 > max

Ro

{
δC(Ro)
li(Ro)

h−1

(
1− Riw

Ro

)
`

}
(7.19c)

for ` > O
(

log mi

mi

)
,

(iv) there exists a code whose normalized active segment distance asymp-
totically satis�es

δsiw
` ,

asiw
j

ciwmiw
> max

Ro

{
δC(Ro)
li(Ro)

h−1

(
1− ` + 1

`

Riw

Ro

)
`

}
(7.19d)

for ` > O
(

log mi

mi

)
,

where δC(R) is the main term of the normalized Costello bound on the free
distance (2.38) and li(Ro) the solution of

h−1 (1−Ro) li(Ro) = δC(Ro)(7.20)

for li(Ro) > 0. �

By minimizing the active row distance (7.19a) we get the following lower
bound on the normalized free distance for woven convolutional codes with
outer warp

δiw
free ,

diw
free

ciwmiw
> max

Ro

{
1

li(Ro)
δC(Ro)δC

(
Riw

Ro

)}
.(7.21)



8
Concluding Remarks

I
n this thesis the development of woven convolutional codes have been de-
scribed. After a short introduction to convolutional codes the active dis-

tances were introduced. Those are distance measures that are well suited to
handle concatenation of convolutional codes. Then, cascaded convolutional
codes were thoroughly examined. Since that is the simplest construction
of concatenated convolutional codes it helped us to develop the necessary
intuition and understanding of the problems concerning concatenation of
convolutional codes.

The examination of cascaded convolutional codes leads to the develop-
ment of woven convolutional codes. Here the encoder properties were �rst
examined, and then an iterative decoding scheme was designed and simu-
lated.

In the next section some ideas for further work will be discussed.
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8.1. Future Investigations

Most of the work in this thesis concerns the analyzes of the encoder proper-
ties. This is natural since the thesis is devoted to the development and under-
standing of woven convolutional codes. What is needed now is an exhaustive
examination of the properties of the decoder. The purpose of Chapter 6 was
to show that woven convolutional codes have potential of being realistic alter-
natives to other concatenated schemes, e.g., parallel or serial concatenation
of convolutional codes or concatenation of Reed-Solomon codes and convo-
lutional codes. It only covers a small fraction of the directions we can take
in the investigations. There are numerous questions like 'which interleavers
are good?' and 'how good is it for sub-optimal soft-in-soft-out decoding
algorithms?'. Many of those are still unanswered.

We must also look closer into how the woven constructions can be com-
pared with other concatenated systems. It is hard because Turbo codes or
serially concatenated codes [4] are block codes created from convolutional
codes. For those we compare the interleaver size or, equivalently, the block
size. A change of this size will directly give a change in the results for these
codes. Woven convolutional codes, on the other hand, are convolutional
codes and in the simulations they have been truncated. If we double or
halve the frame length the results will not be a�ected very much. To get a
comparable system the frame lengths of the constituent encoders should be
chosen as small as possible. This, however, results in a huge rate-loss due
to the truncation of the frames. One way to create short e�ective woven
convolutional codes would be to use short tail-biting convolutional codes as
constituent codes. Such constructions can very well be compared with for
example Turbo codes.
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