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Introduction 

Heritable genetic markers are one of the sources of phenotypic variation of 
complex traits. Heritability is a measure which characterizes the genetic influence 
on phenotypic variation [1]. There are several methods to estimate heritability, 
some based on computational methods, others, most prominent so far, analyse 
difference in concordance rate between pairs of monozygotic and dizygotic twins 
[1,2]. According to heritability studies, certain degree of phenotypic variance of 
many important phenotypic traits cannot be fully attributed to genetics alone [1–
3].  

It is well known that environmental factors play an important role in the 
pathogenesis of complex diseases [4]. Lifestyle patterns underwent major changes 
in the past several decades, which adversely affected epidemiology of multiple 
important metabolic traits. For example, type 2 diabetes, having heritability 
estimates from 20% to 80% [5], is an exponentially increasing pandemic with 
number of cases expected to reach 624 million in year 2040 [6]. This drastic 
increase was attributed to a sedentary lifestyle and excessive caloric intake, highly 
prevalent in modern societies [7]. Obesity is another major example of such a 
disease with both environmental and genetic influences, and its prevalence 
doubled from 1980 to reach 600 million cases in 2014, affecting up to 50% in 
certain populations [8]. Clinical complications of type 2 diabetes, for example 
diabetic retinopathy or kidney or nerve damage, and obesity, such as stroke and 
heart disease, present an increasing burden on healthcare systems [9]. 

Type 2 diabetes and obesity 

Diabetes mellitus is a disease which is commonly characterized by beta-cell 
dysfunction, insulin resistance and increased blood glucose. According to World 
Health Organisation (WHO) standards, diabetes is diagnosed by either having 
fasting glucose levels > 7 mmol/L, 2-h plasma glucose after a 75-g oral glucose 
tolerance test of >11.1 mmol/L or having haemoglobin A1C (HbA1c) > 6.5% [10]. 
Diabetes mellitus is divided on multiple subtypes, including, but not limited to, 
type 1 and type 2 diabetes, gestational diabetes, which is developed by women 
during pregnancy, and several forms of monogenic diabetes such as maturity onset 
diabetes of the young (MODY) [10]. 
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Insulin is a hormone required for maintenance of normal blood glucose level 
(normoglycaemia). It is secreted from beta-cells in response to elevated glucose 
levels after food intake, and functions as a signal to its target tissues such as liver, 
adipose tissue and skeletal muscle to initiate glucose uptake [11]. The insulin-
secreting beta-cells are part of the pancreatic islets of Langerhans along with 
several other types of endocrine cells, including alpha-cells, delta-cells, PP-cells 
and epsilon-cells [12]. Alpha-cells secrete glucagon, which regulates 
normoglycaemia by stimulating the conversion of liver glycogen into glucose. 
Delta-cells are responsible for production of somatostatin, which is an inhibitor 
that coordinates glycogen and insulin secretion [13]. PP-cells produce pancreatic-
polypeptide, which, among other functions, also inhibits insulin secretion [14]. 
Finally, epsilon-cells secrete ghrelin, a hormone which regulates insulin secretion 
as well as food intake initiation [15].  

Type 2 diabetes is the most prevalent form of diabetes mellitus [10]. It is 
characterized by insulin resistance, i.e. inability of cells of target tissues to respond 
to insulin, which results in decreased glucose uptake by skeletal muscle and 
adipose tissue and increased glucose output from the liver, and thereby 
hyperglycaemia [10]. Initially, pancreatic beta-cells are compensating by insulin 
over-production and secretion [16]. However, overproduction of insulin by beta-
cells is one of the causes which eventually lead to reduction in beta-cell mass [17], 
which can also occur due to high glucose concentrations [18]. Eventually, when 
the beta-cells are no longer able to compensate with elevated insulin secretion, 
diabetes manifests.    

High glucose levels may also damage the liver, kidneys, and in due course lead to 
microvascular complications such as diabetic retinopathy or neuropathy [19]. 
Treatments for type 2 diabetes include, among many others, metformin, commonly 
used to increase insulin sensitivity and preserve beta-cell function, and insulin 
injections in cases when beta-cells become dysfunctional  [20]. 

Obesity is characterized by excess in fat mass, and is most commonly diagnosed 
by having a body mass index (BMI) >= 30 kg / m2 [21]. Dysfunction of adipose 
tissue is linked to both obesity and type 2 diabetes [22] and obesity is known to be 
associated with insulin resistance [23], making adipose tissue a key tissue for 
understanding type 2 diabetes pathogenesis [24].  

Adipose tissue is an organ responsible for long-term energy storage as well as 
metabolic homeostasis [25]. It is composed by multiple cell types, including 
adipocytes, which are cells responsible for energy storage in form of triglycerides 
[26,27]. Adipose tissue contributes to glucose and free fatty acids (FFA) 
metabolism by secreting several proteins, including, but not limited to, leptin and 
adiponectin hormones [27]. Like ghrelin, leptin is involved in food intake 
initiation and hunger control, by interaction with hypothalamus [28]. It also 



15 

contributes to regulation of glucose levels and insulin resistance [29–31]. Reduced 
leptin secretion is associated with obesity. Adipocytes can experience hypertrophy 
in response to metabolic stress, such as long-term overfeeding [32], which impairs 
their function, including reduced leptin secretion [33]. Moreover, resistance of 
hypothalamus to leptin signalling has been linked to obesity [34]. 

Genetics of type 2 diabetes and obesity 

Advances in mapping human genetic variation, such as the HapMap [35] or 1000 
Genomes projects [36], and the development of technologies such as DNA 
microarrays, made genome-wide screening of common markers in large cohorts 
possible. Genome-wide association studies (GWAS) contributed greatly to 
understanding genetic components of many complex traits. GWAS are usually 
performed by analysing statistical associations between directly genotyped and 
imputed single nucleotide polymorphisms (SNPs) with a phenotypic trait of 
interest and selecting associations with p-values below genome-wide significance 
threshold of p < 5×10−8 [37,38].  

A family history of type 2 diabetes greatly increases the risk of developing the 
disease later in life – by 70% for individuals with both parents being affected by 
the disease and by 40% for individuals with one type 2 diabetic parent [39]. 
Linkage studies in 1990s and early 2000s identified several loci associated with 
type 2 diabetes, such as CAPN1 and TCF7L2 genes [40,41]. A breakthrough in 
understanding genetics of type 2 diabetes came in 2007, when several type 2 
diabetes GWAS uncovered a genome-wide significant SNP close to TCF7L2, 
replicating linkage-based discoveries [5]. Since then, 153 variants, annotated to 
more than 120 genes, have been found to be associated with type 2 diabetes [42]. 
Variants with highest effect sizes are located in or close to TCF7L2 (odds-ratio 
(OR) for risk-allele carriers 1.4), KCNQ1 (OR 1.4) and CDKN2A/B (OR 1.3) [43].  

GWAS were performed also for proxy measures of obesity such as body mass 
index (BMI) and waist-hip ratio (WHR), and identified 97 genome-wide 
significant loci associated with BMI and 49 with WHR [44,45]. Strongest genome-
wide associations were found for variants in the FTO gene, with OR as high as 
1.67 [44]. SNPs in or close to FTO were also identified in type 2 diabetes GWAS 
[46].  

Standard practice in GWAS is to link identified genetic markers to genes based on 
genomic distance [47]. These markers can often be found to be located in the 
intronic or intergenic regions  and, therefore, often do not modify the coding 
sequence of the gene [48]. Identifying causal variants based on statistical 
associations, as well as understanding underlying mechanisms of their action, 
often requires a combination of molecular and computational approaches. For 
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example, a study which identified a causal variant in the FTO gene analysed cross-
species conservation patterns of transcription factor binding sites (TFBS) as well 
as utilized genome editing techniques [49]. This study, among others, points to 
importance of considering genetic markers in its surrounding context of TFBS and 
regulatory regions. 

Both type 2 diabetes and obesity are complex diseases, meaning phenotypic 
variance is thought to be due to a combination of multiple genetic and 
environmental factors as well as interactions between them. Cellular phenotype is 
partly defined by gene expression, which is in turn coordinated by regulatory 
proteins including transcription factors [50]. However, transcription factors alone 
cannot address mechanisms by which the environment affects cellular circuitry 
[51]. Epigenetics is commonly thought to be a mechanism that can play a proxy 
role between environmental exposure and cellular phenotypes [52,53].   

Epigenetics and DNA methylation 

Epigenetics is an umbrella term for several biochemical phenomena which are 
broadly defined as modifications of a DNA molecule that cause changes of DNA 
function without involving alterations of the genomic sequence [54]. Several 
known biochemical processes are classified as epigenetics. One involves more 
than 100 different modifications of histone proteins such as, for example, 
methylation of lysine 4 on histone 3 (H3K4me and H3K4me3), which have been 
shown to be associated with chromatin structure and regulatory regions of the 
genome [55]. DNA methylation is another commonly studied epigenetic 
phenomenon. 

DNA methylation is a process of addition of a methyl group to a cytosine base of a 
DNA molecule [56]. In differentiated mammalian cells, DNA methylation mostly 
occurs at cytosine-guanine dinucleotides, so-called CpG sites, while in plants non-
CpG DNA methylation is also common [56]. The human genome contains 
approximately 28 million CpG sites [57] and, normally, between 70% to 80% of 
the CpG sites in the human genome are methylated [58]. Unmethylated CpG sites 
tend to occur in functional genomic regions such as promoters or enhancers 
[58,59]. DNA methyltransferase-3A and 3B (DNMT3A and 3B) are generally 
responsible for establishing de novo DNA methylation, while DNA methylation 
maintenance mainly seems to occur due to DNA methyltransferase-1 (DNMT1) 
[60]. Removal of DNA methylation marks can occur either passively, when DNA 
methylation is not preserved during DNA replication, for example due to a 
dysfunction of DNA methylation mechanisms, or actively, through conversion of 
5-methylcytosines to 5-hydroxymethylcytosines by enzymes from the ten-eleven 
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translocation (TET) family [61] and subsequent conversion of 5-
hydroxymethylcytosines to cytosines [62]. 

The relationship between tissue-specific DNA methylation and gene expression is 
currently being a subject of a scientific interrogation. It is well known that around 
70% of all human gene promoters contain ~1kb long clusters of CpG sites, so-
called CpG islands (CGIs) [58], and DNA methylation in CGI promoters is 
associated with transcriptional repression [58]. However, excluding cases such as 
imprinted genes and genes turned off by X-chromosome inactivation in females 
during development [63], DNA methylation in CGI promoters rarely occurs de-
novo, due to enrichment of nucleosome depleted regions (signified by H3K4me3 
histone mark) [58,64] (Figure 1). In the meantime, DNA methylation levels in 
non-CGI promoters seems more dynamic [65]. 

 

Figure 1. Genomic distribution of CpG methylation 
Overall genomic landscape of DNA methylation. Most of the genome is methylated, enhancers are more dynamic in 
DNA methylation levels, CpG islands are commonly unmethylated and gene bodies often exhibit high levels of DNA 
methylation. Histone modification H3K4me3 is marking a nucleosome depleted region, which is associated with low 
activity of DNMTs. 

DNA methylation was previously thought to be a solely repressive mark, and 
altered DNA methylation of promoter regions was previously mainly linked to 
diseases such as cancer [66]. However, expressed genes tend to exhibit higher 
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DNA methylation levels in their gene bodies [67], including higher DNA 
methylation in exons compared to introns and sharp changes in methylation levels 
in exon-intron boundaries [68], which suggests that DNA methylation can play a 
role in splicing mechanisms or alternative splicing events (Figure 1). Depending 
on the context, DNA methylation can either actively affect gene expression or be 
consequential to other factors [69]. All facts together point to the importance of 
considering DNA methylation marks in a surrounding genomic context rather than 
independently, and knowledge of the epigenetic landscapes of multiple tissues 
may help to unravel the mechanisms by which non-coding variants affect cellular 
phenotypes [49]. 

DNA methylation and type 2 diabetes 

DNA methylation has previously been found to be potentially involved in both 
type 2 diabetes and obesity. For example, a study of PPARGC1A, a gene involved 
in glucose metabolism by regulating mitochondrial function, identified that it is 
differentially expressed in human pancreatic islets between diabetic and non-
diabetic donors, and at the same time is potentially repressed by increased DNA 
methylation [70]. An epigenome-wide association study (EWAS) of human 
pancreatic islets analysed differential DNA methylation between type 2 diabetic 
and control donors and identified CpG sites in genes previously linked to type 2 
diabetes, including TCF7L2, FTO and KCNQ1 [71]. In an EWAS in blood of 5465 
individuals, 37 CpG sites were identified to be associated with BMI, covering 
genes such as CPT1A, ABCG1, and SREBF1 [72]. Additionally, differential DNA 
methylation patterns have also been found in the liver, adipose tissue and skeletal 
muscle from subjects with type 2 diabetes compared with non-diabetic controls 
[24,73,74]. Other studies have further hypothesized that DNA methylation can be 
one of the mechanisms of how the intrauterine environment affects cellular 
phenotypes and risk for different diseases later in life [75]. 

Epigenetic markers are known to be associated, and potentially affected, by 
genetic factors in both cis and trans [76] . SNPs statistically associated with 
histone modifications have been shown to localize in genomic regulatory regions 
and transcription factor binding sites [77], and even to switch these sites from an 
active to a repressed chromatin state [78]. These SNPs were also hypothesized to 
affect the surrounding chromatin state and to be a potential mechanism for 
expression quantitative trait loci (eQTLs) of non-coding sequences [76]. 

Moreover, multiple so-called methylation quantitative trait loci (mQTL) studies in 
various tissues, such as a study by Hannon et al. in brain [79] and Olsson et al. in 
human pancreatic islets [80], established maps of genetic-epigenetic interactions in 
both cis and trans. When treated as quantitative traits, many CpG sites were shown 
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to have high (up to 0.95) heritability estimates and, therefore, to be potentially 
under genetic control [81]. Similar to histone-QTL studies, significant mQTL loci 
are enriched in enhancer regions, as well as underrepresented in CpG island 
promoters [76]. However, since the epigenetic patterns are known to be tissue 
specific [59], the relationship between DNA methylation and genetic variation in 
adipose tissue, a key tissue for obesity and type 2 diabetes, remains an important 
area to study. 

Bioinformatics of DNA methylation 

Bisulfite conversion is a chemical reaction commonly used to differentiate 
between methylated and unmethylated cytosines in the DNA sequence [82]. 
During the treatment of the DNA with sodium bisulfite cytosine is converted to 
uracil, while 5-methylcytosine is not. Next, after polymerase chain reaction (PCR) 
uracil is converted to thymine. This fact is utilized for the identification of DNA 
methylation with the use of microarray and sequencing technologies, as thymine 
bases in bisulfite-converted DNA represent unmethylated cytosines in the DNA 
prior to bisulfite conversion, while cytosine residues point to methylated DNA. 

Oligonucleotide hybridization of bisulfite converted DNA is one of the most 
commonly used technologies to investigate DNA methylation. There are several 
microarray solutions that target DNA methylation, such as the Illumina arrays 
(Illumina, San Diego, CA, USA) [83]. During our research we utilized the most 
comprehensive method  available, Illumina Infinium HumanMethylation450 
BeadChip (Illumina 450k array), which is a 12-sample microarray chip that 
incorporates 482,421 oligonucleotide probes designed to measure CpG 
methylation across the genome, as well as 3,091 non-CpG DNA methylations sites 
and 65 control SNPs [84]. CpG sites targeted by the chip cover 21,231 out of 
21,474 UCSC RefSeq genes and 96% of UCSC CGIs [84]. 

DNA methylation probes utilized by the array are designed using two different 
assay chemistries [84]. First type, Infinium type I, covers 135,501 sites, and 
utilizes two bead types for methylated and unmethylated state of a target CpG site, 
respectively (Figure 2). Second type, Infinium type II, which covers the remaining 
350,076 sites, has only one bead type corresponding to both DNA methylation 
states based on single base extension (Figure 2) [84]. 
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Figure 2. Design of Infinium type I and Infinium type II probe types 

A – Infinium type I probe design incorporates 4 probes per CpG locus, 2 for methylated, and 2 for unmethylated state. 
Probes in methylated and unmethylated states contain different bead types, and CpG methylation is measured using 
a single colour channel.  
B – Infinium type II probe design. Each CpG locus is measured by 2 probes in 2 different colours by using single-base 
extension. 

Despite its widespread use, certain bioinformatic challenges are associated with 
the analysis of Illumina 450k array data.  

DNA methylation is commonly represented as a proportion of cells methylated at 
a current genomic locus among the overall number of cells in a sampled material. 
This measure is also referred to as beta-value [85]. However, a study by Du et al. 
[85] reported that if DNA methylation, as measured by Illumina 450k array, is 
expressed in beta-values, then it exhibits heteroscedastic properties in hyper- and 
hypomethylated regions of the overall distribution. Therefore, additional 
transformation of beta-values to an alternative methylation measure was required. 

Next, the difference in assay chemistry between type I and type II probes can be a 
source of a potential bias in the DNA methylation estimates. Indeed, it has been 
shown that the distribution of DNA methylation values differs between probe 
types (Figure 3) [86]. 
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Figure 3. Distributions of DNA methylation values of Infinium type I and type II probes 

This figure depicts distributions of DNA methylation measured by Infinium type I and Infinium type II probes 
separately. Here, Infinium type I probes are more sensitive to detect hypo- or hyper-methylation. 

Another problem would be a potential cross-hybridization of probe sequences to 
multiple genomic locations as well as SNPs in probe targets. In fact, ~8.5% of 
Infinium Type I probes and ~5.1% of Infinium Type II probes are shown to 
potentially cross-hybridize to multiple genomic locations [87]. Moreover, ~14% of 
all probes target a CpG site with a known SNP [88]. 

Therefore, in order to perform biological investigations using Illumina 450k array 
in the course of this thesis, one of the requirements was to develop a bioinformatic 
pipeline to address aforementioned issues. 

Despite the fact that Illumina 450k array allows “relatively quick” genome-wide 
DNA methylations screening, its coverage remains limited. First, only ~1.5% of 
28 million CpG sites of the human genome are targeted by the array, which 
complicates a study of co-occurrence of DNA methylation in contiguous genomic 
regions, while annotation of contiguous regions of DNA methylation, and not of 
single CpG sites, is essential for understanding of how DNA methylation fit into 
surrounding genetic and regulatory context. For example, a recent study identified 
27 type 2 diabetes risk loci in contiguous differentially methylated regions 
(DMRs) between diabetic and non-diabetic mice [89]. However, for many genes 
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only a few CpG sites are interrogated by the Illumina 450k array. Moreover, 
regulatory regions such as enhancers are also not fully covered by the array [90].  

Therefore, to deepen the coverage of the analysis of the DNA methylation 
landscape, a more comprehensive approach to measure genome-wide DNA 
methylation patterns are needed.  

There are several high coverage methods for genome-wide analysis of DNA 
methylation. For example, reduced representation bisulfite sequencing (RRBS) 
utilizes restriction enzyme digestion followed by bisulfite sequencing and allows 
interrogation of ~10% of genomic CpG sites [91]. Another method, MeDIP-seq, 
based on sequencing of immunoprecipitated DNA, not only can be used to 
measure DNA methylation of up to ~87% genomic CpG sites, but also allows for 
distinction between 5-methylcytosine and 5-hydroxymethylcytosine [92], which is 
another epigenetic modification that occurs on cytosine residues [93] and not 
distinguishable by bisulfite conversion. However, MeDIP-seq was shown to have 
lower accuracy than RRBS [92]. The most comprehensive method to date utilizes 
whole-genome shotgun sequencing of bisulfite treated DNA. Recent technological 
advances greatly reduced the costs of DNA sequencing. Whole-genome 
sequencing of bisulfite treated DNA (WGBS) potentially allows interrogation of 
every genomic CpG site. However, due to the fact that methylated sites are 
unevenly distributed in the genome, and that during bisulfite treatment 
unmethylated cytosines are converted to thymine, many contiguous genomic 
regions of the DNA after the reaction can potentially consist of only three residue 
types instead of four, which reduces sequence complexity. Therefore, sequence 
aligners of bisulfite converted reads should take into account various scenarios, as 
DNA methylation can be present or absent at a single genomic locus [94].  

Most of the existing library preparation protocols for DNA sequencing, such as 
NEXTflex™ Bisulfite Library Prep Kit, produced by Bioo Scientific (Austin, TX, 
USA), require large amounts of input DNA, which is sometimes difficult to 
acquire from human tissues. Novel library preparation kits, such as EpiGnome™ 
Methyl-Seq kit (Illumina), require much smaller inputs. However, there is a 
necessity for technical validation of these technologies by means of previously 
established methods such as Illumina 450k array and pyrosequencing. 
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Aims 

Study 1 

To investigate human adipose tissue epigenome dynamicity in response to 
prolonged exercise exposure in subjects with or without a family history of type 2 
diabetes. 

Study 2 

To identify DNA methylation marks that are associated with age, BMI and HbA1c 
in human adipose tissue. 

Study 3 

To investigate potential interactions between genetic variation and DNA 
methylation in human adipose tissue and identify whether those interactions 
jointly affect mRNA expression and metabolic phenotypes. 

Study 4 

To characterize the whole-genome DNA methylation landscape in human 
pancreatic islets and identify contiguous genomic regions that are differentially 
methylated between type 2 diabetic donors and normoglycaemic controls using 
WGBS. 
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Materials and methods 

Ethics statement 

Written informed consent was obtained from all participants or their relatives. All 
studies were approved by the local research ethics committees. 

Study participants 

Study 1 

31 sedentary middle-aged men from south of Sweden participated in a 6-months 
training intervention. Participants were asked to keep their usual lifestyle habits 
during the study. Overall, adipose tissue biopsies were extracted under the fasting 
state before and after the intervention from the right thigh and were available from 
23 of the participants (Table 1).  

Table 1. Clinical characteristics of 23 participants with available adipose tissue biopsies in study 1.  

Characteristics Baseline After exercise p-value 

Age (years) 37.3 ± 4.4   

BMI (kg/m2) 28.2 ± 2.9 27.9± 3.1 0.18 

VO2max (mL/kg/min) 33.1 ±- 4.6 36.2 ± 6.2 0.003 

Waist circumference (cm) 97.7 ± 8.6 95.7 ± 8.7 0.02 

Diastolic BP (mmHg) 79.3 ±- 9.3 74.8 ± 10.7 0.04 

2h OGTT glucose (mmol/L) 6.17 ± 1.02 5.86 ± 1.47 0.32 

Data are presented as mean ± standard deviation. Wilcoxon test and two-tailed p-values were used to detect 
differences between the groups. 
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Studies 2 and 3 

Adipose tissue biopsies for these studies were collected from healthy males, 
including baseline samples from the cohort recruited for study 1 as well as cohorts 
from three previously  published studies [24,95,96]. The main discovery cohort 
consisted of 119 samples (Table 2), all used in study 3. Out of those, only 96 were 
available to use for study 2 (Table 3). Replication cohort in study 2 consisted of 
94 female donors (Table 3). 

Table 2. Characteristics of 119 Scandinavian men included in studies 2 and 3. 

Phenotype Mean ± SD  Min 1st quartile Median 3rd quartile Max 

Age (years) 31.03 ± 12.3 22 24 25 35 80 

BMI (kg/m2) 24.91 ± 3.7 16.4 22.2 24.6 27.15 39 

HbA1c (%) 4.93 ± 0.48 3.7 4.7 5 5.2 6.4 

Data are presented as mean ± standard deviation. 

Table 3. Characteristics of 96 men and 94 female donors included in study 2. 

Characteristic Male discovery cohort (n=96) Female validation cohort (n=94) 

Age (years) 32.4 ± 12.8 (23–80) 29.2 ± 4.2 (21–37) 

BMI (kg/m2) 25.6 ± 3.7 (17.5–39.0) 27.2 ± 6.7 (18.2–44.9) 

HbA1c (%) 5.3 ± 0.3 (4.7–6.4) 5.0 ± 0.3 (4.4–5.7) 

Data are presented as mean ± standard deviation. 

Study 4 

Human pancreatic islets from 14 cadaveric donors, including 6 donors previously 
diagnosed with type 2 diabetes, were obtained from the Nordic Network for Islet 
Transplantation and further processed within the Human Tissue Lab, Lund 
University Diabetes Centre. The samples were group wise matched for age, sex 
and islet purity (Table 4). These samples are part of a larger cohort of 89 
previously described islet donors [71], which was further used in this study for 
biological and technical replication. The islets were cultured for 4.0±0.2 days prior 
to DNA and RNA extraction. DNA and RNA from human pancreatic islets were 
extracted using the AllPrep DNA/RNA Mini Kit (Qiagen GmbH, Hilden, 
Germany).  
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Table 4. Characteristics for human donors of pancreatic islets included in the WGBS analysis 

 Controls (n=8) Type 2 diabetic (n=6) p-value 

Sex (m/f) 4/4 3/3  

Age (years) 52.5 ± 3.2 (40-67) 58.2 ± 3.6 (45-66) 0.26 

HbA1c (%) 5.47 ± 0.10 (n=7; 5.2-6.0) 7.12 ± 0.21 (6.3-7.8) < 0.0001 

BMI (kg/m2) 24.9 ± 0.3 (23.9-26.6) 28.0 ± 2.0 (22.9-34.6) 0.10 

Data are presented as mean ± standard error of the mean. t-tests and two-tailed p-values were used to detect 
differences between the groups. 

Phenotype characterization 

Anthropometric traits such as weight, height, waist circumference and waist-hip 
ratio were measured for all adipose tissue donors. BMI was calculated as a weight 
in kilograms divided by height in meters squared. 

Fasting glucose and fasting insulin were measured before an oral glucose tolerance 
test (OGTT), which is a two-hour long series of glucose and insulin level 
measurements performed in individuals after an overnight fast followed by 75g 
glucose intake. 

Average plasma glucose levels over 8 to 12 weeks were characterized as glycated 
haemoglobin (HbA1c), measured with Mono S method [97]. 

The homeostatic model assessment of insulin resistance (HOMA-IR) and beta-cell 
function (HOMA-B) were measured as previously described [98]. 

For donors included in Study 1, maximal oxygen uptake (VO2max) was assessed on 
an ergometer bicycle (Ergonomedic 828E, Monark, Sweden), and fat mass was 
measured with BIA 101 Body Impedance Analyzer (Akern Srl, Pontassieve, Italy). 

Genotyping 

DNA for genotyping was extracted from whole blood using Gentra Puregene 
Blood Kit (Qiagen, Hilden, Germany) and analysed using Illumina Human 
OmniExpress BeadChip and Illumina iScan system. Illumina Human 
OmniExpress BeadChip is a 24-sample genotyping array that allows for direct 
genotyping of 731,412 SNPs. Genotype calling was performed using Illumina 
GenomeStudio® software. Subsequently, we used Plink [99] to identify SNPs 
with missing values for more than 5% of the interrogated samples, SNPs that 
deviate from Hardy-Weinberg equilibrium (p < 0.001) or low frequency variants 
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(MAF < 0.05), which were excluded from further analysis. Samples with call rate 
lower than 98% and samples with mismatched sex label based on X-chromosome 
heterozygosity were also excluded from further analysis. 

Linkage disequilibrium (LD) between SNPs was computed using Trio package 
from Bioconductor [100]. 

DNA methylation 

Bisulfite conversion 

The EZ DNA methylation kit (Zymo Research, Orange, CA, USA) was used for 
bisulfite conversion prior to Illumina 450k array analyses in studies 1 - 3. For 
bisulfite conversion of DNA prior to whole-genome sequencing (study 4), the EZ 
DNA Methylation Gold kit was used. 

Illumina 450k BeadChip array 

To assess DNA methylation with the Illumina 450k array in studies 1 - 3, the 
following procedure was used. First, raw methylated and unmethylated intensity 
values proportional to number of methylated and unmethylated cells in the 
analysed DNA material were extracted from GenomeStudio®, a proprietary 
software suite developed by Illumina, and converted to M-values, defined as  ݈݃ଶ ቀ୫ୟ୶(ெ,)ାଵ୫ୟ୶(,)ାଵቁ, where M and U are methylated and unmethylated intensity 

values of the interrogated CpG site, respectively. M-values were previously 
suggested as a DNA methylation measure instead of the more commonly used 
beta-values, defined as a fraction of methylated signal to overall signal:  ୫ୟ୶	(ெ,)୫ୟ୶(,)ା୫ୟ୶(ெ,)ା	ଵ, due  to heteroscedasticity in hyper- and hypomethylated 

CpG sites reported in the latter [85]. 

Next, for every array the background noise was removed by subtracting the 
average signal of 614 negative control probes, and quantile normalization [101] 
was used to correct for intra-array variation. 

To correct for probe type bias, we next used the beta-mixture quantile dilation 
(BMIQ) method, which is a normalization procedure specifically designed to 
correct for the bias between the two different probe types on the Illumina 450k 
array [102]. Next, potential sources of batch effects, such as subcohort, sampling 
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occasion or technical batch were removed using the ComBat normalization 
procedure [103]. The full analysis pipeline is presented in Figure 4. 

 

Figure 4. Illumina 450k array analysis pipeline 

Pipeline for analysis of Illumina 450k array DNA methylation data, used in studies 1 – 4. First, probes are extracted 
from the proprietary Illumina software GenomeStudio and low quality probes are filtered based on detection p-values 
provided by the software. Next, DNA methylation levels are corrected for background noise by subtracting the median 
levels of negative control probes, which are incorporated into the array. Probes are subsequently converted to M-
values and normalized using Quantile normalization. Next, probe type bias is corrected using BMIQ and ComBat is 
used for batch effect removal. 

Whole-genome bisulfite sequencing 

Even the most comprehensive microarray technology up to date, the Illumina 
MethylationEPIC chip, covers only around 3% of the CpG methylome. In order to 
fully characterize the whole CpG methylome of human pancreatic islets, in study 
4, we used next generation whole-genome shotgun sequencing of bisulfite 
converted DNA.  

First, 125-bp long paired end WGBS reads in FASTQ format were generated using 
Illumina HiSeq2500™. The FASTQ format provides a Phred quality measure, 
which is defined as −10 logଵ ܲ, where ܲ is a probability of erroneous base call. 
One of the issues associated with the sequencing by synthesis, utilized by Illumina 
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HiSeq2500, is that Phred quality drops towards the end of the read [104]. Also, 
reads can be susceptible to the contamination of sequencing adaptors [105]. In 
order to tackle both these problems, we used TrimGalore 
(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore) to trim standard 
Illumina adaptors as well as low quality bases (Phred < 20) from the 3' end of the 
reads. Following the trimming procedure, FastQC 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to validate 
read quality. 

Next, reads were aligned to the reference genome hg38 using Bismark aligner 
[106], which internally uses Bowtie 2 [107] for both genome indexing and 
alignment. DNA methylation was quantified using the Bismark methylation 
calling algorithm [106]. CpG sites with coverage less than 10 reads were removed 
from the further analysis. Methylation was calculated as a beta-value, i.e. as a ratio 
of number of reads aligned to the methylated strand to the total number of reads 
aligned to the interrogated CpG site. 

In order to correct for variability in coverage between consecutive CpG sites, 
methylation profiles were smoothed using a sliding window approach with the 
BSmooth package [108].  

Next, CpG sites with coverage less than 10x, as well as CpG sites on the negative 
strand, were filtered from the subsequent analysis, and differentially methylated 
regions (DMRs) were called using the bsseq package from Bioconductor [108]. A 
DMR was defined as a set of 3 or more consecutive CpG sites differentially 
methylated between the groups, with a maximum distance between the CpG sites 
≤ 300 bp, and with an average absolute difference between groups ≥ 5%. 

Gene expression 

Affymetrix GeneChip® Human Gene 1.0 ST Array chip 

Affymetrix GeneChip® Human Gene 1.0 ST Array is a microarray that allows for 
the robust measurement of mRNA expression profiles of 28,869 coding genes on 
both exon and whole-transcript level. Transcript level summaries for mRNA 
expression data were obtained using Robust Multichip Average (RMA) procedure 
[109] and subsequently batch corrected using ComBat [103]. 
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Whole-genome mRNA sequencing (RNA-seq) 

Paired end reads in FASTQ format were generated with the Illumina HiSeq2000 
platform. Reads were next aligned to the reference genome hg38 using RSEM 
software [110], and  Gencode v.22 was used for gene annotation. Transcript 
abundances were quantified as transcript per million (TPM) metric. 

Statistical and bioinformatic analysis 

Statistical and analysis tools 

For the analysis of Illumina 450k array and microarray mRNA expression data 
from Affymetrix GeneChip® Human Gene 1.0 ST Array, all statistical analyses 
were performed using R programming language [111]. Differences in mRNA 
expression or DNA methylation between groups were analysed using Wilcoxon-
Mann-Whitney u-test or Student’s t-test as implemented in base R functionality. 
Associations between mRNA expression or DNA methylation and quantitative 
covariates such as age, BMI or HbA1c were analysed using linear regression 
models. Parallel calculations were performed on a Condor cluster using R package 
doMC. 

For mQTL analysis, the Matrix EQTL [112] was used, a software that utilizes 
linear algebra optimisation techniques to perform quick multiple association 
testing between genotype data and multiple quantitative traits while controlling for 
covariates. 

Multiple hypothesis testing was controlled for using Benjamini-Hochberg False 
Discovery Rate (FDR) [113], as implemented in standard R function p.adjust.  

For mQTL associations, p-values were corrected for multiple hypotheses testing 
using a modified Bonferroni procedure that takes into account potential linkage 
between SNPs using LD threshold of r2 < 0.9. 

The WGBS analysis pipeline was implemented using Python programming 
language [114]. 

Statistical significance of overlap between two different genomic features, i.e. 
DMRs and functional gene regions such as enhancers, was analysed using a 
permutation strategy. Regions were shuffled across the genome by randomly and 
uniformly selecting a new genomic location for each region, while preserving the 
region length. To build a reliable null distribution, 1,000,000 iterations were 
performed. The permutation software was implemented using C++.
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Results 

Study 1:  

A six months exercise intervention influences the genome-wide DNA methylation 
pattern in human adipose tissue 

In this study we wanted to characterize changes in the DNA methylation pattern in 
human adipose tissue in response to 6-months exercise exposure. DNA 
methylation from 31 men, some with a family history of type 2 diabetes, was 
analysed before and after exercise using the Illumina 450k array. Statistical 
significance was accessed with t-test and two-tailed p-values. 

Overall, we identified 17,975 differentially methylated CpG sites, corresponding 
to 7,663 RefSeq genes. Out of those, 16,740 sites showed increased DNA 
methylation in response to exercise, with 911 CpG sites showing an absolute 
increase of more than 5%. At the same time, 1,505 CpGs demonstrated a decrease 
in DNA methylation levels, with 98 CpG sites showing more than 5% decrease. 
Strikingly, differentially methylated CpG sites were overrepresented in intergenic 
regions and gene bodies while underrepresented in promoter region, defined as a 
region of 200 bases upstream from transcription start site (TSS200) as well as 1st 
exon (Figure 5). Moreover, differentially methylated CpG sites were 
underrepresented in CpG islands (Figure 5). 

Figure 5. Frequencies of differentially methylated CpG 
sites in relation to functional gene regions and CpG island sub-regions  

* - p-values represent differences between distributions of all analysed 450k array CpG sites comparing to significant 
sites. Significance was accessed using chi-squared test. 
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Next, we investigated a potential relationship between DNA methylation and 
candidate genes for type 2 diabetes and obesity, previously identified in the course 
of GWASs [115]. Interestingly, 18 out of previously identified 39 type 2 diabetes 
and 21 out of 53 obesity loci contained differentially (FDR < 0.05) methylated 
CpG sites in the gene body or in a region 1500kb upstream of TSS. 

We further investigated whether the differentially methylated CpG sites were 
located within genes that also exhibited differential mRNA expression in adipose 
tissue in response to the 6-months exercise intervention. To analyse gene 
expression patterns, we used the Affymetrix GeneChip® Human Gene 1.0 ST 
array. Overall, 197 genes both demonstrated differential mRNA expression and 
contained at least one differentially methylated CpG site, including RALBP1, 
previously shown to play a role in metabolic syndrome biology [116]. We next 
used a luciferase expression plasmid to functionally validate that increased DNA 
methylation of the RALBP1 promoter suppresses transcriptional activity of the 
downstream gene (p < 0.05). 

Study 2:  

Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and 
mRNA expression patterns in human adipose tissue and identification of 
epigenetic biomarkers in blood 

For this study we used Illumina Infinium HumanMethylation450 BeadChip and 
Affymetrix GeneChip® Human Gene 1.0 ST array to quantify DNA methylation 
and mRNA expression in adipose tissue of 96 male and 94 female donors. Data 
were modelled as a random effect mixed model using DNA methylation or mRNA 
expression as a dependent variable, cohort as a random effect variable, and donor 
characteristics, namely age, BMI and HbA1c, as fixed effect variables. In this 
study, we used 96 male donors as a discovery cohort, while 94 female donors were 
used as the replication cohort. 

Overall, in the male discovery cohort, we identified 31,567 CpG sites associated 
with age, 33,058 with BMI and 711 with HbA1c (FDR < 0.05). Some CpG sites 
were significantly associated (FDR < 0.05) with more than one covariate: 1,334 
for both age and BMI, two for age and HbA1c and 12 for BMI and HbA1c. In the 
female discovery cohort, we found 62 CpG sites associated with age, 39,533 with 
BMI and seven with HbA1c, yielding overlaps between male discovery and 
female replication cohorts of 42, 4,979 and 0 CpG sites for age, BMI and HbA1c 
respectively. 

In the mRNA expression analysis, we identified 1,084 transcripts associated with 
age, 2,936 associated with BMI and 2 with HbA1c.  
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Interestingly, CpG sites significantly associated with age were overrepresented in 
CpG islands and underrepresented in the open sea region, while the reverse picture 
was observed for CpG sites associated with BMI (Figure 6). 

 

Figure 6. Distribution of CpG sites significantly associated with Age, BMI, HbA1c in adipose tissue by CpG 
island regions 

 * - Regions with over- or under-representation of significant CpG sites, accessed using chi-squared test. 

Some CpG sites associated with BMI were annotated to previously identified 
obesity and type 2 diabetes loci, such as FTO, TCF7L2, IRS1 and IRS2. Moreover, 
2,825 out of 2,936 genes which exhibited significant associations between mRNA 
expression and BMI also contained a BMI-associated CpG site within cis distance 
(500kb upstream from TSS and 100kb downstream from transcription end site 
(TES)).  

We also investigated whether the identified CpG sites are associated with type 2 
diabetes by comparing the results in the present study with a previously published 
case-control cohort of adipose tissue samples from subjects with or without type 2 
diabetes [24]. Here, out of 31,567 CpG sites associated with age in the present 
study, 1,278 sites were also found in the type 2 diabetes case-control cohort. 
Similarly, 30 out of 711 CpG sites associated with HbA1c as well as 988 out of 
33,058 CpG sites associated with BMI were also found to be associated with type 
2 diabetes. 
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Study 3:  

A genome-wide mQTL analysis in human adipose tissue identifies genetic variants 
associated with DNA methylation, gene expression and metabolic traits 

The goal of this study was to identify potential interactions between the genome 
and the epigenome in human adipose tissue by performing a so-called methylation 
quantitative trait loci (mQTL) analysis, i.e. direct association testing between 
592,794 common genetic variants (SNPs) and DNA methylation of 477,891 CpG 
sites. 

Here, we used Illumina Infinium HumanMethylation450 BeadChip to measure 
DNA methylation and Illumina Human OmniExpress BeadChip for genotyping. 
Next, the eQTL package for the R programming language was used to perform 
association testing of SNP-CpG pairs in both cis and trans, where cis distance was 
defined as 500kb, yielding 112,842,462 cis and 283,290,917,454 trans SNP-CpG 
pairs overall. Multiple testing was controlled for using a modified Bonferroni 
procedure that takes into account the LD structure between genetic variants. Data 
was modelled as a linear regression with DNA methylation as a dependent 
variable and SNP, sub-cohort, age and BMI as independent variables.  

In cis, we identified 101,911 significant SNP-CpG pairs corresponding to 51,143 
unique SNPs and 15,208 unique CpG sites, annotated to 5,589 genes (Table 5). 
These include previously reported GWAS loci associated with obesity, such as 
POMC/ADCY3 [117], lipid profiles, such as CETP [118], and fasting glucose, 
such as ACADS [119]. 

In trans, we identified 5,342 significant SNP-CpG pairs corresponding to 2,735 
unique SNPs and 596 unique CpG sites, annotated to 375 genes (Table 5), 
including PTBP2, which was previously reported to be associated with BMI [117]. 

Table 5. Number of significant mQTLs identified in human adipose tissue. 

  cis-mQTL trans-mQTL 

SNP-CpG pairs 101,911 5,342 

SNPs 51,143 2,735 

CpG sites 15,208 596 

Unique genes 5,589 375 

 

Interestingly, significant cis-SNP-CpG pairs were overrepresented on chromosome 
6, 7, 8, 13 and 21, with the highest deviation from expected frequency on 
chromosome 6 (p-value=3.4x10-89) (Figure 7). 
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Figure 7. Chromosomal distribution of CpG sites of significant mQTLs 

* - Chromosomes with over-representation of significant CpG sites 
# - Chromosomes with under-representation of significant CpG sites 
Significance of over- or under-representation was assessed using chi-squared test. 

The mQTL analysis was followed up by performing expression quantitative trait 
loci (eQTL) analysis for SNPs of significant mQTLs in both cis and trans. For the 
51,143 significant cis-mQTL SNPs, we identified 926 SNP-mRNA transcript 
pairs, corresponding to 635 unique SNPs and 101 unique mRNA transcripts 
(Table 6). For the 2,735 significant trans-mQTL SNPs, we identified 89 SNP-
mRNA transcript pairs corresponding to 89 unique SNPs and 14 mRNA 
transcripts (Table 6).  

Table 6. Number of significant eQTLs identified in human adipose tissue.  

  eQTLs of cis-mQTL-SNPs eQTLs of trans-mQTL-SNPs 

SNP-mRNA transcript pairs 926 270 

Unique SNPs 635 89 

Unique mRNA transcripts 101 14 

Unique genes 86 10 

 

Amongst the mRNA transcripts uncovered in the cis m/eQTL analysis were L27A 
and THNSL2, previously linked to obesity [120], and G6PC2, associated with 
glycaemic traits [121].  

Next, we used the causal inference test (CIT) [122] to investigate the causal 
relationship between DNA methylation, genotype and metabolic phenotypes such 
as BMI, fasting glucose, fasting insulin, HOMA-B, HOMA-IR, HbA1c, 
cholesterol, triglycerides and high (HDL) and low (LDL) density lipoproteins. 
Despite having relatively low power for this type of analysis, we identified 35 
SNPs that were associated with a metabolic phenotype in such a way that DNA 
methylation plays a direct mediating role between this SNP and the phenotype 
(Table 7). 
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Table 7. Causal Inference Test results. 

Chr CpG ID CpG Gene SNP ID Phenotype 
CIT causal  
p-value 

6 cg12929486 SLC22A16 rs2428190 BMI 0.02 

5 cg14825688 LEAP2 rs39830 Fasting glucose 0.03 

5 cg14825688 LEAP2 rs803217 Fasting glucose 0.03 

2 cg01726273  rs4853438 Fasting insulin 0.03 

8 cg11123440  rs12458 HOMA-B 0.03 

12 cg10240950 C12orf76 rs1027949 HOMA-IR 0.05 

12 cg10240950 C12orf76 rs10774978 HOMA-IR 0.05 

12 cg10240950 C12orf76 rs11068984 HOMA-IR 0.05 

10 cg26169081 CAMK1D rs11257926 HOMA-IR 0.04 

10 cg26169081 CAMK1D rs17152029 HOMA-IR 0.01 

10 cg26169081 CAMK1D rs17152037 HOMA-IR 0.04 

12 cg10240950 C12orf76 rs2302689 HOMA-IR 0.05 

7 cg17372657  rs1880296 HbA1c 0.03 

7 cg17372657  rs2949170 HbA1c 0.03 

7 cg17372657  rs2949192 HbA1c 0.03 

6 cg13561028 SFTA2 rs3130782 HbA1c 0.01 

6 cg13561028 SFTA2 rs3131934 HbA1c 0.04 

Study 4:  

Whole-genome bisulfite sequencing of human pancreatic islets reveals novel 
differentially methylated regions in type 2 diabetes  

In this study, the DNA methylation landscape of human pancreatic islets from 6 
diabetic donors and 8 normoglycaemic controls was investigated using WGBS. 
We identified 25,820 DMRs, out of which 13,696 demonstrated higher and 12,124 
lower DNA methylation in islets from type 2 diabetic compared to control donors. 
Strikingly, 55% of the identified DMRs were located within a region spanning 
50kb upstream of TSS. Several DMRs were located in a close proximity to type 2 
diabetes candidate genes identified by the GWAS studies, such as PDX1, GLIS3, 
THADA, KCNQ1 and TCF7L2 [46]. The DNA methylation profile of a DMR in 
the promoter of PDX1, which encodes for a transcription factor previously 
implicated in islet function [123], is depicted in Figure 8.  
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Figure 8. DMR located in the promoter region of PDX1 

This figure depicts a ~3000 bp long DMR located on chromosome 13 and covering a promoter of PDX1. Lollypops 
represent each CpG site in the DMR. Areas around the line connecting DNA methylation values depict intervals of ± 1 
standard error of the mean.  

We further looked into a potential involvement of identified DMRs into the 
mechanism of transcriptional regulation in human pancreatic islet cells. 
Interestingly, binding sites of transcription factors previously implicated in the 
islet function, such as FOXA2, MAFB, NKX2.2, NKX6.1 and PDX1, were 
statistically overrepresented in the DMRs (all p < 1*10-6). Interestingly, binding 
sites of transcription factor NKX2.2 overlapped with more than 7.5% of the 
DMRs. Moreover, 12,911 (49.8%) of the identified DMRs overlapped with at least 
one of the ~700.000 cross-tissue dynamic DMRs previously identified by Ziller et 
al. [59]. 

Next, we analysed mRNA expression data for the same 14 individuals using RNA-
seq and separated 60,483 Gencode transcripts [124] into 4 groups according to 
their TPM values: not-expressed transcripts (n = 38,261), transcripts with low 
TPM value (n = 7,407), medium TPM value (n = 7,407) and high TPM value (n = 
7,408). Non-expressed genes showed significantly higher DNA methylation in and 
around the promoter region and the first exon, but lower methylation levels in all 
exons except first, intergenic regions and the region of 10kb downstream of TES 
(Figure 9). 



40
 

 

F
ig

u
re

 9
. 

D
N

A
 m

et
h

yl
at

io
n

 l
ev

el
s 

o
f 

d
if

fe
re

n
t 

g
en

e 
re

g
io

n
s 

A
ve

ra
ge

 D
N

A
 m

et
hy

la
tio

n 
le

ve
ls

 f
or

 d
iff

er
en

t 
tr

an
sc

rip
t 

ty
pe

s,
 s

ep
ar

at
ed

 b
y 

ge
no

m
ic

 r
eg

io
ns

. 
T

S
S

 5
0k

b 
re

pr
es

en
ts

 1
,5

01
-5

0,
00

0b
p 

up
st

re
am

 f
ro

m
 t

he
 t

ra
ns

cr
ip

tio
n 

st
ar

t 
si

te
, 

T
S

S
 1

50
0 

re
pr

es
en

ts
 2

01
-1

,5
00

bp
 u

ps
tr

ea
m

 f
ro

m
 t

he
 t

ra
ns

cr
ip

tio
n 

st
ar

t 
si

te
, 

T
S

S
 2

00
 r

ep
re

se
nt

s 
1-

20
0b

p 
up

st
re

am
 f

ro
m

 t
he

 t
ra

ns
cr

ip
tio

n 
st

ar
t 

si
te

 a
nd

 T
E

S
 1

0k
b 

re
pr

es
en

ts
 1

-
10

,0
00

bp
 d

ow
ns

tr
ea

m
 o

f 
th

e 
tr

an
sc

rip
tio

n 
en

d 
si

te
. 



41 

We further looked into the genomic distribution of the DNA methylation in human 
pancreatic islets on a single CpG site resolution. Using the Gencode annotation of 
the human transcriptome, version 22  [124], we extracted genomic locations for 
the following regions of every gene: 50kb upstream from TSS, 1500bp upstream 
of TSS, 200bp upstream of TSS, 1st exon, all exons except 1st, introns, 10kb 
downstream from TES and looked into average DNA methylation levels for these 
regions. Interestingly, we noticed a variability in DNA methylation patterns 
between three different Gencode transcript types, namely protein-coding 
transcripts, long and small non-coding RNA transcripts and pseudogenes. While 
regions in close proximity to TSS in protein-coding transcripts were 
hypomethylated, they exhibited medium methylation levels for non-coding RNAs 
and hypermethylation for pseudogenes (Figure 10). 

 

Figure 10.  

DNA methylation levels for different Gencode transcript types: protein-coding genes, long and small non-coding 
RNAs, and pseudogenes. 
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Discussion 

DNA methylation is thought to be one of the mechanisms by which the 
environment can affect cellular function. Here, we presented 4 studies where we 
performed DNA methylation profiling of two tissues known to play an important 
role in the pathogenesis of type 2 diabetes, namely pancreatic islets and adipose 
tissue.  

In study 1, we have shown that DNA methylation in human adipose tissue can 
exhibit dynamic properties in response to a 6-months exercise intervention. The 
effect of exercise on the human methylome was previously shown in skeletal 
muscle [74], but whether it affects DNA methylation in adipose tissue remained 
unknown. Overall, we discovered 17,975 CpG sites with statistically different 
methylation levels between individuals before and after exercise. Interestingly, the 
majority (92%) of the significant CpG sites increased DNA methylation levels, 
and most of the identified CpG sites were located in gene bodies or intergenic 
regions. Increased DNA methylation in gene bodies was previously found to be 
positively correlated with gene expression, and it was hypothesized that DNA 
methylation is involved in transcriptional elongation and alternative splicing 
events [58].   

Next, we found that CpG sites significantly different before compared with after 
the intervention were statistically underrepresented in CpG islands, which is in 
agreement with other studies and can be explained by the protection of CpG 
islands from DNA methylation, which was later supported by an experimental 
study [125]. Interestingly, we observed alterations in DNA methylation in CpG 
sites located in or near genes previously associated with diabetes or obesity-related 
traits. For example, differentially methylated CpG sites were located in the gene 
body as well as promoter region of ITPR2 gene, previously associated with waist-
hip ratio [126], and in the gene body of the type 2 diabetes candidate gene 
TCF7L2. This study potentially suggests that exercise affects metabolism and 
cellular function through altered gene activity or genome accessibility. 

In study 2 we showed that intra-individual differences in age, BMI and HbA1c, 
which are all known risk factors of type 2 diabetes and obesity, can be reflected in 
the human adipose tissue methylome. The study was performed in a discovery 
cohort of 96 human male and replicated in a cohort of 94 female adipose tissue 
donors.  
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Overall, ~ 5000 CpG sites were associated with BMI in both discovery and 
replication cohorts. Interestingly, a large fraction of those was also found in the 
case-control cohort of diabetic and non-diabetic adipose tissue donors, pointing 
not only to the fact that differences in BMI can largely affect the adipose tissue 
methylome, but also that these differences can point to type 2 diabetes 
predisposition, linking obesity and type 2 diabetes through epigenetic changes. We 
have also tested whether DNA methylation of identified sites was associated with 
mRNA expression in human adipose tissue, identifying ~3000 genes, including 
many which were previously linked to obesity in GWAS, such as FTO, TCF7L2, 
IRS1 and IRS2. 

Despite the fact that almost ~30,000 CpG sites were significantly associated with 
age in the discovery cohort, only 42 of those were also identified in the replication 
cohort. This is most likely explained by the modest age span in the replication 
cohort of 16 years, compared to the almost 60-year age span in the male discovery 
cohort. Anyhow, many of the genes covered by the 30,000 CpG sites identified 
were previously both linked to the aging processes and shown to exhibit age-
related epigenetic changes in DNA methylation in blood and pancreatic islets, 
including genes such as ELOVL2, FHL2, KLF14 and GLRA1 [127,128].   

No CpG sites were associated with HbA1c in both the discovery and replication 
cohorts. This can potentially be due to a relatively small span in HbA1c in both 
male and female cohorts, sex differences or to the fact that glucose levels are not 
really reflected in the adipose tissue epigenome at all. However, larger validation 
cohorts specifically targeting glycaemic traits are required to prove or disprove 
either hypothesis. 

The goal of study 3 was to unravel potential relationships between the genome and 
methylome in human adipose tissue. The fact that DNA methylation is affected by 
genetic variation was supported by a recent experimental study [125]. Here, to 
characterize the properties of the adipose tissue methylome that can potentially be 
under genetic control, we constructed a map of interactions between SNPs and 
CpG methylation in both cis and trans. In previous studies, majority of the 
identified SNP-CpG interactions occur in cis [80], and in line with this results we 
discovered 101,911 statistically significant SNP-CpG pairs in cis and only 5,342 
SNP-CpG pairs in trans. Moreover, most of the SNP-CpG pairs identified in cis 
were located close to each other. The number of significant mQTLs in both cis and 
trans characterized in this study is in line with previous mQTL study in pancreatic 
islets, and the same can be said about a distribution of distances between identified 
SNPs and CpG sites [80]. 

We found an underrepresentation of cis mQTLs in CpG islands and gene 
promoters, while at the same time, cis mQTLs were overrepresented in gene 
bodies and intergenic regions. These findings not only point to a conserved 
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function of CpG islands, but also imply that CpG sites affected by genetic factors 
tend to be located outside of the promoters, meaning that identified SNPs may act 
on transcriptional elongation or alternative splicing rather than transcriptional 
initiation. Significant mQTLs were also overrepresented on chromosome 6, 
probably due to the HLA region, which is prone to genetic variation often 
associated with immunological and metabolic disorders [129,130]. 

Interestingly, many of the genes previously identified in metabolic and lipid traits 
GWAS, such as POMC, GIPR, GRB10, FADS2, SORT1 and APOA5, were located 
in cis distance to identified adipose tissue mQTLs. Moreover, many of the 
identified mQTL SNPs were also directly found in GWAS consortia studies [117–
119,126,131,132], while some of the identified SNPs correlated with metabolic 
phenotypes in the study cohort. Taken together, this point to the interplay between 
DNA methylation and genetic variation in adipose tissue to be involved in the 
regulation of metabolic traits. 

Pancreatic islets have a key role in the pathogenesis of type 2 diabetes. Previous 
studies have identified a set of CpG sites associated with type 2 diabetes in 
pancreatic islets using the Illumina 450k or 27k BeadChip arrays [71,133]. 
However, these arrays cover at most ~1.5% of the human DNA methylome. Due 
to the higher coverage in comparison to the Illumina 450k BeadChip array, WGBS 
allows for a more detailed and precise interrogation of the dynamic properties of 
the methylome, especially in the genomic regions poorly covered by the array, 
such as the enhancers. Therefore, in study 4 we used WGBS technology to profile 
~24 million CpG sites in human pancreatic islets from 14 donors with or without 
type 2 diabetes.  

Previously, we have shown that absolute differences in DNA methylation between 
islet donors with and without type 2 diabetes are relatively small (< 10%), which 
would require a coverage of at least 10 reads per CpG site when using WGBS 
[71]. Moreover, a recent study by Ziller et al. investigated coverage requirements 
for WGBS and suggested that higher sequencing depth facilitates the detection of 
shorter DMRs with smaller methylation differences [134]. Thus, we designed the 
study to have an average coverage of approximately 20X for each CpG sites, in the 
same time filtering away CpG sites with less than 10X coverage.  

Here, we succeeded in identifying 25,820 contiguous genomic regions 
differentially methylated between normoglycaemic and diabetic donors. 
Interestingly, ~25% of the DMRs associated with type 2 diabetes were located in 
the gene bodies, and ~55% within a region upstream of proximal promoters, 
defined as 1,501 – 50,000 bp from TSS. Moreover, 80% of the DMRs located in 
the gene bodies were found in intronic regions, which is in line with previous 
study in brain [135]. Overall, this result, similar to other studies in this thesis, 
suggests that epigenetic modifications may interact with the cellular function 



46 

through transcriptional elongation and differential splicing events rather than by 
methylation of promoter regions, although future studies are needed to investigate 
whether intronic DMRs have a special role in alternative splicing events or this 
result is consequential to the fact that introns are much larger in size comparing to 
exons. 

DNA methylation in enhancer regions were previously shown to have dynamic 
properties between various cell types [59]. It was also recently shown that 
dynamic methylation of enhancer regions is a risk factor for mortality in cancer 
patients [136]. In support of the hypothesis that type 2 diabetes can be reflected in 
cellular function through enhancer methylation, we found an overrepresentation of 
identified DMRs in the enhancer regions previously published by Pasquali et al. 
[137]. 

PDX1 is expressed in pancreatic islets, encoding a transcription factor known to 
play a role in islet development as well as in regulation of insulin expression in 
mature beta-cells [138]. It was shown that in mice PDX1 silencing can cause type 
2 diabetes [139]. Additionally, increased DNA methylation levels in distal 
promoter and enhancer regions of PDX1 was previously linked to decreased PDX1 
expression [140]. In line with this study, two DMRs with the highest overall 
differences in DNA methylation among all 25,820 identified DMRs, and 7 DMRs 
overall, were located in or close to the PDX1 gene, covering both enhancer and 
promoter regions. This result implies that epigenetic regulation of PDX1 
expression plays a major role in regulating cellular function of human pancreatic 
islets. 

In study 3, we displayed that interactions between SNPs and CpG methylation can 
play an important role in adipose tissue biology. The importance of analysing 
genetic variation in its surrounding epigenetic context was recently shown in the 
study investigating variants in the FTO gene [49]. These observations were further 
explored in study 4, where we found rs163184, a GWAS-identified variant in the 
KCNQ1 gene, to be located in one of the identified DMRs, while several other 
GWAS-identified loci, such as GLIS3, THADA, KCNQ1, TCF7L2 and ADCY5, 
were among the genes with the highest number of annotated DMRs. This supports 
a potential role of DNA methylation in the interplay between genetic variation in 
named loci and cellular and metabolic function. 

Cell-type heterogeneity is an important issue in the analysis of DNA methylation 
in composite tissues such as pancreatic islets or adipose tissue [141]. Methods to 
adjust DNA methylation values for cell-type composition utilize either a prior 
knowledge about DNA methylation levels in individual cell-types [142], or are 
reference free, such as methods proposed by Houseman et al. or Zou et al. 
[72,142]. However, the mathematical assumptions underlying the reference free 
methods were not thoroughly evaluated until recently [141]. 
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Thus, in the study 1, we evaluated whether cell-type heterogeneity may be affected 
by exercise by analysing mRNA expression of genes known to be specific to 
adipocytes, preadipocytes, macrophages and cytokines. Our results support that no 
significant differences in cell-type composition occur before versus after exercise 
intervention. We have further shown that there are no significant differences in 
beta- and alpha-cell composition in pancreatic islets from donors with type 2 
diabetes compared with non-diabetic controls [71], supporting that cell 
composition does not affect our results in study 4. Moreover, we overlapped the 
identified DMR set in study 4 with cell-type specific DMRs previously identified 
by Ziller et al. [59]. Here, almost 50% of T2D-related DMRs overlap with at least 
one genomic region previously shown to exhibit differences in DNA methylation 
between multiple cell-types and it is possible that these genomic regions are 
particularly dynamic to epigenetic changes. However, further studies are needed to 
fully characterize the epigenome in individual cell types from human tissues. 
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Summary and general conclusion 

Both pancreatic islets and adipose tissue play an important role in metabolic 
processes in humans. In this thesis we have shown that the DNA methylome in 
these tissues reflects environmental factors, metabolic phenotypes and type 2 
diabetes status. Next, we have shown that regions of the methylome associated 
with these factors tend to occur more frequently in some genomic features, such as 
gene bodies and intergenic regions, than others, and often tend to be under genetic 
control. Overall, during the work presented in this thesis, we performed 4 studies. 

In study 1, we characterized changes that the DNA methylome in adipose tissue 
exhibit in response to 6-months exercise intervention and show that these changes 
occur in or close to several genes previously implicated in type 2 diabetes 
pathogenesis. 

In study 2, we show that DNA methylation in human adipose tissue is associated 
with age, BMI and HbA1c. 

In study 3, we characterize the relationship between epigenetic and genetic 
variation in human adipose tissue. Here, we show that many of the SNPs 
previously identified to be involved in lipid biology or glucose metabolism tend to 
be interacting with DNA methylation in either cis or trans. 

In study 4, we provide a map of the DNA methylation landscape in human 
pancreatic islets and identify genomic regions that exhibit dynamic properties in 
relation to type 2 diabetes. We find a non-random occurrence of such regions in 
genes related to type 2 diabetes, as well as enhancer regions and gene bodies. This 
map can be an important reference for future studies of genetics or epigenetics of 
type 2 diabetes in order to localize causal variation. 

Despite the fact that these studies characterize the DNA methylome in adipose 
tissue and pancreatic islets in relation to type 2 diabetes, age, environmental 
exposure and metabolic phenotypes, future studies are required to experimentally 
investigate mechanisms of interaction and cause-effect relationship between these 
factors, epigenetics and genetic variation. 
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Popular summary 

Every single living cell keeps all the information about how it should function in a 
very long DNA molecule, tightly packed inside the cell nucleus. DNA is shaped as 
a chain of small molecules, each belonging to one of 4 possible types, adenine, 
thymine, cytosine, and guanine, often referred by their first letters - A, T, C, and 
G. Combination of this 4 ‘letters’ define genes – direct instructions for the cell 
how to function. Every cell in every organism contains exactly the same copy of 
the DNA molecule. It is in the form of DNA hereditary information is passed from 
generation to generation. 

However, this raises several questions. If every cell has exactly the same copy of 
the DNA, why are there different cells in human body? Next, if the cell function is 
hardcoded into the DNA, how do human cells respond to environmental stimuli? 
Why do cells in patients with a disease act differently than in healthy people? One 
answer to this question is that genes can be turned on and off by molecules called 
transcription factors. However, transcription factors alone do not explain the 
whole picture of gene regulation. Another explanation to the gene regulation 
problem is called epigenetics. Epigenetics is defined as a chemical modification of 
a DNA molecule ‘above’ the actual DNA code - for example, an attachment of 
some small other molecules or proteins to it, and studies have discovered that in 
humans these epigenetic modifications occur everywhere throughout the genome. 
This epigenetic code, called epigenome (or ‘above’ genome) represents an 
additional layer of the information which is encoded in the DNA. 

Type 2 diabetes is rapidly increasing its prevalence. It was estimated that in year 
2040, 624 million people worldwide will carry this disease. Type 2 diabetes is 
defined as an inability to produce enough insulin, a hormone responsible for 
reducing the amount of sugar in the blood and for target tissues such as the liver 
and muscle to respond to insulin and take up glucose. If not absorbed by the 
tissues, blood sugar is toxic and can damage multiple organs in the body. 
Currently, what exactly causes type 2 diabetes is not very well understood, but 
involves heritable as well as life-style related factors. 

We know that factors such as age, physical inactivity and a high-calorie diets 
greatly increase the risk of type 2 diabetes. It is also known that people with a 
family history of the disease are more likely to get in themselves. Unfortunately, 
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mechanisms behind this phenomenon are unknown, and up to now scientists have 
not managed to find all the genes that can explain all the risk for type 2 diabetes.  

Epigenetics is proposed to be one of the mechanisms of how cells react to the 
environment in regard to type 2 diabetes, and the goal of this thesis was to study 
whether there is a relationship between type 2 diabetes (or underlying factors of 
type 2 diabetes, such as lifestyle, age, predisposition to obesity etc.) and the 
epigenome of human tissues. We studied pancreatic islets and fat, which are both 
known to be involved in the pathogenesis of type 2 diabetes. 

Here, we first studied a group of 23 men who had to change their lifestyle for 6 
months by exercising 3 times a week. Next, we extracted samples of fat tissues 
from these men and studied the epigenome in this tissue before and after the 
exercise intervention. Our results show that the epigenome in fat from these men 
before differs from the epigenome after the exercise intervention. Moreover, we 
found that these changes are affecting the function of the genes attributed to the 
biology of type 2 diabetes and obesity. Next, in study 2, we also show that the 
epigenome in fat tissue strongly reflects obesity status, blood sugar and age, 
regulating the functional ability of some very important genes for human 
metabolism. In study 3, we prove that the epigenome in fat tissue is tightly inter-
linked with the DNA sequence and that the epigenome can interact with the 
genetic code and together affect cell biology. Finally, in study 4 we showed large 
differences in the epigenome of human pancreatic islets, a tissue responsible for 
secreting insulin, between donors with and without type 2 diabetes. This is the first 
time anyone could manage to study almost 90% of the epigenome in this human 
tissue. We also performed experiments in laboratory cell lines to show how these 
differences of the epigenome may affect insulin secretion. 

In conclusion, in this thesis we show the importance of studying epigenetics in 
relation to type 2 diabetes, lifestyle and obesity, and that these factors can affect 
cell function through epigenetic mechanisms in humans.  
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Abstract

Epigenetic mechanisms are implicated in gene regulation and the development of different diseases. The epigenome differs
between cell types and has until now only been characterized for a few human tissues. Environmental factors potentially
alter the epigenome. Here we describe the genome-wide pattern of DNA methylation in human adipose tissue from 23
healthy men, with a previous low level of physical activity, before and after a six months exercise intervention. We also
investigate the differences in adipose tissue DNA methylation between 31 individuals with or without a family history of
type 2 diabetes. DNA methylation was analyzed using Infinium HumanMethylation450 BeadChip, an array containing
485,577 probes covering 99% RefSeq genes. Global DNA methylation changed and 17,975 individual CpG sites in 7,663
unique genes showed altered levels of DNA methylation after the exercise intervention (q,0.05). Differential mRNA
expression was present in 1/3 of gene regions with altered DNA methylation, including RALBP1, HDAC4 and NCOR2 (q,0.05).
Using a luciferase assay, we could show that increased DNA methylation in vitro of the RALBP1 promoter suppressed the
transcriptional activity (p = 0.03). Moreover, 18 obesity and 21 type 2 diabetes candidate genes had CpG sites with
differences in adipose tissue DNA methylation in response to exercise (q,0.05), including TCF7L2 (6 CpG sites) and KCNQ1
(10 CpG sites). A simultaneous change in mRNA expression was seen for 6 of those genes. To understand if genes that
exhibit differential DNA methylation and mRNA expression in human adipose tissue in vivo affect adipocyte metabolism, we
silenced Hdac4 and Ncor2 respectively in 3T3-L1 adipocytes, which resulted in increased lipogenesis both in the basal and
insulin stimulated state. In conclusion, exercise induces genome-wide changes in DNA methylation in human adipose tissue,
potentially affecting adipocyte metabolism.
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Copyright: � 2013 Rönn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from the Swedish Research Council (CL and LG) and Lund University Diabetes Centre (LUDC), the Knut & Alice
Wallenbergs stiftelse, Fredrik & Ingrid Thurings stiftelse (TR), Kungliga Fysiografiska sällskapet (TR), Tore Nilssons stiftelse (TR), Påhlssons stiftelse (CL), Novonordisk
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Introduction

A sedentary lifestyle, a poor diet and new technologies that

reduce physical activity cause health problems worldwide, as

reduced energy expenditure together with increased energy intake

lead to weight gain and increased cardiometabolic health risks [1].

Obesity is an important predictor for the development of both type

2 diabetes (T2D) and cardiovascular diseases, which suggests a

central role for adipose tissue in the development of these

conditions [2]. Adipose tissue is an endocrine organ affecting

many metabolic pathways, contributing to total glucose homeo-

stasis [2]. T2D is caused by a complex interplay of genetic and

lifestyle factors [3], and a family history of T2D has been

associated with reduced physical fitness and an increased risk of

the disease [4–6]. Individuals with high risk of developing T2D

strongly benefit from non-pharmacological interventions, involv-

ing diet and exercise [7,8]. Exercise is important for physical

health, including weight maintenance and its beneficial effects on

triglycerides, cholesterol and blood pressure, suggestively by

activating a complex program of transcriptional changes in target

tissues.

Epigenetic mechanisms such as DNA methylation are consid-

ered to be important in phenotype transmission and the

development of different diseases [9]. The epigenetic pattern is

mainly established early in life and thereafter maintained in

differentiated cells, but age-dependent alterations still have the

potential to modulate gene expression and translate environmental

factors into phenotypic traits [10–13]. In differentiated mamma-
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lian cells, DNA methylation usually occurs in the context of CG

dinucleotides (CpGs) and is associated with gene repression [14].

Changes in epigenetic profiles are more common than genetic

mutations and may occur in response to environmental, behav-

ioural, psychological and pathological stimuli [15]. Furthermore,

genetic variation not associated with a phenotype could nonethe-

less affect the extent of variability of that phenotype through

epigenetic mechanisms, such as DNA methylation. It is not known

whether epigenetic modifications contribute to the cause or

transmission of T2D between generations. Recent studies in

human skeletal muscle and pancreatic islets point towards the

involvement of epigenetic modifications in the regulation of genes

important for glucose metabolism and the pathogenesis of T2D

[11,12,16–21]. However, there is limited information about the

regulation of the epigenome in human adipose tissue [22].

The mechanisms behind the long-lasting effects of regular

exercise are not fully understood, and most studies have focused on

cellular and molecular changes in skeletal muscle. Recently, a

global study of DNA methylation in human skeletal muscle

showed changes in the epigenetic pattern in response to long-term

exercise [23]. The aims of this study were to: 1) explore genome-

wide levels of DNA methylation before and after a six months

exercise intervention in adipose tissue from healthy, but previously

sedentary men; 2) investigate the differences in adipose tissue DNA

methylation between individuals with or without a family history

of T2D; 3) relate changes in DNA methylation to adipose tissue

mRNA expression and metabolic phenotypes in vitro.

Results

Baseline characteristics of individuals with (FH+) or
without (FH2) a family history of type 2 diabetes

A total of 31 men, 15 FH+ and 16 FH2, had subcutaneous

adipose tissue biopsies taken at baseline. The FH+ and FH2

individuals were group-wise matched for age, gender, BMI and

VO2max at inclusion, and there were no significant differences

between FH+ and FH2 individuals, respectively (Table S1). DNA

methylation in the adipose tissue was analyzed using the Infinium

HumanMethylation450 BeadChip array. After quality control

(QC), DNA methylation data was obtained for a total number of

476,753 sites. No individual CpG site showed a significant

difference in DNA methylation between FH+ and FH2 men after

false discovery rate (FDR) correction (q.0.05) [24]. Additionally,

there were no global differences between the FH+ and FH2

individuals when calculating the average DNA methylation based

on genomic regions (Figure 1a) or CpG content (Figure 1b;

q.0.05).

Clinical outcome and global changes in adipose tissue
DNA methylation in response to exercise

Subcutaneous adipose tissue biopsies were taken from 23 men

both before and after exercise, followed by successful DNA

extraction and analysis of DNA methylation using the Infinium

HumanMethylation450 BeadChip array. Since we found no

significant differences in DNA methylation between FH+ and

FH2 men at baseline, the two groups were combined when

examining the impact of exercise on DNA methylation in adipose

tissue. In Table 1 the clinical and metabolic outcomes of the

exercise intervention are presented for these 23 men, showing a

significant decrease in waist circumference, waist/hip ratio,

diastolic blood pressure, and resting heart rate, whereas a

significant increase was seen for VO2max and HDL.

To evaluate the global human methylome in adipose tissue, we

first calculated the average level of DNA methylation in groups

based on either the functional genome distribution (Figure 1a), or

the CpG content and neighbourhood context (Figure 1b). We also

present the average level of DNA methylation separately for the

Infinium I (n = 126,804) and Infinium II (n = 326,640) assays due

to different b-value distributions for these assays [25]. When

evaluating Infinium I assays in relation to nearest gene, the global

level of DNA methylation after exercise increased in the 39

untranslated region (UTR; q,0.05), whereas a decrease was seen

in the region 1500–200 bp upstream of transcription start

(TSS1500), TSS200, 59UTR and within the first exon (1st Exon;

q,0.05). The global DNA methylation level of Infinium II assays

increased significantly (q,0.05) after exercise within all regions

except TSS200 (Figure 1c and Table S2). In general, the average

level of DNA methylation was low in the region from TSS1500 to

the 1st Exon (5–36%), whereas the gene body, the 39UTR and

intergenic region displayed average DNA methylation levels

ranging from 43–72% (Figure 1c and Table S2). When evaluating

global DNA methylation based on CpG content and distance to

CpG islands, average DNA methylation for Infinium I assays

decreased significantly after exercise in CpG islands, whereas an

increase was seen in northern and southern shelves (regions 2000–

4000 bp distant from CpG islands) as well as in the open sea

(regions further away from a CpG island) (q,0.05; Figure 1d and

Table S2). For Infinium II assays, average DNA methylation was

significantly increased in all regions after the exercise intervention

(q,0.05; Figure 1d and Table S2). The global level of DNA

methylation was low within CpG islands (9–21%), intermediate

within the shores (2000 bp regions flanking the CpG islands; 31–

44%), whereas the shelves and the open sea showed the highest

level of DNA methylation (67–76%; Figure 1d and Table S2).

Although technical variation between probe types has been

reported for the Infinium HumanMethylation450 BeadChip

array, seen as a divergence between the b-values distribution

retrieved from the Infinium I and II assays [25], the global

differences in DNA methylation we observe between probe types

are more likely a result of skewed GC content due to the design

criteria of the two different assays. Infinium I assays have

significantly more CpGs within the probe body than the Infinium

II assays, and 57% are annotated to CpG islands, whereas most

Author Summary

Given the important role of epigenetics in gene regulation
and disease development, we here present the genome-
wide DNA methylation pattern of 476,753 CpG sites in
adipose tissue obtained from healthy men. Since environ-
mental factors potentially change metabolism through
epigenetic modifications, we examined if a six months
exercise intervention alters the DNA methylation pattern
as well as gene expression in human adipose tissue. Our
results show that global DNA methylation changes and
17,975 individual CpG sites alter the levels of DNA
methylation in response to exercise. We also found
differential DNA methylation of 39 candidate genes for
obesity and type 2 diabetes in human adipose tissue after
exercise. Additionally, we provide functional proof that
genes, which exhibit both differential DNA methylation
and gene expression in human adipose tissue in response
to exercise, influence adipocyte metabolism. Together, this
study provides the first detailed map of the genome-wide
DNA methylation pattern in human adipose tissue and
links exercise to altered adipose tissue DNA methylation,
potentially affecting adipocyte metabolism.

Exercise and Human Adipose Tissue DNA Methylation
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Infinium II assays have less than three underlying CpGs in the

probe and only 21% are designated as CpG islands [26].

DNA methylation of individual CpG sites in human
adipose tissue is influenced by exercise

We next investigated if there was a difference in DNA

methylation in any of the 476,753 analyzed individual CpG sites

in adipose tissue in response to exercise. A flowchart of the analysis

process is found in Figure 2. SNPs within the probe were not a

criterion for exclusion in this analysis, as the participants are their

own controls, thereby excluding genetic variation within the tested

pairs. Applying FDR correction (q,0.05) resulted in 17,975 CpG

sites, corresponding to 7,663 unique genes, that exhibit differential

DNA methylation in adipose tissue after exercise. Among these

17,975 individual sites, 16,470 increased and 1,505 decreased the

level of DNA methylation in response to exercise, with absolute

changes in DNA methylation ranging from 0.2–10.9% (Figure 3a–

b). Aiming for biological relevance, we further filtered our results

requiring the average change in DNA methylation (b-value) for

each CpG site to be $5% before vs. after exercise. Adding the

criteria with a $5% change in DNA methylation resulted in 1,009

significant individual CpG sites: 911 with increased and 98 with

decreased levels of DNA methylation in response to the six months

exercise intervention. Of those, 723 sites are annotated to one or

more genes, and correspond to 641 unique gene IDs. A

comparison of our 1,009 significant CpG sites with Infinium

probes reported to cross-react to alternative genomic locations

[27] showed only one probe with 50 bases and 14 probes with 49

bases matching to an alternative genomic location. Data of the

most significant CpG sites (q,0.005) and the sites that exhibit the

greatest change in adipose tissue DNA methylation (difference in

DNA methylation .8%) in response to exercise are presented in

Table 2–3 and included ITPR2 and TSTD1 for increased, and

LTBP4 for decreased DNA methylation. We found 7 CpG sites in

this list to be targeted by Infinium probes reported to cross-react to

alternative genomic locations (47 or 48 bases) [27]. Additionally, to

investigate the possibility that the changes we see in response to

exercise is rather an effect of epigenetic drift over time, we

compared our 1,009 differentially methylated CpG sites (q,0.05,

difference in b-value.5%) with three studies reporting aging-

differentially methylated regions (a-DMRs) in a total of 597 unique

positions [28–30]. Secondly we tested for association between age

and the level of DNA methylation in the 31 individuals included at

baseline in this study, representing a more valid age range (30–45

years) and tissue for the current hypothesis. We found no overlap

between previously published a-DMRs or the age-associated CpG

sites within our study (18 CpG sites; p,161025), and the CpG

sites differentially methylated after the exercise intervention.

The genomic distribution of individual CpG sites with a

significant change in DNA methylation $5% with exercise is

shown in Figure 3c–d, in comparison to all probes located on the

Infinium HumanMethylation450 BeadChip and passing QC. The

distribution is based on location in relation to the functional genome

distribution (Figure 3c) or CpG content and distance to CpG islands

Figure 1. Location of analyzed CpG sites and global DNA methylation in human adipose tissue. All CpG sites analyzed on the Infinium
HumanMethylation450 BeadChip are mapped to gene regions based on functional genome distribution (A) and to CpG island regions based on CpG
content and neighbourhood context (B). In the lower panels, global DNA methylation in human adipose tissue is shown for each gene region (C) and for
CpG island regions (D). Global DNA methylation is calculated as average DNA methylation based on all CpG sites in each region on the chip, and presented
separately for Infinium I and Infinium II assays, respectively. Data is presented as mean 6 SD. TSS, proximal promoter, defined as 200 bp (basepairs) or
1500 bp upstream of the transcription start site; UTR, untranslated region; CpG island, 200 bp (or more) stretch of DNA with a C+G content of 50% and an
observed CpG/expected CpG in excess of 0.6; Shelf, regions flanking island shores, i.e., covering 2000–4000 bp distant from the CpG island; Shore: the
flanking region of CpG islands, 0–2000 bp. *Significant difference between average DNA methylation before versus after exercise, q,0.05.
doi:10.1371/journal.pgen.1003572.g001

Exercise and Human Adipose Tissue DNA Methylation
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(Figure 3d). We found that the CpG sites with altered level of DNA

methylation in response to exercise were enriched within the gene

body and in intergenic regions, while the proximal promoter, in

particular TSS200 and the 1st exon, had a low proportion of

differentially methylated CpG sites (p = 7610220; Figure 3c). In

relation to CpG content and distance to CpG islands, the region

with the highest proportion of significant CpG sites compared to the

distribution on the array was in the open sea, i.e., regions more

distant from a CpG island than 4000 bp. In contrast, the number of

significant CpG sites found within the CpG islands was only half of

what would be expected (p = 2610231; Figure 3d).

Exercise induces overlapping changes in DNA
methylation and mRNA expression

An increased level of DNA methylation has previously been

associated with transcription repression [14]. We therefore related

changes in adipose tissue DNA methylation of individual CpG-sites

(q,0.05 and difference in mean b-values $5%) with changes in

mRNA expression of the same gene (q,0.05) in response to exercise

(Figure 2). We identified 236 CpG sites in 197 individual gene regions

that exhibit differential DNA methylation together with a significant

change in adipose tissue mRNA expression of the corresponding gene

after exercise. Of these, 143 CpG sites (61%) connected to 115 genes

showed an inverse relation to mRNA expression. After exercise, 139

CpG sites showed an increase in DNA methylation and a

corresponding decrease in mRNA expression, including a gene for

one of the GABA receptors (GABBR1), several genes encoding histone

modifying enzymes (EHMT1, EHMT2 and HDAC4) and a

transcriptional co-repressor (NCOR2). Only four CpG sites were

found to decrease in the level of DNA methylation with a

concomitant increase in mRNA expression. Table S3 shows all

significant results of DNA methylation sites with an inverse relation to

mRNA expression in human adipose tissue before vs. after exercise.

DNA methylation in vitro decreases reporter gene
expression

RALBP1 belongs to the genes that exhibit increased DNA

methylation in the promoter region in parallel with decreased

mRNA expression in adipose tissue in response to exercise (Figure 4a–

b and Table S3). It has previously been shown to play a central role in

the pathogenesis of metabolic syndrome [31] and to be involved in

insulin-stimulated Glut4 trafficking [32]. We proceeded to function-

ally test if increased DNA methylation of the promoter of RALBP1

may cause decreased gene expression using a reporter gene construct

in which 1500 bp of DNA of the human RALBP1 promoter was

inserted into a luciferase expression plasmid that completely lacks

CpG dinucleotides. The reporter construct could thereby be used to

study the effect of promoter DNA methylation on the transcriptional

activity. The construct was methylated using two different methyl-

transferases; SssI and HhaI, which methylate all CpG sites or only the

internal cytosine residue in a GCGC sequence, respectively.

Increased DNA methylation of the RALBP1 promoter, as

measured by luciferase activity, suppressed the transcriptional

activity of the promoter (p = 0.028, Figure 4c). When the RALBP1

reporter construct was methylated in vitro using SssI (CG, 94 CpG

sites), the transcriptional activity was almost completely disrupted

(1.460.5), whereas the HhaI enzyme (GCGC, methylating 14

CpG sites) suppressed the transcriptional activity to a lesser extent

(23.4611.6), compared with the transcriptional activity of the

mock-methylated control construct (448.26201.7; Figure 4c).

DNA methylation of obesity and type 2 diabetes
candidate genes in human adipose tissue

We proceeded to investigate if candidate genes for obesity or

T2D, identified using genome-wide association studies [3], are

found among the genes exhibiting changed levels of DNA

methylation in adipose tissue in response to six months exercise.

Among all 476,753 CpG sites analyzed on the Infinium Human-

Methylation450 BeadChip and passing QC, 1,351 sites mapped to

53 genes suggested to contribute to obesity in the review by

McCarthy, and 1,315 sites mapped to 39 genes suggested to

contribute to T2D [3]. We found 24 CpG sites located within 18 of

the candidate genes for obesity with a difference in DNA

methylation in adipose tissue in response to the exercise intervention

(q,0.05, Table 4). Additionally, two of those genes (CPEB4 and

SDCCAG8) showed concurrent inverse change in mRNA expression

after exercise (q,0.05). Among the T2D candidate genes, 45 CpG

sites in 21 different genes were differentially methylated (q,0.05) in

adipose tissue before vs. after exercise (Table 5). Of note, 10 of these

CpG sites mapped to KCNQ1 and 6 sites mapped to TCF7L2. A

simultaneous change in mRNA expression was seen for four of the

T2D candidate genes (HHEX, IGF2BP2, JAZF1 and TCF7L2)

where mRNA expression decreased while DNA methylation

increased in response to exercise (q,0.05, Table 5).

Silencing of Hdac4 and Ncor2 in 3T3-L1 adipocytes is
associated with increased lipogenesis

To further understand if the genes that exhibit differential DNA

methylation and mRNA expression in adipose tissue in vivo affect

adipocyte metabolism, we silenced the expression of selected genes

in 3T3-L1 adipocytes using siRNA and studied its effect on

lipogenesis. Two of the genes where we found increased DNA

Table 1. Clinical characteristics of study participants (n = 23)
with DNA methylation data both before (baseline) and after
the exercise intervention.

Characteristics Baseline After exercise p-value

Age (years) 37.364.4 -

Weight (kg) 91.8611.0 90.8611.6 0.18

BMI (kg/m2) 28.262.9 27.963.1 0.18

Waist circumference (cm) 97.768.6 95.768.7 0.02

Waist/hip ratio 0.9360.05 0.9260.06 0.01

Fatmass (%) 22.866.0 23.166.6 0.59

Fasting glucose (mmol/L) 5.0160.64 4.9560.59 0.51

2 h OGTT glucose (mmol/L) 6.1761.02 5.8661.47 0.32

HbA1c (%) 4.3160.31 4.3160.34 1.00

Fasting insulin (mU/mL) 6.6062.41 6.8062.86 0.63

VO2max (mL/kg/min) 33.164.6 36.266.2 0.003

Systolic BP (mmHg) 132.5610.2 129.9611.8 0.34

Diastolic BP (mmHg) 79.369.3 74.8610.7 0.04

Pulse (beats/min) 73.9610.6 67.3611.2 0.03

Total cholesterol (mmol/L) 4.9960.71 4.6361.12 0.07

Triglycerides (mmol/L) 1.6361.30 1.2660.98 0.20

LDL (mmol/L) 3.3660.63 3.2460.63 0.41

HDL (mmol/L) 1.0460.21 1.1160.21 0.02

LDL/HDL 3.3160.89 3.0260.92 0.053

Data are expressed as mean 6 SD, based on paired t-tests and two-tailed p-
values. BP, blood pressure; LDL, low density lipoprotein; HDL, high density
lipoprotein.
doi:10.1371/journal.pgen.1003572.t001
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methylation in parallel with decreased mRNA expression in

human adipose tissue in response to exercise (Figure 5a–d and

Table S3) were selected for functional studies in a 3T3-L1

adipocyte cell line. HDAC4 was further a strong candidate due to

multiple affected CpG sites within the gene, and both HDAC4 and

NCOR2 are biologically interesting candidates in adipose tissue and

the pathogenesis of obesity and type 2 diabetes [33–35]. Silencing

of Hdac4 and Ncor2 in the 3T3-L1 adipocytes resulted in 74%

reduction in the Hdac4 protein level (1.0060.50 vs. 0.2660.20,

p = 0.043; Figure 5e) while the Ncor2 mRNA level was reduced by

56% (1.0060.19 vs. 0.4460.08, p = 0.043; Figure 5f) of control

after transfection with siRNA for 72 hours and 24 h, respectively.

Lipogenesis was nominally increased in the basal state (1.0060.26

vs. 1.4460.42, p = 0.079) and significantly increased in response to

0.1 nM insulin (1.1660.30 vs. 1.5260.34, p = 0.043) in 3T3-L1

adipocytes with decreased Hdac4 levels (Figure 5g). Decreased

Ncor2 levels also resulted in increased lipogenesis in the basal

(1.0060.19 vs. 1.1960.19, p = 0.043) and insulin stimulated

(1 nM; 1.3860.17 vs. 1.7360.32, p = 0.043) state (Figure 5h).

Technical validation of Infinium HumanMethylation450
BeadChip DNA methylation data

To technically validate the DNA methylation data from the

Infinium HumanMethylation450 BeadChips, we compared the

genome-wide DNA methylation data from one adipose tissue

sample analyzed at four different occasions. Technical reproduc-

ibility was observed between all samples, with Pearson’s correla-

tion coefficients .0.99 (p,2.2610216, Figure S1a). Secondly, we

re-analyzed DNA methylation of four CpG sites using Pyrose-

quencing (PyroMark Q96ID, Qiagen) in adipose tissue of all 23

men both before and after exercise (Table S4). We observed a

significant correlation between the two methods for each CpG site

(p,0.05; Figure S1b), and combining all data points gives a

correlation factor of 0.77 between the two methods (p,0.0001;

Figure S1c).

Discussion

This study highlights the dynamic feature of DNA methylation,

described using a genome-wide analysis in human adipose tissue

before and after exercise. We show a general global increase in

adipose tissue DNA methylation in response to 6 months exercise,

but also changes on the level of individual CpG sites, with

significant absolute differences ranging from 0.2–10.9%. This

data, generated using human adipose tissue biopsies, demonstrate

an important role for epigenetic changes in human metabolic

processes. Additionally, this study provides a first reference for the

DNA methylome in adipose tissue from healthy, middle aged men.

Changes in DNA methylation have been suggested to be a

biological mechanism behind the beneficial effects of physical

activity [18,36]. In line with this theory, a nominal association

between physical activity level and global LINE-1 methylation in

leukocytes was recently reported [37]. More important from a

metabolic point-of-view, a study investigating the impact of long

term exercise intervention on genome-wide DNA methylation in

human skeletal muscle was recently published, and showed

epigenetic alterations of genes important for T2D pathogenesis

and muscle physiology [23]. This relationship between exercise

and altered DNA methylation is here expanded to include human

adipose tissue, as our data show 17,975 individual CpG sites that

exhibit differential DNA methylation in adipose tissue after an

exercise intervention, corresponding to 7,663 unique genes

throughout the genome. Genome-wide association studies have

identified multiple SNPs strongly associated with disease, but still

the effect sizes of the common variants influencing for example risk

of T2D are modest and in total only explain a small proportion of

the predisposition. Importantly, although each variant only

contributes with a small risk, these findings have led to improved

understanding of the biological basis of disease [3]. Similarly, the

absolute changes in DNA methylation observed in response to the

exercise intervention are modest, but the large number of affected

sites may in combination potentially contribute to a physiological

response. Moreover, if the exercise induced differences in DNA

methylation is expressed as fold-change instead of absolute

differences, we observe changes ranging from 6 to 38%.

In regard to the distribution of analyzed CpG sites, most of the

differentially methylated sites were found within the gene bodies

and in intergenic regions, and fewer than expected was found in

the promoter regions and CpG islands. This is in agreement with

previous studies showing that differential DNA methylation is

often found in regions other than CpG islands. For example, it was

shown that tissue-specific differentially methylated regions in the

59UTR are strongly underrepresented within CpG islands [38]

and that most tissue-specific DNA methylation occurs at CpG

island shores rather than the within CpG islands, and also in

regions more distant than 2 kb from CpG islands [39]. It has

further been proposed that non-CpG island DNA methylation is

more dynamic than methylation within CpG islands [40]. The

importance of differential DNA methylation within gene bodies is

Figure 2. Analysis flowchart.
doi:10.1371/journal.pgen.1003572.g002
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supported by multiple studies showing a positive correlation

between gene body methylation and active transcription [40], and

that DNA methylation may regulate exon splicing [41,42]. In this

study, the exercise intervention associated with a decrease in waist

circumference and waist-hip ratio, which suggests reduced

abdominal obesity, a phenotype known to be associated with

reduced risk of metabolic diseases [43]. Indeed, increased levels of

DNA methylation were observed after exercise both in the

promoter region and in the gene body of ITPR2, a locus previously

associated with waist-hip ratio [44]. Furthermore, in addition to

increased VO2max, the study participants responded to exercise

with a decrease in diastolic blood pressure and heart rate, and an

improvement in HDL levels, which are some of the different

mechanisms through which exercise is known to reduce the risk for

T2D and cardiovascular disease [43]. Adipose tissue comprises not

only of adipocytes but a mixture of different cell types. To evaluate

if the cellular composition of adipose tissue may change during

exercise, we looked at the mRNA expression for a number of cell

type specific markers before and after the exercise intervention.

None of these showed any difference in adipose tissue mRNA

expression before vs. after exercise (q.0.05; LEP, PNPLA2, FAS,

LIPE and PPARG as markers of adipocytes; SEBPA/B/D and

DLK1 as markers of preadipocytes, PRDM16 and UCP1 as markers

of brown adipocytes; ITGAX, EMR1, ITGAM as markers of

macrophages; TNF and IL6 representing cytokines and finally

CCL2 and CASP7 as markers for inflammation). Although this

result suggests that there is no a major change in the cellular

composition of the adipose tissue studied before compared with

after the exercise intervention, future studies should investigate the

methylome in isolated adipocytes. Additionally, in previous studies

of DNA methylation in human pancreatic islets, the differences

observed in the mixed-cell tissue were also detected in clonal beta

cells exposed to hyperglycemia [20,21], suggesting that in at least

some tissues, the effects are transferable from the relevant cell type

to the tissue of interest for human biology.

The impact of this study is further strengthened by our results

showing altered DNA methylation of genes or loci previously

associated with obesity and T2D. Although there was no

enrichment of differential DNA methylation in those genes

compared to the whole dataset, this result may provide a link to

the mechanisms for how the loci associated with common diseases

exert their functions [18]. 18 obesity and 21 T2D candidate genes

had one or more CpG sites which significantly changed in adipose

tissue DNA methylation after exercise. 10 CpG sites were found to

Figure 3. DNA methylation of individual CpG sites. The absolute change in DNA methylation of individual CpG sites with a significant
difference after exercise compared with baseline (q,0.05) ranges from 0.2–10.9% (A and B). A) Number of sites with increased methylation in adipose
tissue in response to exercise (n = 16,470). B) Number of sites with decreased DNA methylation in adipose tissue in response to exercise (n = 1,505).
Panels C and D show the distribution of CpG sites with a significant change (q,0.05) and an absolute difference $5% in DNA methylation in adipose
tissue before versus after exercise, in comparison to all analyzed sites on the Infinium HumanMethylation450 BeadChip. C) Distribution of significant
CpG sites vs. all analyzed sites in relation to nearest gene regions. D) Distribution of significant CpG sites vs. all analyzed sites in relation to CpG island
regions. *The overall distribution of significant CpG sites compared with all analyzed sites on the Infinium HumanMethylation450 BeadChip was
analyzed using a chi2 test.
doi:10.1371/journal.pgen.1003572.g003
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Table 2. Changes in adipose tissue DNA methylation in response to a 6 months exercise intervention. Most significant CpG sites
(q,0.005) with a difference in DNA methylation $5%.

Location in relation to DNA Methylation (%)

Probe ID Chr Nearest Gene Gene region CpG Island
Before
exercise

After
exercise Difference p-value

q-value
(,0.005)

Cross-
reactive
probes

cg04090794 1 HSP90B3P TSS1500 Open sea 31.465.1 36.664.6 5.2 2.3861027 0.004

cg05091570 1 NAV1 Body CpG Island 30.964.1 37.063.5 6.1 4.7761027 0.004

cg01828733 1 NAV1 TSS200;Body CpG Island 40.664.1 46.264.3 5.5 1.1961026 0.004

cg24553673 1 NR5A2 Body S Shore 33.164.7 39.963.8 6.8 2.3861027 0.004

cg27183818 1 Intergenic Open sea 66.764.7 60.764.3 26.0 7.1561027 0.004

cg26091021 2 Intergenic N Shelf 38.963.6 45.463.3 6.5 2.3861027 0.004

cg26297203 2 Intergenic N Shelf 52.563.2 57.663.0 5.0 1.1961026 0.004

cg14091208 3 CCDC48 Body CpG Island 41.464.6 47.364.8 5.9 1.1961026 0.004

cg09217023 3 Intergenic Open sea 57.264.0 62.663.2 5.5 2.3861027 0.004

cg09380805 3 Intergenic N Shelf 29.064.0 35.763.8 6.6 7.1561027 0.004

cg17103081 4 GPR125 Body N Shelf 63.465.2 68.464.9 5.1 1.1961026 0.004

cg15133208 4 SNCA 59UTR N Shore 36.564.8 42.464.8 6.0 1.6761026 0.004

cg14348967 4 Intergenic Open sea 31.965.2 37.564.4 5.6 1.6761026 0.004

cg21817858 5 Intergenic CpG Island 46.265.2 51.864.4 5.6 2.3861027 0.004

cg20934416 5 Intergenic Open sea 76.464.9 81.763.4 5.3 2.3861026 0.005

cg14246190 6 EHMT2 Body N Shelf 65.164.3 70.463.4 5.3 2.3861026 0.005

cg20284982 6 IER3 TSS1500 S Shore 45.365.5 51.263.6 5.9 2.3861026 0.005 48

cg12586150 6 SERPINB1 Body N Shore 51.965.2 58.464.7 6.5 2.3861026 0.005

cg09871057 7 STX1A Body CpG Island 52.363.5 57.463.2 5.1 1.1961026 0.004

cg18550262 7 Intergenic Open sea 39.563.4 45.063.2 5.5 2.3861027 0.004

cg00555695 8 PVT1 Body Open sea 40.363.9 45.863.4 5.5 2.3861027 0.004 48

cg13832372 9 LHX6 Body S Shore 25.864.5 31.165.4 5.4 2.3861026 0.005

cg02725718 10 ENKUR Body Open sea 65.663.8 70.863.1 5.2 2.3861026 0.005 47

cg12127706 11 CTTN Body Open sea 54.363.9 59.563.7 5.2 1.1961026 0.004

cg02093168 11 HCCA2 Body Open sea 61.265.8 67.564.2 6.4 1.1961026 0.004 47

cg22041190 11 PKNOX2 59UTR S Shore 36.064.5 41.064.1 5.0 1.6761026 0.004

cg12439006 11 Intergenic Open sea 64.564.2 69.763.2 5.2 2.3861027 0.004

cg19896824 11 Intergenic Open sea 53.865.4 60.664.1 6.9 2.3861027 0.004

cg21999471 11 Intergenic Open sea 41.165.3 46.763.6 5.6 2.3861026 0.005

cg26828839 12 ANO2 Body Open sea 32.565.3 39.765.5 7.1 1.1961026 0.004

cg13203394 12 ITPR2 Body Open sea 56.864.4 63.363.2 6.5 4.7761027 0.004

cg26119796 13 RB1 Body S Shore 57.064.8 62.464.5 5.4 1.6761026 0.004 47

cg00808648 14 PACS2 TSS1500 N Shore 44.064.1 49.364.1 5.3 4.7761027 0.004

cg22396498 15 CRTC3 Body Open sea 59.564.5 64.665.1 5.1 1.1961026 0.004

cg07299078 16 KIFC3 Body;59UTR Open sea 49.664.3 55.964.9 6.4 2.3861027 0.004 48

cg05797594 16 MIR1910;C16orf74 TSS1500;59UTR Open sea 51.565.1 57.262.9 5.6 2.3861026 0.005 47

cg05516390 16 ZFHX3 59UTR N Shelf 41.864.4 49.864.4 8.0 1.1961026 0.004

cg06078469 17 MSI2 Body S Shore 43.563.6 48.864.2 5.4 4.7761027 0.004

cg22386583 17 RPTOR Body Open sea 51.263.8 57.063.5 5.8 4.7761027 0.004

cg11225357 17 Intergenic Open sea 45.164.1 50.663.9 5.5 1.1961026 0.004

cg20811236 18 Intergenic N Shore 60.965.3 68.264.9 7.3 4.7761027 0.004

cg21685776 18 Intergenic S Shore 51.464.4 56.664.8 5.2 7.1561027 0.004

cg21520111 19 TRPM4 Body CpG Island 53.463.4 59.064.0 5.5 4.7761027 0.004

cg21427956 20 C20orf160 39UTR S Shore 37.563.8 43.164.3 5.6 1.1961026 0.004

cg08587504 20 LOC647979 TSS1500 S Shore 62.763.4 68.063.0 5.3 2.3861026 0.005

cg10854441 22 MLC1 TSS1500 N Shelf 51.364.9 57.164.3 5.9 1.6761026 0.004
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have altered DNA methylation in response to exercise within the

gene body of KCNQ1, a gene encoding a potassium channel and

known to be involved in the pathogenesis of T2D, and also subject

to parental imprinting [45]. Moreover, exercise associated with

changes in DNA methylation of six intragenic CpG sites in

TCF7L2, the T2D candidate gene harbouring a common variant

Table 2. Cont.

Location in relation to DNA Methylation (%)

Probe ID Chr Nearest Gene Gene region CpG Island
Before
exercise

After
exercise Difference p-value

q-value
(,0.005)

Cross-
reactive
probes

cg04065832 X CDX4 1stExon CpG Island 50.864.4 56.864.6 6.0 2.3861026 0.005

cg19926635 X KCND1 39UTR S Shelf 49.864.4 55.263.9 5.4 1.1961026 0.004

Data are presented as mean 6 SD, based on paired non-parametric test and two-tailed p-values. Cross-reactive probes: Maximum number of bases ($47) matched to
cross-reactive target as reported by Chen et al. [27].
doi:10.1371/journal.pgen.1003572.t002

Table 3. Changes in adipose tissue DNA methylation in response to a 6 months exercise intervention. Significant CpG sites
(q,0.05) with the biggest change in DNA methylation (.8%).

Location in relation to DNA Methylation (%)

Probe ID Chr
Nearest
Gene Gene CpG Island

Before
exercise After exercise

Difference
(.8%) p-value q-value

Cross-
reactive
probes

cg06550177 7 Intergenic S Shore 29.667.2 40.667.8 10.9 1.6761025 0.008

cg13906823 1 TSTD1 TSS200 CpG Island 39.2612.5 50.1615.6 10.9 4.0361025 0.011

cg23397147 17 Intergenic Open sea 48.1611.0 58.967.5 10.8 4.7561024 0.028

cg24161057 1 TSTD1 TSS200 CpG Island 35.9613.5 46.6614.6 10.7 2.1061025 0.009

cg26155520 1 Intergenic Open sea 55.667.1 66.066.6 10.4 7.8761026 0.007

cg05874882 4 Intergenic N Shore 34.069.1 44.266.7 10.1 6.0361025 0.013

cg00257920 1 Intergenic S Shelf 47.569.7 57.567.7 10.0 1.5361024 0.018

cg03878654 16 ZFHX3 59UTR N Shore 56.666.7 65.966.9 9.3 1.8161024 0.019

cg08360726 19 PLD3 59UTR CpG Island 29.768.0 38.9611.8 9.2 1.2861023 0.043

cg26682335 17 ABR Body Open sea 60.669.4 69.767.0 9.1 2.5361024 0.022

cg01425666 7 Intergenic CpG Island 33.366.8 42.365.7 9.0 2.6261025 0.010

cg01750221 12 Intergenic Open sea 52.367.5 61.166.4 8.8 8.4961024 0.036

cg05455393 X FHL1 TSS1500 N Shore 52.568.4 61.167.2 8.6 1.2861024 0.017

cg22828884 3 FOXP1 Body Open sea 62.664.4 71.264.3 8.6 1.6761025 0.008

cg11837417 19 CLDND2 TSS1500 S Shore 65.366.4 73.965.2 8.6 4.0861024 0.027

cg10323490 2 THNSL2 TSS1500 N Shore 64.168.1 72.666.2 8.5 9.7661024 0.038

cg03934443 10 Intergenic Open sea 67.4611.8 75.865.6 8.4 9.7661024 0.038

cg01775802 14 RGS6 Body Open sea 63.2610.1 71.4610.9 8.2 9.7661024 0.038

cg24606240 1 NUCKS1 TSS1500 S Shore 55.467.9 63.665.9 8.2 7.3861024 0.034

cg23499846 17 KIAA0664 59UTR S Shore 54.065.9 62.064.3 8.0 1.0361025 0.007

cg21821308 2 ASAP2 Body CpG Island 42.068.5 33.865.9 28.1 3.4961024 0.025

cg19219423 10 PRKG1 Body Open sea 55.467.7 47.166.8 28.3 1.8161024 0.019

cg03862437 3 TMEM44 Body N Shore 46.367.0 38.065.2 28.3 5.9661026 0.006

cg08368520 7 FOXK1 Body Open sea 52.967.8 44.568.0 28.4 9.7661024 0.038

cg01275887 7 FOXK1 Body Open sea 66.368.5 57.766.6 28.5 7.3861024 0.034

cg06443678 17 Intergenic Open sea 51.768.2 43.066.7 28.7 2.9861024 0.024

cg02514003 2 Intergenic Open sea 70.666.5 61.768.6 28.9 2.5361024 0.022

cg26504110 19 LTBP4 Body CpG Island 36.968.7 27.465.1 29.5 2.9861024 0.024

Data are presented as mean 6 SD, based on paired non-parametric test and two-tailed p-values. Cross-reactive probes: Maximum number of bases ($47) matched to
cross-reactive target as reported by Chen et al. [27].
doi:10.1371/journal.pgen.1003572.t003
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with the greatest described effect on the risk of T2D [3]. This is of

particular interest considering that TCF7L2 is subject to alternative

splicing [46,47] and the fact that gene exons are more highly

methylated than introns, with DNA methylation spikes at splice

junctions, suggesting a possible role for differential DNA

methylation in transcript splicing [42]. In addition to differential

DNA methylation, we also observed an inverse change in adipose

tissue mRNA expression for some of these candidate genes,

including TCF7L2, HHEX, IGF2BP2, JAZF1, CPEB4 and

SDCCAG8 in response to exercise.

The understanding of the human methylome is incomplete

although recently developed methods for genome-wide analysis of

DNA methylation already have made, and are likely to continue to

make, tremendous advances [48]. High coverage data describing

differences in the levels of DNA methylation between certain

human tissues or cell types [38], as well as differences observed

during development [42], have started to emerge. Regardless,

deeper knowledge about the epigenetic architecture and regulation

in human adipose tissue has been missing until now. We found

that the genetic region with the highest average level of DNA

methylation in adipose tissue was the 39UTR, followed by the gene

body and intergenic regions, and those regions also increased the

level of DNA methylation in response to exercise. This

supports the view that the human methylome can dynamically

respond to changes in the environment [14,15]. One explanation

for the low average levels of DNA methylation observed in the

promoter region (TSS1500/200), 59UTR and the first exon, may

be that these regions often overlap with CpG islands, which are

generally known to be unmethylated. Indeed, our results show a

very low level of DNA methylation within the CpG islands, and

how the level then increases with increasing distances to a CpG

island.

It has long been debated if increased DNA methylation

precedes gene silencing, or if it is rather a consequence of altered

gene activity [40]. The luciferase assay experiments from this study

and others [21,23] suggest that DNA methylation may have a

causal role, as increased promoter DNA methylation leads to

reduced transcriptional activity. Here we further related our

findings of altered DNA methylation to mRNA expression, and we

identified 197 genes where both DNA methylation and mRNA

expression significantly changed in adipose tissue after exercise. Of

these, 115 genes (58%) showed an inverse relation, 97% showing

an increase in the level of DNA methylation and a decrease in

mRNA expression. It should be noted that epigenetic processes are

likely to influence more aspects of gene expression, including

accessibility of the gene, posttranscriptional RNA processing and

stability, splicing and also translation [49]. For example, DNA

methylation within the gene body has previously been linked to

active gene transcription, suggestively by improving transcription

efficiency [42].

Two genes, HDAC4 and NCOR2, with biological relevance in

adipose tissue metabolism were selected for functional validation.

HDAC4 is a histone deacetylase regulated by phosphorylation,

and known to repress GLUT4 transcription in adipocytes [35]. In

skeletal muscle, HDAC4 has been found to be exported from the

nucleus during exercise, suggesting that removal of the transcrip-

tional repressive function could be a mechanism for exercise

adaptation [50]. For HDAC4, we observed increased levels of

DNA methylation and a simultaneous decrease in mRNA

expression in adipose tissue in response to the exercise interven-

tion. Additionally, the functional experiments in cultured adipo-

cytes suggested increased lipogenesis when Hdac4 expression was

reduced. This could be an indicator of reduced repressive activity

on GLUT4, leading to an increase in adipocyte glucose uptake

and subsequent incorporation of glucose into triglycerides in the

process of lipogenesis. NCOR2 also exhibited increased levels of

DNA methylation and a simultaneous decrease in mRNA

expression in adipose tissue in response to the exercise interven-

tion, and furthermore we observed increased lipogenesis when

Ncor2 expression was down regulated in the 3T3-L1 cell line.

NCOR2 is a nuclear co-repressor, involved in the regulation of

genes important for adipogenesis and lipid metabolism, and with

the ability to recruit different histone deacetylase enzymes,

including HDAC4 [51]. These results may be of clinical

importance, since HDAC inhibitors have been suggested in the

treatment of obesity and T2D [18,52].

Figure 4. DNA methylation of RALBP1 is associated with a
decrease in gene expression. A CpG site in the promoter region of
RALBP1 showed A) increased DNA methylation in response to exercise
as well as B) a decrease in mRNA expression. C) In vitro DNA methylation
of the RALBP1 promoter decreased gene expression, as measured by
luciferase activity. The result represents the mean of three independent
experiments, and the values in each experiment are the mean of five
replicates (background control subtracted). Data is presented as mean
6 SEM.
doi:10.1371/journal.pgen.1003572.g004
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In summary, this study provides a detailed map of the human

methylome in adipose tissue, which can be used as a reference for

further studies. We have also found evidence for an association

between differential DNA methylation and mRNA expression in

response to exercise, as well as a connection to genes known to be

involved in the pathogenesis of obesity and T2D. Finally,

functional validation in adipocytes links DNA methylation via

gene expression to altered metabolism, supporting the role of

histone deacetylase enzymes as a potential candidate in clinical

interventions.

Materials and Methods

Ethics statement
Written informed consent was obtained from all participants

and the research protocol was approved by the local human

research ethics committee.

Study participants
This study included a total of 31 men from Malmö, Sweden,

recruited for a six months exercise intervention study, as

previously described [23,53]. Fifteen of the individuals had a

first-degree family history of T2D (FH+), whereas sixteen

individuals had no family history of diabetes (FH2). They were

all sedentary, but healthy, with a mean age of 37.4 years and a

mean BMI of 27.8 kg/m2 at inclusion. All subjects underwent a

physical examination, an oral glucose tolerance test and a

submaximal exercise stress test. Bioimpedance was determined

to estimate fat mass with a BIA 101 Body Impedance Analyzer

(Akern Srl, Pontassieve, Italy). To directly assess the maximal

oxygen uptake (VO2max), an ergometer bicycle (Ergomedic 828E,

Monark, Sweden) was used together with heart rate monitoration

(Polar T61, POLAR, Finland) [53]. FH+ and FH2 men were

group-wise matched for age, BMI and physical fitness (VO2max) at

baseline. Subcutaneous biopsies of adipose tissue from the right

thigh were obtained during the fasting state under local

anaesthesia (1% Lidocaine) using a 6 mm Bergström needle (Stille

AB, Sweden) from all participants before and from 23 participants

after the six months exercise intervention (.48 hours after the last

exercise session). The weekly group training program included one

session of 1 hour spinning and two sessions of 1 hour aerobics and

was led by a certified instructor. The participation level was on

average 42.864.5 sessions, which equals to 1.8 sessions/week of

this endurance exercise intervention. The study participants were

requested to not change their diet and daily activity level during

the intervention.

Genome-wide DNA methylation analysis
DNA methylation was analyzed in DNA extracted from adipose

tissue, using the Infinium HumanMethylation450 BeadChip assay

(Illumina, San Diego, CA, USA). This array contains 485,577

probes, which cover 21,231 (99%) RefSeq genes [25,54]. Genomic

DNA (500 ng) from adipose tissue was bisulfite treated using the

EZ DNA methylation kit (Zymo Research, Orange, CA, USA).

Analysis of DNA methylation with the Infinium assay was carried

out on the total amount of bisulfite-converted DNA, with all other

procedures following the standard Infinium HD Assay Methyla-

tion Protocol Guide (Part #15019519, Illumina). The BeadChips’

images were captured using the Illumina iScan. The raw

methylation score for each probe represented as methylation b-

values was calculated using GenomeStudio Methylation module

software (b= intensity of the Methylated allele (M)/intensity of the

Unmethylated allele (U)+intensity of the Methylated allele

(M)+100). All included samples showed a high quality bisulfite
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conversion efficiency (intensity signal .4000) [55], and also passed

all GenomeStudio quality control steps based on built in control

probes for staining, hybridization, extension and specificity.

Individual probes were then filtered based on Illumina detection

p-value and all CpG sites with a mean p,0.01 were considered

detected and used for subsequent analysis. In total we obtained

DNA methylation data for 476,753 CpG sites from adipose tissue

of 31 men before and 23 men after the exercise intervention.

Before further analysis, the DNA methylation data was exported

from GenomeStudio and subsequently analyzed using Bioconduc-

tor [56] and the lumi package [57]. b-values were converted to M-

values (M = log2(b/(1-b))), a more statistically valid method for

conducting differential methylation analysis [58]. Next, data was

background corrected by subtracting the median M-value of the

600 built in negative controls and was further normalized using

quantile normalization. Correction for batch effects within the

methylation array data was performed using COMBAT [59]. For

the calculations of global DNA methylation, quantile normaliza-

tion was omitted and probes reported to be cross-reactive ($49

bases) or directly affected by a SNP (MAF.5%) were removed

[27]. Due to different performance of Infinium I and Infinium II

assays [25], the results based on average DNA methylation are

calculated and presented separately for each probe type. To

control for technical variability within the experiment, one adipose

tissue sample was included and run on four different occasions

(Figure S1a). As the b-value is easier to interpret biologically, M-

values were reconverted to b-values when describing the results

and creating the figures.

mRNA expression analysis
RNA extracted from the subcutaneous adipose tissue biopsies

was used for a microarray analysis, performed using the GeneChip

Human Gene 1.0 ST whole transcript based array (Affymetrix,

Santa Clara, CA, USA), following the Affymetrix standard

protocol. Basic Affymetrix chip and experimental quality analyses

were performed using the Expression Console Software, and the

robust multi-array average method (RMA) was used for back-

ground correction, data normalization and probe summarization

[60].

Luciferase assay
The human promoter fragment containing 1500 bp of DNA

upstream of the transcription start site for RALBP1

(Chr18:9474030–9475529, GRCh37/hg19) was inserted into a

CpG-free luciferase reporter vector (pCpGL-basic) as previously

described [21]. The construct was methylated using two different

DNA methyltransferases; SssI which methylates all cytosine

residues within the double-stranded dinucleotide recognition

sequence CG, and HhaI which methylates only the internal

cytosine residue in the GCGC sequence (New England Biolabs,

Frankfurt, Germany). INS-1 cells were co-transfected with 100 ng

of the pCpGL-vector without (control) or with any of the three

RALBP1 inserts (no DNA methyltransferase, SssI, HhaI) together

with 2 ng of pRL renilla luciferase control reporter vector as a

control for transfection efficiency (Promega, Madison, WI, USA).

Firefly luciferase activity, as a value of expression, was measured

for each construct and normalized against renilla luciferase activity

using the TD-20/20 luminometer (Turner Designs, Sunnyvale,

CA, USA). The results represent the mean of three independent

experiments, and the values in each experiment are the mean of

five replicates. Cells transfected with an empty pCpGL-vector

were used as background control in each experiment.

siRNA transfection of 3T3-L1 adipocytes and lipogenesis
assay

For detailed description of siRNA and lipogenesis experiments

see Methods S1. Briefly, 3T3-L1 fibroblasts were cultured at sub-

confluence in DMEM containing 10% (v/v) FCS, 100 U/ml

penicillin and 100 mg/ml streptomycin at 37uC and 95% air/5%

CO2. Two-day post-confluent cells were incubated for 72 h in

DMEM supplemented with 0.5 mM IBMX, 10 mg/ml insulin and

1 mM dexamethasone, after which the cells were cultured in

normal growth medium. Seven days post-differentiation, cells were

transfected by electroporation with 2 nmol of each siRNA

sequence/gene (Table S5). 0.2 nmol scrambled siRNA of each

low GC-, medium GC- and high GC-complex were mixed as

control. The cells were replated after transfection and incubated

for 72 hours (siRNA against Hdac4) or 24 hours (siRNA against

Ncor2).

Cells harvested for western blot analysis were solubilized and

homogenized, and 20 mg protein was subjected to SDS-PAGE (4–

12% gradient) and subsequent transferred to nitrocellulose

membranes. The primary antibody (rabbit polyclonal anti-hdac4;

ab12172, Abcam, Cambridge, UK) was diluted in 5 ml 5% BSA/

TBST and incubated overnight in 4uC. The secondary antibody

(goat anti-rabbit IgG conjugated to horseradish peroxidase;

ALI4404, BioSource, Life Technologies Ltd, Paisley, UK) was

diluted 1:20,000 in 5% milk/TBST. Protein was detected using

Super Signal and ChemiDoc (BioRad, Hercules, CA, USA).

Quantitative PCR (Q-PCR) analyses were performed in

triplicate on an ABI7900 using Assays on demand with TaqMan

technology (Mm00448796_m1, Applied Biosystems, Carlsbad,

CA, USA). The mRNA expression was normalized to the

expression of the endogenous control gene Hprt

(Mm01545399_m1, Applied Biosystems).

To measure lipogenesis, 10 ml tritium labelled ([3H]) glucose

(Perkin Elmer, Waltham, MA, USA) was added followed by

insulin of different concentrations; 0, 0.1, and 1 nM for Hdac4

siRNA and 0 and 1 nM for Ncor2 siRNA experiments, respec-

tively. All concentrations were tested in duplicates. After 1 hour,

incorporation of [3H] glucose into cellular lipids was measured by

scintillation counting. Lipogenesis is expressed as fold of basal

lipogenesis.

DNA methylation analysis using PyroSequencing
PyroSequencing (PyroMark Q96ID, Qiagen, Hilden, Germany)

was used to technically validate data from the genome-wide DNA

methylation analysis. PCR and sequencing primers were either

designed using PyroMark Assay Design 2.0 or ordered as pre-

designed methylation assays (Qiagen, Table S4), and all proce-

dures were performed according to recommended protocols.

Briefly, 100 ng genomic DNA from adipose tissue of 23

individuals both before and after the exercise intervention was

bisulfite converted using Qiagen’s EpiTect kit. With one primer

biotinylated at its 59 end, bisulfite-converted DNA was amplified

by PCR using the PyroMark PCR Master Mix kit (Qiagen).

Figure 5. Silencing of Hdac4 and Ncor2 in 3T3-L1 adipocytes results in increased lipogenesis. CpG sites in the promoter region of A)
HDAC4 and B) NCOR2 showed increased DNA methylation in response to exercise as well as decreased mRNA expression (C–D). Knock-downs were
verified either by E) Western blot analysis (for Hdac4) or F) by qRT-PCR (for Ncor2). Lipogenesis increased in 3T3-L1 adipocytes where G) Hdac4 (n = 5)
or H) Ncor2 (n = 5) had been silenced. Data is presented as mean 6 SEM.
doi:10.1371/journal.pgen.1003572.g005
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Biotinylated PCR products were immobilized onto streptavidin-

coated beads (GE Healthcare, Uppsala, Sweden) and DNA strands

were separated using denaturation buffer. After washing and

neutralizing using PyroMark Q96 Vacuum Workstation, the

sequencing primer was annealed to the immobilized strand.

PyroSequencing was performed with the PyroMark Gold Q96

reagents and data were analyzed using the PyroMark Q96 (version

2.5.8) software (Qiagen).

Statistical analysis
Clinical data is presented as mean 6 SD, and comparisons

based on a t-test and two-tailed p-values. Genome-wide DNA

methylation data from the Infinium HumanMethylation450

BeadChip before vs. after the six month exercise intervention

was analyzed using a paired non-parametric test, whereas a paired

t-test was used to compare the mRNA expression. DNA

methylation and mRNA expression data are expressed as mean

6 SD. To account for multiple testing and reduce the number of

false positives, we applied q-values to measure the false discovery

rate (FDR) on our genome-wide analyses of DNA methylation and

mRNA expression [24]. Luciferase activity was analyzed using the

Friedman test (paired, non-parametric test on dependent samples)

and presented as mean 6 SEM. Data from 3T3-L1 adipocyte

experiments showing protein, mRNA and lipogenesis levels are

presented as mean 6 SEM, and the results are based on Wilcoxon

signed-rank test.

Supporting Information

Figure S1 Technical validation. A) Technical replicate of one

adipose tissue DNA sample included in the study, analyzed

using the Infinium HumanMethylation450 BeadChip on four

different occasions. B–C) Data obtained from all adipose tissue

samples for four CpG sites, from both the Infinium Human-

Methylation450 BeadChip (x axis) and using Pyrosequencing

(y axis).

(TIF)

Methods S1 Detailed descriptions of small interfering RNA
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TR PV CD TD EH AHO CL. Contributed reagents/materials/analysis

tools: KFE HAJ LG. Wrote the paper: TR PV CD TD EH AHO EN

MDN HAJ LG CL.

References

1. Ng SW, Popkin BM (2012) Time use and physical activity: a shift away from

movement across the globe. Obes Rev 13: 659–80.

2. Ronti T, Lupattelli G, Mannarino E (2006) The endocrine function of adipose

tissue: an update. Clin Endocrinol (Oxf) 64: 355–365.

3. McCarthy MI (2010) Genomics, type 2 diabetes, and obesity. N Engl J Med 363:

2339–2350.

4. Almgren P, Lehtovirta M, Isomaa B, Sarelin L, Taskinen MR, et al. (2011)

Heritability and familiality of type 2 diabetes and related quantitative traits in

the Botnia Study. Diabetologia 54: 2811–2819.

5. Groop L, Forsblom C, Lehtovirta M, Tuomi T, Karanko S, et al. (1996)

Metabolic consequences of a family history of NIDDM (the Botnia study):

evidence for sex-specific parental effects. Diabetes 45: 1585–1593.

6. Isomaa B, Forsen B, Lahti K, Holmstrom N, Waden J, et al. (2010) A family

history of diabetes is associated with reduced physical fitness in the Prevalence,

Prediction and Prevention of Diabetes (PPP)-Botnia study. Diabetologia 53:

1709–1713.

7. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, et al.

(2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or

metformin. N Engl J Med 346: 393–403.

8. Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, et al. (2001)

Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with

impaired glucose tolerance. N Engl J Med 344: 1343–1350.

9. Gluckman PD, Hanson MA, Buklijas T, Low FM, Beedle AS (2009) Epigenetic

mechanisms that underpin metabolic and cardiovascular diseases. Nat Rev

Endocrinol 5: 401–408.

10. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, et al. (2005) Epigenetic

differences arise during the lifetime of monozygotic twins. Proc Natl Acad

Sci U S A 102: 10604–10609.

11. Ling C, Poulsen P, Simonsson S, Ronn T, Holmkvist J, et al. (2007) Genetic and

epigenetic factors are associated with expression of respiratory chain component

NDUFB6 in human skeletal muscle. J Clin Invest 117: 3427–3435.

12. Ronn T, Poulsen P, Hansson O, Holmkvist J, Almgren P, et al. (2008) Age

influences DNA methylation and gene expression of COX7A1 in human skeletal

muscle. Diabetologia 51: 1159–1168.

13. Sandovici I, Smith NH, Nitert MD, Ackers-Johnson M, Uribe-Lewis S, et al. (2011)

Maternal diet and aging alter the epigenetic control of a promoter-enhancer

interaction at the Hnf4a gene in rat pancreatic islets. Proc Natl Acad Sci U S A 108:

5449–5454.

14. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev

16: 6–21.

15. Feinberg AP, Irizarry RA (2010) Evolution in health and medicine Sackler

colloquium: Stochastic epigenetic variation as a driving force of development,

evolutionary adaptation, and disease. Proc Natl Acad Sci U S A 107 Suppl 1:

1757–1764.

16. Barres R, Osler ME, Yan J, Rune A, Fritz T, et al. (2009) Non-CpG methylation

of the PGC-1alpha promoter through DNMT3B controls mitochondrial density.

Cell Metab 10: 189–198.

17. Ling C, Del Guerra S, Lupi R, Ronn T, Granhall C, et al. (2008) Epigenetic

regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin

secretion. Diabetologia 51: 615–622.

18. Ling C, Groop L (2009) Epigenetics: a molecular link between environmental

factors and type 2 diabetes. Diabetes 58: 2718–2725.

19. Volkmar M, Dedeurwaerder S, Cunha DA, Ndlovu MN, Defrance M, et al.

(2012) DNA methylation profiling identifies epigenetic dysregulation in

pancreatic islets from type 2 diabetic patients. EMBO J 31: 1405–1426.

20. Yang BT, Dayeh TA, Kirkpatrick CL, Taneera J, Kumar R, et al. (2011) Insulin

promoter DNA methylation correlates negatively with insulin gene expression

and positively with HbA(1c) levels in human pancreatic islets. Diabetologia 54:

360–367.

21. Yang BT, Dayeh TA, Volkov PA, Kirkpatrick CL, Malmgren S, et al. (2012)

Increased DNA Methylation and Decreased Expression of PDX-1 in Pancreatic

Islets from Patients with Type 2 Diabetes. Mol Endocrinol 26: 1203–12.

Exercise and Human Adipose Tissue DNA Methylation

PLOS Genetics | www.plosgenetics.org 15 June 2013 | Volume 9 | Issue 6 | e1003572



22. Bouchard L, Rabasa-Lhoret R, Faraj M, Lavoie ME, Mill J, et al. (2010)

Differential epigenomic and transcriptomic responses in subcutaneous adipose
tissue between low and high responders to caloric restriction. Am J Clin Nutr 91:

309–320.

23. Nitert MD, Dayeh T, Volkov P, Elgzyri T, Hall E, et al. (2012) Impact of
an Exercise Intervention on DNA Methylation in Skeletal Muscle From

First-Degree Relatives of Patients With Type 2 Diabetes. Diabetes 61:
3322–32.

24. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies.

Proc Natl Acad Sci U S A 100: 9440–9445.
25. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, et al. (2011) High density DNA

methylation array with single CpG site resolution. Genomics 98: 288–295.
26. Maksimovic J, Gordon L, Oshlack A (2012) SWAN: Subset-quantile within

array normalization for illumina infinium HumanMethylation450 BeadChips.
Genome Biol 13: R44.

27. Chen YA, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, et al. (2013)

Discovery of cross-reactive probes and polymorphic CpGs in the Illumina
Infinium HumanMethylation450 microarray. Epigenetics 8: 203–9.

28. Bell JT, Tsai PC, Yang TP, Pidsley R, Nisbet J, et al. (2012) Epigenome-wide
scans identify differentially methylated regions for age and age-related

phenotypes in a healthy ageing population. PLoS Genet 8: e1002629.

29. Bocklandt S, Lin W, Sehl ME, Sanchez FJ, Sinsheimer JS, et al. (2011)
Epigenetic predictor of age. PLoS One 6: e14821.

30. Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, et al. (2010) Human
aging-associated DNA hypermethylation occurs preferentially at bivalent

chromatin domains. Genome Res 20: 434–439.
31. Singhal J, Nagaprashantha L, Vatsyayan R, Awasthi S, Singhal SS (2011)

RLIP76, a glutathione-conjugate transporter, plays a major role in the

pathogenesis of metabolic syndrome. PLoS One 6: e24688.
32. Chen XW, Leto D, Chiang SH, Wang Q, Saltiel AR (2007) Activation of RalA

is required for insulin-stimulated Glut4 trafficking to the plasma membrane via
the exocyst and the motor protein Myo1c. Dev Cell 13: 391–404.

33. Fang S, Suh JM, Atkins AR, Hong SH, Leblanc M, et al. (2011) Corepressor

SMRT promotes oxidative phosphorylation in adipose tissue and protects
against diet-induced obesity and insulin resistance. Proc Natl Acad Sci U S A

108: 3412–3417.
34. Sutanto MM, Ferguson KK, Sakuma H, Ye H, Brady MJ, et al. (2010) The

silencing mediator of retinoid and thyroid hormone receptors (SMRT) regulates
adipose tissue accumulation and adipocyte insulin sensitivity in vivo. J Biol

Chem 285: 18485–18495.

35. Weems JC, Griesel BA, Olson AL (2012) Class II histone deacetylases
downregulate GLUT4 transcription in response to increased cAMP signaling

in cultured adipocytes and fasting mice. Diabetes 61: 1404–1414.
36. Barres R, Yan J, Egan B, Treebak JT, Rasmussen M, et al. (2012) Acute exercise

remodels promoter methylation in human skeletal muscle. Cell Metab 15: 405–

411.
37. Zhang FF, Cardarelli R, Carroll J, Zhang S, Fulda KG, et al. (2011) Physical

activity and global genomic DNA methylation in a cancer-free population.
Epigenetics 6: 293–299.

38. Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, et al. (2006) DNA
methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38:

1378–1385.

39. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, et al. (2009) The
human colon cancer methylome shows similar hypo- and hypermethylation at

conserved tissue-specific CpG island shores. Nat Genet 41: 178–186.
40. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies

and beyond. Nat Rev Genet 13: 484–492.

41. Dayeh TA, Olsson AH, Volkov P, Almgren P, Ronn T, et al. (2013)

Identification of CpG-SNPs associated with type 2 diabetes and differential
DNA methylation in human pancreatic islets. Diabetologia 56: 1036–46.

42. Laurent L, Wong E, Li G, Huynh T, Tsirigos A, et al. (2010) Dynamic changes

in the human methylome during differentiation. Genome Res 20: 320–331.
43. Slentz CA, Houmard JA, Kraus WE (2009) Exercise, abdominal obesity, skeletal

muscle, and metabolic risk: evidence for a dose response. Obesity (Silver Spring)
17 Suppl 3: S27–33.

44. Heid IM, Jackson AU, Randall JC, Winkler TW, Qi L, et al. (2010) Meta-

analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual
dimorphism in the genetic basis of fat distribution. Nat Genet 42: 949–960.

45. Travers ME, Mackay DJ, Nitert MD, Morris AP, Lindgren CM, et al. (2012)
Insights Into the Molecular Mechanism for Type 2 Diabetes Susceptibility at the

KCNQ1 Locus From Temporal Changes in Imprinting Status in Human Islets.
Diabetes 62: 987–92.

46. Kaminska D, Kuulasmaa T, Venesmaa S, Kakela P, Vaittinen M, et al. (2012)

Adipose Tissue TCF7L2 Splicing Is Regulated by Weight Loss and Associates
With Glucose and Fatty Acid Metabolism. Diabetes 61: 2807–2813.

47. Osmark P, Hansson O, Jonsson A, Ronn T, Groop L, et al. (2009) Unique
splicing pattern of the TCF7L2 gene in human pancreatic islets. Diabetologia

52: 850–854.

48. Emes RD, Farrell WE (2012) Make way for the ‘next generation’: application
and prospects for genome-wide, epigenome-specific technologies in endocrine

research. J Mol Endocrinol 49: R19–27.
49. Gibney ER, Nolan CM (2010) Epigenetics and gene expression. Heredity

(Edinb) 105: 4–13.
50. McGee SL, Fairlie E, Garnham AP, Hargreaves M (2009) Exercise-induced

histone modifications in human skeletal muscle. J Physiol 587: 5951–5958.

51. Watson PJ, Fairall L, Schwabe JW (2012) Nuclear hormone receptor co-
repressors: structure and function. Mol Cell Endocrinol 348: 440–449.

52. Galmozzi A, Mitro N, Ferrari A, Gers E, Gilardi F, et al. (2012) Inhibition of
Class I Histone Deacetylases Unveils a Mitochondrial Signature and Enhances

Oxidative Metabolism in Skeletal Muscle and Adipose Tissue. Diabetes 62: 732–

42.
53. Elgzyri T, Parikh H, Zhou Y, Nitert MD, Ronn T, et al. (2012) First-Degree

Relatives of Type 2 Diabetic Patients Have Reduced Expression of Genes
Involved in Fatty Acid Metabolism in Skeletal Muscle. J Clin Endocrinol Metab

97: E1332–7.
54. Dedeurwaerder S, Defrance M, Calonne E, Denis H, Sotiriou C, et al. (2011)

Evaluation of the Infinium Methylation 450K technology. Epigenomics 3: 771–

784.
55. Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Gayther SA, et al.

(2009) An epigenetic signature in peripheral blood predicts active ovarian
cancer. PLoS One 4: e8274.

56. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004)

Bioconductor: open software development for computational biology and
bioinformatics. Genome Biol 5: R80.

57. Du P, Kibbe WA, Lin SM (2008) lumi: a pipeline for processing Illumina
microarray. Bioinformatics 24: 1547–1548.

58. Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, et al. (2010) Comparison of
Beta-value and M-value methods for quantifying methylation levels by

microarray analysis. BMC Bioinformatics 11: 587.

59. Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray
expression data using empirical Bayes methods. Biostatistics 8: 118–127.

60. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, et al. (2003)
Exploration, normalization, and summaries of high density oligonucleotide array

probe level data. Biostatistics 4: 249–264.

Exercise and Human Adipose Tissue DNA Methylation

PLOS Genetics | www.plosgenetics.org 16 June 2013 | Volume 9 | Issue 6 | e1003572



Study II





OR I G INA L ART I C L E

Impact of age, BMI and HbA1c levels on the genome-
wide DNA methylation and mRNA expression patterns
in human adipose tissue and identification of epigenetic
biomarkers in blood
Tina Rönn1,†, Petr Volkov1,†, Linn Gillberg3,4,†, Milana Kokosar5, Alexander
Perfilyev1, Anna Louisa Jacobsen3, Sine W. Jørgensen3,6, Charlotte Brøns3,
Per-Anders Jansson7, Karl-Fredrik Eriksson8, Oluf Pedersen9, Torben Hansen9,
Leif Groop2, Elisabet Stener-Victorin5,10, Allan Vaag3,4, Emma Nilsson1,3,‡

and Charlotte Ling1,*,‡

1Department of Clinical Sciences, Epigenetics and Diabetes and 2Department of Clinical Sciences, Diabetes and
Endocrinology, Lund University Diabetes Centre, CRC, 205 02 Malmö, Sweden, 3Department of Endocrinology,
Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark, 4Faculty of Health Sciences, University of
Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark, 5Department of Physiology/Endocrinology,
Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11,
Box 434, 405 30 Gothenburg, Sweden, 6Steno Diabetes Center, Niels Steensensvej 2, DK-2820 Gentofte, Denmark,
7Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden, 8Department of Clinical
Sciences, Vascular Diseases, Lund University, 205 02 Malmö, Sweden, 9The Novo Nordisk Foundation Center for
Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Universitetsparken 1, 2100
Copenhagen, Denmark and 10Department of Physiology and Pharmacology, Karolinska Institutet, 171 77
Stockholm, Sweden

*To whom correspondence should be addressed at: Department of Clinical Sciences, Epigenetic and Diabetes Unit, Lund University Diabetes Centre,
JanWaldenströms gata 35, Clinical Research Centre Building 91, Level 12, 205 02Malmö, Sweden. Tel: +46 40391213; Fax: +46 40391222; Email: charlotte.ling@
med.lu.se

Abstract
Increased age, BMI and HbA1c levels are risk factors for several non-communicable diseases. However, the impact of these
factors on the genome-wide DNA methylation pattern in human adipose tissue remains unknown. We analyzed the DNA
methylation of ∼480 000 sites in human adipose tissue from 96 males and 94 females and related methylation to age, BMI and
HbA1c.We also compared epigenetic signatures in adipose tissue and blood. Agewas significantly associated with both altered
DNAmethylation and expression of 1050 genes (e.g. FHL2,NOX4 and PLG). Interestingly,many reported epigenetic biomarkers of
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aging in blood, including ELOVL2, FHL2, KLF14 and GLRA1, also showed significant correlations between adipose tissue DNA
methylation and age in our study. Themost significant association betweenage and adipose tissueDNAmethylationwas found
upstream of ELOVL2. We identified 2825 genes (e.g. FTO, ITIH5, CCL18, MTCH2, IRS1 and SPP1) where both DNAmethylation and
expression correlatedwith BMI.Methylation at previously reportedHIF3A sites correlated significantlywith BMI in females only.
HbA1c (range 28–46 mmol/mol) correlated significantly with the methylation of 711 sites, annotated to, for example, RAB37,
TICAM1 and HLA-DPB1. Pathway analyses demonstrated that methylation levels associated with age and BMI are
overrepresented amonggenes involved in cancer, type 2 diabetes and cardiovascular disease. Our results highlight the impact of
age, BMI and HbA1c on epigenetic variation of candidate genes for obesity, type 2 diabetes and cancer in human adipose tissue.
Importantly, we demonstrate that epigenetic biomarkers in blood canmirror age-related epigenetic signatures in target tissues
for metabolic diseases such as adipose tissue.

Introduction

Epigenetic factors, including DNA methylation, histone modifi-
cations and various RNA-mediated processes, are involved in
tissue-specific gene regulation and have been suggested as me-
chanisms for interaction between environmental factors and
the genome (1). As epigenetic variation affects genome function,
it may also contribute to common human diseases (2). Indeed, a
number of factors support the involvement of epigenetic compo-
nents in common complex diseases, e.g. monozygotic twins do
not show 100% concordance for common diseases and indeed
display epigenetic differences (3–6), the incidence of several com-
plex diseases is rising in the general population (7), and there is
an association between in utero environment or early develop-
ment and diseases in adult life (8–10). DNAmethylation is an eas-
ily accessible epigenetic mark for laboratory investigations and
thereby suited for epigenome-wide association studies (EWAS)
and may be used as an epigenetic biomarker (2). However, the
fact that epigenetic alterations may be either causal or arise as
a consequence of disease needs to be accounted for. It is hence
important to study the impact of non-genetic risk factors for dis-
ease, e.g. age, BMI and HbA1c (a measure of long-term glycemia)
(11–15), on epigenetic modifications prior to disease develop-
ment. These three non-genetic risk factors are known to increase
the risk for several non-communicable diseases such as type 2
diabetes (T2D), cardiovascular disease and cancer (11–14,16). It
is also critical to consider tissue specificity of the epigenome and
to test if epigeneticmodifications in bloodmay be used as biomar-
kers to mimic epigenetic signatures in target tissues for disease.

Adipose tissue is the main energy store in the human body,
but also ametabolically active tissuewhich acts both as an endo-
crine and an immune organ, and contributes to whole body
energy homeostasis (17). Dysfunction of the adipose tissue, e.g.
promoted by excessive energy intake, is commonly seen in gen-
etically and environmentally predisposed individuals (18). Adi-
pose tissue gene expression and hormone secretion influence
various metabolic phenotypes which, in turn, are associated
with human complex traits involved in obesity, T2D and cardio-
vascular diseases. Epigenetic modifications in adipose tissue
may contribute to these phenotypes. Indeed, we recently identi-
fied altered gene expression and differential DNAmethylation in
adipose tissue from subjects with T2D compared with non-
diabetic controls (5). We have also shown that regular exercise
contributes to extensive transcriptional and DNA methylation
changes in human adipose tissue (19,20). Additionally, increased
BMI has been associated with increased DNA methylation of
HIF3A in both human adipose tissue and blood cells (21). How-
ever, the potential associations between estimates of obesity or
glycemia and the genome-wide DNA methylation pattern in
human adipose tissue from non-diabetic subjects have not yet
been investigated.

Several studies further point to the importance of epigenetic
modifications in theprocess of aging (3,15,22).Wehave previously
identified age-associated changes in DNAmethylation in human
skeletal muscle, pancreatic islets and blood cells (3,23–25). More
recently, genome-wide, well-powered cross-sectional DNA
methylation studies have been performed in leukocytes and
whole blood, showing that almost 30 and 15%, respectively, of
the analyzed DNA methylation sites were associated with age
(26,27). This finding has also been verified in a longitudinal
study (28). The age-associated changes in DNA methylation
may be influenced by the underlying genetic architecture (24), re-
sulting in both common and tissue-specific alterations (29). How-
ever, whether age affect the genome-wide DNA methylation
pattern in human adipose tissue and if any of these age-
associated epigenetic changes can also be found in blood cells
is not known.

The aim of this study was to perform EWAS in human sub-
cutaneous adipose tissue obtained from a discovery cohort of
96 males (male discovery cohort) and in a validation cohort of
94 females (female validation cohort) and relate the genome-
wide DNA methylation pattern to three selected known risk fac-
tors for common complex diseases (age, BMI and HbA1c). This
study design gives us the opportunity to test for both common
and gender-specific effects on epigenetic variation. We also in-
vestigated the association between the same phenotypes (age,
BMI and HbA1c) and genome-wide mRNA expression in adipose
tissue from the 96males. We finally tested if epigenetic variation
in blood cells can mirror epigenetic signatures in adipose tissue
and potentially be used as epigenetic biomarkers, using adipose
tissue and blood cells from a mixed validation cohort (37 males
and 67 females) and published data obtained from blood cells.

Results
Analysis of DNA methylation and gene expression
in human adipose tissue

To study if known risk factors for common complex diseases, i.e.
age, BMI and HbA1c levels (11–14,16), may mediate their effects
via epigenetic modifications, we analyzed DNAmethylation gen-
ome-wide in adipose tissue from 96 males without known dis-
ease and with a broad range in age, BMI and HbA1c (male
discovery cohort; Table 1). We proceeded to study the impact of
age, BMI and HbA1c on DNAmethylation levels in adipose tissue
from the male discovery cohort using a random effect mixed
model, including cohort as the random effect variable and age,
BMI and HbA1c as fixed factors. However, we first calculated vari-
ance inflation factors (VIFs), which provides information about
potential multicollinearity of the studied phenotypes (i.e. age,
BMI and HbA1c) (30). Importantly, in the male discovery cohort,
all calculated VIFs were close to 1 (1.04–1.18), demonstrating
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that there are no problems with multicollinearity among the
studied phenotypes (age, BMI and HbA1c). Genomic DNA from
adipose tissue of these 96 males successfully generated DNA
methylation data for 456 800 CpG sites throughout the genome.
After correction for multiple testing, we found 62 496 CpG sites
significantly associatedwith one ormoreof the three phenotypes
studied (age, BMI and HbA1c; q < 0.05), representing all chromo-
somes (Supplementary Material, Tables S1–S3). Due to the pos-
sible interaction between epigenetic modifications and gene
expression (31), we also generated mRNA microarray data from
adipose tissue of 94 of themales with available DNAmethylation
data. Here, mRNA expression data were obtained from a total of
28 499 probe sets representing 22 115 annotated transcripts and
20 246 unique genes. Moreover, after quality control and filtering
of probes, genomic DNA from adipose tissue of 94 females in-
cluded in the female validation cohort (Table 1) (32,33) success-
fully generated DNA methylation data for 460 973 CpG sites
throughout the genome.

Adipose tissue DNA methylation and age

Aging is associated with numerous diseases and it has also been
suggested to increase epigenetic variability, including altered le-
vels of DNA methylation (3). This phenomenon includes both
common and tissue-specific events (29); however, the specific ef-
fect of age on the genome-wide DNA methylation pattern in
human adipose tissue is not known. In the male discovery co-
hort, including 96 males with a range in age between 23 and 80
years, we found that the average DNA methylation level for all
456 800 CpG sites throughout the genome correlated positively
with age (P = 1.1 × 10−5, Supplementary Material, Table S4).
When dividing the sites based on their relation to the nearest
gene (TSS1500, TSS200, 5′UTR, 1st exon, gene body, 3′UTR, inter-
genic) or in relation to CpG islands (northern shelf, northern
shore, CpG island, southern shore, southern shelf, open sea),
the average methylation levels were positively and significantly
associated with age for all tested regions (Supplementary Mater-
ial, Table S4). After correction for multiple testing, we found that
DNAmethylation of 31 567 individual CpG sites in adipose tissue
from themale discovery cohort was significantly associated with
age (q < 0.05), indeed suggesting that the humanDNAmethylome
in adipose tissue changes with age (Supplementary Material,
Table S1). Among these sites, 24 514 are annotated to 11 036 un-
ique genes, whereas 7053 of the CpG sites are intergenic. Most
of the CpG sites significantly associated with age showed a posi-
tive relation between age and methylation level (n = 28 605;
90.6%), whereas only 2962 (9.4%) of the CpG sites showed a nega-
tive relation (Fig. 1A). The most significant association between
age and DNA methylation was seen for a CpG site upstream of
ELOVL2 (cg21572722, TSS1500, q = 8.5 × 10−24; Fig. 2A, Supplemen-
tary Material, Table S1). Altogether, methylation of eight CpG

sites annotated to ELOVL2 correlated significantly with age
(q < 0.05, Fig. 2A, Supplementary Material, Table S1).

We proceeded to study the genomic distribution of all individ-
ual CpG sites significantly associated with age in adipose tissue
from the male discovery cohort, either based on their relation
to the nearest gene or in relation to CpG islands (Fig. 1C and D
and SupplementaryMaterial, Table S5).When comparing the dis-
tribution of the significant age-associated CpG sites with the dis-
tribution of all analyzed CpG sites across the different genomic
regions using χ2-tests, we found an under-representation of sig-
nificant CpG sites within TSS1500, TSS200, 5′UTR and intergenic
regions, and an over-representation within the 1st exon, gene
body and 3′UTR (Supplementary Material, Table S5 and Fig. 1C).
We also observed a pronounced effect of age onDNAmethylation
for CpG sites in regions in relation to CpG islands, with a strong
over-representation of significant CpG sites within CpG islands
and under-representations in the open sea and shelf regions
(Supplementary Material, Table S5 and Fig. 1D).

To test for general and gender-specific effects on epigenetic
variation, we next studied the impact of age on DNAmethylation
in adipose tissue from 94 females (the female validation cohort,
Table 1). It should be noted that the span in agewas smaller in the
female validation cohort (21–37 years) compared with the male
discovery cohort (Table 1). Nevertheless, we foundDNAmethyla-
tion of 62 CpG sites to be significantly associated with age in the
female validation cohort (q < 0.05), where 60 (96.8%) show posi-
tive and 2 (3.2%) negative correlations (Supplementary Material,
Table S6). In agreement with our result in the male discovery co-
hort, themost significant association in the female validation co-
hort was seen for a CpG site upstream of ELOVL2 (cg16867657,
q = 4.5 × 10−7), and methylation in three CpG sites annotated to
ELOVL2 correlated significantly with age in both cohorts, suggest-
ing some commoneffects of age onmethylation in adipose tissue
from both males and females (q < 0.05, Fig. 2A and B and Supple-
mentary Material, Table S6). Additionally, the majority (42 CpG
sites, 70%) of the CpG sites showing a positive correlation with
age in the female validation cohort (q < 0.05) were also positively
correlatedwith age in themale discovery cohort (q < 0.05, Supple-
mentary Material, Table S6). These include CpG sites annotated
to SPATA18, PATZ1, ANK1, NPAS4 and CADPS2, genes previously
associated with aging (34–38).

To test if epigenetic modifications in blood cells may mirror
epigenetic signatures in target tissues for metabolic diseases
such as adipose tissue and potentially be used as epigenetic bio-
markers, we further compared our results identified in adipose
tissue with data from a recent study examining the impact of
age on the genome-wide DNA methylation pattern in white
blood cells from 421 individuals ranging in age from 14 to 94
years (27). In white blood cells, Johansson et al. found that age
affected DNA methylation at 137 993 sites, which corresponds
to almost one-third of the investigated sites. Interestingly, the

Table 1. Clinical characteristics of study participants

Characteristic Male discovery cohort
(n = 96 males)

Female validation cohort
(n = 94 females)

Mixed validation cohort
(n = 67 females, 37 males)

Age (years) 32.4 ± 12.8 (23–80) 29.2 ± 4.2 (21–37) 52 ± 11 (32–83)
BMI (kg/m2) 25.6 ± 3.7 (17.5–39.0) 27.2 ± 6.7 (18.2–44.9) 27.6 ± 5.2 (18–47)
IFCC HbA1c (mmol/mol) 34 ± 4 (28–46) 31 ± 3 (25–39) 34 ± 3 (22–44)
NGSP HbA1c (%) 5.3 ± 0.3 (4.7–6.4) 5.0 ± 0.3 (4.4–5.7) 5.3 ± 0.3 (4.2–6.2)

Data are expressed as the mean ± SD (range). IFCC HbA1c (mmol/mol), reference value < 50 years: 27–42 and >50 years: 31–46; NGSP HbA1c (%), reference value: 4.0–6.0.
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DNA methylation level of 12 708 of these sites was also signifi-
cantly associatedwith age in adipose tissue in themale discovery
cohort in the present study, 9897 (78%) in the same direction as in
blood (Supplementary Material, Table S7). Moreover, 51 (82%) of
the 62 CpG sites significantly associated with age in the female
validation cohort were also significantly associated with age in
the study of white blood cells (27), all in the same direction in
the two studies. All together, the overlap between our two adi-
pose tissue cohorts and blood data by Johansson et al. was 37
CpG sites including sites annotated to ELOVL2, SPATA18, ANK1,
NPAS4 and CADPS2 showing associations between age and DNA
methylation (Table 2).Moreover, Steegenga et al. (39) have recently
summarized data from several studies where the impact of age

on DNA methylation in whole blood or purified blood cells was
investigated. They presented a list of 14 genes, ELOVL2, FHL2,
PENK, KLF14, SST, GLRA1, TP73, GATA4, THRB, DLX5, NEFM,
TMEM179, ATP8A2 and FOXE3, displaying age-related changes
in DNA methylation based on previous published studies
(26,28,40–45). Importantly, all of these previously reported epi-
genetic biomarkers of aging in blood did also show significant as-
sociations with age in adipose tissue from our male discovery
cohort (Supplementary Material, Table S1, Table 3 and Fig. 2A,
C and D). Also, despite the limited age span in our female valid-
ation cohort, four of these genes (ELOVL2, FHL2, KLF14 andGLRA1)
were among the genes significantly associated with age (Supple-
mentary Material, Table S6 and Fig. 2B–D).

Figure 1. Distribution of significant CpG sites and mRNA expression probe sets in the male discovery cohort. Number and distribution of positive versus negative

significant associations between DNA methylation of individual CpG sites (A) or mRNA expression probe sets (B) and the phenotypes age, BMI and HbA1c. +, positive

association; −, negative association. Distribution of CpG sites significantly associated with age, BMI or HbA1c compared with all analyzed CpG sites in relation to gene

region (C) and CpG island region (D).
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Figure 2. Age correlates with DNA methylation and mRNA expression of specific genes in adipose tissue and blood. DNA methylation at cg21572722, cg16867657 and

cg24724428 in ELOVL2 correlated significantly with age in both the male discovery cohort (A) and the female validation cohort (B). DNA methylation at CpG sites in

KLF14 (C) and GLRA1 (D) correlated significantly with age in both the male discovery cohort and the female validation cohort. DNA methylation at cg21572722 (adipose

tissue n = 81, blood n = 83), cg16867657 (n = 90) and cg24724428 (adipose tissue n = 87, blood n = 89) in ELOVL2 correlated with age in both adipose tissue (E) and blood (F) in
the mixed validation cohort. DNA methylation in adipose tissue correlated significantly with DNA methylation in blood at cg21572722 (n = 62), cg16867657 (n = 77) and

cg24724428 (n = 74) in ELOVL2 in the mixed validation cohort (G). DNA methylation at cg14361627 (adipose tissue n = 94, blood n = 108) in KLF14 correlated with age in

both adipose tissue (H) and blood (I) in the mixed validation cohort, and DNA methylation in adipose tissue correlated significantly with DNA methylation in blood

(n = 90, J). For NOX4 (K) both mRNA expression and DNA methylation correlated significantly with age in the male discovery cohort (the most significant CpG site is

shown). (L) Selected significantly enriched KEGG pathways (FDR adjusted P-values < 0.05) of genes that exhibit associations between DNA methylation and age in the

male discovery cohort. A complete list of significantly enriched KEGG pathways is presented in Supplementary Material, Table S20.
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We proceeded to test if we could identify age-related epigen-
etic changes in both adipose tissue and blood cells taken from the
same subjects. Here, we used pyrosequencing to analyze DNA
methylation of three CpG sites in ELOVL2 and one CpG site in
KLF14 in both adipose tissue and whole blood cells taken from a

mixed validation cohort including 37 males and 67 females with
an age span of 32–83 years (Table 1). These CpG sites were se-
lected based on the age-associated changes in DNA methylation
in ourmale discovery cohort (Fig. 2A andC), female validation co-
hort (Fig. 2B and C) and blood cells in previous published studies

Figure 2. Continued.
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(Table 3). Importantly, increased agewas significantly associated
with increased DNAmethylation in these three ELOVL2 sites and
the KLF14 site in both adipose tissue and blood cells taken from
themixed validation cohort, and theDNAmethylation in adipose
tissue correlated significantly with the methylation in blood
(Fig. 2E–J). Together these data show that age-associated methy-
lation changes found in blood cells can mirror epigenetic signa-
tures in target tissues such as adipose tissue and potentially
be used as epigenetic biomarkers to predict susceptibility and
progression of disease.

We therefore proceeded to test if age-associated methylation
differences also can be identified in diseased subjects, i.e. in pa-
tientswith T2D.We recently published acase–control study iden-
tifying 15 627 CpG sites with differential DNA methylation in
adipose tissue from subjects with T2D compared with non-
diabetic age-matched controls (5). As aging is a known risk factor
for T2D, we further investigated the overlap between the 31 567
CpG sites showing significant association betweenDNAmethyla-
tion and age in adipose tissue from our discovery cohort of 96
non-diabetic males in the present study (Supplementary Mater-
ial, Table S1) and the 15 627 sites showing differential DNA
methylation in adipose tissue from subjects with T2D compared
with controls in our previous study (5). Notably, DNAmethylation
of 1278 CpG sites was both significantly associated with age in
the 96 non-diabeticmales and displayed differential DNAmethy-
lation between T2D subjects and age-matched controls. Import-
antly, DNA methylation of as many as 90% of these CpG sites
changed in the same direction due to increasing age or T2D
(Supplementary Material, Table S8). These include CpG sites
annotated to IRS1 and KCNQ1, genes previously implicated in
the pathogenesis of T2D (46,47), as well as to TMEM17, an age-
associated blood-based epigenetic biomarker (Table 3). In total,
DNA methylation of 188 CpG sites was significantly associated
with age in both adipose tissue (male discovery cohort) and
blood (in the study by Johansson et al.) and displayed differential
DNAmethylation between T2D subjects and controls in the same
direction (SupplementaryMaterial, Table S7). These data support
the use of blood-based epigenetic biomarkers to foresee epigen-
etic changes that take place in target tissues of diseased subjects,
i.e. with T2D.

Adipose tissue mRNA expression and age

We proceeded to test if age was associated with altered gene ex-
pression in human adipose tissue. Interestingly, we also found a
striking effect of age on adipose tissuemRNA expression levels in
the male discovery cohort, with expression of 1400 probe sets of
which 1130 are annotated to 1084 unique genes significantly as-
sociated with age (q < 0.05, Supplementary Material, Table S9).
The number of positive and negative correlations between
mRNA expression and age is shown in Figure 1B. The most sig-
nificant correlations between age andmRNA expressionwere ob-
served for NOX4 (positive correlation, q = 8.7 × 10−6, Fig. 2K) and
PLG (negative correlation, q = 8.7 × 10−6, Supplementary Material,
Table S9). As epigenetic modifications are known to regulate tis-
sue-specific gene expression (31), we further tested if genes with
significant correlations between mRNA expression and age also
showed age-related changes in DNA methylation. Indeed, in
1050 of the 1084 genes with age-associated changes inmRNA ex-
pression, DNA methylation was also associated with age in the
male discovery cohort (Supplementary Material, Table S10) when
using CpG sites within the cis distance 500 kb upstream and
100 kb downstream of each gene. These include NOX4 (Fig. 2K),
PLG, ETS2, CCR2 and CXCR2 (Supplementary Material, Table S10).

Adipose tissue DNA methylation and BMI

BMI is a simple measurement of body size and widely used for
population based studies, as well as for diagnosis of overweight
(BMI > 25 kg/m2) and obesity (BMI > 30 kg/m2). Increased BMI is
associated with the development of several common diseases
(12,13). There are metabolic differences observed in adipose tis-
sue from obese compared with lean subjects (48) and these
changes may partly be due to epigenetic modifications. In the
adipose tissue from the male discovery cohort with a range in
BMI between 17.5 and 39.0 kg/m2, the average DNA methylation
level for all 456 800 CpG sites throughout the genome did not cor-
relate significantly with BMI (P = 0.3, Supplementary Material,
Table S4). However, we found that DNAmethylation of 33 058 in-
dividual CpG sites was significantly associated with BMI in the
male discovery cohort (q < 0.05), of which 24 939 sites are anno-
tated to 12 325 unique genes and 8119 sites are intergenic (Sup-
plementary Material, Table S2). In contrast to our identified
associations between adipose tissue DNA methylation and age,
therewere slightlymore negative (n = 18 972, 57.4%) than positive
(n = 14 086, 42.6%) significant associations between DNA methy-
lation and BMI (Fig. 1A). Among annotated genes, the most sig-
nificant correlation between BMI and DNA methylation was
observed for a CpG site in the promoter of CCRL2 (cg18599081,
negative correlation, q = 9.0 × 10−6; Fig. 3A). Among all CpG
sites significantly associated with BMI, we observed an over-
representation within the gene body and intergenic regions,
and less significant CpG sites compared with the distribution
on the array in the region surrounding transcription start, i.e.
TSS1500, TSS200, 5′UTR and 1st exon (Supplementary Material,
Table S5 and Fig. 1C). In contrast to what was seen for associa-
tions between age and DNA methylation, CpG sites with DNA
methylation associated with BMI were under-represented within
CpG islands and over-represented within the open sea and
southern shelf (Supplementary Material, Table S5 and Fig. 1D).

We next investigated the impact of BMI on DNA methylation
in adipose tissue from the female validation cohort including 94
females with a range in BMI between 18.2 and 44.9 kg/m2. Here,
we found that DNA methylation of 39 533 CpG sites was signifi-
cantly associated with BMI (q < 0.05), of which 30 507 sites are an-
notated to 11 766 unique genes and 9026 sites are intergenic
(Supplementary Material, Table S11). These include 27 809 (70%)
positive and 11 724 (30%) negative correlations between DNA
methylation and BMI. The most significant correlation was ob-
served for a CpG site in the body of PLEC1 (negative correlation;
q = 1.8 × 10−12, Fig. 3B). This site was also negatively correlated
with BMI in the male discovery cohort (Fig. 3B). The overlap
between the male discovery cohort and the female validation
cohort was 4979 CpG sites, 2756 sites with positive and 2223
sites with negative correlations between BMI and DNA methyla-
tion (Supplementary Material, Table S12). These include sites
annotated to genes previously linked to obesity, T2D and/or fat
metabolism, e.g. FTO, TCF7L2, FASN, IRS1, IRS2, MTCH2 and
PPARGC1B. Many of the most significant sites in the male discov-
ery cohort could be validated in the 94 females (q < 0.05), includ-
ing cg18599081 in CCRL2 (Fig. 3A), cg12492380 in MYH16,
cg27115863 (intergenic) and cg11151251 in DCAF5 among the 10
most significant sites. Importantly, since the discovery cohort
only includes males and the validation cohort only females, the
overlapping sites are most likely gender-unspecific, while the
sites correlating only in males or females might represent
gender-specific associations between BMI and adipose tissue
DNA methylation. Impressively, we were able to replicate the
strong, gender-unspecific association between BMI and DNA
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Figure 3.Correlations betweenBMI andDNAmethylation and BMI andmRNAexpression in human adipose tissue. DNAmethylation at cg18599081 in CCRL2 (A) correlated
significantly with BMI in themale discovery cohort, the female validation cohort as well as themixed validation cohort (n = 91). DNAmethylation at cg16001422 in PLEC1

(B) correlated significantlywith BMI in both themale discovery cohort and the female validation cohort. For ITIH5 (C),CCL18 (D) andGABRB2 (E), bothDNAmethylation and

mRNA expression correlated with BMI in themale discovery cohort (themost significant CpG sitewithin the cis distance 500 kb upstream and 100 kb downstream of each

gene is shown). (F) Selected significantly enriched KEGG pathways (FDR adjusted P-values < 0.05) of genes that exhibit correlations between DNAmethylation and BMI in

the male discovery cohort. A complete list of significantly enriched KEGG pathways is presented in Supplementary Material, Table S21.
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methylation of cg18599081 in CCRL2 in adipose tissue from the
mixed validation cohort using pyrosequencing (P = 2.1 × 10−9,
Fig. 3A).

We proceeded to compare our results with data from a recent-
ly published study, which identified positive correlations be-
tween BMI and DNA methylation at three CpG sites in HIF3A in
adipose tissue (only females) and blood (21). In adipose tissue
from our female validation cohort, we observed that DNAmethy-
lation of seven CpG sites annotated to HIF3A, including the same
three CpG sites as reported by Dick et al., were significantly asso-
ciated with BMI (q < 0.05, Supplementary Material, Table S11,
Table 4). In contrast, the 96 males of our discovery cohort did
not show any significant association between DNA methylation
of these HIF3A CpG sites and BMI (q > 0.05, Table 4). However,
DNA methylation of two other sites within the HIF3A gene was
significantly associated with BMI in our male discovery cohort
(q < 0.05, Supplementary Material, Table S2, Table 4). These data
support both gender-specific and general effects of BMI on the
DNA methylation pattern in human adipose tissue.

As obesity, as well as age, is a known risk factor for T2D, we
investigated how many of the CpG sites significantly associated
with BMI in adipose tissue from non-diabetic subjects in the
present study that also show differential DNA methylation in
adipose tissue from subjects with T2D compared with non-
diabetic controls in our recently published case–control study
(5). We found that BMI was significantly associated with DNA
methylation of 988 and 3425 CpG sites in the male discovery

and female validation cohort, respectively, that also displayed
differential DNA methylation between subjects with T2D and
controls (Supplementary Material, Tables S13 and S14). The
majority (60% in themale discovery cohort and 99% in the female
validation cohort) of CpG sites that exhibit BMI associated
changes in DNA methylation in non-diabetic subjects changed
in the same direction in subjects with T2D compared with
controls (Supplementary Material, Tables S13 and S14). These
include CpG sites annotated to genes previously linked to T2D,
obesity and/or energy metabolism such as PC, FOXO1 and HSF1
in both cohorts and IGF2, VEGFA, IRS1, IL1RN, IGF1R, ELOVL6 and
KCNQ1 in the female validation cohort.

Adipose tissue mRNA expression and BMI

We further studied the association betweenBMI and gene expres-
sion in adipose tissue from the male discovery cohort. Also BMI
was associated with transcriptional changes in adipose tissue,
with significant associations to 3575 probe sets, of which 3104
are annotated to 2936 unique genes (Supplementary Material,
Table S15). The most significant correlations between BMI and
mRNA expression were observed for ITIH5, CCL18 and GABRB2
(positive correlations, q = 1.2 × 10−7, Fig. 3C–E), and SNORD115-1
(negative correlation, q = 1.2 × 10−7, Supplementary Material,
Table S15). Furthermore, 2825 of the 2936 genes with significant
associations between BMI and mRNA expression (q < 0.05) had
one or more CpG sites within the cis distance 500 kb upstream

Figure 3. Continued.

Table 4. DNA methylation in HIF3A in relation to BMI, in adipose tissue from the male discovery cohort and the female validation cohort

Target ID Chromosome
and position

Gene Relation to
gene region

Relation
to
CpG
island

Adipose tissue Male
discovery cohort

Adipose tissue Female
validation cohort

FDR
q-value

Regression
coefficient

FDR
q-value

Regression
coefficient

cg01552731 19:46 806 907 HIF3A 1st Exon;5′UTR;Body N_Shore 0.039 0.045 0.0007 0.033
cg23548163 19:46 807 119 HIF3A 5′UTR;Body Island ns (0.59) 0.015 0.019
cg16672562a 19:46 801 672 HIF3A 5′UTR;Body;1st Exon S_Shore ns (0.77) 0.019 0.029
cg12068280 19:46 804 528 HIF3A 5′UTR;Body N_Shelf ns (0.30) 0.028 0.014
cg22891070a 19:46 801 642 HIF3A Body;TSS200 S_Shore ns (0.83) 0.031 0.027
cg07684068 19:46 807 660 HIF3A Body S_Shore 0.026 0.047 0.032 0.019
cg27146050a 19:46 801 557 HIF3A Body;TSS200 S_Shore ns (0.90) 0.042 0.016

The seven CpG sites where DNA methylation correlated significantly with BMI (q < 0.05) in the female validation cohort are presented.
aCpG sites reported to be significantly associated with BMI in the study by Dick et al. (21). FDR q-value, false discovery rate adjusted P-value; ns, non-significant q-values

(>0.05).
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and 100 kb downstreamof each gene significantly associated with
BMI (Supplementary Material, Table S16). These include ITIH5,
CCL18, GABRB2, FTO, MTCH2, IRS1 and SPP1 (OPN) (Fig. 3C–E).

Adipose tissue DNA methylation and HbA1c

Glycated hemoglobin (HbA1c) is a long-term measure of average
blood glucose levels and elevated HbA1c levels are associated
with an increased risk of T2D, cardiovascular disease and cancer
(11,14,16). Additionally, glucose-induced epigenetic changes
have been suggested to explain the so called metabolic memory,
which may increase the risk for cardiovascular disease and T2D
(49–52). As adipose tissue has a role in whole body glucose
homeostasis, we investigated the association between adipose
tissue DNA methylation and HbA1c as a continuous variable. In

the male discovery cohort, including 96 non-diabetic males
with a range in HbA1c between 28 and 46 mmol/mol (represent-
ing 4.7–6.4%), we found that the average DNA methylation level
for all 456 800 CpG sites throughout the genome correlated nega-
tively with HbA1c (P = 0.025, Supplementary Material, Table S4).
Furthermore, we found that DNA methylation of 711 individual
CpG sites was significantly associated with HbA1c (q < 0.05), of
which 541 are annotated to 583 unique genes and 170 CpG sites
are intergenic (Supplementary Material, Table S3). Among these
CpG sites, 99 (14%) showed positive and 612 (86%) showed nega-
tive correlations between adipose tissue DNA methylation and
HbA1c (Fig. 1A). The most significant correlation between
HbA1c and adipose tissue DNA methylation was seen for a CpG
site upstream (TSS1500) of ANKRD11 (negative correlation;
Fig. 4A and Supplementary Material, Table S3), located in a CpG

Figure 4. Correlations between HbA1c and DNA methylation in human adipose tissue. DNA methylation at CpG sites in ANKRD11 (A), TNFSF11 (B), RAB37 (C), TICAM1 (D)

and HLA-DPB1 (E) correlated significantly with HbA1c.
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island shore. Moreover, CpG sites with DNA methylation signifi-
cantly associated with HbA1c were over-represented within the
TSS1500 and under-represented within the gene body regions,
whereas no significant difference was observed for the distribu-
tion in regions in relation to CpG islands (Supplementary Mater-
ial, Table S5, Fig. 1C and D).

In our female validation cohort, consisting of 94 non-diabetic
females with a span in HbA1c between 25 and 39 mmol/mol (re-
presenting 4.4–5.7%), we identified seven CpG sites with DNA
methylation significantly associated with HbA1c (q < 0.05), two
with a positive and five with a negative coefficient (Supplemen-
tary Material, Table S17). The strongest correlation was observed
for a CpG site upstream TNFSF11 (q = 0.04, Fig. 4B). None of these
seven sites were significantly associated with HbA1c in the male
discovery cohort.

ElevatedHbA1c levelswithin the non-diabetic interval predict
future riskof T2D (16).We therefore tested if CpG sites significant-
ly associated with HbA1c levels in the present study were also
found to be differentially methylated in adipose tissue from sub-
jects with T2D compared with controls in our previous case–
control study (5). Indeed, we found 30 among the 711 CpG sites
significantly associated with HbA1c in the male discovery cohort
also to have differential DNAmethylation levels in subjects with
T2D compared with controls. The majority (28 sites; 93%) of the
CpG sites that exhibit differential DNA methylation due to
increased HbA1c in non-diabetic subjects changed in the same
direction in subjects with T2D compared with non-diabetic con-
trols (Supplementary Material, Table S18). These include CpG
sites annotated to genes previously linked to T1D or T2D such
as RAB37, TICAM1 and HLA-DPB1 (53–55) (Fig. 4C–E).

Adipose tissue mRNA expression and HbA1c

We found significant associations between mRNA expression of
two transcripts, annotated to LOC100288814 and CLLU1, respect-
ively, and HbA1c levels in adipose tissue from the discovery co-
hort, both with positive correlations (Fig. 1B). However, neither
LOC100288814 nor CLLU1 had CpG sites with DNA methylation
significantly associated with HbA1c levels.

Overlap between associations of DNA methylation
and age, BMI and HbA1c

It has been suggested that certain regions or positions in the gen-
ome aremoreprone to epigenetic variation (56). Based on this, we
investigated the overlap of CpG sites with DNA methylation sig-
nificantly associated in the same direction withmore than one of
the phenotypes examined in the male discovery cohort. Most
overlap was found between age and BMI, namely 1334 CpG
sites in the same direction (Supplementary Material, Table S19).
The overlap between age andHbA1c included 2 CpG sites, and be-
tween BMI and HbA1c, we found 12 overlapping CpG sites in the
samedirection. The overlap between associations of DNAmethy-
lation and the different phenotypes is hence modest, but likely
a result of the statistical model where all three phenotypes are
included and thereby adjusted for. However, the overlaps we do
detect thereby represent independent effects of the different
phenotypes on the DNA methylome.

Pathway analysis

To gain further biological relevance of the significant associa-
tions between DNA methylation and the studied phenotypes,
we performed KEGG pathway analyses with WebGestalt (http://

www.webgestalt.org). We included genes with one or more CpG
site(s) annotated to the gene significantly associated with
respective studied phenotypic trait (q < 0.05). For associations be-
tween DNAmethylation and age, 31 KEGG pathways involved in,
for example, cancer, signal transduction, cardiovascular disease
and T2Dwere significantly enriched in themale discovery cohort
(Supplementary Material, Table S20 and Fig. 2L). Among these 31
pathways, only one was also enriched in the female validation
cohort (Neuroactive ligand-receptor interaction pathway). For
associations between DNA methylation and BMI, 47 KEGG path-
ways involved in, for example, cancer, signal transduction, car-
diovascular disease, T2D and inflammation were significantly
enriched in the male discovery cohort (Supplementary Material,
Table S21 and Fig. 3F). Among these 47 pathways, 41 (87%) were
also enriched in the female validation cohort (Supplementary
Material, Table S21). For associations between DNA methylation
and HbA1c, no KEGG pathways were significantly enriched.

For transcripts with positive associations between mRNA ex-
pression and age, three KEGG pathways involved in cardiovascu-
lar disease were significantly enriched (Supplementary Material,
Table S22). Pathway analysis of transcripts with mRNA expres-
sion negatively associated with age revealed three significant
pathways, of which two are involved in chemokine signaling
and cytokine–cytokine receptor interaction (Supplementary Ma-
terial, Table S22).

For positive associations betweenmRNA expression and BMI,
29 KEGG pathways involved in, for example, the immune system
and glycan biosynthesiswere significantly enriched (Supplemen-
tary Material, Table S23). Pathway analysis of transcripts with
mRNA expression negatively associated with BMI revealed six
significant pathways involved in, for example, fatty acidmetabol-
ism, glucose metabolism, amino acid metabolism and transla-
tion (Supplementary Material, Table S23).

Due to uneven genomic distribution of CpG sites and CpG is-
lands and the design of the Illumina 450k array, conclusions
based only on pathway analysis could be severely biased (57).
However, the pathway results in our study in many cases mirror
the results obtained from the analysis of individual genes; hence,
we use this additional method in support of our findings and to
share lights on metabolic pathways and biological function.

Correlations between DNA methylation of CpG sites
significantly associated with age, BMI or HbA1c
and mRNA expression in human adipose tissue

DNA methylation is known to regulate gene expression and de-
pending on the genomic location of a CpG site, methylation
may be either negatively or positively associated with transcrip-
tional activity (31). To study the direct correlations between DNA
methylation and mRNA expression, we performed Spearman’s
correlations between DNA methylation of individual CpG sites
significantly associated with age, BMI or HbA1c (Supplementary
Material, Tables S1–S3) and expression of nearby mRNA probe
sets in adipose tissue from 94 individuals in the male discovery
cohort with genome-wide data available for both DNA methyla-
tion and mRNA expression. In this analysis, we included mRNA
probe sets within a cis distance from the significant CpG sites,
i.e. CpG siteswithin a distance 500 kbupstreamand100 kbdown-
stream of mRNA probe sets. Based on these inclusion criteria,
794 515 CpG–mRNA combinations, including 61 932 unique CpG
sites and 28 041 mRNA probe sets, were included in the correl-
ation analysis. After correction for multiple testing, 199 450 of
these CpG–mRNA combinations showed a significant correlation
(q < 0.05) between DNA methylation and mRNA expression.
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We further separated the significant correlations between DNA
methylation and mRNA expression based on what phenotype
the included CpG sites were associated with. For CpG sites asso-
ciated with age, we found 33 000 positive and 43 825 negative
CpG–mRNA correlations including 17 710 unique CpG sites and
17 056 unique mRNA probes. Thus, 56% of all CpG sites signifi-
cantly associated with age also show a correlation with one or
more mRNA expression probe sets (Supplementary Material,
Table S24). For example, the CpG site most significantly asso-
ciated with age, cg21572722 in ELOVL2 and several other CpG
sites in ELOVL2 showed significant correlations to mRNA expres-
sion (Supplementary Material, Table S24). Some of these correla-
tions are presented in Figure 5A. Additionally, among the 33 058
CpG sites significantly associated with BMI, 23 361 unique sites
(71%) were also significantly associated with expression of one
or more mRNA probe sets, giving rise to 62 134 positive and
66 679 negative CpG–mRNA correlation combinations (Supple-
mentary Material, Table S25). Included are, for example,
cg18599081 in CCRL2 (Fig. 5B) and cg01552731 (four CpG–mRNA
combinations) and cg07684068 (nine CpG–mRNA combinations)
in HIF3A. For HbA1c, we found 891 positive and 1095 negative
correlations between DNA methylation and mRNA expression,
including 397 unique CpG sites (Supplementary Material,
Table S26), i.e. 56% of all the CpG sites significantly associated
with HbA1c.

Enzymes regulating DNA methylation

DNA methylation in mammalian cells is carried out by DNA
methyltransferases (DNMTs) (1), making this family of enzymes

inevitable for a functional epigenome. We therefore investi-
gated if age, BMI or HbA1c were associated with altered DNA
methylation and/or mRNA expression of the genes encoding
these enzymes in human adipose tissue. The Infinium Human-
Methylation450 BeadChip array analyzes DNA methylation of
134 CpG sites annotated to DNMT1, DNMT3A, DNMT3B or
DNMT3L. In the male discovery cohort, we found DNAmethyla-
tion of 11 CpG sites annotated to these genes significantly
associated with age (all with a positive coefficient) and another
10 sites associated with BMI (6 negatively and 4 positively
associated; q < 0.05), (Supplementary Material, Tables S1 and
S2). We also found that age has a negative impact on DNMT3A
mRNA levels in themale discovery cohort (q = 0.04, Supplemen-
tary Material, Table S9). In the female validation cohort, we
found DNA methylation of 21 CpG sites annotated to genes
encoding DNMTs significantly associatedwith BMI (6 negatively
and 15 positively associated; q < 0.05; Supplementary Material,
Table S11).

We finally investigated the TETenzymes, which have a role in
DNA demethylation by creating hydroxymethylation (58). Of the
63 CpG sites analyzed in TET1, TET2 and TET3 in the male discov-
ery cohort, we found four sites with DNA methylation positively
associated with age as well as six sites positively and one nega-
tively associated with BMI (q < 0.05; Supplementary Material,
Tables S1 and S2). Furthermore, TET3 mRNA expression showed
apositive associationwith BMI (q = 0.02, SupplementaryMaterial,
Table S15). In the female validation cohort, we found four CpG
sites annotated to genes encoding TET enzymes with DNA
methylation positively associated with BMI (q < 0.05; Supplemen-
tary Material, Table S11).

Figure 5.Correlations betweenDNAmethylation of CpG sites significantly associatedwith age or BMI andmRNAexpression in human adipose tissue. DNAmethylation at

cg21572722, cg16867657 and cg24724428 in ELOVL2 correlated significantly withmRNA expression of ELOVL2 (probe set 8123920) in adipose tissue from themale discovery

cohort (A). DNAmethylation at cg18599081 in CCRL2 correlated significantlywithmRNAexpression of CCRL2 (probe set 8079407) in adipose tissue from themale discovery

cohort (B).
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Discussion

In this study, we have shown that three known risk factors for
common diseases, i.e. age, BMI and HbA1c play important roles
in determining the pattern of DNA methylation and mRNA ex-
pression in human adipose tissue. These changes take place in
genes known to contribute to development of age- and obesity-
related diseases such as T2D, cardiovascular disease and cancer.
We also demonstrate for the first time that age-associated epi-
genetic variation in blood canmirror epigenetic signatures in adi-
pose tissue and potentially be used as epigenetic biomarkers for
metabolic diseases.

Identification of subjects with a high risk of developing meta-
bolic disease is a criterion for disease prevention. Genetic and en-
vironmental factors have been shown to predict T2D and obesity
(13). However, their capacity to predict disease is still suboptimal
and there is a need for new biomarkers with a high capacity of
predicting metabolic disease. These may potentially include epi-
genetic biomarkers. Importantly, the epigenome is dynamic and
changes due to environmental exposures (3,19,24,25,59–62) but
once epigenetic modifications are introduced they may be stable
and inherited through cell divisions (63,64), making epigenetics a
potentially important pathogenic mechanism in complex dis-
eases. However, it is important to be aware of the tissue-specific
nature of the epigenome. Although the nucleotide sequence is
identical in most human cells, the epigenetic pattern is highly
cell specific as it contributes to the diverse phenotype and the ex-
pression pattern seen in different cell types (6,51,65). In most
large well-phenotyped cohorts, blood is often the only source of
biological material available, and so far little is known about the
correlation between DNA methylation in target tissues such as
adipose tissue and more accessible cell types such as blood
cells. Additionally, blood-based biomarkers have an important
clinical relevance since they are easy to analyze in patients and
high-risk populations. In this study,many epigenetic biomarkers
of aging in blood, i.e. ELOVL2, FHL2,KLF14 andGLRA1, also showed
significant correlations between adipose tissue DNAmethylation
and age. Notably, our data demonstrate that epigenetic biomar-
kers in blood canmirror age-related epigenetic signatures in bio-
logically relevant target tissues such as adipose tissue.

Many of the genes associatedwith age in our study have func-
tions related to the aging process and/or are previously reported
biomarkers of aging in blood. For example, DNA methylation of
ELOVL2, encoding fatty acid elongase 2, has previously been
shown to increase with age in blood cells (41) and in our study
the most significant association between age and DNA methyla-
tion was found upstream of ELOVL2. Importantly, we found sig-
nificant correlations between methylation in several CpG sites
annotated to ELOVL2 and age in adipose tissue from three differ-
ent cohorts as well as in whole blood cells, supporting the use of
blood-based epigenetic biomarkers to mirror some epigenetic
signatures in target tissues. Also, KFL14 belongs to the genes
showing increased DNAmethylation in both human adipose tis-
sue and blood cells with increased age. KFL14 encodes Kruppel-
like factor 14 which has been suggested to be a master regulator
of gene transcription in human adipose tissue (66) and GWAS
have identified SNPs near/in KFL14 associated with T2D and
HDL cholesterol levels (47,67). Additionally, DNA methylation of
a CpG site in the gene body of SPATA18 correlated positively
with age in both adipose tissue from our two cohorts and white
blood cells in a previous study by Johansson et al. (27). SPATA18
(MIEAP) encodes a p53-inducible protein that controls mitochon-
drial quality by repairing or eliminating unhealthy mitochondria
(36). Maintenance of healthy mitochondria prevents aging,

cancer and a variety of degenerative diseases that are due to
the result of defective mitochondrial quality control. For NOX4,
both DNA methylation and mRNA expression were associated
with age. Nox4 (NAPDH oxidase 4) has previously been
shown to regulate mitochondrial function in an aging-induced
senescencemodel of cultured endothelial cells (68). Interestingly,
cellular aging seems to promoteNox4 interactionwithmitochon-
dria. This disrupts complex I in the electron transport chain
and increases mitochondrial reactive oxygen species (ROS).
This could be a contributing factor in the loss of replicative
lifespan seen in senescence. A CpG site in the first exon of
PATZ1 correlated with age in adipose tissue of both our cohorts.
The POZ/BTB and AT-hook-containing zinc finger protein
1 (PATZ1) seems to have an important role in the regulation of
endothelial cell senescence through an ROS-mediated p53-
dependent pathway and contribute to vascular diseases asso-
ciated with aging (35).

It should be noted that our male discovery cohort includes
adipose tissue from 96 non-diabetic males with a wide range in
all studied phenotypes (age, BMI andHbA1c), whereas our female
validation cohort includes 94 non-diabetic females with a smal-
ler age span, but a wide range in BMI and HbA1c. This is a likely
explanation for why we identify a smaller number of CpG sites
significantly associated with age in the female validation cohort
compared with the male discovery cohort. Nevertheless, the
majority of CpG sites associatedwith age in the female validation
cohort were also significant in the male discovery cohort,
suggesting a general effect of aging on DNA methylation in
both genders. Additionally, our male discovery cohort consists
of combined data from four different subcohorts (5,9,10,69).
Here, we included males without known disease and with DNA
available from subcutaneous adipose tissue. It is known that ar-
tifacts such as batch effectsmay reduce the statistical accuracy in
genomic data. To adjust for this potential problem, the associ-
ation between DNA methylation data or mRNA expression data
and studied phenotypes was analyzed using a random effect
mixed model, including cohort as the random effect variable
and age, BMI and HbA1c as fixed factors. We can still not exclude
that our data include some false-positive results due to batch
effects rather than biological variation. Nevertheless, the fact
that we are able to validate many of our results in adipose tissue
from a validation cohort as well as in blood from previously pub-
lished studies strengthens our data. Of note, 9897 methylation
sites were significantly associated with age in the same direction
both in adipose tissue in our male discovery cohort and in blood
in the study by Johansson et al. (27).

We also found a strong effect of increasedBMI on the degree of
DNA methylation in human adipose tissue, indeed proposing
that obesity can mediate some of its effects via altering the epi-
genome. Importantly, DNA methylation of ∼5000 CpG sites was
associated with BMI in adipose tissue from both ourmale discov-
ery cohort and female validation cohort. Interestingly, a large
number of these CpG sites did also showdifferential DNAmethy-
lation in adipose tissue from subjects with T2D compared with
non-diabetic controls (5), suggesting that BMI associated changes
in DNA methylation may predispose to T2D. We could also link
BMI associated DNA methylation to differential expression of
2825 genes. The strongest correlation betweenmRNA expression
and BMI was seen for ITIH5. This gene encodes inter-alpha-tryp-
sin inhibitor heavy chain family member 5 and it is highly
expressed in subcutaneous adipose tissue, increased in obesity,
down-regulated after weight loss and associated with measures
of body size andmetabolism (70). Also, eight CpG sites annotated
to ITIH5 correlated with BMI, suggesting a key epigenetic
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mechanism for regulation of this gene. Other genes showing both
altered DNA methylation and expression in human adipose tis-
sue based on increased BMI include FTO, CCL18, MTCH2, IRS1
and SPP1 (OPN). Interestingly, we recently found that CCL18,
encoding CC chemokine ligand 18, and SPP1, encoding osteopon-
tin, were the most up-regulated genes in adipose tissue from
subjects with T2D compared with non-diabetic controls and
both have previously been linked to inflammation (71,72). Add-
itionally, genetic variation in FTO has previously been linked to
both obesity and T2D, although recent data suggest that IRX3 ra-
ther than FTO is mediating the effects of this SNP (73,74). We also
identifiedmethylation sites only associated with BMI in themale
discovery cohort or the female validation cohort. These differ-
encesmay be due to gender-specific effects on DNAmethylation.
Indeed, gender differences in the DNA methylation pattern have
previously been reported in human pancreatic islets, the liver,
heart muscle, blood and saliva (75–81).

Moreover, a recent investigation related BMI to DNAmethyla-
tion inwhole blood cells from479 individuals and identified three
CpG sites annotated to HIF3A with increased DNA methylation
associated with increased BMI. The association between BMI
andmethylation of HIF3Awas further validated in adipose tissue
from 635 females (21). Interestingly, we found that DNAmethyla-
tion of the same three CpG sites was positively associated with
BMI in our female validation cohort, consisting of 94 females,
but not in our male discovery cohort, consisting of 96 males.
Nevertheless, DNA methylation in two other sites in HIF3A was
significantly associatedwith BMI in the 96males. The protein en-
coded by HIF3A, hypoxia inducible factor 3 alpha subunit, has
been shown to play a role in the cellular response to glucose
and insulin and to function as an accelerator of adipocyte differ-
entiation (82,83). However, the possible gender-specific relation
between HIF3A methylation and BMI is novel and has to be vali-
dated further.

We also studied the association between HbA1c and DNA
methylation in human adipose tissue from non-diabetic sub-
jects. However, the effect of glucose on both DNA methylation
and gene expression in human adipose tissue seems less strong
than those of BMI and age. Whether this is also the case in other
tissueswith a key role inwhole body glucose homeostasis, i.e. the
liver, skeletal muscle and pancreatic islets, remains to be tested.
This resultmay be due to a smaller span inHbA1c comparedwith
age andBMI, since only subjectswithout knowndiabeteswere in-
cluded in this study. Importantly, the strong effects of age and
BMI on DNA methylation presented in this study can introduce
a bias in studies of the DNA methylation pattern in disease,
when cases are not carefully matched for age and BMI or when
the statistical analyses are not adjusted for these phenotypes, a
factor that needs to be considered in the design of future epigen-
etic studies.

It should also be noted that the impact of age, BMI and HbA1c
on the degree of DNAmethylation in human adipose tissue in the
present study is quite large compared with some previous
studies in human adipose tissue where the greatest absolute
differences in methylation were ∼20% (5,19). Here, we observed
larger absolute differences inmethylation, e.g.∼40% absolute dif-
ference in the methylation of ELOVL2 between young and elderly
subjects and ∼25% absolute difference in the methylation of
CCRL2 between lean and obese subjects.

Interestingly, mRNA expression correlated significantly with
the degree of DNA methylation for a large proportion of the
CpG sites identified in this study. Since all included CpG sites
already were shown to be associated with the phenotypes
investigated, these results truly supports an interaction between

adipose tissue DNAmethylation and mRNA expression in estab-
lishing metabolic phenotypes.

In addition to adipocytes, adipose tissue comprises amixture
of different cell types, and changes in cell type composition could
potentially be responsible for some of the observed changes in
DNA methylation. However, as exemplified by the overlap be-
tween adipose tissue and blood, some DNAmethylation patterns
may also be tissue and cell type unspecific. Additionally, when
we investigated mRNA expression for cell type-specific markers,
no significant associations were found between BMI or HbA1c
and PNPLA2, FAS, LIPE and RETN as markers of adipocytes, DLK1
as a marker of preadipocytes, PRDM16 and UCP1 as markers of
brown adipocytes, EMR1 as a marker of macrophages, TNF and
IL6 representing cytokines and finally CASP3, CASP7 and LGALS3
as markers for inflammation. We further compared our findings
of altered DNA methylation in adipose tissue with cell type-
specific methylation sites of candidate genes in inflammatory
complex diseases observed in white blood cells (84). Among
8252 analyzed CpG sites in 343 genes, they found 1865 CpG
sites differentially methylated between the different cell types
in blood. Among our 33 058 CpG sites significantly associated
with BMI in adipose tissue, we found 173 CpG sites overlapping
with the 1865 cell type-specific methylation sites observed in
white blood cells by Reinius et al. For HbA1c, only 9 cell type-spe-
cificmethylation sites were found among our 711 CpG sites asso-
ciated with HbA1c in adipose tissue. Taken together, these
results suggest that there is no major impact of cellular compos-
ition or inflammatory response on the observed associations in
adipose tissue DNA methylation and BMI or HbA1c. Anyway, al-
though future studies should aim to investigate the DNAmethy-
lome in adipocytes isolated from both subcutaneous and intra-
abdominal fat tissue, it should be noted that cell isolation pro-
cesses may alter both gene expression and DNA methylation.

In conclusion, we demonstrate for the first time an impact of
age, BMI and HbA1c on the genome-wide DNA methylation
pattern in human adipose tissue. Our data support an important
function of altered DNA methylation in the development of
several non-communicable diseases such as T2D, obesity, car-
diovascular disease and cancer. Finally, we demonstrate that
epigenetic variation in blood cells can mirror age-related epigen-
etic signatures in target tissues of important biological function,
i.e. adipose tissue. This opens up for the future development and
use of blood-based epigenetic biomarkers to predict disease and
altered metabolic function.

Materials and Methods
Study participants

Themale discovery cohort consists of 96males from Sweden and
Denmark without known disease and with a broad range in
age (23–80 years), BMI (17.5–39.0 kg/m2) and HbA1c levels
(28–46 mmol/mol). It should be noted that the range in HbA1c
is represented by variation in non-diabetic subjects. This cohort
includes males without known disease from four subcohorts, all
previously described (5,9,10,69), with DNA available from sub-
cutaneous adipose tissue biopsies taken in the fasted state
(19,60,85). Their clinical characteristics are presented in Table 1,
and the characteristics of the subjects included in the present
study from the four subcohorts are presented separately in Sup-
plementary Material, Table S27. The female validation cohort
consists of 94 Swedish females with a broad range in BMI (18.2–
44.9 kg/m2) and HbA1c levels (25–39 mmol/mol), but a more
even distribution in age (21–37 years) and with DNA available
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from subcutaneous adipose tissue biopsies taken at the fasted
state. This cohort is part of a clinical study examining the impact
of polycystic ovary syndrome on femalemetabolism as described
previously (32,33). The characteristics of the female validation
cohort are shown in Table 1. The mixed validation cohort con-
sists of 37 males and 67 females from Denmark without known
disease and with DNA available from subcutaneous adipose tis-
sue biopsies and blood samples taken at the fasted state. This co-
hort is part of a Danish family study previously described (86,87)
and includes 42 families with genetic risk for T2D and with a
broad range in age (32–83 years), BMI (18–47 kg/m2) and HbA1c le-
vels (22–44 mmol/mol). Their characteristics are shown in
Table 1.

In all study cohorts, height and weight were measured wear-
ing light clothing and no shoes, and BMIwas calculated asweight
divided by the square of the height (kg/m2). Written informed
consent was obtained from all participants and the research
protocol was approved by the local human research ethics
committees.

DNA methylation analysis

DNA was extracted from subcutaneous adipose tissue biopsies
and blood using Qiagen DNA extraction kits (Qiagen, Hilden,
Germany). DNA methylation was analyzed genome-wide using
the Infinium HumanMethylation450 BeadChip assay (Illumina,
San Diego, CA, USA), covering a total of 485 577 probes corre-
sponding to 21 231 (99%) RefSeq genes [88,89]. Five hundred
nanograms of genomic DNA from adipose tissue was bisulfite-
converted using the EZ DNAmethylation kit (Zymo Research, Or-
ange, CA, USA) and used with the Infinium® assay, with all other
procedures following the standard Infinium HD Assay Methyla-
tion Protocol Guide (Part # 15 019 519, Illumina). The Illumina
iScan system was used for imaging data on the BeadChips.

GenomeStudio® Methylation module software was used to
calculate the raw methylation score for each probe, represented
as methylation β-values [β = intensity of the Methylated allele
(M)/intensity of the Unmethylated allele (U) + intensity of the
Methylated allele (M) + 100]. All samples passed the GenomeStu-
dio quality control steps based on built in control probes for stain-
ing, hybridization, extension and specificity, and the bisulfite
conversion efficiency was high (intensity signal >4000) (90). The
DNA methylation data were exported from GenomeStudio and
subsequently analyzed using Bioconductor (91). β-Values were
converted to M-values [M = log2(β/(1− β))] using the lumi package
(92), to make data more homoscedastic and appropriate for fur-
ther bioinformatical and statistical analyses (93). Next, the probes
on the array targeting SNPs (rs; n = 65) and non-CpG sites (ch;
n = 2757) were removed. Additionally, 5448 probes with SNPs in
the target CpG (MAF > 0.1 based on dbSNP) (94) and 14 316 probes
reported to be cross-reactivewith 50 bp (95) were removed. Final-
ly, 6191 probes were filtered away based on Illumina detection
P-value (mean P ≥ 0.01), resulting in a total of 456 800 individual
CpG sites from adipose tissue of 96men for subsequent analyses.
After the same quality control and filtering of probes, 460 973
individual CpG sites generated successful DNA methylation
data in adipose tissue of 94 women. Of note, probes targeting
the Y-chromosome were also filtered away in these women.
The DNA methylation data were background corrected by sub-
tracting the median M-value of the 600 built in negative controls
and was further normalized using quantile normalization. BMIQ
was used to correct for the bias of the twodifferent probe types on
the array (96). As 12 samples are analyzed on each Infinium
HumanMethylation450 BeadChip, the generatedDNAmethylation

data needed to be batch-corrected. Correction for batch effects
within the methylation array data of each cohort was performed
using COMBAT (97).

DNA methylation of specific CpG sites was analyzed in bisul-
fite-treated genomic DNA from adipose tissue and blood cells
using pyrosequencing together with the PyroMark PCR kit, Pyro-
Mark Gold Q96 reagents and the PyroMark ID 96 (Qiagen) accord-
ing to the manufacturer’s instructions. Primers were designed
using the PyroMark Assay design Software 2.0 and datawere ana-
lyzed with the PyroMark Q96 2.5.7 software program. The follow-
ing primer sequences were used for pyosequencing of ELOVL2:
F-primer 5′-GAGGGGAGTAGGGTAAGTGAG-3′, R-primer 5′Bio-
tin-CATTTCCCCCTAATATATACTTCAA-3′, sequencing primer
5′-GGGAGGAGATTTGTAGGTTT-3′, KLF14: F-primer 5′-GGTTTTT
AGGTTAAGTTATGTTTAATAGT-3′, R-primer 5′Biotin-AAACTA
CTACAACCCAAAAATTCC-3′, sequencing primer 5′-ATAGTTTTA
GAAATTATTTTGTTT-3′, CCRL2: F-primer 5′-AGTTTTAGTTT
GGGGTTAAATTTGT-3′, R-primer 5′Biotin-ACAACCAAAAATAA
TTAATACTATAACTCA-3′, sequencing primer 5′-ATATTTTTTTTT
ATTTAATTTGATG-3′.

mRNA expression analysis

RNA was extracted from subcutaneous adipose tissue biopsies
using miRNeasy kit followed by RNeasy MinElute Cleanup kit
(Qiagen; subcohort 1, 2 and 3) or using the RNeasy Lipid Tissue
Mini Kit (Qiagen; subcohort 4). The BioAnalyzer (Agilent, Santa
Clara, CA, USA) was used to measure RNA quality, requiring a
RNA integrity number >7 for each sample to be included. Total
RNA (200 ng) from subcutaneous adipose tissue biopsies was
used for analysis using the GeneChip Human Gene 1.0 ST
whole transcript based array (Affymetrix, Santa Clara, CA, USA),
following the Affymetrix standard protocol. The Expression Con-
sole Softwarewas used for basic Affymetrix chip and experimen-
tal quality, and for background correction, data normalization
andprobe summarization the robustmulti-arrayaveragemethod
was used (98). Also here, we applied COMBAT to correct for batch
effects within each cohort (97).

Statistical analysis

The association between DNA methylation data from the Infi-
nium HumanMethylation450 BeadChip and studied phenotypes
was in themale discovery cohort analyzed using a random effect
mixedmodel, including cohort as the random effect variable and
age, BMI andHbA1c as fixed factors. Also the association between
mRNA expression and age, BMI and HbA1c was analyzed using
the samemodel. In the female validation cohort, the association
between DNA methylation data and studied phenotypes was
analyzed using the R package ‘limma’ and linearmodel including
age, BMI, HbA1c and polycystic ovary syndrome status as vari-
ables. To account for multiple testing, we applied false discovery
rate (FDR) analysis and q < 0.05 (FDR < 5%) was considered signifi-
cant (99). For the overlap between mRNA expression and DNA
methylation as well as for pathway analyses, a CpG site was an-
notated to a gene if it was located between a distance of 500 kb
upstream and 100 kb downstream of the gene. Associations be-
tween age or BMI and DNA methylation in the mixed validation
cohort was analyzed using random effect mixed linear models
in R i386 3.1.0 (http://www.r-project.org) and sex, age, BMI and
HbA1c were included as fixed factors in all models, whereas fam-
ily number/pedigreewas included as a random factor. Also, asso-
ciations between DNA methylation levels in adipose tissue and
blood in themixed validation cohort were analyzedwith random
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effect mixed linear models adjusted for sex (fixed factor) and
family number/pedigree (random factor).

Supplementary Material
Supplementary Material is available at HMG online.

Acknowledgements
This study would not be possible without the help from partici-
pating clinicians and laboratory technicians, who performed
clinical studies and provided the clinical materials, including
Targ Elgzyri and Ylva Wessman at Scania University Hospital,
Malmö, Sweden, and Marianne Modest and Lars Sander Koch at
Steno Diabetes Center, Denmark. We thank SCIBLU (Swegene
Center for Integrative Biology at Lund University) Genomics
Facility for help with DNA methylation and mRNA expression
analyses.

Conflict of Interest statement. None declared.

Funding
This work was supported by grants from the Swedish Research
Council, Region Skåne (ALF), Knut and Alice Wallenberg Founda-
tion, Novo Nordisk Foundation, EFSD/Lilly Fellowship, Söderberg
Foundation, The Swedish Diabetes foundation, Påhlsson Foun-
dation, EXODIAB, Linné grant (B31 5631/2006), The Danish Stra-
tegic Research Council, The Danish Council for Independent
Research, Rigshospitalet, University of Copenhagen, Steno Dia-
betes Center, Danish Diabetes Academy, Jane and Dan Olsson
Foundation, Swedish federal government under the LUA/ALF
agreement ALFGBG-136481 and the Regional Research andDevel-
opment agreement (VGFOUREG-5171, −11296, and −7861). The
study behind the mixed validation cohort was supported by the
Lundbeck Foundation (The Lundbeck Foundation Centre for Ap-
plied Medical Genomics in Personalised Disease Prediction, Pre-
vention and Care [LuCamp], www.lucamp.org) and The Danish
Council for Independent Research. TheNovoNordisk Foundation
Center for Basic Metabolic Research is an independent Research
Center at the University of Copenhagen partially funded by an
unrestricted donation from the Novo Nordisk Foundation (www.
metabol.ku.dk).

References
1. Ling, C. and Groop, L. (2009) Epigenetics: a molecular link be-

tween environmental factors and type 2 diabetes. Diabetes,
58, 2718–2725.

2. Rakyan, V.K., Down, T.A., Balding, D.J. and Beck, S. (2011)
Epigenome-wide association studies for common human
diseases. Nat. Rev. Genet., 12, 529–541.

3. Fraga, M.F., Ballestar, E., Paz, M.F., Ropero, S., Setien, F., Balles-
tar, M.L., Heine-Suner, D., Cigudosa, J.C., Urioste, M., Benitez, J.
et al. (2005) Epigenetic differences arise during the lifetime of
monozygotic twins. Proc. Natl Acad. Sci. USA, 102, 10604–10609.

4. Kaminsky, Z.A., Tang, T., Wang, S.C., Ptak, C., Oh, G.H., Wong,
A.H., Feldcamp, L.A., Virtanen, C., Halfvarson, J., Tysk, C. et al.
(2009) DNAmethylation profiles inmonozygotic and dizygot-
ic twins. Nat. Genet., 41, 240–245.

5. Nilsson, E., Jansson, P.A., Perfilyev, A., Volkov, P., Pedersen, M.,
Svensson, M.K., Poulsen, P., Ribel-Madsen, R., Pedersen, N.L.,
Almgren, P. et al. (2014) Altered DNA methylation and
differential expression of genes influencing metabolism and

inflammation in adipose tissue from subjects with type 2 dia-
betes. Diabetes, 63, 2962–2976.

6. Ribel-Madsen, R., Fraga, M.F., Jacobsen, S., Bork-Jensen, J., Lara,
E., Calvanese, V., Fernandez, A.F., Friedrichsen, M., Vind, B.F.,
Hojlund, K. et al. (2012) Genome-wide analysis of DNA methy-
lation differences in muscle and fat from monozygotic twins
discordant for type 2 diabetes. PLoS One, 7, e51302.

7. Chen, L., Magliano, D.J. and Zimmet, P.Z. (2012) The world-
wide epidemiology of type 2 diabetes mellitus–present and
future perspectives. Nat. Rev. Endocrinol., 8, 228–236.

8. Barker, D.J. (1997) Maternal nutrition, fetal nutrition, and dis-
ease in later life. Nutrition, 13, 807–813.

9. Brons, C., Jensen, C.B., Storgaard, H., Alibegovic, A., Jacobsen,
S., Nilsson, E., Astrup, A., Quistorff, B. and Vaag, A. (2008)
Mitochondrial function in skeletal muscle is normal and un-
related to insulin action in young men born with low birth
weight. J. Clin. Endocrinol. Metab., 93, 3885–3892.

10. Jørgensen, S.W., Brøns, C., Bluck, L., Hjort, L., Færch, K.,
Thankamony, A., Gillberg, L., Friedrichsen, M., Dunger, D.B.
and Vaag, A. (2015) Metabolic response to 36 hours of fasting
in young men born small vs appropriate for gestational age.
Diabetologia, 158, 178–187.

11. Garg, N., Moorthy, N., Kapoor, A., Tewari, S., Kumar, S., Sinha,
A., Shrivastava, A. and Goel, P.K. (2014) Hemoglobin A(1c) in
nondiabetic patients: an independent predictor of coronary
artery disease and its severity. Mayo Clin. Proc., 89, 908–916.

12. Global Burden of Metabolic Risk Factors for Chronic Diseases,
C.Lu, Y., Hajifathalian, K., Ezzati, M., Woodward, M., Rimm,
E.B. and Danaei, G. (2014) Metabolic mediators of the effects
of body-mass index, overweight, and obesity on coronary
heart disease and stroke: a pooled analysis of 97 prospective
cohorts with 1.8 million participants. Lancet, 383, 970–983.

13. Lyssenko, V., Jonsson, A., Almgren, P., Pulizzi, N., Isomaa, B.,
Tuomi, T., Berglund, G., Altshuler, D., Nilsson, P. and Groop, L.
(2008) Clinical risk factors, DNA variants, and the develop-
ment of type 2 diabetes. N. Engl. J. Med., 359, 2220–2232.

14. de Beer, J.C. and Liebenberg, L. (2014) Does cancer risk in-
crease with HbA1c, independent of diabetes? Br. J. Cancer,
110, 2361–2368.

15. Liu, L., van Groen, T., Kadish, I., Li, Y., Wang, D., James, S.R.,
Karpf, A.R. and Tollefsbol, T.O. (2011) Insufficient DNA
methylation affects healthy aging and promotes age-related
health problems. Clin. Epigenetics, 2, 349–360.

16. Selvin, E., Steffes, M.W., Zhu, H., Matsushita, K., Wagen-
knecht, L., Pankow, J., Coresh, J. and Brancati, F.L. (2010) Gly-
cated hemoglobin, diabetes, and cardiovascular risk in
nondiabetic adults. N. Engl. J. Med., 362, 800–811.

17. Ronti, T., Lupattelli, G. and Mannarino, E. (2006) The endo-
crine function of adipose tissue: an update. Clin. Endocrinol.
(Oxf), 64, 355–365.

18. Bays, H.E. (2012) Adiposopathy, diabetes mellitus, and pri-
mary prevention of atherosclerotic coronary artery disease:
treating “sick fat” through improving fat function with anti-
diabetes therapies. Am. J. Cardiol., 110, 4B–12B.

19. Rönn, T., Volkov, P., Davegardh, C., Dayeh, T., Hall, E., Olsson,
A.H., Nilsson, E., Tornberg, A., Dekker Nitert, M., Eriksson, K.F.
et al. (2013) A sixmonths exercise intervention influences the
genome-wide DNA methylation pattern in human adipose
tissue. PLoS Genet., 9, e1003572.

20. Rönn, T., Volkov, P., Tornberg, A., Elgzyri, T., Hansson, O.,
Eriksson, K.F., Groop, L. and Ling, C. (2014) Extensive changes
in the transcriptional profile of human adipose tissue includ-
ing genes involved in oxidative phosphorylation after a 6-
month exercise intervention. Acta Physiol. (Oxf), 211, 188–200.

3810 | Human Molecular Genetics, 2015, Vol. 24, No. 13

 at L
unds U

niversitet on M
ay 20, 2016

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv124/-/DC1
www.lucamp.org
www.lucamp.org
www.lucamp.org
www.metabol.ku.dk
www.metabol.ku.dk
www.metabol.ku.dk
www.metabol.ku.dk
www.metabol.ku.dk
http://hmg.oxfordjournals.org/


21. Dick, K.J., Nelson, C.P., Tsaprouni, L., Sandling, J.K., Aissi, D.,
Wahl, S., Meduri, E., Morange, P.E., Gagnon, F., Grallert, H.
et al. (2014) DNA methylation and body-mass index: a gen-
ome-wide analysis. Lancet, 383, 1990–1998.

22. Teschendorff, A.E., West, J. and Beck, S. (2013) Age-associated
epigenetic drift: implications, and a case of epigenetic thrift?
Hum. Mol. Genet., 22, R7–R15.

23. Dayeh, T., Volkov, P., Salo, S., Hall, E., Nilsson, E., Olsson, A.H.,
Kirkpatrick, C.L., Wollheim, C.B., Eliasson, L., Ronn, T. et al.
(2014) Genome-wide DNA methylation analysis of human
pancreatic islets from type 2 diabetic and non-diabetic do-
nors identifies candidate genes that influence insulin secre-
tion. PLoS Genet., 10, e1004160.

24. Ling, C., Poulsen, P., Simonsson, S., Rönn, T., Holmkvist, J.,
Almgren, P., Hagert, P., Nilsson, E., Mabey, A.G., Nilsson, P.
et al. (2007) Genetic and epigenetic factors are associated
with expression of respiratory chain component NDUFB6 in
human skeletal muscle. J. Clin. Invest., 117, 3427–3435.

25. Rönn,T., Poulsen, P.,Hansson,O.,Holmkvist, J., Almgren, P.,Nils-
son, P., Tuomi, T., Isomaa, B., Groop, L., Vaag, A. et al. (2008) Age
influences DNAmethylation and gene expression of COX7A1 in
human skeletal muscle. Diabetologia, 51, 1159–1168.

26. Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G.,
Sadda, S., Klotzle, B., Bibikova, M., Fan, J.B., Gao, Y. et al.
(2013) Genome-widemethylation profiles reveal quantitative
views of human aging rates. Mol. Cell, 49, 359–367.

27. Johansson, A., Enroth, S. and Gyllensten, U. (2013) Continu-
ous aging of the human DNA methylome throughout the
human lifespan. PLoS One, 8, e67378.

28. Florath, I., Butterbach, K., Muller, H., Bewerunge-Hudler, M.
and Brenner, H. (2013) Cross-sectional and longitudinal
changes in DNA methylation with age: an epigenome-wide
analysis revealing over novel age-associated CpG sites.
Hum. Mol. Genet., 23, 1186–1201.

29. Day, K., Waite, L.L., Thalacker-Mercer, A., West, A., Bamman,
M.M., Brooks, J.D., Myers, R.M. and Absher, D. (2013) Differen-
tial DNA methylation with age displays both common and
dynamic features across human tissues that are influenced
by CpG landscape. Genome Biol., 14, R102.

30. Fox, J. and Monette, G. (1992) Generalized collinearity
diagnostics. J. Am. Statist. Assoc., 87, 178–183.

31. Jones, P.A. (2012) Functions of DNAmethylation: islands, start
sites, gene bodies and beyond. Nat. Rev. Genet., 13, 484–492.

32. Manneras-Holm, L., Leonhardt, H., Kullberg, J., Jennische, E.,
Oden, A., Holm, G., Hellstrom, M., Lonn, L., Olivecrona, G.,
Stener-Victorin, E. et al. (2011) Adipose tissue has aberrant
morphology and function in PCOS: enlarged adipocytes and
low serum adiponectin, but not circulating sex steroids, are
strongly associated with insulin resistance. J. Clin. Endocrinol.
Metab., 96, E304–E311.

33. Stener-Victorin, E., Holm, G., Labrie, F., Nilsson, L., Janson,
P.O. and Ohlsson, C. (2010) Are there any sensitive and specif-
ic sex steroid markers for polycystic ovary syndrome? J. Clin.
Endocrinol. Metab., 95, 810–819.

34. Calabrese, F., Guidotti, G., Racagni, G. and Riva, M.A. (2013)
Reduced neuroplasticity in aged rats: a role for the neurotro-
phin brain-derived neurotrophic factor. Neurobiol. Aging, 34,
2768–2776.

35. Cho, J.H., Kim, M.J., Kim, K.J. and Kim, J.R. (2012) POZ/BTB and
AT-hook-containing zinc finger protein 1 (PATZ1) inhibits
endothelial cell senescence through a p53 dependent path-
way. Cell Death Differ., 19, 703–712.

36. Kitamura, N., Nakamura, Y., Miyamoto, Y., Miyamoto, T.,
Kabu, K., Yoshida, M., Futamura, M., Ichinose, S. and

Arakawa, H. (2011) Mieap, a p53-inducible protein, controls
mitochondrial quality by repairing or eliminating unhealthy
mitochondria. PLoS One, 6, e16060.

37. Makpol, S., Zainuddin, A., Chua, K.H., Mohd Yusof, Y.A. and
Ngah, W.Z. (2013) Gamma-tocotrienol modulated gene ex-
pression in senescent human diploid fibroblasts as revealed
by microarray analysis. Oxid. Med. Cell Longev., 2013, 454328.

38. Nakura, J., Miki, T., Nagano, K., Kihara, K., Ye, L., Kamino, K.,
Fujiwara, Y., Yoshida, S., Murano, S., Fukuchi, K. et al. (1993)
Close linkage of the gene for Werner’s syndrome to ANK1
and D8S87 on the short arm of chromosome 8. Gerontology,
39(Suppl 1), 11–15.

39. Steegenga,W.T., Boekschoten,M.V., Lute, C., Hooiveld, G.J., de
Groot, P.J., Morris, T.J., Teschendorff, A.E., Butcher, L.M., Beck,
S. and Muller, M. (2014) Genome-wide age-related changes in
DNAmethylation and gene expression in human PBMCs.Age
(Dordr), 36, 9648.

40. Bell, J.T., Tsai, P.C., Yang, T.P., Pidsley, R., Nisbet, J., Glass, D.,
Mangino, M., Zhai, G., Zhang, F., Valdes, A. et al. (2012)
Epigenome-wide scans identify differentially methylated re-
gions for age and age-related phenotypes in a healthy ageing
population. PLoS Genet., 8, e1002629.

41. Garagnani, P., Bacalini, M.G., Pirazzini, C., Gori, D., Giuliani, C.,
Mari, D., Di Blasio, A.M., Gentilini, D., Vitale, G., Collino, S.
et al. (2012) Methylation of ELOVL2 gene as a new epigenetic
marker of age. Aging Cell, 11, 1132–1134.

42. Heyn, H., Li, N., Ferreira, H.J., Moran, S., Pisano, D.G., Gomez,
A., Diez, J., Sanchez-Mut, J.V., Setien, F., Carmona, F.J. et al.
(2012) Distinct DNA methylomes of newborns and centenar-
ians. Proc. Natl Acad. Sci. USA, 109, 10522–10527.

43. Rakyan, V.K., Down, T.A., Maslau, S., Andrew, T., Yang, T.P.,
Beyan, H., Whittaker, P., McCann, O.T., Finer, S., Valdes,
A.M. et al. (2010) Human aging-associated DNA hypermethy-
lation occurs preferentially at bivalent chromatin domains.
Genome Res., 20, 434–439.

44. Teschendorff, A.E., Menon, U., Gentry-Maharaj, A., Ramus,
S.J., Weisenberger, D.J., Shen, H., Campan, M., Noushmehr,
H., Bell, C.G., Maxwell, A.P. et al. (2010) Age-dependent DNA
methylation of genes that are suppressed in stem cells is a
hallmark of cancer. Genome Res., 20, 440–446.

45. Xu, Z. and Taylor, J.A. (2014) Genome-wide age-related DNA
methylation changes in blood and other tissues relate to
histone modification, expression and cancer. Carcinogenesis,
35, 356–364.

46. Laakso, M., Malkki, M., Kekalainen, P., Kuusisto, J. and
Deeb, S.S. (1994) Insulin receptor substrate-1 variants in
non-insulin-dependent diabetes. J. Clin. Invest., 94, 1141–
1146.

47. Wang, J., Zhang, J., Shen, J., Hu, D., Yan, G., Liu, X., Xu, X., Pei,
L., Li, Y. and Sun, C. (2014) Association of KCNQ1 and KLF14
polymorphisms and risk of type 2 diabetes mellitus: a global
meta-analysis. Hum. Immunol., 75, 342–347.

48. Arner, P., Bernard, S., Salehpour, M., Possnert, G., Liebl, J.,
Steier, P., Buchholz, B.A., Eriksson, M., Arner, E., Hauner, H.
et al. (2011) Dynamics of human adipose lipid turnover in
health and metabolic disease. Nature, 478, 110–113.

49. El-Osta, A., Brasacchio, D., Yao, D., Pocai, A., Jones, P.L.,
Roeder, R.G., Cooper, M.E. and Brownlee, M. (2008) Transient
high glucose causes persistent epigenetic changes and
altered gene expression during subsequent normoglycemia.
J. Exp. Med., 205, 2409–2417.

50. Reddy, M.A. and Natarajan, R. (2013) Role of epigenetic
mechanisms in the vascular complications of diabetes. Subcell.
Biochem., 61, 435–454.

Human Molecular Genetics, 2015, Vol. 24, No. 13 | 3811

 at L
unds U

niversitet on M
ay 20, 2016

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/


51. Yang, B.T., Dayeh, T.A., Kirkpatrick, C.L., Taneera, J., Kumar,
R., Groop, L., Wollheim, C.B., Nitert, M.D. and Ling, C. (2011)
Insulin promoter DNA methylation correlates negatively
with insulin gene expression and positively with HbA(1c)
levels in human pancreatic islets. Diabetologia, 54, 360–367.

52. Yang, B.T., Dayeh, T.A., Volkov, P.A., Kirkpatrick, C.L., Mal-
mgren, S., Jing, X., Renstrom, E., Wollheim, C.B., Nitert, M.D.
and Ling, C. (2012) IncreasedDNAmethylation anddecreased
expression of PDX-1 in pancreatic islets from patients with
type 2 diabetes. Mol. Endocrinol., 26, 1203–1202.

53. Dasu, M.R., Devaraj, S., Park, S. and Jialal, I. (2010) Increased
toll-like receptor (TLR) activation and TLR ligands in recently
diagnosed type 2 diabetic subjects. Diabetes Care, 33, 861–868.

54. Ljubicic, S., Bezzi, P., Brajkovic, S., Nesca, V., Guay, C., Ohbaya-
shi, N., Fukuda, M., Abderrhamani, A. and Regazzi, R. (2013)
The GTPase Rab37 participates in the control of insulin
exocytosis. PLoS One, 8, e68255.

55. Varney, M.D., Valdes, A.M., Carlson, J.A., Noble, J.A., Tait, B.D.,
Bonella, P., Lavant, E., Fear, A.L., Louey, A., Moonsamy, P. et al.
(2010) HLA DPA1, DPB1 alleles and haplotypes contribute to
the risk associated with type 1 diabetes: analysis of the type
1 diabetes genetics consortium families. Diabetes, 59, 2055–
2062.

56. Rakyan, V.K., Down, T.A., Thorne, N.P., Flicek, P., Kulesha, E.,
Graf, S., Tomazou, E.M., Backdahl, L., Johnson, N., Herberth,
M. et al. (2008) An integrated resource for genome-wide iden-
tification and analysis of human tissue-specific differentially
methylated regions (tDMRs). Genome Res., 18, 1518–1529.

57. Geeleher, P., Hartnett, L., Egan, L.J., Golden, A., Raja Ali, R.A.
and Seoighe, C. (2013) Gene-set analysis is severely biased
when applied to genome-widemethylation data. Bioinformat-
ics, 29, 1851–1857.

58. Chen, H., Kazemier, H.G., de Groote, M.L., Ruiters, M.H., Xu,
G.L. and Rots, M.G. (2013) Induced DNA demethylation by
targeting ten-eleven translocation 2 to the human ICAM-1
promoter. Nucleic Acids Res., 8, 203–209.

59. Brons, C., Jacobsen, S., Nilsson, E., Ronn, T., Jensen, C.B., Stor-
gaard, H., Poulsen, P., Groop, L., Ling, C., Astrup, A. et al. (2010)
Deoxyribonucleic acid methylation and gene expression of
PPARGC1A in human muscle is influenced by high-fat over-
feeding in a birth-weight-dependentmanner. J. Clin. Endocrinol.
Metab., 95, 3048–3056.

60. Gillberg, L., Jacobsen, S.C., Rönn, T., Brons, C. and Vaag, A.
(2014) PPARGC1A DNAmethylation in subcutaneous adipose
tissue in low birth weight subjects—impact of 5 days of high-
fat overfeeding. Metabolism, 63, 263–271.

61. Hall, E., Volkov, P., Dayeh, T., Bacos, K., Ronn, T., Nitert, M.D.
and Ling, C. (2014) Effects of palmitate on genome-wide
mRNA expression and DNA methylation patterns in human
pancreatic islets. BMC Med., 12, 103.

62. Nitert, M.D., Dayeh, T., Volkov, P., Elgzyri, T., Hall, E., Nilsson,
E., Yang, B.T., Lang, S., Parikh, H.,Wessman, Y. et al. (2012) Im-
pact of an exercise intervention on DNAmethylation in skel-
etal muscle from first-degree relatives of patients with type 2
diabetes. Diabetes, 61, 3322–3332.

63. Nilsson, E.E. and Skinner, M.K. (2015) Environmentally in-
duced epigenetic transgenerational inheritance of disease
susceptibility. Transl. Res., 165, 12–17.

64. Simmons, R. (2011) Epigenetics and maternal nutrition: na-
ture v. nurture. Proc. Nutr. Soc., 70, 73–81.

65. Ziller, M.J., Gu, H., Muller, F., Donaghey, J., Tsai, L.T., Kohlba-
cher, O., De Jager, P.L., Rosen, E.D., Bennett, D.A., Bernstein,
B.E. et al. (2013) Charting a dynamic DNA methylation land-
scape of the human genome. Nature, 500, 477–481.

66. Small, K.S., Hedman, A.K., Grundberg, E., Nica, A.C., Thor-
leifsson, G., Kong, A., Thorsteindottir, U., Shin, S.Y., Richards,
H.B., Soranzo, N. et al. (2011) Identification of an imprinted
master trans regulator at the KLF14 locus related to multiple
metabolic phenotypes. Nat. Genet., 43, 561–564.

67. Teslovich, T.M., Musunuru, K., Smith, A.V., Edmondson, A.C.,
Stylianou, I.M., Koseki, M., Pirruccello, J.P., Ripatti, S., Chas-
man, D.I., Willer, C.J. et al. (2010) Biological, clinical and popu-
lation relevance of 95 loci for blood lipids. Nature, 466, 707–
713.

68. Koziel, R., Pircher, H., Kratochwil, M., Lener, B., Hermann, M.,
Dencher, N.A. and Jansen-Durr, P. (2013) Mitochondrial re-
spiratory chain complex I is inactivated by NADPH oxidase
Nox4. Biochem. J., 452, 231–239.

69. Elgzyri, T., Parikh, H., Zhou, Y., Nitert, M.D., Ronn, T., Seger-
strom, A.B., Ling, C., Franks, P.W., Wollmer, P., Eriksson, K.F.
et al. (2012) First-degree relatives of type 2 diabetic patients
have reduced expression of genes involved in fatty acid
metabolism in skeletal muscle. J. Clin. Endocrinol. Metab., 97,
1332–1337.

70. Anveden, A., Sjoholm, K., Jacobson, P., Palsdottir, V., Walley,
A.J., Froguel, P., Al-Daghri, N., McTernan, P.G., Mejhert, N.,
Arner, P. et al. (2012) ITIH-5 expression in human adipose tis-
sue is increased in obesity. Obesity (Silver Spring), 20, 708–714.

71. Mazzali, M., Kipari, T., Ophascharoensuk, V., Wesson, J.A.,
Johnson, R. and Hughes, J. (2002) Osteopontin—a molecule
for all seasons. QJM, 95, 3–13.

72. Schutyser, E., Richmond, A. and Van Damme, J. (2005)
Involvement of CC chemokine ligand 18 (CCL18) in normal
and pathological processes. J. Leukoc. Biol., 78, 14–26.

73. Frayling, T.M., Timpson,N.J.,Weedon,M.N., Zeggini, E., Freathy,
R.M., Lindgren, C.M., Perry, J.R., Elliott, K.S., Lango, H., Rayner,
N.W. et al. (2007) A common variant in the FTO gene is asso-
ciated with body mass index and predisposes to childhood
and adult obesity. Science, 316, 889–894.

74. Smemo, S., Tena, J.J., Kim, K.H., Gamazon, E.R., Sakabe, N.J.,
Gomez-Marin, C., Aneas, I., Credidio, F.L., Sobreira, D.R.,
Wasserman, N.F. et al. (2014) Obesity-associated variants
within FTO form long-range functional connections with
IRX3. Nature, 507, 371–375.

75. Boks, M.P., Derks, E.M., Weisenberger, D.J., Strengman, E.,
Janson, E., Sommer, I.E., Kahn, R.S. and Ophoff, R.A. (2009)
The relationship of DNA methylation with age, gender and
genotype in twins and healthy controls. PLoS One, 4, e6767.

76. Cotton, A.M., Lam, L., Affleck, J.G., Wilson, I.M., Penaherrera,
M.S., McFadden, D.E., Kobor, M.S., Lam, W.L., Robinson, W.P.
and Brown, C.J. (2011) Chromosome-wide DNA methylation
analysis predicts human tissue-specific X inactivation.
Hum. Genet., 130, 187–201.

77. Eckhardt, F., Lewin, J., Cortese, R., Rakyan, V.K., Attwood, J.,
Burger, M., Burton, J., Cox, T.V., Davies, R., Down, T.A. et al.
(2006) DNA methylation profiling of human chromosomes
6, 20 and 22. Nat. Genet., 38, 1378–1385.

78. El-Maarri, O., Becker, T., Junen, J., Manzoor, S.S., Diaz-Laca-
va, A., Schwaab, R., Wienker, T. and Oldenburg, J. (2007)
Gender specific differences in levels of DNA methylation
at selected loci from human total blood: a tendency toward
higher methylation levels in males. Hum. Genet., 122,
505–514.

79. Hall, E., Volkov, P., Dayeh, T., Esguerra, J.L., Salo, S., Eliasson,
L., Ronn, T., Bacos, K. and Ling, C. (2014) Sex differences in the
genome-wide DNA methylation pattern and impact on gene
expression, microRNA levels and insulin secretion in human
pancreatic islets. Genome Biol., 15, 522.

3812 | Human Molecular Genetics, 2015, Vol. 24, No. 13

 at L
unds U

niversitet on M
ay 20, 2016

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/


80. McCarthy, N.S., Melton, P.E., Cadby, G., Yazar, S., Franchina,
M., Moses, E.K., Mackey, D.A. and Hewitt, A.W. (2014)
Meta-analysis of human methylation data for evidence of
sex-specific autosomal patterns. BMC Genomics, 15, 981.

81. Sarter, B., Long, T.I., Tsong,W.H., Koh,W.P., Yu,M.C. and Laird,
P.W. (2005) Sex differential inmethylation patterns of selected
genes in Singapore Chinese. Hum. Genet., 117, 402–403.

82. Hatanaka, M., Shimba, S., Sakaue, M., Kondo, Y., Kagechika,
H., Kokame, K., Miyata, T. and Hara, S. (2009) Hypoxia-indu-
cible factor-3alpha functions as an accelerator of 3T3-L1 adi-
pose differentiation. Biol. Pharm. Bull., 32, 1166–1172.

83. Heidbreder, M., Qadri, F., Johren, O., Dendorfer, A.,
Depping, R., Frohlich, F., Wagner, K.F. and Dominiak, P.
(2007) Non-hypoxic induction of HIF-3alpha by 2-deoxy-
-glucose and insulin. Biochem. Biophys. Res. Commun.,
352, 437–443.

84. Reinius, L.E., Acevedo, N., Joerink, M., Pershagen, G., Dahlen,
S.E., Greco, D., Soderhall, C., Scheynius, A. and Kere, J. (2012)
Differential DNA methylation in purified human blood cells:
implications for cell lineage and studies on disease suscepti-
bility. PLoS One, 7, e41361.

85. Jacobsen, S.C., Gillberg, L., Bork-Jensen, J., Ribel-Madsen, R.,
Lara, E., Calvanese, V., Ling, C., Fernandez, A.F., Fraga, M.F.,
Poulsen, P. et al. (2014) Young men with low birthweight
exhibit decreased plasticity of genome-wide muscle DNA
methylation by high-fat overfeeding. Diabetologia, 57,
1154–1158.

86. Boesgaard, T.W., Gjesing, A.P., Grarup, N., Rutanen, J., Jans-
son, P.A., Hribal, M.L., Sesti, G., Fritsche, A., Stefan, N., Staiger,
H. et al. (2009) Variant near ADAMTS9 known to associate
with type 2 diabetes is related to insulin resistance in off-
spring of type 2 diabetes patients—EUGENE2 study. PLoS
One, 4, e7236.

87. Gillberg, L., Jacobsen, S., Ribel-Madsen, R., Gjesing, A.P.,
Boesgaard, T.W., Ling, C., Pedersen, O., Hansen, T. and Vaag,
A. (2013) DoesDNAmethylation of PPARGC1A influence insu-
lin action in first degree relatives of patients with type 2 dia-
betes? PLoS One, 8, e58384.

88. Bibikova, M., Barnes, B., Tsan, C., Ho, V., Klotzle, B., Le, J.M.,
Delano, D., Zhang, L., Schroth, G.P., Gunderson, K.L., Fan,
J.B. and Shen, R. (2011) High density DNA methylation array
with single CpG site resolution. Genomics, 98, 288–295.

89. Dedeurwaerder, S., Defrance, M., Calonne, E., Denis, H.,
Sotiriou, C. and Fuks, F. (2011) Evaluation of the Infinium
Methylation 450K technology. Epigenomics, 3, 771–784.

90. Teschendorff, A.E., Menon, U., Gentry-Maharaj, A., Ramus,
S.J., Gayther, S.A., Apostolidou, S., Jones, A., Lechner, M.,
Beck, S., Jacobs, I.J. et al. (2009) An epigenetic signature in
peripheral blood predicts active ovarian cancer. PLoS One, 4,
e8274.

91. Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling,
M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J. et al. (2004)
Bioconductor: open software development for computational
biology and bioinformatics. Genome Biol., 5, R80.

92. Du, P., Kibbe,W.A. and Lin, S.M. (2008) lumi: a pipeline for pro-
cessing Illumina microarray. Bioinformatics, 24, 1547–1548.

93. Du, P., Zhang, X., Huang, C.C., Jafari, N., Kibbe, W.A., Hou, L.
and Lin, S.M. (2010) Comparison of Beta-value and M-value
methods for quantifying methylation levels by microarray
analysis. BMC Bioinformatics, 11, 587.

94. Price, M.E., Cotton, A.M., Lam, L.L., Farre, P., Emberly, E.,
Brown, C.J., Robinson, W.P. and Kobor, M.S. (2013) Additional
annotation enhances potential for biologically-relevant
analysis of the Illumina Infinium HumanMethylation450
BeadChip array. Epigenetics Chromatin, 6, 4.

95. Chen, Y.A., Lemire, M., Choufani, S., Butcher, D.T.,
Grafodatskaya, D., Zanke, B.W., Gallinger, S., Hudson, T.J.
andWeksberg, R. (2013) Discovery of cross-reactive probes
and polymorphic CpGs in the Illumina Infinium Human-
Methylation450 microarray. Epigenetics, 8, 203–209.

96. Teschendorff, A.E., Marabita, F., Lechner, M., Bartlett, T.,
Tegner, J., Gomez-Cabrero, D. and Beck, S. (2013) A beta-
mixture quantile normalization method for correcting
probe design bias in Illumina Infinium 450 k DNA methyla-
tion data. Bioinformatics, 29, 189–196.

97. Johnson, W.E., Li, C. and Rabinovic, A. (2007) Adjusting batch
effects in microarray expression data using empirical Bayes
methods. Biostatistics, 8, 118–127.

98. Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D.,
Antonellis, K. J., Scherf, U. and Speed, T. P. (2003) Exploration,
normalization, and summaries of high density oligonucleo-
tide array probe level data. Biostatistics, 4(2), 249–264.

99. Storey, J.D. and Tibshirani, R. (2003) Statistical significance for
genomewide studies. Proc. Natl Acad. Sci. USA, 100, 9440–9445.

Human Molecular Genetics, 2015, Vol. 24, No. 13 | 3813

 at L
unds U

niversitet on M
ay 20, 2016

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/


Study III





RESEARCH ARTICLE

A Genome-Wide mQTL Analysis in Human
Adipose Tissue Identifies Genetic Variants
Associated with DNA Methylation, Gene
Expression and Metabolic Traits
Petr Volkov1, Anders H. Olsson1,2, Linn Gillberg2, Sine W. Jørgensen2, Charlotte Brøns2,
Karl-Fredrik Eriksson3, Leif Groop4, Per-Anders Jansson5, Emma Nilsson1,2, Tina Rönn1,
Allan Vaag2, Charlotte Ling1*

1 Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical
Research Centre, Malmö, Sweden, 2 Department of Endocrinology, Diabetes and Metabolism,
Rigshospitalet, Copenhagen, Denmark, 3 Department of Clinical Sciences, Vascular Diseases, Lund
University, Malmö, Sweden, 4 Department of Clinical Sciences, Diabetes and Endocrinology, Lund
University Diabetes Centre, Clinical Research Centre, Malmö, Sweden, 5 The Lundberg Laboratory for
Diabetes Research, Center of Excellence for Cardiovascular and Metabolic Research, Department of
Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska University Hospital, University of
Gothenburg, Gothenburg, Sweden

* charlotte.ling@med.lu.se

Abstract
Little is known about the extent to which interactions between genetics and epigenetics may

affect the risk of complex metabolic diseases and/or their intermediary phenotypes. We per-

formed a genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human

adipose tissue of 119 men, where 592,794 single nucleotide polymorphisms (SNPs) were

related to DNA methylation of 477,891 CpG sites, covering 99% of RefSeq genes. SNPs in

significant mQTLs were further related to gene expression in adipose tissue and obesity

related traits. We found 101,911 SNP-CpG pairs (mQTLs) in cis and 5,342 SNP-CpG pairs

in trans showing significant associations between genotype and DNA methylation in adi-

pose tissue after correction for multiple testing, where cis is defined as distance less than

500 kb between a SNP and CpG site. These mQTLs include reported obesity, lipid and type

2 diabetes loci, e.g. ADCY3/POMC, APOA5, CETP, FADS2,GCKR, SORT1 and LEPR. Sig-
nificant mQTLs were overrepresented in intergenic regions meanwhile underrepresented in

promoter regions and CpG islands. We further identified 635 SNPs in significant cis-mQTLs

associated with expression of 86 genes in adipose tissue including CHRNA5,G6PC2,
GPX7, RPL27A, THNSL2 and ZFP57. SNPs in significant mQTLs were also associated with

body mass index (BMI), lipid traits and glucose and insulin levels in our study cohort and

public available consortia data. Importantly, the Causal Inference Test (CIT) demonstrates

how genetic variants mediate their effects on metabolic traits (e.g. BMI, cholesterol, high-

density lipoprotein (HDL), hemoglobin A1c (HbA1c) and homeostatic model assessment of

insulin resistance (HOMA-IR)) via altered DNA methylation in human adipose tissue. This

study identifies genome-wide interactions between genetic and epigenetic variation in both
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cis and trans positions influencing gene expression in adipose tissue and in vivo (dys)meta-

bolic traits associated with the development of obesity and diabetes.

Introduction
Genetic factors contribute to the risk of complex metabolic diseases such as obesity and type 2
diabetes. Although genome-wide association studies (GWAS) have identified numerous
genetic loci influencing the risk of developing obesity and type 2 diabetes, only a few of these
loci have been linked to the molecular mechanisms contributing to the phenotype outcome [1].
Moreover, the identified genetic loci do only explain a modest proportion of the estimated heri-
tability of these diseases and additional genetic mechanisms remain to be found. These may
include genetic variants interacting with epigenetic modifications.

The phenomenon of epigenetic modifications are of interest to study for their possible
involvement in phenotype transmission and predisposition to complex human diseases,
including obesity and type 2 diabetes [2,3]. Epigenetics has been defined as heritable changes
in gene function that occur without alterations in the DNA sequence and includes the molecu-
lar mechanism of DNAmethylation [4]. In differentiated mammalian cells, DNA methylation
occurs primarily at cytosines in CG dinucleotides, so called CpG methylation, which is associ-
ated with regulation of cell specific gene expression [5,6]. DNA methylation patterns are
mainly established early in life, but may also be dynamic and change in response to environ-
mental stimulations such as diet and exercise [7–10]. Concurrently, once epigenetic modifica-
tions are introduced they can be stable and inherited [11,12], making epigenetics a potentially
important pathogenic mechanism in complex metabolic diseases. Interestingly, twin studies
provide evidence for an underlying genetic effect on DNAmethylation patterns [13–16]. For
example using monozygotic and dizygotic twins, Grundberg et al showed that as much as 37%
of the methylation variance can be attributed to genetic factors, which is in line with previous
studies [15,16]. In addition, recent studies showed that common genetic variation regulates
DNAmethylation levels, so called methylation quantitative trait loci (mQTLs) [16–20]. How-
ever, most of these studies have been limited to analyses of ~0.1% of human CpG sites in pro-
moter regions [17–19] or restricted to SNPs located within 100 kb from analyzed CpG sites
[16]. It remains to be tested if genetic and epigenetic variation interacts throughout the genome
in human adipose tissue and subsequently affect gene expression and metabolic traits such as
BMI, lipid levels and hemoglobin A1c (HbA1c) in the studied individuals.

The aim of the present study was therefore to perform a genome-wide mQTL analysis in
human adipose tissue, investigating both cis and trans effects of genetic variation on DNA
methylation covering most genes and regions in the human genome. Identified mQTLs were
followed-up and related to gene expression in adipose tissue. Additionally, since the adipose
tissue contributes to whole body energy homeostasis by glucose uptake, triglyceride storage
and adipokine secretion, we investigated if the identified SNPs in significant mQTLs affect
metabolic traits that are associated with increased risk of obesity and type 2 diabetes in the
studied cohort. We further used a causal inference test (CIT) [21] to model the potential causal
relationships between genotype, DNA methylation and metabolic phenotypes.

The present study provides the first detailed map of genetic loci in both cis and trans posi-
tions affecting the genome-wide DNAmethylation pattern in human adipose tissue as well as
numerous metabolic traits. Identified mQTLs cover known lipid, obesity and diabetes loci. Our
study highlights that interaction analysis between genetic and epigenetic variation in a tissue of
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relevance for metabolic diseases may give new insights to biological processes affecting disease
susceptibility.

Results

Associations between genetic variation and DNAmethylation in human
adipose tissue–a genome-wide mQTL analysis
To examine and map underlying genetic control of DNAmethylation patterns in human adi-
pose tissue, we performed a genome-wide mQTL analysis (Fig 1). While most previous mQTL
studies have been limited to analysis of ~0.1% of human CpG sites [17–19] or SNPs within 100
kb from analyzed CpG sites [16] we performed the first combined cis- and trans-mQTL analy-
sis covering DNA methylation of most genes and genomic regions in human adipose tissue of
119 Scandinavian men (Table 1). Here, we pairwise associated genotype data of 592,794 com-
mon SNPs (MAF>0.05) with DNAmethylation of 477,891 CpG sites throughout the human
genome using a linear regression model including sub-cohort, age and BMI as covariates.

The cis-mQTL analysis was limited to SNPs located within 500 kb of either side of the ana-
lyzed CpG sites. Here, we detected 101,911 SNP-CpG pairs (mQTLs) showing significant asso-
ciations between genotype and the degree of DNAmethylation after correction for multiple

Fig 1. Analysis flowchart of the study.

doi:10.1371/journal.pone.0157776.g001
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testing (seeMethods), corresponding to 51,143 unique SNPs and 15,208 unique CpG sites
(Table 2 and S1 Table). Of these 15,208 significant CpG sites, 10,064 were annotated to 5,589
unique genes (Table 2) and 5,144 CpG sites were annotated to intergenic regions. The most
and least significant cis-mQTLs are shown in Fig 2A–2B.

Previously, we reported that approximately 50% of type 2 diabetes associated SNPs identi-
fied by GWAS either introduce or remove a CpG site, a so called CpG-SNP. These CpG-SNPs
were further associated with differential DNA methylation of the CpG-SNP site in human pan-
creatic islets [22]. Among the significant cis-mQTLs in the present study, 447 SNPs were
located within a CpG site, i.e. the distance between a SNP and CpG site is 0 or 1 and thereby
remove or introduce a CpG site–CpG-SNPs (S1 Table). The most significant mQTL among
these 447 cis-mQTLs is presented in Fig 2C.

When a distance analysis was performed, we found an overrepresentation (p< 2.2−16) of
SNPs in significant cis-mQTL located close to the CpG site (Fig 2D–2E), with a median dis-
tance between SNPs and CpG sites of significant cis-mQTLs of 29.6 kb. Moreover, the strongest
association signals were found for SNPs located close to a CpG site (Fig 2F).

In the trans-mQTL analysis, including SNPs located more than 500 kb from the analyzed
CpG sites, we identified 5,342 SNP-CpG pairs showing significant associations between geno-
types and the degree of DNA methylation in adipose tissue after correction for multiple testing

Table 1. Characteristics of 119 Scandinavian men included in the mQTL analysis.

Phenotype Mean ± SD Min 1st. quartile Median 3rd quartile Max

Age (years) 31.03 ± 12.3 22 24 25 35 80

Fasting Glucose (mmol/l) 4.76 ± 0.64 3.2 4.4 4.7 5 7

Fasting Insulin (pmol/l) 37.29 ± 22.43 8 23.1 33 43.3 181.3

Weight (kg) 80.86 ± 11.6 57.2 72.6 80.4 89.57 112.7

BMI (kg/m2) 24.91 ± 3.7 16.4 22.2 24.6 27.15 39

Waist (cm) 90.31 ± 11.5 68 80.75 91 98.25 129

Hip (cm) 97.55 ± 8.8 78 91.75 98 104.2 113

Waist-Hip ratio 0.9 ± 0.06 0.79 0.87 0.9 0.92 1

Cholesterol (mmol/l) 4.5 ± 0.84 2.1 3.9 4.5 5.1 7.1

Triglycerides (mmol/l) 1.14 ± 0.66 0.3 0.72 1 1.3 4.9

HDL (mmol/l) 1.16 ± 0.2 0.5 1 1.13 1.37 1.86

LDL (mmol/l) 2.8 ± 0.77 1 2.3 2.8 3.5 4.7

HbA1c (%) 4.93 ± 0.48 3.7 4.7 5 5.2 6.4

HOMA-IR 1.15 ± 0.78 0.2 0.7 1 1.4 6.5

HOMA-B 133.69 ± 226.33 19.2 56 75.6 118.9 1834

doi:10.1371/journal.pone.0157776.t001

Table 2. Number of significant mQTL results in human adipose tissue.

cis-mQTL trans-mQTL

SNP-CpG pairs 101,911 5,342

SNPs 51,143 2,735

CpG sites 15,208 596

Unique genes 5,589 375

Significance threshold < 0.05 after Bonferroni correction for multiple testing.

Correction value cis = 104,023,091

Correction value trans = 211,781,637,483.

doi:10.1371/journal.pone.0157776.t002
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(seeMethods), corresponding to 2,735 unique SNPs and 596 unique CpG sites (Table 2 and S2
Table). Among unique CpG sites of significant trans-mQTLs, 366 CpG sites were annotated to
375 unique genes (Table 2 and S2 Table) and 230 CpG sites were annotated to intergenic
regions. The most and least significant trans-mQTLs are shown in Fig 2G–2H.

Genomic distribution of significant mQTLs in human adipose tissue
DNAmethylation in proximal promoter and/or enhancer regions is generally thought to have
silencing effects on gene transcription, meanwhile DNAmethylation in the gene body might
stimulate transcriptional elongation and contribute to alternative splicing events [6]. Giving
the various functions of DNAmethylation in the context of genomic regions, it is of interest to
study the underlying mechanisms regulating DNAmethylation patterns in different genomic
regions. We therefore studied the chromosomal and genomic distribution of CpG sites in sig-
nificant mQTLs in human adipose tissue. To determine whether the genomic distribution of
CpG sites in significant mQTLs differ significantly from all analyzed CpG sites on the array, we
performed chi-squared tests. The chromosomal distribution of CpG sites in significant cis- and
trans-mQTLs is shown in Fig 3A.We found an overrepresentation of CpG sites in significant
cis-mQTLs on chromosome 6, 7, 8, 13 and 21 together with an underrepresentation on chro-
mosomes 1, 2, 3, 11, 12, 14, 15, 17, 18, 19, 20 and X when compared to the chromosomal distri-
bution of all analyzed CpG sites (Fig 3A). The highest deviation from expectation of CpGs in
significant cis-mQTLs was observed on chromosome 6 (p-value = 3.4x10-89), where the highly
polymorphic HLA region is located, a genomic region linked to numerous autoimmune dis-
eases [23,24]. CpG sites in significant trans-mQTLs were overrepresented on chromosomes 6
and Y while underrepresented on chromosomes 9 and 14 (Fig 3A).

Furthermore, the Infinium HumanMethylation450 BeadChip estimates DNA methylation
in several genomic features and the analyzed CpG sites have been annotated based on their
genomic location in relation to the nearest gene including genomic regions TSS1500 and
TSS200 (1500–201 and 200–0 bases upstream of transcription start site (TSS), respectively),
5’UTR (untraslated region), 1st exon, gene body, 3’UTR and intergenic regions [25]. In the
present study, CpG sites in significant cis-mQTLs were overrepresented in the intergenic
regions and gene body, while significantly underrepresented in the TSS1500, TSS200, 5’UTR,
1st exon and 3'UTR (Fig 3B). Among significant trans-mQTLs, we found an overrepresenta-
tion of CpGs in the intergenic region and underrepresentation in TSS1500 and gene body (Fig
3B).

The analyzed CpG sites have also been annotated based on their relation to CpG islands,
including the following regions: CpG islands, northern and southern shores, northern and
southern shelves and open sea [25]. For CpG sites in significant cis-mQTLs, we found an over-
representation in the open sea, northern- and southern shores as well as in southern shelf

Fig 2. Associations between SNPs and DNAmethylation in human adipose tissue. A genome-wide mQTL analysis in
human adipose tissue was performed by associating SNPs with DNAmethylation of CpG sites located in either cis (�500 kb) or
trans. Boxplots of (a) the top cis-mQTL, (b) the bottom cis-mQTL, and (c) the top cis-mQTL where the SNP introduces or
removes a CpG site (CpG-SNP), showing significant associations between SNPs (genotype groups, x-axis) and DNA
methylation of CpG sites (%, y-axis). (d-e) The frequency of associations (y-axis) is plotted in relation to the relative distance
between SNPs and CpG sites (kb, x-axis) of significant cis-mQTLs. In (d) the full cis-mQTL distance of 500 kb is represented and
the frequency of significant cis-mQTLs within each distance bin of 10kb are plotted, and, in (e) the region of 0-50kb is zoomed
and the frequency of significant cis-mQTLs within in each distance bin of 1kb is plotted. (f) Histogram showing the strength of
association (-log10 p-value, y-axis) in relation to distance between SNP and CpG site (kb, x-axis) of significant cis-mQTLs. The
most frequent and strongest association signals of cis-mQTLs are shown within SNPs located close to CpG sites. (g-h) Boxplots
of (g) the top trans-mQTL, and (h) the bottom trans-mQTL, showing significant associations between SNPs (genotype groups, x-
axis) and DNAmethylation of CpG sites (%, y-axis). pcorr, p-values have been corrected for multiple testing by a modified
Bonferroni correction where the LD structure of SNPs is taken into account (see methods).

doi:10.1371/journal.pone.0157776.g002
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(Fig 3C). Moreover, an underrepresentation was found in CpG islands (Fig 3C). CpGs in sig-
nificant trans-mQTLs showed overrepresentation in the open sea and underrepresentation in
northern shore as well as southern shelf (Fig 3C).

Next, we performed a KEGG (Kyoto Encyclopaedia of Genes and Genomes) pathway analy-
sis to identify cellular components or biological pathways which show enrichment among

Fig 3. Distribution of CpG sites of significant mQTLs in relation to genomic regions.We examined the chromosomal and genomic
distribution of CpG sites in significant mQTLs in human adipose tissue. By using chi-squared-tests, we determined whether the observed
frequency of significant CpGs in cis- or trans-mQTLs differs from the frequency of all analyzed CpG sites for a particular genomic region. The
histograms show the distributions of CpGs in relation to (a) chromosomes, (b) nearest gene, and (c) CpG islands. *Frequencies, significantly
different (over-represented) from what expected by chance. #Frequencies, significantly different (under-represented) from what expected by
chance. Genomic region in relation to nearest gene includes: TSS 1500 and TSS 200 (sites located 1500–201 or 200–0 bases upstream of the
transcription start site (TSS) respectively), 5’UTR, 1st exon, gene body, 3’UTR and intergenic region (not mapped to any of the other regions).
Genomic region in relation to CpG island includes:CpG island, shore (flanking region of CpG island, 0–2000 bp), shelf (flanking region of
shore, 2000–4000 bp distant from CpG island) and open sea (not mapped to any of the other regions).

doi:10.1371/journal.pone.0157776.g003
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genes identified in cis- and trans-mQTL analyses in human adipose tissue. UsingWebGestalt
[26], we identified 172 significant (FDR< 0.05) KEGG pathways enriched among 5,589 genes
annotated to significant cismQTLs (S3 Table), including Metabolic pathways (Padj = 6.3x10-15)
and Pathways in Cancer (Padj = 7.3x10-42) were found among the most enriched KEGG pathways
(S3 Table). Moreover, 25 KEGG pathways were enriched among 375 genes annotated to signifi-
cant transmQTLs (S3 Table).

Candidate loci for obesity and diabetes related traits are detected among
mQTLs in human adipose tissue
Numerous SNPs associated with obesity, type 2 diabetes and related traits have previously been
identified by GWAS [1]. However, the molecular mechanisms explaining how most of these
SNPs affect gene function and disease pathology remain scarce. We therefore tested if identi-
fied SNPs in significant mQTLs in adipose tissue overlap with loci previously reported to asso-
ciate with obesity, type 2 diabetes or obesity/diabetes related traits in the GWAS catalog
(p<10−5) [27]. Out of the SNPs significantly associated with DNA methylation in the cis-
mQTL analysis and when taking proxy SNPs into account (R2>0.8, seeMethods), 19,706 over-
all, we found 231 SNPs of significant mQTLs that overlapped with at least one of the 2138
reported disease or trait locus identified in the GWAS catalog (S4 Table), which constitutes
1.17% of cis-mQTL SNPs and 10.8% of GWAS catalog SNPs. Representative mQTLs for some
of these loci are shown in Fig 4A–4J. These mQTLs include POMC and LEPR, which encode
proopiomelanocortin and the leptin receptor, respectively. Mutations in both these genes have
been associated with early onset obesity [28]. We also present mQTLs covering GIPR (encod-
ing gastric inhibitory polypeptide receptor), PARP4 (encoding poly(ADP-ribosyl)transferase-
like 1 protein), CEPT (encoding cholesteryl ester transfer protein), APOA5 (encoding apolipo-
protein A5), SORT1 (encoding sortilin 1), GCKR (encoding glucokinase regulator), FADS2
(encoding fatty acid desaturase 2), ACADS (encoding acyl-CoA dehydrogenase) and GRB10
(encoding growth factor receptor bound protein 10). SNPs in these loci have previously been
associated with BMI, T2D and/or obesity- and lipid-related traits [29–36].

Of SNPs in significant trans-mQTLs, we found 4 SNPs overlapping with reported obesity
loci in the GWAS catalog (Fig 4K and S5 Table).

The impact of identified mQTLs on mRNA expression in human adipose
tissue
It is well established that mRNA expression is regulated by both genetic variation and DNA
methylation independently [4,37]. However, the insights of how genetic and epigenetic varia-
tion interacts to influence gene expression remain limited. In order to study the impact of iden-
tified mQTLs on mRNA expression in human adipose tissue, we performed a follow-up eQTL
analysis in 118 samples with available microarray expression data (out of original 119 samples).
First, we related the 51,143 unique SNPs, showing significant association with DNA methyla-
tion in the cis-mQTL analysis, with mRNA expression of genes within 500kb (cis-distance). In
the eQTL analysis of significant cis-mQTL SNPs, we identified 926 SNP-mRNA transcript
pairs showing significant associations between genotypes and mRNA expression levels after
correction for multiple testing (seeMethods). These correspond to 635 unique SNPs and 86
unique genes, including CHRNA5, G6PC2, GPX7, RPL27A, THNSL2 and ZFP57 (Table 3, Fig
5 and S6 Table). CHRNA5 encodes a nicotinic acetylcholine receptor subunit and SNPs in this
locus have been associated with body weight in relation to tobacco use [38]. G6PC2 encodes
glucose-6-phosphatase catalytic subunit 2 and SNPs in this locus have been associated with gly-
cemic traits [39]. GPX7 encodes glutathione peroxidase 7 a protein involved in glutathione
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metabolism. RPL27A encodes Ribosomal protein L27A, which has been linked to human obe-
sity [40]. THNSL2 encodes threonine synthase like 2 and SNPs in this locus have been associ-
ated with obesity [41]. Additionally, ZFP57 encodes a zink finger protein and DNA
methylation and mutations in this locus are associated with transient neonatal diabetes [42].

The 2,735 unique SNPs identified in the trans-mQTL analysis were also followed-up and
related to mRNA expression of all analyzed genes. In the eQTL analysis of significant trans-
mQTL SNPs, we identified 270 significant associations between genotypes and mRNA expres-
sion levels after correction for multiple testing (seeMethod), consisting of 89 unique SNPs and
10 unique genes e.g. GSTT1,HLA-DQB1 and ZFP57 (Table 3 and S7 Table).

The impact of identified mQTLs on metabolic phenotypes
Given that adipose tissue contributes to whole body energy homeostasis by for instance insu-
lin-stimulated glucose uptake, triglyceride storage and adipokine secretion, we investigated if
the identified SNPs in significant mQTLs affect metabolic phenotypes in our study cohort.
Identified mQTL SNPs were related to obesity measurements, glycemic traits and lipid levels in
our study cohort of 119 Scandinavian men as well as looked-up in public available consortia
data from the GIANT [43,44], MAGIC [36,45,46] and GLGC [47] consortia. Out of the signifi-
cant cis-mQTLs, we found 62 SNPs associated with BMI, 185 with waist-hip ratio (WHR), 77
with fasting glucose, 62 with fasting insulin, 91 with homeostasis model of beta-cell function
(HOMA-B), 49 with HOMA-IR, 146 with HbA1c, 85 with total cholesterol, 84 with triglycer-
ides, 197 with HDL, 67 with LDL in both our study cohort and consortia data with the same
direction of allele effects and with P�0.05 (S8 Table). Several of these SNPs show genome-
wide significance in GIANT, MAGIC or GLGC. Representative associations between genotype
and some metabolic traits as well as DNA methylation in the 119 Scandinavian men are shown
in Fig 6A–6C. The SNPs presented in Fig 6 do also show genome-wide significance with
respective trait in GLGC (rs2523453, cholesterol, p = 6.5�10−08 and rs7205804, HDL,
p = 5.27−675) and MAGIC (rs11603334, fasting glucose, p = 2.9�10−08), respectively (S8 Table).

Fig 4. mQTLs in adipose tissue capture reported disease loci. Depiction of some identified mQTLs in adipose tissue of
previously reported GWAS loci associated with obesity: (a) POMC / ADCY3, (b)GIRP, and (c) PARP4; lipid profiles, waist and
metabolic syndrome: (d) CETP, (e) APOA5, (f) LEPR, (g) SORT1, (h)GCKR and (i) FADS2; and metabolic traits: (j) ACADS and (k)
GRB10. ADCY3 locus and LEPR loci were identified through proxy SNPs based on LD.

doi:10.1371/journal.pone.0157776.g004

Table 3. Number of significant eQTL results in human adipose tissue.

eQTLs of cis-mQTL-SNPs eQTLs of trans-mQTL-SNPs

SNP-mRNA transcript pairs 926 270

Unique SNPs 635 89

Unique mRNA transcripts 101 14

Unique genes 86 10

Only SNPs of significant mQTLs are included in the eQTL analysis.

SNPs of significant cis-mQTLs are regressed against mRNA expression of mRNA transcripts located in cis

(� 500kb).

SNPs of significant trans-mQTLs are regressed against mRNA expression of all mRNA transcripts.

Significance threshold < 0.05 after correction for multiple testing.

Correction value for eQTL analysis for cis-mQTL-SNPs = 934,021

Correction value for eQTL analysis for trans-mQTL-SNPs = 33,326,082.

doi:10.1371/journal.pone.0157776.t003
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Fig 5. mQTLs affect gene expression in human adipose tissue. Significant mQTL SNP-CpG pairs where
the SNP also shows significant association with gene expression in adipose tissue. The boxplots represent
some identified mQTL SNPs and associations of the same loci with mRNA expression: (a) CHRNA5, (b)
G6PC2, (c)GPX7, (d) RPL27A, (e) THNSL2 and (f) ZFP57. Annotations for these mQTLs are included in S1
Table.

doi:10.1371/journal.pone.0157776.g005

Fig 6. mQTLs in human adipose tissue affect metabolic phenotypes. The boxplots show significant mQTL SNPs associated with
metabolic phenotypes in our study cohort with p<0.05, and associations of these loci with DNAmethylation in adipose tissue for (a)
rs2523453, (b) rs7205804, (c) rs11603334.

doi:10.1371/journal.pone.0157776.g006
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Additionally, 8 loci detected in the overlap of the cis-mQTL and eQTL analysis were among
those associated with metabolic phenotypes (S8 and S9 Tables). These data show the effect of
interactions between common genetic variation and DNA methylation on gene expression and
metabolic outcome (depiction presented in Fig 7A–7E, all overlapping SNPs presented in S9
Table).

Of identified trans-mQTLs, we found 2 SNPs associated with BMI, 13 with WHR ratio, 6
with fasting glucose, 1 with fasting insulin, 2 with HOMA-IR, 42 with HbA1c, 6 with total cho-
lesterol, 7 with triglycerides, 68 with HDL, and 4 with LDL in both our study cohort and con-
sortia data with the same direction of allele effects and with P�0.05 (S10 Table).

Additionally, 2 of the identified cis-mQTL SNPS were previously found to be associated
with C-reactive protein (CRP) levels (S11 Table).

Additionally, some of the identified cis- and trans- mQTLs are annotated to candidate genes
for adipose-related traits. Out of the 157 loci previously implicated in lipid biology in GLGC
consortium [47], 48 (30%) were found among 5,589 unique genes annotated to significant cis-
mQTLs (S1 Table), and 4 among 375 unique genes annotated to significant trans-mQTLs (S2
Table).

Causality inference test (CIT)–DNAmethylation potentially mediates the
genetic impact on metabolic phenotypes
We proceeded to evaluate the potential causality relationships between genotypes (G), DNA
methylation (M) and phenotypic traits (P) using the CIT [21]. The possible relationships
between these three factors are shown in Fig 8. The CIT was performed in our cohort of 119
Scandinavian men for identified SNP-CpG pairs in the mQTL analysis where the SNP also
showed significant association with a metabolic phenotype in both our study cohort and pub-
licly available consortia data with P�0.05. For cis-mQTLs, we identified 39 SNP-CpG pairs,
corresponding to 35 unique SNPs and 22 unique CpGs, where SNP plays a causal role on meta-
bolic phenotype, mediated by DNA methylation (Table 4). Out of these 39 SNP-CpG pairs, 1
pair was significantly associated with BMI, 2 for fasting glucose, 1 for fasting insulin, 1 for
HOMA-B, 7 for HOMA-IR, 7 for HbA1c, 9 for cholesterol, 1 for triglycerides 5 for HDL and 5
for LDL (Table 4). Among the genes annotated to these SNP-CpG pairs, CDK2AP1,
HLA-DMA,MCM6, TCF19, CAMK1D and NEIL2 were found. None of the cis-mQTLs showed
a reactive relationship between a SNP and a metabolic phenotype.

Biological replication of mQTLs in human adipose tissue
To validate whether the results of mQTL analysis hold in an independent cohort, we also
looked for overlap with a recent study also showing associations between genetic variation and
DNAmethylation in human adipose tissue [16]. While both studies analyzed DNAmethyla-
tion using the Infinium HumanMethylation450 BeadChip, Grundberg et al. restricted their
mQTL analysis to SNPs located within 100 kb from analyzed CpG sites [16] and therefore it
was only possible to compare some of our results. It should also be taken into account that
while our study included men, the study by Grundberg et al. included women and the two
studies used different bioinformatic and statistical approaches, which may affect the possibility
to replicate the results. Nevertheless, among our significant cis-mQTLs, we found that 5,468
CpG sites also stand under genetic control of SNPs in the study by Grundberg et al., and out of
these 2,118 (38.6%) were associated with the same SNP in both their and our study [16].

Additionally, we recently performed an mQTL analysis in human pancreatic islets [20].
Here, we looked for overlap between the significant mQTLs identified in human adipose tissue
of the 119 men and the mQTLs previously found in human pancreatic islets [20]. Among our
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significant cis-mQTLs in adipose tissue, 39,386 were also found in pancreatic islets (S12
Table). Moreover, 1,852 significant trans-mQTLs overlapped between the two different tissues
(S13 Table).

mQTLs in human adipose tissue do also show differential DNA
methylation in patients with type 2 diabetes
We have previously identified CpG sites that are differentially methylated in adipose tissue
from subjects with type 2 diabetes compared with non-diabetic controls [15]. However, it
remains unknown if methylation of these sites may also be under genetic control. Therefore,
we further tested if these CpG sites [15] overlap with our significant cis and transmQTLs in
human adipose tissue (S1 and S2 Tables). Interestingly, we discovered that 237 CpG sites
among our significant cis-mQTLs and 7 CpG sites among our significant trans-mQTLs are
also differentially methylated in adipose tissue from subjects with type 2 diabetes (S14 Table),
suggesting that DNA methylation may mediate the genetic impact of type 2 diabetes.

mQTLs in human adipose tissue overlap with CpG sites associated with
BMI and HbA1c
We have previously identified CpG sites for which the adipose tissue methylation level associ-
ates with BMI and HbA1c [48]. Here, we examined if these CpG sites overlap with our cis and
trans-mQTLs in human adipose tissue (S1 and S2 Tables). We found that 33,058 CpG sites
previously identified as associated with BMI overlapped with 577 cis and 19 trans significant
mQTLs in current study (S15 Table). Moreover, out of 711 CpG sites associated with HbA1c,
25 and 1 CpG site overlapped with significant cis and transmQTLs respectively (S15 Table).

mQTL analyses in adipose tissue of two sub-cohorts
Since the subjects in the four sub-cohorts included in this study differ in age and BMI, we per-
formed a sub-analysis only including cohorts #1 and #2 as these subjects are phenotypically
similar. Here, we detected 66,329 mQTLs in cis showing significant associations between geno-
type and the degree of DNAmethylation after correction for multiple testing, corresponding to

Fig 7. mQTLs/eQTLs in human adipose tissue affect metabolic phenotypes. Significant mQTL SNPs
associated with both gene expression and a metabolic phenotype, with boxplots showing associations of
some of these loci with DNAmethylation, gene expression and metabolic traits: (a) rs619824, (b) rs7349405,
(c) rs7210728, (d) rs176095, (e) rs529488.

doi:10.1371/journal.pone.0157776.g007

Fig 8. CIT in human adipose tissue. Possible relationship models between genotype as a causal factor (G), DNA
methylation as the mediator factor (M) and metabolic phenotype as the phenotypic outcome (P).

doi:10.1371/journal.pone.0157776.g008
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Table 4. Identified cis-mQTLs where DNAmethylation potentially mediates the interactions between a genotype and a phenotype in human adi-
pose tissue.

Chr CpG Id CpG Gene CpG Gene
Region

SNP Id SNP Gene G vs M pcorr-
value

Phenotype G vs P p-
value

CIT causal p-
value

6 cg12929486 SLC22A16 TSS200 rs2428190 SLC22A16 1.30E-07 BMI 0.049 0.02

5 cg14825688 LEAP2 TSS1500 rs39830 UQCRQ 4.02E-06 Fasting
glucose

0.015 0.03

5 cg14825688 LEAP2 TSS1500 rs803217 - 5.20E-05 Fasting
glucose

0.018 0.03

2 cg01726273 - Intergenic rs4853438 SNRPG 3.60E-02 Fasting insulin 0.050 0.03

8 cg11123440 Intergenic rs12458 GATA4 8.99E-03 HOMA-B 0.042 0.03

12 cg10240950 C12orf76 Body rs1027949 GIT2 3.91E-02 HOMA-IR 0.036 0.05

12 cg10240950 C12orf76 Body rs10774978 TCHP 3.91E-02 HOMA-IR 0.030 0.05

12 cg10240950 C12orf76 Body rs11068984 GIT2 3.91E-02 HOMA-IR 0.017 0.05

10 cg26169081 CAMK1D;
CAMK1D

Body;Body rs11257926 CAMK1D 1.33E-03 HOMA-IR 0.021 0.04

10 cg26169081 CAMK1D;
CAMK1D

Body;Body rs17152029 CAMK1D 3.92E-04 HOMA-IR 0.003 0.01

10 cg26169081 CAMK1D;
CAMK1D

Body;Body rs17152037 CAMK1D 1.33E-03 HOMA-IR 0.005 0.04

12 cg10240950 C12orf76 Body rs2302689 ANKRD13A 3.91E-02 HOMA-IR 0.030 0.05

7 cg17372657 Intergenic rs1880296 - 2.69E-07 HbA1c 0.032 0.03

7 cg17372657 Intergenic rs2949170 - 1.79E-04 HbA1c 0.034 0.03

7 cg17372657 Intergenic rs2949192 - 9.02E-05 HbA1c 0.014 0.03

6 cg13561028 SFTA2 Body rs3130782 LOC100129065 3.68E-09 HbA1c 0.002 0.01

6 cg13561028 SFTA2 Body rs3131934 - 8.49E-08 HbA1c 0.002 0.04

16 cg04544033 - Intergenic rs556179 - 2.37E-02 HbA1c 0.014 0.03

6 cg13561028 SFTA2 Body rs7750641 TCF19 1.27E-17 HbA1c 0.028 0.02

12 cg21745287 ARL6IP4;
OGFOD2

TSS1500;3’UTR rs10846489 CDK2AP1 4.91E-03 Cholesterol 0.013 0.04

12 cg07644039 ARL6IP4;
OGFOD2

TSS1500;3’UTR rs10846489 CDK2AP1 2.34E-02 Cholesterol 0.013 0.04

12 cg21745287 ARL6IP4;
OGFOD2

TSS1500;3’UTR rs1109559 - 4.84E-03 Cholesterol 0.011 0.03

12 cg07644039 ARL6IP4;
OGFOD2

TSS1500;3’UTR rs1109559 - 1.44E-02 Cholesterol 0.011 0.03

12 cg07644039 ARL6IP4;
OGFOD2

TSS1500 rs4275659 ABCB9 2.24E-03 Cholesterol 0.010 0.02

12 cg21745287 ARL6IP4;
OGFOD2

TSS1500;3’UTR rs6488868 SBNO1 9.39E-04 Cholesterol 0.008 0.02

15 cg12371991 - Intergenic rs6494591 - 8.73E-03 Cholesterol 0.038 0.01

2 cg04490207 - Intergenic rs6712567 - 1.15E-02 Cholesterol 0.034 0.03

9 cg14341289 FSD1L TSS1500 rs885954 - 1.81E-02 Cholesterol 0.041 0.00

8 cg00820056 - Intergenic rs11787024 LY6H 6.37E-03 Triglycerides 0.033 0.04

6 cg14833385 HLA-DMA TSS1500 rs1480380 - 3.50E-17 HDL 0.007 0.03

2 cg01726273 - Intergenic rs2921711 TIA1 3.60E-02 HDL 0.037 0.04

2 cg07169764 MCM6;MCM6 1stExon;5'UTR rs309172 DARS 4.06E-07 HDL 0.011 0.01

8 cg05875700 ERICH1 Body rs3735917 ERICH1 3.17E-11 HDL 0.008 0.05

2 cg07169764 MCM6;MCM6 1stExon;5'UTR rs6750549 DARS 4.06E-07 HDL 0.010 0.01

4 cg08029340 MYL5 Body rs11726338 PIGG 9.63E-03 LDL 0.028 0.04

6 cg02525939 - Intergenic rs4710698 - 6.17E-07 LDL 0.007 0.04

6 cg04399728 - Intergenic rs4710698 - 2.69E-13 LDL 0.007 0.04

(Continued)
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36,909 unique SNPs and 11,788 unique CpG sites (S16 Table). Out of those 66,329 mQTLs,
63,714 (96%) overlapped with the analysis of all 4 cohorts.

In the trans-mQTL analysis, we identified 3,243 SNP-CpG pairs showing significant associ-
ations between genotypes and the degree of DNA methylation in adipose tissue after correction
for multiple testing, corresponding to 1,865 unique SNPs and 538 unique CpG sites (S17
Table). Out of those 3,243 mQTLs, 2,919 (90%) were previously identified in the analysis of all
4 cohorts.

mQTL analyses in adipose tissue without adjusting for BMI
In order to validate whether BMI as a covariate has a significant effect on a number of discov-
ered mQTLs, we performed a mQTL analysis of all 4 study cohorts without BMI as a covariate.
Overall, we detected 102,467 significant cismQTLs corresponding to 51,435 unique SNPs and
15,267 unique CpG sites. Out of those, 99,661 (97.2%) were also identified in the analysis
where BMI was included as a covariate (S18 Table). In trans, we discovered 5,435 significant
mQTLs, corresponding to 608 unique CpG sites and 2,765 unique SNPs, where 5,272 (97%)
were also identified in the main mQTL analysis (S19 Table).

Associations between DNAmethylation and mRNA expression in
human adipose tissue
We finally tested the direct association between DNAmethylation and gene expression in
human adipose tissue by performing a linear regression between individual mRNA transcripts
and DNA methylation of CpG sites in cis (500 kb up- and 100 kb downstream of respective
gene) including age, BMI and study cohort as covariates. We found significant associations
between DNA methylation and mRNA expression for 546 combinations (FDR<5%), consist-
ing of 473 unique CpG sites and 194 unique mRNA transcripts (S20 Table), which are anno-
tated to 173 genes.

In addition, we found that 262 CpG sites among our significant cis-mQTLs and 13 among
our significant trans-mQTLs overlapped with methylation sites associated with mRNA expres-
sion in adipose tissue (S20 Table).

Discussion
The present study highlights the importance of genome-wide interactions between genetic and
epigenetic variation and its role in human metabolism. Using CIT tests, we could for the first
time identify adipose tissue methylation-mediated relationships between genotype and meta-
bolic phenotypes, including lipid and glucose traits. Importantly, these data demonstrate how
genetic variants may mediate their effects on metabolic traits via altered DNA methylation in
human adipose tissue. Additionally, numerous identified mQTL-SNPs cover previously identi-
fied GWAS loci for obesity, lipid and diabetes related traits e.g. POMC, GIPR, GRB10, FADS2,
SORT1 and APOA5.

Table 4. (Continued)

Chr CpG Id CpG Gene CpG Gene
Region

SNP Id SNP Gene G vs M pcorr-
value

Phenotype G vs P p-
value

CIT causal p-
value

9 cg14341289 FSD1L TSS1500 rs885954 - 1.81E-02 LDL 0.005 0.00

2 cg09644356 - Intergenic rs940670 - 2.94E-06 LDL 0.001 0.03

doi:10.1371/journal.pone.0157776.t004
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Multiple SNPs identified through GWAS associate with complex metabolic disease includ-
ing obesity and type 2 diabetes [29,31,43,49–52]. However, the effect sizes of common variants
influencing these diseases are often modest and in total they only explain small proportions of
the estimated genetic predispositions to the diseases. Epigenetic factors such as DNA methyla-
tion have also been shown to be involved in the pathogenesis of various metabolic diseases
[7,9,15,29,53–60]. However, studies examining the genetic regulation of inter-individual varia-
tion in DNA methylation and its contribution to metabolic outcomes are scarce but would
likely give new insights to the field. Here, we performed a genome-wide mQTL analysis looking
at both cis and trans effects of genetic variation on DNA methylation in human adipose tissue.
To further link identified mQTLs with biological functions, we performed follow-up analyses
of significant mQTL SNPs with gene expression in adipose tissue and metabolic phenotypes in
our study cohort. We also looked for overlap with disease loci reported to associate with obesity
and diabetes related traits in GWAS. All together, we found 101,911 SNP-CpG pairs in cis and
5,342 SNP-CpG pairs in trans showing significant associations between genotype and DNA
methylation in adipose tissue demonstrating a strong genetic impact on DNA methylation in
human adipose tissue. Our data are in line with previous mQTL analyses, which also show
strong interactions between genetic and epigenetic variation [16–20,61], and in concordance,
we found an enrichment of cis-mQTLs in a short distance window between associated SNPs
and CpG sites. However, while most previous mQTLs have been limited to studying promoter
regions [17–19] or cis interactions [16], we can for the first time present mQTL results in adi-
pose tissue looking at both cis and trans effects in most genomic regions and genes. Interest-
ingly, we observe a higher than expected number of methylation sites in significant mQTLs
located in intergenic regions, in the gene body and outside of CpG islands. This observation is
in line with previous studies showing that differentially methylated sites in response to envi-
ronmental or genetic factors to a higher extent than expected are located outside CpG islands
or within intergenic and gene body regions [10,16]. It may be that promoter regions are rich in
CpG islands which are hypomethylated and are more evolutionary conserved based on their
biological function, meanwhile non-CpG islands are more methylated and dynamic [6,62–64].
Interestingly, we demonstrate for the first time an enrichment of significant mQTLs in adipose
tissue on chromosome 6. This chromosome possesses a highly polymorphic gene region coding
the HLA complexes which are known to be implicated in several autoimmune disorders and
inflammation processes [23,24]. Numerous loci identified in the cis- and trans-mQTL analysis,
as well as genes in the eQTL follow-up analysis, are linked to the HLA genes. Based on this
finding, we investigated the link between mQTLs on chromosome 6 and a measure of inflam-
mation e.g. i.e. CRP levels. Interestingly, we found that 2 SNPs in significant mQTLs cover
GWAS loci associated with CRP levels (S11 Table). However, none of them was located on
chromosome 6 [65].

Genetic association studies have improved our understanding of the biological basis of met-
abolic disease [66]. Nevertheless, the effect of numerous reported obesity and diabetes SNPs on
target genes or biology still remains unknown. Investigating the genetic control of variation in
DNAmethylation may improve our understanding of biological processes and linking loci to
tissue dependent phenotypes and diseases. Elevating, we found that several SNPs associated
with DNA methylation show impact on metabolic phenotypes in the studied cohort, including
obesity measurements, glucose- and insulin traits, as well as lipid profiles. The effect of mQTLs
on molecular phenotypes was further supported by independent replication in consortia data
of obesity measurements from GIANT [43,44], glucose traits fromMAGIC [36,45,46] and
lipid profiles from GLGC [47]. Although mQTL SNPs were only showing nominal association
to metabolic phenotypes in our study cohort, the overlap and replication in independent stud-
ies, based on consortium data, support effects of these SNPs on biological function. Indeed,
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several of these SNPs show genome-wide significance in previous GWAS [47,66–68]. These
include SNPs associated with cholesterol levels and annotated to ANKRD31 (ankyrin repeat
domain 31), HDL levels and annotated to CELSR2 (cadherin, EGF LAG seven-pass G-type
receptor 2) as well as fasting plasma glucose levels and annotated to ARAP1 (ankyrin repeat
and PH domain 1).

Given that SNPs affect DNA methylation and that DNA methylation is a dynamic process
that may change in response to environmental factors and affects phenotype transmission
[10,69], it may be possible that the SNP effect on DNAmethylation levels, and indirectly on
metabolic phenotypes, may change under different environmental conditions. It is hence possi-
ble that some of the identified mQTL SNPs overlapping with consortium data may have
escaped detection to disease phenotypes in previous GWAS studies since DNA methylation
levels was not considered. This form of gene-environment interactions could potentially affect
the SNPs impact on disease risk. Indeed, our previous data, where we identified a SNP that
introduces a CpG site in the promoter of NDUFB6, support this hypothesis [60]. Here, we
showed that while elderly carriers of the genotype that introduces a CpG site had a high degree
of methylation in the SNP-CpG site together with decreased skeletal muscle NDUFB6 expres-
sion and decreased glucose uptake, young carriers had low degree of methylation in the
SNP-CpG site together with increased skeletal muscle NDUFB6 expression and no effect on
glucose uptake. Together, this study demonstrates a clear interaction between genetic, epige-
netic and non-genetic factors. Additionally, genetic variation may carry inheritance of epige-
netic variation and thereby have an impact on the heritability of human diseases and may
explain some of the missing heritability of human complex diseases. Furthermore, we also
found that several SNPs associated with DNAmethylation in adipose tissue overlapped directly
or via proxy SNPs to previously reported disease loci of obesity related traits, including CETP
and FADS2, which are both known to be associated with total cholesterol, LDL, HDL and tri-
glyceride levels [47] These data support that genetic and epigenetic variation together influence
metabolic phenotypes and disease risk in humans.

In order to provide further insights into mechanisms of genetic and epigenetic interaction
and its impact on regulation of metabolic phenotypes, we used the CIT [21,70]. We discovered
39 significant mQTLs where DNAmethylation represents the mediator between genetic loci
and a metabolic trait. One of these mQTLs SNPs is associated with HDL regulation through
DNAmethylation of a CpG site annotated toMCM6. This is an MCM (minichromosome
maintenance) complex gene that previously has been shown to affect total cholesterol levels
[71]. Among other genes identified in the CIT analysis were TCF19, which has been associated
with type 1 diabetes through GWAS [72], and CAMK1D, which has been associated with type
2 diabetes [73] This supports the role of DNAmethylation as a direct mediator between genetic
variation and metabolic phenotypes. However, while the majority of significant cis-mQTL
SNP-CpG pairs were found to have independent effects on the analyzed phenotypes, the inde-
pendence cannot be concluded due to some limitations in our analysis. First, only a few pheno-
types were considered in the course of the analysis, and it might require other phenotypes to
discover all cause–effect relationships between SNPs, methylation and metabolic phenotype.
Second, as CIT only considers one SNP and one CpG site at a time, more complex interactions
involving several SNPs and or CpGs can be missed, which suggests that more sophisticated
analytical methods should be developed. An additional drawback of our study is the small sam-
ple size relative to the number of statistical comparisons. As the number of analyzed SNP–CpG
pairs is in the order of 1011, only the strongest interaction effects can be detected by means of
our mQTL analysis. To reduce the number of type 2 errors during multiple testing procedures,
we implemented a modified Bonferroni correction method, which took into account a linkage
disequilibrium dependency between analyzed SNPs. Additionally, we performed eQTL and
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CIT analysis only on the data that was shown to be significant in the mQTL analysis, thus
again significantly reducing number of performed statistical tests. While eQTL analyses have
been used to identify causal genetic variants for metabolic disease [74], here we provide the
first CIT analysis of genetic variation, DNA methylation in adipose tissue and metabolic traits.
Importantly, this analysis demonstrates how genetic variants mediate their effects on metabolic
traits (e.g. BMI, cholesterol, HDL, HbA1c and HOMA-IR) via altered DNA methylation in
human adipose tissue.

Interestingly, SNPs throughout the genome may introduce or delete CpG sites and thereby
affect the possibility for DNA methylation to take place [22]. These so called CpG-SNPs are
likely to show strong correlations with the degree of methylation in the SNP site. Indeed, here
we found 447 CpG-SNPs associated with DNAmethylation in adipose tissue.

Furthermore, we were able to replicate numerous of our unique CpG sites of significant cis-
mQTLs in a study by Grundberg et al. [16] confirming the biological importance of our results.
While both our study and Grundberg et al. performed mQTL analyses in human adipose tissue
using the Illumina 450K array for DNA methylation and thereby comparable, divergence in cis
boundary, sex and correction methods for multiple testing may explain some of the different
results between the studies. It should also be noted that 39,386 of our significant cis-mQTLs in
human adipose tissue were previously also identified in human pancreatic islets [20]. While
this finding shows that some SNPs affect the DNA methylation pattern in multiple tissues,
additional mQTL studies using the 450k array are needed in other tissues to test if the same
associations are seen there.

We provide for the first time a combined genome-wide cis- and trans-mQTL analysis in
human adipose tissue covering most genes and genomic regions. Our study demonstrates that
interactions between genetic and epigenetic variation influences gene expression, molecular
phenotypes and metabolic traits related to complex diseases in humans. We also provide details
on potential causal relationships between genetic and epigenetic variation on metabolic pheno-
types. Thus, DNA methylation variation may be of high importance in genetic association
studies and may improve our understanding of molecular pathways in the context of complex
human metabolic diseases.

Materials and Methods

Study samples and phenotypes
This study includes a total of 119 Scandinavian men without known disease. Their characteris-
tics are presented in Table 1. The cohort includes subjects from four sub-cohorts, all previously
described [15,48,75–77] and with DNA available from subcutaneous adipose tissue biopsies
taken in the fasted state. The characteristics of the four sub-cohorts are presented separately in
S21 Table. All study participants underwent a physical examination including measurements
of BMI, waist and WHR. Moreover, blood sampling for analysis of lipids, glucose and insulin
were done during the fasting state. Written informed consent was obtained from all partici-
pants and the research protocols were approved by the local human research ethics commit-
tees: Dnr 13/2006 (Lund University), Dnr 461/2006 (Lund University), KA 03129gm
(Köpenhavns AMT). While three of sub-cohorts are intervention studies [75–77], one sub-
cohort is a case-control cohort [15]. Only baseline samples from healthy subjects were included
in this study.

Genotype data
Genotyping was performed in DNA extracted from blood of the 121 Scandinavian men using
Illumina HumanOmniExpress BeadChip, which is a genome-wide array covering 731,412
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SNPs, together with the iScan system (Illumina, San Diego, CA, USA). Genomic DNA was
extracted from blood using the Gentra Puregene Blood Kit (Qiagen, Hilden, Germany). Geno-
types were called using GenomeStudio1 software (Illumina). All subjects passed call rate
threshold of> 98%. Sex discrepancy between reported sex and genotypic sex based on X-chro-
mosome heterozygosity was detected for two subjects and these subjects were excluded from
subsequent analyses. No subjects were found to be population outliers based on a population
stratification test. SNPs were excluded if missing calls> 5%, Hardy-Weinberg Equilibrium p-
value< 0.001 and minor allele frequency< 0.05. Overall, 592,794 SNPs for 119 subjects passed
quality control and were used for subsequent analyses. All genotype data were analyzed using
Plink software (http://pngu.mgh.harvard.edu/purcell/plink/) [78].

DNAmethylation data
Genome-wide DNAmethylation profiling was performed in genomic DNA extracted using
Qiagen DNA extraction kits (Qiagen) from adipose tissue from 119 Scandinavian men using
the Infinium HumanMethylation450 BeadChip (Illumina). The DNAmethylation array tar-
gets 485,577 probes across the genome, covering 99% of RefSeq genes and 96% of CpG islands.
Genomic DNA (500 ng) from adipose tissue was bisulfite treated using the EZ DNA methyla-
tion kit (Zymo Research, Orange, CA, USA). DNA methylation analysis of bisulfite treated
DNA was carried out with Infinium1 assay following the standard Infinium HD Assay Meth-
ylation Protocol Guide (Part #15019519). BeadChips were scanned with Illumina iScan and
raw data was imported to the GenomeStudio Methylation module software for calculation of
methylation scores represented as methylation β-values. In sample quality control, all samples
passed GenomeStudio quality control steps for bisulfite conversion efficiency, staining, hybrid-
ization, extension and specificity.

Individual probes with a mean Illumina detection p-value> 0.01 were considered not
detected and subsequently excluded from further analysis. Non-CpG methylation probes and
SNP-probes included on the array were also filtered out. After these quality control steps and
after filtering DNAmethylation data, 477,891 CpG sites remained for all included samples.
Before further analysis, the DNA methylation data was exported from GenomeStudio and sub-
sequently analyzed using Lumi package from Bioconductor [79]. Extracted methylation data

were then converted from β-values to M-values [80],M ¼ log2
maxðM;0Þþ1

maxðU ;0Þþ1

� �
, where M and U are

methylated and unmethylated channel intensities, respectively. The data was further back-
ground corrected and quantile normalized using lumi package [81]. To correct for batch
effects, COMBAT normalization method [82] was used.

mRNA expression data
Genome-wide mRNA expression profiling using the whole-transcript GeneChip1Human
Gene 1.0 ST Array (Affymetrix, Santa Clara, CA, USA) following the Affymetrix standard pro-
tocol was performed in RNA extracted from the subcutaneous adipose tissue biopsies of 118
out of 119 Scandinavian men using miRNeasy kit followed by the RNeasy MiniElute Cleanup
Kit (Qiagen) or using the RNeasy Lipid Tissue Mini Kit (Qiagen). The array data was back-
ground corrected, quantile normalized and summarized with robust multichip average (RMA)
procedure using oligo package [83] from Bioconductor. Normalized dataset was batch cor-
rected using COMBAT [82]. In total, mRNA expression of 28,779 transcripts was obtained for
subsequent analyses.
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mQTL analysis
Associations between SNPs and DNA methylation of CpG sites were modeled as a linear rela-
tionship using DNAmethylation levels as a dependent variable, SNP genotypes encoded as 0, 1
or 2 according to number of minor alleles. Due to the fact that both BMI and age can affect
DNAmethylation and, therefore, the association between SNP and DNAmethylation, age,
BMI and the sub-cohort were included as covariates. Calculations of associations were per-
formed using the MatrixEQTL library for R programming language [84].

To distinguish between local (cis) and distant (trans) mQTLs a distance less or equal to 500
kb between a SNP and CpG site was used to define cis-mQTLs. All remaining SNP-CpG pairs
were considered trans-mQTLs. In total we found 283,290,917,454 CpG–SNP pairs in the data-
set, where 112,842,462 pairs were defined to be located in cis and 283,178,074,992 in trans. The
cis- and trans-mQTL analyses were performed separately. In order to correct for multiple test-
ing, p-value significance threshold was set, accounting for number of tests performed as well as
the dependency of linkage disequilibrium (LD) between SNPs. LD-based SNP pruning was
used to take into account the linkage dependency of SNPs that are run against the same quanti-
tative trait locus in the mQTL analysis by calculating the number of independent tests based on
r2<0.9 for the SNPs. In the cis-analysis, LD based pruning of SNPs within a distance of 500 kb
from a CpG site was performed by pairwise-tagging (r2<0.9) and the total sum of all tag SNPs
connected to each CpG site was used as correction value when correcting for multiple testing.
LD calculations were performed using R trio package [85]. The correction value for the trans-
analysis was calculated as the total number of analyzed CpG sites multiplied by the number of
tag SNPs in the whole dataset (pairwise-tagging r2<0.9) and subtracted by the correction value
for the cis-analysis. Significance threshold was set to p<0.05 after correction for multiple test-
ing. All SNPs connected to each CpG site after LD-based pruning were summed and the
remaining number of 104,023,091 SNP-CpG pairs was used as correction value for multiple
testing in cis. This resulted in a significance threshold of 0.05/104,023,091 = 4.8x10-10 in cis. In
the trans-mQTL analysis, after LD-based pruning, 211,781,637,483 SNP-CpG pairs remain
and this number was used as correction value for multiple testing. This resulted in a signifi-
cance threshold of 0.05/211,781,637,483 = 2.3x10-13 in trans.

Impact of significant mQTL SNPs on mRNA expression
The relationship between SNPs found to be significantly associated with DNA methylation in
the mQTL analysis and mRNA expression was tested in 118 of the men included in the study
using a linear regression model with mRNA expression as a dependent variable, SNP genotypes
encoded as 0, 1 or 2 according to number of minor alleles, and age, BMI and sub-cohort as
covariates. Significant SNPs identified in the cis-mQTL analysis were only related to mRNA
expression transcripts of genes located within 500 kb from respective SNP (cis). Significant
SNPs identified in the trans-mQTL were related to mRNA expression transcripts of all ana-
lyzed genes. In total, 1,164,807 SNP-mRNA transcript combinations were found for significant
cis-mQTLs, and 78,710,565 SNP-mRNA transcript combinations were found for significant
trans-mQTLs. Correction value for multiple testing in the eQTL analysis was then calculated
in similar way as for the mQTL analysis taking LD-based SNP pruning (r2<0.9) into account.
In the eQTL analysis of significant cis-mQTL SNPs, the number of LD pruned SNPs (r2<0.9)
to each mRNA transcript within 500 kb were summed up and used as the correction value for
multiple testing. After LD-based pruning, 934,021 SNP-mRNA transcripts remain. This
resulted in a significance threshold of 0.05/934,021 = 5.4x10-8 in cis. In the eQTL analysis of
significant trans-mQTL SNPs, the correction value for multiple testing was calculated as the
number of all trans-mQTL SNPs pruned for LD (r2<0.9) multiplied by total number of
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analyzed mRNA transcripts giving a remaining number of 33,326,082 SNP-mRNA transcripts.
This resulted in a significance threshold of 0.05/33,326,082 = 1.5x10-9 in trans.

Impact of mQTL SNPs on metabolic phenotypes
The impact of identified SNPs in significant mQTLs on the following phenotypes; BMI, WHR,
cholesterol, triglycerides, HDL, LDL, fasting glucose, fasting insulin, HOMA-B, HOMA-IR
and HbA1c, was tested in 119 Scandinavian men included in this study. Associations between
identified SNPs in the significant mQTLs and metabolic phenotypes were modeled as a linear
relationship using metabolic phenotypes as the dependent variable, SNP genotypes encoded as
0, 1 or 2 according to number of minor alleles, and age and sub-cohort included as covariates
in all the analyses. BMI was also included as a covariate when analyzing associations between
SNPs and fasting glucose, fasting insulin, HOMA IR, HOMA-B and HbA1c. Traits for fasting
insulin, HOMA-B and HOMA-IR have been naturally log transformed in the study cohort
before analyses. Identified mQTL SNPs showing association to a metabolic phenotype in our
study cohort (p<0.05), were also looked-up in public available GWAS data from the GIANT
consortium [43,44], MAGIC investigators [36,45,46] and GLGC consortium [47], for respec-
tive trait. SNPs showing association to a metabolic phenotype with the same allelic effect sign
and with p-value<0.05 in both our study cohort and consortia data were considered detected.

Overlap between mQTL SNPs and public available GWAS data
The catalog of published GWAS data was used to search for SNPs reported to be associated
with obesity, type 2 diabetes and related metabolic traits (p<10−5). To increase reference cover-
age for overlap between datasets of identified mQTL SNPs and identified SNPs reported in
GWAS catalog, a SNP annotation and proxy (SNAP) search [86] was performed to identify
SNPs in LD with the identified mQTL SNPs. The proxy search was based on pairwise LD calcu-
lations of genotype data from the 1000 Genomes project of the CEU population panel with
r2>0.8 and distance limit of 500 kb from the query SNP.

Causal Inference Test (CIT)
The CIT was used to test if DNA methylation is a mediator between genotype variation and a
phenotypic trait [21]. The causality can be inferred if all of the following are true: 1) G and M
are associated, 2) G and P are associated, 3) G is associated with M|P and 4) G is independent
of P|M, where G is a genotype marker, M is a DNA methylation measure and P is a phenotypic
trait, provided that G is randomized [21]. Causal role of DNAmethylation is inferred if p-
value for causal relationship hypothesis is less than 0.05.

Statistical analysis
Data were analyzed using linear regression models, Pearson chi-squared test or Fisher's exact
test. All statistical calculations were performed using R programming language [87]. Results
are expressed as Box and Whiskers plots. Pathway analysis using WebGestalt [26].

Supporting Information
S1 Table. Identified cis-mQTLs. Sheet a: Identified cis-mQTL SNP-CpG pairs, including chro-
mosomal location and relation to CpG islands and gene regions. Sheet b: SNP-CpG pairs
where SNP is located in either C or G of the CpG site, so called CpG-SNPs. Sheet c: Additional
annotation data for SNPs present in sheet a, based on HumanOmniExpress-12v1_J_Gene_An-
notation_build37 (Illumina). Sheet d: Additional annotation data for CpGs present in sheet a,
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(XLSX)
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Abstract 

Background: Current knowledge about the role of epigenetics in type 2 diabetes (T2D) remains limited. 

Only a few studies have investigated DNA methylation of selected candidate genes or a very small 

fraction of genomic CpG sites in human pancreatic islets, the tissue of primary pathogenic importance 

for diabetes.  Our aim was to characterize the whole-genome DNA methylation landscape in human 

pancreatic islets, to identify differentially methylated regions (DMRs) in diabetic islets, and to 

investigate the function of DMRs in islet biology.  

Methods and findings: Here, we performed whole-genome bisulfite sequencing, which is a 

comprehensive and unbiased method to study DNA methylation throughout the genome on a single 

nucleotide resolution, in pancreatic islets from donors with T2D and non-diabetic controls. We identified 

25,820 DMRs in islets from individuals with T2D. These novel DMRs cover loci with known islet 

function e.g. PDX1, TCF7L2 and ADCY5. Importantly, binding sites for islet specific transcription 

factors, enhancer regions and different histone marks were enriched in the T2D associated DMRs. We 

also identified 457 genes, including NR4A3, PARK2, PID1, SLC2A2 and SOCS2 that had both DMRs 

and significant expression changes in T2D islets. To mimic the situation in T2D, candidate genes were 

overexpressed or silenced in β-cells. This resulted in impaired insulin secretion, thereby connecting 

differential methylation to islet dysfunction. We further explored the islet methylome and found a strong 

link between methylation levels and histone marks. Additionally, DNA methylation in different genomic 

regions and of different transcript types (i.e. protein-coding, non-coding and pseudogenes) associated 

with islet expression levels.  

Conclusions: Our study provides a comprehensive picture of the islet DNA methylome in both non-

diabetic and diabetic individuals and highlights the importance of epigenetic dysregulation in pancreatic 

islets and T2D pathogenesis. 
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Introduction 

Impaired insulin secretion is a key feature of type 2 diabetes (T2D). However, the molecular 

mechanisms underlying pancreatic islet dysfunction in patients with T2D are largely unknown. While 

genetic risk factors are known to contribute to the etiology of T2D, less than 20% of the estimated 

heritability of the disease can be explained by single nucleotide polymorphisms (SNPs) identified by 

genome-wide association studies (GWAS) [1]. As a consequence, one must look elsewhere to find 

disease-causing mechanisms. Given the important role of environmental factors in the pathogenesis of 

T2D, mechanisms mediating the interaction between the environment and the genome, such as 

epigenetic mechanisms, may be of particular importance. Studying epigenetic processes in the tissue of 

primary pathogenetic importance, the pancreatic islets, may reveal mechanisms of significance for T2D. 

Indeed, our group and others have identified altered DNA methylation patterns in pancreatic islets from 

subjects with T2D compared with non-diabetic controls [2-6]. However, the method used in our previous 

studies, Infinium HumanMethylation450K BeadChip, only covers ~1.5% of the CpG sites in the human 

genome [7]. Therefore, to obtain a more complete picture of the methylome in human pancreatic islets 

and to further dissect the impact of epigenetics in T2D, genome-wide analyses covering the majority of 

methylation sites are needed.  

Whole-genome bisulfite sequencing (WGBS) is the most comprehensive method to study DNA 

methylation throughout the genome on a single nucleotide resolution. This method is costly and most 

studies have so far been based on very few samples in a selected set of human tissues [8-17]. Despite 

the limited data sets, they have provided knowledge regarding gene regulation and the distribution of 

DNA methylation across different genomic regions and cell types. The largest effort to describe the 

human epigenome has been undertaken by the NIH Roadmap Epigenomics Consortium, including 

WGBS of 37 human epigenomes in various tissues and cell types [18]. However, previous WGBS 

studies did not include human pancreatic islets, nor did they examine the role of DNA methylation in a 

T2D case-control cohort.  

To address this knowledge gap and dissect epigenetic alterations in T2D, we performed WGBS of DNA 

from human pancreatic islets obtained from 14 donors, eight normoglycemic controls and six diagnosed 
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with T2D. We identified numerous novel differentially methylated regions (DMRs) in pancreatic islets 

from donors with T2D, including several loci known to be important for islet function. We further 

characterized the methylome in human pancreatic islets and studied the relation between DNA 

methylation and histone modifications, enhancer regions, RNA expression and transcription factor 

binding sites. 
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Methods and Materials 

Human pancreatic islet samples 

Human pancreatic islets were obtained from the Nordic Network for Islet Transplantation, Uppsala 

University, Sweden. The pancreatic islet donor or her/his relatives had upon admission to intensive care 

unit given their informed consent to donate organs for medical research. All procedures were approved 

by ethics committees at Uppsala and Lund Universities.  

Pancreatic islets were prepared and cultured as previously described [19] followed by RNA and DNA 

isolation using the AllPrep DNA/RNA Mini Kit (Qiagen GmbH, Hilden, Germany). Concentrations and 

purity of RNA and DNA were measured using the NanoDrop ND-1000 spectrophotometer (NanoDrop 

Technologies, Wilmington, DE, USA).  

Pancreatic islets of eight normoglycemic control donors and six donors diagnosed with T2D were used 

for WGBS (Table 1). These islets were cultured for 3.1 ± 0.3 days and the islet purity was 82.8 ± 2.2% 

based on dithizone staining. Infinium HumanMethylation450K BeadChip (Illumina, San Diego, CA, 

USA) DNA methylation data and RNA sequencing data were also generated for these 14 islet donors.  

 

Table 1. Characteristics for donors of pancreatic islets included in the WGBS analysis. 

 Controls (n=8) Type 2 diabetic (n=6) P-value 

Sex (m/f) 4/4 3/3  

Age (years) 52.5 ± 3.2 (40-67) 58.2 ± 3.6 (45-66) 0.26 

BMI (kg/m2) 24.9 ± 0.3 (23.9-26.6) 28.0 ± 2.0 (22.9-34.6) 0.10 

HbA1c (%) 5.47 ± 0.10 (n=7; 5.2-6.0) 7.12 ± 0.21 (6.3-7.8) < 0.0001 

Data are presented as mean ± SEM (range). t-tests and two-tailed P-values were used to detect 

differences between groups. 

 

In the present study, we also examined Infinium 450K DNA methylation data from our previous study 

including islets from 15 type 2 diabetic and 34 control donors [2] as well as RNA sequencing data from 
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89 islet donors previously described [20]. Biological replication was performed on pancreatic islets from 

19 donors diagnosed with T2D and 56 normoglycemic controls not included in the WGBS analysis 

(Table S1).  

 

Library preparation and WGBS 

300 ng DNA isolated from pancreatic islets was bisulfite treated with the EZ DNA Methylation Gold 

D5005 kit (Zymo Research Corporation, Irvine, CA, USA) according to the manufacturers’ protocol. 

For each of the islet samples, triplicate sequencing libraries were prepared using the TruSeq (EpiGnome) 

DNA Methylation Kit (Illumina, EGMK91324) according to the manufacturers’ protocol (#15066014 

revA). 100 ng bisulfite treated islet DNA was used to prepare each TruSeq sequencing library. Next, 

these triplicate libraries for each sample were pooled and sequenced using Illumina HiSeq2500 utilizing 

125 bp long paired end reads of Illumina type 4 chemistry. For one of the samples, a technical replication 

was performed by sequencing in total six lanes for three libraries prepared using NEXTflex™ Bisulfite 

Library Prep Kit (Bioo Scientific, Austin, TX, USA). Here, 1000 ng bisulfite treated islet DNA was 

used to prepare each NEXTflex™ sequencing library. 

 

WGBS data analysis and DMR calling 

WGBS data in FASTQ format generated using the Illumina HiSeq platform were used for further 

analyses. Illumina adapter sequences were trimmed from 3' and 5' ends of all paired-end reads, and bases 

with quality Phred score less than 20 were filtered using Trim Galore 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Next, reads shorter than 20 bp after 

trimming were filtered out, again using Trim Galore. After trimming, reads were aligned to Human 

Genome build  hg38 using Bismark [21]. 

DNA methylation calling was then performed using the Bismark methylation calling tool. In short, the 

methylation value for a particular cytosine was calculated as number of reads that detect this cytosine 

in a methylated state divided by the total number of reads for this cytosine. CpG sites with a mean total 
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coverage of less than 10 reads per cytosine and CpG sites located on the Y chromosome were excluded 

from further analyses. Only CpG methylation on the forward strand was considered in this project. 

Methylation profiles were then smoothed and differentially methylated regions (DMRs) called using the 

BSmooth algorithm from Bioconductor bsseq package [22].  

The DMR calling between islets from donors with T2D versus controls was performed with t-statistics 

cutoff of 1st and 99th percentile. DMRs were defined as regions of at least 3 consecutive CpG sites 

showing a significant methylation difference between the two groups, with an average absolute 

methylation difference of ≥5%. This threshold was selected based on an average sequencing depth of 

approximately 20× for the forward strand. The maximum allowed distance between consecutive CpG 

sites within a DMR was set to 300 bp [22]. 

 

Infinium 450K array 

500 ng genomic DNA from pancreatic islets of human donors (Table 1) was bisulfite converted with 

the EZ DNA methylation kit (Zymo Research). DNA methylation was analysed with the Infinium 

HumanMethylation450K BeadChip [7]. All samples passed GenomeStudio® quality control steps based 

on built in control probes for staining, hybridization, extension and specificity and displayed high quality 

bisulfite conversion efficiency with a signal intensity above 4000 [23]. Probes with a mean detection P-

value > 0.01, as well as SNP probes, non-CpG probes and CpG-SNP probes (MAF > 0.1 based on 

dbSNP) [24] were removed from further analysis. Probes that hybridize to more than one genomic 

location with a 49 or 50 base pair match [25] were also excluded. In total 475,885 probes remained for 

further analysis. Background correction and quantile normalization were performed using the lumi 

package from Bioconductor [26]. Beta Mixture Quantile dilation Method (BMIQ) was applied to correct 

for the two different probe types on the array [27]. Genomic locations of target CpG sites were converted 

from genome build hg19 to build hg38 using liftover tool [28]. 
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RNA-seq data analysis 

For RNA library preparation the TruSeq kit (Illumina) was used and the libraries were sequenced on a 

HiSeq2000 platform as previously described (Fadista et al. 2014). RNA sequencing data in FASTQ 

format was analyzed using the Expectation-Maximization pipeline (RSEM; 

http://deweylab.biostat.wisc.edu/rsem/), version 1.2.14, with hg38 as the reference genome, and gene 

annotation from Gencode version 22 as the gene model. For every gene, the transcript with highest mean 

Transcript Per Million (TPM) value was selected. For downstream analysis, each TPM value was added 

an offset of 0.01 and log2 transformed. Transcripts with a TPM value less than 0.1 were considered not 

expressed. Additionally, the remaining expressed transcripts were split into 3 equally sized groups, 

denoting lowly expressed, medium expressed and highly expressed transcripts. 

 

Genomic annotation 

Genomic elements, such as transcription start sites, transcription end sites, exons and introns for 198,442 

transcripts corresponding to 60,483 genes were extracted from GENCODE release 22 (GRCh38). Each 

DMR was annotated based on its position in relation to all transcripts above and hence, one DMR can 

have multiple annotations. 

 

Pyrosequencing 

DNA methylation for biological replication (Table S1) of a selected genomic region in the most 

significant PDX1 DMR (chr13:27921804:27925104) was analyzed by pyrosequencing and the 

PyroMark Q96ID (Qiagen, Hilden, Germany). PCR and sequencing primers were designed using 

PyroMark Assay Design 2.0 (Qiagen, Table S2), and all procedures were performed according to 

recommended protocols and as previously reported [29]. 

 

Luciferase assays 
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Luciferase assays were performed as previously described [6]. In short, 2000 bp fragments of the 

TMED6 and KIF3A promoters (Table S2) were inserted immediately upstream of the transcription start 

site of the CpG-free luciferase reporter vector (pCpGL-basic). Two different DNA methyltransferases 

(New England Biolabs, Ipswich, MA, USA) were then used to methylate the constructs; SssI for 

complete methylation of both constructs and either HpaII (TMED6) or HhaI (KIF3A) for partial 

methylation. SssI methylates all cytosine residues within the double-stranded dinucleotide recognition 

sequence CG, while HpaII and HhaI methylates the internal cytosine residue in CCGG and GCGC 

sequences, respectively. INS-1 832/13 β-cells were then co-transfected with 25 ng methylated or mock-

methylated pCpGL-vector including either of the two promoter inserts together with 4 ng of pRL renilla 

luciferase control reporter vector (Promega, Madison, WI, USA). Firefly luciferase luminescence, as a 

value of transcriptional activity, was measured for each construct with the Dual-Luciferase® Reporter 

Assay System (Promega) and an Infinite® M200 PRO multiplate reader (Tecan Group Ltd., Männedorf, 

Switzerland). Cells transfected with an empty pCpGL-vector were used as background control for firefly 

luciferase results, and untransfected cells were used as a background for renilla results. 

 

Insulin secretion in β-cell lines 

The INS-1 832/13 rat β-cell line [30] was used in functional knockdown and overexpression experiments 

as previously described [2]. For overexpression experiments, rat cDNA for Nr4a3, Pid1, and Socs2 

(sequences can be found in Table S2), with and without a c-terminal HA-tag, were inserted into the 

pcDNA3.1 expression plasmid. Overexpression at the RNA level was analysed with qPCR and assays 

against Nr4a3 (Rn01354012_m1), Pid1 (Rn01769975_m1), and Socs2 (Rn00589521_m1). An assay for 

Hprt1 (Rn01527840_m1) was used as an endogenous control. Overexpression at the protein level was 

determined by Western blot and primary antibodies against the HA-tag and actin as described [2]. The 

siRNA used for knockdown in INS-1 832/13 rat β-cells was s132780 (siPark2) and a negative control 

siRNA (siNC, Silencer Negative Control No.2, #AM4637, Thermo Fisher Scientific, Waltham, MA, 

USA). Knockdown was verified with a qPCR assay for Park2 (Rn00571787_m1), and the above 

mentioned endogenous control. Insulin secretion was analyzed as previously described [31], except that 
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insulin was determined with ELISA (Mercodia, Uppsala, Sweden).  Additionally, SLC2A2 was silenced 

with siRNA s12928 (siSLC2A2) and a non-targeting siRNA was used as negative control (siNC, 

#AM4637, Ambion) in the human EndoC-βH1 cell line [32] using the Lipofectamine RNAiMax 

transfection reagent (Thermo Fisher Scientific) according to manufacturer’s recommendation.  

Knockdown was verified with qPCR assays for SLC2A2 (Hs01096905_m1) and HPRT1 (4326321E). 

Insulin secretion experiments with the EndoC-βH1 cells were performed as previously described [32]. 

All siRNA and TaqMan assays were ordered from Thermo Fisher Scientific.  

 

Statistical analysis 

Donor characteristics, biological replication using pyrosequencing and average DNA methylation 

between T2D and control islets, as well as Luciferase experiments, were analyzed using unpaired t-tests. 

qPCR and insulin secretion experiments performed in β-cells were analyzed using paired t-tests. 

Average DNA methylation between transcripts of different expression levels was analyzed using 

ANOVA. All data are presented as mean ± SEM. The KEGG pathway analysis was performed using 

WebGestalt [33] with P-values adjusted for multiple testing according to the FDR method developed by 

Benjamini and Hochberg [34]. 

Statistical enrichment of the number of overlapping genomic regions between two features was 

calculated using null distribution obtained from 1,000,000 permutations of one of the features. 

Permutations were generated by randomly and uniformly selecting a new genomic position regardless 

of chromosome for the start of each region, while preserving the region length [35]. The permutation 

testing procedure was implemented in C++. All other statistical computations of the DNA methylation 

data were performed using R software (R Core Team, 2015). 
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Images 

Heatmap plots were generated with R gplots package using Euclidian distance measure. Principal 

component analysis plots were produced using R ggbiplot package (https://github.com/vqv/ggbiplot). 

Other images were produced using ggplot2 package [36] and GraphPad prism. 
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Results 

WGBS in human pancreatic islets 

To characterize the methylome in human pancreatic islets, we generated WGBS data at a single-base 

resolution from pancreatic islets of 14 human donors, including eight normoglycemic donors and six 

donors diagnosed with T2D. The donor characteristics are described in Table 1. After preprocessing, an 

average of 74% of the resulting reads per sample were uniquely mapped to the human reference genome 

(hg38). Sequencing information and alignment statistics for each sample are reported in Table S3. The 

islet samples were sequenced with an average coverage of 21× per base and methylation levels of 

~24x106 CpG sites (~83% of all CpG sites in the human genome) on the forward strand were obtained 

for all samples.  

We compared the methylation data obtained by WGBS with data generated with the Infinium 450K 

array for the same 14 samples. The replicates of each islet sample analyzed by both WGBS and 

microarray showed high reproducibility (r ≥ 0.927; P < 2.2*10-16, Table S3). 

Additionally, one islet sample was analyzed by WGBS using both Illumina type 3 and type 4 chemistry 

as well as by two different library preparation kits; the TruSeq (EpiGnome) DNA Methylation Kit and 

the NEXTflex™ Bisulfite Library Prep Kit. The high correlation between the WGBS data generated 

with the two different sequencing chemistries (r = 0.995) as well as with two different library 

preparations (r = 0.987) further confirmed the quality of our methylation data (Fig S1A). 

In an unsupervised principal component analysis (PCA) of the islet WGBS data, the methylation data 

segregated according to sex (Fig S1B), which is in agreement with our published Infinium 450K array 

data [31]. Next, we correlated the top five principal components of the WGBS data with T2D, age, sex 

and BMI. Here, T2D and sex correlated with one of the top five principal components (P < 0.002, Table 

2). 

 

Table 2. P-values for correlations of the top five principal components for the WGBS data in human 

pancreatic islets with type 2 diabetes (T2D), age, sex and BMI.  
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Principal 

component 
T2D Age (years) Sex (m/f)  BMI (kg/m2)  

1 0.70 0.54 0.65 0.26  

2 0.90 0.13 0.0017 0.47  

3 0.25 0.19 0.41 0.62  

4 0.07 0.58 0.75 0.11  

5 0.0019 0.44 0.95 0.22  

 

 

Differentially methylated regions in human pancreatic islets from donors with T2D  

In order to address the epigenetic basis of T2D, we used BSmooth [22] to analyze the islet WGBS data 

from eight normoglycemic controls and six type 2 diabetic donors. This is an algorithm designed to 

determine DNA methylation in WGBS data and identify DMRs that account for biological variability. 

In our study, DMRs were defined as regions of three or more consecutive differentially methylated CpG 

sites with an average absolute methylation difference equal to or bigger than 5% between the groups. 

Based on this analysis, we identified 25,820 DMRs (Table S4). These were included in an unsupervised 

hierarchical clustering analysis presented as a heatmap in Fig 1A, which shows distinction in 

methylation between diabetics and controls. 13,696 DMRs showed average increased and 12,124 

decreased levels of DNA methylation in islets from donors with T2D. The mean DMR size was 414 bp 

(range 6 - 3411 bp), and the mean CpG site count in the DMRs was 8.7 (range 3 - 164). The maximum 

absolute difference in methylation for a DMR was 27.5% and the mean absolute difference in 

methylation for all DMRs was 6.3% when comparing islets from diabetic versus control donors (Table 

S4). Among the DMRs found to have the largest absolute differences in methylation were regions 

annotated to ARX and TFAM (Fig 1B-C), two genes encoding proteins with important roles in islet 

function [37, 38]. 
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Fig 1. DMRs in human pancreatic islets from donors with T2D  

A) Heatmap of the 25,820 T2D associated DMRs. Among the DMRs with the largest absolute difference 

were regions upstream of B) ARX and C) TFAM. Among the most significant DMRs were two large 

intergenic regions of PDX1, D) chr13:27921804:27925104 and E) chr13:27926170:27928845. F) 

Biological replication of the PDX1 region presented in (D) in human pancreatic islets from an 

independent cohort of 56 normoglycemic control and 19 T2D donors. G-H) Validation of DNA 

methylation in the PDX1 distal promoter in human pancreatic islets from T2D and control donors; G) 

Data from this study, based on WGBS DMR chr13:27918705-27919232 and H) Data from Yang et al. 

[6], produced using Sequenom's EpiTYPER technology. Data presented as mean ± SEM (* P < 0.05). 
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Interestingly, two of the most significant DMRs covered 164 and 105 CpG sites that span 3,301 and 

2,676 bp intergenic regions of PDX1 (Fig 1D-E), a key transcription factor in pancreatic islets [39]. In 

total, seven DMRs were annotated to PDX1 (Table S4). Using pyrosequencing, we could biologically 

replicate differential DNA methylation of CpG sites in the most significant DMR, located in an intronic 

region and exon two of PDX1 (chr13:27921804-27925104, Fig 1D, F), in an independent cohort of 19 

T2D and 56 control donors (Table S1). We previously reported increased DNA methylation of 10 CpG 

sites and decreased expression of PDX1 in human pancreatic islets from donors with T2D [6]. 

Importantly, a DMR from the present study (chr13:27918705-27919232; ending 788 bp upstream of the 

PDX1 TSS) confirmed our previous finding of differential methylation of PDX1, and comparisons of 

seven individual CpG sites covered by both studies validated the significant association with T2D (Fig 

1G). 

We next examined whether the T2D associated islet DMRs were located in the same region as the 65 

known T2D candidate genes identified by the Diagram consortium [40]. Among our islet DMRs, 159 

were annotated to 43 known T2D candidate genes (Table S5). Out of these, the DMR with the largest 

mean absolute difference (11%) in methylation between T2D and control donors was located in the 

intron-exon boundary of ADCY5. Additionally, T2D candidate genes with the highest number of 

annotated DMRs were GLIS3, THADA, KCNQ1 and TCF7L2 (16, 14, 10 and 9 respectively).  

We further investigated if our islet DMRs covered any of the SNPs reported to be associated with T2D 

(www.genome.gov/gwastudies, accessed February 2nd, 2016). Among these SNPs, rs163184 was 

covered by a DMR annotated to KCNQ1 (chr11:2825382:2826548) and rs11257655 by a DMR 

annotated to RP11 (chr10:12265391:12266540). 

 

The genomic distribution, chromatin state and transcription factor binding of T2D 

associated islet DMRs 

We proceeded to examine the genomic distribution of the T2D associated DMRs in human pancreatic 

islets. We found a similar distribution of DMRs whether the average methylation level was increased or 

decreased in islets from donors with T2D, with ~55% of the DMRs located within TSS 50kb (1,501-
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50,000bp upstream from the transcription start site), ~1.5% located within TSS 1,500 (201-1,500bp 

upstream from the transcription start site) and ~1.0% located within TSS 200 (1-200bp upstream from 

the transcription start site) (Fig 2A). For the intragenic regions, ~1.4% of all DMRs were located in the 

1st exon, ~3.0% in the subsequent exons and ~20% in introns, whereas ~12.5% of the DMRs were 

located within TES 10kb (1-10,000bp downstream of the transcription end site). Additionally, ~5-6% 

of all DMRs were located >50 kb from the nearest transcript and considered intergenic. 
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Fig 2. Genomic distribution of T2D associated DMRs 

A) Genomic distribution of T2D associated islet DMRs, separated based on increased (n=13,696) or 

decreased (n=12,124) average DNA methylation. Each DMR can be annotated to several transcripts and 
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will then be counted in all gene regions, except from intergenic DMRs which only include DMRs located 

more than 50kb from a transcript and thereby not annotated to any of the TSS, intragenic or TES regions. 

B) Overlap between our T2D-associated DMRs and chromatin state, transcription factor binding and 

active enhancer regions. Arrows represent significant over- or underrepresentation (P < 1*10-6). C) 

Enrichment of transcription factor recognition sequences in the T2D associated islet DMRs based on 

HOMER [41]. 

 

To explore the relationship  between chromatin state and differential DNA methylation, we integrated 

all DMRs with genome-wide maps of histone modifications and enhancer regions previously generated 

in human pancreatic islets [18, 42]. When comparing our significant DMRs with epigenetic marks 

generated in human islets by the Roadmap Epigenomics Consortium [18], 12.4% of the T2D associated 

islet DMRs were occupied by modifications associated with active chromatin (3,203 by H3K4me3 and 

3,194 by H3K9ac; Table S6 and Fig 2B) which is a significant enrichment for both (P < 1*10-6). 

Moreover, 14.5 and 19.1% of the T2D associated islet DMRs were occupied by histone modifications 

enriched at enhancer regions (3,744 by H3K27ac and 4,935 by H3K4me1, respectively), which is also 

significant enrichments (P < 1*10-6). A smaller fraction of the DMRs were occupied by modifications 

associated with repressed chromatin (1,364 DMRs (5.3%) by H3K27me3 and 120 DMRs (0.5%) by 

H3K9me3). H3K27me3 was statistically overrepresented, while H3K9me3 was underrepresented (P < 

1*10-6) in this overlap. There was also an underrepresentation of DMRs (581 or 2.3%) overlapping with 

H3K36me3 (P < 1*10-6). Additionally, 618 T2D associated islet DMRs overlapped with active enhancer 

regions of pancreatic islets identified by Pasquali et al. (Table S6 and Fig 2B) [42], which is more than 

expected by chance (P < 1*10-6). 

We next used HOMER to test if any transcription factor recognition sequences were enriched in our 

significant islet DMRs [41]. Interestingly, motifs specific to key transcription factors in pancreatic islets, 

including FOXA2, NeuroD1, MAFA, RFX, PDX1 and HNF1 as well as binding sites for the insulator 

CCCTC binding factor (CTCF), were significantly enriched in the T2D associated islet DMRs (Fig 2C, 

Table S7). We also identified novel motifs with high statistical enrichment (Table S7). 
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To gain further insight into the relationship between the genomic binding of islet-specific transcription 

factors and differential DNA methylation in islets from subjects with T2D, we used ChIP-sequencing 

data for five key transcription factors (FOXA2, MAFB, NKX2.2, NKX6.1 and PDX1) in human 

pancreatic islets from Pasquali et al. [42]. We found an overrepresentation of DMRs overlapping with 

the binding sites of each of these transcription factors (P < 1*10-6; Table S8, Fig 2B). Indeed, 978 

(3.8%) of the T2D associated DMRs overlapped with genomic sites bound by FOXA2 and 311 (1.2%) 

DMRs overlapped with sites bound by MAFB. Additionally, 1943 (7.5%) DMRs overlapped with sites 

bound by NKX2.2, while 248 and 624 DMRs (1.0% and 2.4%) overlapped with sites bound by NKX6.1 

and PDX1, respectively. Interestingly, we found an overlap between T2D associated DMRs annotated 

to SLC2A2, KCNJ11 and PDX1 and sites bound by PDX1 (Table S8). 

Together, these data suggest that differential DNA methylation in transcription factor binding sites may 

be of importance in T2D. 

 

Tissue specific DMRs 

To identify DMRs from human pancreatic islets which are also altered between other tissues or cell 

types we analyzed the overlap between our T2D associated islet DMRs and a set of 716,087 cross-tissue 

dynamic DMRs identified by Ziller et al. [43]. Out of 25,820 T2D associated islet DMRs, 12,911 

(49.8%) overlapped with a dynamic DMR identified in other tissues (P < 1*10-6) (Table S9). 

 

Altered expression of genes annotated to T2D associated DMRs 

To determine whether the genes annotated to T2D associated DMRs also show altered expression in 

pancreatic islets of type 2 diabetic versus normoglycemic control donors, we combined the 25,820 

DMRs presented in Table S4 with RNA sequencing data from pancreatic islets of a previous publication 

[20]. Here, we identified 457 genes that had both significantly altered expression (False discovery rate 

< 5%; q < 0.05) and significant DMR(s) in pancreatic islets from donors with T2D (Table S10). Of note, 

these include genes of importance in islet function and metabolism such as CACNA1D, CHL1, GLP1R, 
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IGF1R, IL6, NR4A3, PARK2, PDX1, PID1, SEPT9, SIK2, SLC2A2 (also known as GLUT2), SOCS2 and 

SOX6 [2, 39, 44-55] (Fig 3A). 

 

Fig 3. Altered expression, T2D associated DMRs and functional consequences in β-cells 
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In total, 457 genes had both significantly altered expression in pancreatic islets from donors with T2D 

(q < 0.05; [20]) and significant DMR(s) (Table S10). These include e.g. genes of importance in islet 

function and metabolism as depicted in Fig A. B) Selected KEGG pathways based on enrichment of 

genes annotated to T2D-associated DMRs that also show altered RNA expression in human pancreatic 

islets from donors with T2D [20]. 457 genes were included in the pathway analysis and the boxes include 

genes contributing to the enrichment score for each pathway. A full list of significantly enriched KEGG 

pathways are found in Table S11. C) DMRs from the five genes selected for functional studies; NR4A3, 

PID1, SOCS2, PARK2 and SLC2A2 (GLUT2). Overexpression of Nr4a3, Pid1, and Socs2 in INS-

1 832/13 cells was verified by qPCR (D-F) and western blot (G). *** P < 0.001 and ** P < 0.01 as 

analysed by one-tailed paired t-tests (n=7). H) Overexpression of Nr4a3, Pid1, and Socs2 resulted in 

perturbed insulin secretion (* P < 0.05 compared to siNC at 16.7mM glucose, and # P < 0.01 compared 

to siNC at 2.8mM glucose, as analysed by two-tailed paired t-tests; n=7) and I) altered fold change of 

insulin secretion for each of the three genes. J) siRNA mediated knockdown of Park2 was verified by 

qPCR (** P < 0.01 as analysed by a one-tailed paired t-test; n=6). K) Park2 deficiency resulted in 

reduced insulin secretion at stimulatory glucose levels (* P < 0.05 as analysed by a two-tailed paired t-

test; n=6). L) siRNA mediated knockdown of GLUT2 in EndoC-βH1 was verified by qPCR (* P < 0.01 

as analysed by a one-tailed paired t-test; n=4). M) GLUT2 deficiency resulted in reduced insulin 

secretion at stimulatory glucose levels (* P < 0.05 as analysed by a two-tailed paired t-test; n=4). 

 

Next, we performed a KEGG pathway analysis using WebGestalt [33] to identify cellular components 

and biological pathways with enrichment of genes that had both significantly altered expression and 

DMRs in islets from donors with T2D (n=457). Interestingly, these genes are significantly enriched for 

gene ontology (GO) categories including Ribosome, Jak-STAT signaling pathway, Pathways in cancer, 

Type II diabetes mellitus and Metabolic pathways (adjusted P < 0.006; Fig 3B and Table S11). These 

data further support that epigenetic and transcriptional changes in pancreatic islets may contribute to 

altered metabolism and T2D. 

We continued to functionally study the impact of altered DNA methylation on the transcriptional activity 

using luciferase assays. For this experiment, we selected TMED6 and KIF3A, two genes where the T2D 
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associated DMRs cover promoter regions and with an inverse relation between DNA methylation and 

mRNA expression (Fig S1C, Table S10). Altered TMED6 expression has also been linked to reduced 

glucose-stimulated insulin secretion [20]. Luciferase constructs containing respective promoter 

sequence were either methylated or mock-methylated and transfected into clonal β-cells. In line with 

our human islet data, we found that either complete or partial methylation of the KIF3A promoter 

resulted in almost total shutdown of transcription. The same was seen for complete methylation of the 

TMED6 promoter, while partial methylation did not affect transcriptional activity (Fig S1D-E). 

We then asked if genes with both DMRs and altered expression in islets from subjects with T2D have a 

functional role in pancreatic β-cells. Genes were selected for functional follow-up experiments based on 

having multiple and/or large DMRs and exhibit differential expression (q < 0.05) in human diabetic 

islets (Table S10; Fig 3A,C) together with their potential role in β-cell function based on previous 

studies [44, 48, 50, 54]. To model the situation in humans with T2D, we overexpressed Nr4a3, Pid1 and 

Socs2 and silenced Park2 in rat clonal 832/13 INS-1 β-cells, the most well-characterized β-cell line 

regarding insulin secretion [30] (Fig 3D-G, J). We then measured insulin secretion at basal (2.8mM) 

and stimulatory (16.7mM) glucose levels. While overexpression of Pid1 and Socs2 resulted in reduced 

glucose-stimulated insulin secretion, all three overexpressed genes caused a slight increase in basal 

insulin secretion (Fig 3H). These changes resulted in decreased fold change of insulin secretion 

(secretion at stimulatory divided by the secretion at basal glucose levels) in β-cells overexpressing either 

of the three genes (Fig 3I), which is in line with what is seen in subjects with T2D [2]. Park2 deficiency 

resulted in reduced glucose-stimulated insulin secretion (Fig 3J-K). For similar reasons as above we 

also silenced SLC2A2 (encoding GLUT2; Fig 3A, C, L) but here we used a human β-cell line (EndoC-

βH1) since GLUT2 previously was found to be the key glucose transporter in rodent β-cells, whereas its 

role in human β-cells has been questioned [55-57]. Interestingly, reduced expression of SLC2A2 resulted 

in impaired glucose-stimulated insulin secretion in human β-cells (Fig 3L-M). In no case were the 

identified secretory defects due to changes in insulin content (data not shown). 

These findings support the notion that epigenetic modifications in human pancreatic islets may impact 

expression of genes that affect insulin secretion and potentially contribute to T2D. 
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The DNA methylome of human pancreatic islets 

We finally sought to characterize the overall variability of the methylome in human pancreatic islets. 

We found the degree of DNA methylation throughout the genome to be highly correlated among the 

analyzed islets samples (r = 0.973 – 0.989) and the average level of DNA methylation was 75.9%. The 

distribution of the DNA methylation level in human islets is bimodal with the highest peak at 90.2%, 

showing that most CpG sites are highly methylated, whereas the second highest peak is seen at 1.4%, 

representing CpG sites with no or low levels of DNA methylation (Fig 4A). 
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Fig 4. The DNA methylome of human pancreatic islets 

A) The distribution of DNA methylation in human islets. B-D) Average DNA methylation in human 

pancreatic islets, separated by different transcript types (protein-coding, non-coding and pseudogenes) 

and gene regions. Here, TSS 50kb represents 1,501-50,000bp upstream from the transcription start site, 

TSS 1500 represents 201-1,500bp upstream from the transcription start site, TSS 200 represents 1-200bp 

upstream from the transcription start site and TES 10kb represents 1-10,000bp downstream of the 

transcription end site. T2D and normoglycemic controls display no differences in genome-wide average 

methylation for any genomic region or transcript type (P = 0.4-1.0). E-F) Average DNA methylation 

for regions overlapping with different histone marks or transcription factor binding sites. G-I) Average 

methylation levels are significantly different between transcripts of different expression levels. 

Additionally, different genomic regions display specific methylation patterns which are also dependent 

on transcript type. Data presented as mean ± SEM (***ANOVA P < 0.0001). 

 

Next, we computed the average genome-wide methylation level in relation to different genomic regions 

in the human islets. While introns and exons had the overall highest degree of methylation (78.5% and 

77.4%), regions close to the TSS such as the 1st exon and promoter regions (TSS 200 and TSS 1500, 

defined as regions 200bp and 1500bp upstream of TSS) had the lowest degree of methylation (34.7%, 

25.4% and 44.4%, respectively). Additionally, regions more distant to the TSS had a rather high 

methylation level (TSS 50kb 73.0% and TES 10kb 71.2%).  

We also studied methylation based on annotation to different types of transcripts; protein-coding genes, 

non-coding RNAs and pseudogenes (Fig 4B-D). Interestingly, there was a striking difference in average 

DNA methylation between the different transcript types, where the typical drop in DNA methylation 

seen close to the TSS for protein-coding genes (TSS 1500, TSS 200 and 1st exon) was less pronounced 

in non-coding RNAs (long and small combined) and almost completely absent in pseudogenes (Fig 4B-

D). Additionally, there were no differences in average DNA methylation for either genomic regions or 

transcript types between islet DNA from T2D compared to normoglycemic control donors (Fig 4B-D; 

P = 0.4-1.0). 
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To gain further insight into how the islet epigenome is coordinated, we studied the relationship between 

DNA methylation levels and histone modifications across the genome in human pancreatic islets. Here, 

we integrated our islet WGBS data with epigenetic marks generated in human islets by the Roadmap 

Epigenomics Consortium [18]. Regions occupied by histone modifications associated with active 

chromatin had the lowest degree of methylation (11.8% for H3K9ac and 7.8% for H3K4me3), while 

regions occupied by modifications associated with repressive chromatin had a higher methylation level 

(49.6% for H3K27me3 and 80.2% for H3K9me3) (Fig 4E). Additionally, regions occupied by histone 

modifications considered to be enriched at enhancer regions had either quite a low (21.4% for H3K27ac) 

or a high (69.8% for H3K4me1) degree of methylation (Fig 4E). We also examined the relationship 

between DNA methylation levels and genomic binding of islet-specific transcription factors (PDX1, 

FOXA2, MAFB, NKX6.1 and NKX2.2), by combining our genome-wide methylation data with ChIP-

seq data generated by Pasquali et al. [42]. Regions occupied by islet-specific transcription factors had a 

lower degree of methylation (range 20.9% - 43.9%) compared to the whole genome (Fig 4F). There 

were no differences in the degree of DNA methylation in any of the regions occupied by the studied 

histone marks or transcription factors between islet DNA from T2D compared to normoglycemic control 

donors (Fig 4E-F; P = 0.4-1.0). 

We proceeded to explore the relationship between DNA methylation and gene expression levels using 

WGBS and RNA sequencing data from the same 14 human islets. Here, we categorized 60,483 

transcripts into not expressed (Transcript Per Million (TPM) < 0.1, 38,261 transcripts in total),  and 

equally sized groups of lowly (7,407), medium (7,407) and highly expressed (7,408) transcripts. We 

also studied protein-coding genes, non-coding RNAs and pseudogenes separately. We found an 

association between DNA methylation and the expression level in all genomic regions and for all types 

of transcripts (P < 0.0001) (Fig 4G-I). Importantly, protein-coding genes not expressed were 

hypermethylated in regions close to the TSS (TSS 1500, TSS 200 and 1st exon; Fig 4G). On the other 

hand, protein-coding non-transcribed genes had significantly lower methylation levels in the exon and 

intron regions compared with the transcribed genes (Fig 4G), supporting that increased methylation in 

the gene body is associated with a higher level of gene transcription [58]. However, more modest 

differences in DNA methylation were seen in the genomic regions when comparing the different 
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expression levels of transcribed genes, i.e. dividing transcribed genes in lowly, medium and highly 

expressed genes (Fig 4G-I). Some similarities in the methylation pattern were seen for both non-coding 

RNAs and pseudogenes compared with protein-coding genes (Fig 4H-I). However, regions close to the 

TSS were hypermethylated in non-transcribed genes and the overall degree of methylation in these 

regions was much higher in the transcribed non-coding RNAs and pseudogenes (Fig 4H-I). 
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Discussion 

Alternative approaches are needed to put an end to the rapid increase in T2D incidence. This study 

provides valuable insights into T2D pathology and human biology, including the first comprehensive 

and unbiased DNA methylation analysis of 24 million CpG sites in a case control-cohort of human 

pancreatic islets. By this approach, we identified 25,820 DMRs in islets from diabetic and control 

donors. These cover loci annotated to genes with known functions in islets and T2D pathogenesis as 

well as novel candidate genes. Interestingly, the identified DMRs were significantly enriched in both 

experimentally identified and putative binding motifs for islet-specific transcription factors. Integrating 

our WGBS data with RNA-seq data further identified novel candidate genes that contribute to islet 

dysfunction and impaired insulin secretion. 

Intriguingly, seven of the identified DMRs were annotated to PDX1, which encodes a transcription 

factor of key importance during pancreatic development as well as in mature β-cells where it e.g. 

regulates expression of the insulin gene and several other genes of importance for β-cell function [59]. 

Additionally, mutations in PDX1 cause MODY4 in humans [60] and knockout of Pdx1 in rodent β-cells 

causes diabetes [61]. Using a candidate gene approach, we previously found increased DNA methylation 

and decreased expression of PDX1 in islets from subjects with T2D [6]. One DMR annotated to PDX1 

in the present study validated these previous data. Epigenetic changes of Pdx1 in islets of rats exposed 

to an impaired intrauterine environment predispose to diabetes and islet dysfunction in adult life [62, 

63]. We have also previously shown that high glucose levels directly increase DNA methylation of Pdx1 

in clonal β-cells cultured in vitro [6] and that a SNP in PDX1 associated with hyperglycemia also alters 

methylation of PDX1 in human islets [64]. Together, these data support that epigenetic modifications of 

PDX1 may contribute to the pathogenesis of diabetes.  

The majority of SNPs associated with T2D impact insulin secretion rather than insulin action, pointing 

to importance of T2D candidate genes in pancreatic islet function [1, 65, 66]. However, these SNPs only 

explain a modest proportion of the estimated heritability of T2D and it is possible that combinations of 

genetic and epigenetic variation contribute to disease susceptibility [64, 67]. This theory is supported by 

the fact that a large number of our T2D associated DMRs are located in the same regions as T2D 
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candidate genes identified by GWAS. For example, we found islet DMRs annotated to TCF7L2, ADCY5, 

KCNQ1 and GLIS3. Also functional studies show the importance of several of these candidate genes, 

such as TCF7L2 and ADCY5, in β-cells and pancreatic islets [68, 69], further underpinning the role of 

epigenetic dysregulation in the etiology of T2D.    

Previous studies of human pancreatic islets from donors with and without T2D have only investigated 

DNA methylation of selected candidate genes or a small fraction of genomic CpG sites [2-6, 46]. The 

current study engaged an approach to locate continuous regions of differential CpG methylation, i.e. 

DMRs [22]. When comparing our WGBS results with the 450K array data within samples, we observed 

correlations from 0.93 to 0.94. This indicates that our WGBS data is of high quality, in line with two 

previous studies in other tissues [70, 71]. It has been suggested that minimal sequencing requirements 

in WGBS experiments starts from 5× [72]. However, it was also stated that higher coverage is required 

to detect shorter DMRs with smaller methylation differences. Based on our previous findings, we 

expected some CpG sites to show absolute differences in methylation less than 10% between islets from 

type 2 diabetic and control donors [2], hence we implemented a  higher coverage (21×) in our study 

design. Indeed, we discovered numerous DMRs that show absolute methylation differences between 5 

and 10%. This would require at least 10× coverage for detection, which was also the level we used for 

cutoff in our bioinformatic analysisis. As the epigenetic process is highly dynamic both over time and 

in different tissues and cell types, future studies should aim to distinguish between potentially 

informative and non-informative genomic regions to reduce cost as well as amount of data to process. 

For example, DMRs shown to be highly variable between tissues may be of significance in determining 

the characteristic of specific cell types [43], but may also be regions more prone to epigenetic alterations 

through e.g. environmental influences or disease. Intriguingly, our results support this hypothesis since 

approximatelt 50% of our T2D associated islet DMRs overlapped with dynamic DMRs identified in 

other tissues [43]. In addition, DMRs overlapping with enhancer regions and transcription factor binding 

sites may also have an important role in gene regulation and disease development [73, 74]. Indeed, these 

regions were overrepresented in the DMRs detected in our study. A recent study by Domcke et al 

proposed competition between DNA methylation and binding of transcription factors to DNA [74]. In 

relation to their data, it is worth mentioning that we found 20.9-43.9% methylation in regions occupied 
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by islet specific transcription factors such as PDX1, FOXA2, MAFB, NKX6.1 and NKX2.2. It is 

possible that these transcription factors bind to DNA in a subset of islet cells with hypomethylated DNA, 

while they may not bind to DNA in the cells with methylated DNA. Methylation may thereby regulate 

gene expression differentially in different islet cells. The fact that motifs for several islet specific 

transcription factors were enriched in T2D associated islet DMRs further support an important role of 

methylation in these regulatory regions.     

When combining the identified DMRs with RNA-seq data from islets of T2D and control donors, we 

identified 457 genes with both altered methylation and expression. One example is CDKN1A, which we 

previously have shown is epigenetically altered in T2D islets and influences insulin secretion in clonal 

β-cells [2]. Interestingly, we also found increased DNA methylation and decreased expression of 

SLC2A2 in islets from subjects with T2D. SLC2A2 encodes GLUT2, which is the major glucose 

transporter in rodent islets, whereas other glucose transporters have been suggested to be more important 

in human β-cells [56]. Nevertheless, Sansbury et al. reported a homozygous loss of function mutation 

in SLC2A2 as a rare cause of neonatal diabetes, suggesting a potential role for GLUT2 in human β-cells 

[57]. Hence, the data by Sansbury et al. together with our epigenetic data encouraged us to study the 

role of GLUT2 in human β-cells. Importantly, silencing the expression of SLC2A2 resulted in decreased 

glucose-stimulated insulin secretion in a human β-cell line supporting a role for GLUT2 as a glucose 

transporter not only in rodent but also in human β-cells. 

To further model the situation in human T2D, we performed functional follow-up experiments of 

additional genes exhibiting significant DMRs and altered expression in islets from diabetic donors. Here, 

we overexpressed Nr4a3, which encodes a nuclear receptor that reduces insulin gene expression by 

modulating the expression of Pdx1 and NeuroD1 [75], Socs2, which encodes a suppressor of cytokine 

signalling found to regulate proinsulin processing and insulin secretion in transgenic mice [50] and Pid1, 

which encodes phosphotyrosine interaction domain-containing protein 1 that has been implicated in 

mitochondrial dysfunction and insulin resistance [44]. Interestingly, overexpression of all these three 

genes decreased the ratio between glucose-stimulated and basal insulin secretion, which is in line with 

what is seen in human diabetic islets. We also silenced the expression of Park2, which encodes parkin 

and has been shown to regulate the mitochondrial control system in β-cells [48]. Again, this impaired 
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glucose-stimulated insulin secretion. These experiments in clonal β-cells support that genes identified 

by WGBS and RNA-seq may contribute to islet dysfunction in subjects with T2D. 

DNA methylation was initially thought to be a silencing mark, however more recent data show that its 

function may vary with genomic context and the situation is more complex than initially thought [58]. 

Here, we integrated the islet methylome with histone modifications analysed by the Roadmap 

Epigenomics Consortium in human pancreatic islets [18]. Notably, Kundaje et al. generated 

comprehensive WGBS data in several tissues, but only reduced representation bisulfite sequencing 

methylation data for human pancreatic islets [18] and our study is hence the first to provide WGBS 

coverage in human islets. In line with what may be expected, histone marks enriched around the TSS of 

actively transcribed genes (e.g. H3K9ac, H3K27ac and H3K4me3) as well as active enhancers (e.g. 

H3K27ac) had a relatively low degree of DNA methylation, while histone marks enriched around 

inactive TSS (e.g. H3K27me3) or inactive regions (e.g. H3K9me3) had a medium or high degree of 

DNA methylation. We also found a relatively high degree of DNA methylation in regions enriched with 

H3K4me1, which is a modification found both at enhancer regions and gene bodies of actively 

transcribed genes. Thus the high degree of DNA methylation in regions enriched for H3K4me1 is in 

line with the high degree of DNA methylation that is often found in gene bodies [76-79]. 

We also integrated the full islet methylome and transcriptome and examined the degree of methylation 

in different genomic regions of protein-coding genes, non-coding RNAs and pseudogenes. It is 

remarkable that DNA methylation of the different transcript types shows a completely different pattern, 

highlighting the need to take this into account when determining activity of a DNA region based on the 

epigenetic profile. The relation to gene expression was also distinct when comparing non-expressed and 

expressed transcripts, with reduced impact with increasing distance from TSS. The complex relation 

between WGBS methylation and RNA-seq data has been shown also in a few other tissues, supporting 

methylation to have a gene regulator role also outside promoters [15, 16]. Taken together, our data 

clearly show that the relationship between DNA methylation and gene expression depends on transcript 

type, expression level and distance from the TSS. 

As DMRs may be cell-type or tissue specific [43], it is important to minimize the impact of cellular 

heterogeneity within the study. Here all samples were selected to have a high purity, i.e. a high endocrine 
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content, without differences between the groups. Furthermore, we have previously shown that there is 

no difference in β-cell content in the pancreatic islets from donors with T2D compared with controls 

[2]. These data support that the T2D associated DMRs we identify are not due to altered cell composition 

between the groups.  

This comprehensive study identified novel diabetes-related changes in DNA methylation throughout the 

genome that support a central role for epigenetics in T2D. We need to combine multiple layers of 

biological information to get closer to understanding the pathogenesis of T2D and the progression of the 

disease. Here, we combined WGBS and RNA-seq data from human islets with known regulatory 

elements such as histone marks, transcription factor binding sites and enhancer regions. These integrated 

data advances our understanding of the etiology of T2D. Together, our results highlight the importance 

of epigenetic dysregulation in pancreatic islets and T2D pathogenesis. 
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Supporting information captions 

S1 Figure. Technical validation, unsupervised PCA analysis and luciferase assays. A) Technical 

validation of WGBS library prep kits and sequencing chemistries. Correlations between WGBS data 

generated using two different library preparation kits (TruSeq DNA Methylation Kit and NEXTflex™ 

Bisulfite Library Prep Kit), and using two different sequencing chemistries (Illumina type 3 and type 4 

chemistry). B) Unsupervised PCA analysis of WGBS data from human pancreatic islets. C) The selected 

genes for functional luciferase assays show altered DNA methylation of promoter DMRs in human 

pancreatic islets from type 2 diabetic donors. D-E) Luciferase assays to functionally study the impact of 

altered DNA methylation on transcriptional activity. The luciferase assay results showed that 

methylation of the (D) KIF3A and (E) TMED6 promoters with SssI and HhaI/HpaII (the number of 

methylation sites for each enzyme is indicated in the figure) resulted in reduced transcriptional activity. 

***P < 0.001 as analyzed with an unpaired two-tailed t-test (n=5). 

S1 Table. Characteristics for 75 donors of pancreatic islets for biological replication. 

S2 Table. Sheet A) Pyrosequencing assay used for biological replication of PDX1, Sheet B) promoter 

sequences (2000 bp) used for insertion in the luciferase reporter vector and Sheet C) cDNA sequences 

for overexpression experiments in the 832/13 INS-1 β-cell line. 

S3 Table. Sheet A) Sequencing information and alignment statistics of WGBS in human pancreatic 

islets. Sheet B) Correlation between DNA methylation of 224,645 CpG sites covered by both WGBS 

and 450K1 (forward strand) from the same 14 samples of human pancreatic islets. 

S4 Table. Differentially methylated regions (DMRs) in human pancreatic islets from donors with T2D. 

S5 Table. T2D associated DMRs in human pancreatic islets annotated to the 65 known T2D candidate 

loci identified by the Diagram consortium (Morris et al). 

S6 Table. Overlap between T2D associated DMRs and genome-wide maps of histone modifications, 

generated by the Roadmap Epigenomics Consortium (Kundaje et al), and enhancer regions in human 

pancreatic islets (Pasquali et al). Sheet A) H3K4me3 Sheet B) H3K9ac Sheet C) H3K27ac Sheet D) 

H3K4me1 Sheet E) H3K27me3 Sheet F) H3K9me3 Sheet G) H3K36me3 Sheet H) Enhancers. 

39



40 
 

S7 Table. Enrichment of transcription factor recognition sequences (known/novel motifs) in our T2D 

associated DMRs based on HOMER. 

S8 Table. Overlap between T2D associated DMRs and transcription factor binding sites in human 

pancreatic islets: Sheet A) FOXA2, Sheet B) MAFB, Sheet C) NKX2.2, Sheet D) NKX6.1, Sheet E) 

PDX1  

S9 Table. Overlap between T2D associated DMRs in human pancreatic islets and regions shown to 

have dynamic methylation between human cell types and tissues by Ziller et al. 

S10 Table. T2D associated DMRs annotated to genes that also show altered RNA expression in human 

pancreatic islets from donors with T2D. 

S11 Table. KEGG pathways with enrichment of genes with both significant DMRs and differential 

expression in islets from donors with T2D vs. normoglycemic controls. 
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