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COMPUTATIONALLY EFFICIENT ESTIMATION OF
MULTI-DIMENSIONAL SPECTRAL LINES

Johan Swärd, Stefan Ingi Adalbjörnsson, and Andreas Jakobsson

Dept. of Mathematical Statistics, Lund University, Sweden

ABSTRACT

In this work, we propose a computationally efficient algo-
rithm for estimating multi-dimensional spectral lines. The
method treats the data tensor’s dimensions separately, yield-
ing the corresponding frequency estimates for each dimen-
sion. Then, in a second step, the estimates are ordered over
dimensions, thus forming the resulting multidimensional pa-
rameter estimates. For high dimensional data, the proposed
method offers statistically efficient estimates for moderate to
high signal to noise ratios, at a computational cost substan-
tially lower than typical non-parametric Fourier-transform
based periodogram solutions, as well as to state-of-the-art
parametric estimators.

Index Terms— High-dimensional data, Efficient algo-
rithms, Spectral analysis, Parameter estimation, Sparse signal
modeling.

1. INTRODUCTION

High dimensional data occurs in a variety of fields, the pro-
cessing of which often requires computationally intensive
analysis algorithms. In this work, we examine the problem
of computationally efficient estimation of multidimensional
sinusoidal data, such as occurring in, for instance, spectro-
scopic applications. Typically, for such problems, the high-
resolution evaluation of the signal characteristics can require
both notable computational efforts as well as vast memory
requirements, and several efforts have been made to propose
various forms of parametric and semi-parametric estimators
(see, e.g., [1, 2]). In particular, the two-dimensional (2-D)
case has been investigated in several works, such as [3–5],
wherein the authors examine algorithms based on the prob-
lem’s eigenvector structure, exploit a sparsity framework, as
well as a subspace framework, respectively. Further works
include [6], which examined the 3-D case, [7, 8], wherein
different compressed sensing methods are compared for
high dimensional NMR signals, and [8, 9], which exam-
ined high-dimensional subspace based estimators. Several
works also focus on one of the computationally most effi-
cient ways of forming multidimensional sinusoidal param-
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eter estimates, namely the multi-dimensional periodogram,
formed as the square of the absolute value of the Fast Fourier
Transform (FFT) of the data [10]. Although computation-
ally efficient, the method is well known to suffer from low
resolution and/or high leakage [11]. However, when dealing
with high-dimensional data sets, both the memory and the
computational requirements quickly becomes cumbersome.
In this work, we assume data with a relatively high signal-
to-noise ratio (SNR) [12], such that each fiber of the data
tensor contains notable information about the parameters.
Exploiting this, we examine a non-parametric divide-and-
conquer approach allowing for the forming of statistically
efficient estimates, while requiring substantially less memory
and computational complexity than corresponding FFT-based
estimators. In order to do so, the proposed method first
decouples a subset of fibers from the data tensor, in each
dimension, and forms an initial estimate using these. These
estimates are then ordered over dimensions, such that the
estimates in each dimension are matched. Finally, the full
data set is utilized to refine the initial estimate. Numerical
examples illustrate the statistically efficient performance of
the proposed estimator, as well as the required computa-
tional complexity as compared to both the multi-dimensional
periodogram and the commonly used efficient parametric
estimator FB-Root-MUSIC proposed in [9].

2. PROBLEM STATEMENT

Let Y be an N1× · · · ×NM data tensor consisting of K mul-
tidimensional sinusoidals, where M denotes the number of
dimensions and Nm the number of samples in dimension m,
respectively. Furthermore, let Am,Lm

(Y) denote the opera-
tor that extract the Lmth fiber in mode-m from the tensor Y
(see, e.g., [13] for a more detailed exposé of tensor notation),
where

Lm = {`1, . . . , `M−1} (1)

yielding a column vector fixing every index but one. As an
example, consider the matrix Y defined as

Y =

1 2 3
4 5 6
7 8 9

 (2)



Algorithm 1 The DICO algorithm
1: Extract B fibers from each of the M dimensions.
2: for m = 1, . . . ,M do
3: Compute the average periodogram using (7), and ex-

tract the dominating K̂m frequencies.
4: end for
5: Create the dictionary D using (8)-(10), and solve (11).

Then, A1,2(Y) = [ 2 5 8 ]T , with (·)T denoting the
transpose, yielding the 2nd column along the first dimension.
Similarly, A2,1(Y) = [ 1 2 3 ]T , yielding the first row in
the second dimension. Let

τ =
[
t
(1)
i1

t
(2)
i2

. . . t
(M)
iM

]
(3)

where t(m)
im

denotes the imth (possibly non-uniform) sampling
point in dimension m. Then, the observation at sample point
τ may be expressed as

yτ =

K∑
k=1

αk

M∏
m=1

e2iπf
m
k t

(m)
im + eτ (4)

where eτ denotes an additive noise term, here assumed to
be an independent identically distributed zero-mean Gaussian
distributed random variable, f (m)

k the normalized frequency
for term k and dimension m, and where αk denotes the com-
plex amplitude of term k. It should be stressed that the num-
ber of sinusoidal components, K, is assumed to be unknown,
and should thus be estimated along with the other model pa-
rameters.

The typical solution to this problem is to form the fre-
quency estimates from the K̂ dominant components in a
multi-dimensional periodogram estimate, where K̂ is an es-
timate of the number of components in the signal, usually
estimated from the data using some simple cut-off rule or an
information-theoretic setup [11, 14–16]. Such an operation
requires O(PM log(PM )) operations, where

PM =

M∏
`=1

P` (5)

with P` denoting the number of (zero-padded) frequencies
over which the estimate should be evaluated over along di-
mension `. Without loss of generality (w.l.g.), we will to sim-
plify notation in the following assume that P` = P , ∀`. For
low dimensional data, such a solution is often computation-
ally attractive, whereas for higher dimensions the complexity
quickly grows to be intractable. Consider, for example, the
4-D case with P = 512, implying that > 1011 operations
are needed to form the estimate, as well as the allocation of
a vast amount of memory. In this work, we consider high-
dimensional data sets having moderate to high SNRs, such
as those occurring, for instance, in NMR spectroscopy (see,
e.g., [7]).

Algorithm 2 The DICO-NLS algorithm
1: Form the DICO residual, r = y −Dx.
2: for i = 1, . . . , Imax do
3: for k = 1, . . . , K̂ do
4: Form r̃k = r + Dkxk
5: for m = 1, . . . ,M do
6: Keeping all dimensions but m fixed, form D̃k,m,

and minimize (12) over f (k)m .
7: Update r̃k using the found estimate.
8: end for
9: end for

10: end for

3. DIVIDE AND CONQUER

Given that the data set is assumed to have a relatively high
SNR, it can be noted that one ought to be able to form a rea-
sonable initial estimate based on only a subset of the data.
Using this notion, the proposed algorithm extracts a small set
of B` fibers from the `th dimension of the data tensor, such
that

yk,` , A
k,L

(`)
`

(Y) ∈ CN`×1 (6)

for k = 1, . . . , B` and ` = 1, . . . ,M . W.l.g., we will in
the following assume that B` = B, ∀`. From this set of BM
vectors, we form initial estimates of all frequencies, in each of
the dimensions. This may be done in a variety of ways; here,
in the interest of computational simplicity, we form the esti-
mates along each dimension using an averaged periodogram,
such that

φ̂m =

B∑
b=1

1

BNm

∣∣∣∣∣
Nm∑
t=1

ym,b(t)e
−i2πt p

P

∣∣∣∣∣
2

(7)

for all considered frequencies p = 1, . . . , P . An estimate of
the number of active components can then be formed using
either some simple cut-off rule, or more sophisticated model
order estimation techniques, such as, for instance, those pre-
sented in [11, 15, 16]. Clearly, instead of (7), an alternative
estimate may be formed using, e.g., Capon- or LASSO-based
estimators [], or via parametric estimators such as MUSIC and
ESPRIT, although the latter necessitating also a model order
estimation as a part of the estimation process.

After forming such an initial estimate of the K̂` fre-
quencies, in dimension `, ∀`, the resulting estimates in each
dimension must be grouped over dimensions, such that the
appropriate frequencies in each dimension are matched with
each other. Since the number of possible pairings increases
exponentially with the number of found frequencies in each
dimension, we propose to perform the pairing using sparse
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Fig. 1. The log RMSE for DICO and DICO-NLS for different
settings, as compared to the CRB.

modeling [17]. To do so, let

Dm =
[
d
(m)
1 . . . d

(m)
Km

]
(8)

d
(m)
k =

[
1 e2iπf

(m)
k . . . e2iπf

(m)
k (Nm−1)

]T
(9)

for m = 1, . . . ,M , denote M sub-dictionaries over the found
frequencies, in their respective dimensions (we note that a
similar dictionary was introduced in 2-D case in [18]). Com-
bining the dictionary as

D = DM ⊗ · · · ⊗D1 (10)

where ⊗ denotes the Kronecker product, the frequencies may
be matched by solving

minimize
x

1

2
||vec (Y)−Dx||22 + λ ||x||1 (11)

where vec(·) is the vectorization operator, stacking the tensor
to a vector corresponding to the structure in Dx. As shown
in [19], the minimization in (11) may be formed efficiently us-
ing an Alternating Direction Method of Multipliers (ADMM)
implementation. Algorithm 1 summarizes the resulting DI-
vide and COnquer (DICO) algorithm. It should be noted that
(11) could theoretically be solved directly for all considered
frequency grid points, without the initial selection step out-
lined above, although such a solution would be practically
infeasible due the resulting (N1 · · ·NM × PM )-dimensional
dictionary. Given the resulting frequency ordering, the ini-
tial estimates may be refined using a simple non-linear least
squares (NLS) technique, using either gradient steps or a grid
search, as summarized in Algorithm 2, i.e., such that the kth
frequency in the mth dimension is estimated as

minimize
f
(k)
m

r̃Hk Π⊥
D̃k,m

r̃k (12)

with r̃k denoting the residual formed by extracting all but the
kth component from yτ , D̃k,m the corresponding dictionary,
and

Π⊥
D̃k,m

= I− D̃k,m

(
D̃H
k,mD̃k,m

)−1
D̃H
k,m (13)

the projection onto the space orthogonal to the one spanned
by the dictionary. Assuming, w.l.g., N` = N , ∀`, sam-
ples in each dimension, the DICO algorithm requires about
MRPNM−1 log(P ) operations for the initial step, where
R = BN1−M denotes the proportion of data used to form the
initial estimate. The averaging in (7) requires MRNPM−1

operations, and the extraction of the peaks amounts to 3MP
further operations, followed by roughly 3MNM+1 opera-
tions for the ADMM implementation, if implemented utiliz-
ing the Kronecker structure (see also [20] and [21]). Finally,
the NLS using a grid search requires about 3QMK̂Ntot oper-
ations, whereQ and K̂ denote the number of NLS evaluations
along dimension m and the number of found M -dimensional
sinusoids, respectively.

4. NUMERICAL EXAMPLES

In this section, we evaluate the performance and complexity
of the proposed method using simulated multidimensional si-
nusoidal data. As an example, we consider a uniformly sam-
pled 3-D data tensor of size 40× 40× 40, containing K = 3
3-D sinusoids, with frequency modes

f1 =
π

3
[ 0.3 0.2 0.1 ] (14)

f2 =
π

3
[ 0.6 0.4 0.5 ] (15)

f3 =
π

3
[ 0.7 0.8 0.9 ] (16)

with unit magnitude and phase uniformly drawn from [−π, π].
Figure 1 shows the log root mean squared error (logRMSE)
of the proposed estimator for different settings (summed over
all frequencies), as compared with the corresponding Cramér-
Rao lower Bound (CRB), as derived in [22], as a function of
the SNR, here defined as

SNR = 10 log10
(
σ−2Py

)
(17)

where Py denotes the power of the signal and σ2 the variance
of the noise, respectively. The results have been computed
using 100 Monte-Carlo simulations.

As seen in the figure, the DICO algorithm offers a good
initial estimate, even if only using a low proportion of the
available data. Adding the refinement step, it is clear that
the DICO-NLS combination offers statistically efficient esti-
mates. Here, all the estimators but one have been evaluated
using a zero-padding of P = 65536 grid points, although
as shown in the figure, the remaining, the combined DICO-
NLS method will be efficient even using as little zero-padding
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Fig. 2. The computational complexity of the 3-D peri-
odogram, DICO-NLS, and the FB-Root-MUSIC algorithm,
as a function of the data size, for 20 spectral lines.

as P = 256. The maximum outer-loops in the NLS step,
Imax, was set to 3, where in each iteration the search area was
narrowed down by a factor 100, which was evaluated over
Q = 100 grid points. In order to select the number of frequen-
cies in each dimension, we here, for simplicity, use a simple
cut-off rule, such that all peaks larger than the average of the
maximal and minimal value of (7) are treated as separate fre-
quencies. Clearly, one may instead use more sophisticated
model-order estimation techniques, such as AIC or BIC (see,
e.g., [11, 14]). To avoid cluttering the figure, the FFT-based
periodogram estimates are not shown as it is well known that
these will also yield statistically efficient estimates for this
setting, if using a sufficiently large zero-padding; here, in or-
der to do so, it would require a total grid size of at least 248,
for the 3-D FFT at SNR= 10. Similarly, it is well-known that
several parametric estimators, such as the FB-Root-MUSIC
algorithm presented in [9], will also achieve the CRB, if given
full knowledge of the model order.

Next, we examine the computational complexity of the
proposed DICO algorithm, as compared to the 3-D peri-
odogram and the FB-Root-MUSIC algorithm. To do so, we
mimic the 3-D NMR experiments detailed in [2, 7, 23], such
that N varies from 64 to 1024, each containing 20 sinusoids.
For DICO, we use P = 4096 and Imax = 5, and the search
area for the NLS narrowed down by a factor 100 for each
iteration, using Q = 100 grid points in the NLS search. Fig-
ures 2-3 show complexity for DICO, the 3-D periodogram,
and the FB-Root-MUSIC algorithm as a function of the data
size and the number of sinusoids, respectively. Here, both the
periodogram and the FB-Root-MUSIC algorithm have been
allowed oracle model order information, whereas DICO esti-
mates the number of frequencies using the above noted simple
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Fig. 3. The computational complexity of the 3-D peri-
odogram, DICO-NLS, and the FB-Root-MUSIC algorithm,
as a function of the number of spectral lines, for N = 256.

cut-off rule. Here, the periodogram uses a zero padding of
P = 65536 grid points in each dimension, independently
of the data size. It should be noted that such a small grid is
not sufficient for its estimate to be even close to the CRB for
largeN . As is clear from the figures, the DICO-NLS estimate
offers a statistically efficient estimate at a computational cost
substantially lower than both the 3-D periodogram and the
FB-Root-MUSIC algorithm. Furthermore, it should be noted
that the DICO estimate does not require even a fraction of
the memory requirements of the 3-D periodogram, as only
the averaged estimate of the fibers in (7) need to be stored in
memory. Finally, as is clear from the presentation above, the
computational gain as compared to the periodogram and the
FB-Root-MUSIC algorithm will grow even faster for higher
dimensions.

5. CONCLUSIONS

In this work, we have presented a computationally and statis-
tically efficient multi-dimensional sinusoidal frequency esti-
mator. The proposed estimator exploits that notable informa-
tion about the unknown frequencies may be found in a subset
of the data tensor. This subset is used to form a first estimate
that is then refined using the entire data set, estimating the
number of spectral lines as a part of the procedure.
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