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Abstract

Automation programming is typically done using blocks and
dataflow connections, in diagram languages that support user-
defined block types. Often, these types are intended to be
instantiated and connected to other blocks in common pat-
terns, corresponding to anticipated variability. We present
the new language mechanisms of wirings and recommenda-
tions that allow these intentions to be encoded as features in
libraries. A wiring describes how a given block is typically
connected to other blocks, and a recommendation describes
where such a wiring is typically applied as a feature. This
allows feature-based wizards to be generated for user-defined
libraries, making it easy to construct applications that make
use of the encoded patterns.

Categories and Subject Descriptors
Languages)

D.3 [Programming

Keywords dataflow, inheritance, variability, visual, wiring,
recommendations, redeclare, intercept, control systems, pro-
cess automation

1. Introduction

Block diagrams, with blocks and connections, are common
in modeling, simulation, and automation programming. Ex-
ample languages include both proprietary languages like Lab-
View from National Instruments, Simulink from MathWorks,
and ControlBuilder from ABB, as well as open community-
developed languages like Modelica (Modelica 2012), and
SysML (SysML 2015). Typically, the connections are di-
rected and describe dataflow between the blocks.! These
languages typically support user-defined blocks to encourage
hierarchical decomposition and the construction of reusable

! Modelica is an exception in this respect, as it uses undirected connections
that correspond to equations.

@Copyright is held by the authors.
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libraries, for example for controllers, motors, valves, tanks,
pumps, etc. The content of a block can be defined by an inner
block diagram, or using some other notation, like structured
text?. These user-defined blocks are usually intended to be
combined in specific predefined ways. For example, in Pro-
portional Integral Derivative (PID) control, there are many
different ways in which a basic controller block can be com-
bined with other blocks to improve control. Examples include
support for feed-forward, gain scheduling, cascade control
with master-slave controllers, override control, etc. (Astrém
and Higglund 2006). While any such combination can be
coded up as wired blocks, the problem is that libraries of
components do not encode the intended variability, so the
domain engineer will need to manually select and wire all
individual components, which is both time-consuming and
error-prone. In process automation, this is an important prob-
lem, as programming a control system for an industrial plant
is a very large engineering effort.

One possible work-around is to provide a number of pre-
configured block types in the library, one for each combina-
tion of features. However, this leads code duplication and to
an exponential number of block types in the library, making it
impractical. Another more practical but still insufficient work-
around is to provide parameterized block types, that contain
support for all features, but where the actual features used
are selected by extra input parameters. However, this leads to
diagrams that are very complex to understand and use, and
where only a subset of the functionality is actually used at
runtime. Furthermore, all variability needs to be anticipated
in advance with this solution.

In this paper, we provide a solution to this problem by
allowing the variability to be explicitly encoded, making it
easy for the domain engineer to select the desired features,
and resulting in simple diagrams that only contain the desired
functionality. Furthermore, the encoding is modular, so all
features do not have to be anticipated when constructing a
library: additional features can be added in separate library
modules, and the resulting diagrams can be edited to add
special features that are not in any library at all.

In our solution, we propose the novel language constructs
of wirings that describe how blocks are typically connected,

2 Structured text is one of the languages in the IEC 61131 standard for
programmable logic controllers.
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and recommendations that describe where such wirings are
typically applied. A given block could be inserted at many
different places in a particular block diagram, but often, it
is advantageous to insert it at a specific place, serving the
role of a feature that the diagram can include or not. An
example could be a controller diagram that includes a feed-
forward block or not. If the feed-forward block is included, it
is intended to be inserted in a specific way. A wiring defines
how a particular block, like the feed-forward block, should
be connected in a diagram. A recommendation for a diagram
defines where in the diagram a particular wiring is intended
to be inserted.

The recommendations can be used to create smart editing
support in the form of a feature-based wizard. The wizard
can be automatically derived, and the user can use it to
select or change the desired combination of features for a
particular diagram. These mechanisms do not hinder the
user in making other modifications, or in wiring together
blocks in unanticipated ways. However, being able to capture
anticipated variability this way can simplify and speed up
program construction substantially, by allowing common
patterns to be applied very quickly.

The new mechanisms are general programming constructs,
applicable to data-flow block diagram programming, support-
ing the construction of modular extensible libraries for differ-
ent domains. The modularity is very important as it allows
libraries, and therefore the derived wizards, to be extended
with new patterns of interest for a given application domain
or even for an individual plant.

The language mechanisms proposed in this paper are
based on diagram inheritance: a subtype can extend a su-
pertype diagram with additional connections and blocks, and
can also specialize the behavior in the supertype, in analogy to
method overriding in object-oriented languages. In particular,
specialization is supported by connection interception (Fors
and Hedin 2014) and block redeclaration (Modelica 2012).
Connection interception allows the subtype to intercept con-
nections defined in the supertype, that is, to reroute the con-
nection to go via another block or subnet. Block redeclaration
allows the subtype to replace the type of a block defined in
the supertype by a more specialized type.

As a proof of concept, we have implemented the proposed
language mechanisms, recommendations and wirings, in
an experimental data-flow based language, Bloqqi, used
for programming automation control systems. Bloqqi has
both textual and visual syntax. We have implemented a
compiler and a visual editor for the language that is released
as open source.> The mechanisms have been developed in
collaboration with ABB Control Technologies, with the goal
of improving reusability mechanisms in the control domain
for the process industry. We have been collaborating with
ABB for almost four years with monthly meetings. The

3 https://bitbucket.org/bloqqi
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Figure 1. Periodic execution. All steps are performed in each
period.

language has been designed iteratively using their feedback
as input and has been inspired by their examples.

Like typical control systems, programs in Bloqqi are
executed periodically, for example, 10 or 100 times per
second. Sensor values are read in the beginning of the period,
and are used to compute output values that are sent to
actuators to control the process. This is illustrated in Figure 1.
The control program may also have states that are stored
between the periods. For instance, integrating controllers
may use old sensor values to improve the control signal.

Before continuing with a motivating example (Section 2)
and a discussion of the Bloqqi language (Section 3), we will
first summarize the main contributions of this paper. They
are:

e Wirings. A new language mechanism that describes how
blocks of a user-defined type can be inserted and con-
nected (Section 4).

¢ Recommendations. A new language mechanism that
modularly describes where a wiring is recommended to be
applied, serving the role of an optional feature (Section 5).

¢ Recommendation composition. An explanation of how
recommendations can be used together with subtyping to
automatically compute hierarchical feature wizards, and
how feature interactions can be automatically discovered
and modularly resolved (Section 6).

¢ Source interception. A generalization that allows inter-
ceptions to be applied not only at the target of a connec-
tion, but also at the source (Section 6.3).

¢ Editing support. Editing support for feature-based pro-
gramming, to create recommendations by example, and
to support staged configuration (Section 7).

¢ Evaluation. We have implemented the new mechanisms,
and show that our approach requires much less effort
in constructing diagram variants, compared to manual
editing (Section 8).

We end with a discussion of related work (Section 9) and
a concluding discussion (Section 10).
2. Motivating Example

A basic PID controller periodically reads a sensor value
and computes an actuator value (using the history of sensor
values) in order to control a system towards a set point, i.e.,
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Figure 2. Diagram for temperature control using steam.
Solid parts are created manually. Dashed parts via the wizard.

a desired value. For real systems, there are many different
variants on this basic structure.

As a motivating example, we will consider controlling
the temperature of a fluid in a tank, by using steam that is
let in through a valve. When the valve is opened, the effect
of heating will depend on the current steam pressure, which
in turn may vary substantially since the steam may be used
elsewhere in the factory, for example, to heat other tanks.

This is a classic example of when cascade control is
needed, i.e., where two controllers are connected in a master-
slave configuration (Astrom and Hiégglund 2006). The master
controller reads the current temperature to compute how
much steam is needed. The slave controller uses this value as
its set point, and reads the current steam pressure to compute
how much to open the valve in order to obtain that amount of
steam.

A Bloqqi diagram for temperature control using steam is
shown in Figure 2. There are two sensors, temperature and
pressure, one actuator, valveOpening, and two values that
can be set by the human operator: operatorSP for setting
the desired temperature, and operatorGF to set a suitable
gain factor for the master controller, controlling how fast
to heat. All these blocks are implemented using primitives
to communicate with the sensors, actuators, and operator
interface.

The rightmost controller (the slave) takes the output of
the leftmost controller (the master) as its set point. Further
embellishments include filters on both controller inputs,
an extra input port on the master controller to receive the gain
factor, and an override filter before sending the signal to the
valveOpening actuator, to protect the valve from opening
too much which might damage the equipment.

Without our new language constructs, the user would
construct the control program from scratch in the visual editor,
by instantiating existing block types for different kinds of
filters and controllers, creating specialized types as necessary,
and explicitly wiring the components together. However,
this requires a lot of detailed knowledge of many different
block types, and knowledge of how they are intended to be
combined. Instead, we provide the possibility of embedding
this knowledge into library types from which a wizard can be
automatically generated, allowing the user to simply select
the desired parts. These parts are then automatically inserted
in the correct way into the program, wired together, and
combined in the right order.

eC e

Specialize diagram type

Create new specialized component

Specialize type:
Component name Iooﬁ

B v & override
| FixedOverride (default)
| TunableOverride
hd 6 slave
& filter
v ‘ controller
(’) feedForward
6 gain
hd ‘ master
& filter
v ‘ controller
(’) feedForward
6 gain

Features:

HO K OO0 HEOXR

@ Next > cancel | (LICIE

Figure 3. Wizard for creating a control loop.

In this example, the wizard is used to create the control
logic (dashed). This is done by creating an instance of Loop (a
library block type), and selecting appropriate features in the
wizard. The sensors, actuators, and the operator-set value
blocks (solid), are created manually, as in a usual block
diagram editor.

Figure 3 shows the wizard for Loop. The possible selec-
tions are shown in a structure similar to a feature diagram
with mandatory, optional, and alternative parts (Kang et al.
1990). Black circles correspond to mandatory parts, white to
optional parts, and vertical bars are used for showing alterna-
tives. In this case, the master part is mandatory, whereas the
slave part is optional. Both the master and slave parts have
a controller and an optional filter. The controllers have
optional feedForward and gain parts. Furthermore, there
is an optional override part for which there are two alter-
natives: FixedOverride and TunableOverride. A corre-
sponding feature model for the Loop type is shown in Fig-
ure 4. By selecting the parts as shown in Figure 3, the dashed
parts of the diagram in Figure 2 are created, complete with
all the internal wiring (dashed arrows). The user completes
the diagram by connecting the sensors, actuators and operator
values to the control logic (blue solid arrows). The example
illustrates how a user can construct a complex diagram very
quickly and easily, just by selecting features in the wizard,
and without having to remember what block types to use and
how to wire them together.

The diagram in Figure 2 is an interactive view of an
underlying control program, and all details in this program
are not immediately visible, but can be accessed by interactive
means. For example, the names of ports can be viewed by
hovering over the ports, and the type and content of a block
can be viewed by double-clicking on the block.

The dashed parts of the diagram is actually an instance of
an anonymous subtype of the block type Loop, but which is
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Figure 4. Corresponding feature model for the type Loop in Figure 3.

automatically inlined to show interesting parts of the inner
structure. For the Loop type, the library developer has chosen
to expose the controllers and the filters. However, the selected
gain component is shown only as an extra port on the master
controller, and the corresponding block is visible only if the
user double-clicks on the master block to show its interior
components. This ability to selectively do visual inlining is
important because it allows the final diagrams to look like
manually drawn diagrams, where the important components
are visible, rather than reflecting the reusability-based type
structure which is usually not of interest to the end users
(domain engineers) (Fors and Hedin 2016).

The library is constructed with novel language constructs
that allow new features to be added modularly, and which
will then automatically turn up in the wizards. The technique
is general, and modeling a control loop is just an example.
Another example could be to model an engine with one or
more motors, different alternatives for start-up and shut-down
logic, etc.

3. The Bloqqi Language

To be able to experiment with our new language constructs
for variability, we have developed the language Bloggi. Blo-
qqi has blocks and directed connections inspired by ABB’s
Control Builder tool which in turn builds on Function Block
Diagrams in the IEC 61131 standard. Additionally, Bloqqi has
block type inheritance and redeclaration inspired by mech-
anisms in Modelica (Modelica 2012). Bloqqi furthermore
supports connection interception, where a connection in a
supertype can be intercepted and rerouted through a block
subnet (Fors and Hedin 2014).* Similar to Modelica, Bloqgi
has both a textual syntax that covers the complete language
and a visual syntax that covers block configuration.

In this section, we will introduce the basic language con-
structs in Bloqqi, and discuss how inheritance, redeclaration,
and connection interception can be used to encode a variant
as a subtype. The subsequent sections will then introduce the
new language mechanisms of wirings and recommendations
that allow variants to be optionally applied and combined.

4 (Fors and Hedin 2014) describes an earlier version of Bloqqi, then called
PicoDiagram.

Loop
sP master ’
PV

diagramtype Loop(SP: Int, PV: Int => CV: Int) {

master: ControllerPart;

connect (SP, master.SP);

connect (PV, master.PV);

connect (master, CV);
3
Figure 5. Visual and textual representation of a basic control
loop with input parameters SP and PV (left of =>), output pa-
rameter CV (right of =>), and containing a master controller
part. Connections are used for sending the SP and PV values

to the master, and its output to CV.

Bloqqi computations can be programmed using diagrams,
describing the relation between input and output values. A
diagram consists of input parameters, blocks, output param-
eters, and connections between these entities. Connections
are directed, forming a partial directed graph that describes
data-flow. A diagram is also a block type, and can be instan-
tiated in another diagram as a block, leading to hierarchical
structures. The input and output parameters of the block type
will then be shown as input and output ports on the block.

Figure 5 shows an example diagram in both visual and
textual syntax. The diagram describes the basic structure
of the type Loop that was specialized in section 2. The
diagram computes the control value (CV) by sending the
set point (SP) and the process value (PV) to the master
part (master) that contains a controller. The block master
has the type ControllerPart, which is also defined by a
diagram, similar to Loop. The input and output parameters of
ControllerPart are shown as input and output ports on the
block master. Thus, the interface of the block is dependent
on its type.

3.1 Inheritance

Bloqqi supports inheritance, where a diagram type S can
extend another diagram type 7. We say that S is a subtype
of T and that T is a supertype of S. The subtype inherits
all parameters, blocks and connections that are declared
locally in its supertypes (transitively), which means that
these elements are implicitly copied from the supertypes
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SlaveLoop extends Loop
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diagramtype SlavelLoop(slavePV: Int) extends Loop {
slave: ControllerPart;
intercept CV with slave.SP, slave.CV;
connect(slavePV, slave.PV);

}

Figure 6. The type Loop is extended with a slave controller
part. Inherited elements are dashed/black/grey and local
elements are solid/blue.

to the subtypes. The subtype can also declare new parameters,
blocks and connections, and specialize existing elements.
Since a subtype can declare new parameters, the interface
of the subtype can be larger (contain more parameters)
compared to its supertype.

Ordinary object-oriented programming languages support
dynamic allocation and references to objects with static and
dynamic types. In contrast, Bloqqi (like Modelica) supports
only static allocation of blocks, and there are no reference
variables. Therefore, the types of all blocks are known stati-
cally, and the compiler can report all type and flow errors.

3.2 Interception: Specializing Connections

A diagram subtype can specialize the behaviour of its super-
type using connection interception (Fors and Hedin 2014).
A connection interception allows a connection defined in a
supertype to be intercepted, that is, to reroute it to go via
another block or network of blocks. In effect, the intercepted
connection is replaced by two new connections. This way, a
connection can be specialized.

The connection that is intercepted can be identified by
either the source or the target of the connection, which we call
source interception and target interception, respectively. This
is a generalization of the previous work, where only target
interception is presented. Source interception is described in
Section 6.3.

For example, Figure 6 shows a new subtype of Loop
from Figure 5, which adds a slave controller part. The
connection to the output parameter CV (control value) defined
in the supertype is intercepted, that is, the connection will go
through the new slave block. The connection is identified by
the target of the connection, thus the interception is a target
interception. The slave contains a controller that uses the
output from the master controller as its set point, and together
with an additional sensor value, decides what control value
to actually output.

3.3 Redeclare: Specializing Blocks

Another way for the subtype to specialize the behaviour of
its supertype is by redeclaring blocks, similar to how this is
done in Modelica (Modelica 2012). A subtype can redeclare

an inherited block of type 7', to be of a type S, where S is a
subtype of 7.

For example, assume that there is a type FilterCon-
trollerPart that is a subtype of ControllerPart, and
which filters the process value before sending it to the
controller. We can then create a new subtype of Loop from
Figure 5 that redeclares the block master to the specialized
type, as the following code illustrates:

diagramtype FilterLoop() extends Loop {
redeclare master: FilterControllerPart;

}

As the examples in this section have shown, inheritance
and composition can be used for specifying different vari-
ants of diagram types by introducing subtypes. For exam-
ple, SlaveLoop and FilterLoop can be seen as variants on
Loop. However, if all possible variants would be predefined
in library classes, this would lead to combinatorial explosion.
If instead only basic types, like Loop, were available in the
library, the domain engineer would need to explicitly add a
number of detailed elements, like blocks, parameters, connec-
tions, and intercepts, in order to create a specific variant. To
support a better way of defining and using variants, we intro-
duce the new constructs of wirings and recommendations, as
described in the following sections.

4. Wirings

A wiring describes how blocks of a certain type are intended
to be inserted into a diagram. For example, in Figure 6, we
can see that an interception and a connection is used for
connecting the new slave block. With wirings, we can move
these two flow statements to a wiring declaration for the
ControllerPart type. We can then apply the wiring to
insert the slave block in a simpler way, without having to
explicitly wire it into the diagram.

4.1 Wiring Declaration

A wiring declaration for a type 7" has a number of formal
parameters and a number of flow statements. The formal
parameters refer to connection points in the diagram that ap-
plies the wiring, and they each have a type and a data-flow
direction (input or output). The flow statements describe con-
nections and interceptions involving these formal parameters
and ports on 7. In the current Bloqqi implementation there
can be at most one wiring declaration for each block type.

For example, the type ControllerPart used in Figure 6
has the following interface:

diagramtype ControllerPart(SP: Int, PV: Int => CV: Int){
}

and the wiring for ControllerPart can then be defined as
follows:
wiring ControllerPart[=>c: Int, p: Int] {
intercept c with ControllerPart.SP, ControllerPart.CV;
connect(p, ControllerPart.PV);

}

2016/9/8



This means that when the wiring is applied, a block of
type ControllerPart is added at a specific location in a
diagram (indicated by the parameters c and p), at which the
flow statements (the interception and the connection) are
added. The parameter c has output direction (indicated by
=>), meaning that it should be bound to an actual parameter
that is at the target end of a connection, and can therefore
be intercepted. The parameter p has input direction (which
is the default), meaning that it can be used as the source of
connections.

4.2 Wiring Application

A wiring application can be used to add a block, including
all its wiring, at a given location. The location is indicated by
passing actual parameters to the wiring. For example, instead
of defining SlaveLoop as was done in Figure 6, we can
equivalently define it in the following simpler way:
diagramtype SlavelLoop(slavePV: Int) extends Loop {

slave: ControllerPart[CV, slavePV];
}

In applying a wiring, like above, the actual parameters are
bound to the formal parameters. Thus, the following wiring
application

slave: ControllerPart[CV, slavePV];

is equivalent to

slave: ControllerPart;
intercept CV with slave.SP, slave.CV;
connect(slavePV, slave.PV);

Note that it is possible to apply a wiring in several different
places, even within the same diagram.

Note also that both wirings and the application of them
is optional. Even if a wiring is defined, it is not necessary to
use it to add a block. For example, the following code will
add a block of type ControllerPart without applying the
wiring:

slave: ControllerPart;

The user will then have to explicitly add the wiring in
order to connect the block to the surrounding network.

4.3 Declaring Parameters in Wiring Parameters

Sometimes, we need to add parameters to the enclosing type
of the wiring application. An example is the type Loop that
we have seen before. It is possible to declare a parameter
at the same time as applying a wiring, as the following
code illustrates, which is again equivalent to the definition in
Figure 6.

diagramtype SlaveLoop() extends Loop {

slave: ControllerPart[CV, slavePV: Int];
}

Here, the input parameter slavePV of SlaveLoop is de-
clared in the wiring application instead of in the diagram type
header. We can see that slavePV is a parameter declaration
because it has a type. We can see that it is an input parame-

eCe

Specialize diagram type

Create new specialized component

Specialize type:

Component name  oop

O » & override
E » & slave

F & master

Features:

Gy
2 Next > Cancel

Figure 7. Automatically derived wizard for the type Loop,
based on recommendations. Using this wizard, a new block
can be created with the desired functionality.

ter rather than an output parameter, because it lacks the =>
modifier. An output parameter would be declared as =>Name:
Type.

Wirings are intended to be used in libraries, together with
recommendations which will be described in the next section.

5. Recommendations

A recommendation describes how a diagram type can be spe-
cialized with optional functionality. These recommendations
will then be used to derive wizards, like the one in Figure 3.
The wizards are used for creating specialized types for a par-
ticular situation, selecting the desired features to be included.
For example, a recommendation can suggest that a slave con-
troller part can be added to the type Loop in Figure 5. This
can be described as follows:
recommendation Loop {

slave: ControllerPart[CV, slavePV: Int];

}

A recommendation consists of the name of a diagram
type (Loop in this case) and recommended features, each
expressed as a wiring application. We refer to the block,
slave in the above example, as a feature, and we say that
slave is a recommended feature for type Loop. From this
recommendation, together with other recommendations for
this type, we can automatically derive a wizard for creating
specializations of the type Loop. Figure 7 shows the derived
wizard, where the optional slave feature is shown together
with an optional override feature (added with another
recommendation), and the mandatory feature master. The
latter feature is mandatory since it is declared in Loop,
whereas the others are just recommended options. The wizard
in Figure 7 is the same as the one in Figure 3, but where the
suboptions are not yet opened.

Instead of creating one library type for each possible com-
bination: one plain loop, one with the slave feature only,
one with the override feature only, and one with both fea-
tures, it is sufficient to have a single type Loop in the library.
To create a Loop block, say loop, the domain engineer can
select in the wizard which of the features to include. The
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type of loop will then be a generated anonymous subtype of
Loop, containing the selected features:

loop: Loop { slave: ControllerPart[CV, slavePV: Int];};

This is equivalent to first defining an explicit subtype, e.g.,
SlaveLoop, as before, and then instantiating it:
diagramtype SlaveLoop() extends Loop {
slave: ControllerPart[CV, slavePV: Int];

}
loop: Slaveloop;

By letting the domain engineer do this choice, the relevant
types can be constructed on a demand basis rather than having
to predefine all possible combinations, which would have led
to combinatorial explosion.

Note that in an application, there might be a need for
several loops that have the same set of features. Instead of
selecting the features for each of those loop instances, it is
possible to give the generated loop subtype a name, and then
instantiate it multiple times.

5.1 Modular Recommendations

There can be several recommendations for the same diagram
type, defined independently in different library modules. This
allows domain library developers to add recommendations
to general library types, without having to modify the gen-
eral libraries. When a wizard is requested for specializing
a type, all recommendations will be collected for the type
and the wizard is automatically derived based on this infor-
mation. For example, the recommendation for override, as
shown in Figure 7, can be defined separately from the slave
recommendation as follows:
recommendation Loop {

override: Override[CV];

}

5.2 Alternative Features

Given a recommended feature £: F[...] for atype T, the
wizard for T may include several alternatives for f. An
alternative is added by simply creating a new subtype of
F. This subtype will then be shown as an alternative in the
wizard. Using subtyping for defining alternatives allows them
to be defined modularly: an existing library can be extended
with new feature alternatives without touching the library.

Note that while mandatory and optional features cor-
respond to block names, alternative features correspond
to (sub-)type names. For example, in the feature diagram
in Figure 4, the alternative features FixedOverride and
TunableOverride are type names, whereas the other fea-
tures are mandatory or optional features, indicated by block
names.

Bloqgqi supports alternatives with or without new parame-
ters, alternative wirings for subtypes, and default alternatives.

E v & override
| FixedOverride
| Override (default)
| TunableOverride
b 6 slave
b & master

Features:

O
O
K
O

Figure 8. Recommended features for Loop. The feature
override has three alternatives, with one default choice.

Outer Parameter Name
overridelimit

Inner Parameter
B override.limit

Figure 9. Unconnected inner parameters can be exposed as
outer parameters.

Simple Alternative

A simple alternative is a new subtype that does not intro-
duce any new parameters. Consider again the recommended
feature override for Loop:

recommendation Loop {

override: Override[CV]

}

We can add a new alternative for override simply by
adding a subtype to Override as the following code illus-
trates.

diagramtype FixedOverride() extends Override { ... }

The new subtype FixedOverride makes sure that the
control value does not exceed a predefined threshold. The
subtype will be shown as an alternative for override in the
derived wizard for Loop.

Alternative with Extra Parameters

A subtype may introduce extra parameters. For example, the
following subtype for Override introduces an extra input
parameter:

diagramtype TuneableOverride(limit:Int) extends Override{
}

The new subtype TuneableOverride makes sure that the
control value does not exceed a threshold defined by the input
parameter 1imit. The subtype will appear in the wizard as
another alternative for override, as shown in Figure 8.

Since the override recommendation uses the wiring for
Override, it does not cover the new parameter introduced in
the subtype. If nothing more is done, the new parameter will
be hidden inside the new loop block, with no connections
to/from it. There are several ways of dealing with this. The
wizard will detect which parameters are not covered by the
wiring, and allow the user to expose them as parameters on the
created block. This means that a new parameter is created for
the specialized type, and it is connected to the extra subtype
parameter of the feature.
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The mechanism is illustrated in Figure 9, which shows
how the user can select to expose the 1imit parameter after
selecting the TuneableOverride alternative in the wizard
of Figure 8. This results in the following 1oop block with an
extra parameter overridelimit which is connected to the
limit of the TuneableOverride feature:

loop: Loop (overridelimit: Int) {

override: TunableOverride[CV];
connect (overridelimit, override.limit);

1

This way, the new loop block gets an extra parameter
through which the user can connect some other value to set
the override’s limit.

Alternative Wiring

If a subtype for a feature introduces new parameters, it is
possible to automatically expose them and wire them by
introducing a wiring for the subtype, and adding a recommen-
dation that uses the new wiring. The new recommendation
should have the same feature name as the original feature, and
because of the subtype relation, the two recommendations
are identified as alternatives.

For TuneableOverride the following wiring could be
added:

wiring TuneableOverride[=>CV: Int, limit: Int] {
}

We can then define a new recommendation that will always
expose the parameter:
recommendation Loop {

override: TuneableOverride[CV, limit: Int];

}

By using the same feature name as before (override),
and because TuneableOverride is a subtype of Override,
the two recommendations will be identified as alternatives
for the override feature. Note that it is also possible to add
a recommendation for TuneableOverride with a different
feature name. It will then appear in the wizard as another
independent feature.

Default Alternative

It is useful to be able to have a default alternative for a fea-
ture. Normally, the common supertype of all alternatives is
automatically chosen as the default, which was done in Fig-
ure 8. However, abstract types are not shown as alternatives
at all, so if the common supertype is abstract, it is useful to
define the default explicitly instead. This is what has been
done in Figure 2. There, Override is an abstract type, and
the FixedOverride is specified as the default in the recom-
mendation, as follows:
recommendation Loop {

override: Override[CV] default FixedOverride;

}

Features: O » & override
0O » & slave
v ‘ master
O ¥ | ControllerPart [default)
[ | FilterControllerPart

Figure 10. Wizard recommendations for Loop. The block
master is replaceable and is specialized to an existing
subtype of ControllerPart.

5.3 Specializing Mandatory Features

So far, we have described how alternatives to optional fea-
tures can be added to a wizard using subtyping. We will now
describe how alternatives to mandatory features can be added.

Whereas an optional feature is a feature declared in a
recommendation, a mandatory feature is a block that is
declared in a type. As discussed in Section 3.3, the type of
an existing block can be specialized by using the redeclare
construct. By declaring a mandatory feature as replaceable
in a recommendation, subtypes of the declared feature type
will be shown in the wizard, allowing a user to replace the
existing feature with a more specialized type.

One variation of the Loop is that the master part can
be replaced by a more specialized type. This is specified by
adding a recommendation for it to be replaceable:

recommendation Loop {

replaceable master;
}

Suppose ControllerPart has a subtype FilterCon-
trollerPart, which filters the process value. In creating a
new specialization of Loop, the wizard shows the opportu-
nity of replacing master with FilterControllerPart, as
shown in Figure 10. This generates the following declaration
of the block loop, as an anonymous subtype of Loop:

loop: Loop {

redeclare master: FilterControllerPart;

}

The replaceable blocks correspond to mandatory features
that have a default type that can be replaced. The wizard can
thus support both mandatory and optional features.

The replaceable construct comes from Modelica (Mod-
elica 2012), where it is used for defining which blocks are
allowed to be redeclared in subtypes. In contrast, all blocks in
Bloqqi can be redeclared, and the replaceable construct is
only used in recommendations, in order to guide the wizard.

5.4 Inheriting Recommendations

Recommendations are not inherited by default. The reason
is that the subtype might implement some of the optional
features defined for its supertype, and perhaps in an alterna-
tive way than described in the recommendations. This could
be done to support special cases not common enough to be
part of the general recommendations in a library. However,
another common case could be to create a subtype that adds
behavior orthogonal to the recommendations of its supertype.
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Figure 11. Wizard recommendations for Loop. The block
master is specialized to a new anonymous subtype of
ControllerPart that has support for proportional gain.

In this case it is possible to explicity let the subtype inherit
all the recommendations for its supertype as follows:

recommendation T extends super;

This means that the recommendations for the diagram
type T will include the recommendations from its supertype,
transitively. That is, if the supertype of T also includes recom-
mendations from its supertype, then these recommendations
will also be included in the recommendations for T.

6. Combining Recommendations

We will now discuss more complex examples where recom-
mendations are combined to give a hierarchy of features,
what happens when different features are applied at the same
place in a diagram, how source interception works when
features are combined, and how hierarchical features can be
visually inlined to expose the parts of most interest.

6.1 Hierarchical Recommendations

The type of a feature may itself have recommendations. In the
previous example, we specialized a mandatory feature to an
existing subtype. Another way to specialize a feature (whether
mandatory or optional) is to select some of the recommended
features for its declared type. If these features in turn have
recommendations or subtypes, they can in turn be selected,
and so on. This leads to a hierarchy of recommendations.
Consider again Loop’s mandatory block

master: ControllerPart;

The type ControllerPart contains the mandatory fea-
ture controller: Controller, and, due to a recommenda-
tion, an optional feature filter. (The filter filters the pro-
cess value before sending it to the controller block.) The
controller feature is declared as replaceable in a recom-
mendation, so it can be specialized. In recommendations, two
optional features of Controller are defined: feedForward,
and gain. This gives the hierarchical wizard shown in Fig-
ure 11. In the wizard, the features filter and gain have
been selected, resulting in the following generated code:

Cuter Parameter Name
masterGF

Inner Parameter
B master.controller.GF

Figure 12. Exposure of inner unconnected parameter GF.

loop: Loop (masterGF: Int) {

redeclare master: ControllerPart (controllerGF: Int) {
filter: Filter[controller.PV];
redeclare controller: Controller {

gain: Gain[sub.out, GF: Int];

};
connect(controllerGF, controller.GF);

};

connect (masterGF, master.controllerGF);

b

Figure 13. Generated code when making the parameter
master.controller.GF (Figure 12) accessible as an outer
parameter (highlighted).

loop: Loop {
redeclare master: ControllerPart {
filter: Filter[controller.PV];
redeclare controller: Controller {
gain: Gain[sub.out, GF: Int];
ne

};

Here, the type of master is redeclared to an anonymous
subtype ControllerPart { ... }. The anonymous sub-
type includes the filter feature and redeclares the block
controller. The controller block is redeclared to an
anonymous subtype of Controller and includes the feature
gain.

The example illustrates hierarchical recommendations,
i.e., the user selects one feature, and then additional subfea-
tures of that feature. Note that the subfeatures are only shown
if the main mandatory feature (controller in this case) is
declared as replaceable in a recommendation. For optional
features, subfeatures are always shown.

As described earlier, the wizard can infer which parame-
ters that are not covered by the wirings, and allow the user
to expose them as outer parameters. Exposing a parameter
of a subfeature down the hierarchy will expose it all the way
up to the currently constructed block, i.e., to the 1oop in this
case. In this example, the controller feature has an input
parameter GF not covered by the wiring, and the user has
selected to expose it, see Figure 12. This results in the gener-
ated code shown in Figure 13, where additional parameters
and connections have been generated, connecting GF from
the inner controller feature, all the way to a parameter on
loop.

6.2 Ordering Recommendations

If several recommendations are applied that intercept the
same port, the order of application is significant, and may
affect the meaning. This is an example of feature interaction.
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Figure 14. Specialization of Loop. The slave and override
features intercept the same parameter (CV), however, the
slave is applied before override, resulting in its inlined
controller appearing before the override block.

Recall the definition of Loop that contains a master block
(Figure 5). Additional common features of control loops
include a slave part and an override filter.

Applying both these features in a new specialization will
intercept the same parameter CV, and the order in which the
features are applied is thus significant. In practice, we always
want to apply the slave before the override, as shown in
Figure 14, since it is the actual output to the process that
we want to put a threshold on, not the set point of the slave
controller.

To achieve the desired ordering, a recommendation can
explicitly order features using before statements:

recommendation Loop {

slave before override;

}

A statement f1 before £f2 specifies that the feature
£1 will be applied before £2, if both are added in a new
specialization.

The compiler analyzes all recommendations to find out in
what order to apply them. If two recommendations intercept
the same port and are not ordered using before, then the
compiler will report an error, to indicate the feature interac-
tion. To resolve the problem, a new recommendation can be
added that uses before to specify an explicit order.

Thus, all recommendations that intercept the same port
need to be totally ordered using before statements. The
ordering obtained by before statements is transitive. Hence,
if a is declared to be before b and b is declared to be before c,
then a is implicitly before c as well. Cycles are not allowed,
and should they occur, the compiler reports an error.

By automatically identifying conflicts, two recommenda-
tions can be developed in parallel, independently from each
other, and when they are combined, conflicts are reported and
can then be solved explicitly and modularly.

While the ordering needs to be complete for all intercep-
tions on the same port, the before statements need only give
a partial order of all the features that can be applied for a
given type: the order of application is irrelevant if they do
not intercept the same port. Nevertheless, a total order of
application is desirable, in order to generate normalized code
when selecting features in the wizard. To achieve this, a total
application order is computed by using alphabetic order for
features not ordered by before statements.

Figure 15. Base diagram extended with two features, £ and
g, where £ uses source interception on the output port on
block s. When the features f and g are combined, feature g
will use the value from £, and not the value from block s.

Figure 16. Same as Figure 15, but where feature f uses
target interception instead of source interception, resulting in
that feature g will use the value from the block s.

6.3 Source Interception

As mentioned earlier, an interception can be done either at
the source or at the target of a connection. Distinguishing
between source and target interception has advantages when
combining features.

First, we can note that if two recommendations intercept
the same connection, but one uses source interception and
the other uses target interception, they are implicitly ordered,
and no before statement is needed.

Source interception has an additional advantage in that it
applies to all outgoing connections from that port. In contrast,
a target interception can only apply to one connection since
an input port can have at most one incoming connection. The
difference between source and target interception is illustrated
in the following example.

Consider two recommended features, one feature f that
source intercepts port p on a block s and another feature g that
uses the value from the same port p (by adding a connection).
When both these features are selected, the second feature g
will automatically use the value from f, and not the original
value from the block s. This is because the first feature f
uses source interception, which is applied for all outgoing
connections from the port p, including the connection for
feature g. This is illustrated in Figure 15.

If £ had instead used target interception, g would have
used the original value from s, as shown in Figure 16.

Target interception thus places the interception right before
the value enters a target port, whereas source interception
places it right after the value leaves a source port, i.e., before
being distributed through connections to other blocks. For
the control loop library in Figure 3, the gain feature uses
source interception, so that all other components will use the
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operatorSP
temperature
operatorGF
pressure
loop

master
filter
controller
gain
slave
filter
controller
override
valveOpening

// inlined
// inlined

// inlined

Figure 17. Block composition hierarchy for the
SteamHeating in Figure 2, indicating which blocks
are visually inlined.

amplified input value instead of the raw input value. However,
all other interceptions in that library are target interceptions.

In the editor, the user can interactively add source and
target interceptions to a diagram, and the editor then generates
a corresponding intercept statement. The textual syntax for
source interception is similar to target interception, but with
the extra keyword source. This is illustrated in the following
code that source intercepts port out on block s.

intercept source s.out with b.in, b.out;

6.4 Visual Instance Inlining

The default visual view of a diagram shows the blocks
declared at the top level of the diagram, but not their contents.
However, it is often the case that a domain engineer would
like to see a more flat view showing some but not all blocks in
the complete hierarchy. This way, the most interesting blocks
can be shown, giving a view similar to that which would
be drawn manually, or to those appearing in textbooks on
automatic control. To support this, it is possible in Bloqqi to
visually inline a block (Fors and Hedin 2016). For a block
that is visually inlined, the contents of the block are displayed
in the diagram, instead of displaying the block itself.

As an example, consider the SteamHeating diagram
from Figure 2 and its corresponding block composition
hierarchy in Figure 17. In this case, the 1loop, master, and
slave blocks are inlined, but not the controller blocks, so
the gain block inside the master controller is not visible
in the diagram. This way, the diagram shows the structure
that is most important, and it is similar to a typical cascade
control diagram from a textbook.

A block is inlined by adding a modifier inline to its
declaration:

inline block: BlockType;

It is also possible for the user of the editor to manually
select a block and inline it, which will add the inline modi-
fier to the declaration of the selected block. When designing
a library of block types and recommendations, it can be an-

ticipated what blocks should typically be inlined. For the

example in Figure 2, the 1oop block was interactively cre-

ated, and also interactively inlined. However, the master and

slave blocks are inlined because the library declared them

as inlined in the Loop type and in the Loop recommendation:
diagramtype Loop(...) {

inline master: ControllerPart;

}

recommendation Loop {
inline slave: ControllerPart[CV];

}

When the user edits a diagram with inlined blocks in it, the
addition of what looks like a single connection in the diagram
may actually correspond to adding several connections and
sometimes extra parameters to the inlined blocks in the
underlying textual version of the program. These additions
are done automatically by the editor.

In Figure 2, the master (the leftmost controller) is
augmented with one extra parameter GF since it includes the
feature gain. In the editor, the user can connect the operator
value operatorGF to the parameter GF, even if the block
is inlined in two steps. When this happens the editor will
detect if the parameter GF is already directly accessible as
an outer parameter on the new Loop specialization. If this
is the case, a connection is added to the outer parameter. If
the parameter GF is not directly accessible, then the editor
will automatically create parameters and connections in the
anonymous subtypes in order to connect operatorGF to the
parameter GF. This is similar to when inner parameters are
exposed as outer parameters during specialization creation
(see Figure 13).

7. Editing Support

The editor has additional editing support to make it easier to
work with recommendations. In particular, the editor supports
creating recommendations by example as well as staged
configuration (Czarnecki et al. 2004).

7.1 Creating Recommendations By Example

So far, we have described the textual representation for how
to specify recommendations. In practice, we have found that
it is often simpler to create the recommendations by example
than to write them down as text. To support this, the user
creates a temporary subtype, and visually adds desired blocks
and connections. The subtype can then be extracted to a
recommendation using an editor operation.

For example, suppose we want to add a recommended
feature f for a type T. We can do this by creating a temporary
subtype of T, and adding blocks to it, and connecting them
to existing elements inherited from T. To extract the subtype
to a new recommended feature £, the editor generates a new
type F, a wiring declaration for F, and a recommendation for
T. The new type F will contain all the local blocks and local
connections between them. The wiring for F will capture
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the remaining connections as parameters and connections
between the parameters to the local blocks of F. Finally, the
recommendation will declare the feature f, and apply the
wiring to encode how the feature is to be connected to the
relevant elements of T:

recommendation T {

f: F[...];
}

Once this is done, the temporary subtype is no longer
needed. Note that the generated wiring F[. . .] can be used
for defining features also for other types than T, and even for
other features of T by applying it at a different place in T.

7.2 Staged Configuration

As we have seen, the derived wizard can be used to create
specializations of a type with the desired features. The editor
also supports wizard state inferencing, so that the wizards can
be used for editing existing blocks, and not just generating
them. This is very important for practical use, and allows
staged configuration (Czarnecki et al. 2004), where users
specialize blocks in several steps.

For example, the control loop in Figure 2 has filters on
both the input to the master and slave controller. After the
creation of this block, we may later realize that these filters
are unnecessary and should be removed. The user can then
select the control loop in the editor and open the wizard
again, where all previously selected features are inferred and
automatically shown as selected. The user can then deselect
the filter features and apply the changes.

When the user wants to change the specialization of a
block, the editor will match the content of the block with
recommendations to infer which features that are selected. As
described earlier, when a new block b is created and special-
ized of type T using the wizard, the editor will automatically
create an anonymous subtype of 7'. This anonymous subtype
is the block type for b and contains the selected features.
When the user requests changing the specialization for the
block b, the editor will compare the content of the anonymous
subtype with the recommendations for 7', in a hierarchical
manner. If the anonymous subtype contains a block with a
name and a block type that matches a recommendation for 7',
then this block is considered as a feature that has previously
been selected, and will be shown as selected in the wizard.

As described earlier, when a new specialization is created,
inner parameters can be exposed as outer parameters. This is
also inferred by the editor when the wizard for editing spe-
cializations is shown. Thus, previously exposed parameters
will show up as already exposed in the wizard as well. This
is implemented by analyzing the data-flow between the inner
parameters and the outer parameters.

8. Evaluation

As a proof of concept, we have implemented the new lan-
guage constructs and the wizard support, extending our Blo-

qqi tools which include a compiler and a visual editor. All
the screenshots in this paper are from our tools, and all the
examples given are runnable code. To evaluate the language
constructs, we provide a comparison between using the fea-
ture wizard as compared to manually constructing the corre-
sponding block diagrams.

8.1 Implementation

The Bloqqi compiler and editor share a core implementation
of the language, developed using reference attribute gram-
mars (RAGs) (Hedin 2000), using the metacompilation sys-
tem JastAdd (Ekman and Hedin 2007).

The core implementation includes a parser, and RAG
computations for static semantics like name resolution, type
checking, and direction checking of the connected ports
and parameters. To support the new language constructs,
additional semantic checking was added, for example, to
check that wiring applications are done with ports of the
correct type and direction, that there is sufficient ordering of
recommended features, as was discussed in Section 5, etc.

The compiler extends the core with RAG modules for C-
code generation. The visual editor extends the core with RAG
modules that compute the visual rendering of diagrams, com-
bining the type and supertype definitions of each block. There
are many computed properties in the visual presentation: the
number of input and output ports on a specific block, the
rendering of inherited and local information in a diagram, etc.
The actual rendering is done using GEF (Graphical Eclipse
Framework). To support the wizards, RAG modules were
added that use the static semantics to compute the wizard
content, and with computations of how to generate and insert
the Bloqqi code corresponding to selections in the wizard.

We have executed Bloqqi programs on both specific
controller hardware and together with simulated models. The
models simulated have been specified as Modelica models
and exported as executable simulations using the Functional
Mockup Interface standard (Blochwitz et al. 2012). Thus, in
Figure 1, we replaced the Real World with a simulation of the
real world. We did this by specifying the inputs and outputs
for the control program to be the outputs and inputs from the
simulation.

8.2 Comparison

The examples in this paper are downscaled examples of how
feature-based block libraries can be constructed and used. To
get an impression of the advantages, we provide a comparison
between constructing a small control system using the wizard,
as compared to constructing it manually, i.e., creating the
blocks and connections one by one.

The diagram in Figure 2 includes 5 environmental blocks
and connections, i.e., blocks that communicate with the en-
vironment (sensors, actuators, operator), and a number of
blocks and connections representing the control loop. The
control loop logic is created by selecting 5 features in the
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Control loop library
Environmental | Select Editing
blocks features | operations
Wnone 3 0 1
Mnone 3 0 1
W, 5 5 1
M., 5 0 14
Wi 11 9 1
M,y 11 0 31

Tank library
Environmental | Select Editing
blocks features | operations

Wnone 4 0 1
M’!L one 4 O 1
W, 8 4 1

M., 8 0 42
Wi 10 6 1

M,y 10 0 50

Table 1. Comparison of effort to create a control loop dia-
gram using the wizard in Figure 3 (W) and creating it manu-
ally (M). Compares three different variants of the diagram:
none for selecting no optional features, i.e., only using a
plain master controller, e for the SteamHeating example
in Figure 2, and all for selecting all features. Note that an
editing operation involves much more effort than a feature
selection operation.

Control loop library
#Types | #Recommendations
Wizard 9 9
Explicit types 223 -

Table 2. Number of types and recommendations for the
control loop wizard in Figure 3 as compared to having one
explicit type for each variant.

wizard®. This corresponds to 14 manual editing operations
(adding blocks, parameters, subtypes, connections, and inter-
ceptions). Table 1 compares the selections with corresponding
manual editing operations for three examples: none means no
selections were made in the wizard, i.e., only the basic loop
logic is used, e is the example in Figure 2 and Figure 3, and
all means doing as many selections as possible in the wizard.

The table shows how the advantage of using the wizard
grows with the complexity of the design. It is important to
note that selecting features in the wizard is much easier than
to do an editing operation. Selecting a feature is done with one
click, and requires only expertise in control systems concepts,
whereas each editing operation involves several interactive
steps (e.g., several clicks), and furthermore requires much
more cognitive effort in locating the block types to instantiate,
and deciding on how to do the wiring. We therefore expect
the effort for building the control logic to be much lower
for the wizard solution. Future user studies could be done to
confirm this.

When the user creates a block instance by using the wizard,
the particular feature selection is used to automatically com-
pute the (anonymous) type for the block instance declaration.
An alternative to using feature wizards would be to create one
explicit type for each variant in advance. For the wizard in

3 FixedOverride is selected as default and therefore counted together with
override

Table 3. Comparison of effort to create a tank diagram
using the wizard (W) and creating it manually (M). none
corresponds to selecting no optional features, e to the example
in Figure 18, and all to selecting all features.

Tank library
#Types | #Recommendations
Wizard 4 6
Explicit types 48 -

Table 4. Number of types and recommendations for the tank
library wizard in Figure 18 as compared to having one explicit
type for each variant.

Figure 3, this would lead to 223 types, see Table 2. The total
number of types includes the component types Controller,
Filter, etc., and subtracting them gives 216, which is the
number of variants. Having one type for each variant is not
practical, but the comparison illustrates how fast the number
of variants grow, even for a example that is quite small.

As an additional example, we have implemented a library
for controlling the liquid level in a tank with a pump and
a valve, and with optional features for heating, agitating,
and for adding extra pumps and valves, as well as selecting
between different types of valves. The heating feature may be
implemented as steam heating, similar to the one in Figure 2.
The result, measured in the same way as for the control loop
library, is shown in Table 3 and Table 4. Again, we see that
the effort of creating a diagram is much lower when using the
wizard than when constructing it manually. The wizard for
the library and the diagram for an example variant is shown
in Figure 18.

9. Related Work
9.1 Variability Support for Diagram Languages

There are several diagram languages that have some kind of
support for variability.

Simulink is a popular block diagram language with some
built-in support for handling variability (Weiland and Man-
hart 2013). It supports conditional blocks which are executed
conditionally, and model variant blocks which conditionally
select a block from a set of variants. In contrast to our ap-
proach, this approach does not handle wirings, and all variants
have to be anticipated in advance.

2016/9/8



o i ]

>"-| heating

77777777777777 - agitating
o

TN,
Features: i & Agitating
& (’) Heating
O & pumpz
B v (') Valve2
v ‘ valve2 "
agitate
] RN Advancedvalve (aghate P
O | valve (default}
v ‘ valve
O | Advancedvalve @
pty
= | valve (default}

2 oume

Figure 18. Tank specialized with agitation, heating, and a second valve and connected to environmental blocks (solid).

Dieumegard et al. (2014) present a textual domain specific
language for defining blocks with variants in Simulink. An
example is a sum block that sums the input for different
structures, such as scalars and matrices. The variants of a
block are specified with imperative code with additional
constraints given in a subset of OCL. Again, all variants
need to be anticipated in advance.

Haber et al. (2013) add delta modeling to Simulink to
handle variability. In delta modeling, a set of deltas are speci-
fied relative to a base model. A delta may contain additions,
removals, and modifications of blocks and connections. A
variant is then created by selecting a set of deltas that are
applied in a linear order on the base model. Deltas may have
order constraints that describe how they can be applied, for
example, that one delta is required to be applied before an-
other delta, or that one delta requires another delta. Deltas
are more flexible than recommendations in that they allow re-
movals and arbitrary modifications. However, this also makes
them less composable. In many other ways, deltas are much
less flexible than our approach: they are specified relative to
a base model, whereas our wirings can be applied at several
locations, even within the same block. Deltas do not support
explicit interception, but need to model such modifications
using explicit connection removals and additions, and has
no automatic detection of interfering intercepts as in our ap-
proach. The deltas are patch-based rather than type based,
making them more low level to work with. There is no sup-
port for feature-selection wizards or modular additions to
wizards, like in our approach.

Other examples of variability for diagrams include variant
support for UML activity and class models (Czarnecki and
Antkiewicz 2005) and for SysML (Trujillo et al. 2010), but
these also require all variants to be anticipated in advance.

As mentioned, Bloqqi has been substantially influenced
by Modelica (Modelica 2012), a language used for model-
ing and simulating physical systems. Important influences
include the use of combined textual and visual syntax, and the
use of object-oriented subtyping for blocks with connections.
Bloqqi’s redeclare and replaceable constructs were also
heavily inspired by Modelica. However, the languages have

different purposes, and there are otherwise more differences
than similarities. In particular, Modelica is an equational lan-
guage with undirected connections, solved symbolically or
numerically during simulation. In contrast, Bloqqi’s connec-
tions are directed, corresponding to data-flow directed exe-
cution. The wirings and recommendations are designed for
data-flow based languages, where connections are directed.
It would be interesting to investigate if and how they could
be adapted to equation-based languages such as Modelica.

9.2 Inheritance

In earlier work (Fors and Hedin 2014), we introduced the
interception construct, and then used multiple inheritance
to combine features into a desired variant. While this is a
possible way to modularize and reuse components, it has
several drawbacks. First, it uses the inheritance construct for
two different things: composing features and specializing
blocks. This makes it difficult to make use of it in a wizard,
as the wizard does not know which use of inheritance is
intended for what. It also goes against the general object-
oriented principle of favoring composition over inheritance,
as described, for example, by Gamma et al. (1994). Second,
by using a subtype to define a feature, it needs to wire the
feature in a given inherited context. In contrast, the wiring
construct introduced in this paper allows a feature to be
applied in several different contexts, even within the same
diagram.

Multiple inheritance using traits (Schirli et al. 2003) has
a similar problem, in that they cannot be applied at several
different places in the same type (diagram), which wirings
can.

9.3 Aspects

Aspect-oriented programming (Kiczales et al. 2001) (AOP)
allows crosscutting concerns to be defined in a modular
way. Both recommendations and wirings have similarities
with inter-type declarations in Aspect], in that they allow
declarations about existing types to be added modularly.
However, in contrast to AOP, recommendations and wiring
declarations do not change the behavior of existing types.
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Wirings just declare how a block is typically instantiated,
and recommendations just recommend new (anonymous)
subtypes to be created with a desired behavior.

Another important difference is that AOP usually works
on methods, like advice, which is code that is running after
or before a method and is defined modularly in an aspect.
Wirings and recommendations on the other hand allows
functionality to be added inside diagrams, that is, at the
statement level, rather at the method level.

9.4 Feature Models

Our derived wizards have similarities to feature models (Kang
et al. 1990), a technique for describing variability. A feature
model has the form of a tree, often depicted as a feature
diagram, with features represented by tree nodes. The paren-
t/child relation can be of different kinds:

optional: The child feature may be selected.
mandatory: The child feature must be selected.

alternative: There is a set of child features of which exactly
one must be selected (exclusive-or).

Some feature systems also include an inclusive-or kind,
where one or more child features must be selected. Many
feature model systems additionally support various kinds
of constraints. For example, requires/excludes cross-tree
constraints, cardinalities on features (Czarnecki et al. 2005),
or general propositional formulas (Batory 2005).

We have been inspired by the feature diagram syntax,
and wizards for feature diagrams (Czarnecki and Antkiewicz
2005), to present the choices in our wizards. Figure 4 shows
an example of drawing one of our wizards as a feature
diagram. However, while it is possible to draw the wizard
structure this way, there are several important differences
from feature models. In particular, feature models model a set
of global features, and each feature occurs only once in the
tree. They are typically used in product lines, to describe at
a global level which features a product includes. In contrast,
we have one feature diagram per block type, and our features
are local to a context, so a feature can occur in several places
in the tree. For example, both the slave and the master feature
have a local filter and controller feature. In fact, we can create
recursive feature structures. For example, we could create
a type T that has an optional feature of type T. The wizard
expands dynamically, as the user opens features to see the
sub-features, so the tool can handle this, even if the complete
feature diagram would be infinite. Our wizard structure is
thus like an ordinary context-free grammar, whereas feature
models are typically restricted to tree grammars, with each
nonterminal occurring only in the right-hand side of one
production (Batory 2005). In contrast to most feature models,
we do not use any constraints that restrict the choices more
than the tree structure does. This could, however, be an
interesting topic to investigate.

An important difference from ordinary feature models
is that recommendations allow our feature models to be
constructed modularly. For example, we saw in Section 5
how the subtype FixedOverride could be added, and will
extend the wizard/feature model, without the need to touch
the code defining the override feature.

9.5 Feature-Oriented Programming

Prehofer (1997) introduced the notion of Feature-oriented
programming (FOP), and applied it to Java. FOP is related to
feature modeling described above, but takes a more technical
approach by adding first-class language support for features
in a programming language. In this approach, the features are
specified in a similar way as classes, with methods and fields,
but can be combined together. To handle feature interaction,
it is possible to define lifters between two features. A lifter is
a piece of code that describes how the two features interact
with each other and is defined outside the features. Apart
from being designed for a programming language rather than
a diagram language, Prehofer’s FOP differs from Bloqqi in
that it works at the method level rather than at the statement
level, and it has no support for selecting features in a wizard.

Both FOP and feature modeling are part of the paradigm
of Feature-oriented software development (FOSD) (Apel
and Késtner 2009), which focuses on building large-scale
software systems with the use of features, typically with the
goal of constructing software product lines.

10. Conclusion

We have introduced the new language constructs of wirings
and recommendations for block diagram languages to support
the description of intended variability. We have shown how
these constructs can be used to automatically generate smart
editing support, in the form of wizards that suggest features
for diagram types, aiding domain engineers in doing visual
configuration of automation systems.

An important property of the new language constructs is
that they support modular and extensible definition of vari-
ability: variability of diagram types can be defined separately
from the libraries defining the diagram types. This is achieved
partly by the recommendation construct that allows new rec-
ommendations to be added to existing diagram types, and
partly by subtyping of diagram types, automatically extend-
ing all relevant recommendations.

Another important property of recommendations is that
they are composable: recommended features that intercept
the same connection are automatically identified, and can, if
needed, be ordered explicitly by additional recommendations.
This allows independently developed libraries or library
extensions to be composed.

We have evaluated the new language constructs by imple-
menting a proof-of-concept compiler and visual editor for
them. We have also evaluated the constructs by comparing
the effort of creating diagrams using the wizard, as compared
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to creating them manually, concluding that using the wizard
takes much less effort.

It turns out that recommendations have many similarities
with feature models which also aim at supporting variability.
An important difference is that whereas feature models are
often aimed at global features of a product, recommendations
are aimed at local features within a hierarchical configuration,
and with modularity and composability as key concerns.

10.1 Future Directions

Although our focus has been on the application area of auto-
matic control systems, the presented language constructs are
general, and could be used for any language that has diagram
types with blocks and directed connections. For example, it
could be interesting to investigate how the constructs could
be applied to languages based on Petri nets (Murata 1989)
or state charts (Harel 1987). Within the automation domain
there is, for example, the Grafchart language which focuses
on supervisory control (Johnsson and Arzén 1998), and which
combines features from both Petri nets and Statecharts. Other
interesting application areas could be simulation and stream
processing where data-flow programming is common. For
block languages with undirected connections, like Modelica,
the notions of source and target interception would be irrel-
evant, but the idea of modularly expressing features in the
form of wired blocks might be interesting to investigate.

Other ideas from feature models could be investigated,
possibly using them to enhance our experimental language.
Examples include require and exclude statements, to express
dependencies between different features.

It could be investigated how to use our proposed mecha-
nisms for feature-oriented programming at a detailed algo-
rithmic level. We have made experiments with programming
a PID controller in Bloqqi, expressing the I and D parts as
optional features of the algorithm. To apply a similar idea to
general algorithmic code, generalizations would be needed,
for example, to handle algorithmic loops.

The Bloqqi implementation is just a proof-of-concept pro-
totype intended for experimenting with language constructs,
and there are several ways to further extend and generalize
both the language and its implementation. One direction is
to support execution of multiple distributed diagrams, run-
ning with individual sampling speeds. Another direction is
to extend the language with support for control connections:
structured data where some elements can be reversed, allow-
ing data to flow backwards along connections. This allows
certain control diagrams to be substantially simplified, and
improving control performance (Pernebo and Hansson 2002).
Finally, larger case studies should be performed.
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