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Particle Filter Framework for 6D Seam Tracking
Under Large External Forces Using 2D Laser Sensors

Fredrik Bagge Carlson* Martin Karlsson Anders Robertsson Rolf Johansson

Abstract—We outline the development of a frame-
work for 6 DOF pose estimation in seam-tracking
applications using particle filtering. The particle filter
algorithm developed incorporates measurements from
both a 2 DOF laser seam tracker and the robot
forward kinematics under an assumed external force.
Special attention is paid to modeling of disturbances
in the respective measurements, and methods are de-
veloped to assist the selection of sensor configurations
for optimal estimation performance.

I. Introduction
Friction stir welding (FSW) is becoming an increas-

ingly popular joining technique that is capable of pro-
ducing stronger joints than fusion welding, allowing for a
reduction of material thickness and weight of the welded
components. Conventional, custom-made FSW machines
of gantry type are built to support the large forces
inherent in the FSW process. The high stiffness required
has resulted in expensive and inflexible machinery which
has limited the number of feasible applications of FSW
as well as the adaptation of FSW as a joining technique.
Recently, the use of robotic manipulators in FSW appli-
cations has gained significant interest due to the lower
cost compared to conventional FSW machinery as well
as the much increased flexibility of an articulated manip-
ulator [1], [2]. The downsides of the use of robots include
the comparatively low stiffness which causes significant
deflections during welding, with a lower quality weld as
result.

A typical approach adopted to reduce the uncertainty
introduced by deflections is stiffness/compliance model-
ing [1], [2], [3], [4]. This amounts to finding models of the
joint deflections ∆q or of the Cartesian deflections ∆x on
one of the forms

∆q = Cj(τ) (1)
∆x = CC(f) (2)

where τ and f are the joint torques and external forces
respectively, x is some notion of Cartesian pose, C
denotes some, possibly non-linear, compliance function.
The corresponding inverse relations are typically referred
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to as stiffness models. Robotic compliance modeling has
been investigated by many authors, where the most
straightforward approach is based on linear models ob-
tained by measuring the deflections under application
of known external loads. To avoid the dependence on
expensive equipment capable of accurately measuring the
deflections, techniques such as the clamping method have
been proposed [3], [5], [6] for the identification of models
on the form (1). This approach makes the assumption
that deflections only occur in the joints, in the direction
of movement. Hence, deflections are not captured if they
occur in the links, or in the joints orthogonally to the
movement, limiting the resulting accuracy of the model
obtained [5]. In [2], the use of arm-side encoders was
investigated to allow for direct measurement of the joint
deflections. As of today, arm-side encoders are not avail-
able in the vast majority of robots, and the modification
required to install them is yet another obstacle to the
adaptation of robotic FSW. The method further suffers
from the lack of modeling of link- and orthogonal joint
deflections.

Cartesian models like (2) have been investigated in
the FSW context by [1], [2], [7]. The proposed Carte-
sian deflection models are local in nature and not valid
globally. This requires separate models to be estimated
throughout the workspace, which is time consuming and
limits the flexibility of the setup.

Although the use of compliance models leads to a
reduction of the uncertainty introduced by external
forces, it is difficult to obtain compliance models ac-
curate enough throughout the entire workspace. This
fact serves as the motivation for complementing the
compliance modeling with sensor-based feedback. Sensor-
based feedback is standard in conventional robotic arc
and spot welding, where the crucial task of the feedback
action is to align the weld torch with the seam along
the transversal direction, the major uncertainty being the
placement of the work pieces. During FSW, however, the
uncertainties in the robot pose are significant, while the
tilt angle of the tool in addition to its position is of great
importance [8]. This requires a state estimator capable
of estimating accurately at least four DOF, with slightly
lower performance required in the tool rotation axis
and the translation along the weld seam. Conventional
seam-tracking sensors are capable of measuring 1-3 DOF
only [9], [10], limiting the information available to a
state estimator and thus maintaining the need for, e.g.,
compliance modeling.



Motivated by the concerns raised above, we develop a
framework for simulation of robotic seam tracking under
the influence of large external process forces. We initially
develop a particle-filter based state estimation algorithm
in Sec. II, capable of incorporating compliance models
and sensor-based feedback in order to estimate the full 6
DOF pose of the robot relative to the seam. We then pro-
ceed to develop a framework for seam-tracking simulation
in Sec. III, where the relation between error sources and
estimation performance is analyzed. The framework is
further intended to assist the user in selection of an
optimal sensor configuration for a given seam, where
sensor configurations vary in, e.g., the number of sensors
applied and their distance from the tool center point
(TCP).

II. Method
Initially, a description of how the particle filter’s abil-

ity to handle non-linear, non-Gaussian systems will be
leveraged to estimate the current tool pose relative to
the weld seam. The probability densities used in the state
transition and measurement update steps are introduced
and practical implementation details are described.

A natural state to consider in robotics is the set of
joint angles, q, and their velocities, q̇. Due to potential
deflections in the kinematic structure, the joint angles
are not an accurate description of the robot pose in this
application. The developed state estimator will therefore
work in the space SE(3), represented as 4×4 transforma-
tion matrices, which further allows for a natural inclusion
of sensor measurements. The sensor information available
from the robot is naturally transformed to SE(3) by
means of the forward kinematics function Fk(q). Due to
the typically low velocities and accelerations present dur-
ing FSW, we chose to not include velocities in the state
to be estimated. This will reduce the state dimension and
computational burden significantly, while maintaining a
high estimation performance.
A. Preliminaries

This section briefly introduces a number of coordinate
frames and variables used in the later description of the
method. For a general treatment of coordinate frames
and transformations, see [11].

Table I lists all coordinate frames that will be used to
describe poses, see Fig. 1 for reference, and all variables
referred to in the following description. All Cartesian-
space variables are given in the frame RB unless other-
wise noted.
B. Particle filter

A brief description of the well known particle filter
(PF) is given. For a thorough introduction, please refer
to one of many texts on the subject [12], [13], [14].

For a linear, Gaussian system, the filtering densities at
each sample instant are available in closed form through
the Kalman filter (KF) [15]. In the non-linear, non-
Gaussian case, computing the exact filtering density is

T
S

Fig. 1. Coordinate frames (x, y, z) = (red, green, blue). The
origin of frame S is located in the laser plane at the desired seam
intersection point.

TABLE I
Definition and description of frames and variables.

RB Robot base frame.
T Tool frame, attached to the (TCP).
S Sensor frame, specified according to Fig. 1.

Variable Description

q ∈ Rn Joint Coordinate
q̇ ∈ Rn Joint velocity
x ∈ SE(3) Tool pose (State)
τ ∈ Rn Joint torque
f ∈ R6 External force/torque
m ∈ R2 Laser measurement in S
ma ∈ R1 Laser angle measurement in S
e ∈ R2 Measurement error
TB

A ∈ SE(3) Transformation matrix from B to A
Fk(q)∈ SE(3) Robot forward kinematics at pos. q
J(q) ∈ R6×n Manipulator Jacobian at pos. q
â Estimate of variable a
a+ a at the next sample instant
ā Reference for variable a
ai:j Elements i, i+ 1, ..., j of a
〈T 〉 ∈ R6 The twist coordinate representation of T

no longer tractable. The PF resolves this problem by
approximating the filtering densities by a collection of
samples (particles), also referred to as state hypothe-
ses. Each iteration of the filter algorithm amounts to
propagating the particles forward in time using a state
transition density p(x+|x). This density incorporates the
uncertainty present in the state transition similar to the
state transition noise in the KF. However, for the PF, the
state noise is not restricted to be Gaussian. The mean of
p(x+|x) can be any arbitrary non-linear function of the
current state, control signals etc..

When a measurement is available, each particle is
assigned a weight based on the likelihood of the mea-
surement, given the state of the particle, using the sensor
measurement density p(m|x) and the robot measurement
density p(q, f |x).
To avoid using the finite collection of particles to



explore parts of the state space with a small posterior
probability, particles may be re-sampled with a proba-
bility of surviving to the next iteration proportional to
their weight.

A simple PF algorithm is given in Algorithm 1.

Algorithm 1 A simple particle filter algorithm.
Initialize particles using a prior distribution;
repeat

Assign weights to particles using p(m|x) and
p(q, f |x);

Calculate a state estimate based on the weighted
collection of particles;

Re-sample particles based on weights;
Propagate particles forward using p(x+|x, ḟ);

until Done

C. Densities
This section introduces and motivates the various

densities used in the particle filter.
1) State transition:

p(x+|x, ḟ) (3)

The mean of the state transition density (3) is given
by the robot reference trajectory. Denote by T+ the
incremental transformation from Fk(q̄) to Fk(q̄+) such
that

Fk(q̄+) = T+Fk(q̄)

The mean of the state transition density is thus

µ
{
p(x+|x, ḟ)

}
= T+ = Fk(q̄+)Fk(q̄)−1

The shape of the density should encode the uncertainty
in the update of the robot state from one sample to
another. For a robot moving in free space, this uncer-
tainty is usually small. Under the influence of varying
external process forces, however, significant uncertainty
is introduced. Based on this assumption, the width of the
density can be chosen as a function of the process force.
2) Robot measurement update:

p(q, f |x) (4)

The mean of the robot measurement density (4) is given
by the robot internal sensors and forward kinematics
according to

µ {p(q, f |x)} = Fk(q + Cj(τ)) (5)

where Cj(τ), if available, is a model of deflections caused
by large process forces [3], [5], [6].

The uncertainty in the robot measurement comes from
several sources. The joint resolvers/encoders are affected
by noise, which is well modeled as a Gaussian random
variable. When Gaussian errors, eq, in the joint mea-
surements are propagated through the linearized FK, the

covariance matrix ΣC of the resulting Cartesian-space
errors eC is obtained by approximating eq = dq as

qm = q + eq = q + dq

eq ∼ N (0,Σq)
eC ∼ N (0, J ΣqJ

>)

where qm is the measured value. The Cartesian covari-
ance matrix is given by

eC = d 〈Fk(q)〉
dq

dq = J dq = J eq

ΣC = E
{
eC e

>
C

}
= E

{
J eq e

>
q J
>} = J E

{
eq e
>
q

}
J>

where the approximation J(q + eq) ≈ J(q) has been
made. The twist coordinate representation 〈Fk(q)〉 is
obtained by taking the logarithm of the transformation
matrix log(Fk(q)), which produces a twist ξ ∈ se(3),
and the operation ξ∨ ∈ R6 returns the twist coordinates
[11]. The discussion on the errors associated with the
robot measurements are treated in more detail in Sec. IV.
Except for the measurement noise, the errors in the
robot measurement update density are not indepen-
dent between samples. The error in both the forward
kinematics and the compliance model is configuration
dependent and thus highly correlated in time due to
bounded velocity of the robot leading to slow changes in
the configuration. The standard derivation of the particle
filter relies on the assumption that the measurement
errors constitute a sequence of independent, identically
distributed (i.i.d.) random variables. Independent mea-
surement errors can be averaged between samples to
obtain a more accurate estimate, which is no longer
possible with correlated errors where several consecutive
measurements all suffer from the same error.

Time-correlated errors are in general hard to handle in
the particle filtering framework and no systematic way
to cope with this problem has been found. One approach
is to incorporate the correlated error as a state to be
estimated [16], [17]. This is feasible only if there exist
a way to differentiate between the different sources of
error. State augmentation further doubles the state di-
mension, with a corresponding increase in computational
complexity.

Since only a combination of the tracking error, the
kinematic error and the dynamic error is measurable,
we propose to model the time-correlated uncertainties
as a uniform random variable with a width d chosen
as the maximum expected error. When performing the
measurement update with the densities of several per-
fectly correlated uniform random variables, the posterior
distribution equals the prior distribution. The distribu-
tion is thus invariant under self fusion. See Fig. 2 for an
illustration.

The complete robot measurement density, Eq. (4), is
formed by the convolution of the densities for a Gaussian,



−4σ −3σ −2σ −σ 0 σ 2σ 3σ 4σ
0

0.2

0.4

0.6

0.8

Gaussian Gaussian + Uniform
2 meas. 2 meas.
50 meas. 50 meas.

Fig. 2. Illustration of measurement densities and the posterior
densities after several performed measurement updates, for d = σ.

pG, and a uniform, pU , random variable, according to

p(q, f |x) =
∫
Rk

pU (x− y) pG(y) dy (6)

where k is the dimensionality of the state x. This integral
has no closed form solution, but can be evaluated numer-
ically. Instead of evaluating Eq. (6), which is computa-
tionally expensive and must be done for every particle at
every time step, we propose the following approximation

p(q, f |x) ≈


C if |∆x| ≤ d

C exp
(
− (|∆x| − d)2

2σ2

)
if |∆x| > d

(7)

with ∆x taken to be the element-wise difference between
the positional coordinates of x and a mean vector µ ∈ R3,
∆x = x− µ, and the normalization constant

C = 1√
2πσ + 2d

This approximation reduces to the Gaussian distribution
if the width of the uniform part d = 0, and to the uniform
distribution as σ → 0. Equation (7) is given for the
one-dimensional case, one possible extension to higher
dimensions is given by

p(q, f |x) =


D if

∥∥∆x
∥∥

2 ≤ d

D exp
(
−1

2δx
>Σ−1δx

)
if
∥∥∆x

∥∥
2 > d

(8)

δx =
(

1− d∥∥∆x
∥∥

2

)
∆x

D = 1
(2π) k

2
√
det(Σ) + V (d, k)

where k is the state dimension and V (d, k) is the volume
of a k-dimensional sphere with radius d.
The univariate distribution, and the distribution of

several fused measurements, is shown in Fig. 2. An
illustration of the multivariate case with

Σ =
[
4 0
0 1

]
, d = 3
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Fig. 3. Illustration the multivariate version of the robot measure-
ment density, Eq. (8).

is shown in Fig. 3.
The width of the uniform random variable d = d(f) is

chosen as a function of the process force

d(f) = d0 + kd

∥∥f∥∥
where d0 is chosen with respect to the maximum absolute
positioning error of the robot in the relevant work-space
volume and kd

∥∥f∥∥ reflects the increase in uncertainty
with the magnitude of the process force.
3) Laser sensor measurement update:

p(m|x)

Evaluating the laser measurement density is less straight-
forward. Given a state hypothesis x̂, a seam location
hypothesis m̂ is calculated using TS

T according to

m̂ = (x̂TS
T )1:3,4 + [m> 0]> (9)

To evaluate the distance e between m̂ and the nominal
trajectory, a search for the closest nominal trajectory
points is performed. The error e is then calculated as the
distance between m̂ and the intersection point pi between
the laser plane and the line v between the closest seam
point on each side on the laser plane, refer to Fig. 4 for
an illustration. The intersection point pi must satisfy the
following two equations

pi = p1 + γv

0 = n>(pi − m̂)

}
⇒ γ = n>(m̂− p1)

n>v

where n is the normal of the laser light plane.
The mean of p(m|x) is thus equal to

µ {p(m|x)} = pi

and the shape should be chosen as the error distribution
of the laser sensor, here modeled as a normal distribution
according to

p(m|x) = (2π)− 3
2 |Σ|− 1

2 exp
(
−1

2e
>Σ−1e

)
, e = m̂− pi

Many seam-tracking sensors are capable of measuring
also the angle around the normal of the laser plane.
An angle measurement, ma, is easily compared to the
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Fig. 4. Illustration of the relations between a particle x̂ (TCP
hypothesis), its belief of the location of the laser line and the
laser measurement m (Eq. (9)). Particles for which the distance, e,
between the measurement hypothesis m̂ and the seam intersection
point pi is small, in terms of the distribution p(m|x), are more likely
to be correct estimates of the current state x.

corresponding angle hypothesis of a particle using stan-
dard roll, pitch, yaw calculations. Using the convention
in Fig. 1, the angle around the normal of the laser plane
corresponds to the yaw angle. Roll and pitch angles are
not directly measurable by this type of sensor. Using a
sensor with two or more laser planes, it is possible to
estimate the full orientation of the sensor. This will be
analyzed further in Sec. III.

D. Nominal trajectory
To get a suitable representation of the nominal trajec-

tory used to propagate the particles forward, a simulation
of the robot program is performed using a simulation
software, often provided by the robot manufacturer. This
procedure eliminates the need to reverse engineer the
robot path planner. During the simulation, a stream of
joint angles is saved which, when run through the forward
kinematics, returns the nominal trajectory in Cartesian
space. Methods for generating a nominal trajectory for
simulation experiments are provided in the simulation
framework.

E. Reduction of computational time
Since the intersection point between the nominal seam

line and the laser light plane is calculated, a reduction of
the number of points to traverse in the trajectory search
can be achieved by approximating the trajectory with
a piece-wise affine function. To this end, we solve the
following convex optimization problem,

minimize
z,w

∥∥y − z∥∥2
F

+ λ

N−2∑
i=1

3∑
j=1
|wi,j |

subject to
∥∥y − z∥∥∞ ≤ ε
wi,j = zi,j − 2zi+1,j + zi+2,j

(10)

where y ∈ RN×3 are the positions of the nominal
trajectory points, z is the approximation of y, and
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Fig. 5. Visualization of the particle distributions during a sim-
ulation. The black line indicates one coordinate of the true state
as a function of the time step and the heatmap illustrates the
density of the particles. This figure illustrates how the uncertainty
of the estimate is reduced as one sensor approaches a feature in the
trajectory. The feature is in this case a sharp bend in the otherwise
straight seam.

ε is the maximum allowed approximation error. The
non-zero elements of w will determine the location of
the knots in the piece-wise affine approximation and
λ will influence the number of knots.1The proposed
optimization problem does not incorporate constraints
on the orientation. The orientation approximation error
will however be small if we assume differentiability and
bounded curvature of the trajectory and constrain the
translational approximation to be small, as in Eq. (10).
For an introduction to convex optimization, see [18] and
for an overview of trend filtering problems like (10) see
[19].

III. Simulation framework
A. Visualization

An often time-consuming part during the implemen-
tation of a particle filtering framework is the tuning
of the filter parameters. Due to the highly nonlinear
nature of the present filtering problem, this is not as
straightforward as in the Kalman-filtering scenario.

To assist in the tuning of the filter, we provide a
visualization tool that displays the true trajectory as
traversed by the robot together with the distribution
of the particles, as well as each particle’s hypothesis
measurement location. An illustrative example is shown
in Fig. 5, where a screen shot of one dimension in the
filter state is shown as a function of time.

To further aid the tuning of the filter, we perform
several simulations in parallel with randomly perturbed
filter parameters and perform statistical significance tests
to determine the parameters of most importance to the
result for a certain sensor/trajectory configuration. Fig-
ure 6 displays the statistical significance of various filter
parameters for a certain trajectory and sensor configura-
tion. The color coding indicate the log(P)-values for the
corresponding parameters in a linear model predicting
the errors in Cartesian directions and orientation. As

1wi = zi− 2zi+1 + zi+2 is a discrete second order differentiation
of z.
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Fig. 6. An illustration of how the various parameters in the
software framework can be tuned. By fitting linear models, with
tuning parameters as factors, that predict various errors as linear
combinations of parameter values, parameters with significant ef-
fect on the performance can be identified using the log(P)-values
(color coded). The x-axis indicates the factors and the y-axis
indicates the predicted errors in orientation and translation. The
parameters are described in detail in the software framework.

seam
x1

x2

Fig. 7. Illustration of how a sensor with a single laser stripe can
not distinguish between wrong translation and wrong orientation.
The figure depicts two hypotheses (x1, x2), both share the closest
measurement point on the seam. The second laser stripe invalidates
the erroneous hypothesis x2 which would have the second measure-
ment point far from the seam.

an example, the figure indicates that the parameter
σW 2, corresponding to the orientation noise in the state
update, has a significant impact on the errors in all
Cartesian directions. The sign and value of the underly-
ing linear model can then serve as a guide to fine tuning
of this parameter.

B. Sensor configurations
The optimal sensor configuration depends on the

amount of features in the trajectories, where a feature is
understood as a localizable detail in the trajectory. The
estimation performance is further critically dependent
on the number of laser light planes that intersect the
seam. A single laser sensor can measure three degrees
of freedom, two translations and one orientation. The
remaining tree DOFs are in general not observable. This
is illustrated in the planar case in Fig. 7. All particles
lying on a capsule manifold, generated by the spherical
movement around the measurement location, together
with a sliding motion along the seam, are equally likely
given the measurement. A second measurement elimi-
nates the spherical component of the capsule, leaving
only the line corresponding to the sliding motion along
the seam unobservable. The unobservable subspace left
when two or more laser planes are used can only be
reduced by features in the seam, breaking the line sym-
metry (illustrated in Fig. 5), or the forward kinematics
measurement from the robot.

Consider Fig. 8, where the resulting errors for two
trajectory types and several sensor configurations (0,1,2
sensors) are displayed. The trajectories referred to in
the figure are generated as follows. The xy-trajectory
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Fig. 8. Error distributions for various sensor configurations (0-2
sensors) and two different trajectory types (xy,yz). In both trajec-
tory cases, y is the major movement direction along which the laser
sensors obtain little or no information. The same filter parameters,
tuned for the xy-trajectory, were used in all experiments.
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Fig. 9. Trajectories xy (blue solid) and yz (orange dashed).
Distance [mm] along each axis (x, y, z) is depicted as a function
of time step.

lies entirely in the xy-plane of the tool frame T , with
a linear movement of 200 mm in the y-direction and a
smooth, 20 mm amplitude, triangle-wave motion in the
x-direction. The yz-trajectory lies in the yz-plane, with
a linear movement of 200 mm in the y-direction and a
100 mm amplitude, sinusoidal, motion in the z-direction.
The trajectories are depicted in Fig. 9. It is clear that
the type of trajectory is important for the resulting
estimation error, in this case, the filter was tuned for
trajectory type xy. Figure 8 illustrates the difficulties
in determining the translation along the direction of
movement when no features are present, as well as the
benefit of sensor feedback in the measurable dimensions.
The provided visualization tools assist in re-tuning the
filter for a new trajectory, and can suggest optimal
configurations of the available seam-tracking sensors.



IV. Discussion

The kinematic model of the robot used in the forward
kinematics calculations is often inaccurate, and errors in
the absolute positioning accuracy of an industrial robot
can often be in the order of 1 mm or more [20], [21]. To
characterize this uncertainty without performing a full
kinematic calibration is usually hard, since it is a non-
linear function of the errors in link-lengths, offsets etc. in
the kinematic model. Possibilities include modeling this
uncertainty as a Gaussian distribution with a variance
corresponding to the average error in the considered work
space volume, or as a uniform distribution with a width
corresponding to the maximum error. These figures are
usually provided by the robot manufacturer, or can be
obtained using, e.g., an external optical tracking system.

A third source of uncertainty is compliance in the
structure of the robot. Deflections in the robot joints
and links caused by large process forces result in an
uncertainty in the measured tool position. This prob-
lem can be mitigated by a compliance model, Cj(τ) in
Eq. (5), reducing the uncertainty to the level of the model
uncertainty [3].

V. Conclusions

We have suggested a particle-filter based state esti-
mator capable of estimating the full 6 DOF pose of the
tool relative to the seam in a seam-tracking scenario.
Sensor fusion is carried out between the robot internal
measurements, propagated through a forward kinematics
model with large uncertainties due to the applied process
forces, and measurements from a class of seam-tracking
laser sensors. We have highlighted some of the difficulties
related to state estimation where accurate measurements
come in a reduced dimensional space, together with
highly uncertain measurements of the full state space,
where the uncertainties are highly correlated in time.
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