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POPULAR SCIENCE
SUMMARY

The computation power we expect from the various smart devices we use keeps
increasing. Not only do we want faster devices but also less power hungry and
energy efficient devices, both for the environment and our personal convenience
(remember that "mobile phone" attached to a power plug at all times?).

One way of addressing this demand is to build custom processor architectures
that focus on a specific application domain and meet specific demands such as
limited power budget, bandwidth requirements, and chip area. As a wise woman
once said, "there is no such thing as a free lunch" and in contrast to general pur-
pose processor architectures, these architectures tend to end up notoriously hard
to program. This is because of the customization of the hardware to a level that it
becomes hard and inefficient to use tools and languages available for general pur-
pose processors. So much so, that they quite often become solely programmable in
the machine language specific to the architecture. This means many expert-hours
spent in manual translation of relatively simple programs into machine code, ren-
dering the architecture hardly usable by anyone else than the architect.

This thesis is the result of our effort to increase the programmability of such
custom architectures through automatic code generation, without losing perfor-
mance compared to code written manually by the architect. Automatic code gen-
eration for general purpose architectures is a well studied research area and there
exist many straightforward techniques. However, modeling code generation for
custom architectures is complicated by the restrictions and constraints of the ar-
chitectures, and performance requirements that need to be met for the targeted
applications.

Constraint programming is a programming paradigm that fits problems defined
naturally by constraints and relations between entities. Here, a problem is formu-
lated as a series of constraints over placeholder variables (much like the empty
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squares in sudoku) and solved by a constraint solving engine. The solving engine
eliminates the infeasible values for each placeholder variable step-by-step, until a
solution with each variable assigned to a value is found. As the capabilities and
restrictions on the architectures, and the requirements on the applications we target
can easily be translated into constraints, we choose constraint programming as our
tool for modeling code generation for custom architectures.

Throughout the thesis we demonstrate the effectiveness of our method by com-
paring to theoretical or practical bounds and code written manually by the archi-
tect. The frameworks we present make the architectures easier to program by
letting the programmer write in a higher level language than the specific architec-
ture’s machine language. Our experiments show that the machine code generated
by our frameworks are competitive with the state of the art.



ACKNOWLEDGMENTS

Have We not opened up thy heart,
and lifted from thee the burden

that had weighed so heavily on thy back?
And [have We not] raised thee high in dignity?
And, behold, with every hardship comes ease:

verily, with every hardship comes ease!
Hence, when thou art freed [from distress], remain steadfast,

and unto thy Sustainer turn with love.

Al-Inshirah, Qur’an
(As rendered by Muhammad Asad)

Five years is a long time. Several times I doubted I would make it to the
"Acknowledgments". But here we are. This would not be possible without the
help I got from quite many people.

I am forever grateful to Prof. Krzysztof Kuchcinski for his utmost patience
and almost fatherly support during these years, besides the excellent supervision
he provided me. I was very lucky to have Dr. Flavius Gruian as a friend and
supervisor, with his extreme-precision-feedback and bulletproof tolerance to all
the "things" I came up with during these five years. Also, between you and me, he
is funny.

A special thanks to Dr. Jörn W. Janneck for his supervision and timely brutal
honesty, which helped me get back on track when I felt lost the most. Thanks to
Prof. Pierre Flener for his contagious enthusiasm about constraint programming.
Without his introduction, I would not find my favorite topic in computer science.

Collaboration in writing a paper can be very tricky. Big thanks to Andréas
Karlsson, Chenxin Zhang, Yangxurui Liu and Essayas Gebrewahid for making it
so easy.



4 CONTENTS

Another big thanks to the administrative staff in the department, who put up
with my silly questions, annoying issues about my visa, and many other things...
Thanks to all Pakistani and non-Pakistani colleagues in the department for creating
the inclusive and welcoming atmosphere.
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1 INTRODUCTION

Embedded systems are a special class of computing systems with very specific
requirements on performance, cost and power/energy consumption. Applications
that are targeted by embedded systems are getting more and more computation
hungry. Many of these applications, especially those in telecom and signal pro-
cessing, require high throughput (processed data per time unit) preferably with
low latency, so that when the result of a requested computation is produced, it is
still relevant to the user. On the other hand, the power and area budget is limited,
for reasons varying from battery lifetime and pocket space to environmental con-
cerns. These requirements are often addressed via special design and architectural
choices. In particular, custom processor architectures (a.k.a. customizable pro-
cessors) are often employed. To meet the requirements, custom architectures are
tailored to fit the target application domain. This includes providing the amount
of instruction level parallelism (the number of instructions the processor can run
simultaneously) that is sufficient for the applications, implementing certain crit-
ical operations in hardware, moving non-critical functionality from hardware to
software (e.g. by emulation) to increase clock speed and customizing the memory
structure to fit the common data access patterns [1, 2, 3].

Many applications that are designed for embedded systems (e.g. image pro-
cessing, telecom, surveillance) are inherently parallel. This means that, even
though they are defined as a series of sequential instructions, a significant amount
of those instructions are independent of each other and thus can be run simultane-
ously. A specific type of parallelism that commonly occurs in digital signal pro-
cessing (DSP) and multimedia applications is data parallelism, where the same
operation is executed on many data. This type of parallelism is usually supported
by Single Instruction Multiple Data (SIMD) instructions, which enable processing
vectors of data instead of single elements. However, having a vector processor
without the data management that enables vector access would only make the pro-
cessor wait for the data. Therefore SIMD instructions require high-bandwidth
memory architectures to feed the processor with enough data.
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From an embedded system architect’s point of view, architectural customiza-
tion may be the only step necessary to meet the specific requirements from the ap-
plication and user domain. However, the target application has to be programmed
in a custom manner as well, to reap the benefits of having special hardware. Each
programmable processor architecture has its own machine language for program
development, but for an application developer, programming in it is most of the
time overly tedious and error prone. In such a language, the programmer needs
to specify almost everything explicitly. This would include deciding which in-
struction to execute and when (instruction selection and scheduling), also which
memory or register address to store each data (data assignment). For custom ar-
chitectures with SIMD instructions, the programmer would also be tasked with
grouping operations on scalars into vector operations. This entails handling the
data assignment and access for the vector inputs and outputs of these operations.

Traditionally, instead of the machine language, the programmer uses a higher
level language (such as the C programming language) that lets her/him focus on
how things are to be done, rather than the details of the architecture. The medi-
ator here is the compiler. As depicted in Figure 1, the compiler takes the code
written by the programmer in the high-level language (i.e. the source code) as
input and outputs a translation to the target architecture’s machine language (i.e.
the machine code). The resulting machine code has all the details necessary to
make it executable on the target architecture, as mentioned earlier. This process
can be divided into three major parts: front end, optimizer and back end (also re-
ferred to as code generation) [4]. The front end of a compiler textually analyzes
the source code to check its validity, both syntactic and semantic, and translates it
into an intermediate representation (IR). The resulting IR is a data structure, gen-
erally some type of graph, that represents the source code in a way that enables
further processing by the optimizer and the back end. The optimizer is responsible
for platform independent optimizations over the IR, such as removing unreachable
code (dead-code elimination) and avoid recomputation of expressions(common
subexpression elimination). Finally, the back end is responsible for machine code
generation from the IR the optimizer outputs, together with architecture specific
optimizations [4, 5].

Code generation itself can be divided into three steps (subproblems), namely:
instruction selection, instruction scheduling and register/data allocation. Tradi-
tionally, these steps are executed sequentially and in isolation [4]: instructions to
implement the application are selected, selected instructions are scheduled, and
finally, data assignment for the inputs and outputs of the scheduled instructions is
decided. While it is possible and sometimes beneficial to change the order of these
steps (e.g. just in time compilation of media processing applications for very large
instruction word processors [6]), traditional compiler technique uses the given or-
der of execution. Each step is hard (NP-complete) to solve optimally [4, 7]. To
reach solutions in a reasonable amount of time, each step is commonly solved
seperately using heuristic or approximate algorithms that generate suboptimal so-
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Figure 1: Structure and context of a traditional compiler [7]

lutions. For custom architectures, this is further complicated by the irregularities
in the architecture [1]. Traditional techniques for each subproblem becomes harder
to apply to custom architectures as these techniques are not designed to exploit the
special hardware design. Moreover, the interdependence between subproblems
becomes more significant for the overall result. For example, a specific vectoriza-
tion of operations in scheduling may cause latency penalties because of irregular
data access, depending on data allocation. In some scenarios this may offset the
speedup from vectorization altogether. We experienced such a scenario in our
initial experiments, where we separated the subproblems as traditional compilers
do. The code generated this way had three times lower throughput than machine
code written by the architect. Because of the custom nature of the architectures
and the separation of subproblems, using standard techniques and tools to compile
from a high level language comes at the price of very low quality of the generated
machine code.

The preferred alternative for custom architectures is to write machine code
by hand. But as mentioned earlier, this is a very time consuming, tedious and
error prone process, as the programmer has to do the compiler’s job. Furthermore,
the programmer has to write machine code that uses the capabilities provided by
the custom architecture, otherwise the architecture is utilized poorly, which beats
the purpose of having a custom architecture. As there is no assistance from a
compiler, the programmer needs to know the intricate details and complexities
of architecture, including, but not limited to, processor structure, memory layout,
machine instructions. Most of the time this information is available only to the
architect of the processor, leaving programming solely to the architect.

In short, custom architectures are a good solution for the high-performance,
low power budget demands in embedded systems, but their custom nature intro-
duces a new challenge, which we call the programmability bottleneck: Traditional
code generation techniques generate poor-performance code for custom architec-
tures; therefore obtaining high-performance code is limited to programming in the
machine language and requires in-depth knowledge of the architecture. In this
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thesis we address the problem of programmability for custom architectures from
different perspectives. The rest of the thesis is organized as follows: Chapter 2
provides a background to the papers included in the thesis, to acquaint the reader
to the essential topics and concepts. Chapter 3 gives an overview of the field and
related publications. Chapter 4 presents our problem formulation and Chapter 5
gives an overview of our contributions. In Chapter 6, we present our conclusions
and a give glimpse into possible future work. Finally, a list of papers together with
author contributions precedes the included papers themselves, in Chapter 7.



2 BACKGROUND

In this part, we briefly introduce custom architectures, code generation and con-
straint programming to provide a background for our work.

2.1 Custom architectures

Throughout this thesis, we targeted two custom architectures: the EIT architec-
ture [2] and ePUMA [3]. Both of these architectures are endowed with a Single
Instruction Multiple Data (SIMD) pipeline and a high-bandwidth banked mem-
ory. To familiarize the reader with these concepts, in this section we introduce
pipelined execution, Single Instruction Multiple Data processing, banked memory
organization and access restrictions that come with it. We conclude the section
with an overview of the ePUMA architecture as an example. More details on the
architectures can be found in papers II and V.

2.1.1 Pipelined execution

Exploiting the parallelism inherent to target applications is crucial to increase the
throughput of an architecture. One common technique, which is also used by the
architectures we target, is pipelined execution. Pipelined execution divides instruc-
tions into stages to run them as in an assembly line, overlapping different stages of
multiple instructions. When there are enough independent instructions to run, this
technique improves the utilization of the resources and increases the throughput,
without changing the issue-width [4]. An example is depicted in Figure 2, where
each instruction is executed in five sequential stages, each taking one clock cycle
to complete. This makes the execution time of an instruction, i.e. the latency,
5 clock cycles. If four instructions are executed sequentially, the total execution
time would be 20 clock cycles. With pipelining this number is reduced to 8 clock
cycles. Moreover, after filling the pipeline in the 5th clock cycle, we get one re-
sult per cycle. This makes the throughput 1 instruction per cycle (IPC). Without
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Figure 2: Pipelined execution example. Each instruction comprises five sequential
parts: IF (instruction fetch), ID (instruction decode), EX (instruction execution),
MEM (memory access), WB (write back).

pipelining, the throughput would be 1/5 = 0.2 IPCs. The benefit comes from im-
proved utilization of the hardware dedicated to each pipeline stage, by overlapping
different stages from several instructions.

Instructions that are data dependent on each other may cause stalls in the
pipeline, as an output in a previous instruction may be input to the following in-
struction. Some architectures employ techniques like forwarding to potentially
eliminate stalls. This is done by additional hardware that can feed the result back
from a pipeline stage to a previous stage for a later instruction. For the architec-
tures we target, there is no forwarding, which means simpler hardware and simpler
dependency analysis in code generation.

For architectures targeting application domains that incorporate many conflict-
ing standards (e.g. a 4g mobile terminal complies to more than 10 different radio
standards [8]), achieving flexibility together with the high-performance and low
energy consumption requirements is a significant challenge. Architectures like
EIT overcome this by designing dynamically reconfigurable hardware for each
pipeline stage, providing a cheaper alternative to developing specific hardware for
each standard, with regards to area consumption and development time [2]. In
such an architecture the standards share resources and dynamically reconfigure
them when necessary.

2.1.2 Single Instruction Multiple Data

As mentioned earlier, data parallelism commonly occurs in digital signal process-
ing (DSP) and multimedia applications, where the same operation (e.g. filter-
ing, conversion) is applied on many data points. Single Instruction Multiple Data
(SIMD) processing units are developed to exploit this kind of special parallelism.
Instead of single elements, a SIMD processor’s input and output is a vector of data.

While the idea is straightforward, SIMD processors present challenges in pro-
gramming and data alignment. As a general rule in parallel execution, the opera-
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tions that are to be run in parallel have to be independent of each other. The SIMD
paradigm adds the single instruction restriction on top of this, which makes a hard
problem (identification/exposing parallelism) even harder. Organization of input
and output of the SIMD unit as vectors is another challenge connected to the reg-
ister and memory structure provided by the architecture. As the SIMD processor
accesses vectors of data, vector accesses may be challenging as well, depending
on the underlying register and memory structure,

2.1.3 Multi-bank memory and access restrictions

A vector processing unit without a memory that provides enough bandwidth to
read and write vectors is useless, as the computation bottleneck will be replaced
by a data/memory access bottleneck. Therefore, the memory organization of the
architectures we target is an essential part of their custom nature.

The common technique to achieve high-bandwidth access for the architectures
we target is to have a multi-bank memory structure. A memory is divided into
banks with independent access ports. Each address in a bank contains data that can
be part of a vector. Access to several banks simultaneously enables reading/writ-
ing an entire vector. This structure enables accessing each bank independently
(i.e. different address for each bank) and flexibly assembling a vector from these
accesses.

Both EIT and ePUMA incorporate a multi-bank memory structure. However,
there are some differences. EIT takes the abstraction from scalars to vectors one
step higher and works with matrices as vectors of vectors. To support this they
provide a multi-bank matrix memory, where each address in a bank contains a
vector. In ePUMA, each bank address contains a scalar instead. We simplify this
in modeling by treating vectors as scalars and matrices as vectors for EIT. Another
difference is in the number of access ports per bank. While EIT banks are dual-
ported i.e. one read and one write per clock cycle is possible, ePUMA banks are
single-ported i.e. one read or write per cycle is possible.

Both architectures allow some flexibility in assembling a vector from scalars,
but differ in how they do it. To simplify memory access configuration, EIT divides
the memory further into lines and groups banks into pages. The allowed access
patterns are stored in access descriptor registers. ePUMA on the other hand allows
different types of regular access without any penalty, and irregular access with
possible latency penalty, depending on the other accesses happening in the pipeline
at the same time. Further details on these restrictions and how we model them are
presented in each paper targeting these architectures.

2.1.4 ePUMA architecture

To illustrate how these concepts fit in a custom architecture, we give an overview
of the ePUMA architecture, as depicted in Figure 3. To the left, the entire system,
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Figure 3: Overview of an example custom architecture - the ePUMA architecture.

with eight computing clusters and a master processor to control them is shown. A
computing cluster contains a local controller, multiple vector DSP compute pro-
cessors called Matrix Processing Elements (MPEs) and a set of local vector mem-
ories (LVMs), as shown in the right side of the figure. Each MPE can be assigned
two of the local memories at a time for processing. The memories may be reas-
signed to exchange data between cores. When the target architecture is ePUMA,
the focus of this work is limited to code generation for a single MPE, as each MPE
is a complete custom architecture. The interconnection of several MPEs is the
subject of another study that I contributed to [9].

A MPE has a complex pipeline structure (vector datapath), with 16 multipliers
and three levels of arithmetic units, to accelerate general and application-specific
computing patterns. With SIMD instructions, the processor can operate on vectors
of arbitrary length directly in the local memories, processing chunks of size up to
128-bits, per clock cycle. Figure 3 also depicts the scalar register file (SRF), vector
register file (VRF) and the program memory (PM) for each MPE.

The targeted version of the architecture implements instructions that have the
following format:

op dst src1 src2

where op is the instruction code and dst represents the destination of the output,
while src1 and src2 represent the first and second operands of the instruction
respectively. Commonly in signal processing, each scalar is a complex number
represented by a 32-bit word. As the maximum size of a vector is 128, each vector
can have 4 complex numbers. The SIMD width (SW) is configured accordingly
to operate on up to 4 complex numbers at the same time. Figure 4 depicts an
example instruction for the targeted version of the architecture, where SW = 4.
The SIMD logic works point-wise over the operands and aligns operations to lanes
0 to SW −1 of the SIMD processor.
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p = a+ e
q = b+ f
r = c+g
s = d +h

⇒ sum[p,q,r,s][a,b,c,d][e,f,g,h]

Figure 4: SIMD logic

The operands in dst, src1 and src2 can reside either in the memory or a regis-
ter, but each vector operand has to come from the same memory/register. Registers
provide faster access while memory provides more space and flexibility. There are
two 4-bank memories and 8 vector registers available. Each multi-bank memory
allows reading a full vector in one clock cycle, provided that the access does not
involve reading multiple elements from the same bank which constitutes a bank
conflict. Some access patterns (henceforth called regular access) are supported
implicitly through the hardware implementation while other patterns can be used
through the help of a permutation vector stored in the program memory as long as
it does not entail any bank conflicts.

The architecture can issue an instruction each clock cycle but instruction la-
tency depends on several factors. Different operation types can have different
latencies. We assume that the default latency for a multiplication is 4 clock cycles,
i.e. the output of a multiplication is ready to use 4 cycles after its issue. The same
figure for an addition is 1 clock cycle. This default latency is extended when one
of the following occurs:

• Writing back to memory: Results in one clock cycle additional latency.

• Bank conflict: Results in one clock cycle additional latency per conflict, per
bank.

• Memory conflict: Both src1 and src2 are read from the same memory. As
the memory is single-ported, this adds one clock cycle latency.

• Too many permutations: Each irregular access needs a permutation vector
to be defined and kept in the program memory. The architecture provides a
way to avoid the permutation penalty if there is only one read permutation
in the pipeline. But when there is more, this adds to the latency.

Registers, on the other hand, cause no such additional latency or delay penalties.
However, they only allow regular access.
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2.2 Code generation

Here we give an overview of code generation and briefly introduce its subprob-
lems, as each of them is a research topic in and of itself. For more details and
advanced topics that are beyond this thesis, we refer the reader to [5, 4, 6].

2.2.1 Overview

As described earlier and depicted in Figure 1, the front end of a compiler takes the
source code and translates it into an intermediate representation (IR). This IR is
then fed into the optimizer phase of the compiler which does code optimizations
prior to code generation by the back end. In paper II we introduce a domain
specific language targeting the EIT architecture, that generates an IR as the input
for the code generation. Further details on IR can be found in that paper. In this
section, we focus instead on code generation as it is more central to this thesis.

Code generation is the process of translating an intermediate representation of
an application into machine code that can be run directly on the targeted architec-
ture. Traditionally, code generation is divided into several subproblems in order
to keep it manageable, as each subproblem in itself is very hard to solve optimally
[4].

2.2.2 Instruction selection

The operations in the IR are abstract operations. They do not necessarily cor-
respond to one instruction in the machine language. Instruction selection is the
phase where the abstract operations in the IR are mapped to machine instructions.
Custom architectures tend to provide complex instructions for groups of opera-
tions that are common in the target application domain. For example the ePUMA
architecture provides two instructions that together implement inverse discrete co-
sine transformation (IDCT), a very common operation in multimedia applications.
Figure 5 shows one of those instructions in a simplified IR form, where nodes rep-
resent operations and edges represent dependencies between them. Note that the
instruction takes two vectors with eight scalars as input and generates one vector
with eight scalars as output.

Generally the architecture enables several different implementations of the ap-
plication, therefore, to select the one that performs the best becomes another ob-
jective for instruction selection. The performance metric depends on the objectives
of the programmer and the application domain, but most of the time is one of min-
imal execution time, code size or power/energy consumption. Even though the
eventual performance of the generated code is also highly dependent on the other
code generation steps (i.e. instruction scheduling and data assignment), methods
such as profiling are used to estimate the cost of selecting an instruction [7].
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sub7(-) add6(+)

mul15(*)

Figure 5: First half of IDCT in ePUMA, implemented by the instruction named
idct8pfw

2.2.3 Instruction scheduling

After instruction selection, the order of execution (i.e. the schedule) for the se-
lected instructions needs to be specified. If there are several functional units capa-
ble of executing the instructions, a schedule additionally entails the assignment of
instructions to particular units. A valid schedule needs to respect the constraints
of the architecture and the application. Architectural constraints include available
functional units, issue width (number of instructions that can be issued simultane-
ously), types of operations that can be bundled together (for a SIMD unit, this is
equal to one), etc. On the other hand, application constraints consist of control and
data dependencies between operations.

When optimizing for high-performance i.e. high throughput, as is the case
for us, the objective is to come up with a schedule that performs the best i.e.
the optimal schedule, or satisfy some performance thresholds such as minimum
throughput and maximum latency. To achieve this goal, it is important to exploit
the parallelism inherent to the application and the instruction-level parallelism (the
capability to run several instructions simultaneously) the architecture provides.
Loops constitute a special source for parallelism. as independent operations from
different iterations can be run in parallel. For this reason, several techniques tar-
get loops for scheduling with improved parallelism. One such technique is called
modulo scheduling [10]. It involves finding a schedule that initiates iterations as
soon as possible, taking into account dependencies and resource constraints, while
also repeating regularly with a given interval (initiation interval II). Loop unrolling
is originally a compiler optimization technique that unrolls several consecutive it-
erations of the loop together to decrease the loop overhead [5]. With reordering of
operations, it can help eliminate stalls because of data dependences, by executing
operations from a following iteration. As it possibly increases the number of inde-
pendent operations, it can also be used to expose more parallelism [11]. The main
downside in this case is the increase in the code size. Modulo scheduling and loop
unrolling can also be combined. For further details, see paper III.
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2.2.4 Data assignment

Together with the inputs and outputs of the application, the intermediate data i.e.
the data produced and consumed within the application, have to reside somewhere
during the interval between the define and last use time for each data (i.e. lifetime).
Data assignment is the phase that decides on where each live data is kept.

Commonly, registers are situated closer to the processing elements and provide
faster access compared to other memory units. Higher access speed comes with
higher price, and therefore architectures tend to have only a limited number of reg-
isters available [12]. This entails that only a limited amount of live data can reside
in registers, while the rest has to be stored in slower memory units (i.e. spilling
to memory). Therefore, traditionally, data assignment is focused on finding a reg-
ister allocation with minimal amount of spills, to minimize additional memory
access latency caused by the spills. Most of the state of the art is based on a graph
coloring method by Chaitin [13]. The graph coloring problem is to minimize or
limit the number of colors necessary to color each node in a graph, where adjacent
nodes have to be colored differently. This is a problem that predates computers,
and therefore has many existing solution techniques. In order to benefit from these
techniques, Chaitin uses an interference graph to represent the competition among
data to be placed in a register. In this undirected graph, each node represents a data
(i.e. a temporary) and two nodes are connected if their lifetimes overlap. With this
graph, the register allocation problem is turned into a graph coloring problem.

The architectures we target are built to run data intensive applications. There-
fore, they are highly dependent on memory-bandwidth, in order to achieve the re-
quired throughput. As mentioned earlier, this is addressed by customized memory
structures. However, in order to achieve high bandwidth, data should be assigned
and accessed in specific ways, defined by the memory structure. Otherwise, either
the instruction schedule becomes invalid as some of the inputs or outputs can not
be accessed, or significant latency penalties occur for conflicting accesses. As a
result of the complexity in the memory structure, memory access and allocation
becomes the focus of data assignment, instead of register allocation.

2.3 Constraint programming

In all the included papers we use constraint programming (CP) to model our prob-
lems. Therefore, each paper has an introduction to CP, highlighting the aspects
relevant to that paper. Here, we give a more general introduction.A thorough de-
scription can be found in the Handbook of Constraint Programming [14].

The models in the CP paradigm are defined as constraint satisfaction problems
over a series of variables. The variables represent the decisions that constitute
a solution, such as start times of operations, memory locations and lifetimes of
data. Variables are defined by the values they can take, namely their domains. A
solution is an assignment of a singular value to each variable. Constraints cap-
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ture the relation between variables, such as precedence between two operations,
non-overlapping lifetimes for data on same location. These relations restrict the
combinations of values the variables can simultaneously take.

Each constraint is paired with a consistency method (a propagator) to eliminate
the infeasible values (a.k.a. pruning). These methods can be complete (pruning all
infeasible values at once) or incomplete (pruning a subset of infeasible values), de-
pending on the choice of algorithms implementing them. Incomplete methods are
preferred when complete methods have too high algorithmic complexity. A con-
straint and its consistency method are often used interchangeably, i.e. "constraint"
referring to the method that prunes infeasible values. Constraints are independent
of each other but affect each other through the domains of the variables. This inde-
pendence provides a significant amount of flexibility as constraints can be plugged
in and out easily, simplifying the update and maintenance of models.

A constraint solver is a framework that provides the programmer with a library
of built-in constraints, together with a constraint solving engine. This engine is re-
sponsible for coordination of the propagators and the guessing method e.g. search
with backtracking. In a simplified view, the engine runs each propagator until a
fixed-point (where no more pruning is possible via propagators) is reached (i.e. a
round of propagation). If the reached fixed-point is not a solution, the solver needs
to resort to guessing. A guess involves picking a variable and constraining its do-
main e.g. assigning it to a single value. This new domain can make some of the
constraints invalid for some values, triggering new propagations. As a guess may
be wrong, a way to backtrack from it is necessary. This is achieved by keeping
track of the guesses as a tree (i.e. the search tree). The strategy for picking which
variable to guess on (i.e the variable selection heuristic) and the strategy for con-
straining the selected variable’s domain (i.e. value selection heuristic) decides the
shape of the search tree. The search tree can be used to turn a satisfaction problem
into an optimization problem. An efficient technique to search for optimality using
the search tree is branch-and-bound technique [15].

A distinct feature and strength of CP is the concept of global constraints. A
global constraint logically combines several simpler constraints and handles them
together. While semantically equivalent to the conjunction of these simpler con-
straints, a global constraint lets the solver exploit the structure of a problem by
providing a broader view to it [16]. Propagators to these constraints are commonly
implemented by existing algorithms from well-studied fields such as graph theory
and operations research.

Throughout this thesis, we used the JaCoP framework as our constraint solver
[17]. JaCoP provides a wide selection of built-in global constraints, some of which
are specially designed for scheduling (cumulative), and others that can be used
to formulate data assignment diff2 and access constraints regular.

To make things more concrete, consider the example IR in Figure 6. The graph
consists of two operations and four data. There are two inputs (a and b), one output
(z) and one intermediate data (x). Data b is input to both the multiplication and the



18 Background

addition. The other input of the addition is the result of the multiplication, i.e. x.
Therefore there is a data dependency between the operations, which is translated
into a precedence constraint in the model as follows:

t∗+ l∗ ≤ t+

Here, t denotes the start time of the operation and l denotes its latency. For an
operation, latency corresponds to the time that needs to elapse after the start of
execution, for its result to be ready.

The dashed lines in the figure denote the definition point and last use of each
data. If the inputs (a and b) are assumed to reside in registers or memories before
the execution starts, their definition time can be assumed to be zero. However, the
definition time of x depends on the multiplication, more specifically it is t∗+ l∗, as
it is defined when the result of the multiplication is ready. The last use time on the
other hand, depends on the operation that finishes using the data. We assume that
an operation uses an input data during its execution time, which we denote with d.
Therefore, the last use time for a is t∗+d∗; for b and x this is t++d+. Note that the
start times of operations (t) are variables, and will be set by scheduling decisions
made by the solver. Another detail to note is that the latency (l) and the execution
time (d) of an operation can be different.

a

*

b

x

+

z

lifea

lifex

lifeb

Figure 6: A simple IR. Dashed lines denote the definition point and the last use
point for each data.

The time between the definition and last use identifies the lifetime of a data.
Lifetime analysis is important in order to reuse registers and memory addresses
without assigning two or more live data to the same address. In the example above,
lifetimes of a and x are not overlapping, therefore they can reside in the same
location. However, the lifetime of b overlaps both with a and x, therefore it can
not share address with them. An overlap, therefore, happens in a two-dimensional
space, the dimensions being the address of a data and its lifetime. Assuming that
the size of a data does not change depending on where it is located, the assignment
for each data i can be represented in this two dimensional space, as a rectangle
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originating from (addressi,de fi) with width li f ei and unit height. In this case,
de fi denotes the definition time of data i. With this reasoning, data assignment can
be modeled as non-overlapping rectangles, using the diff2 global constraint. As
the lifetime of a data is dependent on the start times of the operations that use or
define it, the diff2 constraint will interact with the scheduling constraints such as
precedence constraints and cumulative.





3 RELATED WORK

Each paper included in this thesis has a separate section on related work specific to
that paper. Here, we present the related work more general to the field. Note that
some newer papers are also included here, that are published after the publication
of our papers. We contrast subproblem-specific works (i.e. instruction scheduling
and register allocation) to more unified/integrated approaches and situate our work
in the latter. Note that we do not allocate a separate section for instruction selection
as we mention the most related work under unified approaches. For further reading
we refer to the extensive survey on instruction selection by Blindell [7].

3.1 Instruction scheduling

Optimal instruction scheduling is a very hard problem, for a single-issue proces-
sor it is NP-complete if there is no fixed bound on the maximum latency [18]. For
this reason, it is common practice to use list scheduling with a priority heuristic,
instead of an exact method aiming for an optimal schedule. A compelling case for
using exact techniques such as constraint programming for instruction schedul-
ing is made in [19]. The authors performed an extensive computational study of
heuristic and exact techniques for superblock instruction scheduling using realistic
architectural models of processors that were commonly used in telecommunica-
tions and DSP, at the time of the study. One important conclusion of this study
is that the exact scheduler (which internally uses constraint programming) always
results in better code however with the downside of longer scheduling time com-
pared to heuristic schedulers. Hence the exact methods are suitable for aggressive
optimization but maybe not for general purpose compilation.

Malik et al. [20] present a superblock instruction scheduler based on CP, tar-
geting multiple issue pipeline processors with several functional units for instruc-
tions such as load/store, integer, floating point and branch instructions. Isolat-
ing the instruction scheduling problem, they focus on the DAG representation of
the superblock and make use of graph transformations presented in [21] to im-
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plement implied dominance constraints. These help reduce the search space for
solutions, therefore decrease optimization time. Our experiments showed that this
propagation is already done when we use the cumulative global constraint. This
makes us believe that the implementation of cumulative in JaCoP already cov-
ers the implied dominance constraints. The study reports optimal solutions to
superblocks containing up to 2600 instructions from SPEC2000 integer and float-
ing point benchmarks. As mentioned, the study solves instruction scheduling in
isolation, while we combine it with other subproblems of code generation, i.e.
instruction selection and register/memory allocation.

Modulo scheduling is a recurring method in embedded systems for loops/ker-
nel scheduling. Many studies are reported during recent years. Kudlur and Mahlke
present modulo scheduling for stream graphs in [22]. They integrate actor fis-
sion and processor assignment as an ILP as a first phase, followed by a phase
that assigns actors to pipeline stages, overlapping communication and computa-
tion, to increase overall utilization. Mei et al. introduce modulo scheduling to
Coarse-grained reconfigurable architectures (CGRAs) to exploit loop-level paral-
lelism [23], while Kim et al. [24] tackle the problem of long compile times for
modulo scheduling for CGRAs, caused by the difficulty of finding a good routing
of operands through the processors. They propose patternized routes in order to
simplify the problem, and this trade-off results in 6000 times faster compilation
while preserving 70% throughput on average compared to the state-of-the-art. We
on the other hand use modulo scheduling as a set of additional constraints rather
than the core method for scheduling.

3.2 Register Allocation

Register allocation is a research area in and of itself. This subproblem is stud-
ied in depth for compilers targeting traditional processor architectures and most
works base themselves on the seminal graph coloring method by Chaitin [13].
This method is briefly explained in Section 2.2.4. There are many combinatorial
methods targeting register allocation as well, a detailed overview for these meth-
ods can be found in [25]. Here we focus instead on the studies closely related to
ours, that target register allocation in isolation. Methods similar to ours that target
register allocation as part of a unified approach is covered in the following section.

The work by Domagała et al. [26] uses a two-dimensional instruction tiling ap-
proach (one dimension for intra-iteration, another for inter-iteration) to expose reg-
ister reuse among several unrolled loop iterations. The focus here is to minimize
register pressure and spill code to avoid the high memory latency. The optimiza-
tion is modeled as a constraint satisfaction problem and solved using constraint
programming. Once the tiling is decided a trivial scheduling is employed. There-
fore we classify this as an isolated solution for register allocation. In contrast, at
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each of our studies where we target data assignment including register allocation,
we combined it with other subproblems of code generation.

In [27], You and Chen present a vector-aware register allocator, targeting GPU
shader processors. The target architecture provides a combination of scalar and
vector operations. They observe that in the shader programs, there are many vari-
ables that are either scalar, or comprise N scalars where N is less than the size of
a vector register. Therefore, they present a framework that divides vector registers
into scalar parts, and allocate each variable to these slots (i.e. element-based regis-
ter allocation). They also incorporate register packing to avoid wasting contiguous
register space. The register allocator is implemented in an in-house just-in-time
compiler, therefore register allocation is done before scheduling. The experiments
show improvements in register utilization and decrease in spills to the memory. As
ePUMA allows scalar access and groupings that are smaller than the vector regis-
ter size, we also implement element-based register allocation. We do not explicitly
pack registers, but this is done implicitly through scheduling of vector operations,
as we integrate register and memory allocation with instruction scheduling.

3.3 Unified approaches

One of the first studies aiming at a unified approach is by Kessler and Bednarski
[28]. They solve the combined instruction selection and scheduling problem with
a limited number of registers, optimally, using dynamic programming. Similar to
our approach, they target basic blocks that are represented as directed acyclic gr-
pahs. However, their approach is practically limited to small graphs (< 50 nodes)
for finding a solution in a reasonable amount of time. They expand this approach to
cover code generation for very large instruction word (VLIW) architectures [29],
but the approach is still applicable only to small graphs. In contrast, our approach
can solve 4-5 times larger graphs optimally or almost optimally for combined in-
struction selection and scheduling.

Unison is a project aimed to combine the traditionally separated instruction se-
lection, register/memory allocation and instruction scheduling problems into one
problem to use the inter-dependency between these subproblems to achieve im-
proved code generation [30]. For instruction selection, Blindell et al. propose a
universal scheme using constraint programming in [31]. They combine control-
flow with program-/data-flow to select instructions for kernels that span over sev-
eral basic blocks. They incorporate a subgraph isomorphism algorithm (which is
also used to implement the subgraph isomorphism propagator in JaCoP) to match
instructions that are represented as pattern graphs with parts of the combined ap-
plication graph. This pattern matching is similar to our approach in [32] for iden-
tifying possible instructions. It is possible to use the same idea to identify and
select processor extensions as part of application compilation for reconfigurable
processors as done in [33].
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In [34, 35], Casteñada et al. detail the integrated register allocation and in-
struction scheduling for code generation, as part of Unison. Target architectures
for experimental evaluation are MIPS32 and Hexagon V4, a VLIW processor in-
cluded in Qualcomm’s Snapdragon [36]. As we do throughout the papers that
include register and memory allocation, they formulate register allocation as the
non-overlapping rectangles problem. This allows them to use global constraints
that capture specifically this. For bundling operations as VLIW instructions they
make use of the cumulative global constraint as we do for both VLIW and
SIMD groupings in scheduling. They also solve many subproblems of register
allocation such as coalescing and register packing that we do not consider. In
contrast to this focus on register allocation, we focus on the subproblems of data
assignment such as permutation vector optimization and simultaneous multi-bank
access problems caused by custom memories that are designed to feed the SIMD
processors we have targeted. These subproblems are directly influenced by the
instruction scheduling, therefore our models have full integration of memory al-
location and instruction scheduling through data access constraints, while their
approach integrates them only through live ranges of program variables.

Another integrated method is by Eriksson and Kessler [37], where the authors
present an integer linear programming model for optimal modulo scheduling, that
solves instruction selection, register allocation, instruction scheduling and instruc-
tion allocation together. Instruction selection uses a pattern matching scheme sim-
ilar to our approach. They compare this integrated model to modulo scheduling
with separated stages. Target architecture is a clustered VLIW, with access to a
limited number of registers. They report optimal solutions for graphs with size up
to 142 nodes with a time-out of 15 minutes. The differences to note compared to
our work are on the target architecture and the method used. While we modeled
VLIW architectures as well, our main focus was on SIMD processors and their
custom memory/register structures. This entails that our work is not limited to
register allocation but also allocates memory as well. While our approaches are
similar, we use the constraint programming paradigm versus integer-linear pro-
gramming. This gives us ease and flexibility in modeling. Comparing target ap-
plications and results, we target application graphs with size up to 250 nodes, and
solve them with a time-out of 10 minutes.

3.4 SIMD specific approaches

An integrated approach that targets SIMD processors is presented in [38]. The
authors extract vectorizable codelets from loops that enable polyhedral transfor-
mations. They model the scheduling problem as an integer linear program and
incorporate polyhedral compilation framework to extract scheduling constraints.
Our work could also be extended to include constraints derived from polyhedral
transformations. On the other hand, as mentioned earlier, the architectures we tar-
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get come with custom memory and register organizations that need to be taken into
consideration during scheduling. This complicates the vectorization significantly
as each vector access to the memory is subject to restrictions which may result in
delay penalties, which is addressed in our work.

Kim and Han [39] focus on SIMD code generation for irregular kernels with
array indirection, which makes auto-vectorization a difficult task. Working on
data-flow graphs, they exploit both intra- and inter-iteration parallelism for loops.
Inter-iteration parallelism is covered by superword level parallelism, in which the
source and result operands of a SIMD operation are packed in a storage loca-
tion [40]. For intra-iteration parallelism, they identify the vectorizable operations
within the loop. They account for the overhead in data reorganization operations
such as load, store and shifting, and optimize placement of necessary data reorga-
nization code. Our approach works as well for irregular loops, making it possible
to generate efficient code regardless if the original code has regular or irregular ref-
erences. We make use of the custom nature of the architecture and try to minimize
data permutations without employing data reorganization code.

Another approach by Hormati et al. [41] takes the SIMD code generation for
streaming applications to a higher level and focuses on SIMDization of actors in
a streaming program. They call this macro-SIMDization. This perspective pro-
vides high-level information such as execution rates of actors and communication
patterns among them, valuable for vectorization. Using their terminology, we fo-
cus in micro-SIMDization, targeting kernels that are run many times within an
application. If these kernels are implemented as actors in a streaming applica-
tion, macro-SIMDization could be used to vectorize the operations that can not be
vectorized with our methods because of data dependences.





4 PROBLEM STATEMENT

As introduced earlier, custom architectures come hand in hand with a programma-
bility bottleneck. One way to overcome the programmability bottleneck is through
an automatic code generator that provides high quality machine code, that is com-
petitive with machine code written by the architect. On the other hand, custom
architectures are becoming more and more common, and each architecture has its
own custom capabilities and restrictions. Even these capabilities and restrictions
are open to change as the these architectures tend to version frequently. Therefore
it is important to devise a strategy that enables building a code generator that can
be changed, customized and maintained easily. Otherwise, for each version or new
architecture, a new code generator needs to be built from scratch, wasting many
man-hours.

This thesis is the result of our effort to overcome the programmability bot-
tleneck of custom architectures by automating the code generation process. Two
major goals for a code generation framework targeting custom architectures are:

• The machine code it generates performs at least as well as machine code
written by the architect.

• It is easy to adapt it to different architectures or versions, without requiring
the development of specific solutions from scratch for each new target.

Such a code generator should also avoid the shortcomings of code generation
in traditional compilers for custom architectures. These include:

• Poor utilization of the special hardware.

• Neglecting the interdependence of subproblems by staging them.

• Difficult to adapt to architectural change.

To avoid these shortcomings, we propose code generation frameworks mod-
eled using the constraint programming (CP) paradigm. CP fits the irregular nature
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of custom architectures, as constraints are designed to be defined and to work in-
dependently. Once a skeleton model is built to capture essential parts of code
generation, special hardware capabilities and requirements, or switching the target
architecture can be reflected by plugging constraints in or out. This way, using
CP can address the poor utilization of special hardware and achieve the goal of
easy adaptation to architectural change. To reflect the interdependence of the sub-
problems of code generation, we aim for unified models that combine the targeted
subproblems.

As our main focus is on code generation, three out of the five included pa-
pers directly target its subproblems. Paper I presents a combination of instruc-
tion selection and scheduling of complex instructions for DSP kernels. Paper II
combines instruction scheduling and memory allocation for a dynamically recon-
figurable custom vector architecture (EIT). Finally, paper V combines instruction
scheduling, data allocation (both memory and register) and data access patterns
in a single model, targeting another SIMD architecture (ePUMA). The remaining
two papers deal with topics relatively peripheral to code generation. Paper III is a
comparative study on scheduling techniques for kernels running on architectures
with SIMD pipelines. Paper IV presents a design space exploration framework for
assisting architectural decisions on custom vector architectures.



5 OVERVIEW OF
CONTRIBUTIONS

• A high-level programming framework for custom architectures with SIMD
capabilities and complex memory organization.

We propose a framework that can take a dependency graph as intermedi-
ate representation, that is generated from code written in a high-level lan-
guage, and generate high quality machine code for the target architecture
automatically. As the high-level language for our purpose, we developed
an in-house domain specific language, while a dependency graph generated
from another high-level language would work as well. The framework en-
ables instruction scheduling with SIMD groupings and data allocation with
optimized data access patterns. For further details, see paper V.

• Formulation of modulo scheduling as part of a constraint programming
model for both code generation and design space exploration.

While it is commonly used separately, we integrated modulo scheduling into
a code generation framework and design space exploration. The integration
uses a novel constraint-based formulation of the problem and does not re-
quire major changes in the rest of the constraint model. This integration is
part of papers II, III and IV.

• An automata based formalization of the restrictions on data access patterns
for a custom memory.

The custom, multi-bank memory that comes with the SIMD processing unit
for one of the architectures we target, enables vector access with or with-
out additional latency, depending on the access pattern. For our constraint
model, we formalized this as an automaton, using the regular global con-
straint. The only similar attempt we found in the existing literature [42],
focuses on minimizing cache misses in program-level, and targets scalar
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processing. Our contribution is on minimizing the latency caused by ir-
regular vector accesses, happens at the instruction-level, and targets vector
processing. Details can be found in paper V.

• A method for fast exploration of application specific architectures.

The architectures we targeted are constantly under improvement and change,
based on the application requirements. Keeping this in mind, we developed
a method for exploring potential architectural configurations for application
set specific SIMD processor architectures. We employed constraint pro-
gramming, and formulated the problem as Pareto optimization in a three di-
mensional space (number and width of SIMD units, number of scalar units),
using modulo scheduling to ensure throughput requirements are met. This
contribution is the main focus of paper IV.

• Formalization and integration of subproblems of code generation as a con-
straint satisfaction problem.

To reflect the fact that the subproblems of code generation are intertwined,
we merged the subproblems we targeted, and formalized them as a unified
constraint satisfaction problem. This is in contrast to the traditional compiler
technique of solving each step separately and merging the solutions.

In paper I, we integrate instruction selection and scheduling. Paper II com-
bines instruction scheduling with memory allocation. Finally, paper V inte-
grates instruction scheduling and data assignment (both register allocation
and memory allocation) with optimized data access patterns. Note that the
idea of a unified model is not novel in itself, while the integration of data
access constraints into a unified model is, to the best of my knowledge.



6 CONCLUSIONS

6.1 Summary

Custom architectures are powerful tools for achieving high performance with low
cost. However, the fact that they are extremely hard to program limits their use
to a handful of programmers and therefore limits their benefits. Our work is a
step towards alleviating this problem by making these architectures easier to pro-
gram. Papers I, II and V demonstrate how we successfully address subproblems
of code generation for custom architectures in a more unified manner compared to
traditional compilers. In our experiments we compare the schedules and machine
code we generated to theoretical lower bounds and manual code written by experts
in the field and of the target architecture. We targeted kernels from real-life ap-
plications that are common for the target architecture, with varying IR sizes and
shapes. For these applications, we either matched or got close enough to either the
theoretical bound or the manual code, targeting two different custom architectures.
Therefore, we deem that our automatic code generation scheme achieves the goals
we laid out in the problem statement.

Using constraint programming, we built flexible yet highly detailed models of
the target architectures and applications. All the models in this thesis share the
same skeleton for the overlapping problems, such as instruction scheduling. The
rest of the model is extended from this skeleton by plugging in new variables and
constraints. This flexibility of modeling in constraint programming allows one to
experiment with the level of abstraction when modeling architectures. Adding or
removing a detail in the architecture corresponds to adding or removing a group of
variables and constraints. A good example of this flexibility is the models for dif-
ferent scheduling techniques in paper III, where the shared "skeleton" corresponds
to 70%-80% of the models.

During our discussions with the architects of the systems we targeted, we re-
alized that these architectures are under constant development and update, based
on the application requirements. Therefore, additionally to code generation, we
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proposed a preliminary framework for design space exploration of custom archi-
tectures, with focus on meeting the requirements of the target application domain.
Here, the exploration parameters are limited to the properties of the SIMD process-
ing unit and the number of scalar units. For a more comprehensive design space
exploration, more parameters should be taken into account, such as the number of
registers and properties of the memory.

6.2 Future work

The problems we target are inherently hard. Both instruction selection and in-
struction scheduling are proven to be NP complete. Even though constraint pro-
gramming provides flexibility in modeling, this algorithmic complexity forced our
models to be very complex in turn, with many different types of variables and
complicated constraints and complex search heuristics. The combination of a hard
problem and a complex model can turn a constraint solver into a black box. Prob-
lems with reasonable sizes get quickly untraceable. In a future work, a mathemat-
ical analysis of what kinds of graphs we can solve in a reasonable amount of time
should be provided for sound reasoning, instead of relying only on experiments.

For the entirety of the thesis we limited ourselves to the EIT and ePUMA ar-
chitectures, together with some theoretical architecture models (such as a generic
very large instruction word processor). However, it is important to target other
custom architectures in order to ensure the robustness of our technique. It would
be interesting to target custom architectures that provide some sort of program-
ming support (other than assembly) such as [43], and compare the code our tools
generate with the code generated by the existing tools.

Our experiments showed that for applications larger than a certain size (corre-
sponding to 256 nodes in the IR) our techniques do not terminate with a solution in
a reasonable amount of time. In order to address this, we would like to investigate
graph partitioning methods similar to the ones presented in [33]. There are many
aspects to this problem, as a graph could be partitioned "vertically" or "horizon-
tally", in an overlapping or independent fashion, with different partition sizes, and
with different order of partitions to solve. The problem gets further complicated
with constraints on data allocation and access, as a decision in one partition may
render another partition infeasible.

From a constraint programming perspective, we quite often ended up with con-
straints that worked orthogonally to each other, but were actually interdependent
in the bigger picture. An example is the interdependency of data access constraints
and scheduling constraints in paper V. It would be interesting to see if it is ben-
eficial to develop a set of global constraints that act as a combination of these
orthogonal constraints. Later on, these constraints could be generalized for other
purposes.
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We suspect that symmetrical solutions comprise a big part of the search space
in our problems. Eliminating these symmetries would result in a smaller and hope-
fully more manageable search space. Another way to shrink the search space is
to decide whether or not the reached state in a search node (with all the variable
domains and the constraints) is subsumed by another node. This is referred to as
dominance and can limit the number of search nodes to visit significantly [44].

As mentioned earlier, we used the JaCoP framework as our constraint solver, as
it provides a rich set of built-in constraints. It is also built as an open source library
in Java, which makes it easier to program with and merge with additional code such
as pre- and post-processing and supporting data structures, if necessary. However,
there are many other constraint programming frameworks available. Some of these
are particularly interesting as they focus on advanced search techniques such as
lazy-clause generation [45], which is shown to be particularly useful in solving
resource-constrained scheduling problems [46]. In future work, we would like to
investigate whether or not another solver suits our problem better.





7 LIST OF PAPERS

7.1 Papers included in the thesis
For all the papers, all authors contributed to the writing. Additional to writing, my
supervisors Prof. Krzysztof Kuchcinski and Dr. Flavius Gruian contributed with
discussions during each study and editing the papers.

1. Instruction Selection and Scheduling for DSP Kernels

Mehmet Ali Arslan and Krzysztof Kuchcinski, Microprocessors and Mi-
crosystems, Volume 38, Issue 8, (pp. 803-813), 2014
Contributions: I reformulated Prof. Kuchcinski’s previous idea on using
pattern matching for identifying instruction extensions as a method for in-
struction selection and implemented the unified model for instruction selec-
tion and scheduling for the targeted architectures, with constraint program-
ming, together with the experimentation.

2. Programming Support for Reconfigurable Custom Vector Architectures

Mehmet Ali Arslan, Krzysztof Kuchcinski, Flavius Gruian and Yangxurui
Liu, PMAM 2015: The 6th International Workshop on Programming Mod-
els and Applications for Multicores and Manycores, February 07 - 11, San
Francisco, CA, USA, 2015
Contributions: I developed the domain specific language (DSL), the in-
struction scheduler and register allocator for the custom vector processor
architecture developed at the EIT department in Lund university. Yangxurui
Liu implemented the applications used for experimentation in the DSL.

3. A Comparative Study of Scheduling Techniques for Multimedia Applications
on SIMD Pipelines

Mehmet Ali Arslan, Flavius Gruian and Krzysztof Kuchcinski, DATE Fri-
day Workshop on Heterogeneous Architectures and Design Methods for
Embedded Image Systems (HIS 2015), March 03, Grenoble, France, 2015
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Contributions: Dr. Gruian proposed to carry out a comparative investiga-
tion of scheduling techniques that were of interest to us. I formalized and
implemented the separate constraint programming model for each schedul-
ing technique and carried out the experimentation and further analysis.

4. Application-Set Driven Exploration for Custom Processor Architectures

Mehmet Ali Arslan, Flavius Gruian and Krzysztof Kuchcinski, 26th IEEE
International Conference on Application-specific Systems, Architectures
and Processors, July 27-29, Toronto, Canada, 2015

Contributions: Based on paper 3, after discussing with Dr. Gruian, we
came up with the idea for a design space exploration scheme which I de-
signed and implemented, together with the case study.

5. Code Generation for a SIMD Architecture with Custom Memory Architec-
ture

Mehmet Ali Arslan, Flavius Gruian, Krzysztof Kuchcinski and Andréas
Karlsson, Conference on Design & Architectures for Signal & Image Pro-
cessing October 12-14, Rennes, France, 2016

Contributions: I studied the ePUMA architecture that requires special code
generation, because of its SIMD capabilities and custom memory architec-
ture. Based on my studies I developed the code generation backend. I im-
plemented some of the applications in the DSL, which was developed pre-
viously by me in paper 2. Andréas Karlsson implemented the rest of the
applications and ran the generated assembly code in the simulator.

7.2 Papers not included in the thesis
1. Partitioning and Mapping Dynamic Dataflow Programs

Mehmet Ali Arslan, Jörn W. Janneck and Krzysztof Kuchcinski, Conference
Record of the Forty Sixth Asilomar Conference on Signals, Systems and
Computers (ASILOMAR), 2012 (pp. 1452-1456). IEEE

2. Mapping and Scheduling of Dataflow Graphs—A Systematic Map Usman
Mazhar Mirza, Mehmet Ali Arslan , Gustav Cedersjo, Sardar Muhammad
Sulaman and Jörn W. Janneck, 48th Asilomar Conference on Signals, Sys-
tems and Computers, 2014 (pp. 1843-1847). IEEE

3. Support for Data Parallelism in the CAL Actor Language

Essayas Gebrewahid , Mehmet Ali Arslan, Andréas Karlsson and Zain Ul-
Abdin, In Proceedings of the 3rd Workshop on Programming Models for
SIMD/Vector Processing (pp. 2). ACM
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AND SCHEDULING FOR

DSP KERNELS

Abstract

As custom multicore architectures become more and more common for DSP ap-
plications, instruction selection and scheduling for such applications and architec-
tures become important topics. In this paper, we explore the effects of defining the
problem of finding an optimal instruction selection and scheduling as a constraint
satisfaction problem (CSP). We incorporate methods based on sub-graph isomor-
phism and global constraints designed for scheduling. We experiment using sev-
eral media applications on a custom architecture, a generic VLIW architecture and
a RISC architecture, all three with several cores. Our results show that defining the
problem with constraints gives flexibility in modeling, while state-of-the-art con-
straint solvers enable optimal solutions for large problems, hinting a new method
for code generation.

1 Introduction

New demands on performance and power consumption lead to introduction of
special execution platforms that are built specially to fulfill the specific require-
ments of a given set of applications. The platforms are usually built around a net-
work that connects processors and application-specific instruction-set processors

Mehmet Ali Arslan and Krzysztof Kuchcinksi
Dept. of Computer Science, Lund University, 221 00 Lund, Sweden
*Based on the paper published on Microprocessors and Microsystems, Volume 38, Issue 8, Page 803,
to 813, 2014.
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(ASIPs). ASIPs have specific instruction sets that support a given class of ap-
plications. They also have different architectural solutions for parallel execution.
Among others they usually support instructions defining complex functionalities,
VLIW-like instructions and SIMD execution model. For example, the ePUMA ar-
chitecture contains the Sleipnir processor [1] that has special instructions that can
compute DSP kernel applications, such as DCT or IDCT, using only two processor
instructions. Moreover, the processor can make use of data parallelism present in
an application and execute an instruction in the SIMD mode. Other DSP proces-
sors endorse the possibility to execute several operations, such as addition, multi-
plication and load/store, in long instructions following the VLIW principle.

Code generation is commonly divided into three subproblems; instruction se-
lection, instruction scheduling and register allocation. Each of these subproblems
is hard to solve optimally in general and especially for realistic instances of the
architectures mentioned above, as using all the mentioned features effectively is
very difficult. Traditionally, to keep the problem manageable, each subproblem is
solved in isolation using heuristics which trades optimality for solving time. These
subsolutions are then combined to result in generated machine code. However,
even if the subsolutions are optimal, dividing the problem in such a way is bound
to ignore many optimization possibilities that are available when the problem is
considered as a whole.

In this paper, we address instruction selection and instruction scheduling for
such architectures, while incorporating their custom nature in the process as much
as possible. We combine selection and scheduling in a single constraint program-
ming (CP) model, providing the opportunity to achieve high quality solutions that
are often optimal for many DSP kernels, as indicated by our experimental results.
Moreover, our approach makes it possible to easily define new constraints for new
architectures and define related models for instruction selection and scheduling. It
also makes it possible to combine different constraints and, for example use com-
plex instructions together with their parallel execution, achieving in this way the
SIMD execution principle.

We assume that kernels written in some high-level language, such as C or CAL
[2], are compiled to data-flow graphs (DFGs) [3, 4]. We only consider kernels that
can be statically scheduled and do not have feedback edges. Such a DFG graph
and an instruction set, defined also in DFG format, are input to our instruction
selection and scheduling system. Sub-graph isomorphism is then applied to find
out possible use of instructions and then instruction selection and scheduling is
performed. Instruction selection and scheduling use methods offered by CP to
find partially ordered instructions that implement a given kernel, resulting in the
shortest schedule. Our scheduling is not limited to sequential execution and can
be used both for VLIW-like processors, SIMD executions and parallel execution
on several processors.

In the next section, we introduce constraint programming (CP) as used in this
paper. In section 3 we discuss different approaches to instruction selection and
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scheduling and compare them with our approach. Section 5 presents our formula-
tion for the problem and the solution method. In section 5 we present experimental
data obtained for different DSP kernels and discuss the results and future work in
section 6. Finally, in section 7 we present the conclusions for our work.

Our previous work on this subject has been reported in [5]. Here, we extend
that work by new methods and experimental results that are discussed in detail and
more thorough comparison to related work.

2 Constraint Programming

In this paper we extensively use constraint satisfaction methods implemented in
the constraint programming environment JaCoP [6]. We introduce constraint pro-
gramming and related constraints used in this work briefly in this section.

A constraint satisfaction problem is defined as a 3-tuple S = (V ,D ,C ) where
V = {x1,x2, . . . ,xn} is a set of variables, D = {D1×D2× . . .×Dn} is a set of fi-
nite domains (FD), and C is a set of constraints. Finite domain variables (FDV)
are defined by their domains, i.e. the values that are possible for them. A fi-
nite domain is usually expressed using integers, for example x :: 1..7. A con-
straint c(x1,x2, . . . ,xn)∈C among variables of V is a subset of D1×D2× . . .×Dn
that restricts which combinations of values the variables can simultaneously take.
Equations, inequalities and even programs can define a constraint.

A global constraint on the other hand, combines several simpler constraints
and handle them together. is a conjunction of several simpler constraints. While
semantically equivalent to the conjunction of these simpler constraints, a global
constraint lets the solver exploit the structure of a problem by providing a broader
view to it [7]. In this paper we use intensively several global constraints, such as
Cumulative, Diff2 and SubGraphMatch.

Cumulative constraint [8] was originally introduced to specify the require-
ments on task scheduling on a number of resources. It expresses the fact that at
any time the total use of these resources for the tasks does not exceed a given
limit. It has four parameters: a list of tasks’ starts, a list of tasks’ durations, a list
of amount of resources required by each task, and the upper limit of the amount of
used resources. All parameters can be either domain variables or integers.

The Diff2 [9] constraint is designed to model the placement of rectangles in
two dimensional space in such a way that they do not overlap. It takes as an ar-
gument a list of 2-dimensional rectangles and assures that for each pair of i, j
(i 6= j) of 2-dimensional rectangles, there exist at least one dimension k where
i is after j or j is after i. The 2-dimensional rectangle is defined by a tuple
[O1,O2,L1,L2], where Oi and Li are respectively called the origin and the length
of the 2-dimensional rectangle in i-th dimension. The Diff2 constraint is used in
this paper for defining constraints both for resource binding and scheduling.
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Finally, the graph matching constraint (SubGraphMatch) [10] defines condi-
tions for (sub-)graph isomorphism between target and pattern graphs (the pattern
graph can be defined as a set of separate sub-graphs). It uses a pruning algorithm
developed for applications in reconfigurable computing and instruction selection.

The graph definition for this constraint defines always a vertex of a graph as
a node and its ports. For example, an addition node can have two input ports and
one output port while subtraction will have two input ports of different kinds to
distinguish between minuend and subtrahend.

The graph matching constraint defines a number of rules specifying conditions
for sub-graph isomorphism. Our matching function assigns a target node to a node
of a pattern graph as it is assumed by the classical definition. The matching condi-
tions are as follows. First, the labels of the vertex must be the same and the ports
of target graph can be one-to-one mapped onto ports of the pattern graph. Second,
corresponding edges between mapped nodes must exist. The algorithm devel-
oped implements these conditions as the rules that prune impossible matchings.
Moreover, the filtering algorithm is only applied to recently changed variables that
makes the constraint even more efficient.

A solution to a CSP is an assignment of a value to each variable from its
domain, in such a way that all constraints are satisfied. The specific problem to
be modeled will determine whether we need just one solution, all solutions or an
optimal solution given some cost function defined in terms of the variables.

The constraint solver uses consistency methods designed for each constraint
and systematic search procedures. Consistency methods try to remove inconsis-
tent values from the domains in order to reach a set of pruned domains such that
their combinations are valid solutions. Each time a value is removed from a FD, all
the constraints that contain that variable are revised. Most consistency techniques
are not complete and the solver needs to explore the remaining domains for a solu-
tion using search, which consists of systematically assigning values from variable
domains to the variables. It is implemented as depth-first-search. The consistency
method is called as soon as the domains of the variables for a given constraint are
pruned. If a partial solution violates any of the constraints, backtracking will take
place, reducing the size of the remaining search space.

3 Related Work

Instruction selection and scheduling for a given processor or multi-processor are
complex problems known to be NP-complete. Special attention has been recently
given to special architectures that have complex instructions and non-regular in-
struction sets as well as possible reconfigurability of the processor under run-
time. This makes it difficult to use well known compiler infrastructures, such
as LLVM [11].
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There are methods used for solving these problems optimally. Mixed integer
programming (MIP), constraint programming (CP) or dynamic programming are
common methods for mixed constrained versions of these problems.

Bednarski [12] explores optimal or highly optimized code generation tech-
niques for in-order issue superscalar processors and various VLIW processors,
using dynamic programming and ILP. The dynamic programming method gener-
ates all possible solutions and searches for the optimal while shrinking the search
space via pruning and compression techniques. Bednarski’s work continues with
investigating ILP formulation of the optimal code generation problem, again for
VLIW architectures.

The constraint programming (CP) approach, developed during recent years
for different purposes, is one of the methods used for solving these problems opti-
mally. Beek and Wilken [13] use CP to optimally schedule basic block instructions
on single-issue RISC processors. They address arbitrary latencies for instructions.
This work is particularly relevant to our work since they also use the MediaBench
[14] benchmark applications. An important difference though is that we consider
several RISC processing units running in parallel, while they schedule the basic
blocks only on a single processing unit.

The work in [15] use CP based register allocation and scheduling. They use
LLVM as compiler front-end and assume that instruction selection has already
been done yielding a representation of the input program in SSA (static single
assignment). They perform register allocation by using Diff2 constraints and
rectangles defining define-use times for variables. On top of register allocation,
they present a decomposition-based code generation technique where they locally
schedule the instructions in each basic block and optimize execution cycles based
on an estimated block execution frequency. The approach presented here con-
centrates on instruction selection and scheduling but can be combined with the
methods proposed in [15] and similar methods proposed for operator based archi-
tectures in [16].

Optimal basic block instruction scheduling for multiple-issue processors by
Malik et al. [17] has been an influential work. Using constraint programming, they
schedule basic blocks from the SPEC 2000 integer and floating point benchmarks.
The architectural model is very similar to our VLIW-like model, where several
processing units run different types of basic instructions. Similar to our model,
applications are represented as DAGs. The main difference to our work is the
structure of the instructions. While an instruction is an atomic operation in their
model, we support instructions comprising several atomic operations.

Our previous work used CP for instruction identification, selection and schedul-
ing for reconfigurable processor extensions [10]. It uses sub-graph isomorphism
for instruction identification and selection as well as CP-based scheduling. In the
current work we assume a given instruction set but we extend our previous ap-
proach by addressing new architectures. In particular, we consider very complex
instructions, VLIW processors as well as multicore RISC’s. Previously only RISC
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processors with an accelerator [10] or operator based reconfigurable architectures
[16] were considered.

4 Our Approach

In this section we detail our CSP formulation together with the inputs to the system
and the assumptions enclosing it. Since our model addresses a variety of problems
step by step, rest of the section is divided to explain our approach in a similar fash-
ion. First, we generate all possible instruction matches on the application graph
(section 4.2). Once the matches are generated, we introduce the constraints that
select and schedule a subset of them that cover the application graph completely,
taking architecture particularities into account (sec 4.3). The selected instructions
must be assigned to an available computational unit as well (section 4.4). Finally,
as most consistency techniques are not complete, we define how the constraint
solver plows through the search space (section 4.5).

4.1 Inputs and Assumptions

The input to our system is an application that is compiled to a DFG together with
the DFGs of available instructions. The aims are to select the instructions that
can implement the entire application and find a shortest schedule with the selected
instructions.

We consider three architectures with different granularity for instructions:
Sleipnir, VLIW and RISC.

The sleipnir architecture [1] can run special instructions for computing DSP
kernel applications. One such instruction that comprises 24 operations is depicted
in Fig. 1. In this work we consider Loeffler’s algorithm for IDCT [18] on Sleipnir,
which takes only two instructions to complete IDCT with eight words and eight
constants as input. We also handle several Sleipnir processing units running in
parallel.

For representing VLIW architectures, we use a generic model where an in-
struction comprises a set of operations. Throughout this section, we use the spe-
cific model where an instruction comprises only basic operations i.e. one add or
subtraction; one multiplication and one load or store operation. For RISC archi-
tectures, our model consists of several cores running in parallel, where each core
can run one single operation (add, subtract, multiply, load, store) at a time.

We will use the application and instruction graphs depicted in Fig. 2 as a run-
ning example in the rest of this paper. The figure depicts an application with two
multiplications and four additions. Each operation is represented by a node with
an identification label, comprising the type of the operation and an identity num-
ber (referred to as node id in the following). The instructions are also depicted in
the same format, although without the identification labels. Instruction two and
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mul1(*)

sub1(-) add1(+)

mul3(*) mul5(*)

sub2(-)

mul6(*)

add2(+)

mul7(*) mul8(*)

add3(+) sub4(-)add4(+) sub3(-)

mul9(*)

add5(+) sub5(-)mul11(*)

sub6(-) add7(+)

mul13(*)

sub7(-) add6(+)

mul15(*)

idct8pfwa idct8pfwb

Figure 1: idct8pfw Sleipnir instruction that covers the half of Loeffler’s IDCT
algorithm [18]

three are one-operation instructions while instruction one comprises a multiplica-
tion followed by an addition.
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+_2
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Instruction 1

+

Instruction 2 

*

Instruction 3 

Figure 2: Example with an application graph and several instruction graphs

In this simple example, we assume that there is only one processing unit that
can run all three instructions, but only one at a time. Each instruction is assumed
to take one cycle to execute (duration4t = 1), while in the general case different
instructions can have different execution times.

4.2 Instruction Matching
Each instruction can be present in several sub-graphs of the application graph (i.e.
sub-graph isomorphic to the application graph) as shown in Fig. 3 and 4. We call
each of these sub-graphs a match. The problem is to select the matches that give a
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full cover and shortest schedule. Since each match needs an identity (so that they
can be referred to later on), we number them as illustrated in the Fig. 3 and 4.

1
2

*_4

*_3
+_1

+_2

+_6

+_5

Figure 3: Matches for instruction 1,
shown in dashes.

3

4 *_4

*_3
+_1

+_2

+_6

+_5

6

8

5

7

Figure 4: Matches for instruction 2 and
3, shown in dashes.

To find all possible matches of the instructions on the application graph, we
record all different matches of the instruction graphs on the application graph. A
match is identified if it is sub-graph isomorphic to the application graph. In our
case, a graph h is sub-graph isomorphic to a target graph g if each node and edge
in h matches a node and edge in a sub-graph of g. We introduce this as a set of
constraint satisfaction problems (CSP) and find all matches for each instruction.
For each instruction h, we record its matches in the set matchesh.
Input: Application graph g, set of instruction graphs I

for all h ∈ I do
matchesh = subGraph_CSP(g,h)

end for
In the above, subGraph_CSP(g,h) refers to the method that generates a CSP

for the sub-graph isomorphism problem for application graph g and instruction
graph h, and returns all possible solutions to it. Each node in the instruction graph
gets a finite domain variable (FDV) that is assigned to the id of the node in the
application graph it matches to, i.e. when an isomorphic sub-graph is found in g
for h (see section 2).

4.3 Instruction Selection and Scheduling

After finding all possible matches, we can continue with selecting the matches that
will actually be used and schedule them to get the shortest schedule. Match selec-
tion and scheduling are not independent from each other. Some match selections
may lead to shorter schedules, while shorter schedules may enforce a particular
match selection. Therefore, in a CSP context, solving these two dependent prob-
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Figure 5: Initial domains for the nodeMatch variables for each node is shown in
brackets.

lems simultaneously is likely to result in a better pruning in both match selection
and scheduling domains, hence a smaller search space.

Target platforms with different properties (e.g. number of cores, instructions
available) require a tailored constraint model, while there is a set of constraints
that are generic for instruction selection and scheduling problem, regardless of the
target platform. We first describe the generics, then continue with problem specific
ones. In the following mathematical notations, i denotes the instruction index and
m denotes the match index for the respective instruction, and they quantify over all
instructions and their matches.

4.3.1 Generic Constraints

While selecting instruction matches, no node in the application graph should be
left uncovered. To keep track of which node is covered by which match, we use a
vector of FDVs named nodeMatch, where nodeMatchn refers to the match number
that node with id n from the application graph is covered by. The initial state of
nodeMatch for our running example is depicted in Fig. 5. Note that the domain of
each variable is the same as the domain of match ids. Therefore any solution to the
CSP with the nodeMatch variables assigned to one value, means that the graph is
fully covered.

As our problem definition includes scheduling, we use a FDV for each node
which denotes the start time of that node, i.e. when it is scheduled to run. The
start times of the nodes within a selected instruction match should be equal since
they are to be run as one instruction. In constraint (1) (and the following), matches
denotes a three dimensional vector that keeps the relation between the nodes of the
matches of the instructions, and the nodes of the application graph. As mentioned
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before, an instruction graph can have multiple matches on different subgraphs of
the application graph. With this information in mind, matchesi,m,p points to the id
of the application graph node, that node p of match m of instruction i matches to.
To illustrate this, matches1 = [[4,6], [3,5]] for our example, which corresponds to
the matches of the first instruction (see Fig. 3).

We introduce also the matrix named sel that keeps boolean domain variables
for each instruction match, denoting whether or not they are selected to cover
the application graph (see constraints (5) and (6) for more details). Together with
matches, sel lets us reason about entire matches rather than particular nodes. Using
these two vectors, constraint (1) states that if two nodes can be covered by the same
instruction match and if the respective match is selected, then their start times will
be equal.

∀p,q ∈ nodes |p 6= q; p,q ∈ matchesi,m :
seli,m⇒ startp = startq (1)

Constraint (2) sets the durations of nodes that have output edges to other in-
structions (namely, the output nodes) to4t (the duration of the respective instruc-
tion), forcing the destination of the output edge to wait until this instruction is
finished (together with constraints (3, 4)). Duration of a non-output node is set
to 0 since it actually does not cause any wait when scheduling. Constraints (3, 4)
on the other hand, impose the precedence constraints caused by any edge (p,q)
from node p to node q in the application graph. Nodes that are not in the same
match are handled by constraint (4) while constraint (3) handles the nodes in the
same match. Note that constraint (3) ignores precedence between the nodes in a
selected match.

∀p ∈ nodes | p ∈matchesi,m :
(seli,m∧ p ∈ out putsi,m)⇒ durationp =4t

∧
(seli,m∧ p /∈ out putsi,m)⇒ durationp = 0 (2)

∀(p,q) ∈ edges | p,q ∈ matchesi,m :
¬seli,m⇒ startp+durationp ≤ startq (3)

∀(p,q) ∈ edges | p,q /∈ matchesi,m :
startp+durationp ≤ startq (4)
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To understand constraint (3) better, consider Fig. 6, where instruction1 has a
multiplication with two outgoing edges: one to the subtraction in the same instruc-
tion, another one as an output of the instruction. The only possible matching for

*-

Instruction 1

+

Instruction 2 

*_1

+_2

-_3

Application Graph

Figure 6: Example with an instruction that has an output node that has an outgoing
edge to another node in the instruction.

this example is depicted in Fig. 7, therefore to reach a full cover, these matches
have to be selected (i.e. sel1,1 = sel2,1 = 1). If each instruction has duration 4t,
the shortest schedule on a processing unit that runs one instruction at a time will
be 24 t. By constraint (2), having an outgoing edge outside the instruction, both
duration1 and duration3 will be4t. If the precedence between nodes in a selected
match is not neglected as in constraint (3), node3 will have to wait for node1 to
finish, adding an additional 4t duration to the whole match1. Since node2 is de-
pendent on the output of node3, this extra duration will result in a schedule with
length 34 t instead of 24t. By means of constraint (3), we ignore the dependency
between node1 and node3 and eliminate this problem.

nodeMatch and sel variables are logically bound to each other since
nodeMatchn denotes which match covers node n in the application graph, while
seli,m denotes if the match indexed as i,m is selected or not. So, logically, if
a match k is selected, all the nodes that can be covered by this match should
have their nodeMatch variable set to k (denoted in constraint (5)). Similarly,
if k is not selected, none of the nodes that can be covered by this match can
have k as their nodeMatch variable (denoted in constraint (6)). In mathemat-
ical notation, constraint (5) and constraint (6) describes this logic. Note that
nodeMatch keeps match numbers for practical reasons, therefore we need a flat-
tened intermediate representation of the matches matrix, which is denoted as
∀k | matchk = matchesi,m. Both constraints are implemented using the global
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1
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*_1

+_2

-_3

¬ (node1 precedes node3) ⇒ |schedule| = 2△t

 node1 precedes node3 ⇒ |schedule| = 3△t

Figure 7: Only possible matching for the example in Fig. 6.

Count constraint and reification to reach an effective implementation.

∀k | matchk = matchesi,m :∧
p∈matchk

nodeMatchp = k ⇐⇒ seli,m (5)

∧∧
p∈matchk

nodeMatchp 6= k ⇐⇒ ¬seli,m (6)

A valid schedule does not exceed the resource limit at any time. In our case, the
resource limit is the number of processing units available in the given architecture.
For this purpose CP offers a well-studied global constraint named Cumulative,
that is used commonly for task scheduling problems [8, 19] (see section 2).

Matches in our problem are task candidates, i.e. if they are selected, they
are to be scheduled with respect to previously mentioned constraints, plus the cu-
mulative constraint. The start times of the nodes in the same selected match are
bound together by constraint (1). Thus, scheduling one representative node for
each selected match will also mean scheduling the whole application, given that
the application is covered by the selected matches, (5) and (6). Therefore, we pick
the first node (any node would do) in every matchm as the representative and add
its start time to the list of task starts (mStarts in constraint (7)) for the cumulative
constraint. To consider only the selected matches in scheduling, we multiply seli,m
with the duration of the instructioni (that is4t in this paper) that matchm belongs
to, and save this as the duration for matchm (mDurations in constraint (7)). Non-
selected matches, which will eventually get zero duration, will have no effect on
the schedule. Since every instruction is run on only one processing unit, and pro-
cessing units run one instruction at a time, resource need for each match is 1 (a
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vector of ones in constraint (7)). Finally, resource limit that is not to be exceeded
is number of processing units available (nProcs (7)).

Cumulative(mStarts,mDurations,ones,nProcs) (7)

4.3.2 Architecture/Problem Specific Constraints

Different architectures have different properties. In our problem definition, they
may have different number of processing units running in parallel; and the set of
possible instructions and the interaction between those instructions can be differ-
ent. The number of processing units is simply parameterized. Properties involving
instruction sets on the other hand, pose a harder problem that requires more atten-
tion.

Sleipnir architecture, for example, has two instructions, named idct8p f w and
idct8pbw, that combined together, implement IDCT with 8 inputs. As seen in Fig.
1 and 11, both instructions have two disjoint connected components. Matching
such instructions on big application graphs, e.g. comprising 8 parallel 8-input
IDCTs (see section 5), will result in a combinatorial explosion of matches. This is
caused by disjoint connected components in the same instruction.

An illustrative example is depicted in Fig. 8. The only instruction in the exam-
ple includes two disjoint connected components (both components have only one
node for simplicity). The application on the other hand, is a parallel repetition of
the instruction. We use the labels to count the instances of the instruction where n
represents the total number of instances. For n = 3, the matches for instruction1
would look like in Fig. 9. All the matches from match4 to match9 can be consid-
ered as side effects of the fact that instruction1 has disjoint connected components.
If the instruction included an edge connecting the disjoint components as in Fig.
10, the total number of matches would be 3 instead of 9 (providing that the con-
necting edge is replicated in the application graph too).
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Figure 8: A problem instance with an instruction with disjoint connected graphs
and its parallel instances as the application
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Figure 9: Instruction matches for the example in Fig. 8.
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Figure 10: Ideal instruction for the example problem in Fig. 8
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Figure 11: idct8pbw: Sleipnir instruction that covers the second half of Loeffler’s
IDCT algorithm [18]

If we generalize the problem over an instruction with p disjoint connected
components, and the application as n parallel replications of this instruction, the
number of matches becomes np, instead of n, which happens when the instruction
consists of one connected graph.

To cope with this combinatorial explosion, we divide the disjoint components
in the instruction graphs and represent them as individual instructions. This way,
the total number of matches are reduced from np to np, where p = 2 for the IDCT
instructions in Sleipnir. However, we still have to ensure that the instructions
that we divided into two are actually merged in the schedule, i.e. instruction i is
divided into ia and ib, each ia has to be run at the same time with a corresponding
ib. Another side effect is that, the number of processing units that are modeled has
to be doubled, in order to represent the half of the Sleipnir core that runs ia and
the other half that runs ib. Otherwise these half instructions will be sequentialized,
which breaks the atomicity of instructions.

The second instruction for implementing IDCT named idct8pbw, depicted on
fig. 11, comprises two disjoint connected components that are actually isomor-
phic with each other. Therefore, representing this instruction as two isomorphic
instructions will simply double their matches. Instead, we let one half instruction
to represent both of them. Again, we have to ensure that the matches of this half
instruction are merged into a full instruction correctly.

As a result of dividing the instructions idct8p f w and idct8pbw as men-
tioned above, we get two different instructions that together represent idct8p f w:
idct8p f wa and idct8p f wb; and idct8pbwh that represents half of idct8pbw. As
for the division of the processing core, each Sleipnir core will have two parts: one
that can only run either idct8p f wa or idct8pbwh, another one that can only run
either idct8p f wb or idct8pbwh.
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With all this information, possible match groupings that can run on the
same processing unit simultaneously are: {idct8p f wa, idct8p f wb},{idct8pbwh,
idct8pbwh}

The second grouping above means that two matches of idct8pbwh can run si-
multaneously at the same core, since two halves comprise a complete idct8pbw.
For these groupings, we generate start time and duration lists similar to the lists
for constraint (7), as illustrated in the algorithm below, for the {idct8p f wa,
idct8p f wb} grouping. As in constraint (7) we pick the first node in a match as
its representative. This is why we add startmatchesi,m,0 to the respective mStarts list.
Note that⊕ is used as list concatenation operation and matchesidct8p f wa represents
all the matches for the idct8p f wa instruction.
Input: mStartsab = /0, mDurationsab = /0

if matchesi,m ∈ matchesidct8p f wa ∪matchesidct8p f wb then
mStartsab⇐ mStartsab⊕ startmatchesi,m,0
mDurationsab⇐ mDurationsab⊕ seli,m ∗4t

end if
On the other hand, only one match of idct8p f wa can be run at one core, until

it is finished. Same rule applies to idct8p f wb. Therefore, we generate similar
lists for matchesidct8p f wa and matchesidct8p f wb i.e. mStartsa, mDurationsa and
mStartsb, mDurationsb respectively. After generating these lists, the combination
of the constraints (8), (9), (10) and (11) ensures that the grouped matches can run
simultaneously on the same core by multiplying the resource limit by 2 ((8, 9));
while no more than one match of the same instruction for idct8p f wa or idct8p f wb
can be run on the same core ((10, 11)).

Cumulative(mStartsab,mDurationsab,ones,nProcs∗2) (8)

Cumulative(mStartsh,mDurationsh,ones,nProcs∗2) (9)

Cumulative(mStartsa,mDurationsa,ones,nProcs) (10)

Cumulative(mStartsb,mDurationsb,ones,nProcs) (11)

As mentioned earlier, dividing the original instructions into two parts required
a modeling style that doubles the number of available processing units, in order to
simulate a Sleipnir core’s capability to run the whole original instruction at once.
Thus, two processing units (after doubling) actually represent one core. Based on
this assumption, we change the nProcs in constraint (7) to nProcs ∗ k, where k is
the number of divisions of the instructions (in Sleipnir case k = 2) as shown in
constraint (12).

Cumulative(mStarts,mDurations,ones,nProcs∗ k) (12)
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We do not explicitly define a constraint for assuring that each half instruction
match has a corresponding second half, since the combination of the constraints
(8), (9), (10) and (11) together with the minimization of the schedule length (see
section 4.5) results in a schedule where each match grouping mentioned above
are run simultaneously. Note that this is only valid when the original non-divided
instructions (i.e. idct8p f w and idct8pbw) can cover the application graph. In
other cases additional constraints are defined.

The fact that idct8pbw is divided into two isomorphic graphs creates prob-
lems that are not addressed by the constraints mentioned above. As they are
parts of originally different instructions, idct8pbwh and any one half of idct8p f w
(idct8p f wa or idct8p f wb) can not be merged together i.e. run on the same core
simultaneously. A limiting constraint such as constraint (13) can not be used in
this case, since it would render constraint (9) useless. This is based on the fact that
mStartsah and mDurationsah would include mStartsh and mDurationsh already,
and limit them with nProcs instead of nProcs∗2, which eventually prohibits them
to run on the same core simultaneously. To solve this, we need to involve resource
assignment constraints instead of using only scheduling constraints that disregard
specific resource assignment, such as Cumulative. We describe this further in
section 4.4.

Cumulative(mStartsah,mDurationsah,ones,nProcs) (13)

So far, we only considered the Sleipnir architecture for architecture/problem
specific constraints. A similar modeling style is used to solve the problem for
VLIW. Although this time, we focus on the groups of matches that can not be run
simultaneously on the same core i.e. only one of the matches in the group can
be run on a core:{add, sub},{mul}, {ld, str}. Again, we generate respective lists
for start times and durations as in the previous algorithm and limit the maximum
simultaneous execution to nProcs. So, for each group in the list above, we have
one corresponding constraint (10) with respective lists for start times and durations
generated with the given algorithm. On the other hand we change the constraint
(7) to constraint (12) with k = 3 since an instruction is divided into three in our
VLIW model (see section 4.1).

4.4 Resource Assignment
In the beginning of the previous section, we tied the start times of the nodes that
are covered by the same selected match using constraint (1). Besides being logi-
cal, this let us use one representative node for each match and schedule matches
instead of separate nodes. To use the same approach, we define the basic resource
constraints in constraint (14), where each node in a selected match is assigned to
the same resource.
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∀p,q ∈ nodes |p 6= q; p,q ∈ matchesi,m :
seli,m⇒ resourcep = resourceq (14)

Series of Cumulative constraints guarantee only the existence of a valid
schedule given the number of processing units available, but without giving any
information regarding the resource assignment. The problem arises from the fact
that the scheduling constraints, e.g. Cumulative constraints, do not constrain the
resource assignment variables for each match, which we denote as mResources.
These variables represent the resource that the selected match is assigned to.

To eliminate any invalid resource bindings, we use the Diff2 global constraint
which is described in section 2 as seen in constraint (15). Note that mDurationsm
becomes zero when the match is not selected, as discussed when describing con-
straint (7).

Diff2(mStarts,mResources,mDurations,ones) (15)

Individual matches are assigned to the processing unit that is specific for the
instruction of the respective match, whenever possible. For example, considering
VLIW, we model each core as divided into three processing units (pu), where pu1
runs add/sub matches, pu2 runs mul matches and finally pu3 runs ld/str matches.
Resource variable for an add match on the other hand can get a value from {1,k+
1,2k+ 1, ...,k(P− 1)+ 1} where k is the number of divisions of a core and P is
the total number of cores available. The constraint embodying this idea is given
below. Similar constraints for the other two instructions are used for the VLIW
architecture.

m ∈ matchesadd/sub :

resourcem mod k = 1 (16)

In case of Sleipnir, matches of idct8p f wa are allocated to the first halves
of the cores (resourcea ∈ {1,3,5, ...,2(P− 1)+ 1}) and idct8p f wb (resourceb ∈
{2,4, ...,2(P)}) matches to the second. However a valid schedule with a valid
resource assignment is still not guaranteed because the halves of idct8pbw are iso-
morphic, as discussed in the previous section. It is not possible to allocate these
halves to a particular half of the core either, since they can actually be run on
both. Instead, for each match of idct8p f wa and idct8p f wb, we prohibit having a
match of idct8pbwh that is selected and starts at the time at the same core (see con-
straint constraint (17)). Note that since matchesidct8p f wa are assigned to the first
half of the core and matchesidct8p f wb are assigned to the second half; we prohibit
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resourcea = resourceh−1 for matchesidct8p f wa and resourceb = resourceh +1 for
matchesidct8p f wb . Assignment to the same processing unit at the same time is al-
ready prohibited by constraint (15).

@h ∈ matchesh : a ∈ matchesidct8p f wa∧
selh = sela∧ starth = starta∧ resourceh−1 = resourcea (17)

4.5 Search Space Heuristics

Our problem definition includes finding the shortest schedule (or one such sched-
ule in case several shortest schedules exist). The completion of a node is defined
as startn +durationn and minimizing the maximum of this completion for all sink
nodes (i.e. nodes with no successors) gives the shortest schedule.

As most consistency techniques are not complete, the constraint solver needs
to search for possible solutions, commonly by picking a variable that has not been
assigned to a value yet, and setting it to a value in its domain. As long as the
constraints are correct, any variable selection method or heuristic leads to a valid
solution, eventually. However, depending on the problem size, the search space
may grow exponentially and lead to very long search times. In order to decrease
the search time, we need to devise a search strategy that defines the variable and
value selection heuristics.

Even though the constraint model is unified, we divide the search into three
sequential phases (see Fig. 12): Instruction selection, scheduling and resource
assignment The general idea behind this division is to start with the most influen-
tial decisions and end with the most trivial ones. This way, each time the solver
needs to make a decision (i.e. pick a variable and a valid value for it) for trig-
gering constraints to prune values in variable domains, it will pick the decisions
that propagate more information. Each phase has a set of variables to pick from,
represented as a vector (e.g. nodeMatchmatches in the instruction selection phase).
Note that these vectors include one representative variable for each match. Since
each node is already tied to the other nodes in the same selected match through
constraints (1) and (14), one variable per match is enough.

The first two phases find the shortest schedule without resource assignment
(i.e. an ordering of selected matches), using a branch-and-bound search with back-
tracking. If such a schedule exists and is found, according to the constraints de-
fined in section 5, a valid resource assignment has to exist. The third phase of the
search finds one such assignment and ends the search procedure.

The decision of the which match to cover a node directly affects its start time
(start variable) and the resources it can be run on (resource variable). Therefore,
the first phase searches for a valid instruction selection and involves the vector
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Instruction Selection: 
nodeMatchmatches

Scheduling: startmatches

Resource assignment: 
resourcematches

as
sig

nm
en

t

fa
ilu

re

as
sig

nm
en

t

Complete 
schedule & assignment

B
ra

nc
h 

&
 b

ou
nd

D
ep

th
-fi

rs
t

Figure 12: Sequential search

nodeMatchmatches, that comprises one representative nodeMatch variable for each
match.

When a valid assignment for the nodeMatchmatches vector is found, the search
moves on to the second phase where the start times for the matches is the decision
point. A failure in this level means a valid schedule for the selection does not exist,
and the solver backtracks to the instruction selection level. Whenever we need to
pick the next variable from startmatches and assign a value to it, we pick the one
with the smallest maximum value and set it to the minimum value in its domain.
The idea behind this combined heuristic is to decide on the start times in the order
they are to be scheduled and assign the minimum possible value first to find the
shortest schedule faster.

As mentioned above, when the first two phases are finished, the only thing left
is a valid resource assignment, which is guaranteed to exist by respective cumu-
lative and resource assignment constraints. Therefore this is left as the last phase.
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Again, we use a vector that includes one resource assignment variable per match,
shown in Fig. 12 as resourcematches.

5 Experiments

In our experiments, we considered several application graphs on different architec-
tures. Our main interest in the Sleipnir architecture [1] is the special instructions
devised for IDCT and DCT. Therefore, we used an application graph for an im-
plementation of Loeffler’s IDCT [18]. To experiment with different problem sizes
and number of Sleipnir cores available, we consider IDCTs sizing up to 8x8, i.e.
eight parallel copies of single IDCT, and up to four Sleipnir cores (only for 8x8
IDCT).

For VLIW and RISC architectures, we conducted a series of experiments with
some of the benchmark graphs from ExpressDFG [14] which provides dataflow
graphs for benchmark applications from MediaBench [20] (among others). Single
IDCT used for Sleipnir experiments is also included. To evaluate the scalability of
our method, we have also scheduled these applications on several cores for both
architectures.

Table 1 shows the results for experiments on VLIW architecture. The name
of the benchmark and the characteristics of the application graph is summarized
in the first column, including number of nodes (|V|), number of edges (|E|) and
length of the critical path. Together with these, we show the number of FDV’s and
constraints generated for the CSP model. We experiment also with the available
number of cores. Not all of the experiments for VLIW resulted in a solution that
is proven optimal. This means that a solution is found, but the solver timed-out
before finishing the search for a better solution. The time-out is set at 5 minutes.

For the cases that reached the time-out, we recorded the last solution, and ran
the solver again with this solution as the lower bound to get the "runtime" (see
the column "runtime" for the rows with "no" for the "proved optimal" column).
Otherwise, "runtime" represents the runtime of the solver.

We also include a lower bound estimation for problem instances that are not
proved optimal, in order to assess how close we are to the optimal solution. The
lower bounds are estimated in the following fashion. First we calculate the theo-
retical lower bound i.e. the maximum of critical path length of the graph and the
number of clock cycles it would take to run the application if the dependencies be-
tween operations were ignored. Once we have this theoretical lower bound we try
to improve it through experimentation. We run our solver with setting the sched-
ule length to the lower bound with a timeout of 15 minutes. If the solver figures
out a contradiction within the time limit, it means that there is no solution with
this schedule length, thus we increase the lower bound with one. This operation is
repeated until the solver returns a solution or times out. A solution here means the
optimal solution while a time out means that the solver could not find a solution or
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Benchmark # cores schedule proved lower runtime
{|V|, |E|, Cr. Path} length optimal bound (ms)
{# FDV’s, # const}
IDCT 1 54 no 53 2141
{96, 160, 4} 2 27 yes - 1902
{495, 527} 4 17 no 15 1059
MESA Matrix Mul. 1 45 yes - 2153
{109, 116, 9} 2 23 yes - 1872
{448, 455} 4 12 yes - 1242
Elliptic Wave Filter 1 27 yes - 540
{34, 47, 14} 2 16 yes - 416
{148, 161} 4 14 yes - 327
Cosine1 1 31 no 28 636
{66, 76, 8} 2 17 no 16 514
{279, 289} 4 10 yes - 34153
MESA Smooth Tri. 1 86 no 81 17102
{197, 196, 11} 2 44 no 41 8338
{804, 803} 4 23 no 22 5120

Table 1: Benchmark applications on VLIW

a contradiction in given time. The schedule length at the final iteration is recorded
as the lower bound.

According to this estimation, in the cases where the time-out is reached, the
solutions are on average 6 % off the lower bound, where in the worst case the rate
is 13 % (i.e. IDCT with 4 cores).

Table 2 shows the results for RISC architecture. For the Sleipnir architecture
with IDCT we present the results of the experiments in Table 3, with graphs of
different sizes and with different numbers of available cores (only for 8x8 IDCT).
For both tables all the results were proven optimal.

To see how our model performs with structurally different graphs, we picked
benchmarks with varying number of nodes, length of critical paths, and other char-
acteristics such as number of connected components. These variances also help
identify the characteristics that hinder the solver performance, as in VLIW case.
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Benchmark # cores schedule runtime
{|V|, |E|, Cr. Path} length (ms)
{# FDV’s, # const}
IDCT 1 96 833
{96, 160, 4} 4 24 1695
{701, 637} 16 14 856
MESA Matrix Mul. 1 109 782
{109, 116, 9} 4 28 917
{659, 557} 16 9 1009
Elliptic Wave Filter 1 34 392
{34, 47, 14} 4 14 333
{209, 188} 16 14 315
Cosine1 1 66 639
{66, 76, 8} 4 17 628
{401, 345} 16 8 656
MESA Smooth Tri. 1 197 1903
{197, 196, 11} 4 50 1859
{1187, 989} 16 14 2207

Table 2: Benchmark applications on RISC

IDCT size # cores schedule runtime # FDV’s # const
{|V|, |E|, Cr. P} length (ms)
1x8 {96, 160, 4} 1 4 484 681 682
2x8 {192, 320 4} 1 8 909 1413 1478
3x8 {288, 480, 4} 1 12 941 2209 2402
4x8 {384, 640, 4} 1 16 1038 3069 3354
8x8 {768, 1280, 4} 1 32 1691 7149 8942

2 16 1976 7149 8942
4 8 1845 7149 8942
8 4 1742 7149 8942

Table 3: Sleipnir experiments with IDCT

Benchmark # cores schedule runtime
{|V|, |E|, Cr. Path} length (ms)
{# FDV’s, # const}
Elliptic Wave Filter 1 23 631
{34, 47, 14} 2 13 513
{149, 173} 4 12 425

Table 4: Experiments on VLIW, extended with a custom instruction
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Our model is intended to handle VLIW-like architectures, where part of the
instruction is a complex instruction itself. To demonstrate such a case, we included
the instruction depicted in Fig. 13 in the VLIW. We let this complex instruction
to be run in the load/store slot of the VLIW and assume that it takes one clock
cycle to execute. We experimented only on the elliptic wave filter benchmark with
various number of available cores. The results are presented in Table 4. All the
results in this table are proved optimal. Cases where the schedule length is shorter
than the critical path is a side effect of the fact that the complex instruction is part
of the critical path.

+

+

+

+

*

Figure 13: Complex instruction to extend the VLIW model

6 Discussion and Future Work

Previous section showed that our model solves the RISC and Sleipnir problems
optimally while VLIW architecture poses a bigger problem. Only almost half of
the problem instances are solved optimally. While optimality generally is not a
requirement in mapping DSP applications, it identifies some problem instances
harder than others in our case. The applications named "Cosine1" and "MESA
Smooth Triangle" resulted in solutions that are not proven optimal. The main rea-
son for this is the fact that both application graphs consist of disjoint connected
components. Since there is no precedence required between these components,
any ordering of them or their sub-components results in a valid unique schedule
with the same schedule length. This means that while searching for the shortest
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schedule, the solver has to go through all re-orderings of these mutually indepen-
dent components, many times.

IDCT graph as a whole is a connected component, but parts of it are still mutu-
ally independent of each other (see Fig. 1 and 11). Therefore, the solver faces the
same problem described above for "Cosine1" and "MESA Smooth Triangle". On
the other hand, the solver’s ability to prove optimality for 2 cores but not 4 cores
is peculiar and subject to further investigation.

Heffernan and Wilken [21] proposed a method for alleviating this problem of
mutually independent components. In particular they introduce latency-zero edges
between nodes that are mutually independent. Such edges are added only when
they do not change the optimality. This way, the re-ordering of the nodes con-
nected with the new edge is disabled. This technique is not directly applicable
to our method since our graph representation does not include latency on edges.
Furthermore, we schedule instruction matches and an instruction can consist of
several nodes. This causes problems in finding suitable pairs of nodes for con-
necting with a latency-zero edge. We plan to address these issues and adapt this
technique to our method.

Searching for a solution in an NP-hard problem space requires sophisticated
search methods. Our search strategy uses standard heuristics and techniques pro-
vided by the constraint solver. These techniques perform well in general cases and
can be customized to some extent to fit the problem better. Even so, they are too
generic for the VLIW case as our results hint. Therefore, we intend to devise a cus-
tom search method which incorporates (among others) analysis of the application
graph such as critical path and slack analysis.

Our current work focused on instruction selection and scheduling, disregarding
memory and register allocation constraints. Together with the improvements men-
tioned above, this is the main problem we plan to tackle in the near future. This
will let us generate code and possibly integrate our method in a larger system.

7 Conclusions

We presented a constraint based approach for instruction selection and schedul-
ing problem. Our results show that it is a technique worth investigating further.
We solve most problem instances optimally, together with some exceptional cases
where we still find a valid solution within a short period of time. The flexibility
of constraint programming enables plugging architecture or problem specific con-
straints in and out of the model very easily. This makes it possible to use the same
core model for different architectures.

We experimented on three architectures that have different capabilities and in-
struction structure. As the simplest case, we used a RISC architecture with varying
number of cores. We also worked on a custom architecture, namely Sleipnir, where
instructions are tailored for DSP applications and can comprise more than 20 ba-
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sic operations i.e. addition, subtraction, multiplication. Finally, we experimented
with a VLIW architecture where each partition of the VLIW can be a complex
instruction itself.

Identifying characteristics for application and instruction graphs that hinder
proving optimality of a solution is an open question we plan to investigate fur-
ther. Accompanied with memory and register allocation constraints, our model
can generate performance efficient code for DSP kernels on custom architectures.
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Abstract
High performance requirements increased the popularity of unconventional archi-
tectures. While providing better performance, such architectures are generally
harder to program and generate code for. In this paper, we present our approach
to ease programmability and code generation for such architectures. We present a
domain specific language (DSL) for the programming part, and a constraint pro-
gramming approach to scheduling with memory allocation. Our experiments on
implementing a kernel extracted from a DSP application on an example reconfig-
urable custom architecture shows that it is possible to achieve performance close
to hand-written machine code that is scheduled without memory allocation.

1 Introduction
Developments in computer architecture and implementation technology (FPGA,
reconfigurable processors, etc.) leads to the development of custom architectures.
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These architectures are often designed to fulfill high performance requirements
for a class of applications. However, this performance comes with a trade-off
in programmability. Traditional compilers are not built to exploit the irregular
structure and specific features in such architectures, and to adapt to the frequent
changes in them. Therefore, using standard techniques and tools to compile from
a high level language like C is not a compelling option.

A popular approach is to write machine code by hand. However, there are sev-
eral problems with this approach. First of all, coding becomes extremely hard. The
programmer has to select the instructions to implement the program. For architec-
tures with VLIW and SIMD-like features, this means that the programmer needs
to bundle small operations into instructions. To utilize the processor efficiently
and increase throughput, the programmer also needs to come up with a sched-
ule that parallelizes the code as much as possible, while respecting the resource
and data storage limits. It can take many man-hours to write the machine code
that corresponds to few lines in a high-level language. Secondly, the programmer
needs to know the intricate details and complexities of the architecture, including
but not limited to processor structure, memory layout, machine instructions, etc.
Most of the time this level of information is limited to the architect only. And
even for the architect, this overwhelming amount of information to be considered
in programming and scheduling results in a tedious and error-prone process.

Our goal is to increase the programmability of such custom architectures with-
out losing performance compared to the hand-written code (by the architect) by au-
tomating the program development process. As our target platform for this study,
we selected a highly reconfigurable coarse grained architecture named EIT [1],
which is built specifically for implementing MIMO algorithms efficiently. The ar-
chitecture includes a pipelined vector processor, an accelerator for specific scalar
operations and a specialized memory that enables access patterns matching the
structure of the vector processor. To achieve our goal, we employ several tech-
niques, as follows. We propose a domain specific language (DSL) that encap-
sulates the SIMD-like nature of the architecture and frees the programmer from
instruction scheduling and memory allocation for data. The program written in
this DSL is then compiled to an intermediate representation (IR) which is input
to our scheduling procedure. Scheduling is combined with the memory allocation
in a single constraint programming (CP) model, since these stages are intertwined
with one another. Finally, the output is a schedule with memory allocation that
contains all information needed by a code generator turning this schedule into ma-
chine code.

Generally in signal processing and specifically in MIMO applications, a large
portion of the computational load comes from kernel programs that, are run many
times for each piece of data [1]. This means, shortening the schedule for one kernel
can drastically increase the overall performance. Therefore, aggressive optimiza-
tion techniques targeting these kernels are beneficial even if they result in long
compilation times. In this study we consider such kernels that can be represented
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as statically scheduled dataflow graphs without feedback edges.
The rest of this section introduces the architecture and the constraint program-

ming technique briefly. It is followed by discussion on related work. In section
3, we describe the programming interface we implemented (DSL and its output,
the IR) and the constraint model for scheduling and memory allocation. Section
4 presents the experiments and discusses the results followed by the conclusions
and future work.

1.1 The EIT architecture

As previously mentioned, the architecture we target, as an example to reconfig-
urable custom architectures, includes a pipelined vector processor, an accelerator
for specific scalar operations and a specialized memory that enables access pat-
terns matching the structure of the vector processor. The implementation is based
on a reconfigurable processor array framework presented in [2]. Figure 1 shows
an overview of the micro-architecture of the processor. The processor consists
of 6 processing (PE1−6) and 2 memory (ME1−2) elements interconnected via
high-bandwidth low-latency links. According to the type of underlying operations,
resource elements are partitioned in two. The vector block performs computation-
ally intensive vector operations, while the accelerator part performs special op-
erations such as division/square-root and CORDIC (COordinate Rotation DIgital
Computer). Operation modes of these elements are specified in embedded config-
uration memories, which are re-loadable in every clock cycle. To ease run-time
control of the whole processor, a master node (PE1) is responsible for tracking the
overall processing flow. It also controls configuration memories based on instruc-
tions stored in ME1.

The vector block has three processing (PE2−4) and one memory (ME2) ele-
ment, functioning as a multi-stage computation pipeline and a register bank, re-
spectively. PE3 performs all vector operations. To concurrently compute multiple
data streams, it is constructed from four homogeneous parallel processing lanes,
each having four complex-valued multiply-accumulate (CMAC) units. This makes
it possible to perform simultaneously four vector operations, that can have up to
three operands, with vectors of four elements. To assist these vector computations,
PE2 and PE4 pre- and post-process data to perform for example matrix Hermitian
and result sorting. By combining these three processing elements, several con-
secutive data manipulations can be accomplished in one single instruction without
storing and loading intermediate results. From the software perspective, the pro-
cessing elements PE2−4 form a seven stage pipeline that does load (one stage),
pre-processing (one stage), vector processing (two stages), post-processing (two
stages) and write-back operations (one stage).

This execution scheme is similar to that of VLIW processors, but has additional
flexibility for loading configurations into individual processing elements without
affecting others, hence resulting in reduced control overhead.
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Figure 1: Micro-architecture of the vector processor, consisting of 6 PEs and 2
MEs. Solid and dashed lines depict data and control bus, respectively.

The memory is organized in 16 banks to enable parallel access, needed for the
vector processor. Banks are further grouped into pages to regulate the access to
different lines in the banks. Each access is configured through descriptor registers
assigned to each page. Two 4x4 matrices can be read and one 4x4 matrix can be
written to the memory, simultaneously. Further details on the memory implemen-
tation can be found in [1]. We detail our abstraction of this implementation in
Section 3.4.

1.2 Constraint Programming

In this paper we extensively use constraint satisfaction methods implemented in
the constraint programming environment JaCoP [3]. In this section, we briefly
introduce constraint programming and related constraints used in this work.

A constraint satisfaction problem is defined as a 3-tuple S = (V ,D ,C ) where
V = {x1,x2, . . . ,xn} is a set of variables, D = {D1,D2, . . . ,Dn} is a set of fi-
nite domains (FD), and C is a set of constraints. Finite domain variables (FDV)
are defined by their domains, i.e. the values that are possible for them. A fi-
nite domain is usually expressed using integers, for example x :: 1..7. A con-
straint c(x1,x2, . . . ,xn)∈C among variables of V is a subset of D1×D2× . . .×Dn
that restricts which combinations of values the variables can simultaneously take.
Equations, inequalities and even programs can define a constraint. Each constraint
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is paired with a consistency technique to eliminate the infeasible values. These
techniques can be complete (removing all infeasible values at once) or incomplete
(removing a subset of infeasible values) depending on the choice of algorithms
implementing them.

A global constraint on the other hand, combines several simpler constraints
and handles them together. While semantically equivalent to the conjunction of
these simpler constraints, a global constraint lets the solver exploit the structure of
a problem by providing a broader view to it [4]. In this paper we use intensively
two global constraints, namely Cumulative, Diff2.

Cumulative constraint [5] was originally introduced to specify the require-
ments on task scheduling on a number of resources. It expresses the fact that at
any time the total use of these resources for the tasks does not exceed a given
limit. It has four parameters: a list of tasks’ starts, a list of tasks’ durations, a list
of amount of resources required by each task, and the upper limit of the amount of
used resources. All parameters can be either domain variables or integers.

The Diff2 [6] constraint is designed to model the placement of rectangles in
two dimensional space in such a way that they do not overlap. It takes as an argu-
ment a list of rectangles and assures that for each pair of i, j (i 6= j) of rectangles,
there exist at least one dimension k where i is after j or j is after i. A rectangle
is defined by a tuple [O1,O2,L1,L2], where Oi and Li are called the origin and the
length of the rectangle in i-th dimension respectively. The Diff2 constraint is used
in this paper for defining constraints for resource binding, scheduling and lifetime
binding for memory spaces (see Section 3.4).

2 Related Work

There are many aspects to code generation for custom architectures that relate
to our work. Some of them are instruction selection, instruction scheduling and
resource and register allocation. There is plenty of attention towards each of these
topics, either in isolation or in combination, as in this work. Here we try to identify
and report the most related ones.

Instruction selection and scheduling for a given processor or multi-processor
are complex problems known to be NP-complete. Special attention has been
recently given to custom architectures that have complex instructions and non-
regular instruction sets as well as possible reconfigurability of the processor under
run-time. This makes it difficult to use well known compiler infrastructures, such
as LLVM [7]. An extensive survey about instruction selection by Blindell [8] is an
invaluable text for further reading on the subject.

There are methods used for solving these problems optimally. Mixed integer
programming (MIP), constraint programming (CP) or dynamic programming are
common methods for mixed constrained versions of these problems.
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Bednarski [9] explores optimal or highly optimized code generation techniques
for in-order issue superscalar processors and various VLIW processors, using dy-
namic programming and integer linear programming (ILP). The dynamic program-
ming method generates all possible solutions and searches for the optimal while
shrinking the search space via pruning and compression techniques. Bednarski’s
work continues with investigating ILP formulation of the optimal code generation
problem, again for VLIW architectures.

The work in [10] presents Unison, a code generator that addresses integrated
global register allocation and instruction scheduling for architectures with VLIW
capabilities, implemented with constraint programming. Input programs are rep-
resented in SSA (static single assignment) form. Merging instruction scheduling
with register allocation in one model, Unison outperforms LLVM in most of the
experiments presented and generates optimal code for a significant portion. Our
approaches differ mainly in target architecture type (presence of vector processing
capabilities) and the fact that our focus is on data memory allocation and access,
while theirs is on register allocation.

Optimal basic block instruction scheduling for multiple-issue processors by
Malik et al. [11] is another work using constraint programming. They schedule
basic blocks from the SPEC 2000 integer and floating point benchmarks. The ar-
chitectural model is VLIW-like, where several processing units run different types
of basic instructions. Similar to our model, applications are represented as DAGs.
Their target architecture does not have vector processing capabilities.

Another optimal method for instruction scheduling and register allocation is
presented in [12], by Eriksson et al. They focus on clustered VLIW architectures
and present an ILP method, combining instruction selection and scheduling with
register allocation. For scheduling loops they employ modulo scheduling [13],
which is a well established software pipelining technique that we use in this work
as well, which is implemented in CP paradigm.

A heuristic approach for resource aware mapping on coarse grained reconfig-
urable arrays (CGRA) is presented in [14]. As in previously mentioned works,
they also perform scheduling and register allocation in one single step. In schedul-
ing, they employ modulo scheduling with backtracking. Reconfiguration costs are
not mentioned in this work.

Our previous work [15] uses CP for instruction selection and scheduling for
reconfigurable processor extensions that run very complex instructions and other
architecture models such as VLIW processors as well as multicore RISCs. In-
struction selection for complex instructions employs a custom global constraint
for sub-graph isomorphism. In this work we focus less on instruction selection
and more on scheduling with memory allocation.
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3 Our approach

The flow of the proposed programming support is depicted in Figure 2. The appli-
cation programmer is provided with a domain specific language written in Scala.
When the application written in the DSL is run, an intermediate representation of
the application is generated. This run can be used for debugging as well. The IR
is the main input for the constraint programming model that generates a valid and
efficient schedule and a corresponding memory allocation.

This section explains describes the domain specific language (Section 3.1) to-
gether with example code and intermediate representation. It continues with de-
tails of the constraint model for scheduling (Section 3.3) and memory allocation
(Section 3.4).

3.1 Domain Specific Language

To ease programming, we devised a DSL that captures the SIMD-like nature of the
architecture while leaving instruction scheduling and memory related details for
the later stages of code generation. This way, the programmer is still able to write
architecture-specific code without dealing with processor internal details, such as
scheduling instructions in the pipeline without conflicts or where data is stored
to and loaded from. The DSL provides architecture specific data types (matrix,
vector, scalar) and handles necessary conversions between them both implicitly
and explicitly.

The DSL is written as a library in Scala, and therefore the programmer is
able to use any debugging tool available for Scala. This debugging is about the
functional correctness of the code written in the DSL and not the machine code
generated after scheduling. We have selected Scala since it is used quite commonly
in implementation of embedded DSLs. It offers programming constructs such as
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pattern matching with case classes, traits, and combines functional programming
with object-oriented programming (object-functional)[16].

Because of the reconfigurable nature of the architecture, the number of possi-
ble operations that can be run on the vector core is considerably large. To limit the
operation set that is included in the DSL in our current implementation, we took
a subset of the possible operations that are used in the MIMO applications and
implemented them. Note that the modularity provided by Scala in the DSL imple-
mentation renders extending the operation set trivial, thus changing the operation
set implemented by the DSL is not considered a problem.

Each operation in the DSL corresponds to an operation implemented in the
architecture. This way, the programmer is still able to influence the details, which
is desirable when programming such specialized architectures. Note that, this also
means that the operations selected by the programmer during coding will be more
or less the ones that are used in the machine code, even though these operations can
be merged with others to build large instructions in later stages of code generation.

A simple matrix multiplication written in the DSL is given in listing 1. In this
example we multiply a 4x4 matrix with its transpose. A matrix comprises four
vectors of four scalars each. Instead of an explicit transpose operation, we access
each jth vector in A as a column vector and get the dot product of it with the ith
vector. This is done on line 16 with the operation v_dotP that takes two vectors
and returns their dot product as a scalar.

The intermediate representation (IR) is generated from the code written in the
DSL, depicted in Figure 3.

3.2 Intermediate Representation

The IR is a dataflow graph represented as a directed acyclic graph (DAG) G : (V,E)
where V denotes the vertices (nodes) and E denotes the edges which represent the
data dependency between the nodes. Nodes can be either operation nodes or data
nodes. The graph is also bipartite. Every data node that is not an input of the
application, is preceded by one operation node i.e. the operation that produces it.
Similarly, every operation node is succeeded by a data node i.e. the data that is pro-
duced by it. For each node i, cat(i) denotes the category it belongs to, which can be
one of the following: vector_op, matrix_op, scalar_op, index, merge, vector_data,
scalar_data. Additionally op(i) annotates the operation for each operation node.

This dataflow graph is generated in XML format from the DSL code, which is
later on input to the code generation tool chain. A visualization of the graph for
the code in listing 1 is shown in figure 3. For clarity, the data nodes are drawn as
rectangles while operations are ovals.
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Listing 1: Matrix multiplication in the DSL

1 //Hard coded input vectors
2 val v1 = EITVector(1,2,3,4)
3 val v2 = EITVector(2,3,4,5)
4 val v3 = EITVector(3,4,5,6)
5 val v4 = EITVector(4,5,6,7)
6
7 val A = EITMatrix(v1,v2,v3,v4)
8
9 //Output buffer

10 val resultVectors = ListBuffer[EITVector]()
11
12 for(i<-0 until 4){
13 val scalars: Array[EITScalar] = new Array(4)
14 for(j<-0 until 4) {
15 //Vector dot product
16 scalars(j) = A(i) v_dotP A(j)
17 }
18 resultVectors.append(EITVector(scalars))
19 }
20 val res = EITMatrix(resultVectors.toList:_*)

3.2.1 Data nodes

There are two types of data nodes shown in Figure 3, namely vector and scalar
nodes. These are actually all the data node types present in the IR. The matrix
data type from the DSL is not included. Instead, data that is defined as a matrix in
the DSL is expanded into four vector data nodes in the IR. The reason behind this
decision is to keep the vectors as decoupled as possible to let the code generator
decide on how to merge them, freely (see section 3.3). This can enable opportu-
nities to improve the schedule. It also leads to an easier modeling for the memory
related constraint regarding the vector data (see section 3.4).

3.2.2 Operation nodes

The DSL implements a set of vector operations, e.g. v_dotP in listing 1, and each
one of them corresponds to a single operation node in the IR, with the operation
annotated as op(i). These include the pre- and post-processing operations in the
vector pipeline, such as masking and sorting. Operations defined on matrices re-
sult in a matrix operation node (see Figure 5). In some of the cases it is possible
to represent a matrix operation as four vector operations, each resulting in a scalar
output. Fig. 4 depicts such a vector implementation of the matrix operation in
Figure 5. However, the scalar outputs should then be merged to form the vector re-
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vector_1

v_squsum_7v_squsum_5 v_squsum_6 v_squsum_8

scalar_9
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scalar_10scalar_9 scalar_11

vector_13

vector_2 vector_3 vector_4

Figure 4: Vector implementation of A.m_squsum in Figure 5

sult, which is the proper output of the matrix operation. Using the matrix versions
of such operations removes these merge nodes and decreases the total number of
nodes generated.

Apart from the nodes mentioned above, there are also nodes for scalar opera-
tions, such as the square root operation that runs in an accelerator separate from
the vector core. Merging (as can be seen in figure 3) and indexing vectors are also
included as nodes in the IR.

In this phase, scheduling is responsible for the following:

• assigning a start time for each node

• finding a configuration for the vector pipeline on each cycle

• minimizing the schedule length

While realizing these goals, there is a set of constraints that has to be respected.
These can be categorized as following:

• precedence constraints

• resource constraints

In the rest of this section we explain each goal with its respective constraints.
We assign three finite domain variables (FDV) for each node: s, l,d. si will

denote the start time variable for node i while li denotes its latency and di its du-
ration. Latency represents the time that passes from the start time of the operation
until its output is ready to use. Each operation occupies the resource it is run on for
some time, which is denoted by duration. For data nodes, both of these variables
are set to zero.
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v a l v5 = A. m_squsum

⇓
vector_1

m_squsum_6

vector_5

vector_2 vector_3 vector_4

Figure 5: A matrix operation in the DSL an its IR

3.2.3 Precedence constraints

Precedence between two nodes is represented in the IR as an edge between them.
An edge from node i to node j means that i has to be finished before j can start.
Since the dependency here is a data dependency, it is the latency that has to be
taken into account and not duration. This relation is embodied in constraint (1).

∀(i, j) ∈ E : si + li ≤ s j (1)

The vector pipeline consists of seven stages, including pre-, core- and post-
processing, that amounts up to a latency of 7 clock cycles.

In order to decrease complexity, we model the pipeline as a whole, instead
of modeling its stages one by one. This results in a discrepancy between the IR
and the constraint model, since operations that would be run in the same pipeline
(which follow the pre-, core-, and post-processing pattern) are represented with
one node each. We remove this discrepancy by merging vector operations that fol-
low the pre-, core-, and post-processing pattern into one node, whenever possible.
This is carried out on the IR before the scheduling starts. Two such examples are
depicted in Figure 6 and Figure 7. This decreases the complexity in two ways.
First, the number of nodes is decreased, which almost always results in an easier
problem. Second, and more importantly, after this merging, we do not need to
model each pipeline stage separately. We can now assume that each vector opera-
tion has a latency of 7 clock cycles, i.e. the latency of the pipeline.
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Figure 6: Merging a vector operation with a pre-processing operation.
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Figure 7: Merging a matrix operation with a post-processing operation when the
post-processing is done on the vector output.

3.3 Scheduling an application

3.3.1 Resource constraints

The vector processor is capable of running up to four vector operations or one ma-
trix operation, simultaneously. If we see the processor as having four vector lanes
of computation, we have to make sure that we do not overload them at any time
point in the schedule. For this purpose CP offers a well-studied global constraint
named Cumulative, that is used commonly for task scheduling problems [5] (see
Section 3.1).

For the group of operations that are run in the vector core we impose constraint
(2). The parameters are their start times, durations, number of resources (lanes)
they occupy (which is represented with ri for node i), respectively. The last pa-
rameter (nLanes) is the number of available resources, which is in this case four.
This grouping includes all vector and matrix operations. The difference between
a vector and a matrix operation is that a vector operation occupies only one lane
(r = 1), while a matrix operation occupies all four lanes (r = 4) i.e. nothing else
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can run in the vector processor at the same time. The duration of either operation
is 1 clock cycle (d = 1).

Cumulative(S, D, R, nLanes)

where :
S = [si | cat(i) = vector_op∨ cat(i) = matrix_op]

D = [di | cat(i) = vector_op∨ cat(i) = matrix_op]

R = [ri | cat(i) = vector_op∨ cat(i) = matrix_op] (2)

Different lanes of the vector processor can not be configured to execute dif-
ferent operations simultaneously. Therefore, we need to ensure that at any given
time, the operations in different lanes are the same. This is done by differentiating
the start times of each vector operation pair (see constraint (3)).

∀(i, j) | cat(i) = cat( j) = vector_op∧op(i) 6= op( j) :
si 6= s j (3)

In a similar way, we impose one Cumulative constraint for the scalar pro-
cessor and one for the part of the architecture that is responsible of indexing and
merging (that we see as just another resource). Since they can run only one opera-
tion at a time, the resource limit for these constraints is 1.

3.3.2 Scheduling data nodes

So far we only discussed the scheduling of the operation nodes, however data
nodes should also be scheduled. The relation between these nodes and the memory
is explained in the next section. Here we only detail the part pertaining to the
schedule.

We assume that the inputs to the application are ready from the start. Hence,
any data node without any predecessors get the start time zero. Any other data
node starts, when the operation that produces it finishes and its latency is passed.
Constraint (4) captures this relation where pred(i) denotes the predecessor of node
i in the graph. Note that each data node (except the application inputs) has only
one predecessor, namely the operation that produces it.

∀i | cat(i) = vector_data∨ cat(i) = scalar_data :
si =spred(i)+ lpred(i) (4)
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3.3.3 Minimizing the schedule length

Minimizing the schedule length is achieved by using the latest completion time
(si + li) among all nodes as the objective function of the optimization process
(see section 3.5).

ob j = maxi∈V (si + li) (5)

3.4 Memory
As the target architecture employs a special memory structure for the vector data,
we dedicate this section to briefly present our memory layout abstraction (depicted
in Figure 8), the rules that regulate the access to it, and our constraints that imple-
ment these rules. Note that, because of its special structure, our focus is the vector
memory and for scalar data, we assume optimal allocation and access.

The memory consists of 16 banks to enable parallel access. Four banks con-
struct a memory page. Each page employs an access configuration, to program
the access to the banks in that page. The smallest addressable memory unit in this
abstraction is the slot, which holds a vector. If we were to address slots with the
(bankNo, slotNo) pair, all the slots with the same slotNo build a line.

Each bank can be accessed once for reading and once for writing in each clock
cycle, with a maximum of eight vectors (two matrices) read and four vectors (one
matrix) written to the entire memory. This means that several slots can be accessed
simultaneously only if they are in different banks. Also, since memory access
reconfiguration is very costly in the target architecture, to limit and regulate access,
simultaneous access to slots in a page is only allowed when the slots reside in the
same line.

To explain with an example, we consider three matrices, whose vectors are
allocated in different ways, in a small memory with three slots per bank as in
Figure 9. Matrix A can not be accessed in one cycle, since vectors A1 and A3
reside in the same bank, as well as A2 and A4. Matrix B can not be accessed in
one cycle either, because of its vectors B3 and B4 that reside in the same page but
not in the same line. To access them, the access to page 3 (banks 8-11) has to
be reconfigured at least once. Matrix C, on the other hand complies with all the
constraints, and can be accessed in one cycle.

To implement the access restriction constraints, we introduce the FDVs sloti,
linei and pagei for each vector data node i. These variables actually represent
different views of the same information: the placement of vector i in memory.
sloti would be enough to represent this. linei and pagei are defined mainly for
modeling convenience. Slots are enumerated in a linear fashion i.e. the first slot
in the first bank is labeled 0, the first slot in the second bank is labeled 1, etc.
Correspondingly, the second slot in the first bank is labeled 16 while the second
slot in the second bank is labeled 17, and so on.
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Figure 9: Memory access examples. Only C can be accessed in 1 cycle

The connections between sloti, linei and pagei for node i are given in the con-
straint group (6) where nO f Banks = 16 and pageSize = 4 in our particular archi-
tecture.

∀i | cat(i) = vector_data :
linei = sloti/nO f Banks

pagei = (sloti mod nO f Banks)/pageSize (6)

By their inputs and outputs, vector operations define the accesses to the vector
memory. Therefore, to constrain the simultaneous access patterns, we need a two-
fold control. First, we have to constrain the allocation of the inputs of each vector
core operation, since the inputs are accessed simultaneously. Second, any vector
core operations that are scheduled to run simultaneously will access the memory
simultaneously as well, both for their inputs and their outputs. So, the allocation
of those inputs and outputs should be constrained as well. The first part is captured
in constraint (7).

∀i | cat(i) =vector_op ∨ cat(i) = matrix_op :
∀(d,e) | d,e ∈ pred(i) ∧

cat(d) = cat(e) = vector_data :
paged = pagee =⇒ lined = linee (7)

The second part is achieved with checking accesses of vector operation pairs
that are of the same type and are scheduled at the same time (see constraints (8)
and (9)).



88 Programming Support for Reconfigurable Custom Vector Architectures

∀i, j | cat(i) = cat( j) =vector_op ∧ si = s j :
∀(d,e) | d ∈ pred(i) ∧ e ∈ pred( j) ∧

cat(d) = cat(e) =vector_data :
paged = pagee =⇒ lined = linee (8)

∀i, j | cat(i) = cat( j) =vector_op ∧ si = s j :
∀(d,e) | d ∈ succ(i) ∧ e ∈ succ( j) ∧

cat(d) = cat(e) =vector_data :
paged = pagee =⇒ lined = linee (9)

To use the memory space economically, we need to reuse the slots when their
data is no longer needed. To decide on when a slot can be used, we define lifetimes
for each data node. The lifetime of a data node (li f ei) is defined as the interval
between the start time of the node itself and the start time of the latest operation
that uses it. This relation is captured in constraint (10) where succ(i) denotes the
successors of node i.

∀i | cat(i) = vector_data :
li f ei = maxUi− si

where :
Ui = [so | o ∈ succ(i)] (10)

In a correct memory allocation, lifetimes associated with slots do not overlap.
Using the fact that slots are enumerated linearly, we can model the memory allo-
cation with reuse, as the non-overlapping rectangles problem. si and sloti become
the horizontal and vertical origins, respectively, while li f ei denotes the length of
the rectangle i. Height is set as 1 since each vector occupies one slot only. This
way, we can use the highly efficient Diff2 global constraint which is described in
detail in section 3.1 as seen in constraint (11).

Diff2(S, SL, L, ones)

where :
S = [si | cat(i) = vector_data],

SL = [sloti | cat(i) = vector_data],

L = [li f ei | cat(i) = vector_data] (11)
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3.5 Search space heuristics
The optimization goal is finding the shortest schedule (or one such schedule in
case several shortest schedules exist). The completion of node i is defined as si+ li
and minimizing the maximum of this completion for all nodes gives the shortest
schedule.

As most consistency techniques are not complete (see Section 3.1), the con-
straint solver needs to search for possible solutions, commonly by picking a vari-
able that has not been assigned to a value yet, and setting it to a value in its domain.
As long as the constraints are correct, any variable selection method (called heuris-
tic in CP terminology) leads to a valid solution, eventually. However, depending
on the problem size, the search space may grow exponentially and lead to very
long search times. In order to decrease the search time, we need to devise a search
strategy that defines the variable and value selection heuristics. In a previous work
[15], we devised such a search strategy for a very similar problem. We briefly
describe it in the following.

Even though the constraint model is unified, we divide the search into three
sequential phases and every phase has a set of variables to pick from:

1. Scheduling the operation nodes, searches on Sops: operation node start times

2. Scheduling the data nodes, searches on Sdata: data node start times

3. Memory allocation, searches on SL: slots

The general idea behind this division is to start with the most influential decisions
and end with the most trivial ones. This way, each time the solver needs to make
a decision (i.e. pick a variable and a valid value for it) for triggering constraints
to prune values in variable domains, it will pick the decisions that propagate more
information. The first two phases are tasked with the optimization, namely to
minimize the schedule length. The last phase takes the schedule result from the
previous phases and searches for a valid assignment to the slot variables only. At
the end of third stage we have a schedule with a valid memory allocation. All three
phases are bundled together as a branch-and-bound search with backtracking, for
finding the schedule with the minimum length.

4 Experiments
To evaluate our method, we implemented and scheduled a kernel, which is a part
of a larger DSP application, and experimented with different ways of overlapping
iterations of this kernel, to increase utilization and throughput. In the following,
we first introduce the target application, QR decomposition (QRD), that is used in
most of our experiments. After this we report our experiments on scheduling one
instance of QRD, and discuss the results which displayed poor processor utiliza-
tion. The rest of the section briefly introduces several methods to overlap several
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Application schedule #slots #slots opt. time
properties length (cc) available used (ms)
|V | = 143, |E| = 194 173 64 33 1854
|Cr.P| = 169 , 173 32 28 1844
# v_data = 49 173 16 16 1813

173 10 10 1835

Table 1: Scheduling QR decomposition on the EIT architecture

iterations of the same application to alleviate poor utilization, and presents our
experiments using these methods on QRD and a pair of other applications.

4.1 Target application

As the main target application, we focused on the Modified Gram-Schmidt (MGS)
based minimum mean squared error (MMSE) QRD algorithm, which is used as
part of the pre-processing in data detection in multiple-input multiple-output (MIMO)
systems [17]. The implementation in DSL was carried out by one of the designers
of the target architecture, based on the MMSE-QRD algorithm given in [1].

4.2 Scheduling one iteration

With the model explained so far, we have scheduled a QRD with memory alloca-
tion.

In Table 1, the results of scheduling QRD with different memory sizes (avail-
able number of slots) is shown. The leftmost column includes general properties
of the IR graph and the resulting constraint model. As seen in the third column, the
memory size, i.e. the number of available slots, is parameterizable in our model.
The reason why the schedule length stays the same with changing memory size
is explained by examining the length of the critical path (|Cr.P| in the table). As
the |Cr.P| is almost identical to the schedule length, it dominates the optimization
process. This also means that memory size is a secondary issue for this problem.
For fewer than 10 available slots, the solver timed out without finding a solution
when the size was 9, and failed when it was 8, denoting that no solution exists for
8 slots.

The schedule length (which is the same for all experiments in Table 1) is min-
imal, based on the given memory size and the algorithm implementation in the
DSL. There are many different ways to express the same algorithm in the DSL,
and these different expressions may result in different graphs, which in turn may
result in different schedules.

Although getting an optimal schedule is valuable, this schedule includes a lot
of “gaps", mainly because of the data dependencies between vector operations.
Since each vector operation has a latency of 7 clock cycles, a vector operation that
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takes the output of another vector operation as its input has to wait for those 7
cycles. If there are no other vector operations in the application that can be run
in this interval, the vector processor stays idle. If this repeats often, the processor
becomes heavily under-utilized. Some techniques to overcome this are presented
in the next section.

4.3 Scheduling more iterations simultaneously

To increase utilization, it is a common practice to schedule several iterations/copies
of the same application. The idea is to schedule an available operation from an-
other iteration when the processor is idle because of a data dependency explained
above, and increase utilization and overall throughput (at the possible expense of
latency).

There are several possible ways to implement this kind of simultaneous execu-
tion of iterations, with varying results in throughput, latency and reconfiguration
complexity [18].

A simple ad-hoc technique, often employed by the architecture designers when
they manually program the vector processor is the following two-phase process
we refer to as overlapped execution. First the instructions for a single iteration
are selected and ordered, usually with the objective of minimizing the number
of effective (non-nop) instructions. Then the overlapped schedule is obtained by
executing in sequence the same corresponding instruction from a given number M
of iterations. Once all kth instructions, from all M iterations, have been scheduled,
the execution advances to executing all (k+ 1)th instructions, and so forth. Note
that this effectively masks the pipeline latency, when the number M of iterations is
larger than the number of stages.

Besides being a computationally simple solution, this approach is also an effi-
cient way of decreasing the number of reconfigurations needed. A reconfiguration
is needed when two different types of instructions follow each other, which here
only happens between every kth instruction of the last iteration and every (k+1)th
iteration of the first iteration. This means that the number reconfigurations needed
is limited to the number of instructions.

We used this technique based on our initial schedule, and compared the results
to the manual implementation and scheduling, as shown in Table 2. The margin
between the automated and the manual scheduling is close to 20%. It is likely and
reasonable that the manual implementation is more efficient than the translation
from the DSL, especially considering the instruction selection. However, note that
the manual implementation does not include memory allocation and involves te-
dious man-hours to complete. Especially, creating a conflict-free pipeline schedule
by hand is a capriciously difficult and error-prone task.

The most important negative side effect of this pipelining approach is that it
postpones all output to the last bit of the schedule, where every last operation of
every iteration is scheduled one after the other. While the average throughput is
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# iterations = 12 Manual Automated

Schedule length (cc) 460 540
# reconfigurations 18 24
# reconfigs/# iter. 1.5 2
Throughput (iter./cc) 0.026 0.022

Table 2: Overlapping iterations with focus on limiting the number of reconfigura-
tions

not affected, this might lower the quality in streaming applications because of its
bursty throughput instead of a stable one. Also, since all output is postponed to
the end of the schedule, the sizes of the buffers needed to store the intermediate
results will be large.

Another way of executing several iterations simultaneously makes use of mod-
ulo scheduling [13], which is a technique used very often in scheduling loops in
VLIW-like architectures [19]. Modulo scheduling revolves around finding a sched-
ule that initiates iterations as soon as possible, taking into account dependencies
and resource constraints, and also repeating regularly with a fixed interval (also
called initiation interval (II)). The net result of this technique is a more efficient
use of the resources, thus yielding a better throughput, calculated as 1/II.

We pipelined our initial schedule using modulo scheduling, modelled as an-
other constraint satisfaction problem (CSP). First, we employed a model that finds
a schedule with minimum possible II without taking into account the reconfig-
uration overhead. The reconfigurations are added and recorded only in a post
processing steps. To contrast, we also implemented a model that does include the
reconfigurations in the optimization process. Table 3 gathers the results of these
two techniques for QRD and two other, less complex applications. For the sake of
brevity, the details of the constraint model are omitted.

Application (|V |, |E|, |Cr.P|)
optimization excluding reconfigurations optimization including reconfigurations

initial II # rec. actual II throughput II throughput optimization time
(cc) (cc) (iter./cc) (cc) (iter./cc) (ms)

QRD (143, 194, 169) 32 23 55 0.018 46 0.022 3055
ARF (88, 128, 56) 16 16 32 0.031 24 0.042 80061
MATMUL (44, 68, 8) 4 1 4 0.250 4 0.250 2135

Table 3: Pipelining with focus on limiting the number of reconfigurations

In case of QRD, where there are many reconfigurations to consider, the model
excluding the reconfigurations proved to be an easier problem to solve. However
the one that includes them provides a better throughput since reconfigurations have
to be added to the minimum II found in the first model to get the actual II. The
trade-off is the optimization time required to find the modulo schedule for the
second method. The solver times out after searching for the optimal solution for
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10 minutes. For harder problems the execution time of the solver can grow and
degrade the solution quality. In Table 3, the cell for execution time for the QRD
denotes the time elapsed to find the solution with II = 46, before timeout.

Compared to ad hoc method mentioned previously (overlapped execution), the
model including the reconfigurations finds a schedule that performs just as well
(see the throughput for the automated scheduling Table 2), in terms of average
throughput. Furthermore, modulo scheduling provides a stable throughput while
overlapping iterations suffer from burstiness.

The two additional applications in our experiments are auto regression filter
(ARF), and matrix multiplication (MATMUL, implemented as in listing 1). ARF
was modified to work on vectors as basic units instead of scalars, in order to ex-
ploit the vector capabilities of the architecture. The model including the recon-
figurations displays a similar improvement in throughput as QRD. However, this
model results in a penalty in execution time. MATMUL uses only one type of
operation throughout the application, therefore no reconfiguration is needed after
the first instruction.

Note that with the assumption that there is enough memory for storing the
data for all the iterations that are overlapped, memory allocation boils down to
repeating the allocation of the original schedule for each iteration, with a certain
offset.

5 Conclusions and future work
In this work, we provided programming support for a custom reconfigurable ar-
chitecture, that combines features similar to VLIW and SIMD with a specialized
memory layout. The programming support consists of a DSL, an instruction sched-
uler and memory allocator that makes efficient use of the custom nature and fea-
tures of the architecture. Our results show that our method can be useful for pro-
gramming similar architectures, providing ease of programming and performance
close to hand-written machine code.

We plan to continue this work by targeting other vector architectures including
commercial processors, and more complex applications. Including reconfigura-
tions in the constraint model for modulo scheduling proved to be a challenge that
we also would like to investigate further.
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1 Introduction

With the growing demands on mobile computing, fuelled among others by the
advent of the Internet of Things (IoT) and cloud computing, the amount of pro-
cessing required from multimedia and telecommunication applications are also
increasing. Such applications typically process streams of data, exhibiting a high
degree of parallelism, requiring high performance with a limited power budget.
The answer, from the hardware point of view, is the introduction of highly parallel
architectures.

Parallelism can be achieved at different levels in an architecture, by employing
pipelining, SIMD processing, multi-core or array processors. The current trend in
commercial system is to use multi-core systems extended with graphic processors
(GPU). In mobile devices the alternative is often offered by using DSP processors
and ASIC accelerators. Furthermore, some applications require custom architec-
tures, designed especially to provide high computational power, for very specific
programming models.

Combining all these techniques and parallelism at different levels can in princi-
ple yield architectures with enough computational power and low power consump-
tion, but their programming is not trivial. The main challenge today is therefore
programming these platforms such that the applications fully utilize the hardware
resources. Furthermore, different implementation choices offer different trade-offs
in terms of performance, memory consumption, power, etc. Therefore, depending
on the application context, it is important to carefully consider alternatives rather
than committing to the "best" implementation.

In this paper, we analyse and compare different ways of scheduling repeti-
tive behavior (kernels) when compiling code for parallel architectures. In partic-
ular, the target architecture we focus on is a generic architecture that employs a
SIMD pipeline. This architecture model is abstract enough to model a class of
architectures, including a custom reconfigurable architecture designed for our spe-
cific application area [1]. That architecture centres around a highly reconfigurable
pipelined processor with vector instructions (SIMD). Reconfigurations may be car-
ried out in one clock cycle, which makes for a very flexible instruction set, offering
a large number of execution and optimization choices. Furthermore, the architec-
ture model we adopt in this paper is also rather similar to the GPU hardware.

The remainder of the paper is organized as follows. Section 2 briefly presents
the previously published work in the context of scheduling for pipelines and SIMD
architectures. Section 3 presents the generic architecture model as well as other
assumptions adopted in the paper. Section 4 describes the scheduling techniques
studied in this paper along with a brief overview of the method we used to obtain
such schedules. Section 6 presents the experimental setup and results while section
6 employs these results to compare the techniques described earlier. Finally, our
conclusions are drawn in section 7.
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2 Related Work

Optimal use of the instruction level parallelism (ILP) through software pipelining
[2] has been addressed in the literature early on. One of the standard techniques,
first proposed in [3], is modulo scheduling, which selects a minimal schedule for
one loop iteration such that no constraints are violated when the schedule repeats.

Combined with retiming and unrolling, modulo scheduling can be even more
effective, as shown in [4, 5, 6]. Nevertheless, such techniques, intended to increase
the instruction per clock (IPC) count or throughput, suffer instead from a drastic
increase in live data, thus register requirements. Therefore, much of the work also
focused on minimizing the register pressure [7, 8, 9] while scheduling.

Computing architectures with high ILP that benefit from software pipelining
are today ubiquitous. One of the earliest uses of the technique is described in [10]
which targets very large instruction word (VLIW) architectures. Vectorization for
single instruction, multiple data (SIMD) architectures has also been tackled early
on [11, 12, 13], while more recent work even targets streaming applications [14].
Software pipelining and especially modulo scheduling was also proven to be suc-
cessful for newer architectures, designed for offering a high degree of parallelism,
namely coarse-grained reconfigurable arrays (CGRA) [15, 16, 17]. Even more ex-
otic architectures, especially designed for streaming applications have been shown
to benefit from software pipelining [1, 18].

In this paper we revisit modulo scheduling along with partially unrolled mod-
ulo scheduling, as well as another common but ad hoc practice we call overlapped
execution (see section 4.2). However, the focus of our investigation is on those
measures that are relevant for streaming applications, namely throughput and in-
put/output data rates. Register pressure (minimal register requirements) as well as
code size are also examined, in order to underline the differences between the var-
ious techniques. The interaction between registers, extent of unrolling and code
size has been studied previously in [19]. In that work, however, the focus is on
VLIW processors, and unrolling is basically carried out after scheduling, while
we target SIMD processors, and unroll before scheduling.

For streaming applications, using modulo scheduling in order to increase
throughput, while also keeping buffer sizes under control, has already been ad-
dressed in the literature [20, 21, 22]. However, it is important to notice that the type
of pipelining targeted in these approaches is algorithmic pipelining on multi/many-
cores. In that case scheduling employs processor level parallelism (PLP), rather
than ILP as in our case. By replicating tasks (actors) and groups of actors on the
same or several processors, data production and consumption rates are negotiated
in such a way that buffers sizes are minimized. Note that each instance of an ac-
tor execution is treated as an atomic behaviour with a given latency. The type of
scheduling we address in this paper is complementary to the algorithmic pipelin-
ing used in those approaches, adding another degree of freedom to the design flow.
Instead of assuming a fixed atomic execution (yet repetitive) of an actor, we show
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that its behaviour can be pipelined in different ways, yielding different input/out-
put rate which will affect the choices of algorithmic pipelining.

An approach that does use both ILP and PLP for streaming application is de-
scribed in [14], employing SIMDization at several levels. However, their use of
ILP is restricted to stateless actors, whose instances are combined to exactly cover
the vector size and execute in parallel. A similar technique for loop SIMDization,
focused on memory access patterns, is presented in [13]. In contrast, our use of
ILP allows for more generic architectures, execution models, and actors.

3 Context
As target applications, we consider kernels from digital signal processing (DSP),
which are part of image processing algorithms. Such kernels can be implemented
differently depending of the computational model. For example, in an imperative
language they are usually implemented as an iterative execution of a code sequence
(a loop or a nested loop construct). In the dataflow model of computation [23], this
is equivalent to the repetitive execution of an actor processing a data stream.

For this study, we confine ourselves to kernels that have no inter-iteration de-
pendency, which allows us to emphasize the differences between various execution
scenarios. However, our scheduling methods are not limited by this assumption
and can be extended with additional constraints modelling inter-iteration depen-
dencies.

In the following, we use benchmarks that represent inner loop bodies or actor
computations. Each benchmark is modelled as a directed acyclic graph (DAG)
whose nodes represent basic operations and edges dependencies between them.
Similar basic operations, which are also independent, can thus be grouped together
and issued as one SIMD instruction.

We consider a generic target architecture with a hardware pipeline that can
perform SIMD operations of a given width. The hardware pipeline has a given
number of stages, which defines the latency between data dependent operations,
since we assume that data must be available at pipeline start and produced by the
last stage. Furthermore, we assume that each pipeline stage has a latency of one
clock cycle. This particular choice of the architecture is motivated by our previous
work with the system in [1].

4 Approach
We compare different scheduling techniques for DSP kernels, usually employed to
increase the throughput. The measures we examine for each technique are those
we consider relevant for streaming applications, namely throughput, register pres-
sure, input/output data rates, and code size. We also investigate how different
architecture configurations influence these measures.
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The techniques we consider are: scheduling a single iteration, overlapping it-
erations, along with modulo scheduling, classic as well as combined with loop
unrolling. The experiments are carried out on several graphs from ExpressDFG
[24] which provides dataflow graphs for benchmark applications from the Media-
Bench suite [25].

Practically the tools implementing the different scheduling methods were de-
veloped using the constraint programming environment offered by JaCoP [26].
The modelling of these methods using constraint programming is itself an inter-
esting problem, which we addressed in detail in our previous work. In the fol-
lowing, without going into the modelling issues, we briefly present the scheduling
techniques we investigate in this paper.

4.1 Scheduling one iteration

The straightforward way to schedule a loop/kernel is to sequentially execute itera-
tions, which requires scheduling one iteration efficiently. To illustrate, we will use
a small part of an elliptic wave filter (EWF), taken from ExpressDFG [24]. Figure
1 shows the shortest schedule, given the assumptions described in section 3.

In the figure, the DAG format is preserved to show the dependencies and sched-
ule time is shown on the horizontal axis. We deliberately picked this part from
EWF to illustrate the scheduling behavior when the available ILP is limited and
the critical path dominates the schedule. In this example, the resource utilization,
calculated by the number of operations that are scheduled, over the number of
nodes the architecture can run during the schedule length, is around 6%. Through-
put is 0.024 samples per clock cycle and latency is 42 clock cycles. This poor
utilization is caused both by the properties of the architecture and the application,
as we detail in the following.

The long latency of the hardware pipeline (which is equal to 7 for this example
- see section 3) is one reason. Due to the data dependencies (mainly through the
critical path), each dependent node has to wait for its predecessor to finish its
execution, i.e. go through all the pipeline stages.

The low ILP present in the application is the other reason for the poor resource
utilization. Note from the figure that some of the nodes are scheduled simultane-
ously. This is enabled by the SIMD nature of the architecture which execute up to
SIMD width (4 in this example) number of operations. However, in this case there
are not enough operations that are mutually independent, hence not many can be
scheduled together.

Poor utilization generally means poor throughput and low energy efficiency.
To increase both, it is common procedure to schedule several iterations simultane-
ously.
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4.2 Overlapping execution

For architectures with a hardware pipeline, an easy way to increase utilization is
to schedule multiple iterations in an ad hoc, overlapping fashion. The scheduling
process is two-fold. First the instructions for a single iteration are selected and
ordered, with the objective of minimizing the number of effective (non-nop) in-
structions (in contrast to schedule length). The overlapped schedule is obtained
then by advancing the chosen number of iterations by running the same corre-
sponding instruction from each one in sequence. Once all equivalent instructions
from all iterations have been scheduled, the execution advances to the next instruc-
tion. The resulting schedule for the example from Figure 1 is given in Figure 2,
where iterations are denoted with upper case letters in the node identifier.
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Figure 2: Example schedule of an overlapped execution.

This computationally simple solution eliminates the gaps in the schedule
caused by the hardware pipeline completely, as long as the number of iterations
scheduled simultaneously is larger than the pipeline latency/length. For this exam-
ple the utilization is increased to 32%. The throughput is 0.146 samples per clock
cycle and latency is 42 clock cycles.

Besides its simplicity, this approach is suitable particularly for certain recon-
figurable architectures for which the reconfiguration overhead is a significant issue
in scheduling. A reconfiguration is needed when two different types of instructions
follow each other, and this approach limits it to the number of instructions. (More
details for this approach and its usage can be found in [27])
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4.3 Modulo scheduling

As mentioned in section 2, modulo scheduling is a common technique for increas-
ing the throughput of a kernel. It involves finding a schedule that initiates iterations
as soon as possible, taking into account dependencies and resource constraints,
while also repeating regularly with a given interval (initiation interval II [28]).

Scheduling the example from Figure 1 gives an II of length 3, as depicted in
Figure 3a. Nodes from the same iteration are coded with the same upper case letter,
in the same order as the iterations, to give an idea about how the II is assembled
from different iterations. With this notation, node A_+ _7 is the last operation
from iteration A, while node M_+_1 is the first operation from the latest iteration
about to start executing. Note that iteration M is twelve iterations later than A.
The iterations in between B and L have already started in previous IIs and are
currently executing (are active) in the pipeline. It is interesting to note however
that not all iterations have operations that start in every II instance, although they
may be in the process of executing operations or simply wait for data. With our
notation, iterations B,D,G,J,L, which correspond to iterations with distances of
1,3,6,9,11 relative to A, are invisible since they are not starting any operations in
the II depicted in Figure 3a. Note however that from an absolute point of view, the
set of invisible iterations will change with the II instances. The existence of these
iterations is an artefact of the short II relative to the rather long hardware pipeline.

For the given SIMD width of four, only the first clock cycle in Figure 3a utilizes
the hardware fully. Elsewhere the hardware is underutilized because of insufficient
ILP in the application, even using modulo scheduling. The average utilization in
the II is 75%, while the throughput is 0.33 samples per clock cycle and latency is
44 clock cycles.

Compared to the overlapped execution, modulo scheduling increases the ILP,
to some extent, both by folding the graph as well as filling in the gaps resulted
from the pipeline latency.
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Figure 3: Initiation intervals for modulo and unrolled modulo scheduling, for the
example in Figure 1.
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4.4 Unrolling and modulo scheduling

Even though modulo scheduling increases the available ILP by folding several
iterations to construct the II, it can be seen from Figure 3a that there are still slots
in the schedule that are not utilized. To remedy this, an idea is to unroll several
iterations prior to modulo scheduling. This way, the available ILP can be increased
further.

In Figure 3b we depict the II for our running example when two iterations are
unrolled before modulo scheduling. In addition to the notation from Figure 3a, we
use different shading to distinguish between nodes unrolled from different itera-
tions. For example, H_+_1 and H_+_1′ refer to the first node from the first and
the second unrolled instances, respectively, which together constitute iteration H.
With the increased number of independent nodes, this method makes better use of
the SIMD capability compared to classic modulo scheduling. Thus the utilization
increases to 90% for this example, throughput is increased to 0.40 samples per
clock cycle while the latency becomes 42 clock cycles.

5 Experiments

In this section, we present our experiments for measuring the quality of the sched-
ules provided by the methods introduced earlier. A deeper discussion around these
results makes the subject of the following section. For these experiments, unless
stated otherwise, we assumed that target architecture, introduced in section 3, has
a pipeline length of seven stages, and a SIMD width of four. These parameters are
varied occasionally as stated, in order to investigate their impact on the measures
under scrutiny.

To illustrate various characteristics of the scheduling techniques, we use Loe-
fller’s IDCT [29] (referred to as IDCT in the rest of the paper) to carry out a more
detailed analysis. IDCT is part of many image and video applications including
JPEG and MPEG, and Loeffler’s IDCT is a commonly used implementation. Note
however, that similar results are observed for the other kernels we experimented
with (see Tab. 2).

A summary of the results for scheduling IDCT is given in Tab. 1. Number of
nodes and edges in the graph are denoted with |V | and |E|, respectively. Each col-
umn refers to a different scheduling technique. The column "single" refers to the
results for scheduling one iteration and constitutes a baseline for comparison. For
data related metrics, one iteration is assumed to consume and produce one unit of
data, referred to as a sample in the table. Overlapped scheduling interleaves seven
iterations, since the pipeline length/latency is seven. Unrolled modulo scheduling,
referred to as unrolled in the rest, involves unrolling two iterations.

For single and overlapped scheduling, the throughput is calculated as
#iterations/schedulelength. When computing this for modulo and unrolled the
schedulelength is replaced by II, since at the end of each II, exactly #iterations
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finish executing and produce their outputs. The latency for an iteration is the dis-
tance between its first scheduled input node and last scheduled output node. The
latency of all iterations in an overlapped schedule is the same since each itera-
tion is only a shifted version of the first. In contrast, as the unrolled iterations are
scheduled freely to obtain a minimal II, their latencies may differ.

IDCT (|V |= 48, |E|= 63) Single Overlapped Modulo Unrolled x2
Throughput (samples/cc) 0.022 0.046 0.059 0.080
Latency (cc) 46 147 53 67, 68
Code size (instr.) 46 153 17 25

Table 1: Loeffler’s IDCT with various scheduling techniques.

Code size denotes the number of instructions that would be generated from the
schedule. This includes the possible no operation (nop) instructions. For single
and overlapped scheduling this figure is equal to the schedule length. For modulo
and unrolled, the prologue and epilogue are negligible when the kernel is run many
times, thus the code size for these methods is equal to their II.

Assuming that live data is kept in registers, the number of registers needed
throughout each schedule is plotted in Fig. 4. Computing the lifetimes for in-
put/output data is interesting, since this is directly coupled to the buffer sizes,
when it comes to streaming applications. Input data is considered alive from the
first operation using (part of) it, while output data is alive until the last operation
producing (part of) it. Input data becoming alive is reflected through the consump-
tion of an input sample from the input buffers. Similarly for output data end of life
and sample production in the output buffers.

Note again, that the overlapped schedule comprises seven iterations. Modulo
and unrolled schedules are plotted only over one II, since this profile repeats every
II. Here unrolled x2 unrolls two iterations and unrolled x5 unrolls five.

Throughput is a performance metric that often refers to the average output
of the schedule. However, for some application domains, such as streaming, the
instant rates of input consumption and output production is more important, also
affecting the buffer sizes. To show the variation in these rates between the various
scheduling techniques, Fig. 5 plots the cumulative input consumption and output
production for IDCT, over a longer time period.

Table 2 summarizes the results for scheduling three additional kernels, taken
from ExpressDFG [24]. Number of nodes and edges for each graph is denoted with
|V | and |E|, respectively, under the application name. The last kernel in Table 2
is a different IDCT implemented in MPEG, which should not be confused with
Loeffler’s IDCT.
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Figure 4: Register pressures for IDCT scheduled with various techniques. Each
plot covers one execution of the respective schedule.

EWF
(|V |= 34, |E|= 47) Single Overlapped Modulo Unrolled x2

Throughput (samples/cc) 0.010 0.067 0.111 0.118
Latency (cc) 98 98 104 (98, 98)
max. reg. press (registers) 9 41 49 52
data cons. (samples) 1 7 1 1
data prod. (samples) 1 7 1 1
Code size (instr.) 98 104 9 17

JPEG FDCT
(|V |= 134, |E|= 169) Single Overlapped Modulo Unrolled x2

Throughput (samples/cc) 0.011 0.020 0.025 0.026
Latency (cc) 92 343 122 (157, 155)
max. reg. press (registers) 26 198 64 62
data cons. (samples) 1 7 1 2
data prod. (samples) 1 7 1 1
Code size (instr.) 92 349 40 78

MPEG IDCT
(|V |= 114, |E|= 164) Single Overlapped Modulo Unrolled x2

Throughput (samples/cc) 0.009 0.016 0.021 0.023
Latency (cc) 115 420 138 (143, 143)
max. reg. press (registers) 26 204 48 68
data cons. (samples) 1 7 1 1
data prod. (samples) 1 7 1 1
Code size (instr.) 115 426 48 88

Table 2: Performance measures for three benchmarks scheduled with various tech-
niques.
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Figure 5: Input consumption and output production for IDCT scheduled with var-
ious techniques.

Apart from the metrics in Tab. 1, there are three additional metrics that sum-
marize the register pressure, input and output rates for these kernels. (For IDCT,
Fig. 4 and 5 present this information in more detail). The metric "max. reg.
press" denotes the maximum register pressure in the schedule. To present the in-
put/output behavior, we also use two other metrics, namely "data cons." and "data
prod." Both use a time window that slides through the schedule and captures the
maximum sample consumption and production, respectively. The length of this
sliding window is set to the number of pipeline stages, in order to better capture
the behavior of the overlapped schedule.

In order to show the differences between different extents of unrolling, we
include unrolled x5 and unrolled x2 in both Fig. 4 and Fig. 5.

Further results from experiments with different extent of unrolling are given
in Table 3. In addition to previously mentioned metrics, we also include resource
utilization. This is computed as n/(II ∗N) where n denotes the number of nodes
in the graph and N denotes the SIMD width (i.e. the number of operations that
can be run simultaneously). We include utilization figures in order to give an idea
of the efficiency of the schedule and the untapped parallelism still existent in the
architecture. The "Latencies" row shows that the different iterations unrolled and
scheduled together may in fact get different latencies. The reason is that latency
is not in any way constrained in our CP model for modulo scheduling. If the
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application domain requires the latency for each sample output to be equal (or
close to equal) this can be included in the model. However, it should be noted that
the resulting II can degrade, since the solution space becomes more constrained.

Besides the target application and the scheduling method, there are two param-
eters of the architecture that can affect the schedules, namely the SIMD width and
the number of pipeline stages. We varied both parameters and gathered the results
for IDCT in Tab. 4 and 5, respectively.
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SIMD width = 8 Single Overlapped Modulo Unrolled x2
Throughput (samples/cc) 0.022 0.053 0.143 0.143
Latency (cc) 46 126 53 57, 57
max. reg. press (registers) 12 88 47 61
data cons. (samples) 1 7 1 1
data prod. (samples) 1 7 1 1
Code size (instr.) 46 132 7 14
SIMD width = 16 Single Overlapped Modulo Unrolled x2
Throughput (samples/cc) 0.022 0.072 0.250 0.286
Latency (cc) 46 97 52 53, 53
max. reg. press (registers) 14 88 73 93
data cons. (samples) 1 7 2 1
data prod. (samples) 1 7 2 1
Code size (instr.) 46 97 4 7

Table 4: The effect of SIMD width on IDCT schedules.

# iterations unrolled two three four five
Throughput (samples/cc) 0.080 0.075 0.083 0.081
Utilization (n/(II*N))(%) 96 90 100 97
Latencies (cc) 67,68 79, 85, 52, 97, 63, 68,

82 96, 91 78, 113, 66
max. reg. press (registers) 43 57 66 80
data cons. (samples) 1 2 2 3
data prod. (samples) 2 3 2 2
Code size (instr.) 25 40 48 62

Table 3: The effect of changing the number of iterations unrolled for IDCT.

# Pipe. Stages = 4 Single Overlapped Modulo Unrolled x2
Throughput (samples/cc) 0.037 0.051 0.067 0.080
Latency (cc) 27 76 30 49, 49
max. reg. press (registers) 16 52 18 35
data cons. (samples) 1 4 1 1
data prod. (samples) 1 4 1 1
Code size (instr.) 27 79 15 25
# Pipe. Stages = 16 Single Overlapped Modulo Unrolled x2
Throughput (samples/cc) 0.010 0.046 0.071 0.077
Latency (cc) 100 336 102 113, 115
max. reg. press (registers) 14 196 35 48
data cons. (samples) 1 16 2 1
data prod. (samples) 1 16 2 2
Code size (instr.) 100 351 14 26

Table 5: The effect of pipeline length on IDCT schedules.
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6 Discussion

It is obvious from the previous section that the different scheduling techniques
offer different trade-offs between the performance metrics we consider. Depending
on the context, the choice of one or another technique may be preferred. However,
we can claim with high confidence that scheduling a single iteration results in
overall poor performance.

At a first glance the overlapped execution offers advantages only over the sin-
gle iteration schedule, in terms of throughput. However, there are some hidden
advantages that should be considered. First, obtaining an overlapped schedule is
easier than obtaining modulo and unrolled schedules, which require specific tech-
niques. In fact starting from a single iteration schedule, obtaining the overlapped
schedule is straightforward. Second, overlapped execution may in fact be more
effective on selected reconfigurable architectures, designed for streaming applica-
tions [27]. To keep our architecture abstraction simple, we did not include recon-
figurability in this work. However in reconfigurable architectures where recon-
figuration takes a certain time (e.g. one clock cycle) to switch between different
instructions, overlapped can outperform modulo scheduling in terms of through-
put. We present further insights into the effects of reconfiguration for overlapped
and modulo scheduling in [27].

6.1 Average throughput

In all examples, modulo and unrolled provide significant improvement in through-
put over the overlapped scheduling, which is itself an improvement from single
iteration scheduling.

The number of iterations that are unrolled affects the throughput as well. This
is captured in Table 3. For IDCT, unrolling four iterations gives the best throughput
since it reaches full utilization. Further unrolling is in principle not needed and in-
troduces mismatches between the application ILP and the architecture. Obviously
for a different application, the optimum number of unrolls will be different. It
should be noted as well, that increasing the number of unrolled iterations increases
in turn register pressure and code size, and possibly also the required buffer sizes.
Additionally it may also incur latency penalties for some of the iterations that are
unrolled.

Looking at the architecture impact on throughput, a wider SIMD architecture
produces a better throughput, but only when the application ILP allows it (see
Table 4). This also means that more unrolling, which increases ILP also may
better employ the architecture, thus increasing throughput. On the other hand,
the pipeline length seems to have only marginal effect on the throughput for all
techniques except, obviously, the single iteration schedule (see Table 5).
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6.2 Code size

Modulo scheduling techniques fold the schedule into the initiation interval, that
eventually is a fraction of a regular sequential schedule. As a result of this, modulo
and unrolled schedule yield smaller code size compared to the overlapped execu-
tion, which basically includes all the iterations that are overlapped. Single itera-
tion schedules are rather long in terms of code size, but are also sparse, including
a number of nops introduced due to dependencies and pipeline latency. Overall,
modulo scheduling (which is equivalent to unrolled x1) is the most efficient when
it comes to code size.

From an architectural point of view, wider SIMD units means also shorter
code (see Table 4), when enough ILP is available in the application, since more
work can be done in the same clock cycle. In contrast, longer pipelines seem to
have again little influence on the code size for modulo and unrolled execution, but
greatly affect the code size for overlapped and single iteration schedules. This is
not unexpected, since the pipeline length directly dictates the schedule length for
both of the latter, meanwhile modulo scheduling manages to wrap around (several
times possibly) the length of the pipeline, hiding its latency.

6.3 Storage requirements and data rates

Register pressure is decisive for architectures with small register files and slow
memory. From Fig. 4 and all the tables, it is apparent that single execution always
needs the least amount of registers, while overlapped execution uses the most, with
modulo scheduling being somewhere in between. The amount of unrolling for
modulo scheduling also directly affects the register pressure. Increasing the SIMD
width, allows for more computations in parallel, thus increasing the pressure on
the registers (see Table 4). Longer pipelines also seem to increase the register
pressure, since data is alive over longer time intervals (see Table 5).

When it comes to dimensioning buffers in streaming applications, input/output
data rates are of paramount importance. Buffer sizes need to be selected in such
a way that they never stall computations upstream or downstream due to lack of
space or data. Opting for a high throughput implementation when the overall appli-
cation context cannot support it would be a bad design choice. In here we refer to
the distance between two consecutive inputs/outputs as burstiness. From Figure 5,
it is evident that overlapped execution is the most bursty scheduling technique
while modulo is the least bursty. This effect is accentuated for longer pipelines.
We note also that unrolling appears to increase the burstiness and the irregular-
ity of input/output rates for modulo scheduling, proportionally to the number of
iterations unrolled.
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7 Conclusions
In this paper, we experimentally analysed three different scheduling techniques to
compare their performance with respect to throughput, latency, register/memory
pressure, data consumption/production rates and code size. We identified differ-
ent bottlenecks caused by the application and the architecture. We then presented
different trade-offs that are to be taken into account when employing one of the
scheduling techniques, to compile a streaming application kernel on a generic par-
allel architecture that employs a SIMD hardware pipeline. Furthermore, we inves-
tigated the effects of altering the parameters of the generic architecture, namely
the number of pipeline stages and SIMD width.
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Abstract

Custom processor architectures are often proposed as more efficient alternatives
to general purpose processors in terms of performance and power. However, the
design of such architectures requires experts both in hardware and the applica-
tion domain, carrying out time consuming exploration involving detailed model-
ing and simulation of a number of solutions. Often such architectures are over
dimensioned in order to secure the demanded performance, leading to a waste of
area, power and energy. In this paper we propose a method for speeding up the
design space exploration, while meeting the performance demands for a group
of applications, with minimal resources. Initially our method, based on Pareto
points, identifies sets of solutions in terms of scalar units and vector units of cer-
tain length, fulfilling given throughput constraints for each application in a given
set. Architectures can then be selected by combining these solutions, as starting
points for a more thorough, model-based evaluation. We validate our method by
presenting a case study revolving around selecting an architecture suitable for a set
of applications taken from the multimedia domain.
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1 Introduction

The choice of designing a custom processor architecture is often taken as a re-
sult of identifying obstacles with existing architectures when it comes to perfor-
mance, chip area, power or energy consumption, for specific application domains.
Once embarked on the quest for selecting the optimal architecture for a set of ap-
plications, the designer’s experience in both hardware architectures and targeted
software is paramount. Given the large number of possible solutions, choosing a
representative subset to investigate further is currently more of an art than a rigor-
ous process. Subsequently these potential solutions are usually modeled in detail
and used to simulate the applications in order to filter out unsuitable candidates. In
extreme cases, new candidates need to be proposed, if none of the initial ones are
satisfactory. Alternatively, the architecture is over-designed, employing more re-
sources than necessary, to make sure that all of the applications meet their require-
ments. Neither of these cases is desirable, since they mean higher cost through a
waste of resources, be it designer effort, chip area, power or energy consumption.

In this paper we propose a method for a more systematic design space explo-
ration for application specific processors, intended to reduce the design effort in
the initial phase, by proposing an optimal set of alternative potential solutions. In
particular we are interested in identifying the processor configurations in terms of
number and width of SIMD units and the number of scalar units that allow the
required performance, without wasting resources. As the performance measure
we use throughput, since we mainly target streaming applications, which are of-
ten throughput constrained. To identify potential configurations, we employ con-
straint programming, and formulate the problem as a Pareto optimization problem
in a three dimensional space (number and width of SIMD units, number of scalar
units), using modulo scheduling to ensure throughput requirements are met [1].
Once the Pareto points are found, it is up to the designer to select the ones that are
more interesting to investigate further, to get more accurate estimates on cost and
performance.

Note that such systematic design space exploration is not new, but was previ-
ously employed for system rather than processor level. In that case the components
are fixed (processors, memory, interconnect type) and a solution refers to the num-
ber of components of different types and their interconnection. Our method could
then be applied as the next phase in this design process, where the individual com-
puting components are optimized.

2 Related Work

Design space exploration (DSE) is an important activity during embedded system
design. It explores different solutions and provide trade-offs between them. The
designer can then select the most appropriate system configuration. DSE is in-
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tensively studied and many methods have been proposed. One can divide them
into methods that use simulation, (multi-objective) optimization or combination of
these. DSE is used to find design trade-offs for different design metrics.

Simulation based methods assume the existence of a model that can be ex-
ecuted to gather the design metrics. For this kind of simulations, existing lan-
guages and toolkits are often used, such as C/C++, SystemC, VHDL and Ver-
ilog. There are also specialized tools. Heracles, for example, is an open-source,
functional, parametrized, synthesizable multicore system toolkit [2]. It comprises
several tools that support exploration of different design choices as well as hard-
ware synthesis and program compilation. In particular, it supports fast exploration
of multicore processors of different topologies, routing schemes, processing ele-
ments (cores), and memory system organizations.

Whereas in the aforementioned approach simulation is used within the opti-
mization loop, it can also be used as a preprocessing step to gather data for later
multi-objective optimization. Authors of [3], for example, assume a model written
in SystemC TLM 2.0 and then perform a fully automatic optimization by simulta-
neous resource allocation, task binding, data mapping, and transaction routing for
MPSoC platforms. Their hybrid optimization approach is based on an Evolution-
ary Algorithm and a pseudo boolean solver. A version of evolutionary algorithms,
called the Strength Pareto Evolutionary Algorithm (SPEA) has been proposed in
[4, 5]. It finds an approximation of the Pareto-optimal set for multi-objective opti-
mization problems.

Constraint programming has been used for both optimization and multi-
objective optimization. The time-energy trade-off has been studied for multi-layer
memory architectures in [6]. The authors formalize the model using constraint
programming and generate Pareto points for different memory configurations for
each task. Then a specialized algorithm makes a hierarchical composition of the
Pareto points for each task leading to possible execution scenarios. Constraint pro-
gramming has also been used in [7] for generation of Pareto points for mapping of
data and instructions for multimedia applications to scratch-pad memories. In this
paper, we use a similar method for Pareto point generation, but focus on different
metrics. A constraint-based DSE is proposed also in [8], for real-time applications
implemented on MPSoCs. The authors formalize the mapping and scheduling
problem together with other constraints on cost and performance. They minimize
the throughput in their experiments and do not generate Pareto points.

Most research on DSE concentrates on system level decisions, such as map-
ping and scheduling, and papers on DSE for processor design usually concentrate
on instruction selection, see for example [9]. There is not much work on pro-
cessor design that tries to investigate different trade-offs between the number of
functional units, execution pipelines and SIMD units. The paper [10] explores the
problem of multiple SIMD units for GPUs but it is specific to graphic hardware.
Our work addresses custom processors with SIMD and scalar units and tries to
examine different configurations for obtaining a given throughput.
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3 Background

We allocate this section to introduce existing techniques used in our approach.

3.1 Constraint programming

In this paper we extensively use constraint satisfaction methods implemented in
the constraint programming environment JaCoP [11].

A constraint satisfaction problem is defined as a 3-tuple S = (V ,D ,C ) where
V = {x1,x2, . . . ,xn} is a set of variables, D = {D1,D2, . . . ,Dn} is a set of finite
domains (FD), and C is a set of constraints. Finite domain variables (FDV) are
defined by their domains, i.e. the values that are possible for them. A finite
domain is usually expressed using integers, for example x :: 1..7. A constraint
c(x1,x2, . . . ,xn) ∈ C among variables of V is a subset of D1 ×D2 × . . .×Dn
that restricts which combinations of values the variables can simultaneously take.
Equations, inequalities and even programs can define a constraint. Each constraint
is paired with a consistency technique to eliminate the infeasible values. These
techniques can be complete (removing all infeasible values at once) or incomplete
(removing a subset of infeasible values) depending on the choice of algorithms
implementing them.

A global constraint combines several simpler constraints and handles them
together. While semantically equivalent to the conjunction of these simpler con-
straints, a global constraint lets the solver exploit the structure of a problem by
providing a broader view to it [12]. In this paper we use intensively the global
constraints named cumulative and global_cardinality.

The cumulative constraint [13] was originally introduced to specify the re-
quirements on task scheduling on a number of resources. It expresses the fact that
at any time the total use of these resources for the tasks does not exceed a given
limit. It has four parameters: a list of tasks’ start times, a list of tasks’ durations, a
list of amount of resources required by each task, and the upper limit of the amount
of used resources. All parameters can be either domain variables or integers.

The global_cardinality constraint [14] is a generalization of the
all_different constraint, which requires that every value is assigned to at most
one variable. The constraint counts instead number of occurrences of given values
in the variables list. The parameters are a list of values to be counted and two lists
of FDVs. The first list is the variable list and the second list is the counter list.
The counter list counts number of occurrences of values from the value list, in the
list of variables.

A solution to a CSP is an assignment of a value to each variable from its respec-
tive domain, in such a way that all constraints are satisfied. The specific problem
to be modeled will determine whether we need just one solution, all solutions or
an optimal solution given some cost function defined in terms of the variables.
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The solver is built using constraints’ own consistency methods and systematic
search procedures. Consistency methods try to remove inconsistent values from
the domains in order to reach a set of pruned domains such that their combinations
are valid solutions. Each time a value is removed from a FD, all the constraints
that involve that variable are reevaluated. Most consistency techniques are not
complete and the solver needs to explore the remaining domains for a solution
using search.

Search usually assigns values from variable domains to the variables. It is
implemented as depth-first-search. The consistency method is called as soon as
the domains of the variables for a given constraint are pruned. If a partial solution
violates any of the constraints, backtracking will take place, reducing the size of
the remaining search space.

Standard search methods do not provide multi-objective optimization but can
be used to build multi-objective search for Pareto points that is introduced in the
next section and discussed more in details in section 5.1.

3.2 Pareto points

During the design process, different alternatives are explored. Design space ex-
ploration is therefore defined as a process of finding different solutions that offer
trade-offs between various design parameters. It is usually achieved by carrying
out a multi-objective optimization, meaning that it simultaneously optimizes more
than one cost function. In such cases it makes little sense to talk about one single
optimal solution, but instead we introduce the notion of Pareto optimality. In this
research, we consider minimization of a multi-objective function and define Pareto
points as a set of non-dominated solutions. A Pareto point is therefore a solution
that has at least one lowest value for one cost function, i.e., it is not dominated
by all other solutions. Pareto points form a trade-off curve (surface) called Pareto
curve (surface). Such a Pareto curve (surface) represents the available trade-offs
between different optimization objectives.

The designer can then explore different trade-offs and select the Pareto solution
that is most suitable for implementation with the current design constraints. Thus,
a number of configurations that otherwise might be explored are discarded early
on, narrowing the solution space, and helping the designer to identify potential
solutions faster.

3.3 Modulo scheduling

Modulo scheduling is a common technique for increasing the throughput of a ker-
nel. It involves finding a schedule that initiates iterations as soon as possible,
taking into account dependencies and resource constraints, while also repeating
regularly with a given interval (initiation interval II [15]). A more detailed expla-
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nation of this technique including its performance on scheduling DSP kernels on
a SIMD unit can be found in [1].

4 Problem definition

In this section we present the problem in its context, together with the assumptions
surrounding the architecture abstraction and the target applications.

Our goal is to provide the processor designer with optimal alternative processor
settings that meet throughput requirements for a given set of applications. An
alternative is deemed optimal if it provides the required performance while keeping
the resources included in the processor at the bare minimum.

The fact that there are alternatives is because there are several different kind of
processing elements with different properties and capabilities. We assume that the
processor can include several SIMD units and/or scalar units.

As the name suggests, each SIMD unit can run one type of operation over
multiple data at a given time point, which is defined by the SIMD width. SIMD
units to be included in the alternative solution have the same, but yet unknown
width, which is also part of the exploration process. We assume that each unit can
issue an instruction each clock cycle and is implemented as a hardware pipeline,
incurring a latency depending on its length and complexity. In the example pre-
sented later in this paper we assume this latency to be seven clock cycles, based on
our previous experience with a similar architecture [16]. For such an architecture
the SIMD pipeline consists of one pre-processing, two core processing and two
post-processing stages, along with one stage for load and one for store.

We assume that the scalar units can also issue one instruction each cycle, sim-
ilar to the SIMD units. However, they do not have any pre- or post-processing
capabilities, therefore have a lower latency (four clock cycles). Nevertheless, we
assume that both the scalar units and the core processing stages for the SIMD
units can carry out the same type of operations, covering all the operations present
in the application set. This also means that in our current model, the pre- and
post-processing stages are not employed, since the grouping of operations dur-
ing scheduling (SIMDization) will only target core operations. However, extend-
ing the model to handle and generate pre- and post-processing specific operations
(shuffling, masking, sorting) is feasible and part of our future work.

In this work we do not include memory or register considerations. We assume
that enough multi-ported memory banks exist to cover the bandwidth demand to
the processor and they are sufficiently large. When it comes do data alignment,
specific data assignment constraints similar to those we presented in [16] can be
added to the model. Furthermore, the size of the register file can be explored by
evaluating the register pressure, as we show in [1]. Although all these parameters
could be added to the Pareto space, as additional dimensions, for the sake of clarity,
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the case study we present further employs only three parameters: the number of
scalar units, the number of SIMD units, and the width of a SIMD unit.

As target applications, we consider kernels from digital signal processing
(DSP) domain. Such kernels can be implemented differently depending of the
computational model. For example, in an imperative language they are usually
implemented as an iterative execution of a code sequence (a loop or a nested loop
construct). In the dataflow model of computation [17], this is equivalent to the
repetitive execution of an actor processing a data stream.

We confine ourselves to kernels that can be modeled as a directed acyclic graph
(DAG) whose nodes represent basic operations and edges dependencies between
them. Similar basic operations, which are also independent, can thus be grouped
together and issued as one SIMD instruction.

5 Approach

In this section we present our approach to solving the problem defined in the previ-
ous section. The design space exploration flow we employ is depicted in Figure 1.
As inpu,t we assume a set of applications the architecture is designed for. In mul-
timedia and other streaming domains, the most computationally demanding parts
are usually repetitive behaviours, or kernels, which are required to achieve a cer-
tain throughput. We assume that the throughput requirements and these kernels
are extracted and are available for our use. Note that the throughput is dictated
by the application, which often needs to provide a certain quality of service, e.g.
samples per second. However, our kernel scheduling is carried out at clock cycle
level, which is architecture dependent. Therefore, the designer has to also provide
an estimate for the clock cycle, based on the used technology and own experience
with hardware design.

Once these inputs are available, the exploration can start. For each kernel in
the target application set, we generate and solve a constraint model to generate
Pareto points (see Section 5.1) that meet the respective throughput requirements.
Once the Pareto points for each such kernel are generated, they are delivered to the
designer, who then merges these points into one architecture candidate, meeting
the throughput requirements for the entire application set. The resulting architec-
ture candidate depends on the design requirements (e.g. chip size, chip cost, power
consumption) and the experience of the designer. Once the candidate is selected,
the designer can implement a detailed model and evaluate it to ensure that the re-
quirements are met. If the designer is not satisfied or prefers to experiment more
with other candidates, another merge of the Pareto points provides a new candi-
date. Furthermore, the inputs can be refined based on this evaluation and the whole
process re-run, in order to get more accurate results.

In this work we automate part of this flow as shown in the grey box from Fig-
ure 1. Note that this is a computationally intensive part, which would otherwise
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Figure 1: Design space exploration flow

require a long time to be carried out manually by a designer. Furthermore, gener-
ating the Pareto points for each kernel are tasks that can be carried out in parallel,
leading to even faster design space exploration.

In the rest of this section we first describe how pareto points are generated with
constraint programming and continue with modeling details.



5 Approach 125

5.1 Pareto points generation
To define multi-objective optimization more formally we assume that there exist
several optimization criteria or cost functions denoted by fi(x), i = 1, . . . ,n. We
define a Pareto optimal solution as vector x, if all other vectors y have a higher
value for at least one of the cost functions, i.e., ∀y ∃i : fi(y)> fi(x).

The generation of Pareto points can be formalized using constraint program-
ming. The idea is to start search with most relaxed constraints. When a solution
is found, additional constraints are added to the solver. These constraints cut the
part of the search space that can only have dominated points. Consider a two di-
mensional space with two criteria, cost and execution time. Assume that the solver
finds a solution with cost ci and execution time eti. The newly added constraint
should forbid solutions with greater cost or greater execution time and therefore
constraint cost < ci ∨ time < eti is imposed. This constraint excludes any domi-
nated point in the rest of the search but does not automatically eliminate dominated
points previously found. Therefore it is necessary to explicitly remove such dom-
inated points from the list of Pareto candidates.

The whole procedure for finding Pareto points is depicted in Listing 1. It as-
sumes that we have a multi-objective optimization of n cost functions, denoted as
costi,0 ≤ i ≤ n. The procedure iteratively executes a depth first search method,
called DFS in the listing. After each execution, the discovered n-dimensional point
(val0, . . . ,valn) is added to the set of Pareto points and a constraint that cuts dom-
inated points is imposed. Dominated points are also removed from the set of al-
ready generated Pareto points, if such exist. The method has been used previously
in [7] and recently formalized as a Pareto constraint [18].

v e c t o r p a r e t o (V , [cost0, . . . ,costn] )
paretoPoints←∅
solution← DFS(V )
whi le solution 6=∅

(val0, . . . ,valn)← solution
paretoPoints← paretoPoints∪ (val0, . . . ,valn)
impose cost0 < val0∨·· ·∨ costn < valn
remove p o i n t s domina ted by (val0, . . . ,valn) from paretoPoints
solution← DFS(V )

re turn paretoPoints

Listing 1: Pareto points generation algorithm
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5.2 Modeling details
In the following, we detail the constraint model we built to generate the Pareto
points for each application. Each point is in three-dimensional space with the
number of available SIMD Units, the SIMD Width, and the number of Scalar Units,
as the axes. SIMD Units can be up to N while Scalar Units can be up to M. SIMD
Width on the other hand is dimensioned as powers of 2, up to 2K .

As mentioned in Section 4, the applications are represented as DAGs and each
node in the graph, representing an operation, is associated with several finite do-
main variables (FDVs):

• starti denotes when the node is scheduled to run.

• modStarti denotes the node’s start time in the modulo schedule, formally
modStarti = starti mod II where II is the initiation interval for the modulo
schedule (see Section 3.3).

• onSIMDi is a boolean denoting whether or not the node is scheduled on a
SIMD unit.

• latencyi denotes the number of clock cycles to elapse before the output of
node i is ready once it runs. This depends on onSIMDi as SIMD units and
scalar units have different latencies.

The II is represented also as a variable. Since at the end of each steady state
one iteration gets completed and since the length of the steady state is equal to II,
the throughput can be represented as 1/II. Therefore, to enforce the throughput
requirement, we include 1/II ≥ throughput.

Each edge in the application DAG represents a data dependence between the
connected nodes. Therefore, for each edge, we include an inequality constraint
ensuring the precedence between the source and the destination nodes, so that the
destination node will be scheduled after the source node produces its output. This
is denoted by constraint (1)

∀(i, j) ∈ E : starti + latencyi ≤ start j (1)

For the resource related constraints, we use the modStart variables. Once the
modulo times are consistent, the start will comply automatically.

Each SIMD unit can only run one type of operation in one clock cycle. To
ensure this, we first group operations based on their types, then count how many
SIMD units a particular group needs each clock cycle, based on the count of nodes
of that type scheduled to run on that clock cycle. Note that this count also is
a variable depending on onSIMD, since each node can either run on a SIMD or
scalar unit. Instead of using a counting constraint per clock cycle we use the
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global_cardinality constraint. By grouping operations based on their types,
we guarantee that only one type of operation is run on the same SIMD unit per
clock cycle. Finally, we merge these groups in a cumulative constraint to limit
the total number of SIMD units used in each clock cycle to the number of available
SIMD units, which is one of the Pareto criteria.

The fact that we are not modeling each individual SIMD unit, but as a group
of resources, lets us avoid symmetrical solutions leading to a growth in the search
space exponential to the number of SIMD units available. It also simplifies the
model by means of fewer variables.

Similar to the SIMD units, for all the scalar units, we include another
cumulative constraint to limit the total number of scalar units used in each clock
cycle to the number of available scalar units.

6 Case study

To demonstrate how our method can direct design space exploration, we provide
a case study in which we provide a set of Pareto points for several DSP kernels,
merge them into an architectural candidate and evaluate its performance to see that
the throughput requirements are met.

6.1 Automated Pareto points generation

An architecture is defined by the following Pareto criteria:

• SIMD Units denotes the number of SIMD units available in the architecture.

• Scalar Units denotes the number of scalar units available in the architecture.

• SIMD Width denotes the width of each SIMD unit (i.e. number of parallel
operations each unit can run).

The upper bounds for SIMD Units, Scalar Units, SIMD Width denoted as
(N, M, K) are set to (4, 8, 3), respectively. Besides these characteristics, each
SIMD unit is assumed to have a fixed number of pipeline stages that we assume
for this case study to be seven and therefore have a latency of 7 clock cycles, while
scalar units have a latency of 4 clock cycles.

Table 1 lists the details of the graph representations as well as the assumed
throughput requirements and latency limits of the set of DSP kernels that we pro-
pose an architecture for in this case study. Explicitly, the application set includes
Loeffler’s inverse discrete cosine transformation (denoted only as IDCT in the rest)
[19], an in house implementation of Modified Gram-Schmidt (MGS) based mini-
mum mean squared error (MMSE) QRD algorithm [20] which is used in MIMO
systems, and three other kernels from the Mediabench suite [21], namely elliptic
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Application #nodes #edges Min thr. Max. lat.
(sample/cc) (cc)

IDCT 48 63 0.050 100
QRD 106 157 0.020 400
EWF 34 47 0.100 100
JPEG_FDCT 134 169 0.021 200
MPEG_IDCT 114 164 0.014 200

Table 1: DSP kernels used in the case study

wave filter (EWF), forward discrete cosine transformation from JPEG and MPEG
IDCT (not to be confused with Loeffler’s IDCT).

Throughput and latency requirements are imposed by the application perfor-
mance requirements. For different applications these parameters can be imposed
by the architecture designer.

The Pareto optimization process is run on a MacBook Pro with 2.2 GHz Intel
Core i7 processor and 8 GB RAM. The constraint model is implemented in the
Minizinc 2.0 [22] constraint modeling environment and search is implemented in
JaCoP [11].

Our CP implementation of the Pareto optimization may not always finish exe-
cution in a limited time. In such cases, the search space is not entirely examined
and this fact has two consequences on generated points. First, there may be addi-
tional Pareto points that our search does not find. Second, the points found may
not be Pareto optimal, i.e. they may be dominated by the points that are not yet
found. In our case study only JPEG FDCT timed out in 10 minutes. Optimization
for other kernels finished in less than 6 seconds, and therefore gave optimal Pareto
points.

Fig. 2-5 depict the resulting Pareto points for all the kernels in Table 1. In
these three dimensional figures axes (X , Y, Z) correspond to (SIMD Units, SIMD
Width, Scalar Units) resprectively.
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Figure 2: The Pareto points obtained for EWF. Exactly the same points were ob-
tained for QRD.

Figure 3: The Pareto points obtained for IDCT.
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Figure 4: The Pareto points obtained for JPEG FDCT.

Figure 5: The Pareto points obtained for MPEG IDCT
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6.2 Candidate selection and evaluation

As mentioned earlier, after the generation of the Pareto points, the designer needs
to merge them and come up with a candidate architecture with the Pareto criteria
that meets every kernel in the target set. Consequently, the designer has to make
sure that the proposed candidate meets the application requirements. In this sec-
tion, we assume the designer’s role and demonstrate how the designer-dependent
part of our design flow can work.

Inspecting the Pareto points, we can see that (1, 4, 0) is a common point for
the first four kernels while it is dominated by (1, 2, 0) for MPEG IDCT, which
means that in principle it should meet the performance requirements for all five
kernels. Note that (2, 2, 0) is also a suitable option but we prefer (1, 4, 0) over
(2, 2, 0) since we assume two tight SIMD units are costlier than one larger SIMD
with the same processing power.

In order to evaluate this choice, we scheduled each kernel and measured the
requirements together with the utilization, as shown in Table 2. We let the solver
run one minute to maximize the throughput. A comparison of Tab. 1 and 2 shows
that all kernels meet their requirements on the proposed architecture. Besides,
with the maximization of throughput in scheduling, the SIMD unit is utilized over
85%, except for MPEG IDCT. This deviation can be explained by the fact that this
kernel needs only (1, 2, 0) as Pareto criteria, as shown in Figure 5, and the rest of
the extra width in the proposed SIMD unit is therefore underutilized.

Since the schedules result in a margin of improvement w.r.t. throughput, the
designer can use this leeway to decrease the clock frequency if necessary (e.g. to
decrease power consumption), without invalidating the requirements.

Application Throughput SIMD Util. Latency
(sample/cc) % (cc)

IDCT 0.071 86 42
QRD 0.037 98 287
EWF 0.111 94 98
JPEG_FDCT 0.026 87 91
MPEG_IDCT 0.022 62 112

Table 2: Evaluation of the candidate architecture (1,4,0)

7 Conclusions

We presented a method for improving the design space exploration targeting cus-
tom processor architectures, by automating the extraction of solution candidates.
Our method, starts from a set of applications with computationally intensive ker-
nels and throughput requirements. The problem is modelled in a constraint pro-
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gramming environment and solved efficiently as a set of Pareto optimization sub-
problems. As a result, it proposes a number of possible processor configurations
for each application, such that the requirements are met and resources minimized.
As resources we mainly focus at this point on the number of SIMD units, their
width and the number of scalar units. It is then up to the designer to select the
best combination of these solutions and go further to more detailed modeling and
evaluation of these design candidates.

We illustrate our approach using a set of five kernels from the multimedia
domain. The analytical evaluation of the most promising solution candidate sug-
gested by our design flow shows that it improves over the performance require-
ments with a considerable margin and provides very high utilization. Whereas a
corresponding manual attempt can take months of labor by experienced designers,
our method can suggest and analytically evaluate candidates in minutes, efficiently
extracting a set of feasible solutions with minimal resources.

In the future we plan to experiment with adding more design parameters, as
well as modeling the architecture more accurately, including storage and process-
ing units constraints.
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Abstract

Today’s multimedia and DSP applications impose requirements on performance
and power consumption that only custom processor architectures with SIMD capa-
bilities can satisfy. However, the specific features of such architectures, including
vector operations and high-bandwidth complex memory organization, make them
notoriously complicated and time consuming to program. In this paper we present
an automated code generation approach that dramatically reduces the effort of pro-
gramming such architectures, by carrying out instruction scheduling and memory
allocation based on a constraint programming formulation. Furthermore, the qual-
ity of the generated code is close to that of hand-written code by an experienced
programmer with knowledge of the architecture. We demonstrate the viability of
our approach on an existing custom heterogeneous DSP architecture, by compil-
ing and running a number of typical DSP kernels, and comparing the results to
hand-optimized code.
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1 Introduction

Embedded systems are a special class of computing systems with very specific
requirements on performance, cost and power/energy consumption, which are of-
ten addressed via special design and architectural choices. In particular, custom
processors are often employed, as they bring ways to leverage and finely tune the
application parallelism in order to meet the performance at acceptable power bud-
gets. For DSP and multimedia applications, which are the type of applications we
target in this paper, data parallelism is usually supported by SIMD instructions and
specialized high-bandwidth memory architectures.

However, the performance introduced by such architectural solutions comes
with a trade-off in programmability. Traditional compilers are not built to exploit
the irregular structure and specific features available in such architectures. There-
fore, using standard techniques and tools to compile from a high level language
comes at the price of very low quality of the generated code.

The preferred alternative is to write machine code by hand. However, there are
several problems with this approach. First of all, coding becomes extremely time
consuming and tedious. The programmer has to select the instructions to imple-
ment the program. For architectures with SIMD-like features, this means bundling
smaller similar operations into vector instructions. To utilize the processor effi-
ciently and increase application throughput, the programmer also needs to come
up with a schedule that parallelizes the code as much as possible, while respect-
ing the resource and memory constraints. It can take many man-hours to write
machine code that corresponds to few lines in a high-level language. Secondly,
the programmer needs to know the intricate details and complexities of the archi-
tecture, including, but not limited to, processor structure, memory layout, machine
instructions, etc. Most of the time this information is available only to the architect
of the processor. Even for the architect, the overwhelming amount of information
to be taken into account while writing machine code by hand, makes this a tedious
and error-prone process.

Our goal in this paper is to increase the programmability of such custom ar-
chitectures without losing performance compared to the hand-written code (by the
architect), by automating the code generation process. As our target platform for
this study, we use an existing custom architecture with vector processing capabil-
ities, built especially for running DSP algorithms efficiently [1]. The architecture
offers SIMD instructions that can execute up to four operations in parallel and a
specialized memory architecture that can feed enough data to the SIMD unit.

In our work, we experiment with computationally intensive parts of programs
that are run many times for each piece of data (i.e. kernels). Shortening the sched-
ule for these parts can drastically increase the overall application performance,
and therefore, aggressive optimization techniques are beneficial even if they re-
quire longer compilation times. In this study, we consider such kind of programs,
represented as feed forward dataflow graphs.
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2 Related Work

There are many aspects to code generation for custom architectures that relate to
our work, such as instruction selection, instruction scheduling and register alloca-
tion. There is plenty of attention towards each of these topics, in isolation or in
combination as in this work. Here we identify and report the most related ones.

Instruction selection and scheduling for a given processor or multi-processor
are complex problems known to be NP-complete. Special attention has been given
recently to custom architectures that have non-regular instruction sets as well as
non-regular memory organizations. This makes it difficult to use well-known com-
piler infrastructures, such as LLVM [2]. An extensive survey about instruction
selection by Blindell [3] is an invaluable text for further reading on the subject.

Different aspects of efficient code generation for SIMD architectures have been
studied. Wu et. al. explore memory alignment issues [4] and propose a method to
simdize loops with runtime alignment and conversions between data of different
sizes. Authors of [5] recognize the problem of code generation for SIMD archi-
tectures for irregular kernels. They study disjoint memory references, arbitrar-
ily misaligned memory references, and dependence cycles in loops and propose
a heuristic method to generate SIMD code. They extract both inter- and intra-
iteration parallelism, taking data reorganization overhead into consideration, and
place data with help of data reorganization code. Our approach works as well for
irregular loops, making it possible to generate efficient code regardless if the orig-
inal code has regular or irregular references. We make use of the custom nature of
the architecture and try to minimize data permutations while not employing data
reorganization code.

The polyhedral model formalizes data dependencies in loops, in concise math-
ematical notations and is used to define different code transformations that facili-
tate code generation, not only but also for SIMD architectures. Authors of [6] use,
for example, the polyhedral model for code generation for SIMD architectures.
They propose a 3-step framework that facilitates SIMD execution of programs.
Adaptive loop tiling approach based on polyhedral transformations is also intro-
duced in [7]. We do not employ loop transformations based on polyhedral model
but they can be provided for our framework as pre-processing.

There are methods that may solve these problems optimally. Mixed integer
programming (MIP), constraint programming (CP) or dynamic programming are
common methods for mixed constrained versions of these problems.

Bednarski [8] explores optimal or highly optimized code generation techniques
for in-order issue superscalar processors and various VLIW processors, using dy-
namic programming and integer linear programming (ILP). The dynamic program-
ming method generates all possible solutions and searches for the optimum, while
shrinking the search space via pruning and compression techniques. Bednarski’s
work continues with investigating ILP formulation of the optimal code generation
problem, again for VLIW architectures.
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The constraint programming (CP) approach, developed during recent years for
different purposes, is one of the methods used for solving these problems opti-
mally. Beek and Wilken [9] use CP to optimally schedule basic block instructions
on single-issue RISC processors. They address arbitrary latencies for instructions.

The work in [10] presents Unison, a code generator that addresses integrated
global register allocation and instruction scheduling for architectures with VLIW
capabilities, implemented with constraint programming. Input programs are rep-
resented in SSA (static single assignment) form. Merging instruction scheduling
with register allocation in one model, Unison outperforms LLVM in most of the
experiments presented and generates optimal code. Our approach addresses code
generation for vector processors and differs mainly in the focus on data memory
allocation and data accesses for these architectures, while theirs is on register al-
location.

Optimal basic block instruction scheduling for multiple-issue processors by
Malik et al. [11] is another work using constraint programming. They schedule
basic blocks from the SPEC 2000 integer and floating point benchmarks. The ar-
chitectural model is VLIW-like, where several processing units run different types
of basic instructions. Similar to our model, applications are represented as DAGs.
Their target architecture does not have vector processing capabilities.

The authors of [12] developed an approach to register allocation using con-
straint programming. Their unified optimization framework simultaneously con-
siders the impact of loop unrolling and instruction scheduling. This is achieved
by an instruction tiling approach where instructions within a loop are represented
along one dimension and innermost loop iterations along the other dimension. The
approach makes it possible to exploit regularity along the loop dimension. Our ap-
proach does not depend on regular loops and can handle arbitrary data references.

Another optimal method for instruction scheduling and register allocation is
presented in [13], by Eriksson et al. They focus on clustered VLIW architectures
and present an ILP method, combining instruction selection and scheduling with
register allocation. For scheduling loops they employ modulo scheduling [14],
which is a well established software pipelining technique.

Our previous work [15, 16] uses CP for instruction selection and scheduling
for reconfigurable processor extensions. We address both complex instructions
and SIMD reconfigurable architectures. Instruction selection for complex instruc-
tions employs a custom global constraint for sub-graph isomorphism while SIMD
code generation assumes specifications in domain specific language (DSL). In this
work we focus less on instruction selection and more on scheduling with memory
allocation. We do not assume regular loops either and can handle irregular data
accesses. Our input is a graph based internal representation that can be generated
from most high-level languages.
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3 Background

3.1 Constraint programming

In this paper we extensively use constraint satisfaction methods implemented in
the constraint programming environment JaCoP [17].

A constraint satisfaction problem is defined as a 3-tuple S = (V ,D ,C ) where
V = {x1,x2, . . . ,xn} is a set of variables, D = {D1,D2, . . . ,Dn} is a set of finite
domains (FD), and C is a set of constraints. Finite domain variables (FDV) are
defined by their domains, i.e. the values that are possible for them. A finite
domain is usually expressed using integers, for example x :: 1..7. A constraint
c(x1,x2, . . . ,xn) ∈ C among variables of V , is a subset of D1 ×D2 × . . .×Dn
that restricts which combinations of values the variables can simultaneously take.
Equations, inequalities and even programs can define a constraint. Each constraint
is paired with a consistency technique to eliminate the infeasible values. These
techniques can be complete (removing all infeasible values at once) or incomplete
(removing a subset of infeasible values) depending on the choice of algorithms
implementing them.

A global constraint combines several simpler constraints and handles them
together. While semantically equivalent to the conjunction of these simpler con-
straints, a global constraint lets the solver exploit the structure of a problem by
providing a broader view to it [18]. In this paper we use, among others, inten-
sively the global constraints named cumulative, diff2 and regular.

The cumulative constraint [19] was originally introduced to specify require-
ments on task scheduling on a number of resources. It expresses the fact that at
any time the total use of these resources for the tasks does not exceed a given limit.
The diff2 [20] constraint is designed to model the placement of rectangles in two
dimensional space in such a way that they do not overlap.

The regular constraint [21] is defined for a sequence of variables and a de-
terministic finite automaton (DFA). It requires that the corresponding sequence of
values taken by these variables belong to a given regular language, defined by the
DFA.

A solution to a CSP is an assignment of a value to each variable from its
respective domain, in such a way that all constraints are satisfied. Consistency
methods try to remove inconsistent values from the domains in order to reach a
set of pruned domains whose combinations are valid solutions. Most consistency
techniques are not complete and the solver needs to explore the remaining domains
for a solution using search.

Search usually assigns values from variable domains to the variables using
depth-first-search. The consistency method is called as soon as the domains of the
variables for a given constraint are pruned. If a partial solution violates any of the
constraints, backtracking will take place, reducing the size of the remaining search
space.
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3.2 Target architecture: ePUMA

ePUMA is a heterogeneous digital signal processing (DSP) architecture [1], which
includes a master processor that is responsible for overall application execution,
and which may off-load DSP computing tasks to multiple compute clusters. The
master processor and compute clusters communicate with off-chip main memory
and with each other through a star network and a bi-directional ring network. A
mailbox system can be used for notification and synchronization. Fig. 1 shows
an overview of the architecture, with the components of interest for this work
highlighted.
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Figure 1: Overview of ePUMA architecture.

A computing cluster contains a local controller, multiple vector DSP compute
processors called Matrix Processing Elements (MPEs) and a set of local vector
memories (LVMs). Each MPE can be assigned two of the local memories at a
time for processing. The memories may be reassigned to exchange data between
cores. An MPE contains a complex datapath structure, with 16 multipliers and
three levels of arithmetic units, to accelerate general and application-specific com-
puting patterns. The processor may operate on vectors of arbitrary length directly
in the local memories, processing 128-bits per clock cycle and vector operand.
The focus of this work is limited to code generation for a single MPE.

Each local memory is a single-ported multi-bank memory, which allows con-
flict and penalty-free parallel memory access even in presence of unaligned and
out-of-order memory access patterns, as long as any vector memory access only
requests from each memory bank once every clock cycle. Since the memory ac-
cess patterns of most DSP algorithms are predictable, data can often be prepared to
guarantee conflict-free access, which eliminates the data access bottleneck present
in many other SIMD and vector architectures. Generating conflict-free memory
accesses is one of the main challenges addressed in this work.
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4 Problem definition
To achieve our goal, we employ the following process, depicted in Figure 2, which
makes use extensively of constraint programming (CP), proven to be effective for
solving scheduling and allocation problems [17]. We assume that programs are
compiled to an intermediate representation (IR) which is used together with archi-
tecture constraints to generate a constraint model that defines the problem. This
model combines operation scheduling with memory allocation in a CP model,
since these stages are highly dependent on each other. The architecture constraints
include parameters, such as width of SIMD unit, number of memories and regis-
ters, latencies for operations as well as specific characteristics of memory/register
access patterns and access latencies. As output from the constraint solver, we ob-
tain an instruction schedule along with memory allocation that contains all the
information needed to generate the machine code. To analyse the performance
of the obtained code, we employ a simulator for the target architecture to run the
code.

kernel dataflow graph
(IR)

architecture constrains
(e.g. for ePUMA)

application kernel
(DSL, C, Java, ...)

CP model generation

Model constraints

CSP solving

(ePUMA) machine codeexecution
(e.g. ePUMA simulator)

Figure 2: Code generation flow for SIMD unit.

4.1 Architectural assumptions
The targeted version of the architecture implements binary operations. Therefore
we assume all operations to have the form:

op dst src1 src2

where,op is the operation code and dst represents the destination of the outputs,
while src1 and src2 represents the first and second operands of the operation
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respectively. As we have a SIMD-processor, there can be up to SW operands in
one instruction. Figure 3 depicts an example instruction for the targeted version
of the architecture, where SW = 4. The SIMD logic works point-wise and aligns
operations to lanes 0 to SW −1. Note also that we assume fixed order of operands,
defined by the input program. The operands in dst, src1 and src2 can reside

p = a+ e
q = b+ f
r = c+g
s = d +h

⇒ sum[p,q,r,s][a,b,c,d][e,f,g,h]

Figure 3: SIMD logic

either in the memory or a register, but each operand group has to come from the
same memory/register. Registers provide faster access while memory provides
more space and flexibility. There are two 4-bank memories and 8 registers avail-
able.

Each multi-bank memory allows reading a full vector in one clock cycle pro-
vided that the access does not involve reading multiple elements from the same
bank (which constitutes a bank conflict). Some access patterns (henceforth called
regular access) are supported implicitly through the hardware implementation
while other patterns can be used through the help of a permutation vector stored
in the program memory as long as it does not entail any bank conflicts.

The architecture can issue an instruction each clock cycle but instruction la-
tency depends on several factors. Different operation types can have different
latencies. For example, we assume that the default latency for a multiplication is
4 clock cycles, i.e. the output of a multiplication is ready to use 4 cycles after its
issue. While the same figure for an addition is 1 clock cycle. This default latency
is extended when one of the following occurs:

• Writing back to memory: Results in one clock cycle additional latency.

• Bank conflict: Results in one clock cycle additional latency per conflict, per
bank.

• Memory conflict: Both src1 and src2 are read from the same memory. As
the memory is single-ported, this adds one clock cycle latency.

• Too many permutations: Each irregular access needs a permutation vector
to be defined and kept in the program memory. The architecture provides a
way to avoid the permutation penalty if there is only one read permutation
in the pipeline. But when there is more, this adds to the latency.

Registers on the other hand cause no such additional latency or delay penalties.
However, they only allow regular access.
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4.2 Application assumptions
The application to run on the architecture is written in a high-level language and
translated into to an intermediate representation in form of a directed acyclic graph
(DAG), G : (V,E) where V denotes the vertices (nodes) and E denotes the edges
which represent the data dependency between the nodes. Nodes can be either
operation nodes or data nodes. The graph is also bipartite. Every data node that is
not an input of the application, is preceded by one operation node i.e. the operation
that produces it. Similarly, every operation node is succeeded by a data node i.e.
the data that is produced by it.

In the rest of the section we will use the simple application depicted with its
corresponding graph in Figure 4 as our running example to illustrate the key as-
pects of our model. This small application consists of 4 multiplications and 2
additions.

a

**

b

* *

c d

x

+

yp
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q

s t

Figure 4: Running example

We assume that the data placement for the inputs to the application is fixed
beforehand, and all input data reside in memories. In case of an operation on
two sets of data (e.g. matrix multiplication) we assume that each set reside in
one single memory, placed in consecutive addresses. For our running example,
this means [a,b] reside in addresses [0,1] in the first memory and [c,d] reside in
addresses [0,1] in the second memory.

5 Approach

5.1 Modeling details
As in our previous work [16, 15], we have precedence constraints that ensure the
data dependencies are respected. Similarly, we use cumulative to group at most
SIMD-width (SW ) operations for running simultaneously. Another recurring con-
straint is diff2, which we use for memory and register allocation to allow reuse
of these data locations while guaranteeing non-overlapping lifetimes.

The big difference in this work is the modeling of memory accesses. As men-
tioned earlier, the memory can be accessed regularly without any latency penalty,
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or more flexibly with possible latency penalty. Any irregular access needs also a
permutation vector to define the memory access for the machine. Therefore we
have to identify for each instruction, the regularity of access or lack thereof, in
order to decide whether a permutation vector is necessary.

One method is to ignore and not model the permutation vectors and calcu-
late them as a post-processing step, after the operation schedule memory/register
assignment is decided. However this results in schedules that need many permuta-
tion vectors which in turn causes an abundance in latency penalties, degrading the
performance of the generated code.

Instead, we choose to incorporate the permutation vectors in our constraint
model, so that the solver is aware of the effects scheduling and data placement
decisions have over permutation vectors, during the decision process. This way the
solver can make decisions leading to less permutation vectors whenever possible,
and avoid the additional latency.

In most of this section we will describe the model and constraints around per-
mutation vectors.

5.1.1 Memory schedule

In order to reason about regularity, we need to know which operations are bun-
dled together, so that we can analyze which locations are accessed simultaneously.
However this is known only when the operation scheduling is decided, i.e. de-
pending on when an operation is scheduled, the groupings change. Therefore we
need a data structure of FDVs that keeps track of the simultaneous read and write
accesses for each time step depending on the schedule, which will be updated by
constraints during scheduling and memory/register assignment.

Figure 5b depicts the data structure we use for this purpose, filled with a pos-
sible schedule for our running example from Figure 4. This memory schedule
consists of three matrices, namely dst, src1 and src2, with the same structure, in-
dexed by time and lane. The elements of the matrices are connected to operation
scheduling and memory/register assignment with constraint (1), where opNodes
denotes the set of all operation nodes, starto represents the issue time of operation
o and laneo the lane it is assigned to on the SIMD core. By this constraint, each
operation sets the slot indexed with (starto, laneo) in each matrix to the addresses
of its inputs and output.

∀o ∈ opNodes :
dststarto,laneo = addressouto
src1starto,laneo = addressin1o

src2starto,laneo = addressin2o

(1)

lane variables are used for reasoning over the order among simultaneous op-
erations, which is necessary for deciding over permutation vectors. addressd on
the other hand represents the location of data d in the flattened data space. This
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includes the address spaces of 2 memories and 8 registers. This flat view is useful
for expressing arithmetic constraints and constraints concerning data lifetimes.

Throughout the paper we use the tuple (md ,offsetd) to represent the memo-
ry/register assignment and offset assignment within that memory/register for the
data node d respectively. Note that (md ,offsetd) is only a different view of addressd ;
they are not necessary but they make our model more concise. In Figure 5b we use
symbolic names such as m0 or r0 for memory/register assignment instead of md
to improve the readability of the figure. Values {0,1} model memories and 2..9
model registers. Since register size is equal to vector size (also SW), offsetd is lim-
ited to values 0..3. Note also that the accesses to the matrices in constraint (1) are
done with FDVs as indices, therefore they are translated into element constraints
in the model.

While constraint (1) sets the elements of the memory schedule based on the
operations scheduled for each time and lane, constraint (2) sets the slots where no
operations are scheduled, to −1. This is achieved by counting the number of −1s
in each row and equating that to SW − ops_in_tt , where ops_in_tt is the number
of operations scheduled on t. ops_in_tt is maintained by a global cardinality con-
straint, which counts the occurrence of each t among operation start times and sets
ops_in_tt to this count. Note that in constraint (2) and the rest of the paper, we
use single-indexing as a shorthand for representing the vectors of memory/register
accesses that happen in t as dstt , src1t and src2t .

∀t ∈ 0..MAXT :
count(−1,dstt) = SW −ops_in_tt
count(−1,src1t) = SW −ops_in_tt
count(−1,src2t) = SW −ops_in_tt

(2)

5.1.2 Access constraints

With the help of the memory schedule, we can now reason about accesses to mem-
ory and registers at each time step. The goal here is, for each access, to define
whether it is regular (defined by (3)) or if we need a permutation vector. This way
we can try eliminating permutation vectors to decrease the latency penalty that
may occur because of them, and if not calculate the permutation vector necessary
for code generation.

For this study we define an access as regular if it is increasingly or decreas-
ingly consecutive, or constructing a vector through repetition of a single scalar or
a consecutive half vector. Note that repetition is allowed only for src1 or src2,
since having repetition in dst would mean writing to the same slot more than once,
simultaneously. For a full vector operation for SW = 4, this would mean the al-
ternatives listed in (3) for any src1t or src2t , assuming that the access starts with
address a. The architecture additionally allows fixed steps of arbitrary size as long
as they do not result in bank conflicts but our model does not support this yet.
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[a, a, a, a]

[a, (a+1), a, (a+1)]
[a, (a+1), (a+2), (a+3)]
[a, (a−1), (a−2), (a−3)]
[a, (a−1), a, (a−1)]

(3)

The regular access alternatives in (3) can be seen as comprising a language
that can be represented by a concise deterministic finite automaton (DFA), if we
transform each access vector based on its first access and introduce several ad-
ditional constraints about where the −1 entries can appear in an access vector.
The transformation is done by constraint (4) where trans f orm(row) transforms
the row at hand. To simplify the reasoning around regularity and keep the reg-
ularity DFA concise, we push the −1 entries to the end of each row by con-
straint (5), where mrowi is set to a memory/register assignment or -1 according
to constraints (1) and (2). With this transformation we can represent the lan-
guage of regularity with a DFA with 13 states and 29 edges (dfa in constraint (4)).

∀t ∈ 0..MAXT , row ∈ {dstt , src1t , src2t}, i ∈ 0..SW −1 :

trans f orm(row)i =

{
−1 for rowi =−1
|rowi− row0| for rowi ≥ 0

(4)

decreasing(mrowi) (5)

For each access vector (i.e row in constraints (6, 7, 8)) we augment its trans-
formed version with a boolean FDV named p1row, representing its regularity. This
augmented vector is fed to the DFA which sets p1row to 0 if the transformed vector
is regular and to 1 otherwise (see constraint (6)). A side effect of transformation
with absolute values is that we can end up with a regular transformed row when in
fact the original row is not regular. For example, if the row is [4,5,4,3], it’s trans-
formation will be [0,1,0,1] which is regular according to (3). To alleviate this side
effect, we introduce another boolean FDV p2 for each row, which is set to 0 when
the first element is either the smallest element (except −1) or the largest, and to
1 otherwise. This is captured in constraint (7). A permutation vector is necessary
for a row when any of p1 or p2 to is set to 1 (constraint (7)).
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∀t ∈ 0..MAXT , row ∈ {dstt , src1t , src2t} :

regular(trans f orm(row)⊕ p1row, dfa) (6)

p2row = row0 6= minEx(row,−1) ∧ row0 6= max(row) (7)

permVectorrow = p1row∨ p2row (8)

mrow ∈ REG =⇒ permVectorrow = 0 (9)

Permutation is only available for memory accesses, hence we force regularity for
register accesses with constraint (9). We reinforce constraint (9) by letting the lane
of an operation decide the offset of a register access:

∀o ∈ opNodes, d ∈ oins
⋃
{oout} :

laneo = (offsetd mod SW ) (10)

Together with constraint (5), this makes it impossible to access register elements
randomly. Any access has to start from the first element.

5.1.3 Writeback and read conflict for memory accesses

Besides permutation vectors, accessing the memory too often in an instruction
may incur latency penalties, as mentioned in Section 4.1. Figure 6 depicts another
possible schedule for the example from Figure 4. There are several differences
to note comparing this solution to the solution in Figure 5b. Instead of using any
registers, this solution groups all 4 multiplications together by using a permutation
vector in src2 and putting the results to m1. These results have to be summed with
each other, therefore in time step 5 m1 is accessed twice for reading the operands.
The writeback to m1 in t = 0 causes one clock cycle additional latency, hence the

t
0 (m1,2)(m1,1) (m1,3)(m1,0)

lane 0 lane 1 lane 2 lane 3

-1(m1,0) -1(m1,1)5

(m0,0) (m0,1)(m0,1) (m0,0)
lane 0 lane 1 lane 2 lane 3

-1(m1,0) -1(m1,3)

(m1,0) (m1,0)(m1,1) (m1,1)
lane 0 lane 1 lane 2 lane 3

-1(m1,1) -1(m1,2)

dst src1 src2

... ... ...

Figure 6: Memory schedule for the example in Figure 4 for a sub-optimal schedule.
Outputs are ready in t=8

next instruction that is dependent on its results is issued on t = 5. The double
read from m1 and again the writeback to m1 in t = 5 adds two clock cycles to
the latency of the last instruction, making the total length of the schedule 8 clock
cycles, versus the 7 clock cycles of the schedule in Figure 5b.

When modeling the latency for each operation, we add these latency penalties
conditioned on the data placement of its inputs and output.
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6 Experiments

In this section we present our experiments to evaluate the performance of our code
generation method. The point is to demonstrate that the code generated by our
method, which takes a program written in a high-level language and automates in-
struction scheduling and data placement with permutation vectors, performs com-
parably well against hand-written code by one of the architects of the target archi-
tecture.

6.1 Assumptions

We assume that the input data for each application are complex numbers with real
and imaginary parts. This is why the SW = 4 while normally the architecture
divides the width to 8 words of 16 bytes. We generate assembly code for the
architecture and run it on its cycle-accurate simulator.

6.2 Applications

The main application we target is square matrix multiplication, used commonly in
DSP applications such as MIMO [22]. We experimented with 3 different sizes for
input matrices: 2x2, 3x3 and 4x4. 2x2 and 4x4 fits the SW perfectly while 3x3
is trickier to program for maximal utilization of the SIMD core and the registers
with size equal to SW.

Other than matrix multiplication, we target two more kernels common for DSP
applications, FIR-filter with varied sizes and quantization. FIR-filter can be seen
as the repetition of an innermost loop. The purpose of modifying the size is to
increase utilization and performance through exposing more parallelism, at the
cost of increased compilation time and code size.

6.3 Results

We outline results in performance comparison in Tab. 1. The size of each kernel’s
graph is given in parenthesis in the leftmost column. The timeout for the constraint
solver is set to 10 minutes. For the smaller examples, 2x2 matrix multiplication,
4x4-tap FIR-filter, the solver proves optimality in less than a minute. For the others
the solution reported in the table is found within the first 2 minutes and rest of the
time is spent for searching for a better alternative. Therefore it is fair to assume a
compile time of 2 minutes overall.

For matrix multiplication, we match the hand-written code in performance ex-
cept in the largest instance, namely 4x4. Even in 4x4 the overhead is reasonable,
considering the fact that the hand-written code is by an architect, whose detailed
knowledge and experience over the architecture gives him an edge.
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For FIR-filter our method’s performance degrades slightly, especially for 8x4-
tap. The reason behind is that through constraints (5, 10), we strictly limit the
access to registers. Other than accessing the entire register we only allow accessing
the first element or the first half of the register. However as FIR-filter involves
reductions over intermediate results, the hand-written code operates on elements
of the same register to avoid additional latency caused by memory writebacks and
double-reads. The automated code distributes the intermediate results to several
registers or memories instead, incurring writeback and/or double-read latency.

Other than performance, we compared the resulting code size in Tab. 2. In all
instances but one we match the code size of the hand-written code. The exception
is 3x3 matrix multiplication that uses many permutation vectors for grouping 4
operations each issue cycle. The hand-written code groups them 3 by 3 instead,
and avoids the need for permutations. The performances are equal since what the
automation gains by grouping 4 by 4 instead of 3 by 3, it loses by permutation
vector penalties. As an alternative, we tried to disallow permutation vectors com-
pletely for 3x3 to investigate the behavior of our model. The resulting code (shown
as 3x3 matmul w/o PV in the tables) had the same performance and same size as
hand-written. Obviously, for applications that need permutation vectors, such an
approach is infeasible.

For quantization, we match hand written code both in performance and code
size.

Exec. time (cc) Automation
Kernel (|V|) Hand Automated overhead
2x2 matmul (32) 18 18 0%
3x3 matmul (108) 36 36 0%
4x4 matmul (256) 54 57 6%
4x4-tap FIR-filter (67) 24 26 8%
8x4-tap FIR-filter (127) 29 36 24%
Quantization (256) 26 26 0%

Table 1: Comparison of generated code from Automation and hand-written assem-
bly (cycle count).

7 Conclusions and Future work
Architectures such as ePUMA focus on providing highly efficient hardware so-
lutions to compute-intense problems such as DSP applications. This is achieved
by designing a very complex and efficient architecture with matching data access
capabilities to keep the processor busy. However with the focus only on hardware
efficiency, programmability tends to be forgotten. The more complex the architec-
ture gets, the less useful traditional compiler techniques become for programming
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Code size (bytes) Automation
Kernel (|V|) Hand Automated overhead
2x2 matmul (32) 80 80 0%
3x3 matmul (108) 128 128 0%
4x4 matmul (256) 240 240 0%
4x4-tap FIR-filter (67) 64 64 0%
8x4-tap FIR-filter (127) 128 128 0%
Quantization (256) 208 208 0%

Table 2: Code size comparison (bytes).

in a higher level language than assembly. This is mainly because of the staging ap-
proach that separates instruction scheduling and memory/register allocation. In the
exploratory phase of our study, we tried to emulate this approach for 4x4 matrix
multiplication. This resulted in 3x slower code compared to hand-written.

Our experiments demonstrate that, with the help of the constraint program-
ming paradigm, it is possible to use a unified method for instruction scheduling,
memory/register allocation and data access modeling (necessary for permutation
vector calculation) for several DSP kernels. We showed that we can let a pro-
grammer that is not familiar with the details of the architecture write a kernel in a
high level language and using our method, generate code that is almost as good as
hand-optimized by the architect.

As constraints are independent of each other, the architect can add or remove
archtiectural constraints to explore design alternatives. One example is the be-
haviour of registers in this study. Since there is direct access to both the memories
and registers, they can virtually replace each other in an instruction. However the
access rules and latency penalties for memories and registers are very different,
which makes both modeling and solving very difficult. Seeing this, the architect
can enable permutation vectors for registers or make register accesses even stricter
so they can replace memory accesses in even less occasions.

Even though the variation in size and structure for the applications we targeted
in our experiments makes a good case for the performance of our approach, we
would like to test it further with kernels of different sizes and structural properties.
The data structure for the memory schedule in our approach does not scale for
large kernels because its size grows quadratic to number of nodes in the IR graph.
This can be addressed by partitioning the graph into pieces that are solvable in a
reasonable time. We would like to investigate this further and devise efficient and
effective strategies for such partitioning.

Finally we would like to model the architecture of the target platform more
accurately and make use of its special structure to the most. This way we can
eliminate performance degradation similar to what we encountered for FIR-filter
in our experiments.
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