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ABSTRACT
Three-dimensional resistivity surveys and their associated inversion models are required to accu-
rately resolve structures exhibiting very complex geology. In the same light, 3D resistivity surveys 
collected at multiple times are required to resolve temporally varying conditions. In this work we 
present 3D data sets, both synthetic and real, collected at different times. The large spatio-temporal 
data sets are then inverted simultaneously using a least-squares methodology that incorporates 
roughness filters in both the space and time domains. The spatial roughness filter constrains the 
model resistivity to vary smoothly in the x-, y- and z-directions. A temporal roughness filter is also 
applied that minimizes changes in the resistivity between successive temporal inversion models and 
the L-curve method is used to determine the optimum weights for both spatial and temporal rough-
ness filters. We show that the use of the temporal roughness filter can accurately resolve changes in 
the resistivity even in the presence of noise. The L1- and L2-norm constraints for the temporal 
roughness filter are first examined using a synthetic model. The synthetic data test shows that the 
L1-norm temporal constraint produces significantly more accurate results when the resistivity 
changes abruptly with time. The model obtained with the L1-norm temporal constraint is also less 
sensitive to random noise compared with independent inversions (i.e., without any temporal con-
straint) and the L2-norm temporal constraint. Anomalies that are common in models using inde-
pendent inversions and the L2-norm and L1-norm temporal constraints are likely to be real. In 
contrast, anomalies present in a model using independent inversions but that are significantly 
reduced with the L2-norm and L1-norm constraints are likely artefacts. For field data sets, the 
method successfully recovered temporal changes in the subsurface resistivity from a landfill moni-
toring survey due to rainwater infiltration, as well as from an experiment to map the migration of 
sodium cyanide solution from an injection well using surface and borehole electrodes in an area 
with significant topography.

channel instrumentation, field methodology, data inversion algo-
rithms and microcomputer technology (Gharibi and Bentley 
2005; Chambers et al. 2006; Loke 2011).

In some areas, repeated 3D surveys are carried out to detect 
temporal changes of the subsurface (Rosqvist et al. 2010) and to 
more fully understand movement of fluids and contaminants in soil 
and groundwater (Singha and Gorelick 2006; Oldenborger et al. 
2007; Hayley et al. 2009; Rucker et al. 2011). Previous attempts to 
accommodate time-lapse resistivity in inverse models have been to 
invert each snapshot independently (Cassiani et al. 2006), invert the 
resistivity difference between snapshots (Labreque and Yang 2001), 
invert the ratio of initial and subsequent snapshots (Daily et al. 
1992), simultaneous inversion (Hayley et al. 2011) and incorporat-
ing the temporal data and model directly into the least-squares 
regularization method (Kim et al. 2009).

INTRODUCTION
Over the last 15 years, the application of two-dimensional (2D) 
resistivity surveys has become one of the standard geophysical 
methods used to map areas with moderately complex geology 
(Loke et al. 2011). However, in very complex areas, the 2D 
inversion model can suffer from artefacts due to structures on the 
periphery of the survey line (Bentley and Gharibi 2004; 
Johansson et al. 2007). To overcome the off-line effects, a three-
dimensional (3D) survey and inversion model may be required to 
obtain sufficiently accurate results (Dahlin et al. 2002; Wilkinson 
et al. 2006; Legault et al. 2008). Three-dimensional surveys 
using electrodes on the ground surface as well as in boreholes are 
now becoming more practical due to recent advances in multi-
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 (1)

In equation (1), the Jacobian matrix J contains the sensitivities 
of the measurements with respect to the model parameters, λ is 
the damping factor vector and g is the data misfit vector. ri-1 is 
the model parameter vector (the logarithm of the model resistiv-
ity values) for the previous iteration, while Δri is the change in 
the model parameters. W incorporates the roughness filters in 
the x-, y- and z- directions. Rd and Rm are weighting matrices 
introduced so that different elements of the data misfit and 
model roughness vectors are given equal weights if the L1-norm 
inversion method is used (Farquharson and Oldenburg 1998; 
Loke et al. 2003). Figure 1 shows a simple division of the sub-
surface into rectangular model cells (Loke and Barker 1996), 
where the corners of cells in the x- and y-directions follow the 
positions of the electrodes on the surface arranged in a rectan-
gular grid. Recent developments have allowed more complex 
models where the electrodes need not be arranged in a rectangu-
lar grid (Rucker et al. 2010; Rucker and Noonan 2013). The 
roughness filter couples the resistivity of each model cell with 
the neighbouring cells (Fig. 2). The roughness filter is usually 
applied in the horizontal and vertical directions only. However, 
in some situations, better results can be obtained by incorporat-
ing diagonal filter components as well (Farquharson 2008; Loke 
and Dahlin 2010).

A comparison of different time-lapse inversion techniques is 
given by Hayley et al. (2011). Our preference is the 4D inver-
sion methodology by Kim et al. (2009) that directly incorpo-
rates the time domain with the space domain. It is proven to be 
a stable and robust technique reasonably free of artefacts com-
pared to some other techniques and has the advantage that it 
can be modified to account for changes that occur within a 
measurement cycle (Hayley et al. 2011). Thus, our implemen-
tation of the time-lapse inversion technique uses the following 
equation:

In recent years, automatic data acquisition systems have 
become increasingly sophisticated (Ogilvy et al. 2009; Rucker et 
al. 2012). These systems are often used in complex geological 
environments, such as landslide zones, dams and landfills where 
2D models can suffer from artefacts due to off-line structures. 
Thus a fully 3D model is crucial (Bentley and Gharibi 2004). 
The systems produce large volumes of data, frequently on a daily 
basis, where rapid interpretation is important. Our interest in 
ameliorating this problem, as demonstrated below, is in develop-
ing stable and robust time-lapse inversion techniques for 3D 
models that can be incorporated into automatic inversion soft-
ware to produce images that are reasonably free of artefacts and 
provide interpretable results when used by field staff who might 
not be familiar with the inversion theory. The 4D inversion 
method by Kim et al. (2009, 2010) was modified for 3D space 
models and to incorporate the L-curve method (Farquharson and 
Oldenburg 2004) to determine the optimum spatial and temporal 
damping factors.

Towards this goal, the paper has been organized such that the 
following section gives a brief theoretical description of the 
inversion algorithms used, followed by results from tests with a 
synthetic data set. Finally, examples from two field surveys are 
presented that show (1) the movement of water and methane gas 
in a landfill site and (2) an experiment to monitor the movement 
of a barren sodium cyanide solution from a gold mine heap 
where electrodes are placed both on the surface and in boreholes.

THEORY
The constrained least-squares optimization method
The smoothness-constrained least-squares optimization method 
is frequently used for both 2D and 3D inversion of resistivity 
data (Loke et al. 2003), with the objective to minimize the differ-
ence between modelled and measured data. The optimization 
equation that gives the relationship between model parameters 
and measured data (Farquharson and Oldenburg 1998) is:

FIGURE 1

Schematic diagram of the 3D 

model used for the survey with a 

rectangular grid of electrodes and 

the use of a cross-model time-

lapse smoothness constraint.
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Kim et al. (2010) to significantly improve the results for some 
2D time-lapse models.

The model vector r in equation (2) now contains the resistiv-
ity of all the different temporal models. If the model has n model 
cells and there are t snapshots, r will have nt model parameters. 
Similarly the data misfit vector g will have mt components if 
each snapshot has m data points. We use an iterative method 
based on the linear-conjugate gradient method (Li and Oldenburg 
1996) to solve the least-squares formulation in equation (2). The 
Jacobian matrix has a very sparse structure, as demonstrated in 
Fig. 3, with only nmt non-zero elements. This sparse structure 
can be efficiently exploited by the linear-conjugate gradient 
method such that mathematical operations are only carried out 
on the non-zero elements of the matrix. In our implementation, 
it is assumed that the resistivity does not change significantly 
during the time taken to measure a single data set. However the 
resistivity of the model is allowed to vary in a non-linear fashion 
between the first and last snapshots.

For areas where the topography is not significant, the resistiv-
ity model uses the finite-difference method to calculate the 
apparent resistivity values, as well as the associated Jacobian 
matrix (Dey and Morrison 1979; Loke and Barker 1996; Spietzer 
et al. 1999; Rucker et al. 2009). The finite-element method 
(Holcombe and Jiracek 1984; Sasaki 1994; Zhou and Greenhalgh 
2001; Marescot et al. 2008) is used in areas with significant 
topography. The Jacobian matrix values are recalculated after 
each iteration with the adjoint-equation approach using the 
potential values at the nodes of the mesh due to a current source 

  (2)

where M is the difference matrix applied across the time models 
with only the diagonal and one sub diagonal elements having 
values of 1 and –1, respectively. Equation (2) aims to minimize 
the difference in the resistivity of each model cell and the cor-
responding cell for the next temporal model, or snapshot (Fig. 1). 
Equation (2) is slightly different from that used in Kim et al. 
(2009) as it incorporates the  term in the right-hand 
side to ensure that the roughness filter is applied directly on the 
model parameters ri as well as on the parameter change vector 
Δri where ri = ri-1 + Δri. a is the temporal damping factor that 
gives the relative weight for minimizing the temporal changes in 
the resistivity compared to the model roughness and data misfit. 
Higher values of a will result in time-lapsed inverted models that 
are more similar to one another at the expense of a higher data 
misfit (Rucker et al. 2011). Rt is a weighting matrix used by the 
L1- or L2-norm method for the temporal constraint and is equal 
to the identity matrix I if the L2-norm temporal constraint is used 
(Kim et al. 2009). The L2-norm constraint minimizes the sum of 
the squares of the change in the resistivity between adjacent 
temporal models. To implement the L1-norm temporal con-
straint, we use the iterative reweighed least-squares method 
(Farquharson and Oldenburg 1998). The L1-norm constraint 
minimizes the sum of the absolute value of the temporal changes 
in the resistivity. The L1-norm temporal constraint is shown by 

FIGURE 2

Types of roughness filters used to 

minimize resistivity changes 

between neighbouring model 

cells.
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al. (2011) carried out repeated inversions with different values of 
the temporal damping factor to determine the value that produces 
results more closely related to a known structure for a synthetic 
data set. Manually adjusting the damping factor is impractical for 
3D field surveys due to the long inversion times. Additionally, 
the lack of sufficiently accurate information to distinguish arte-
facts from true structures at most field sites prevents the practi-
tioner from knowing if the optimal damping factor has been 
chosen. Therefore, efficient automatic inversion software 
requires an adaptive technique to determine the optimum damp-
ing factors for data sets of differing data quality measured over 
areas with arbitrary resistivity contrasts in both space and time.

If the noise level is known, such as from reciprocal measure-
ments, a cooling-schedule-type method to select the appropriate 
value of the spatial damping factor λ  can be used (Farquharson 
and Oldenburg 2004). A large value of λ, usually in the range of 
about 0.10–0.20, is initially used and is reduced by half after 
each iteration until it reaches a preset minimum value (usually 
about one-tenth to one-twentieth the initial value). The model 
that has a data misfit similar to the noise level is then selected.

Tests with a number of different data sets can provide a plau-
sible range of values for the spatial and temporal damping factors. 
These values can then be refined by automatic techniques to 
determine the optimum damping factors that suit the data set. 
Farquharson and Oldenburg (2004) provided a comprehensive 
review of different automatic methods to determine the optimum 
value for the spatial damping factor λ. For field data sets where 

for each electrode position (McGillivray and Oldenburg 1990; 
Sasaki 1994). The details on the calculation of the potential val-
ues and the Jacobian matrix can be found in these references.

Use of the L-curve method to determine the optimum 
damping factors
Spatial and temporal damping factors play an important role in 
determining the final model obtained from the inversion process. 
The optimum values depend on the noise characteristics of the 
data set and the degree to which the temporal resistivity varia-
tions compare to the spatial variations. As an example, Hayley et 

FIGURE 3

Example of a Jacobian matrix structure for five time-series data sets and 

models. Each grey rectangle represents the Jacobian matrix associated 

with a single set of measurements.

FIGURE 4

Example plots of L-curves to 

determine the optimum spatial 

and temporal damping factors. (a) 

Variation of spatial model rough-

ness with data misfit for a range 

of spatial damping factor values 

(a few values are shown near the 

corresponding points), (b) varia-

tion of the curvature of the spatial 

L-curve with the spatial damping 

factor, (c) variation of temporal 

model roughness with data misfit 

for a range of temporal damping 

factor values, (d) variation of the 

curvature of the temporal L-curve 

with the temporal damping factor.
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As examples of typical temporal L-curves, Fig. 4(c,d) shows 
the temporal model roughness versus data misfit and curvature 
versus damping curves for the same data set. Note that the vari-
ation of the data misfit with the spatial damping factor λ (Fig. 4a) 
is greater compared to the temporal damping factor a (Fig. 4c). 
The curvature curve for the spatial and temporal damping factors 
shows a distinct maximum corresponding to the optimum damp-
ing factor. When using the L-curve method as described above, 
the optimum spatial and temporal damping factors usually con-
verge to near constant values after a few iterations (Farquharson 
and Oldenburg 2004).

RESULTS
Synthetic model test
A set of temporally changing targets within a model 16 x 12 m 
are shown in Fig. 5. The initial model (Fig. 5a), considered as a 
baseline for comparison later, has a single high-resistivity block 
of 200 Wm in the top layer within a homogeneous medium of 
100 Wm. In the second snapshot (Fig. 5b), a moderately high-
resistivity block of 150 Wm is added in the second layer and a 
low-resistivity block of 75 Wm in the third layer. The sizes of the 
deeper blocks are increased in the third snapshot (Fig. 5c). All 
the possible dipole-dipole measurements in both the x- and 
y-directions with a geometric factor of less than 1056 m (which 
corresponds to a dipole-dipole array with a dipole spacing 
a = 1 m and maximum dipole separation n = 6) are used as the 
synthetic test data set. The measurements are made along 12 
lines in the x-direction and 16 lines in the y-direction. The spac-
ing between the adjacent electrodes along each line, as well as 
the spacing between the lines, is 1 m. As such, a total of 2604 
data points were generated for the test. Voltage-dependent ran-
dom noise (Zhou and Dahlin 2003) was also added to the appar-
ent resistivity values. The maximum amplitude of the noise for 
the data point with the lowest potential value was set at 15%. 
This is equal to 1.9 mV for this particular data set if the current 
is 1 A. When converted to apparent resistivity values, the noise 
level is smaller when the geometric factor is smaller. The largest 
geometric factor is about 56 times larger than the smallest geo-
metric factor but the average noise level for the apparent resistiv-
ity values of the entire data set is only about 1.1%.

We used the L1-norm for both the data misfit and spatial 
model roughness (Loke et al. 2003) in the inversion of the data 
set based on the blocky nature of the targets. The use of the 
L1-norm method for the data misfit makes the inversion proce-
dure less sensitive to noise (Farquharson and Oldenburg 1998). 
For this data set, the L-curve method selected a value of about 
0.02 for the spatial damping factor and values of 0.07 and 0.72 
respectively for the L1-norm and L2-norm temporal damping 
factors at the final iteration.

Initially, inversions of the three snapshots were carried out 
independently with no temporal constraints. Figure 6(a–c) shows 
the inversion model sections for the three snapshots. The average 
data misfit is 1.2%, which is slightly higher than the noise added. 

the noise level is not known, the L-curve method (Hansen 1998; 
Li and Oldenburg 1999; Gunther et al. 2006) may be used. The 
L-curve method basically examines the change in the data misfit 
with the damping factor. The use of this method for the time-lapse 
least-squares equation (2) has an additional complication in that 
there are two damping factors: λ for the spatial roughness filter 
and a for the temporal roughness filter. We thus use a two-step 
approach. In each iteration we first use the L-curve method to 
estimate the optimum value for the spatial roughness filter damp-
ing factor λ, as it generally has a larger effect on the data misfit, 
all the while keeping the temporal roughness filter fixed. Next λ 
is kept fixed and the L-curve method is applied in a similar way 
to estimate the optimum value for a. Figure 4(a) shows an exam-
ple of the spatial model roughness M(λ) versus the data misfit 
D(λ) curve for a 3D data set (for the synthetic model described in 
the next section), while Fig. 4(b) shows the corresponding curva-
ture versus the damping factor plot. The equations for the data 
misfit and model roughness functions for the L2-norm method 
(Farquharson and Oldenburg 2004) are as follows:

 (3)

 (4)

where do and dcL are the logarithms of measured and calculated 
apparent resistivity values. The calculated apparent resistivity 
values for the different trial models, within the L-curve algo-
rithm, are estimated using a linear approximation (Farquharson 
and Oldenburg 2004).

 (5)

In this example, a trial value of about 0.1–0.2 is initially chosen 
for λ for the first iteration and equation (2) is solved for 25 
damping factor values ranging from 0.01–100 times the trial 
value spaced logarithmically with six values per decade. The 
procedure is necessary to determine the corresponding changes 
in the model roughness M(λ) and data misfit D(λ) functions. The 
optimum damping factor value should be covered by such a large 
range. If the L1-norm method is chosen, the sum of the absolute 
value of the differences is used. One item of note is the data 
misfit and model roughness functions are dimensionless quanti-
ties as they are calculated from the difference in the logarithms 
of the resistivity values.

When the L-curve method is used for the temporal damping 
factor, the temporal model roughness is given by:

 (6)

We use an initial value of 0.2 for a that is then refined by the 
L-curve method in each iteration. The sum of the squares of the 
difference in the logarithms of the resistivities of the correspond-
ing model cells in adjacent time-lapse models is used.
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and the L1-norm (Fig. 7c and Fig. 7g) temporal constraints show 
relatively uniform values with maximum deviations of about 5% 
and 0.3%, respectively.

The second snapshot with no temporal constraints shows 
average changes of +39% and –20% at the locations of the two 
blocks (Fig. 7a), while the third time-series model (Fig. 7e) 
shows changes of +38% and –20%. These are in reasonable 
agreement with actual changes in the synthetic model of +50% 
and 25% (Fig. 7d). The average changes observed for the snap-
shots with the L2-norm temporal constraint are +23% and 
–13% for the second temporal model (Fig. 7b) and +26% and 
–15% for the third temporal model (Fig. 7e). The smaller 
changes obtained with the L2-norm models are probably due to 
the temporal smoothness constraint that is added in addition to 
the spatial smoothness constraint. The use of the L2-norm tem-
poral constraint tends to cause the anomaly to be more spread 
out where a sharp boundary becomes a smooth boundary. The 
differences between sharp and smooth boundaries are more 
clearly illustrated in the depth profile plots shown in Fig. 8. 
Figure 8(a,b) shows the change in the resistivity from the sec-
ond and third snapshots for a model cell located at (3.5, 6.5), 
which is close to the centre of the higher resistivity block in the 
second model layer. The true model has a 50% increase in the 
resistivity in the second layer only. The corresponding anomaly 
in the L2-norm model has a lower maximum amplitude and is 

The three blocks are fairly well resolved, with both target foot-
print and target values represented well in the inverse model 
results. Note, however, that the deepest layer shows the most 
significant distortions in the modelled resistivity due to the added 
noise. This is because the apparent resistivity values for the 
arrays with the largest spacings at n = 6 (i.e., those measurements 
with the deepest depth of investigation) also have the highest 
relative noise levels due to the larger geometric factors.

The inversion models for the three snapshots obtained using 
the L2- and L1-norm (Kim et al. 2010) temporal constraints are 
shown in Fig. 6(d–i). The inversion models obtained using the 
temporal constraints show more uniform resistivity values in the 
last layer close to the true value of 100 Wm compared to the 
models obtained without the temporal constraint. The use of a 
temporal constraint has significantly reduced the distortions due 
to the added noise by reducing the variability across time.

The differences in the quality of the models by the three 
inversion methods are more clearly shown by plots of the chang-
es in the resistivity of the second and third snapshots compared 
to the first model using the different temporal constraints 
(Fig. 7). In Fig. 7(a) and Fig. 7(e), higher distortions in the last 
two layers of the inversion model with no temporal constraints 
are visibly demonstrated. Differences of more than 20% in the 
model resistivity from the true value are observed. In compari-
son, the difference sections for the L2-norm (Fig. 7b and Fig. 7f) 

FIGURE 5

Three time-lapse test models used to generate the synthetic data set.
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FIGURE 6

Inversion results using no time-lapse constraint showing the (a) first, (b) second and (c) third time-lapse models. The outlines of the true boundaries of 

the blocks are also shown for comparison. Each row shows an x-y cross-section of a model layer starting from the top layer on the left to the deepest 

layer on the right. Similar inversion results using a L2-norm time-lapse constraint are shown in (d), (e) and (f). The inversion results using a L1-norm 

time-lapse constraint are shown in (g), (h) and (i).
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straint (Loke et al. 2003). The profile plots also show that the 
independent inversions model is more greatly affected by noise 
in the deeper layers.

The average changes at the two blocks observed for the 
inversion models with the L1-norm temporal constraint are 
+32% and –19% for the second temporal model (Fig. 7b) and 
+32% and –19% for the third temporal model (Fig. 7e). The 

more spread out (extending to the fourth layer) compared to the 
models with no time-lapse and L1-norm time-lapse constraints. 
A similar pattern is shown by the depth profile plot for a model 
cell located at (9.5, 5.5) near the centre of the low- resistivity 
anomaly. The corresponding anomaly in the L2-norm model 
extends up to two layers below the true bottom boundary. This 
is similar to the effect of using the L2-norm spatial model con-

FIGURE 7

The change is the model resistivity of the second time-lapse model compared to the first model using (a) no time-lapse constraints, (b) a L2-norm time-lapse 

constraint, (c) L1-norm time-lapse constraint and (d) the true model changes. Similar model difference sections between the third and first time-lapse 

models are shown in (e), (f), (g) and (h). The small black rectangles in (d) and (h) show the location of the cells used in the depth profile plots in Fig. 8.
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The time-lapse method should also accurately estimate tem-
poral changes in the resistivity. We thus also calculate the relative 
change in the resistivity for all the model cells. As an example, 
the relative change in the resistivity between the second (r2) and 
first snapshot (r1) is calculated using:

 (8)

The relative changes obtained from the time-lapse models are 
then compared with the true relative changes (Fig. 7e and 
Fig. 7h). Table 2 gives the sum of the squares of the differences 
between the true relative change and those obtained by the dif-

amplitudes of the changes are slightly lower than the models 
without time-lapse constraints but significantly higher than the 
L2-norm model.

To quantitatively demonstrate the differences in the accuracy 
of the models, we also calculate the model misfits between the 
true (r

t
) and calculated (r

c
) model values using:

 (7)

Table 1 shows the model misfits for the different snapshots and 
time-lapse inversion constraints. For all models, the misfit for the 
independent inversion model is significantly higher compared to 
the L2-norm method, which is in turn higher than the misfit for 
the L1-norm method. The sum of the misfits for all the three 
snapshots for the independent inversions method is about 20% 
higher than the L2-norm method, while the L1-norm model mis-
fit is about 23% lower than the L2-norm method. The use of a 
time-lapse constraint significantly increases the accuracy of the 
inversion models, probably by reducing the distortions from the 
added noise. The L1-norm method performs better than the 
L2-norm method as the constraints correspond more closely to 
the abrupt nature of the temporal changes.

FIGURE 8

Plots of the percentage change in 

the resistivity versus depth. (a) 

and (b) are for a model cell with a 

centre at (3.5, 6.5). (a) The 

change between snapshots 2 and 

1, (b) the change between snap-

shots 3 and 1. (c) and (d) are 

similar plots for a model cell with 

a centre at (9.5, 5.5). Note the 

L2-norm time-lapse model (green 

line) shows a broader anomaly 

compared to the other inversion 

methods.

TABLE 1

Model misfits for the inversion models obtained using the different time-

lapse constraints.

Independent L2-norm L1-norm

Model 1 misfit 0.232 0.162 0.084

Model 2 misfit 0.336 0.278 0.227

Model 3 misfit 0.374 0.327 0.280

Sum of model misfits 0.942 0.767 0.591
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procedure and geology of the survey area can be found in Dahlin 
et al. (2011).

The inversion model used cells of 1 m width so that large 
near-surface resistivity variations could be more accurately mod-
elled. Higher damping factors were also used for the first two 
layers as well as diagonal roughness filters to reduce banding 
effects in the inversion model (Loke and Dahlin 2010). Initially 
an inversion was carried out for 12 daily data sets measured on 
30th June–11th July 2011 at the same time of day (about 9 am). It 
was found that there was little change in the resistivity except 
between 2nd–4th July. The meteorological records indicated that 
there was heavy rainfall on 2nd July. Another inversion was then 
carried out using 26 data sets measured at every 3 hours from 
6 pm on 1st July to 9 pm on 4th July in order to map these tempo-
ral changes more accurately. Each snapshot has 4176 data points. 
Out of the total of 108 576 data points for the 26 snapshots, there 
were 13 missing data points due to poor electrode contact caused 
by animal disturbances. From our experience with long-term 
monitoring systems, missing data points are fairly common. One 
advantage of the simultaneous 4D inversion method is that it 
does not require every snapshot to have the same number of data 
points, compared to the difference method that directly uses the 
apparent resistivity difference between snapshots (Labreque and 
Yang 2001).

The initial time-lapse resistivity model is shown in Fig. 9 as 
horizontal and vertical cross-sections. In parts of the model, as 
shown in the topmost horizontal section in Fig. 9(a), there is a 
distinct top layer with resistivity values mainly in the range of 
20–57 Wm. There is, however, a prominent high- resistivity lin-
ear band (resistivity values above 57 Wm as indicated by yellow 
in the contour plot) running from the left to right of the topmost 
layer (Fig. 9a). This layer has a thickness of 0.8 m. The high-
resistivity zone may consist of soil material with less clay con-
tent, or the clay layer is missing that leads to less water retention. 
Alternatively, the cover layer is very thin. In any case this zone 
is most likely to be more permeable than the surrounding soils 
with lower resistivity. More permeable areas tend to be more 
active in terms of biogenic gas movement, where increase in 
methane concentration is expected to lead to higher resistivity 
values as the water saturation decreases. Just below this higher 
resistivity band is a corresponding band of lower resistivity val-
ues (with values of less than 40 Wm in some places) in layers 3–5 
with a depth range of about 1.6–4.6 m (Fig. 9a).

The vertical sections (Fig. 9b) show the different layers more 
clearly. The top layer with resistivity values of generally below 
57 Wm and a thickness of between 0.5–1.5 m corresponds to the 
soil cover. Below the top layer is a high-resistivity layer with 
values between 57–400 Wm representing the landfill waste mate-
rial above the water table. The water table is, according to the 
model, located at a depth of about 5 m indicated by a sharp 
decrease in the resistivity values to below 10 Wm towards the 
bottom of the model, in good agreement with the background 
information.

ferent inversion methods for all the model cells. A similar result 
is obtained in that the L1-norm method gives the smallest misfits, 
followed by the L2-norm and independent inversion methods.

Field surveys
We now present the results from two field surveys. The L1-norm 
constraint is used for the data misfit and also the spatial model 
roughness for both data sets. For the first data set, we also show 
the difference sections obtained using independent inversions and 
the L1-norm and L2-norm time-lapse constraints, as an example 
of the use of the different methods for a field survey 3D data set.

Filborna landfill monitoring survey, Sweden
A resistivity survey was carried out to map the variation in fluid 
and gas content in a landfill site at Helsingborg, Sweden where 
methane gas accumulation is of prime interest (Rosqvist et al. 
2010). The predominant material in the investigated volume is 
mixed waste, with a layer of cover material on top. According to 
the waste company the cover material (starting from the surface) 
consists of 0.4 m compost, 0.8 m excavation masses, 0.3 m 
gravel and 0.3 m clay, plus possibly 0.1–0.2 m compost (giving 
a maximum thickness of about 2 m for the cover material), 
under which there is waste. However the thickness of the cover 
material is a high variable and at some places intermittent, 
across the landfill site. The groundwater level is expected at 
some metres depth according to observations in the surrounding 
areas. The waste is underlain by sedimentary rock dominated by 
sandstone at depths beyond the depth penetration of the investi-
gation presented here.

The survey data set consisted in 12 parallel 2D survey lines 
acquired with a pole-dipole array. Each line was composed of 
21 electrodes with an electrodes spacing of 2 m along each line. 
The spacing between the lines was also 2 m. Eight sets of meas-
urements were made at 3 hours apart for each day. It took nearly 
3 hours to make each set of measurements with an ABEM 
Terrameter LS 12-channel resistivity meter. The data acquisition 
was done measuring induced polarization (IP) as well as resistiv-
ity using a duty cycle with 1 second current-on and current-off, 
where the timing is a compromise between acquisition speed and 
ability to capture the IP characteristics. Only the resistivity data 
results are presented here. It can be noted that even if only resis-
tivity data were measured, shorter measurement cycle times lead 
to underestimation of the measured resistivity due to the large 
IP-effects associated with waste. Further details on the survey 

TABLE 2

Relative model change misfits for the inversion models obtained using 

the different time-lapse constraints.

Independent L2-norm L1-norm

Model 2 change 2.090 1.284 0.647

Model 3 change 2.753 1.647 0.946

Sum of model misfits 4.843 2.931 1.593
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FIGURE 9

Inversion model for the Filborna monitoring survey shown in the form of (a) horizontal and (b) vertical cross-sections.

FIGURE 10

The change is the model resistivity of the 27 hours time-lapse model compared to the first model using (a) no time-lapse constraints, (b) a L2-norm 

time-lapse constraint and (c) a L1-norm time-lapse constraint. Similar model difference sections between the 51 hours and first time-lapse models are 

shown in (d), (e) and (f).
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ject to the spatial smoothness constraints) without taking into 
consideration the results of the other snapshots. This artefact is 
greatly reduced to less than 12% when a L2-norm time-lapse 
constraint is used (Fig. 10b) and almost completely eliminated 
with a L1-norm time-lapse constraint (Fig. 10c). Note there are 
also significant increases in the sixth layer for the model with 
independent inversion (Fig. 10a) that are likely artefacts due to 
noise. The artefacts are greatly reduced with a L2-norm temporal 
constraint (Fig. 10b) and essentially eliminated with a L1-norm 
temporal constraint (Fig. 10c).

A similar effect is seen in the difference sections for the model 
at 51 hours (Fig. 10c–e). The difference sections for the 51 hours 
model using independent inversions show a prominent artefact at 
the region bounded by the y-coordinate between 14–24 m and the 
x-coordinate between 12–28 m in the fifth and sixth layers; a 
resistivity increase of up to 16% is observed here (Fig. 10d). The 
same anomaly is significantly reduced when a L2-norm time-

We carried out inversions of the time-lapse data set using 
independent inversions and the L1-norm and L2-norm time-lapse 
constraints. The inversion models show that the maximum 
change in the resistivity occurred after about 51 hours from the 
initial data set. As an example of the results obtained with the 
different methods, Fig. 10 shows the difference sections for the 
models at 27 and 51 hours. In Fig. 10(a), the fifth layer in the 
difference section for the independent inversions model (at 
27 hours) shows a prominent increase in the resistivity of up to 
about 29% at the region bounded by the y-coordinate between 
0–4 m and the x-coordinate between 8–24 m. The resistivity is 
generally expected to decrease with time due to rainfall during 
the survey period. The increase in the resistivity is most likely to 
be an artefact (possibly due to noise) as the model resolution 
decreases with depth as well as towards the sides where there is 
less data coverage. The independent inversions method attempts 
to minimize the data misfit for each snapshot individually (sub-

FIGURE 11

Resistivity difference sections for models at (a) 12 hours, (b) 15 hours, (c) 21 hours, (d) 27 hours, (e) 39 hours, (f) 51 hours and (g) 69 hours from the 

initial data set. The small black rectangle in the last row shows the location of the cells used in the time-profile plots in Fig. 13.
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artefact in the L2-norm model associated with the large areas with 
resistivity increases of +2 to +10% on both sides of the conduc-
tive anomaly in the y-direction. It is well-known that in the space 
domain the L2-norm constraint tends to produce an oscillatory 
structure near a boundary with overshoots at the high-resistivity 
side and undershoots at the low-resistivity side of the boundary 
(Farquharson and Oldenburg 1998). A similar effect probably 
occurs in the temporal domain that makes the decrease in the 
resistivity values in the conductive zone more pronounced.

lapse constraint is used (Fig. 10e) and almost eliminated with a 
L1-norm time-lapse constraint (Fig. 10f). All the difference sec-
tions for the 51 hours model show a prominent decrease in the 
resistivity in the third to fifth layers, between the y-coordinate of 
6–14 m and between the x-coordinate of 2–22 m, which is likely 
to be a real anomaly. Note that the conductive anomaly in the 
fourth column in Fig. 10(e) for the L2-norm model is slightly 
more pronounced than in the corresponding section in the 
L1-norm model (Fig. 10f). This is probably partly caused by an 

FIGURE 12

3D iso-surface plots showing the 

positions of the –6% resistivity 

change boundary with time.



M.H. Loke, T. Dahlin and D.F. Rucker18

© 2014 European Association of Geoscientists & Engineers, Near Surface Geophysics, 2014, 12, 5-24

permeable zone, there are no significant changes in the resistiv-
ity within the third and deeper layers. This is because the landfill 
material is less permeable, which confines the rainwater to the 
two top layers.

Figure 12 shows iso-surface plots of the –6% resistivity 
change boundary, which provides a set of 3D views of the move-
ment of the rainwater. At 21 hours (Fig. 12a), or about 10 hours 
after the start of the downpour, most of the water is still confined 
to near the surface. At 27 hours (Fig. 12b) more water has 
migrated downwards, which then forms a significant plume at 
30 hours (Fig. 12c), finally reaching to 4 m depth at 33 hours 
(Fig.  12d). At 39 hours (Fig. 12e) the bottom boundary of the 
plume has moved slightly below 4 m accompanied by a greater 
lateral migration. A slight increase in the volume of plume is 
observed at 51 hours (Fig. 12f), after which there were no sig-
nificant changes up to 75 hours (Fig. 12g).

Figure 13 shows a plot of the average resistivity change cal-
culated from four neighbouring model cells centred around an 
x-y location of (12.0, 11.0). We use the average resistivity 
change for a group of neighbouring cells to reduce the effect of 
spurious variations in any individual cell. The location includes 
the region with the largest decrease in the resistivity values in 
layer 4 and lies within the zone that is expected to be more per-
meable. A plot of the cumulative rainfall (as measured starting 
from 23rd June 2011) is also shown in the plot. There is slight 
rainfall starting at about 6 hours with the heaviest rainfall 
between 9–15 hours. A second minor rainfall event occurred 
between 27–28 hours. Correspondingly a slight decrease in the 
resistivity of the topmost layer is observed starting from about 
9 hours. The resistivity variation in the topmost layer is slightly 
different from the deeper layers, which show an initial rapid 

Anomalies in the independent inversions difference sections, 
which are significantly reduced when a time-lapse constraint is 
used, could be artefacts, while those that are present regardless 
of the constraint used are likely to be real. The L1-norm time-
lapse constraint appears to be more effective in suppressing the 
artefacts, which is similar to the results obtained previously with 
the synthetic model data set. The inversion of the same data set 
with different time-lapse constraints is useful in helping to sepa-
rate real anomalies from artefacts.

Figure 11 shows a series of snapshots with the percentage 
change in the resistivity values for the models at 12–69 hours 
from the initial data set using the L1-norm time-lapse constraint. 
No significant change in the resistivity values (of more than 2%) 
was observed before 12 hours. At 12 hours, there is a slight 
decrease in the resistivity values in the top layer (green regions 
in Fig. 11a) that corresponds to the start of a high-precipitation 
event lasting for about 6 hours. The decrease in resistivity 
becomes more widespread at 15 hours where it now spreads to 
layer 2 (0.75–1.58 m depth) and slightly to the third layer 
(1.58–2.48 m). At 21 hours (Fig. 11c) the low-resistivity values 
spread downwards to layer 4 (2.48–3.48 m) and regions with 
changes of more than –6% are now more widespread in the top 
layer. At 39 hours (Fig. 11e) it spreads to layer 5 (3.48–4.58 m) 
while regions with changes of more than –30% are observed in 
layers 3 and 4. The process continues as shown by the sections 
at 51 hours (Fig. 11f) after which there are very small changes 
(Fig. 11g). No significant changes (more than 2%) were 
observed in layers deeper than the sixth (below 5.79 m depth) 
because they lie within the water table zone. The largest chang-
es in layers 3–5 occur within a permeable zone that provides a 
path for the rainwater to migrate downwards. Outside of the 

FIGURE 13

Average change in resistivity with 

time for four model cells centred 

around the (12.0, 11.0) location 

in the different layers. A plot of 

the cumulative rainfall and tem-

perature (from a probe at 30 cm 

depth) is also shown.
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changes occurring between the 12–36 hours marks. The change 
in the resistivity with time is clearly shown despite the possibil-
ity of smoothing of the temporal resistivity variations (‘time 
smearing’) due to changes during the time taken to carry out a 
single set of measurements.

Injection well experiment, USA
An experiment was conducted to test the feasibility of using a 3D 
ERT survey to map the movement of a solution (barren leachate 
comprising dilute sodium cyanide) injected at high pressures into 
an engineered rock pile (or heap). The injections were designed 
to increase the extraction of gold as a means of secondary recov-
ery after surface leaching had ceased. The injections were carried 
out with an injection skid designed to push a solution at pres-
sures that exceed the lithostatic overburden at rates in excess of 
1000 gallons per minute.

The injection experiment and resistivity surveys were carried 
out at the Cripple Creek and Victor Gold Mine, in Colorado, USA 
from 20–28th September 2011. Resistivity measurements were 
acquired with the Geotection 180-channel resistivity monitoring 
system (Rucker et al. 2013). A total of 150 electrodes were incor-
porated into the domain for a complete 3D acquisition with a pole-
pole array, including 48 surface electrodes placed along eight 
radials, 94 electrodes within six boreholes and eight long elec-
trodes taken from the series of steel-cased injection wells installed 

decrease followed by almost constant values. The difference 
could be partly due to the combined effects of rainfall, tempera-
ture variations, moisture evaporation and migration of gas from 
the deeper layers on the resistivity values. The topmost layer also 
shows greater lateral variations in the resistivity and probably 
has larger variations in hydrological properties such as porosity 
and permeability. It has areas with high-resistivity values that 
could be composed of coarse material such as gravel or concrete. 
The air temperature varies from about 13–36°C during this 
period with a dominant diurnal variation. A temperature probe 
5  cm below the surface shows a much smaller variation of 
19–26°C, while another probe at 30 cm depth shows a very small 
variation of 22–24°C (Fig. 13).

The decrease in resistivity in layer 2 starts a few hours after 
the start of the rainfall event (Fig. 13). The drop in resistivity 
observed in layer 3 occurs well before a similar change in layer 
4, which in turn occurs much earlier than layer 5. The largest 
average decrease in resistivity of nearly –28% occurs in layer 4. 
After about 51 hours the resistivity does not change significantly. 
There appears to be a slight increase in the resistivity after 
51 hours in layers 3 and 4 of about 1% that could be due to the 
movement of water to the deeper layers after the rainfall had 
ceased. The amplitude of the resistivity changes in layers 5 and 
6 are progressively smaller as they lie closer to the water table. 
The change in the resistivity is highly non-linear with most of the 

FIGURE 14

(a) Layout of the borehole injection survey with positions of the surface and borehole electrodes shown together with the topography. In the inversion 

model, the x and y axes correspond to the ‘easting’ and ‘northing’ directions. (b) Overhead view of the model discretization grid showing positions of 

the electrodes and injection well. The model grid has a spacing of 4.6 m in both the x- and y-directions, except near the ends where a spacing of 6.1 m 

was used to include the outermost electrodes.
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around the well that was used to inject the barren solution into 
the heap. The data coverage is very sparse towards the edges of 
the survey area due to the radial layout of the electrodes. An 
overhead view of the inversion model grid is shown in Fig. 14(b), 
where the model cells were square with 4.6 m sides. The model 
grid is independent of the layout of the electrodes so that it can 
accommodate a non-rectangular electrode arrangement. A finite-
element mesh with 4 nodes per model cell in both the x- and y- 
directions was used (Rucker et al. 2010). The grid-independent 
method described by Spitzer et al. (1999) was used to calculate 

within the heap. Each snapshot took approximately 14 minutes to 
complete, with each snapshot comprising a full reciprocal data set. 
Over the course of the campaign, 780 snapshots were acquired. 
Editing of the data included (1) removing electrodes that were 
performing poorly, (2) data rejection based on random noise and 
(3) comparing reciprocal errors (Rucker et al. 2013). After editing, 
125 electrodes remained in the final data set.

A 3D view showing the surface topography and the positions 
of the electrodes on the surface and boreholes is provided in 
Fig. 14(a). The surface electrodes are arranged in a radial pattern 

FIGURE 15

(a) Vertical cross-sections for the initial time inversion model. The cross-sections are in the x-z plane. (b) Similar cross-sections for the ninth inversion 

model for data taken at 12.6 hours later. The vertical black lines in the last row in (b) mark the positions of the model cells used in the time-profile 

plots in Fig. 17.
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up 6.1 m for each subsequent injection zone. Typically, one or 
two zones would be occupied each day. The high- resistivity 
regions at the bottom-left corner of the sections (particularly the 
first two and last four sections) are probably artefacts due to the 
lack of data at the corners of the grid. Additionally, the low- 
resistivity banding in the north-east corner of the domain (shown 
in the upper-right hand corner of the first six sections) as well as 
the high-resistivity banding in the bottom-left corner of the last 
four sections in Fig. 15(a) may be questionable, again due to 
poor electrode coverage. Figure 15(b) shows the model for the 
ninth snapshot (9.8 hours after the injections commenced). Some 
changes are visible when compared with the model for the initial 
snapshot for the panels between y distances of 15 407.8 
–15 435.3 m but it is difficult to trace the movement of the lea-
chate from the resistivity sections alone.

Figure 16 shows the change in the resistivity in the form of 
3D iso-contours that better illustrate the migration of the preg-
nant solution (dilute sodium cyanide solution laden with gold) 
through time. The iso-surface for the change of –4% in the resis-
tivity was selected for this plot. The iso-surfaces are plotted at 
approximately 1.1, 2.4, 3.7 and 4.9 hours after the initiation of 
injection at the 33.5 m depth. Note the area with the largest 
change is located to the north of the well. This is probably due to 
differences in the subsurface permeability and structural non-
uniformities within the heap created during end-dump construc-
tion (Rucker et al. 2009b). The heap has been built up over the 
past 20 years by trucks dumping fresh ore over the edge of older 
ore. Additionally, there were no significant artefacts (with 
changes of more than 4%) in these sections. This is because the 
time-lapse damping factor constrains the resistivity values to be 
similar in the different time models if changes are not supported 
by the data. Not unexpectedly, the volume through which the 
solution has diffused increases significantly with time. The flow 
of the solution was also monitored during the experiment by 
measuring the contact resistances at the subsurface electrodes 
(Rucker et al. 2013), which provides an independent means to 

the potentials at the electrodes positions. A distorted finite-ele-
ment mesh is also used so that the surface elements of the mesh 
match the topography (Loke 2000).

A small sample of the injection results are presented in this 
paper, where 12 snapshots were extracted from the last day of 
monitoring, representing injections at depths of 33.5 m and 
27.4 m below ground surface. For reference, collars are placed 
around the injection well at depths of 27.4 m and 33.5 m, repre-
senting injections at those depths in Fig. 14(a). The baseline from 
the survey was taken at 4:24 am and four snapshots were extract-
ed during the 33.5 m injection (lasting approximately five hours), 
three snapshots for the 27.4 m injection (lasting 4 hours) and 
three snapshots extracted during the post injection draindown. 
Each snapshot has 6329 data points, averaged from the recipro-
cal data and the inversion model has 4320 cells. The inversion of 
the 12-snapshot data set took about 75 minutes for 4 iterations on 
a computer with a 3.2 GHz Intel 3930K hex-core CPU and 32 
GB RAM using a 64-bit Windows 7 operating system. The time 
taken for the data processing is less than the survey time. This 
can be an important factor in surveys (such as extraction of natu-
ral resources, leakage from dams, landslide prone areas) where 
real-time monitoring is required. Lastly, only the model obtained 
with the L1-norm temporal constraint is presented for this field 
data set, as the previous examples show that this method is less 
sensitive to noise.

Figure 15(a) shows the spatial distribution of resistivity for 
the initial snapshot. The data are presented in the form of vertical 
slices in the x-z plane. The model shows the outlines of the 
hexahedral blocks as used in the model grid (instead of con-
toured sections) to illustrate the distorted finite-element mesh 
used to accommodate the topography. The location of the injec-
tion well (B-11) is also highlighted in the slice representing a y 
distance of 15 407.8–15 412.4 m. The results generally show 
low-resistivity regions due to the increased saturation from the 
previous seven days of injections. These injections occurred 
starting from the bottom of the well at a depth of 82.3 m, moving 

FIGURE 16

Iso-surface contours for the –4% 

resistivity change at different 

times after the injection of the 

sodium cyanide solution (that 

started at 2.8 hours from the first 

data set in the snapshots used).  

t1 = 1.1 hours, t2 = 2.4 hours,  

t3= 3.7 hours, t4 = 4.9 hours.
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constraint. Furthermore, the L1-norm model gave the most accu-
rate results in regards to position and reconstructed resistivity 
values, followed by the L2-norm model. Even for field data sets 
where the true structure is not accurately known, a comparison 
of the results obtained using independent inversions and the 
L2-norm and L1-norm temporal constraints is still useful in 
identifying likely artefacts. Anomalies that are common in mod-
els using the three different inversion methods are more likely to 
be real. In contrast, anomalies present in a model using inde-
pendent inversions but that are significantly reduced with the 
L2-norm and L1-norm constraints, could be artefacts. This 
method to identify temporal changes that are likely to be real 
could be helpful in refining methods that use a spatially varying 
temporal damping factor (Karaoulis et al. 2011a; Kim and Cho 
2011) to improve the resolution in selected regions.

From a field perspective, the inversion of a set of 26 time-
series data sets from the Filborna landfill monitoring site suc-
cessfully mapped the infiltration of rainwater down a permeable 
zone. The migration of a solution from an injection well was also 
successfully mapped using a combination of electrodes along six 
boreholes and eight radial lines on the surface, despite a difficult 
survey environment with significant topography.

Research is being carried out to include the exact time of each 
measurement in the inversion methodology (Kim et al. 2009) to 
reduce the effect of ‘time smearing’ when there is a significant 
change in the resistivity during the measurement of a single data 
set. The ‘time smearing’ effect may be less of a problem as the 
number of channels for acquisition hardware significantly 
increase, such as in the case of the injection well experiment 
presented here. The inversion method is also being extended for 

verify the development of the solution plume as shown by the 
resistivity images.

Figure 17 shows a plot of the average resistivity change cal-
culated from four neighbouring model cells centred around an 
x-y location of (10 733.7, 15 426.1). The figure represents infor-
mation from several depths, from 27.5– 63.9 m. The model cells 
at these locations show the largest change in the resistivity val-
ues, with the maximum at a depth of 55.2 m below the surface. 
The plot shows that the decrease in the resistivity reached an 
almost constant value after the cessation of injection at about 
12  hours from the initial snapshot (Fig. 17). The resistivity 
increased slightly after injections stopped, which represents a 
draindown of the solution within the rock pile. Despite the chal-
lenging terrain and very sparse electrode layout, the survey has 
successfully mapped the solution migration with sufficient tem-
poral and spatial detail to better understand and optimize the 
injection process.

CONCLUSION
The examples presented in this paper demonstrate that the con-
strained time-lapse method can successfully recover temporal 
changes in the resistivity even in the presence of noise for 3D 
resistivity surveys. In particular, the L-curve method, which is 
commonly used to determine the optimum spatial damping fac-
tor, can also be adapted to determine the appropriate value for 
temporal damping factors. The first example with the synthetic 
data set showed that the model obtained using independent inver-
sions (without any temporal constraints) is the most sensitive to 
random noise. The artefacts are significantly reduced using a 
L2-norm temporal constraint and further reduced with a L1-norm 

FIGURE 17

Average change of resistivity 

with time for four model cells 

centred around the x-y location of 

(10 733.7, 15 426.1) in the differ-

ent model layers, together with a 

plot of the solution injection rate.
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