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Abstract

This thesis deals with constitutive models of electro-active polymers used for simula-
tions of electromechanically and time-dependent processes. The modeling framework
is based on statistical mechanics arguments combined with a numerical averaging tech-
nique, referred to as the microsphere formulation. A microsphere model, originally
proposed for modeling of rubber, is in this work extended to capture the non-linear,
time-dependant and electrostrictive behaviour of dielectric elastomers. The devel-
oped model is shown, through various homogeneous deformation and finite element
examples, to produce physically sound results.

Dielectric elastomers represent a subgroup of electroactive polymers wherein the
deformation, upon an applied electric field, is caused by the Coulomb forces between
two compliant electrodes on the surfaces of the elastomer. Dielectric elastomer actu-
ators (DEAs) offer advantages over more traditional materials in applications where
soft, lightweight and noiseless actuators capable of large strains are needed. Exist-
ing applications based on DEAs include for example loudspeakers, tunable lenses and
energy harvesting generators.

The non-linear and viscous behaviour inherent in DEAs impose drawbacks in re-
lation to applications. Consequently, the possibility to predict and control these phe-
nomena is crucial for future development of DEA applications. For this reason, the
proposed microsphere model is calibrated to a common DEA material. Representa-
tive boundary value problems, chosen to mimic existing DEA applications, are then
elaborated using the calibrated model. Furthermore, the possibility of controlling the
viscous effects is successfully achieved.

Lastly, in order to gain a deeper understanding of the material behaviour, ex-
perimental investigations of a typical dielectric elastomer are performed. These in-
vestigations study the electromechanically coupled and time-dependent response of
an acrylic-based DEA through full-field deformation measurements by use of digital
image correlation.

iii





Populärvetenskaplig sammanfattning

Elektroaktiva polymerers (EAPs) främsta egenskap är deras förm̊aga att kunna om-
vandla elektrisk energi till mekanisk energi (och vice versa). Den typ av EAPs som
behandlas inom ramen för detta arbete kallas för dielektriska elastomerer och är en
undergrupp av elektroniska elektroaktiva polymerer. De karakteriseras av en väldigt
l̊ag elastisk styvhet, kapabel till stora elastiska deformationer, och av en hög energi-
densitet. En dielektrisk elastomer placerad mellan tv̊a elektroder som kopplas till en
strömkälla kommer komprimeras p̊a grund av den elektriska fältstyrka som byggs upp
mellan elektroderna, d̊a materialet inte leder ström. Eftersom materialet dessutom
anses vara inkompressibelt kommer ytan vinkelrätt mot det elektrisk fältet att öka.
Dielektriska elastomerer aktiverade p̊a detta sätt kan ersätta mer tradionella material
inom flera högteknologiska omr̊aden s̊asom justerbara linser, mikropumpar, högtalare
och som generatorer i system som utvinner förnyelsebar energi. Dess likheter med
muskler, som ocks̊a reagerar p̊a elektriska signaler med deformation och är väldigt
elastiska, har gett dem smeknamnet artificiella muskler.

Denna avhandling berör till största delen matematiska modeller av dielektriska
elastomerer och tillhörande simuleringar av olika randvärdesproblem. Även experi-
ment p̊a dielektriska elastomerer under inverkan av elektromekaniskt kopplade laster
har utförts. Inom ramen för modellering har arbetet koncentrerats kring den s̊a kallade
mikrosfär-metoden. Utnyttjande av mikrosfär-metoden möjliggör användandet av
en-dimensionella fria energier, baserade p̊a till exempel statistisk mekanik. Via en
medelvärdesbildning över ytan p̊a mikrosfären är det möjligt att transformera de
en-dimensionella storheterna till tre-dimensionella motsvarigheter som representerar
responsen av kontinuumet. Metoden, som tidigare använts med framg̊ang p̊a gummi-
liknande material under mekanisk last, har i denna avhandling utökats för att inko-
rporera elektromekaniska kopplingar. Metoden visades ge tillförlitliga resultat även
för dielektriska elastomerer utsatta för ett elektriskt fält. För att anpassa modellen
till specifika val av dielektriska elastomerer har experiment, b̊ade gjorda inom ramen
för detta arbete och rapporterade i litteraturen, använts för att kalibrera och förfina
modellen ytterligare.
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1 Introduction

Electroactive polymers (EAPs) refer to a group of polymeric materials that have
the ability to convert electrical energy into mechanical energy. In response to an
applied electric field, an EAP will react with a significant change in size and shape.
Deformation in polymers caused by an electric field was first discovered by Wilhelm
Röntgen in 1880. The large actuated strains found in EAPs today is, however, a result
of a series of new polymers developed since the early 1990. Large strains together with
the purely polymeric benefits of low weight, low cost, commercial availability and the
fact that they can be manufactured into complex shapes has attracted the attention
from both industry and scientists. For an overview of the history of the research field
and possible applications see for instance Bar-Cohen (2004); Smith (2005) and Kim
and Tadokoro (2007).

EAP materials are usually divided into two main groups, electronic and ionic, de-
pending on the type of actuation mechanism. Deformation of electronic electroactive
polymers (EEAPs) is driven by electric fields and Coulomb forces, while in ionic elec-
troactive polymers (IEAPs) the deformation involves movement and diffusion of ions.
Within each group several subgroups are found. While dielectric-, ferroelectric- and
electrostrictive polymers all refer to subgroups of EEAPs, ionic polymer gels and con-
ductive polymers refer to subgroups of IEAPs. This thesis focuses on the first type
of EAPs, i.e. electronic electroactive polymers, more specifically on the subgroup
referred to as dielectric elastomers. A common usage of dielectric elastomers is as ac-
tuators. The main setup of a dielectric elastomer actuator (DEA) is a thin elastomeric
membrane, sandwiched between two compliant electrodes. While the deformation in
some EEAPs is driven by polarization of dipoles within the material that reorient at
the application of an electric field, the deformation in DEAs is mainly caused by the
so-called Maxwell effect. At large electric fields the Coulomb forces between the elec-
trodes will force the electrodes toward each other, causing the actuator to compress
in the direction parallel to the electric field. Due to the nearly incompressible nature
of polymers the membrane will expand in the plane perpendicular to the electric field.

In the design process of EAP applications, both an in-depth knowledge of the
material behaviour as well as predictive tools are essential. While physical tests and
experiments are of great value in this process, accurate mathematical models of the
response of EAPs will, from a control perspective, be of fundamental aid. The mate-
rial response of electroactive polymers is complex and involves processes on multiple
temporal and spatial scales. As such, appropriate constitutive models of EAPs in-
volve consideration of micro-to-macro transitions, electromechanical coupling, viscous
time-dependent effects and non-linear finite deformations, to name a few. In pursuit
of incorporating these phenomena into a constitutive model, we have chosen to make
use of the so-called micro-sphere approach. In short, the micro-sphere approach en-
ables generalization of one-dimensional constitutive equations based on, for example,
statistical mechanics of long molecular chains, to the three-dimensional continuum
setting. The micro-sphere framework by Miehe et al, see (Miehe et al., 2004; Miehe
and Göktepe, 2005), as proposed for modeling of rubber, is in this work extended to
include electromechanical coupling. The related material parameters are identified

1



and used to solve representative boundary value problems, chosen to mimic potential
or existing DEA applications. The effects of mechanical dissipation and control of
these, as well as experimental investigations of acrylic-based DEAs are also included.

2 Mechanics and electrostatics

In this section the essential kinematic relations, electric quantities, and underlying
balance equations that govern an electromechanically coupled problem are briefly
reviewed. For detailed information regarding theory of nonlinear electroelasticity the
reader is referred to Eringen and Maugin (1990) and Kovetz (2000).

2.1 Kinematics

Let the positions of particles, in a stress-free reference configuration B0, be denoted by
X and by x in the current configuration Bt. The motion of the body is described by
the mapping ϕ(X, t) where t represents time. The deformation gradient is given by
F = ∇Xϕ with the important related relations J = det(F ) > 0 and cof(F ) = JF−t.
Due to the nearly incompressible nature of most elastomers, an intermediate volume
preserving configuration, denoted B̄t, is introduced. A multiplicative split of the
deformation gradient into an isochoric and a volumetric part is made, such that

F = J1/3F̄ , (1)

where det
(

F̄
)

= 1 follows. Based on this split the following related right Cauchy-
Green tensors used are

C = F t · F and C̄ = F̄ t · F̄ , (2)

where again, det
(

C̄
)

= 1, follows. For more details regarding kinematics of solid
continua, see for example Ogden (1997).

2.2 Electric field quantities

In this work, the electric quantities of interest are the electric field, electric displace-
ment and polarization, denoted here as E, D and as Π in the material configuration
B0 and as e, d and π in the spatial configuration Bt. The interdependency between
the three quantities in matter are governed by

d = ε0e+ π , (3)

in the spatial configuration where ε0 is the vacuum electric permittivity. In vacuo,
π = 0 holds, i.e. eq. (3) simplifies to d = ε0e. In material quantities the same relation
reads

D = Jε0E ·C−1 +Π , (4)

where E = e · F , D = d · cof(F ) and Π = π · cof(F ). In this thesis, E is taken as
the independent electric variable while D is described by a constitutive equation so
that Π is given by eq. (4).
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B0

E, D, Π , T , ρ0

Bt

e, d, π, τ , ρ

B̄t

x = ϕ(X, t)

F = ∇Xϕ

F̄ J1/3I

Figure 1: Schematic figure of referential, intermediate and current configuration and their respective
quantities.

2.3 Balance of linear momentum

The quasi-static local form of the balance of linear momentum, in the presence of
electromechanical interactions, reads

∇x · σ + fe + ρf = 0 (5)

where fe represents the electrical body force and f the mechanical body force per
unit mass and ρ is the mass density. The introduction of electromechanical interac-
tions renders the Cauchy stress, σ to be, in general, unsymmetric. The influence of
electrostatic forces are accounted for by the electric body force, which in this work
takes the following form

fe = ∇xe · π = ∇x ·
[

e⊗ d− 1

2
[ e · e ] I

]

. (6)

By shifting the electrical body force to form a total, symmetric stress tensor τ =
σ + e⊗ d− 1

2
ε0 [e · e] I, the balance of linear momentum takes the following form

∇x · τ + ρf = 0 (7)

in the current configuration Bt. The material counterpart in B0 then reads

∇X · T + ρ0 f = 0 , (8)

where T = τ · cof(F ) and ρ0 = J ρ were used. See figure 1 for a schematic overview
of configurations and respective quantities.

2.4 Gauss’s law

The special case of Maxwell’s equations in the absence of magnetic fields, free electric
charges and time dependencies renders the Gauss’s law wherein the spatial vectorial
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fields d and e satisfy
∇x · d = 0 and ∇t

x
× e = 0 . (9)

The material counterparts read

∇X ·D = 0 and ∇t

X
×E = 0 . (10)

The curl-free electric field together with the scalar-valued electric potential field yield
the following forms of the electric field

e = −∇x φ and E = −∇X φ , (11)

in the spatial and material configuration respectively.

3 Thermodynamics

The constitutive equations relating the deformation and the electric field to stress and
electric displacement need to be formulated in a way that fulfils the laws of thermo-
dynamics. The related dissipation inequality provides the constitutive equations as
well as the evolution laws for the internal variables. This section summarises the local
form of the first and second law of thermodynamics and the corresponding dissipation
inequality for electromechanically coupled matter. As mentioned earlier, the analysis
is restricted to electrostatics. Furthermore, free electric charges and electromagnetic
coupling is not considered. For a full thermodynamic background the reader is re-
ferred to Eringen (1989); Eringen and Maugin (1990); Maugin (1999); Kovetz (2000)
and McMeeking and Landis (2005).

3.1 First and second law of thermodynamics

The local forms of the first and second law of thermodynamics for dielectric solids
and in terms of spatial arguments read

ρǫ̇ = [σ + [ e · π ] I ] : l + e · π̇ −∇x · q + ρh , (12)

ρη̇ ≥ ρh/θ −∇x · [q/θ ] , (13)

where •̇ refers to the material time derivative and ǫ is the internal energy per unit mass,
so that ǫ̇ denotes the rate of change of internal energy per unit mass. Furthermore,
l = ∇xϕ̇ represents the spatial velocity gradient, q the spatial heat flux, θ the absolute
temperature, h the heat source per unit mass and η is the specific entropy. The
corresponding referential formulation reads

ρ0ǫ̇ =
[

P +
[

F−t ·E
]

⊗Π
]

: Ḟ +E · Π̇ −∇X ·Q+ ρ0h , (14)

ρ0η̇ ≥ ρ0h/θ −∇X · [Q/θ ] , (15)

where Ḟ = ∇Xϕ̇ = l · F , P = σ · cof(F ) and Q = q · cof(F ) were used.
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3.2 Dissipation inequality

The dissipation inequality, here presented for the isothermal case, is obtained by
introducing the Helmholtz free energy, ψ = ǫ− θ η, in eq. (12) and (13) such that

−ρψ̇ + [σ + [ e · π ] I ] : l+ e · π̇ ≥ 0 . (16)

In material quantities (using eq. (14) and (15) instead) the dissipation inequality reads

−ρ0ψ̇ +
[

P +
[

F−t ·E
]

⊗Π
]

: Ḟ +E · Π̇ ≥ 0 . (17)

Using a second Legendre transformation between ψ(F ,Π ,K) and Ψ (F ,E,K) so
that Ψ = ψ − 1

ρ0
Π ·E and where K represents some internal variables governing the

viscous time-dependent response the material version of the dissipation inequality can
be rewritten as

−ρ0Ψ̇ +
[

P +
[

F−t ·E
]

⊗Π
]

: Ḟ −Π · Ė ≥ 0 . (18)

Finally, an augmented free energy Ω = ρ0Ψ − 1

2
ε0JC

−1 : [E ⊗E ], as proposed in
Dorfmann and Ogden (2005), is introduced so that eq. (18) then reads

[

−T +
∂Ω

∂F

]

: Ḟ +

[

−D − ∂Ω

∂E

]

· Ė − ∂Ω

∂K
· K̇ ≥ 0 . (19)

The following forms of the total stress T and the electric displacement D,

T =
∂Ω

∂F
and D = −∂Ω

∂E
, (20)

together with

Dred = − ∂Ω

∂K
· K̇ ≥ 0 , (21)

ensures the dissipation inequality to be unconditionally fulfilled.

4 Constitutive framework

The underlying concept for the constitutive framework used in this thesis is based
on modeling of rubbery polymers. An overview of constitutive models for rubbery
polymers can be found in Boyce and Arruda (2000). Within this field of constitutive
models both macroscopic continuum and micro-mechanically based formulations can
be found. The constitutive framework in this thesis falls into the latter category
and is, in large parts, based on the micro-mechanically motivated microsphere model
introduced by Miehe et al. (2004). The microsphere model is in Paper A extended
to include electromechanical coupling for finite element simulation of electrostrictive
polymers.

Microsphere models share similarities with the earlier so-called microplane mod-
els, first proposed by Bažant and Oh (1983) for modeling of quasi-brittle structures
undergoing small strains. The microplane theory was later extended to account for
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thermodynamic consistency and finite deformations, see Carol et al. (2001) and Carol
et al. (2004). Common for both approaches is the idea that the macroscopic response
is found by superimposing the response in all directions over the surface of a unit
microsphere. Both model approaches have proven useful in a number of applications
and research fields, in addition to the above mentioned, e.g in modeling of phase
transformations of polycrystalline materials, see Ostwald et al. (2015) as well as for
modeling of biological tissue, see Alastrué et al. (2009).

Polymers consist of long molecular chains interlinked to form a three-dimensional
network through crosslinks at certain, so-called, junction points. In modeling this
type of material, one-dimensional micromechanically motivated constitutive relations
are provided using the framework of statistical mechanics.

4.1 Statistics of long-chain molecules

Within the context of statistical mechanics an idealised model of a single chain is in-
troduced. The simplest statistical model considers a single, freely jointed, molecular
chain consisting of N number of segments of equal length l. The end-to-end distance
is denoted by the vector r which in an unstrained state takes the value r0 =

√
Nl and

at the fully extended state assumes the value rL = N l, see for example James and
Guth (1944); Treloar (1975); Kawakatsu (2004) and Strobe (2007) for an introduction
of statistical micromechanics of polymers. Corresponding dimensionless kinematic de-
scriptions of the individual chains involve the stretch, λ = r/r0 and the corresponding
fully extended chain-locking stretch defined as λL = rL/r0 =

√
N .

A key ingredient in the elasticity of rubbers is the number of conformations avail-
able to the single chain. In a polymer network the number of conformations are
limited by the neighbouring chains. Extensions of the classical theories within molec-
ular statistics to include these effects has therefore been proposed, see Heinrich et al.
(1988) for an overview.

4.2 Micro-sphere model

In the context of polymers the microsphere model can be interpreted to be composed
of a continuous distribution of polymer chain orientations in space. The macroscopic
free energy of the network, Ω, is evaluated by a direction average of the microscopic
counterpart, Ω , through integration over the surface of the unit microsphere U

2. In
general, such integrations cannot be performed analytically but are approximated by
a numerical integration scheme, i.e.

Ω = n
1

4π

∫

U2

Ω dA ≈ n

nid
∑

i=1

Ωi ωi , (22)

where n denotes the number of chains in the network, i refers to a referential unit inte-
gration direction ni ∈ U

2 and ωi denotes non-negative integration weights constrained
by

∑

nid

i=1
ωi = 1.
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To describe the deformation of an individual chain in the polymer network, two
kinematic variables, the length stretch λf and the area-stretch λc, are introduced

λf =
r

r0
and λc =

[

d0
d

]2

, (23)

where r and r0 refer to the deformed and undeformed end-to-end distance of the poly-
mer chain. d and d0 refer to the deformed and undeformed diameter of an imagined
tube surrounding the polymer chain so that the number of possible conformations
available to the chain is constrained. In terms of electrical quantities the following
scalar electric field type quantity is introduced

E = −∆φ

r0
, (24)

where ∆φ is the difference in electric potential over a single polymer chain. Next,
the kinematic and electric quantities referring to the underlying unit microsphere are
introduced. The macroscopic kinematic quantities F̄ , cof(F̄ ) and the electric field E,
are projected onto the integration directions such that

λfi = ‖F̄ · ni‖, λci = ‖F̄−t · ni‖ and Ei = E · ni . (25)

Finally, the transformation between macro- and microscopic variables needs to be
defined. In general these transformations are either affine or non-affine. In this work,
the following notation is used for the affine and non-affine relations respectively

Ω =

{

n 〈Ω (x) 〉 affine
nΩ ( 〈x〉 ) non-affine

(26)

where 〈•〉 is introduced, for brevity, as an alternative notation for the directional
average procedure introduced in eq. (22).

When considering viscous effects, as is done in Paper B, a reduced microscopic
dissipation is introduced and related to the macroscopic counterpart in eq. (21), by
means of the direction average, such that

Dred = 〈Dred,mic〉 ≥ 0 . (27)

5 Dielectric elastomers

The particular subgroup of EAPs in focus of this thesis is the dielectric elastomers.
Owing to its combination of large actuated strains, relatively fast response and high
specific energy the dielectric elastomer actuators are today found as transducers in a
broad range of applications including adaptive optics, loudspeakers, Braille displays,
micropumps and energy harvesting systems, among many others. The viscous time-
dependent behaviour associated with most elastomers impose a drawback and limit
the number of possible applications. To this end the possibility to control these effects
by regulating the applied electric potential is elaborated in Paper C.
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The increase in use of DEAs and of areas of applications has inspired a large num-
ber of experimental investigations. One of the most common investigated elastomer
for DEA applications is VHB 4910 from 3M. It is characterised as an acrylic-based
elastomer with a highly non-linear elastic and viscoelastic response, a relatively high
dielectric constant and can give actuated areal strains greater than 100%, see e.g.
Pelrine et al. (2000). Experimental investigations of VHB 4910 includes for example
Kofod et al. (2003); Wissler and Mazza (2007); Di Lillo et al. (2012); Sahu et al. (2015)
and Hossain et al. (2015).

Due to lack of full-field measurements of dielectric elastomers found in the liter-
ature and the difficulty of measuring the thickness during electric loading, the use
of three-dimensional surface digital image correlation (DIC) is included in Paper D.
By correlating pixel subsets between a series of images during loading, the surface
displacement field is resolved. Furthermore, by assuming the deformation to be in-
compressible and homogeneous through the thickness, the out-of-plane deformation
field is also obtained, see figure 2 for results found in Paper B.

(a) λ1

1.12

1.08

1.04

1

(b) λ2

1.08

1.04

1

0.96

(c) λ3

0.98

0.94

0.9

0.86

0.82

Figure 2: Resulting principal stretch fields resulting from electric activation of a circular VHB 4910
membrane with an initial equi-biaxial stretch λx × λy = 2 × 2. Arrows in the two first columns
indicate corresponding principal directions.

6 Summary and future work

This thesis concerns the modeling of electro-active polymers, more specifically of the
so-called dielectric elastomers. The basic configuration of a dielectric elastomer ac-
tuator consists of a thin polymeric membrane sandwidched between two compliant
electrodes. Under the application of an electric field the actuator will contract in the
direction of the applied field and expand in the area perpendicular to the applied
field. In dielectric elastomers this mechanism is mainly attributed to the Maxwell
effect. The constitutive model developed in this work is based on an extension of
a microsphere formulation, originally proposed for large strain behaviour of rubber,
to include electromechanical coupling. The model is further calibrated to fit the re-
sponse of a typical DEA elastomer and the possibility of controlling viscous effects
in existing applications is elaborated. Finally, an experimental investigation of the
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electromechancial and time-dependent behaviour of the same material is investigated
using digital image correlation.

A reliable, robust and micromechanically motivated constitutive model of EAPs
offers considerable possibilities for future research. Generally, experimental investiga-
tions are of great importance in validation of proposed models as well as in understand-
ing of underlying phenomena yielding the material response. In that pursuit, combin-
ing full-field measurements of deformation on multiple length-scales, as is performed
in e.g. Engqvist et al. (2014), could be elaborated. Furthermore, the electromechan-
ical part of the free energy developed in this thesis is not, as the mechanical parts
of the free energy, fully microscopically motivated. Models of the electrical response,
based on the physical structure of the polymer chain network, as is elaborated in for
example Cohen et al. (2016), would greatly facilitate in understanding the material
behaviour as well as enhance the constitutive model.
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7 Summary of appended papers

Paper A: A modelling framework for electroactive polymers is established. The
framework combines the micro-sphere approach with general finite element method
techniques to solve electromechanically coupled boundary value problems. The free
energy function used is based on a neo-Hooke-type contribution for the elastic part
and terms quadratic in the electric field for coupled electro-elastic and purely elec-
tric part. No viscous effects are considered. Both homogeneous and inhomogeneous
numerical examples are presented which show that the framework is capable of pro-
ducing physically sound results.

Paper B: The framework developed in Paper A is extended to include microme-
chanically motivated elastic parts and non-affine kinematics. The new free energy
introduced includes an isochoric-volumetric split capable of capturing the behaviour
of nearly incompressible elastomers as well as time-dependent viscous effects. The
model is calibrated to fit the response of VHB 4910, which is a popular candidate
for dielectric actuators, both through homogeneous deformation and inhomogeneous
finite element deformation examples.

Paper C: In paper C the possibility to control the viscous time-dependent behaviour
associated with dielectric elastomers is elaborated by regulating the applied electric
potential. The constitutive model used is taken from Paper B. Both homogeneous
deformation examples and inhomogeneous finite element boundary value problems,
chosen to mimic existing applications, are investigated. Control of both force and
displacement quantities is successfully achieved.

Paper D: Motivated by the work in paper B an experimental investigation of VHB
4910 is performed. A circular and biaxially pre-stretched membrane is electrically
actuated using graphite powder electrodes. The deformation is measured using three-
dimensional surface digital image correlation. The resulting strain field reveals in-
homogeneous deformations not visible using conventional measurement techniques.
Special emphasis is placed on the out-of-plane deformation and its connection to
common instabilities found in dielectric elastomer actuators.
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Abstract

The number of industrial applications of electroactive polymers (EAPs) is in-
creasing and, consequently, the need for reliable modelling frameworks for such
materials as well as related robust simulation techniques continuously increases.
In this context, we combine the modelling of nonlinear electroelasticity with a
computational micro-sphere formulation in order to simulate the behaviour of
EAPs. The micro-sphere approach in general enables the use of physics-based
constitutive models like, for instance, the so-called worm like chain model. By
means of the micro-sphere formulation, scalar-valued micromechanical consti-
tutive relations can conveniently be extended to a three-dimensional continuum
setting. We discuss several electromechanically coupled numerical examples and
make use of the finite element method to solve inhomogeneous boundary value
problems. The incorporated material parameters are referred to experimental
data for an electrostrictive polymer. The numerical examples show that the cou-
pled micro-sphere formulation combined with the finite element method results
in physically sound simulations that mimic the behaviour of an electrostrictive
polymer.
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1 Introduction

Along with the commercialisation of electroactive polymers (EAPs) the interest in
smart materials and structures is continuously growing. With their low weight, capa-
bility of large strains, low cost and scalability, EAP applications become not only more
realistic but close to being present in every day life. With the ability to transform
electrical energy into mechanical energy together with the capacity to change size
and shape, EAPs find applications as actuators and sensors in several areas such as
robotics and biomimetics; see the contributions in Bar-Cohen (2004) and Kwang and
Tadokoro (2007). In a comparison made by Kornbluh et al. (1998) between different
technologies used for artificial muscle actuators, the performance of the electrostrictive
polymer actuator turns out to be the one most similar to biological muscles. Carpi
et al(Carpi et al., 2011) identify three main contributors to the increasing interest in
EAPs: technological breakthroughs in science, the discovery of new material proper-
ties in previously developed EAP, and increased efforts to further develop industrial
applications.

EAP materials can be divided into two main groups: electronic EAPs and ionic
EAPs, see Bar-Cohen (2004). In electronic EAPs the deformation can be driven by
either an applied electric field directly or by the Coulomb force that is generated by
the electric potential. In ionic EAPs the deformation can be driven by the trans-
portation of ions or molecules that takes place as the electric field is applied; see
Bar-Cohen et al. (2001) and Blythe and Bloor (2005) for further background informa-
tion. The electronic EAPs are further divided into piezoelectric, electrostrictive and
ferroelectric EAPs depending on their relations between strains, the electric field and
the polarisation; the reader is referred to Nalwa (1995) and Smith (2005) regarding
this topic. In this article the focus is on electronic EAPs, more precisely on a sub-
group called dielectric EAPs with an electrostrictive effect. Electrostrictive polymer
materials show—at small loading levels— strains that are quadratic in the polarisa-
tion, (Bar-Cohen et al., 2001). Typical applications of electrostrictive polymers are
artificial muscle actuators, see Kwang and Tadokoro (2007). Dielectric EAP actuators
can produce large strains up to 200 % but require a high electric field, 100 [V/µm],
to activate these, see Bar-Cohen (2004).

Along with the increased commercial interest in electroactive polymers, the need
for experimental investigations, theoretical developments and computational mod-
elling of these materials increases, especially for situations of finite deformations un-
der the action of an electric field. As a consequence, several research works focus
on related experimental investigations, see for instance (Diaconu et al., 2008; York
et al., 2010; Potter et al., 2011), the theoretical modelling, see (McMeeking and Lan-
dis, 2005; McMeeking et al., 2007; Dorfmann and Ogden, 2005, 2006; Rudykh and
deBotton, 2011), and the numerical simulation, see (Vu et al., 2007; Vu and Stein-
mann, 2012), of non-linear electroelasticity; for a review the reader is also referred to
the contributions in Ogden and Steigmann (2011) and Suo (2010). The modelling of
viscous material properties of EAPs is addressed in, for example, Wissler and Mazza
(2005); Hong (2011); Ask et al. (2010) and Ask et al. (2012a); see also references cited
in these works. Special emphasis on the modelling of EAP-based composites is placed
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in, for instance, Hirano et al. (2011); Bertoldi and Gei (2011) and Tian et al. (2012).
To model the electroelastic behaviour of the EAP, use will be made of a micro-

plane, also called micro-sphere, theory. The micro-plane theory was first proposed
by Bažant and Oh, see Bažant and Oh (1983), for the modelling of materials such
as concrete or ceramics, but has since found new areas of applications; see, for ex-
ample, Carol et al. (2001); Kuhl et al. (2001) and Waffenschmidt and Menzel (2012).
The extension of the micro-plane model to the case of finite deformations is often
denoted as micro-sphere model. Affine and non-affine formulations have been estab-
lished in the literature with application to elastic and inelastic rubber-like materials,
see Miehe et al. (2004) and Miehe and Göktepe (2005). The aim of this work is to
further develop a coupled micro-sphere framework for the computational modelling
of non-linear electroelastic behaviour. A key idea of the micro-sphere formulation is
to extend one-dimensional constitutive equations to the three-dimensional continuum
setting. The particular one-dimensional models used can be based on, for example, a
statistical mechanics background so that the material model at the continuum level
possesses a sound physical motivation. To give an example, worm-like chain models
can conveniently be combined with the micro-sphere framework; the reader is referred
to Beatty (1987); Miehe et al. (2004); Kuhl et al. (2006) and Ogden et al. (2006)
for detailed background information. Another advantage of the micro-sphere formu-
lation is the possibility to include the modelling of anisotropic material properties
and the evolution of these, see for example Menzel and Waffenschmidt (2009) and
Waffenschmidt et al. (2012).

The paper is organised as follows: basic equations of non-linear electroelasticity are
first briefly presented in section 2. Constitutive equations, along with the introduction
of the micro-sphere framework, are established in section 3. In the following section
4 four examples are discussed—two examples under a homogeneous deformation and
two inhomogeneous boundary value problems, which are solved by means of a coupled
finite element formulation. Finally, the paper is concluded with a brief summary in
section 5.

2 Basic equations

In this section the basic equations of electroelasticity are presented, whereby we briefly
review essential kinematic relations as well as the underlying balance equations in
local form. For detailed background information regarding the theory of nonlinear
electroelasticity, see for example Kovetz (2000) and Bobbio (2000) and references
cited therein.

2.1 Kinematics

Let the body of interest in the reference configuration be denoted by B0 and Bt in the
current configuration. Positions of material particles in the reference configuration
are characterised by the vectors X and x = ϕ(X, t) in the current configuration,
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whereby t represents time. The related so-called deformation gradient F is defined as

F = ∇X ϕ with J = det(F ) > 0 , (1)

and cof(F ) = ∂F J = J F− t. The deformation gradient is multiplicative split into a
volumetric and isochoric part, i.e.

F = J1/3 F̄ so that det(F̄ ) = 1 . (2)

Based on the split of the deformation gradient, two different right Cauchy-Green
tensors are introduced, to be specific

C = F t · F and C̄ = F̄ t · F̄ , (3)

with det(C̄) = 1 being obvious.

2.2 Balance equations

In the absence of magnetic fields the electric displacement d and electric field e in the
current configuration are governed by the following equations

∇x · d = 0 and ∇t
x
× e = 0 , (4)

where the free charge density is set to zero as is common for a dielectric. Due to eq. (4)2
the electric field e can be represented as the gradient of a scalar-valued function, the
so-called electric potential φ(X, t), such that

e = −∇xφ . (5)

For a given electric field e the electric displacement reads d = ε0 e+p where ε0 is the
vacuum electric permittivity and p is the so-called polarisation vector.

By analogy with the local form of Gauss law in eq. (4)1 the quasi-static local form
of the balance of linear momentum reads

∇x · τ + fmec
t = 0 , (6)

wherein fmec characterises mechanical volume forces. The specific format chosen in
eq. (6) includes, or rather shifts, electrical volume forces, ∇x e·p, to the mechanical flux
term and adds these to the generally un-symmetric Cauchy stresses σ; see Dorfmann
and Ogden (2005) and Eringen and Maugin (1990) for additional background and
microscopic or rather physics-based derivations. In consequence, the total stress tensor
τ turns out to be symmetric and is given as

τ = σ + d⊗ e−
1

2
ε0 [ e · e ] I , (7)

wherein I denotes the second-order identity tensor.
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The balance equations can also be referred to the reference configuration. The
electric displacements and the electric field related to the reference configuration are
denoted as D and E and by analogy with eq. (4) we obtain

∇X ·D = 0 and ∇t
X
×E = 0 . (8)

The transformation of electrical and mechanical flux terms in the current configu-
ration, i.e. d and τ , to the reference configuration, here D and T , are defined by
so-called Piola transformations, i.e.

D = d · cof(F ) and T = τ · cof(F ) . (9)

From the gradient operation in eq. (5) and the definition of the deformation gradient,
the transformation of the electric field

E = e · F = −∇X φ , (10)

becomes obvious. With these relations at hand, the quasi-static local balance of linear
momentum relation with respect to the reference configuration is found as

∇X · T + fmec
0 = 0 , (11)

with fmec
0 = J fmec

t .

3 Constitutive equations

The constitutive framework established in this work is based on two key assump-
tions or rather frameworks: the existence of an amended free energy function and
the so-called micro-sphere approach. Introducing an amended free energy, as used in
Dorfmann and Ogden (2005), allows to make use of, say, hyper-elastic forms, from
which the electromechanical flux terms can be derived. The micro-sphere framework,
applied here in the context of a coupled problem, enables to generalise physics-based
one-dimensional constitutive equations to the three-dimensional case. A typical exam-
ple is the so-called worm like chain model, even though we will restrict the examples
investigated in this work to more standard energy representations.

3.1 Hyper-elastic forms based on the amended free energy

A full review of the thermodynamical framework is not included in this contribution—
as this is well-documented in the literature, see for instance Eringen (1989) and Maugin
(1988). The starting point is instead the existence of an amended free energy function
Ω defined in terms of the deformation gradient and the electric field. Adopting an
additive split of Ω in volumetric elastic and isochoric electroelastic contributions, as
is also common in the modelling of polymers, we assume the following form

Ω(F ,E) = Ω
vol(J) + Ω

iso(C̄) + Ω
mel(C̄,E) + Ω

ele(E)−
1

2
ε0 J E ·C−1 ·E , (12)
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where the explicit dependencies on material placements X is suppressed to simplify
notation.

With this form of the amended free energy at hand, the electromechanical flux
terms D and T can, based on E and F , be introduced by means of derivatives of
eq. (12). Based on T = ∂FΩ we introduce a Piola-Kirchhoff-type referential stress
tensor S = F−1 · T

S = 2 ∂CΩ

= J ∂JΩ
vol C−1 + 2 J−2/3

P : [ ∂C̄Ω
iso + ∂C̄Ω

mel ]

+ ε0 J
[

[C−1 ·E ]⊗ [E ·C−1 ]− 1
2
[E ·C−1 ·E ]C−1

]

,

(13)

with P
T = J2/3 ∂C̄C = [ Isym − 1

3
C ⊗C−1 ] so that P = I

sym − 1
3
C−1 ⊗C. Moreover,

I
sym = 1

2
[ I ⊗ I + I ⊗ I ] denotes the fourth-order symmetric identity tensor. By

analogy with eq. (13) we obtain the electric displacements as

D = − ∂EΩ = − ∂EΩ
mel − ∂EΩ

ele − ε0 J C−1 ·E . (14)

We will assume ε0 to be small compared to the remaining parameters so that the free
space charge contribution is neglected.

When solving a set of non-linear equations, by means of Newton-type iteration
schemes, including these electromechanical flux terms, we make use of the tangent
operators which are defined in terms of second derivatives of Ω with respect to C and
E. In this regard, we introduce the elasticity related contributions

D
vol = 4

∂2
Ω

vol

∂C ⊗ ∂C

= J [ ∂JΩ
vol + J∂2

JJΩ
vol ]C−1 ⊗C−1

− J ∂JΩ
vol [C−1⊗C−1 +C−1⊗C−1 ] ,

(15)

and

D
iso,mel = 4

∂2[Ω iso + Ω
mel ]

∂C ⊗ ∂C

= 4 J−4/3
P : ∂2

C̄⊗C̄
[Ω iso + Ω

mel ] : PT

+ 2
3
J−2/3 C : [ ∂C̄Ω

iso + ∂C̄Ω
mel ]

[C−1⊗C−1 +C−1⊗C−1 − 2
3
C−1 ⊗C−1 ]

− 4
3
J−2/3

[

C−1 ⊗ [ ∂C̄Ω
iso + ∂C̄Ω

mel ] : PT

+P : [ ∂C̄Ω
iso + ∂C̄Ω

mel ]⊗C−1
]

,

(16)

by analogy with the so-called elasticity tensors within the framework of finite elasticity.
Moreover, the tangent operator referred to second derivatives of Ω with respect to the
electric field is defined as,

D
mel,ele =

∂2[Ωmel + Ω
ele ]

∂E ⊗ ∂E
, (17)
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as well as a, say, mixed contribution

D
mel = − 2

∂2
Ω

mel

∂E ⊗ ∂C
= − 2 J−2/3 ∂2

Ω
mel

∂E ⊗ ∂C̄
: PT . (18)

3.2 Coupled micro-sphere formulation

As previously mentioned the main advantage of the so-called micro-sphere framework
is the transformation of one-dimensional constitutive models to the general three-
dimensional case. Such one-dimensional constitutive equations may enable to conve-
niently include a physically sound background into the model, even though we will not
place particular emphasis on this aspect in this work. Furthermore, we restrict the
proposed formulation to affine kinematics, but extend the micro-sphere formulation to
the electromechanically coupled problem at hand. For more details on micro-sphere
formulations see for instance Miehe et al. (2004); Alastrué et al. (2009a) and Alastrué
et al. (2009b).

Conceptually speaking, the electromechanical flux terms, here S and D, are evalu-
ated by integration over the surface of the unit-sphere U2. In general, such integrations
can not be performed analytically but are approximated by a numerical integration
scheme, i.e.

∫

U2

• dA ≈

m
∑

i=1

•i wi , (19)

wherein • is a scalar quantity, the index i refers to a referential integration direction
ri ∈ U

2 so that •i is the value of • in the direction of ri, and wi represent non-negative
integration weights constrained by

∑m
i=1wi = 1. Next the kinematic quantities of

interest are referred to, or rather projected on, the integration directions, i.e.

λ̄i = ‖F̄ · ri‖ =
√

ri · C̄ · ri , (20)

Ei = E · ri . (21)

Based on this, the free energy function is introduced within the micro-sphere context
and we obtain

Ω(F ,E) ≈ Ω
vol(J) +

∑m

i=1
[Ω iso

i (λ̄i) + Ω
mel
i (λ̄i, Ei) + Ω

ele
i (Ei) ]wi , (22)

with the free space contribution including the parameter ε0 being neglected.
It is recalled that the electromechanical flux terms as well as the related tangent

operators are directly based on derivatives of the free energy with respect to me-
chanical deformation tensors and the electric field. With eqs.(19)-(21) at hand, these
derivatives are evaluated in the context of an affine micro-sphere formulation. In view
of the derivatives present in the isochoric part of S, eq. (13), we obtain

∂Ω iso

∂C̄
≈

m
∑

i=1

∂Ω iso
i

∂λ̄2
i

∂λ̄2
i

∂C̄
wi =

1

2

m
∑

i=1

1

λ̄i

∂Ω iso
i

∂λ̄i

ri ⊗ ri wi , (23)
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and the micro-sphere-based evaluation of ∂C̄Ω
mel follows by analogy. Note that the

overall representation of S remains unaffected by the micro-sphere formulation and
that solely the direct derivatives of Ω in eq. (13) have to be replaced. The micro-
sphere-based representation of the electric displacements in eq. (14) leads to

−
∂Ωmel

∂E
≈ −

m
∑

i=1

∂Ωmel
i

∂Ei

∂Ei

∂E
wi = −

m
∑

i=1

∂Ωmel
i

∂Ei
riwi , (24)

and the representation of − ∂EΩ
ele follows along the same lines of derivation. Note

that not only the weighting factors wi are constrained but also the integration direc-
tions, for instance by

∑m
i=1 ri wi = 0. Practically speaking, any weighted summation

over odd-order moments in ri vanish identically, whereas weighted summations over
even-order moments in ri result in identity-type tensors. In fact, this property re-
stricts ∂Ei

Ω
mel
i to be of odd order in Ei. To give an example, let this derivative be

linear in Ei. We then observe the relation
∑m

i=1 Ei riwi =
∑m

i=1 E · ri ⊗ ri wi which,
for E 6= 0, does not vanish.

The general form of the tangent operators in eqs. (16)-(18) include first- and
second-order derivatives to be specified within the micro-sphere context. The first-
order derivatives are already included in the electromechanical flux terms, see eq. (23)
and (24). The second-order derivatives present in the elasticity-type tensor in eq. (16)
take the representation

∂2
Ω

iso

∂C̄ ⊗ ∂C̄
≈

1

4

m
∑

i=1

1

λ̄2
i

[

∂2
Ω

iso
i

∂λ̄i ∂λ̄i

−
1

λ̄i

∂Ω iso
i

∂λ̄i

]

ri ⊗ ri ⊗ ri ⊗ ri wi . (25)

and the micro-sphere form of ∂2
C̄⊗C̄

Ω
mel follows by analogy. The second-order deriva-

tives with respect to E, as included in eq. (17), now result in

∂2
Ω

mel

∂E ⊗ ∂E
≈

m
∑

i=1

∂2
Ω

mel
i

∂Ei ∂Ei
ri ⊗ riwi . (26)

Note that ∂2
Ei Ei

Ω
mel
i must be of even order in Ei so that − ∂2

E⊗E
Ω

mel does not vanish.
The same form as in eq. (26) is also applied to the representation of − ∂2

E⊗E
Ω

ele. In
view of the, say, mixed contribution in eq. (18), we obtain

−
∂2
Ω

mel

∂E ⊗ ∂C̄
≈ −

1

2

m
∑

i=1

1

λ̄i

∂2
Ω

mel
i

∂Ei ∂λ̄i

ri ⊗ ri ⊗ ri wi . (27)

Note that ∂2
Ei λ̄i

Ω
mel
i must be of odd order in Ei so that − ∂2

E⊗C̄
Ω

mel does not vanish.

4 Numerical examples

To show the applicability of the proposed model, several numerical examples are used
for illustrative purposes. To set the stage, we first specify the particular free energy
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Table 1: First and second derivatives of the free energy function of the micro-sphere model.

∂JΩ
vol = κ∗ [ J − 1 ] ∂2

JJΩ
vol = κ∗

∂λ̄i
Ωiso = µ∗ λ̄i ∂2

λ̄iλ̄i
Ωiso = µ∗

∂λ̄i
Ωmel = 2 c∗1 λ̄iE

2
i ∂2

λ̄iλ̄i
Ωmel = 2 c∗1E

2
i ∂2

λ̄iEi
Ωmel = 4 c∗1 λ̄iEi

∂Ei
Ωmel = 2 c∗1 λ̄

2
i Ei ∂2

EiEi
Ωmel = 2 c∗1 λ̄

2
i ∂2

Eiλ̄i
Ωmel = ∂2

λ̄iEi
Ωmel

∂Ei
Ωele = 2 c∗2Ei ∂2

EiEi
Ωele = 2 c∗2

function and thereafter investigate the response of the model by means of two homo-
geneous deformations and two boundary value problems undergoing inhomogeneous
deformations which are solved within a coupled finite element framework. The nodal
degrees of freedom used for the finite element formulation are the motion ϕ of the
body as well as the electric potential φ. As both degrees of freedom enter the elec-
tromechanical fluxes solely in terms of their first-order gradients in space, identical
approximation function are used for both fields. To be specific, we use standard linear
Lagrange polynomials. For the numerical integration on the micro-sphere, we adopt
the simplest but efficient integration scheme with 21 integration directions for the
hemisphere so that m = 42; cf. Bažant and Oh (1986) or Alastrué et al. (2009a), and
references cited therein, for the comparison of different integration schemes.

4.1 Free energy for the micro-sphere model

In general, the free energy function in eq. (22) can be motivated based on a sound
physical background such as statistical mechanics common within, for instance, worm-
like-chain-type models. As the main focus of this work, however, is to establish a
micro-sphere formulation for electromechanically coupled problems, we choose a neo-
Hooke-type elastic contribution in combination with terms quadratic in the electric
field. In view of the micro-sphere model, cf. eq. (22), we obtain

Ωvol(J) = 1
2
κ∗ [ J − 1 ]2 ,

Ωiso
i (λ̄i) = 1

2
µ∗ [ λ̄2

i − 1] ,

Ωmel
i (λ̄i, Ei) = c∗1 λ̄

2
i E

2
i ,

Ωele
i (Ei) = c∗2E

2
i .

(28)

Based on these specifications, the first and second order derivatives, required to de-
termine the electromechanical flux terms and related tangent operators, can be cal-
culated. For convenience of the reader, these derivatives are summarised in table 1.

Furthermore, the material parameters κ∗, µ∗, c∗1, and c∗2 must be specified. We
make use of the parameters κ, µ, and c1 identified for polyurethane by Ask et al.
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Table 2: Material parameters for the continuum model, taken
from Ask et al. (2012b), (left) and for the micro-sphere model (right).

κ = 6.1 [MPa] κ∗ = 6.1 [MPa]
µ = 1.307 [MPa] µ∗ = 3.921 [MPa]
c1 = 1.763 ×10−9 [NV−2] c∗1 = 5.289 ×10−9 [NV−2]
c2 = 2.938 ×10−9 [NV−2] c∗2 = 8.815 ×10−9 [NV−2]

(2012b) but, in this case, transfer these parameters to the micro-sphere model. The
relationship between c1 and c2 has been identified from Vu et al. (2007), who use a
similar constitutive model, so that c∗2 = c∗1/0.6. The specific values are summarised in
table 2. A short discussion on the relation between the micro-sphere-related material
parameters and the material parameters of the continuum model is included in ap-
pendix A, which provides an alternative to directly identify the material parameters
of the coupled micro-sphere model.

4.2 Homogeneous deformation

The first two examples are discussed in order to show that the chosen energy function
together with the micro-sphere formulation produces physically sound results. To
illustrate two different homogeneous deformations, consider a cubical specimen with
initial or rather referential dimensions L×W ×H = 1× 1× 1 [mm].

4.2.1 Compression

In the first example under homogeneous deformation we apply electrical Dirichlet
boundary conditions so that a homogeneous electric field is obtained. The Cartesian
x-axis is chosen to be aligned with this constant loading direction so thatE = Ex ex =
−∆φ/L. The stretches λx = l/L and λy = λz = w/W = h/H are considered, wherein
l, w and h refer to actual or rather spatial dimensions of the specimen, i.e. l×w× h.
Two different displacement Dirichlet boundary conditions are investigated; first we
constrain the deformation in the x-direction so that λx = 1 and next, we study the
unconstrained and stress-free state. Moreover, the total Piola-type stresses projected
on the electrical loading direction, Txx = ex ·T ·ex, as well as the electric displacements
Dx = D · ex are considered. The difference in electric potential is linearly decreased
from zero to − 10 [kV]. Related simulation results are displayed in figures 1-2. Figure
1(a) highlights the relation between the total stress Txx and the electric field Ex for
λx = 1. The electrostrictive response at low loading levels, in other words Txx is
quadratic in Ex, is clearly shown in this figure, which reflects that the micro-sphere
formulation is able to capture electrostrictive response. Due to the low value of c∗2
the value of the total stress Txx remains rather small. Figure 1(b) shows the relation
between the the total stress Txx and the transversal stretches λy = λz which, for the
constrained case considered here, remain rather small within the considered loading

10
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Figure 1: Homogeneous deformation, compression for λx = 1: 1(a) longitudinal total stress Txx

plotted vs. longitudinal electric field Ex;1(b) longitudinal total stress Txx plotted vs. transverse
stretches λy and λz.
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Figure 2: Homogeneous deformation, compression for unconstrained and stress-free state: 2(a)
absolute value of longitudinal electric displacement Dx plotted vs. longitudinal electric field Ex; 2(b)
longitudinal electric field Ex plotted vs. longitudinal stretch λx and transverse stretches λy and λz.

range. Furthermore, figure 2(a) shows that the micro-sphere formulation allows to
include a linear relation between the electric field Ex and the electric displacement Dx

for the unconstrained case. This —together with the results visualised in figure 1(a)—
reflects that the modelling framework proposed is physically sound. Figure 2(b) shows
the relation between the electric field Ex and the stretches of the unconstrained case
where a nonlinear relation is additionally highlighted. As the activation of the electric
field results in compression with respect to this loading direction, λx decreases with
increasing absolute values of Ex, whereas the transverse stretches λy = λz increase.
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4.2.2 Shear

In the second example under homogeneous deformation we shear the specimen L ×
W ×H in the x-z plane such that F = I + γex ⊗ ez, while we simultaneously apply
a linearly decreasing difference in electric potential to those surfaces perpendicular
to the z-axis such that E = Ez ez = −∆φ/H ez. The specimen is sheared to a
maximum of γ = 0.0997 and two different electrical loadings of ∆φ are applied. The
total Piola-type stress components Txz = ex · T · ez and Tzz = ez · T · ez are plotted
against the shear number for two different values of electrical loading, i.e. ∆φ = −10
[kV] and ∆φ = −20 [kV], see figures 3(a) and 3(b) respectively. The case of ∆φ = 0
[V] is also included to emphasis the influence of the electrical loading.
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Figure 3: Homogeneous deformation, shear: 3(a) total stress Txz = ex · T · ez plotted vs. shear γ
for different electrical loading levels ∆φ [kV]; 3(b) total stress Tzz = ez · T · ez plotted vs. shear γ
for different electrical loading levels ∆φ [kV].

4.3 Plate with hole

To further illustrate the numerical approach when the proposed micro-sphere formu-
lation is used, the inhomogeneous deformation of a plate with a hole is studied. The
plate is 120 [mm] long, 40 [mm] wide and 10 [mm] thick. The hole is placed in the cen-
tre of the plate with a radius of 10 [mm]. Due to symmetry conditions, only one eighth
of the plate is discretised with 122 finite elements. Concerning the loading conditions,
we apply a maximum difference in electric potential of ∆φ = 200 [V] between the two
free surfaces of dimension 40 × 10 [mm]. In order to amplify the deformation—for
the purpose of illustration and to activate finite strain states under purely electrical
loading—the material parameter c∗1 is increased to the rather non-physical value of
30 [NV2]. Illustrations of the undeformed specimen with initial dimensions and the
electrical loading conditions are given in figure 4. A representative deformation versus
loading curve is provided in figure 5. To be specific, the change in distance between
two opposite midpoints of the surfaces with prescribed electric potential is plotted
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versus the difference in prescribed electric potential ∆φ. The initial positions of the
nodes considered are given by

(i) X∆x
x = ± 20 [mm] X∆x

y = 60 [mm] X∆x
z = 0 [mm] for ∆x′

(ii) X∆y
x = 0 [mm] X∆y

y = ± 60 [mm] X∆y
z = 0 [mm] for ∆y′

(iii) X∆z
x = 0 [mm] X∆z

y = 60 [mm] X∆z
z = ± 5 [mm] for ∆z′

Figure 5 clearly reflects the large strain regime as well as the overall non-linearity
of the problem at hand. At small loading levels of ∆φ the reduction in longitudinal
end-to-end distance, −∆y|X∆y , turns out to non-linearly increase with ∆φ, while
the overall compression state renders the longitudinal end-to-end distance to almost
saturate at large loading levels of ∆φ. We emphasise that this example is made to
demonstrate the robustness of the model and will, due to the unrealistically high value
of c∗1, produce large deformations with respect to the actual loading level. Deformed
states and respective meshes are highlighted in figure 6 for different electrical loading
levels, i.e. ∆φ ∈ {50, 100, 200} [V]. In order to further emphasise the inhomogeneous
state of deformation, the contour plots in figures 6(a) and 6(b) refer to the projections
in longitudinal direction of the spatial total stresses τ and the electric field E, which
clearly reflect the inhomogeneous state of deformation.

(a) (b)

∆φ

Figure 4: Plate with hole: (a) undeformed mesh with initial dimensions [mm]; (b) electrical bound-
ary conditions.

4.4 Beam-like actuator

This example mimics the behaviour of an electro-active actuator, one of the most
common applications of electro-active polymers. The actuator we simulate is built up
by sandwiching EAP between two electrodes and thereby enabling the generation of
large deformations at moderate strains. The geometry of the actuator is chosen such
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Figure 5: Plate with hole: change in distance in x−, y− and z−direction, referred to the mechanical
displacement of two opposite mid-nodes at the surfaces with prescribed electric potential, vs. the
difference in electric potential ∆φ.

(a)

(b)

Figure 6: Plate with hole: 6(a) contourplots of the spatial total stress τ projected in longitudinal
direction, τyy = ey · τ · ey, for deformed meshes at ∆φ = {50, 100, 200} [V]; 6(b) contourplots of
electric field E projected in longitudinal direction, Ey = E · ey, for deformed meshes at ∆φ =
{50, 100, 200} [V].
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that the specimen is 50 [mm] long, 4 [mm] wide and 1 [mm] thick. The beam is fully
clamped at one of its ends. The electric potential is prescribed in the mid layer of the
beam, φmid = 0, as well as on the top surface of the beam, φtop > 0. An illustration of
the geometry and the boundary conditions is shown in figure 7. The Cartesian axes
are chosen so that the x-axis coincides with the undeformed longitudinal direction of
the beam and undeformed cross-sections are aligned with the y-z-plane. A maximum
difference in electric potential ∆φ = φtop − φmid of 5 [kV] is prescribed. Due to
symmetry conditions, only half of the beam is simulated with a total number of 2160
finite elements. The displacements u in x- and z-direction at the beam tip versus the
difference in prescribed electric potential ∆φ are shown in figure 8. Moreover, figure
9 visualises the deformation of the beam at a loading level of ∆φ = 2.5 [kV] and
∆φ = 5 [kV]. The contour plots refer to the electric potential which, in terms of its
gradient, clearly reflects the distribution of the electric field.

∆φ

Figure 7: Beam-like actuator: boundary and loading conditions of the beam-like actuator example.
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Figure 8: Beam-like actuator: displacement ux and uz at the tip of the beam vs. the difference in
prescribed electric potential ∆φ.

5 Summary

We established a coupled micro-sphere framework for nonlinear electroelasticity in
combination with the finite element method. The computational model is shown
to be suitable to capture the behaviour of electrostrictive polymers and to simulate
physically sound electromechanical response. We fitted the material parameters of the
coupled micro-sphere model to those previously identified for an electromechanically
coupled continuum model applied to the modelling of polyurethane. The coupled
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Figure 9: Beam-like actuator: contourplots of the electric potential φ on deformed meshes for
∆φ = 2.5 [kV] and ∆φ = 5 [kV].

micro-sphere framework established in this work has the main advantage to enable
the extension of physics-based one-dimensional constitutive equations, such as the
worm like chain model, to the three-dimensional continuum level. The investigation
and algorithmic formulation of such micro-electromechanical models, along with the
incorporation of dissipation effects such as viscosity, constitute key aspects of future
research.
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A Material parameters at the micro-sphere level

The material parameters used for the electromechanically coupled micro-sphere model
in this work are motivated by those identified in Ask et al. (2012b) where use of the
following free energy contributions is made

Ωiso(F̄ ) = 1
2
µ [ C̄ : I − 3 ] ,

Ωmel(F̄ ,E) = c1E · C̄ ·E ,

Ωele(E) = c2E ·E .

(29)

To relate the parameters µ and µ∗ we compute the contribution of the respective
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parameters to the Piola-Kirchhoff stresses. This results in

2
∂Ωiso

∂C̄
= µ I ,

2

m
∑

i=1

∂Ωiso
i

∂C̄
wi = µ∗

m
∑

i=1

ri ⊗ ri wi =
1

3
µ∗ I ,

(30)

from which we conclude that

µ∗ ≡ 3µ . (31)

Eq. (30) includes that the numerical integration scheme on the unit-sphere is restricted
to result in a spherical second-order moment of the integration directions, the trace
of which is one, in other words

∑m
i=1 ri ⊗ riwi =

1
3
I.

We proceed along the same lines of derivation to relate c2 and c∗2 but now compare
the tangent operators related to the purely electric contribution. To be specific

∂2Ωele

∂E ⊗ ∂E
= 2 c2 I ,

m
∑

i=1

∂2Ωele
i

∂E ⊗E
wi = 2 c∗2

m
∑

i=1

ri ⊗ ri wi =
2

3
c∗2 I ,

(32)

so that

c∗2 ≡ 3 c2 . (33)

We obtain the same relation for c1 and c∗1 when evaluation the, say, coupling term
within the energy functions at the initial state of deformation, i.e. F = I. In this
context we obtain

∂2Ωmel

∂E ⊗ ∂E

∣

∣

∣

∣

∣

F=I

= 2 c1 I ,

m
∑

i=1

∂2Ωmel
i

∂E ⊗E

∣

∣

∣

∣

∣

F=I

wi = 2 c∗1

m
∑

i=1

ri ⊗ riwi =
2

3
c∗1 I ,

(34)

so that

c∗1 ≡ 3 c1 . (35)

Finally, the purely volumetric elastic contribution to the free energy is assumed
not to be affected by the micro-sphere kinematics. In consequence, we assume

κ∗ ≡ κ , (36)

whereby κ is a penalty-type compression modulus related—in case of a standard
continuum model—to the Poisson ratio via ν = [ 3 κ− 2µ ]/[ 6 κ+ 2µ ].
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Abstract

Dielectric elastomers belong to a larger group of materials, the so-called elec-
troactive polymers, which have the capability of transforming electric energy to
mechanical energy through deformation. VHB 4910 is one of the most popular
materials for applications of dielectric elastomers and therefore one of the most
investigated. This paper includes a new micromechanically motivated constitu-
tive model for dielectric elastomers that incorporates nearly incompressible and
viscous time-dependent behaviour often found in this type of material. A non-
affine micro-sphere framework is used to transform the microscopic constitutive
model to a macroscopic continuum counterpart. Furthermore the model is cal-
ibrated, through both homogeneous deformation examples and more complex
finite element analysis, to VHB 4910. The model is able to capture both the
purely elastic, the viscoelastic and the electro-viscoelastic properties of the elas-
tomer and demonstrates the power and applicability of the electromechanically
coupled micro-sphere framework.

1



1 Introduction

Electroactive polymers (EAPs) include a large variety of polymers that react to electric
stimuli with deformation by different types of electromechanical coupling (such as
piezo- or ferro-electrics) which all offer different advantages and disadvantages. One
of the more common applications for EAPs are as actuators. It is often compared
to existing actuator technologies such as shape memory alloys, which gives relatively
large deformations but are slow compared to EAP, or to electroactive ceramics, which
are fast but give small deformations compared to EAP, see Kornbluh et al. (2000).
In terms of EAPs as actuators, one specifically interesting subgroup of EAP are the
so-called dielectric elastomers (DEs). Dielectric elastomer actuators (DEAs) offer a
good alternative with its combination of large strain, scalability, fast response and
high efficiency, see for example Kornbluh et al. (2000); Pelrine et al. (2000a) and
Pelrine et al. (2001b). Furthermore, there are also the purely elastomeric benefits of
inexpensive production, commercial availability, high fracture tolerance, lightweight
and easy fabrication into various complex shapes.

A DEA basically acts as a variable capacitor consisting of a thin elastomeric sheet
sandwiched between two compliant electrodes. As an electric field is applied across the
thickness, electrostatic forces arise leading to a thickness reduction of the elastomer.
The incompressible or nearly incompressible nature of most elastomers results in an
area increase, and as a result the capacitance will change. Figure 1 shows a sketch of
the actuation principle. This type of actuation, where the deformation is caused by
the Coulomb forces between the electrodes, is usually termed the Maxwell effect and
differentiates DEAs from other EAPs in so far that the polymer itself does not contain
any large electrostrictive property. Typically for films of a thickness between 10 and

Figure 1: Principle of actuation, before actuation (left) and after actuation (right).

100 µm, a potential of 0.5 − 10 kilovolts is required, but during operation the setup
will consume only low amounts of electric power due to the electrostatic nature of the
elastomer, see Rasmussen (2012). In order to reduce the operating voltages and at the
same time increase the mechanical stiffness, the elastomers are often pre-stretched be-
fore they are electrically loaded. Applications include loudspeakers, optical apertures,
motors and various generators, see for instance Pelrine et al. (2001a) and Pelrine et al.
(2001b).

In comparisons between different possible DEA materials, VHB 4910 from 3M of-
ten stands out at as one of the more potential candidates, see Kornbluh et al. (2000);
Pelrine et al. (2001b); O’Halloran et al. (2008) and Rasmussen (2012). VHB 4910
can be characterised as a non-linear viscoelastic rubbery acrylic material, capable
of very large elastic strains and electrically actuated strains over 200%, see Pelrine
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et al. (2000b) and Kofod et al. (2003). Numerous experimental investigations have
been performed on VHB 4910. In Tagarielli et al. (2012); Hossain et al. (2012) and
Hossain et al. (2015) the mechanical and electromechanical characteristics are inves-
tigated in terms of stress-strain curves from loading and unloading experiments at
different strain rates as well as relaxation tests. The viscous behaviour is evident and
demonstrates a non-linear rate dependent behaviour of the material with relatively
long relaxation times. Mechanical, dielectric and conductive dissipation are indicated
in the literature to be present, see for instance Zhao et al. (2011) and Chiang Foo
et al. (2012). However, under normal conditions (room temperature and pressure) the
dielectric response time is orders of magnitude smaller than the mechanical, and the
conductive response time in orders of hours. In this work we focus on the mechanical
dissipation effects only.

The electrical and electromechanical characterisation of VHB 4910 related to the
dielectric permittivity and how this is influenced by temperature, frequency, type of
electrode and pre-stretch is provided in, among others, Wissler and Mazza (2007a);
McKay et al. (2009); Jean-Mistral et al. (2010); Li et al. (2011); Di Lillo et al. (2012);
Vu-Cong et al. (2012, 2014) and Qiang et al. (2012). The results are, unfortunately,
ambiguous and the permittivity and its dependencies remain a debated issue. Never-
theless, almost all of the above mentioned studies show an, even if sometimes small,
decrease in permittivity with increased pre-stretch and a value of approximately 4.0-
5.25 in an unstretched state and at room temperature. According to Qiang et al.
(2012), the most influential parameter to the relative permittivity of the above men-
tioned factors is the pre-stretch value. Other electromechanical studies, Liu et al.
(2014); Zhang et al. (2014) and Sahu et al. (2015), investigate the viscoelastic re-
sponse under dynamic electrical loading and discover, among other things, that larger
pre-stretch, for the same nominal electric field, results in lower amplitude of displace-
ments and that, in the case of cyclic loading, both creep and stress relaxation depend
on the number of loading cycles.

Dielectric elastomers are made up of long macromolecules, linked together through
chemical crosslinks to form a three-dimensional network, able to sustain large elastic
deformations. When modelling DEs, two main approaches can be distinguished; the
phenomenological and the micro-mechanical ones. Examples of visco-electroelastic,
phenomenologically based, continuum models of dielectric elastomers are included in
Ask et al. (2012a,b); Khan et al. (2013); Büschel et al. (2013); Vogel et al. (2014) and
Ask et al. (2015). In this work, a micro-mechanical framework established in Thylan-
der et al. (2012, 2013) is used to incorporate statistical mechanics arguments on ide-
alised chain molecules and to then link these to the macroscopic level by means of the
micro-sphere formulation. The micro-sphere formulation allows for one-dimensional
micromechanically motivated constitutive equations to be established and then trans-
formed into three-dimensional counterparts via a direction average procedure over a
micro-sphere. The micro-sphere theory, originally termed micro-plane theory and pro-
posed for modelling of concrete structures, see Bažant and Oh (1983) and Carol et al.
(2004), has proven useful in simulations of both rubber-like materials and biological
tissue, see for instance Miehe et al. (2004); Miehe and Göktepe (2005); Menzel and
Waffenschmidt (2009) and Linder et al. (2011), as well as of magneto- and electro-
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elastically coupled materials, see Ethiraj et al. (2013) and Zäh and Miehe (2015). The
novel contributions of the present electromechanically coupled micro-sphere model –
as compared to Thylander et al. (2012, 2013) and other models established for dielec-
tric elastomers – are (i) the introduction of a non-affine electromechanical kinematic
quantity in combination with statistical-physics-motivated energy forms, (ii) the in-
corporation of viscous effects within the electromechanical micro-sphere model, and
(iii) the finite-element-based identification of the underlying material parameters for
experimental data for VHB 4910.

2 Balance relations

In this section we summarise the balance relations that govern a general electrome-
chanically coupled problem. Electro-magnetic coupling is not considered and, more-
over, the balance relations are restricted to the electrostatic case. Only local forms of
the balance relations are presented and related boundary conditions are not explic-
itly mentioned. For detailed background information the reader is referred to Jackson
(1962); Eringen (1989); Kovetz (2000); Dorfmann and Ogden (2005) and Saxena et al.
(2014).

2.1 Basic kinematics

Positions of material particles of the body B are characterised by the vector X in a
reference configuration B0. The motion of the body is described by the mapping ϕ

which transforms the positions of material particles to the current configuration Bt by
x = ϕ(X, t), whereby t represents time. The related so-called deformation gradient
tensor F is defined as

F = ∇X ϕ with J = det(F ) > 0 and

cof(F ) = ∂F J = J F−t .
(1)

Due to the nearly incompressible nature of polymers, the deformation gradient is
assumed to be multiplicatively split into a volumetric and an isochoric part, i.e.

F = J1/3 F̄ so that det(F̄ ) = 1 . (2)

Based on this split of the deformation gradient, two different right Cauchy-Green
tensors are introduced,

C = F t · F and C̄ = F̄ t · F̄ , (3)

where det(C̄) = 1 follows from eq. (2).

2.2 Gauß’s law

We consider the specialisation of Maxwell’s equations in the absence of magnetic fields,
free electric charges and any time dependencies. Then, the spatial, i.e. in Bt, vectorial
fields of the electric displacements, d, and the electric field, e, satisfy

∇x · d = 0 and ∇t
x

× e = 0 . (4)
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The divergence-free field of electric displacements, however, represents a local form of
balance relation, namely Gauß’s law. The spatial and material electric displacements
are connected by the Piola transformation

D = d · cof(F ) . (5)

In addition, the spatial electric field is related to its material counterpart according
to

E = e · F . (6)

The related referential representations in B0 read

∇X · D = 0 and ∇t
X

× E = 0 . (7)

Since the electric field is curl-free it can be defined as the gradient of a scalar-valued
field, here denoted as the electric potential φ(X, t), such that

e = − ∇xφ and E = − ∇X φ . (8)

The spatial electric displacements and the spatial electric field are connected by the
general constitutive relation

d = ε0 e + π , (9)

wherein ε0 is the vacuum electric permittivity and π is the polarisation, which van-
ishes outside the body B. The referential counterpart in B0 is given by the Piola
transformation in eq. (5), i.e.

D = J ε0 E · C−1 + Π , (10)

with Π = π · cof(F ).

2.3 Balance of linear momentum

The electric field and its interaction with matter introduces additional body forces.
As this work proceeds, the framework of the so-called two dipole model is adopted,
so that the additional body force takes the representation f e = ∇xe · π = ∇x ·

[

e ⊗
d− 1

2
[ e ·e ] I

]

, with I being the second order identity tensor. The local, quasi-static

form of balance of linear momentum (for a closed system where mass is conserved) in
fully spatial representation in Bt then reads

∇x · σ + f e + ρf = 0 , (11)

where f represents the mechanical body forces and ρ the current mass density. In
general, the presence of the electric field and its interaction with matter renders the
Cauchy stress σ to be unsymmetric. By shifting the electric body forces to the
mechanical flux term a symmetric total stress tensor

τ = σ + e ⊗ d − 1
2
ε0 [ e · e ] I , (12)
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can be introduced such that eq. (11) corresponds to

∇x · τ + ρf = 0 . (13)

The referential counterpart of eq. (13) reads

∇X · T + ρ0 f = 0 , (14)

where T = τ · cof(F ) and ρ0 = J ρ.

2.4 First and second law of thermodynamics

The local form of the first and second law of thermodynamics in the case of electro-
statics and in terms of spatial arguments reads

ρ ǫ̇ =
[

σ + [ e · π ] I
]

: l + e · π̇ − ∇x · q + ρ h

ρ η̇ ≥ ρ h/θ − ∇x · [ q/θ ] ,
(15)

together with boundary conditions and the entropy source and flux terms directly
related to the heat source and flux. Notation •̇ refers to the material time derivative
so that ǫ̇ is the rate of change of internal energy per unit mass and l = ∇xϕ̇ corre-
sponds to the spatial velocity gradient. Moreover, q represents the spatial heat flux,
θ denotes the absolute temperature, h characterises a heat source per unit mass and η
is the specific entropy. When referred to referential volume and area elements, these
relations read

ρ0 ǫ̇ =
[

P + [F−t · E ] ⊗ Π
]

: Ḟ + E · Π̇ − ∇X · Q + ρ0 h

ρ0 η̇ ≥ ρ0 h/θ − ∇X · [Q/θ ] ,
(16)

wherein the relation Ḟ = ∇Xϕ̇ = l · F is used, and P = σ · cof(F ) as well as
Q = q · cof(F ) are introduced as Piola stresses and referential heat flux vector,
respectively.

3 Constitutive relations

The constitutive framework established in Thylander et al. (2012, 2013) is here ex-
tended to include viscoelastic contributions and altered in the sense that the elastic
parts of the free energy are micromechanically motivated. All constitutive equations
are derived in a thermodynamically consistent manner.

3.1 Dissipation inequality

Introducing the Helmholtz free energy ψ = ǫ− θ η and combining eq. (15)a and (15)b

as well as eq. (16)a and (16)b, respectively, we obtain the dissipation inequality in
spatial and material configuration for the isothermal case

−ρ ψ̇ + [σ + [e · π] I] : l + e · π̇ ≥ 0

−ρ0 ψ̇ +
[

P +
[

F−t · E
]

⊗ Π
]

: Ḟ + E · Π̇ ≥ 0 .
(17)
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Next, we introduce the Legendre transformation Ψ = ψ− 1
ρ0

Π ·E where ψ(F ,Π ,K)

and Ψ(F ,E,K) are free energy functions, and where K are internal variables that
govern the time-dependent behaviour. The dissipation inequality in material quanti-
ties then reads

−ρ0 Ψ̇ +
[

P +
[

F−t · E
]

⊗ Π
]

: Ḟ − Π · Ė ≥ 0 . (18)

Moreover, an augmented free energy Ω(F ,E,K) is introduced, as proposed in Dorf-
mann and Ogden (2005), defined as

Ω = ρ0 Ψ − 1

2
ε0 J C−1 : [E ⊗ E] . (19)

With eq. (18) and (19) the dissipation inequality then reads as
[

−T +
∂Ω

∂F

]

: Ḟ +

[

−D − ∂Ω

∂E

]

· Ė − ∂Ω

∂K
· K̇ ≥ 0 . (20)

Assuming the following relations for the total stress tensor T , the dielectric displace-
ments D and the evolution laws for the internal variables K

T =
∂Ω

∂F
, D = −∂Ω

∂E
and Dred,mac = − ∂Ω

∂K
· K̇ ≥ 0 , (21)

ensures the dissipation inequality to be unconditionally fulfilled. The reduced macro-
scopic dissipation Dred,mac ≥ 0 is fulfilled by considering the solution of the initial-
value problem

∂Ω

∂K
+
∂Ξ (K̇)

∂K̇
= 0 with K |t=0 = K0 , (22)

where Ξ is a macroscopic dissipation function with Ξ (0) = 0. Assuming Ξ to be
convex ensures the dissipation Dred,mac to be non-negative.

3.2 Amended free energy

Throughout this work we assume a quasi-static electric field and quasi-static but
rate-dependent mechanical response. Furthermore, it is assumed that only the defor-
mation, and not the electric field, governs the viscous behaviour so that there is no
direct coupling between the electric field and the viscous deformation. The macro-
scopic amended free energy Ω, see Dorfmann and Ogden (2005), is defined in terms
of the deformation gradient F , the referential electric field E and internal variables
K, see eq. (19). An additive split of the free energy into volumetric and isochoric
parts is adopted as is common in cases of nearly incompressible materials, where the
volumetric part describes the energy associated with changes in volume and where the
isochoric part describes the energy associated solely to volume-preserving deforma-
tions. The isochoric part is then further additively split into three main parts; elastic
(e∞), viscoelastic (ev) and electroelastic (eel), i.e.

Ω(F ,E,K) = Ω
vol(J) + Ω

e∞(C̄) + Ω
ev(C̄,K)

+ Ω
eel(C̄,E) − 1

2
ε0 J C−1 : [E ⊗ E] .

(23)
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The flux terms and related elasticity-type tensors resume the same additive structure.
Due to the micromechanical approach chosen in this paper, the specific formats of the
free energy associated with the isochoric deformation C̄ are determined only in terms
of microscopic independent variables, and therefore specified first in the following
section. The volumetric part Ωvol is taken in penalty form as

Ω
vol =

1

2
κ [J − 1]2 , (24)

where κ is the bulk modulus.

3.3 Evaluation of flux terms

For the mechanical flux term we consider the total, Piola type, stress tensor T and
for the electrical flux term the electric displacements D. These are evaluated in terms
of the partial derivatives of the free energy function according to eq. (21) so that

T =
1

2
J ∂JΩ

volC−1 :
∂C

∂F

+ J−2/3 ∂
C̄

[Ωe∞ + Ω
ev + Ω

eel] : P :
∂C

∂F

+ ε0 J
1

2

[

[

C−1 · E
]

⊗
[

E · C−1
]

−1

2

[

E · C−1 · E
]

C−1

]

:
∂C

∂F

(25)

and
D = − ∂

Ē
Ω

eel − ε0 J C−1 · E , (26)

where P = I − 1
3
C−1 ⊗ C and I denotes the fourth-order identity tensor.

4 Microsphere formulation

Elastomers or rubber-like materials basically consist of long-chain molecules connected
at junction points, through chemical crosslinks, embedded into a 3-dimensional net-
work. When modelling this type of material micromechanically motivated constitutive
models are made possible through to the use of statistical mechanics. By constructing
a description of each chain in the network and then introducing a suitable averaging
procedure, it is possible to obtain a macroscopic constitutive equation for the contin-
uum.

In the context of statistical mechanics, a polymer chain is idealised to consist of
N , so-called Kuhn segments, of equal length l so that the total contour length L of a
chain is L = N l. For an unstrained chain the end-to-end vector r, between adjacent
junction points, assumes the value ‖r0‖ = r0 =

√
N l, see Treloar (1975).
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Figure 2: Sketch of idealised polymer chain (left) and microscopic quantities (right).

In this work we make use of the length stretch λf and the area stretch λc to
describe the deformation of a single chain defined as

λf =
r

r0

and λc =

[

d0

d

]2

, (27)

where d0 and d are the reference and the current diameter of an imagined tube sur-
rounding the individual chain and hence constraining the number of possible con-
formations. The elastic deformation on the microscopic level is governed by two
separate free energies where the length stretch is linked to the energy by classical
inverse Langevin statistics, and where the area stretch is linked by considering a
constrained free energy for the tube part as suggested in Doi and Edwards (1986).
The time dependent viscous deformation assumes a similar split into two different
free energies defined in terms of the length and area stretch respectively. The elastic
and viscoelastic free energies and the link between the kinematic variables on macro-
and microscopic level in this work will only be summarised here. For more details
see Miehe et al. (2004); Miehe and Göktepe (2005). In terms of the electric field, a
scalar-valued quantity E is introduced as

E = −∆φ

r0
, (28)

so that the coupled free energy of the continuum is linked to the microscopic quantities
E and λc. For a schematic figure of the idealised chain and the microscopical quantities
introduced, see figure 2.

The macroscopic free energy Θ per unit volume of the polymer network, assumed
to be initially homogeneous and isotropic on the macroscopic continuum level, corre-
sponds to the sum of the n chain’s individual energy θn

Θ =
∑

n

θn . (29)

By assuming an isotropic response of the network it is possible to replace the discrete
sum in eq. (29) by a continuous average of the microscopic free energies over the
surface of a micro-sphere such that

Θ = n 〈 θ 〉 , (30)

where 〈 v 〉 = 1
4π

∫

U2 v(A) dA can be interpreted as a direction average of v on a unit
micro-sphere U

2. In general, such integrations cannot be performed analytically, and
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are therefore approximated with a numerical integration scheme

1

4π

∫

U2

v dA ≈
nid
∑

i=1

vi ωi , (31)

wherein v is a scalar quantity, index i refers to an integration direction ni ∈ U
2, with

‖ni‖ = 1, so that vi is the value of v in the direction of ni and ωi represent integra-
tion weights. The integration directions and weights are subjected to the following
constraints

nid
∑

i=1

ωi = 1 ,
nid
∑

i=1

ni ωi = 0 and
nid
∑

i=1

ni ⊗ ni ωi =
1

3
I , (32)

so that any weighted summation over odd-order moments in ni vanishes, whereas
summations over even-order moments result in identity-type tensors. In this work, a
number of 21 integration directions for the hemisphere is assumed to be efficient, so
that nid = 42. For different integration schemes and different number of integration
directions see for example Bažant and Oh (1986); Waffenschmidt et al. (2012) and
Ostwald et al. (2015).

The macroscopic counterparts to eq. (27) and 28 are introduced as projections of
the isochoric deformation gradient, F̄ , and its cofactor, cof(F̄ ), as well as the material
electric field, E, onto the directions of the unitsphere

λfi
= ‖F̄ · ni‖ =

√

ni · C̄ · ni and λci
= ‖F̄−t · ni‖ =

√

ni · C̄−1 · ni
(33)

and
Ei = E · ni . (34)

Finally, by affine and/or non-affine kinematic assumptions that relate the length
and area stretch and the scalar electric field to the macroscopic deformation via the
free energies, it is possible to capture the overall continuum response. In view of
eq. (30) an affine model averages over the individual chain energies, while averaging
over the independent variables gives a non-affine approximation, cf. Miehe et al.
(2004). Hence, the following two scenarios are considered

Θ = n 〈θ(x)〉 or Θ = n θ(〈x〉) , (35)

where x represent some scalar microscopic independent variables.

4.1 Dissipation inequality

A reduced microscopic dissipation Dred,mic is introduced and related to the macro-
scopic counterpart Dred,mac in terms of the direction average introduced with the
microsphere formulation so that

Dred,mac = 〈Dred,mic〉 ≥ 0 . (36)
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A number of 2 s, where s depends on the number of viscous elements needed, kinematic
internal variables εf = [ε1

f , ε
2
f , ..., ε

s
f ] and εc = [ε1

c, ε
2
c , ..., ε

s
c] are introduced on the

microscopic level so that

Dred,mic = − ∂Ω

∂εy
· ε̇y = βy · ε̇y ≥ 0 , (37)

where y = f, c. In analogy with eq. (22), a non-negative microscopic dissipation at the
microscopic level is fulfilled by considering the solution to the initial value problem

∂Ω

∂εy

+
∂κy

∂ε̇y

= 0 with εy |t=0 = 0 , (38)

where κy are microscopic dissipation functions.

4.2 Amended free energy

The amended free energy in terms of microscopic independent variables are split into
the same five main parts as in eq. (23). Only the parts of the free energy connected
to the isochoric deformation will be evaluated in terms of the microsphere framework.
In addition, we assume ε0 to give a negligible contribution compared to the remaining
contributions so that the free space part is neglected. The elastic equilibrium part
Ωe∞ is split into two parts, one connected to the length stretch λf and one to the area
stretch λc as follows

Ω
e

∞,f (λf) = N k T

[

λfr L−1(λfr) + ln

(

L−1(λfr)

sinh (L−1(λfr))

)]

,

Ω
e∞,c(λc) = N k T U λc ,

(39)

where U = α
[

l
d0

]2
and λfr =

λf√
N

, N is the number of chain segments, k the Boltz-

mann constant, T the absolute temperature, L(x) = coth (x)−1 the Langevin function
and α a cross-section factor. The transformation between the macroscopic and micro-
scopic level for the elastic equilibrium parts is accomplished in the following manner

Ω
e

∞,f (C̄) = nΩ
e

∞,f (〈 λfi
〉p) ,

Ω
e∞,c(C̄) = n 〈 Ω

e∞,c(λq
ci

) 〉 ,
(40)

where 〈 v 〉p = p

√

〈 vp 〉 is the p-root average of the scalar variable v and p and q are

material parameters, see Miehe et al. (2004).
Furthermore, the microscopic viscous free energies are defined in terms of the

length and area stretches as well as the internal variables εf and εc. Note that there
is no actual macroscopic format of εf and εc; they are merely denoted by K. In terms
of the kinematic internal variables the viscous free energies are defined as

Ω
ev,y(λy, εy) =

1

2

s
∑

a=1

µa
y

[

ln (λy) − εa
y

]2
, (41)
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where y = f, c and µa
y are material parameters, see Miehe and Göktepe (2005). The

transformation between the macroscopic and microscopic level is performed in an
affine manner, i.e. λy = λy,i and K = εy, such that

Ω
ev,y(C̄,K) = n 〈 Ω

ev,y (λyi
, εy) 〉 . (42)

Specifications of the dissipation function κy and the evolution of the internal variables
εy are summarised in appendix A. For the coupled electromechanical behaviour on
the microscopic level the following simple combination of E and λc is used

Ω
eel(Λ) = c1 Λ

m with Λ = c−2
2 λb

f E
2 , (43)

where the parameter c2 is introduced to normalise the unit of E.

4.3 Evaluation of flux terms

The flux terms T and D are evaluated in terms of the microsphere formulation as

T =
∂ n 〈 Ω 〉
∂C

:
∂C

∂F
and D = − ∂ n 〈 Ω 〉

∂E
, (44)

where, again, n is the number of chains in the network. Applying the specific
affine/non-affine transformations previously stated we obtain for the stresses

∂C̄Ω
e∞ = n ∂C̄ [ Ω

e
∞,f (〈 λfi

〉p) + 〈 Ω
e∞,c(λq

ci
) 〉
]

,

∂C̄Ω
ev = n ∂C̄ [ 〈 Ω

ev,f (λfi
, εf) 〉 + 〈 Ω

ev,c(λci
, εc) 〉 ] ,

∂
C̄

Ω
eel = n ∂

C̄
Ω

eel(〈 Λi 〉) ,
(45)

and for the electric displacements

∂EΩ
eel = n ∂EΩ

eel(〈 Λi 〉) . (46)

The partial derivatives that appear in eq. (45) and (46) are specified in appendix B.

5 Calibration of constitutive equations

In order to show that the chosen format is able to reproduce the behaviour of a
typical dielectric elastomer, we calibrate the model to the popular acrylic elastomer
VHB 4910. The polymer is produced by 3M and is a transparent adhesive tape
available for commercial use. The polymer is often promoted as a good candidate
for use in dielectric elastomer actuators, often due to its high actuation strain and
high energy density (mechanical output energy stroke per unit volume or mass of
material), see Kornbluh et al. (2000); Pelrine et al. (2001b); O’Halloran et al. (2008)
and Rasmussen (2012). It can be characterised as a very soft, nearly incompressible
polymer with noticeably non-linear viscoelastic behaviour.

A direct simplex method in MATLAB is used to identify the material parameters.
The goal function to minimise is taken as the relative error between the experimental
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data set and the corresponding set of simulated data at discrete levels of strain or
time. The calibration is divided into two main parts so that the mechanical and
electromechanically coupled parameters are calibrated separately. The determination
of the mechanical material parameters is split into two parts, one elastic part that
determines the long term equilibrium response, and one viscoelastic part that governs
the time-dependent behaviour.

5.1 Elastic and viscoelastic contributions

Experimental data for the elastic and viscoelastic behaviour of VHB 4910 is found
in Hossain et al. (2012). The calibration of elastic and viscoelastic parameters is
performed simultaneously by comparison with experimental data from one multi-
step relaxation test, several single-step relaxation tests and four different loading and
unloading curves, all points equally weighted in the calibration. As experimental data
for strains under homogeneous deformation were available, no Finite Element (FE)
simulation is performed but a homogeneous deformation assumed and the deformation
gradient F prescribed as

F = λ ex ⊗ ex + λ−1/2 [ I − ex ⊗ ex ] , (47)

together with an uniaxial stress state in the ex-direction.

5.1.1 Elastic contribution

Five different elastic equilibrium parameters are sought; µe, N , p, U and q, cf. eq. (52)-
(53) and table 4. The mechanical nominal, Piola type, stress in the elongation direc-
tion, here denoted Pxx = ex ·P · ex, corresponding to twenty discrete values of strain
were available from multi- and single-step tests. The volumetric pressure term is de-
termined from the condition that Pyy = Pzz = 0. The undeformed sample dimensions
were 50 mm x 5 mm x 1 mm in the x, y and z-direction respectively, and the defor-
mation was applied at a deformation velocity of 10 mm s−1 which was then followed
by a holding period of 30 minutes. The stress values asymptomatically reached after
this holding time were regarded as the elastic equilibrium stress. The experimental
data and fit to values produced by the constitutive model used in this article can be
seen in figure 3(a). The elastic parameters sought are listed in table 1.

Table 1: Elastic material parameters.

µe [Pa] = 1.1000 · 104

N = 1.0000 · 103

p = 2.9793
U = 8.7979 · 10−1

q = 7.0590 · 10−4
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Table 2: Viscoelastic material parameters.

µf [Pa] = [ 5.6456 · 105 1.0478 · 105 7.2672 · 104 2.5046 · 104 ]
µc [Pa] = [ 1.0890 · 105 2.2915 · 104 7.4475 · 104 7.7971 · 103 ]

δf = [ 7.7392 · 10−1 4.8793 · 10−1 1.9775 4.5454 ]
δc = [ 2.4470 7.8005 · 10−1 1.9550 1.0631 ]

τ [s] = [ 2.7824 3.7432 · 102 1.2635 · 10−1 7.4125 · 102 ]
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Figure 3: Elastic, (a), and viscoelastic, (b), experimental data, Hossain et al. (2012), and simulated
fit.

5.1.2 Viscoelastic contribution

In order to find the viscous material parameters, four different loading-unloading
curves are used. The highest and lowest strain rates together with largest and small-
est maximum strain levels are chosen for the calibration. With a spectrum of relax-
ation times, several viscous elements need to be considered. For each viscous element
introduced, five material parameters need to be identified, i.e. µf = [µ1

f , µ
2
f , ..., µ

s
f ],

µc = [µ1
c , µ

2
c , ..., µ

s
c], δf = [δ1

f , δ
2
f , ..., δ

s
f ], δc = [δ1

c , δ
2
c , ..., δ

s
c ] and τ f = τ c = τ =

[τ 1, τ 2, ..., τ s], see eq. (51), (54)-(55) and table 4. It is observed that a set of four vis-
cous elements is sufficient to capture the viscoelastic behaviour with good accuracy,
which corresponds to s = 4. The fit with the calibrated parameters for the selected
loading-unloading curves can be seen in figure 3(b) and the material parameters are
summarised in table 2.

5.2 Electro-viscoelastic contribution

Experimental data for the electro-viscoelastic behaviour of VHB 4910 is found in
Wissler and Mazza (2007b). Experiments are performed on circular VHB 4910 mem-
branes. The membranes are first biaxially prestrained to three different levels of
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stretch ratios; λpre = 3, 4 and 5, so that they obtain an outer radius of 75 mm. At
this stage the membranes are fixed in a frame, and an area of radius 7.5 mm in the
center is coated with graphite powder and silicone oil on both sides of the membrane
and connected to a voltage supply. Three different voltage levels are used for the
calibration, namely 2000, 2500 and 3000 V. The inhomogeneous deformation that
occurs at the border between the active and passive area of the membrane requires
an FE simulation. An in-house built Fortran code was used for the FE simulation
when calibrating the three remaining electroelastic material parameters; c1, b and
m, cf. eq. (56) and table 4. The parameter c2, introduced to normalise the unit of
the electric field E, is not calibrated but set to 1 V m−1. The circular geometry of
the membrane makes it possible for an axisymmetric 2D simulation. A sketch of the
axisymmetric cross-section can be seen in figure 4(a) along with electrical boundary
conditions in figure 4(b). Symmetry conditions also apply in the thickness direction
and therefore only half of the electric potential is applied. Moreover, due to the nearly
incompressible nature of the material, a four-field variational approach is implemented
to prevent locking, for more details see Ask et al. (2013). The bulk modulus, κ, ap-
pearing in the volumetric free energy, is determined from the shear modulus µe and
the Poisson’s ratio which is set to 0.49.

(a)

r

z ∆φ

(b)

Figure 4: Sketch of axisymmetric model and boundary conditions.

Time [s]0 1 900

∆
φ
[V

]

0

∆φmax

Figure 5: Load ramp function for simulation of the electro-viscoelastic response.

The simulation is divided into two steps, first the pre-stretch is applied for three
meshes with initial dimensions 0.5 × 25, 0.5 × 18.75 and 0.5 × 15 mm2 respectively, so
that they all obtain the sought outer radius after pre-stretch. The same discretisations
are used in all three cases with a 3 × 363 number of elements in the z- and r-direction
respectively. This step is done elastically, i.e. no viscous effects are taken into account.
Secondly, the electric loading is applied using the ramp function shown in figure
5 where ∆φmax varies between the three different voltage levels investigated. This
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(c) Time dependent response for a pre-stretch
of λpre = 5

Figure 6: Electro-viscoelastic response. Solid lines represent simulations and markers represent
experiments by Wissler and Mazza (2007b).

step is carried out by considering viscous effects using the viscoelastic parameters
calibrated in the previous section. During this second step, the outer radius is kept
fixed. The load decreases from ∆φmax to zero over a number of 24 elements. The
radial strain ǫr, caused by the application of voltage, of a node in the middle of the
active part of the mesh is tracked and compared to the experimental results where

ǫr = λr − 1 =
r2

r1
λpre − 1 (48)

and where r2 and r1 are the radii (in the active part of the membrane) after and before
activation of voltage. The fit between the FE simulation and the experiments can be
seen in figures 6 and 7(a) and the material parameters are listed in table 3. Figures
6(a) - 6(c) show the electro-viscoelastic behaviour of the three different pre-stretches
applied. Figure 7(a) shows the response after 900 seconds of loading. Note, that this
was taken as the equilibrium response in Wissler and Mazza (2007b) and differs from
the electro-elastic equilibrium response predicted by the model which can be seen in
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Figure 7: Electro-viscoelastic response at 900 seconds, (a), and equilibrium response, (b). Experi-
mental data taken from Wissler and Mazza (2007b).

Table 3: Electroelastic material parameters.

c1 [F m−1] = −2.3292 · 10−10

c2 [V m−1] = 1
b = −1.3282
m = 1.0899

figure 7(b). For a pre-stretch of 5 the highest voltage gives rise to numerical difficulties
which eventually lead to a loss of convergence in the simulation, as is highlighted in
figure 7(b) with a vertical line, indicating where the simulation stopped. Figure 8
shows a small portion of the activated membrane for λpre = 4. Figures 8(a) and 8(b)
show how the load decreases over the elements and illustrate the related geometry
and mesh. Figures 8(c) and 8(d) are contourplots of the mechanical (connected to
Ωvol, Ωe∞ and Ωev) and coupled (connected to Ωeel) contributions of the total nominal
Piola stress in the direction of the electric field, i.e. Tzz = ez · T · ez. Only a small
section of the geometry, at the border between active and passive part, is shown due
to the large difference between radius and thickness of the pre-stretched membrane.

6 Summary and conclusions

A micromechanically motivated constitutive model for dielectric elastomers is es-
tablished using a microsphere framework. The work takes into account the time-
dependent viscous and nearly incompressible behaviour, often seen in dielectric elas-
tomers, using non-affine kinematics. The electromechanically coupled free energy is
altered to fit the response of a specific choice of dielectric elastomer, namely VHB
4910 from 3M. A total of 28 material parameters are calibrated, both through pre-
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Figure 8: Electrical boundary conditions and mesh, (a)-(b), as well as contourplots of mechanical,
(c), and coupled, (d), contributions of the total Piola stress Tzz. Only a small portion around the
boundary between the active and passive part of the entire geometry is shown.

scribed homogeneous deformation examples and through finite element analysis for
inhomogeneous states of deformation. The resulting set of material parameters is able
to reproduce arbitrary cases in terms of loading rates, relaxation and pre-stretches.
This, combined with simulated response in reasonable agreement with experiments,
motivates the use of micromechanically motivated models for dielectric elastomers.
Although a vast number of experiments have been made on VHB, the large, time-
dependent and incompressible stretches that are involved in the electromechanically
coupled FE simulations performed in this work, complicates the calibration and there-
fore more electromechanically coupled experiments at homogeneous states of defor-
mation are desirable.
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A Internal variables

We adopt the model proposed in Miehe and Göktepe (2005) and split the microscopic
dissipation function κ into two parts which assume the following form

κy =
s
∑

a=1

δa
y

ηa
y

[

1 + δa
y

]

[

ηa
y |ε̇a

y|
][1+δa

y ]/δa
y

, (49)

where δa
y and ηa

y are material parameters. Combining eq. (49) with eq. (38) then gives
the following evolution equations for εa

y

ε̇a
y =

1

ηa
y

|βa
y |δa

y −1βa
y with εa

y |t=0 = 0 , (50)

where |(•)| =

√

[

(•)
unit(•)

]2
is a special unit norm operator. The time derivative of βy

together with eq. (50) results in the 2 s differential equations

β̇a
y +

1

τa
y

|βa
y |δa

y −1 βa
y = µa

y

d

dt
[ ln (λy) ] , (51)

where βa
y |t=0 = 0 and τa

y =
ηa

y

µa
y

are relaxations times. The differential eq. (51) is

solved iteratively with an Euler backward scheme. For more details regarding the
microscopic dissipation function see Miehe and Göktepe (2005).

B Flux terms

The elastic equilibrium contributions to the stresses, evaluated on the microsphere,
include the following partial derivatives

n ∂C̄Ω
e

∞,f ( 〈 λfi
〉p ) ≈ n

∂Ωe
∞,f

∂λf
λ1−p

f

1

2

nid
∑

i=1

λp−2
fi

ni ⊗ ni ωi , (52)

n ∂C̄〈 Ω
e∞,c(λq

ci
) 〉 ≈ −n

1

2

nid
∑

i=1

∂Ω
e∞,c

i

∂λci

λ−1
ci

ñi ⊗ ñi ωi , (53)

where ñi = C̄−1 ·ni. The visco-elastic contributions to the stresses, evaluated on the
microsphere, include the following partial derivatives

n ∂C̄〈 Ω
ev,f (λfi

, εa
f ) 〉 ≈ n

1

2

nid
∑

i=1

∂Ω
ev,f

i

∂λfi

λ−1
fi

ni ⊗ ni ωi , (54)

n ∂
C̄

〈 Ω
ev,c(λci

, εa
c ) 〉 ≈ −n 1

2

nid
∑

i=1

∂Ω
ev,c

i

∂λci

λ−1
ci

ñi ⊗ ñi ωi . (55)
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Table 4: Derivatives of the free energy function of the micro-sphere model.

∂JΩ
vol = κ [ J − 1 ]

n ∂λf
Ωe

∞,f = µe
3N−λ2

f

N−λ2

f

λf

n ∂λci
Ωe∞,c = µeN U q λq−1

ci

n ∂λfi
Ωev,f = 1

λfi

∑s
a=1 β

a
f

n ∂λci
Ωev,c = 1

λci

∑s
a=1 β

a
c

n ∂ΛΩeel = mc1 Λm−1

The electro-elastic contribution to the stresses, evaluated on the microsphere, include
the following partial derivatives

n ∂C̄Ω
eel( 〈 Λi 〉 ) ≈ n

∂Ωeel

∂Λ

1

2
b c−2

2

nid
∑

i=1

λb−2
fi

E2
i ni ⊗ ni ωi . (56)

The electro-elastic contribution to the electric displacements, evaluated on the micro-
sphere, includes the following partial derivatives

n ∂EΩ
eel( 〈 Λi 〉 ) ≈ n

∂Ωeel

∂Λ
2 c−2

2

nid
∑

i=1

λb
fi
Ei ni ωi , (57)

wherein Λ = c−2
2

∑nid
i=1 λ

b
fi
E2

i ωi.
The partial derivatives with respect to variables J, λf , λfi

, λci
and Λ are sum-

marised in Table 4 where µe = n k T is introduced.
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Abstract

Dielectric elastomers offer clear advantages over more traditional and conven-
tional materials when soft, light-weight, noise-less actuator applications with
large deformations are considered. However, the viscous time-dependent be-
haviour associated with most elastomers limit the number of possible applica-
tions. For this purpose, the possibility of controlling the viscous response by
regulating the applied electric potential is explored. The constitutive model cho-
sen is calibrated to fit the electro-viscoelastic response of an acrylic elastomer
often used in dielectric elastomer actuators. The response of both homogeneous
deformation examples and inhomogeneous finite element boundary value prob-
lems, chosen to mimic existing applications, are presented. Control of both
force and displacement quantities is successfully achieved.
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1 Introduction

Dielectric elastomers (DEs) are non-conducting polymers with low elastic modulus.
A thin elastomeric film coated on both sides with compliant electrodes constitutes
the basic setup of a dielectric elastomer actuator (DEA). When the electrodes are
connected to an electric field the opposite charges attract each other. As a result
the thickness decreases and the in-plane area increases. The latter being a conse-
quence of the incompressible nature of most elastomers. Actuation based on this,
often called the Maxwell effect, is the main actuation mechanism in DEs, but some
inherent electrostriction due to small amounts of crystallinity can also be found, see
Romasanta et al. (2015). Although all dielectric materials will experience this type
of electrostatic effect, two of the most investigated and used types are silicone- and
acryclic-based. This is mainly due to their combination of low elastic modulus and
high specific energy density, see Carpi et al. (2011b). In a comparison between silicone-
and acrylic-based electroactive actuators, the former is advantageous due to smaller
viscous effects, while the latter is favorable in applications requiring strains larger than
10% due to a lower secant modulus, see Michel et al. (2010). Acrylic-based dielec-
tric elastomers have shown great potential in applications where muscle-like actuation
(soft, noise-less) is needed. Its high energy density as well as large-strain actuation and
fast response characteristics enable light-weight, easy to shape and comparably low-
cost components. Areas of applications where acrylic-based DEs successfully replaced
more traditional materials include tactile feedback, see Carpi et al. (2010, 2012) and
Ren et al. (2014), loudspeakers, see Heydt et al. (2006); Graf and Maas (2012) and
Hosoya et al. (2015), tunable lenses, see Carpi et al. (2011a) and Blum et al. (2012),
micropumps, see Loverich et al. (2006) and generators in energy harvest systems, see
Kornbluh et al. (2011) and Chiba et al. (2013). Two illustrations are provided in figure
1. The increased interest in this field of applications has yielded a first standard for
assessment and comparison between different materials and devices, see Carpi et al.
(2015).

(a) (b)

Figure 1: Examples of applications including dielectric elastomers. (a) Tunable lens from Carpi
et al. (2011a). Reprinted with permission. Copyright 2011WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim. (b) Loudspeaker. Reprinted with permission from Hosoya et al. (2015). Copyright 2015,
Acoustic Society of America.

In terms of applications the rate-dependent viscous effects found in acrylic-based
materials often need to be controlled. The dissipative processes taking place in a DEA
can be divided into three main categories; viscoelastic, dielectric and conductive. The
viscoelastic and dielectric relaxation are due to processes on the molecular level in
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terms of slippage between polymer chains and reorientation of dipoles respectively.
Conductive relaxation, due to the presence of a leakage current as a result of the
transport of electrons and ions, is a long-range motion. The three dissipative processes
take place on different time scales, ranging from milliseconds (dielectric), minutes
(viscoelastic) to hours (conductive), see Suo (2010); Zhao et al. (2011) and Chiang
Foo et al. (2012).

As applications including DEAs continue to increase, the need rises for reliable and
robust material models based on profound understanding of the underlyings physics.
The time-dependent behaviour of DEAs needs to be taken into account in order to
successfully mimic existing applications. To meet this requirement, much of the re-
cent work on DEA, both in terms of modelling and experiments, deals with its time-
dependent effects. Recent observations found in Miles et al. (2015) of the dissipative
behaviour of DEAs includes an experimental investigation of viscous effects analysed
by using the Bayesian uncertainty analysis. In Park and Nguyen (2013) the shear and
bulk relaxation times and its connection to electromechancial instability is examined
by using a viscoelastic finite element model. Experiments related to viscoelastic insta-
bilities in DE transducers are investigated in Kollosche et al. (2015). Different voltage
waveforms and their impact on dissipation are investigated in Zhang et al. (2016). An
assessment of the efficiency of a dielectric elastomer generator in relation to viscous
effects can be found in Bortot et al. (2016).

In this work, the electro-viscoelastic model developed within the micro-sphere
framework in Thylander et al. (2012, 2013), further extended to include viscous be-
haviour as well as non-affine kinematics and calibrated to VHB 4910 in Thylander et al.
(2016), is utilised to show the effect of dissipative processes in common acrylics-based
DE applications. The possibility of controlling these viscous effects by regulating the
applied electric potential difference is investigated. This possibility may allow further
enhancement of applications. Similar attempts to eliminate problems coherent with
dissipative effects can be found in, for example, Zhang et al. (2014b) and Zhang et al.
(2014a). Both contributions are able to successfully eliminate creep under the assump-
tion of homogeneous deformation by tuning of the applied electric potential difference.
In this work we extend this analysis to inhomogeneous deformation states as well as to
include control with respect to both deformation and force quantities. In Zhang et al.
(2015) a dynamic viscoelastic model for dielectric elastomers is established for study
of oscillations and stability evolution. The effect of creep is successfully eliminated by
tuning the in-plane tensile forces that comprises the pre-stretch of a DEA. In this work
the inertial forces are not taken into account. The principle of the control is illustrated
by means of two examples under homogeneous states of deformation and is then fur-
ther explored in two finite element (FE) boundary value problems (BVPs). The finite
element examples implemented are chosen to resemble existing DE applications.

2 Basic relations

This section summarises the basic relations that govern a general quasi-electrostatic
but time dependent electromechanically coupled problem. For brevity, the relations
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used in this work are merely summarised, for full background theory we refer to the
references stated in each subsection.

2.1 Kinematics

Consider the position of a material particle denoted by the vector X in the material
configuration B0 and by the vector x = ϕ(X, t) in the spatial configuration Bt, in
which ϕ denotes the point space map and t represents time. The deformation gradient
tensor F is defined as F = ∇X ϕ with the related determinant, J = det(F ) > 0, and
cofactor, cof(F ) = ∂FJ = J F−t. In view of modelling the nearly incompressible
nature of elastomers a multiplicative split of the deformation gradient is introduced
with an isochoric part F̄ , such that F = J1/3 F̄ and where det(F̄ ) = 1 follows. Based
on this split of the deformation gradient, two different right Cauchy-Green tensors
can be introduced, C = F t · F and C̄ = F̄ t · F̄ so that det(C̄) = 1 follows. For a
more detailed description on kinematics of solid continua see Ogden (1997).

2.2 Electric field quantities

This work is restricted to quasi-electrostatics and electromagnetic coupling is not
considered. In this case the electric quantities of interest are the electric field, the
electric displacement and the polarization, here denoted e, d and π in the spatial
configuration and E, D and Π in the material configuration. The interdependence
of these electric quantities, in the spatial configuration, is governed by

d = ε0 e + π , (1)

where ε0 denotes the vacuum electric permittivity. The referential counterpart is given
by

D = J ε0E ·C−1 +Π , (2)

where E = e · F , D = d · cof(F ) and Π = π · cof(F ). For a full background
description on electromagnetic theory see Kovetz (2000).

2.3 Balance equations

In the absence of magnetic fields, free electric charges and any time dependencies we
consider the specialisation of Maxwell’s equations where the spatial vectorial fields of
the electric displacements, d, and electric field, e, satisfy

∇x · d = 0 and ∇t
x
× e = 0 . (3)

The referential representations in B0 read

∇X ·D = 0 and ∇t
X
×E = 0 . (4)

The curl-free electric field enables a representation of the electric field as the gradient
of a scalar-valued field, here taken as the electric potential, φ(X, t), such that

e = −∇xφ and E = −∇X φ . (5)
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The additional body force introduced by the electric field and its interaction with
matter is taken as f e = ∇xe · π = ∇x ·

[

e ⊗ d − 1
2
[ e · e ] I

]

, with I being the
second order identity tensor, cf. Dorfmann and Ogden (2005). The introduction of
this body force renders the Cauchy stress σ to be, in general, unsymmetric. The
spatial representation of the quasi-static form of the balance of linear momentum (for
a closed system where mass is conserved) then reads

∇x · σ + f e + ρf = 0 , (6)

where f represents the mechanical body force and ρ the current mass density. By
shifting the electric body force to the mechanical flux term a symmetric total stress
tensor τ = σ + e⊗ d− 1

2
ε0 [ e · e ] I can be introduced such that eq. (6) corresponds

to
∇x · τ + ρf = 0 . (7)

The material counterpart of eq. (7) reads

∇X · T + ρ0 f = 0 , (8)

where T = τ · cof(F ) and ρ0 = J ρ. For further details on the interaction of elec-
tromechanically coupled continua the reader is referred to Maugin (1988).

2.4 Constitutive relations

An amended free energy Ω , see Dorfmann and Ogden (2005), is defined in terms
of the deformation gradient F , the referential electric field E and internal variables
K. We assume that the viscous behaviour is governed only by deformation and not
by the electric field, thereby neglecting dielectric and conductive dissipative effects.
Motivated by experimental observations of the (almost) incompressible behaviour of
acrylic-based DEs, an additive split of the free energy into volumetric and isochoric
parts is adopted. The isochoric part is further additively split into three main parts;
elastic (e

∞
), viscoelastic (ev) and electroelastic (eel), see Ask et al. (2012b,a); Büschel

et al. (2013) and Denzer and Menzel (2014), so that

Ω(F ,E,K) = Ω
vol(J) + Ω

e∞(C̄) + Ω
ev(C̄,K)

+Ω
eel(C̄,E)− 1

2
ε0 J C−1 : [E ⊗E] .

(9)

The free space part, connected to ε0, is assumed to give negligible contribution and
is disregarded hereafter. The following relations for the total stress tensor, T , the
dielectric displacements, D, and the evolution of the internal variables, K, ensures
thermodynamic consistency, see Thylander et al. (2016),

T =
∂Ω

∂F
, D = −∂Ω

∂E
and − ∂Ω

∂K
· K̇ ≥ 0 . (10)

Constructing a convex dissipation function Φ(K̇) and considering the solution to
the initial value problem ∂KΩ + ∂

K̇
Φ = 0 with K(t = 0) = K0 ensures a positive

macroscopic viscous dissipation Dmac = − ∂Ω
∂K

·K̇. The specific constitutive framework
and free energy contributions as well as the dissipation function are presented in
section 3.
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3 Specific constitutive framework and model

In this work we consider the constitutive model established in Thylander et al. (2016).
This particular model is based on a non-affine micro-sphere framework established in
Miehe et al. (2004) and Miehe and Göktepe (2005), and enables the use of microme-
chanically motivated and statistical physics-based constitutive relations.

3.1 Scalar-valued kinematic and electric quantities

The specific formats of the free energy associated with isochoric deformation are eval-
uated in terms of two kinematically independent microscopical variables; the length
stretch λf and the area stretch λc, together with one electric scalar-valued quantity,
E, to describe the electric field, i.e.

λf =
r

r0
, λc =

[

d0

d

]2

and E = −∆φ

r0
, (11)

where r0 and r are the initial and current end-to-end distances of an individual poly-
mer chain, d0 and d are the reference and current diameters of an imagined tube
surrounding an individual chain and ∆φ denotes a difference in electric potential.
The macroscopic counterparts to the length and area stretch, as well as the scalar-
valued electric field, are introduced as projections of the isochoric deformation gra-
dient, F̄ , and its cofactor, cof(F̄ ), and the material electric field, E, in direction ri
with ri · ri = 1, such that

λfi = ‖ F̄ · ri ‖, λci = ‖ cof(F̄ ) · ri ‖ and Ei = E · ri . (12)

The microscopic counterpart of the internal variables K, are denoted by ǫf and ǫc.
For more details regarding the microscopic internal variables, see Miehe and Göktepe
(2005).

3.2 Microsphere formulation

The macroscopic free energy of the continuum is derived in view of the so-called micro-
sphere approach. The framework and specific free energies are briefly summarised here
for the reader’s convenience, for further details see Carol et al. (2004); Miehe et al.
(2004); Miehe and Göktepe (2005); Linder et al. (2011) and Thylander et al. (2016)
and references cited therein. The framework rests on the postulate that the free energy
at the macroscopic level, Ω(F ,E,K), can be derived from a direction average, here
denoted 〈•〉, of a microscopic counterpart Ω̂ over the surface of a unit micro-sphere
U

2, i.e.

〈 v 〉 = 1

4π

∫

U2

v(A) dA , (13)

where v represents a scalar-valued quantity. The integral average can be approximated
as a discrete summation over nid integration directions such that

1

4π

∫

U2

v dA ≈
nid
∑

i=1

vi ωi , (14)
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wherein the index i refers to a referential integration direction, ri ∈ U
2, with ‖ri‖ = 1,

so that vi is the value of v in the direction of ri. The scalars ωi represent non-negative
integration weights constrained by

∑nid
i=1 ωi = 1. Also, for the integration scheme

chosen as this work proceeds, the integration directions ri are subjected to constraints,
namely

∑nid
i=1 ri ωi = 0 and

∑nid
i=1 ri⊗ri ωi =

1
3
I. Following Bažant and Oh (1986), 21

integration directions for the hemisphere are assumed to be efficient, so that nid = 42.
In terms of the microsphere formulation the macroscopic free energy, Ω(F ,E,K), is
evaluated, in both affine and non-affine manners, so that affine contributions shall be
based on 〈 Ω̂(λf , λc, E, ǫf , ǫc) 〉 whereas non-affine contributions shall be referred to

Ω̂(〈 λf , λc, E, ǫf , ǫc 〉). The respective forms of affine and non-affine transformations
for each part of the free energy are specified in the following section.

3.3 Amended free energy

The specific contributions to the free energy are taken from Thylander et al. (2016),
where the formats for the purely mechanical parts can also be found in Miehe and
Göktepe (2005). The underlying material parameters were calibrated to fit the re-
sponse of a popular dielectric elastomer, namely VHB 4910. The volumetric part,
Ω

vol, is defined in terms of macroscopic quantities directly,

Ω
vol =

1

2
κ [J − 1]2 , (15)

where κ is the bulk modulus. The isochoric parts are derived from the microscopic
counterparts via the following non-affine and affine transformations

Ω
e
∞,f (C̄) = n Ω̂

e
∞,f (〈 λfi 〉p)

Ω
e∞,c(C̄) = n 〈 Ω̂ e∞,c(λq

ci
) 〉 ,

(16)

where p and q are material parameters and where n is the number of polymer chains.
Moreover, 〈 v 〉p = p

√

〈 vp 〉 represents the p-root average of the scalar variable v, see
Miehe et al. (2004). The viscous and electromechanically coupled free energies are
transformed through

Ω
ev(C̄,K) = n 〈 Ω̂ ev,f (λfi, ǫf) + n 〈 Ω̂ ev,c (λci, ǫc) 〉

Ω
eel(C̄,E) = n Ω̂

eel (〈Λi〉) ,
(17)

where ǫf and ǫc represent microscopic internal variables. The kinematic quantity
Λi = c−2

2 λb
f E

2 is a function of λfi and Ei and the parameter c2 is introduced to
normalise the unit of the electric field. Additional material parameters introduced by
the coupled free energy include b, m and c1, see table 1. The material parameters
are calibrated so that the format reproduces a non-linear relation between the electric
displacement, D, and the electric field, E. Note, that no specific macroscopic format
of ǫf and ǫc is introduced but merely denoted by K. The specific formats of the
free energy in terms of microscopic independent variables are summarised in table 1.
Related material parameters used are listed in table 2. The microscopic dissipation
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Table 1: Free energy contributions and dissipation function in terms of microscopic quantities.
Material parameters needed are summarised in table 2. Furthermore, N is the number of Kuhn
segments in an idealised polymer chain, U is a material parameter related to the constraining tube,
k is the Boltzmann constant, T the absolute temperature and L the Langevin function, for more
details the reader is referred to Miehe and Göktepe (2005).

Ω̂
e
∞,f (λf) = N k T

[

λfr L−1(λfr) + ln

( L−1(λfr)

sinh (L−1(λfr))

)]

, λfr =
λf√
N

Ω̂
e∞,c(λc) = N k T U λc

Ω̂
ev,α(λα, ǫα) =

1

2

s
∑

a=1

µa
α [ ln (λα)− ǫaα ]

2
, α ∈ [f, c]

Ω̂
eel(λf , E) = c1 Λ

m, Λ = c−2
2 λb

f E
2

κα =
s

∑

a=1

δaα
ηaα [ 1 + δaα ]

[ ηaα |ǫ̇aα| ][ 1+δaα ]/δaα , α ∈ [f, c]

Dmic is introduced in a similar manner in terms of a direction average so that Dmac =
〈Dmic〉 ≥ 0, see Miehe and Göktepe (2005). For each viscous element considered, a
number of 2× s microscopic internal variables, ǫf and ǫc, are introduced such that

Dmic = − ∂Ω

∂ǫα
· ǫ̇α ≥ 0 α ∈ [f, c] . (18)

In this case s = 4 was considered sufficient. Similar to the macroscopic setting, the
microscopic dissipation remains non-negative by considering the solution to the initial
problem

∂Ω

∂ǫα
+

∂κα

∂ǫ̇α
= 0 α ∈ [f, c] , (19)

where κα(ǫ̇α) is a convex dissipation function with ǫα|t=0 = 0. The microscopic
dissipation function is listed in table 1 whereas the macroscopic dissipation function
Φ is not further specified.

4 Numerical examples - control of viscous

behaviour

Two different states under homogeneous deformations and two inhomogeneous FE
examples are presented. In all cases we consider the electro-viscoelastic model from
Thylander et al. (2016) together with calibrated material parameters, found in table
2, for the electro-viscoelastic response of the dielectric elastomer VHB 4910. The ma-
terial considered is prone to visco-elastic effects. In many applications it is important
to be able to control the time-dependent deformation or forces induced by the electric
field in order to enable, i.e. predict and design, new and for refinement of existing
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Table 2: Material parameters calibrated for VHB 4910, Thylander et al. (2016), wherein µe = n k T
and τaα = ηaα/µ

a
α for α ∈ {f, c}.

µe [Pa] = 1.1000 · 104
N = 1.0000 · 103
p = 2.9793
U = 8.7979 · 10−1

q = 7.0590 · 10−4

µf [Pa] = [ 5.6456 · 105 1.0478 · 105 7.2672 · 104 2.5046 · 104 ]
µc [Pa] = [ 1.0890 · 105 2.2915 · 104 7.4475 · 104 7.7971 · 103 ]

δf = [ 7.7392 · 10−1 4.8793 · 10−1 1.9775 4.5454 ]
δc = [ 2.4470 7.8005 · 10−1 1.9550 1.0631 ]

τ [s] = [ 2.7824 3.7432 · 102 1.2635 · 10−1 7.4125 · 102 ]

c1 [F m−1] = −2.3292 · 10−10

c2 [V m−1] = 1
b = −1.3282
m = 1.0899

applications. This possibility is considered in the presented examples which consider
typical deformation patterns and geometries found in existing applications.

For this reason we consider a bisection algorithm to compensate for viscous effects
by controlling the applied voltage. The bisection algorithm is constructed to find the
difference in applied electric potential, ∆φ, within the interval [∆φmin −∆φmax] that
minimises the relative difference between the electro-elastic and electro-viscoelastic
case with respect to a chosen scalar control degree of freedom (e.g. displacement
or force), here denoted c, i.e. eliminating large parts of the viscous effects. The
response is checked at each load step but could, for faster simulations, be checked
less often. A sketch of the algorithm is presented in table 3. When control with
respect to forces is considered, we evaluate the sum of the nodal internal forces over
a specified part of the boundary. Note, that the specific model considers applications
with a response time of minutes and consequently only the viscous type of dissipation
is included. For the reader’s convenience we introduce the following abbreviations
for the four different cases presented; electro-elastic (EE), electro-viscoelastic (EV),
electro-viscoelastic including control with respect to displacement (EVD) and electro-
viscoelastic including control with respect to force (EVF).

4.1 Homogeneous deformation

We consider two homogeneous deformation examples; uniaxial compression and pure
shear, see figure 2. Both cases assume the same initial shape of a cube with side lengths
of 1 mm. The difference in electric potential, ∆φ, is applied in the z-direction and
the displacements at the boundaries are specified to obtain the sought deformation.
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Table 3: Sketch of bisection algorithm implemented. cEE and cEV denote the electro-elastic and
electro-viscoelastic control degrees of freedom.

load cEE(t) from electro-elastic solution

declare starting guess ∆φ and interval ∆φmax, ∆φmin

for i = 1 to nbr steps

t = t+∆t

calculate residual R =
cEE(t)− cEV (∆φ(t))

cEE(t)
while |R| > TOL

if |cEE(t)| ≤ |cEV (∆φ(t))|
∆φmax = ∆φ

∆φ = ∆φ− ∆φmax −∆φmin

2
else

∆φmin = ∆φ

∆φ = ∆φ+
∆φmax −∆φmin

2
end

obtain solution, cEV (∆φ(t)) to BVP by means of FE or constitutive driver

update residual R =
cEE(t)− cEV (∆φ(t))

cEE(t)
end

accept cEV (∆φ(t)) and ∆φ(t) and save

end

A maximum of 5 kV is ramped up linearly over a period of 0.5 seconds and then kept
constant for 900 seconds. In both homogeneous deformation examples Poisson’s ratio
is set to 0.498.

x

z
y

Figure 2: Sketch of homogeneous deformation examples used, uniaxial compression (left) and pure
shear (right). Dashed lines indicate the initial shape and solid lines indicate the deformed shape.
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4.1.1 Uniaxial compression

The first homogeneous deformation considers a cube that undergoes uniaxial com-
pression with the resulting deformation gradient

F = λ ez ⊗ ez +
1√
λ
[I − ez ⊗ ez] . (20)

The displacement in the x-direction, ∆x = x −X , of the electro-elastic case is com-
pared to that of the electro-viscoelastic case, and the relative difference between the
two is minimised by controlling the electric potential ∆φ.
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Figure 3: Uniaxial compression: displacement, ∆x, and difference in electric potential, ∆φ, of the
EE case in (a) and (b) and of EV and EVD in (c) and (d) respectively. Note, that ∆φ is the input
to the system, whereas ∆x is the response.

In figures 3(a) and 3(b) the response of the EE case is shown where a constant
displacement ∆x is obtained (after the load ramp) for a given constant load ∆φ. The
EV results are shown in figures 3(c) and 3(d) with dashed lines. As expected, for the
same given constant value of ∆φ, the displacements ∆x do not reach their final value
immediately but start off at a lower value and asymptotically converge towards the
value of the EE case over time. The last loading case, marked with dotted lines in

11



figures 3(c) and 3(d), considers the EVD case. The displacements follow the same
path as in the EE case, however it requires the electric potential ∆φ to start off at a
significantly higher value and then to gradually decrease to that of the EE case.

4.1.2 Pure shear

The second homogeneous example considers a cube that undergoes pure shear with
the following deformation gradient

F =
1

λ
ex ⊗ ex + λ ez ⊗ ez + ey ⊗ ey . (21)

The force in the y-direction, fy, of the electro-elastic case is compared to that of
the electro-viscoelastic case, and the relative difference between them is minimised
by controlling the electric potential. The force is evaluated as the sum of the nodal
internal forces on one side of the cube.
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Figure 4: Pure shear: force, fy, and difference in electric potential, ∆φ, of the EE case in (a)
and (b) and of EV and EVF in (c) and (d) respectively. Note, that ∆φ is the input to the system,
whereas fy is the response.

In figures 4(a) and 4(b) the response of the EE case is shown where a constant
force, fy, is obtained for a given constant load, ∆φ. The EV results are shown in
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figures 4(c) and 4(d) with dashed lines. For the same given constant value of ∆φ,
the force fy starts at a lower value which increases asymptotically towards the EE
response over time. The response from the EVF case is marked with dotted lines
in figures 4(c) and 4(d). Naturally, the dotted line in figure 4(c), representing the
forces in the EVF case, follows the constant value of the electro-elastic case, while the
electric potential in figure 4(d) starts off at a slightly higher value and then gradually
decreases to that of the EE case.

4.2 Finite element examples

Dielectric elastomers offer a combination of properties that could be very advanta-
geous compared to traditional materials for a variety of applications, such as tactile
displays and optical instruments, see for example Frediani et al. (2014) and Shian
et al. (2013). Here, two different DEA types of applications are considered, chosen
to represent two important types of inhomogeneous deformation cases. The first sim-
ulation involves large pre-stretches and the second involves a bending type state of
deformation. Both simulations make use of axi-symmetric Q1P0-elements. The con-
trol of either displacement or force is conducted using the same framework as for the
example under homogeneous states of deformation, cf. table 3. For the FE simulations
a Poisson’s ratio of 0.49 is used.

4.2.1 Actuator with pre-stretch

The geometry and boundary conditions treated in Thylander et al. (2016) for a pre-
stretch of λpre = 3 are used to demonstrate the effect of control in applications in-
volving large pre-stretches. A thin membrane of initial thickness, h0 = 1 mm and
radius, R0 = 25 mm is pre-stretched to a radius, R1 = 75 mm. A central inner radius,
r1 = 7.5 mm is then coated with compliant electrodes on both sides and loaded elec-
trically. The coated area constitutes the active region of the actuator. A difference in
electric potential of ∆φ = 5 kV is applied to the active area, linearly increasing for 1
second and then kept constant for 60 seconds. The electrically induced increase in the
radius of the coated area, ∆r = r2 − r1, relaxes the radial tensile force of the passive
parts from fr,1 to fr,2. For this BVP, control with respect to both displacement and
force is employed so that adjustments of the electric potential are made with reference
to (i) control of the radius of the boundary between the active and passive part of
the membrane, ∆r and (ii) control of the change in the sum of radial internal forces
at the outer boundary of the passive layer, ∆fr = fr,2 − fr,1. These two situations
are illustrated in figure 5. The FE mesh consists of 1080 elements, with higher reso-
lution around the boundary between the active and passive parts. Symmetry in the
thickness direction allows for simulation of only half the structure. For more details
regarding the setup the reader is referred to Thylander et al. (2016). Figure 7 shows
the results of the simulated response in terms of displacements, ∆r, radial force, ∆fr,
and corresponding electric potential, ∆φ. The EE response, in terms of a constant
displacement, force and electric potential, can be seen in figures 7(a)-7(c). The cor-
responding EV response can be seen in figures 7(d)-7(f), marked with dashed lines.
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r1

fr,1

r2

fr,2

Figure 5: Illustration of setup in FE example with pre-stretch. (a) pre-stretched but not electrically
activated setup, (b) displacement control with respect to ∆r and (c) force control with respect to
∆fr.

The EV response in terms of displacements and forces starts off at lower values com-
pared to the EE case and then gradually move towards the EE response. The black
dotted and black dash-dotted lines in figures 7(d)-7(f) represent the EVD and EVF
results respectively. The electric potential in both the EVD and EVF cases, seen in
figure 7(f), starts at a larger value than it does in the EE case and then gradually
decreases over time. This discrepancy is larger for the EVD case than it is for the
EVF case, a tendency that seems consistent with the examples under homogeneous
states of deformation. In both control cases, the radial displacement, figure 7(d), and
force, figure 7(e), follows the electro-elastic response.

7 7.5 8 8.5

(a)

6.5 7 7.5 8
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Figure 6: Actuator with pre-stretch: radial total stress, Trr, at t = 1 second for the EE, EV, EVD
and EVF case in (a), (b), (c) and (d) respectively. Only a small region around the boundary between
the active and passive layer is plotted. Dimensions are given in millimetres.

In figure 6 the total radial stress, Trr, for the four cases EE, EV, EVD and EVF
at t = 1 second are shown. Only a small section of the area at the boundary between
the active and passive layers is shown. As expected, and as already indicated in figure
7(d) the radial displacement of the EE case in figure 6(a) and the EVD case in figure
6(c) is conform while the stresses, as also indicated in figure 7(d), are more relaxed
from the initial pre-stretched tensile stresses in the EVD case than they are in the
EE case. From a comparison between the EE case in figure 6(a) and the EVF case in
figure 6(d) it is clear that the radial displacements do not match while the forces in
this case corresponds better. Note, that the force is controlled at the outer boundary
of the passive part which is not shown in figure 6. The same conclusions can be drawn
from figures 7(d) and 7(e).
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Figure 7: Actuator with pre-stretch: displacement, ∆r, change in radial force, ∆fr, and difference
in electric potential, ∆φ, for the EE case in (a), (b) and (c) and for the EV, EVD and EVF cases in
(d), (e) and (f) respectively. Note, that ∆φ is the input to the simulation whereas ∆r and ∆f are
the responses of the system.

15



4.2.2 Hemisphere-type application

Certain DE applications, including for example loudspeakers, involve hemispherical
types of deformation. The geometry and applied load along with boundary conditions
chosen for this second FE example give rise to a bending mode which is able to
reproduce the overall shape sought in these applications. The specific geometry and
boundary conditions chosen to mimic this mode of deformation are illustrated in figure
8. A maximum difference in electric potential, ∆φ, of 500 V is increased linearly for
0.5 seconds and then kept constant for 60 seconds. Control of the viscous behaviour is
performed with respect to the z-displacement of the top central node. The FE mesh
consists of 1250 elements, with 10 elements in the thickness direction and equidistantly
distributed over the radius.

1.25

0.1
0.05

0.75

r

z

Figure 8: Initial shape of hemisphere-type example. The red line indicates a non-zero electric
potential while the blue line indicates zero electric potential. Dimensions are given in millimetres.

The results from the simulations are shown in figures 9-13. In figures 9(a) and 9(b)
the constant displacement ∆z and the constant electric potential ∆φ representing the
EE case are shown. The dashed lines in figures 9(c) and 9(d) represent, as before,
the EV case and the dotted lines depict the EVD case. The results of the EV and
EVD cases follow the same trends as in previous examples with lower initial axial
displacements in the EV case and with a dramatically higher initial electric potential
in the EVD case. Figure 10 shows the response at t = 0.5 seconds, in terms of radial
total stress Trr of the EE, EV and EVD cases in (a), (b) and (c) respectively. The
overall shape of the EVD case closely matches the EE shape although control with
respect to displacement of only one node (central, middle) is considered. Figure 11
shows the corresponding results in terms of axial electric displacement, Dz.

Figures 12 and 13 show the evolution of the radial stress Trr in the EV and EVD
cases respectively. The contour plots show the results at t = 1, 30 and 60 seconds in
(a), (b) and (c) respectively. As expected, the overall level of magnitude of the stresses
is higher in the EVD case, shown in figure 13, than in the EV case, shown in figure 12.
The level of magnitude of the stresses in the EV case stays roughly the same for the
three different levels of deformation in figure 12 while the differences in stress levels
are more prominent in the EVD case in figure 13 due to the initial significantly higher
electric potential, as also indicated in figure 9(d). After this initial peak, where the
stresses are at its highest level, the difference in electric potential gradually decreases
generating a very small difference in radial stress between figure 13(b) and figure 13(c).
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Figure 9: Hemisphere-type application: displacement, ∆z, and difference in electric potential, ∆φ,
of the EE case in (a) and (b) and of the EV and EVD in (c) and (d) respectively. Note, that ∆φ is
the input to the system, whereas ∆z is the response.

5 Summary and outlook

A non-affine microsphere model with application to control of viscous effects has been
presented. The integration of control with respect to both displacement and force was
successfully implemented. The examples under homogeneous states of deformation
and finite element examples show similar characteristics. When control with respect
to displacement is considered, the change in electric potential is significantly higher
compared to when control with respect to force is considered. A sharp drop in electric
potential after the load ramp is completed is found in all cases considering control with
respect to displacement. In practise, this peak could be smoothed out at the expense
of a temporarily larger error during a brief initial period without influencing the overall
deformation much. The overall shape of the electro-elastic case in the hemisphere-
type application is successfully recaptured in the controlled electro-viscoelastic case
although only control of displacement with respect to one single node is considered.
With the model used here and with a similar bisection algorithm at hand it is possible
to construct a load function that reconstructs a preferred electro-elastic response with
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Figure 10: Hemisphere-type application: ra-
dial total stress, Trr, at t = 0.5 seconds for EE,
EV and EVD in (a), (b) and (c) respectively.
Dimensions are given in millimetres.
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Figure 11: Hemisphere-type application: elec-
tric displacement, Dz, at t = 0.5 seconds for
EE, EV and EVD in (a), (b) and (c) respec-
tively. Dimensions are given in millimetres.
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Figure 12: Hemisphere-type application: evo-
lution of radial total stress, Trr, in the EV case
for three different time steps. In (a) t = 1, (b)
t = 30 and (c) t = 60 seconds. Dimensions are
given in millimetres.
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Figure 13: Hemisphere-type application: evo-
lution of radial total stress, Trr, in the EVD
case for three different time steps. In (a) t = 1,
(b) t = 30 and (c) t = 60 seconds. Dimensions
are given in millimetres.
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respect to either displacement or force. Future work on enhancements of DE appli-
cations includes for example optimised positioning of electrodes, extension to stacked
actuators as well as inclusion of inertia effects.
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Büschel, A., Klinkel, S., Wagner, W., 2013. Dielectric elastomers – numerical modeling
of nonlinear visco-electroelasticity. Int. J. Numer. Methods Engng 93 (8), 834–856.
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Michel, S., Zhang, X. Q., Wissler, M., Löwe, C., Kovacs, G., 2010. A comparison be-
tween silicone and acrylic elastomers as dielectric materials in electroactive polymer
actuators. Polym. Int. 59 (3), 391–399.

Miehe, C., Göktepe, S., 2005. A micro–macro approach to rubber-like materials. Part
II: The micro-sphere model of finite rubber viscoelasticity. J. Mech. Phys. Solids
53 (10), 2231–2258.

Miehe, C., Göktepe, S., Lulei, F., 2004. A micro-macro approach to rubber-like
materials—Part I: the non-affine micro-sphere model of rubber elasticity. J. Mech.
Phys. Solids 52 (11), 2617–2660.

Miles, P., Hays, M., Smith, R., Oates, W., 2015. Bayesian uncertainty analysis of
finite deformation viscoelasticity. Mech. Mater. 91, Part 1, 35–49.

Ogden, R. W., 1997. Non-linear Elastic Deformations. Dover.

Park, H. S., Nguyen, T. D., 2013. Viscoelastic effects on electromechanical instabilities
in dielectric elastomers. Soft Matter 9, 1031–1042.

Ren, Z., Niu, X., Chen, D., Hu, W., Pei, Q., 2014. A new bistable electroactive
polymer for prolonged cycle lifetime of refreshable Braille displays. Proc. SPIE
9056, 905621–905621–9.

Romasanta, L. J., Lopez-Manchado, M. A., Verdejo, R., 2015. Increasing the perfor-
mance of dielectric elastomer actuators: A review from the materials perspective.
Prog. Polym. Sci 51, 188–211.

Shian, S., Diebold, R. M., Clarke, D. R., Apr 2013. Tunable lenses using transparent
dielectric elastomer actuators. Opt. Express 21 (7), 8669–8676.

Suo, Z., 2010. Theory of dielectric elastomers. Acta Mech. Solida Sinica 23 (6),
549–578.

Thylander, S., Menzel, A., Ristinmaa, M., 2012. An electromechanically coupled
micro-sphere framework: application to the finite element analysis of electrostrictive
polymers. Smart Mater. Struct. 21 (9), 094008.

Thylander, S., Menzel, A., Ristinmaa, M., 2013. Corrigendum: An electromechani-
cally coupled micro-sphere framework—application to the finite element analysis of
electrostrictive polymers. Smart Mater. Struct. 22 (3), 039501.

Thylander, S., Menzel, A., Ristinmaa, M., 2016. A non-affine electro-viscoelastic mi-
crosphere model for dielectric elastomers: Application to VHB 4910 based actua-
tors. J. Intel. Mat. Syst. Str.

21



Zhang, J., Chen, H., Li, B., 2014a. A method of tuning viscoelastic creep in charge-
controlled dielectric elastomer actuation. EPL (Europhysics Letters) 108 (5), 57002.

Zhang, J., Chen, H., Li, B., McCoul, D., Pei, Q., 2015. Coupled nonlinear oscillation
and stability evolution of viscoelastic dielectric elastomers. Soft Matter 11, 7483–
7493.

Zhang, J., Li, B., Chen, H., Pei, Q., 2016. Dissipative performance of dielectric elas-
tomers under various voltage waveforms. Soft Matter 12, 2348–2356.

Zhang, J., Wang, Y., McCoul, D., Pei, Q., Chen, H., 2014b. Viscoelastic creep elim-
ination in dielectric elastomer actuation by preprogrammed voltage. Appl. Phys.
Lett. 105 (21), 212904.

Zhao, X., Koh, S. J. A., Suo, Z., 2011. Nonequilibrium thermodynamics of dielectric
elastomers. Int. J. Appl. Mech. 03 (02), 203–217.

22



Paper D

S. Thylander, A. Menzel, M. Ristinmaa, S. Hall and J. Engqvist

Measurements of the electro-viscoelastic response of an acrylic

elastomer using three-dimensional surface digital image correlation

To be submitted for publication





Measurements of the electro-viscoelastic

response of an acrylic elastomer using

three-dimensional surface digital image

correlation

Sara Thylandera, Andreas Menzela,b, Matti Ristinmaaa,
Stephen Halla and Jonas Engqvista

a Division of Solid Mechanics, Lund University

P.O. Box 118, S-221 00 Lund, Sweden

b Department of Mechanical Engineering, Institute of Mechanics, TU Dortmund

Leonhard-Euler-Str. 5, D-44227 Dortmund, Germany

Abstract

Experimental investigations are carried out with respect to the electromechan-
ically coupled and time-dependent behaviour of an acrylic elastomer, namely
VHB 4910. For the electromechanically coupled experiments different biaxial
pre-stretches are considered and full-field measurements are made using three-
dimensional surface digital image correlation. Both equi-biaxial and non equi-
biaxial pre-stretches are investigated. The experimental data acquired are in-
tended to be used for better understanding of the complex material behaviour
found in VHB 4910 as well as for calibration and improvement of existing con-
stitutive models. Special emphasis lies on measurements of the thickness change
of biaxially pre-stretched specimens as it plays a critical role in view of elec-
tromechanical instabilities. For completeness, cyclic uniaxial tests of the purely
mechanical response are performed and compared to similar experiments found
in the literature.
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1 Introduction

Dielectric elastomers (DEs) represent a subset of electroactive polymers characterised
by a low elastic modulus with the ability to achieve very large actuated strains.
Acrylic- and silicone-based DEs are the most widely used materials in dielectric elas-
tomer actuators (DEAs) due to their high specific energy as well as large and relatively
fast actuation response; see Carpi et al. (2011b) and Kornbluh et al. (2000). The main
DEA configuration consists of a thin elastomer sandwiched between two compliant
electrodes. Under the application of an electric field the two electrodes will attract
each other due to accumulated opposing charges on the surfaces of the electrodes.
This so-called Maxwell effect, leads to a local decrease of the thickness and an as-
sociated increase, due to (quasi) incompressibility of the elastomer, of the in-plane
area perpendicular to the electric field. To decrease the elastomer thickness, avoid
wrinkling, due to compressive in-plane loading during actuation, and ultimately to
avoid electrical breakdown, the elastomer is often pre-stretched before being elec-
trically activated. The material behaviour of dielectric elastomers is complex and
involves electromechanical coupling, finite deformations, time-dependent mechanical
and electrical responses and electromechanical instabilities.

VHB 4910 is an acrylic-based elastomer and a popular candidate for DEA applica-
tions. The elastomer is characterised as a very soft polymer with a highly non-linear
elastic and viscoelastic response, a relatively high dielectric constant and can give
actuated areal strains greater than 100%, see e.g. Pelrine et al. (2000). VHB is used
as electromechanical transducers in a variety of applications such as: loudspeakers,
see Graf and Maas (2012) and Hosoya et al. (2015); tunable lenses, see Carpi et al.
(2011a), Blum et al. (2012) and Shian et al. (2013); and energy harvesting devices,
see Kornbluh et al. (2011) and Chiba et al. (2013) amongst others. Due to its popu-
larity, a considerable amount of experimental investigations have been performed on
VHB 4910. Recent studies include the analysis of the quasi-static and viscoelastic
behaviour, see eg. Hossain et al. (2012) and Sahu and Patra (2016), as well as of the
quasi-static and electro-viscoelastic behaviour, see Hossain et al. (2015), Kollosche
et al. (2015) and Jiang et al. (2015).

One topic gaining significant attention in recent literature deals with different
modes of instabilities occurring in DEAs, many of which involve inhomogeneous de-
formations. One of the most common modes investigated is the, so-called, pull-in
instability with its associated wrinkle formation and electric breakdown. Pull-in in-
stability causes the membrane in the DEA to drastically reduce its thickness and
may eventually lead to electric breakdown. In view of this specific instability, the
pre-stretch and corresponding thickness of the dielectric elastomer membrane in an
actuator is of great practical importance, as they can both delay or suppress the rapid
thinning of the membrane due to higher mechanical stiffness, see for example Pelrine
et al. (2000), Kofod et al. (2003), Huang et al. (2012), Zhao and Wang (2014) and
Wang et al. (2011). To enhance the reliability and increase the efficiency of existing
and potential DEA applications, it is necessary to understand and include these phe-
nomena into constitutive models. Measuring the thickness during loading is, however,
not a straightforward task. Furthermore, due to the elastomers’ soft nature, the need
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for a non-contact measurement technique is apparent, see Carpi et al. (2015). For
this purpose we propose the use of three-dimensional surface digital image correlation
(DIC) to measure the thickness change during electromechanical testing.

In DIC the displacement field of the surface of a specimen is acquired by correlating
pixel subsets in a reference image of the specimen to pixel subsets of images of the
specimen in a deformed state. If no natural pattern is present on the sample, a
random speckle pattern must first be applied to enable the correlation. By using
two cameras, calibrated for stereovision, it is possible to resolve not only the in-plane
components, but also the out-of-plane component of the surface deformation field. The
use of DIC reveals inhomogeneous deformation behaviour which is not visible when
using conventional deformation measurement techniques and is ideal for validation of
constitutive models. DIC has been utilized to characterize the material response of
a wide range of materials under different loading conditions. With regard to VHB,
DIC investigations of the aerodynamic and fluid-structural response can be found in
Hays et al. (2013, 2016). To the authors’ knowledge, no DIC analysis concerning the
electromechanical response of VHB has been published previously.

As most experimental investigations of DEAs tend to focus on the macroscopic
deformation, presented in terms of overall or point-wise responses that lack spatial
resolution, the objective of this paper is to provide local deformation data for elec-
tromechanical loading. To this end, we use the method of DIC to obtain the full surface
deformation fields of a VHB-DEA for a range of different biaxial pre-stretches. With
the help of the deformation field obtained from the digital image correlation, together
with the assumption of incompressibility, it is possible to investigate the thickness
change during electrical loading. For completeness, we also consider the purely me-
chanical, time-dependent response using uniaxial cyclic tests and compare our results
to similar investigations found in the literature.

2 Experiments

Both purely viscoelastic and the coupled electro-viscoelastic behaviours of VHB 4910
are investigated. First, the viscoelastic properties are analysed using standard uniax-
ial tests at different strain rates with measurements of the macroscopic stress-strain
relation. Secondly, the electro-viscoelastic behaviour of biaxially pre-stretched VHB
membranes is analysed by using three-dimensional surface DIC. All experiments were
carried out at room temperature.

2.1 Material

The material used in the experiments is the commercial elastomer VHB 4910 man-
ufactured by 3M. The material is capable of dealing with very large strains and is
characterised as an acrylic elastomer. Mechanical and dielectric properties of VHB
4910 are listed in Biggs et al. (2013). The specimens were cut to desired size from
three different roll sizes, all with a thickness of 1 mm.
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2.2 Visco-elastic response

A VHB 4910 membrane, of initial cross section of 25×1 mm and gauge length of 50
mm2 is subjected to a displacement controlled, uniaxial cyclic loading path according
to figure 1. To avoid compressive stresses, the displacements are cycled around 50 % of
the maximum stretch. Three different stretch rates, namely λ̇ ∈ [5 · 10−4, 0.01, 0.05],
and two different maximum stretch levels, λmax ∈ [1.5, 3], resulting in six different
combinations, are investigated. The stretch rate and maximum stretch levels are
chosen in order to enable a comparison with results from Hossain et al. (2012) and
Sahu and Patra (2016). Also, as indicated in figure 1, ten cycles are performed for
each combination. The specimens are tested using a MTS hydraulic loading frame.
Displacement and speed are controlled by an Instron 8500 control system. The force
is measured with a U9C force transducer (Hottinger Baldwin Messtechnik) calibrated
to 100 N. Force and displacement are recorded using the software LabView. Each
specimen is fixed in custom-built grips and placed in the tensile machine, see figure
2.
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Figure 1: Sketch of the applied load path used for uniaxial cyclic tests.

50

2
5

Figure 2: Picture of grips and holder used for uniaxial cyclic tests. Dimensions are given in
millimetres.

The results from the uniaxial cyclic tests are shown in figures 3(a)-(f). Figures
3(a), (c) and (e) show the nominal stress vs. stretch for the three stretch rates used
and for both maximum stretch levels. Figures 3(b), (d) and (f) show the effect of
stress softening during cyclic loading for the respective stretch rates and maximum
stretch levels. The nominal stress in axial direction follow from the assumption of a
homogeneous state of deformation as force per initial cross sectional area.
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Figure 3: Uniaxial cyclic tests where figures (a), (c) and (e) reveal the stress-stretch relation and
(b), (d) and (f) show the effect of stress softening during cyclic loading.
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The results from two experimental studies, i.e. Hossain et al. (2012) and Sahu
and Patra (2016), of the mechanical response of VHB 4910 are reproduced here for
comparison purposes. Both articles involve several uniaxial investigations, but only
those comparable to the tests performed in this work are selected. The reproduced
graphs can be seen in figures 4(a)-(b) and 5(a)-(b). Figure 4 shows the loading and
un-loading curves for two different strain rates, namely ε̇ = 0.05 and ε̇ = 0.01 s−1, at
two different maximum stretch levels, i.e. λmax = 1.5 and λmax = 3. In figure 5(a)
the relation between stress and stretch from the first and last cycle of a cyclic tensile
test is shown. The specific response considers a strain rate of ε̇ = 0.05 s−1 and a
maximum stretch level of λmax = 4. In figure 5(b) stress softening during seven cycles
is presented.
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Figure 4: Loading and un-loading curves reproduced from Hossain et al. (2012).
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Figure 5: Cyclic loading and un-loading curves reproduced from Sahu and Patra (2016).

The cyclic test results shown in figures 3(a), (c) and (e) reveal clear hysteresis
behaviour, which, as expected, is larger for increasing strain rates. From figures 3(b),
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(d) and (f) the effect of stress softening is apparent. However, after ten cycles, the
maximum stress is rather stable, in line with results reported in Sahu and Patra
(2016). As with hysteresis, this stress softening effect is larger and more pronounced
for higher strain rates. Both phenomena are strong indicators of a history depen-
dency and it is crucial to take them into account when designing applications. The
comparison between figures 3(c) and 4(a), as well as between figures 3(e), 4(b) and
5(a), reveals some differences in stress magnitude. The recorded levels of stress from
Sahu and Patra (2016) are consistently highest and results from Hossain et al. (2012)
are consistently at the lowest stress levels. Experiments performed in this paper fall
in between, in terms of stress level.

2.3 Electro-viscoelastic response

The electro-viscoelastic behaviour of VHB 4910 is investigated using biaxially pre-
stretched circular actuators. The specimens are first manually pre-stretched in a
custom built device, see pictures in figure 6, and then fixed in a circular frame with
radius rf = 75 mm. A central circular area with radius re = 7.5 mm on both sides of
the elastomer is then coated with a graphite powder to act as compliant electrodes. To
connect the electrodes to the voltage supply, thin lines of graphite powder are applied
from the center outwards to the edge of the specimen. Copper tape is attached to the
frame and connected to the thin lines of graphite powder with a mixture of carbon
grease and carbon black particles. Three different pre-stretch ratios are investigated,
i) λx × λy = 2 × 2, ii) λx × λy = 1.5 × 1.5 and iii) λx × λy = 1.5 × 2. The different
stretch ratios are established by drawing a circle, or ellipse respectively for the non-
equibiaxial pre-stretch, with radius ri = rf /λi, where i ∈ [x, y], onto the un-stretched
specimen. The specimen is then stretched so that the circle, or ellipse respectively,
obtained the radius of the plastic frame and r = rf , cf. figures 7(a) and 7(b). Note,
that two different configurations of the pre-stretch device have been used. For the
equi-biaxial tests six arms are used while for the non equi-biaxial tests only four arms
are used, see figures 6(a) and 6(b) respectively.

Before actuation of the initially transparent VHB elastomer, a random speckle
pattern is applied to the entire surface of the specimen, including the frame, with
a white, water-based spray-paint to enable image correlation during the experiment.
The entire sample is then placed on a black background to further distinguish the
speckle pattern, see figure 7(a). A maximum of 5000 V is applied to the specimen,
ramped up in two steps during a total of 0,5 seconds. The voltage is then kept constant
for 15000 seconds, see figure 8.

2.4 Digital image correlation

The displacements in the pre-stretched elastomer actuator, caused by the application
of the electric field, are measured using three-dimensional surface digital image cor-
relation. The images are recorded using two Prosilica GT6600 29-Megapixel digital
cameras from Allied Vision Technologies throughout each test. Before each test the
cameras are calibrated for stereo-vision using the commercial software Vic-3D from
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Figure 6: Picture of custom built device used for pre-stretching the membranes for equi-biaxial
tests in 6(a) and for non equi-biaxial tests in 6(b). Dimensions are given in millimetres.
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Figure 7: Picture of pre-stretched sample in frame including applied electrode and speckle pattern
in 7(a) and sketch of initial radii used for control of pre-stretch in 7(b). The dotted circle in 7(b)
represent λx × λy = 2 × 2, the dashed represent λx × λy = 1.5 × 1.5 and the dash-dotted circle
represents λx × λy = 1.5 × 2.

Correlated Solutions, enabling the analysis of both in-plane and out-of-plane defor-
mation. The calibration is performed with a reference grid image placed at different
positions and at different angles, for more details see Correlated Solutions (2010). The
maximum calibration error, defined as the standard deviation between the measured
position of the reference grid points and the theoretical position of the reference grid
points, is 0.062 pixels.

The correlation between each image is made using VIC 3D with the correlation
window and step sizes of 37×37 and 7 pixels, respectively. With an image pixel size of
approximately 44 µm, a physical DIC correlation window size of approximately 1.63×

1.63 mm2 is obtained. During the experiments the cameras are set up to take images
at a fixed time interval. The pixel subset of each image of the actuated sample was
correlated with the corresponding subset of an initial, undeformed reference image.
The acquired displacement fields were used to calculate the displacement gradient
and full-field strain using an in-house developed code in Matlab. The three unknown
terms of the deformation gradient gradient, i.e. ∂x

∂Z
, ∂y

∂Z
and ∂z

∂Z
, are calculated using the
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Figure 8: Sketch of applied load path used for biaxial tests.
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The corresponding strains are calculated using the closest neighbour points on a reg-
ular 7 pixel grid.

The DIC results are shown in contour plots of principal stretches at three repre-
sentative time steps, marked with dots in figure 8, and as radial profiles. Furthermore,
the displacement of the boundary of the electrode is tracked in the two in-plane di-
rections (x- and y-direction) during loading. Note, that the stretches presented here
represent only the part of the deformation gradient caused by activation of the elec-
tric field and do not include the initial pre-stretch. Therefore Ftot = Fact ·Fini, where
Fact is the deformation caused by the electric field and Fini is the initial deformation
caused by the pre-stretch,

Fact = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 +
1

λ1λ2

e3 ⊗ e3 ,

Fini = λxex ⊗ ex + λyey ⊗ ey +
1

λxλy

ez ⊗ ez ,
(2)

where λi, i ∈ [1, 2, 3], denotes the principal stretch to the corresponding principal
direction ei.

The principal stretches λ1, λ2 and λ3 can be seen as contour plots in figures 9, 11
and 13. For the in-plane stretches, λ1 and λ2, the principal directions are also plotted.
Averaged radial profiles of the principal stretches can be seen in figures 10, 12 and
14. For the non equi-biaxial pre-stretch, radial profiles in both x- and y-directions
are shown. The radial profiles are extracted by averaging the displacements in an
angular section of ±10◦ along the x- and y-directions. Figure 15 shows the growth of
the electrode radius for the respective pre-stretches. In these figures, growth in both
x- and y-directions is plotted for each case.

9
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Figure 9: Initial equi-biaxial stretch λx × λy = 2 × 2: principal stretch contour plots at three
different time steps. Arrows in the two top rows indicate corresponding principal directions. Note,
that for better visualization only a radius of 30 mm is plotted.

0 20 40 60
1

1.02

1.04

1.06

1.08

1.1

r [ mm ]

λ
1
[-
] t = 100 s

t = 5000 s
t = 15000 s

(a) principle stretch λ1

0 20 40 60

0.98

1

1.02

1.04

1.06

1.08

r [ mm ]

λ
2
[-
] t = 100 s

t = 5000 s
t = 15000 s

(b) principle stretch λ2

0 20 40 60

0.85

0.9

0.95

1

r [ mm ]

λ
3
[-
] t = 100 s

t = 5000 s
t = 15000 s

(c) principle stretch λ3

Figure 10: Initial equi-biaxial stretch λx × λy = 2 × 2: radial profiles of principal stretch as a
function of distance r from the center. All profiles are calculated from azimuthal averages.
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(a) λ1, t = 100 s (b) λ1, t = 5000 s (c) λ1, t = 15000 s
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Figure 11: Initial equi-biaxial stretch λx × λy = 1.5 × 1.5: principal stretch contour plots at three
different time steps. Arrows in the two top rows indicate corresponding principal directions. Note,
that for better visualization only a radius of 30 mm is plotted.
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Figure 12: Initial equi-biaxial stretch λx × λy = 1.5 × 1.5: radial profiles of principal stretch as a
function of distance r from the center. All profiles are calculated from azimuthal averages.
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Figure 13: Initial non equi-biaxial stretch λx × λy = 1.5 × 2: principal stretch contour plots at
three different time steps. Arrows in the two top rows indicate corresponding principal directions.
Note, that for better visualization only a radius of 30 mm is plotted.
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Figure 14: Initial non equi-biaxial stretch λx × λy = 1.5 × 2: radial profiles of principal stretch as
a function of distance r from the center. All profiles are calculated from azimuthal averages.
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Figure 15: Radius of electrode re vs. time t for each of the initially biaxial pre-stretches.

3 Discussion

The contour plots of principal stretches, seen in figures 9, 11 and 13, all show clear
inhomogeneous deformations. As expected, this effect is largest in the actuated area.
The figures also reveal that the thin graphite coated lines connected to the electrode
area influence the stretch fields. At these relatively low levels of pre-stretch, small
wrinkles at the boundary between the active and passive part are visible, see especially
contour plots of λ1 and λ2 in figures 9(c), 9(f), 11(c), 11(f), 13(c) and 13(f).

The tests reveal the major principal stretches to be oriented in the circumferential
direction of the plane even though the circumferential and radial principal stretches
have roughly the same magnitude. However, within the area of the electrode the
principal directions are slightly different and seem to be more aligned with the x- and
y-directions, cf. contour plots in figures 9(c), 11(c) and 13(c).

The radial profiles in figures 10, 12 and 14 illustrate the evolution of the inhomo-
geneous deformation over time, both within the electrode as well as at the boundary
between the active and passive part of the actuator. The largest differences are found
in the interface between the active and passive part, but it is clear that the electrode
areas also shows inhomogeneous deformations. The effect of the interface is most
pronounced for the principal stretch λ2, seen in figures 10(b), 12(b) and 14(b), where
deformation goes from tensile to compressive over a small change in radius. The com-
pressive deformations are also evident in the contour plots considering λ2 in figures
9, 11 and 13 and could be one of the triggers for the existence of small wrinkles.

For a non equi-biaxial pre-stretch, represented in figures 13, 14 and 15(c), the re-
sponse shows a direction dependence. From figures 13(d)-(f), which consider the prin-
cipal stretch λ1, a slightly elliptical mode is revealed. The major principal stretches,
here determined to be in the circumferential direction, are largest in the direction
of highest pre-stretch, and the radial stretches are largest in the direction of lowest
pre-stretch. For the radial profiles, seen in figure 14, two different radial profiles are
plotted in each subfigure. The two profiles represent the response in two orthogonal
directions aligned with the directions of the pre-stretch. The difference is largest for
the principal stretches λ1 and λ2, see figures 14(a) and 14(b) respectively, and for
10 < r < 30 mm.

As become evident from figure 15, the viscous effects are largest directly after
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application of the load. However, for the combinations of pre-stretch and difference
in electric potential investigated in this paper, figures 15(a)-(c) indicate that creep is
present, even after 15000 seconds.

4 Summary

The experimental investigations reported in this work include both uniaxial cyclic
tests and electro-mechanical tests with full-field measurements of deformation. Com-
bined, they provide a basis for calibration of constitutive models of acrylic-based
actuators. The uniaxial tests can be used for calibration of the purely mechanical
and time-dependent responses. The use of full-field measurements allows the hetero-
geneous responses of electro-actuation of samples to be captured and could be used
for validation of coupled electromechanical finite element simulations. A compari-
son of the uniaxial cyclic tests performed here with similar investigations found in
the literature revealed that the results showed the same overall behaviour of stress
softening and hysteresis. Results from the three-dimensional surface DIC analysis en-
abled spatially-resolved measurements of the thickness change during electric loading
of biaxially pre-stretched VHB 4910 specimens. Previously thickness measurements
have been lacking from reported experiments on electro-actuation of such materials.
The inhomogeneity of the deformation observed at the interface between the active
and passive part of the specimen indicates that conventional measuring techniques,
such as an extensometer, are insufficient to understand the deformation processes.
Furthermore, from the measured out-of-plane deformation it is possible to resolve the
surface shape during loading which will be particularly helpful when studying complex
behaviours connected to instabilities, such as wrinkling and pull-in phenomena.
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