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A UNIFIED APPROACH TG
MODEL REFERENCE ADAPTIVE SYSTEMS
AND

SELF-TUNING REGULATORS

Bo Egardt

Department of Automatic Control
Lund Institute of Technology
Lund, Sweden

Abstract

An outline of model reference adaptive regulators in input-
output description is given. The widespread concept of aug-
mented error is given an interpretation and it is shown that
there is no essential difference between the model reference
adaptive algorithms and the self-tuning regulators. A
general self-tuning algorithm is defined for continuous and
discrete time systems. It is shown that the algorithm
contains both model reference adaptive schemes and self-

tuning regulators as special cases.
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1. INTRODUCTION

The special class of adaptive control problems, where the
process 1is assumed to have constant but unknown parameters,
has received much attention since the midsixties. The main
approaches are closely related to two different problems of
classical control theory:

- the servo problem, i.e. the control object is to make the
plant output follow a given reference signal;

- the requlator problem, i.e. to keep the output as close as
possible to a constant level, regardless of the distur-
bances acting on the system.

Two different approaches to adaptive control have arisen as
attempts to solve the corresponding adaptive problems. The
adaptive servo problem has mostly been formulated for

continuous time, deterministic systems. A typical problem
statement is to find a control input wu(t) such that the
plant output y(t) asymptotically equals the output ym(t)
of a model with input u (t). This formulation 1leads to
the model reference adaptive systems (MRAS). It has been

treated by many authours during the past fifteen vyears
[1-26]. There are many different schemes presented and it
is difficult to give a general description. The
configuration seen in fig 1.1 is however a typical MRAS
system. In fig 1.1 x_ and x denotes the state vectors of
the model and plant. A detailed account of the different
MRAS configurations is given in Landau [15}.
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Fig 1.1. MRAS configquration.

When solving the adaptive requlator problem it is natural to

model the disturbance also and use stochastic control
theory. A fairly natural way to attack the problem of
unknown parameters is the following one: firstly estimate
the parameters of the unknown plant and then use these
estimates to design a regulator as if the parameters were
correct, If these two steps are done iteratively in time,
the result is an adaptive regulator, which is often referred
to as a self-tuning requlator [27-36]. The underlying

synthesis and parameter estimation procedures could be of
different types. The approach is thus gquite flexible. The
scheme is depicted in fig 1.2.

v

Regulattc;r Parameter
parameter —| ) .
calculation estimation

I

Requlator »  Plant

Fig 1.2. Self-tuning regulator configuration.



As will be described later on, the two approaches mentioned
have close relationships. The original development showed
some significant differences however. A few are 1listed in
the table below.

Servo problem Regulator problem
System description deterministic stochastic
continuous time discrete time
Method of synthesis minimization of identification +
criterion, regulator for known
stability theory parameters
Method of analysis stability theory stochastic conver-

gence results

It should be noted that many results available today do not
fit into this simple <classification. For example, the
results for the continuous time servo problem have been
extended to the discrete time case too.

A short review of the main ideas related to MRAS schemes is
given in chapter 2. Some algorithms proposed are described
for easy reference. A corresponding survey of the ideas in
the field of self-tuning regulators is given in [35]. 1In
chapter 3 it is shown how several of the continuous time
MRAS schemes can be derived from a somewhat different
viewpoint. This makes it possible to give a wunified
description and also to relate them with some self-tuning
schemes. The same development is done for discrete time
systems in chapter 4. Finally, chapter 5 contains a summary

and discussion.



2. SOME MRAS SCHEMES

In the early work on model reference adaptive systems, the
most common methods dealt with minimization of some
performance index. The approach is known as the gradient or
sensitivity approach, and the famous ‘MIT-rule' belongs to
this class of solutions [1]. The MIT-rule is based on the
criterion ,fez(t)dt, where e(t) 1is the error. The
adaptation rule adjusts the gains according to

K(t) = -e(t) (AL,

The MIT-rule became very popular in the beginning due to its
simplicity. The scheme has however the important
disadvantage that it may lead to an unstable closed 1loop,
Parks [3]. Moreover, it is often very difficult to conclude
from theoretical analysis, if instability actually will

occur in a given situation.

One possibility to get around the instability problem
associated with the sensitivity approach, is to base the
design directly on stability theory. The interest was soon
directed towards this technique and Lyapunovs second method
became the major design tool. This technique will be the
major subject of this paver.

Some of the main ideas in the field are 1illustrated by
examples in this chapter. The difficulties encountered are
pointed out and some of the most recent schemes are
described in some detail.

The case with measurable state vector is treated in section
2.1. A partial solution to the more practical case with
non-measurable state is described in section 2.2. Some ideas

from the adaptive observers are exploited to proceed to the



general solution. These results are given in section 2.3.
The general solution is contained in section 2.4. Finally
some characteristics of the discrete time problem are
pointed out in section 2.5.

2.1. Measurable state.

Most of the early solutions to the adaptive servo problen,
using Lyapunov theory, assume that the whole state vector is
measurable. This assumption is a considerable
simplification. Although the case with non-measurable state
is more interesting, two simple examples with measurable
state will be given. The solutions are relatively
straightforward and they illustrate techniques that are
useful for more complicated situations.

Example 2.1. First order all-pole plant with unknown

gain [3].
The confiquration is shown in fig 2.1. The plant is a first
order system which differs from the model only by an unknown
constant. The object is to adjust the gain K such that

e(t)=Ym(t)-y(t) tends to zero. The solution uses a
Lyapunov function

V(e,ﬁ) = %(e2+cK2)

where c>@, K=Km—KKp. Using

= %e + %Ku, the derivative becomes

L] L]
[ ~ 1 ~

- 2 1>
ee + cKK = Te + TKue + cKK.

<
1



If the gain is adjusted according to

I 1

the derivative of V is

The error e thus tends to zero. It can be shown that this
implies that K also tends to zero if the input u(t) is
sufficiently rich, i.e. contains enough many frequencies.

O

Remark. The properties of the input signal are in general
important for the parameter convergence. The exact
conditions will however not be stated for the different
algorithms.

Model

1+sT

Plant 2

1+sT

Fig 2.1. Configuration of example 2.1.



Example 2.2. Model and plant with the same zeros:

poles unknown.
The plant is described by the state equations

a 'l
« | mm—— /]
= Ax + bu =11 X + |.] u
.. = T
10 0 a’= [a; ... a_l
Y = ch = [cl e Cn] Xe.

It is assumed that all state variables in the representation
above can be measured. The plant output should follow the
output from the model

ay 1
- m————— ﬂ
xm=Amxm+bu = 1 x.* |- u
. ; T_ m m
l 0 0 a = [al e 0 an]
= T =
ym = C xm e [c1 a0 » Cn] Xm.

The zeros of the plant and the model are thus assumed to be
the same.

As in the known parameter case, the input is chosen to be
lT

X,

where 1 is a column vector of adjustable gains. Define

l = a-1 = ap—a-l. A Lyapunov function candidate is then
vV = xTPx + clTl,
where P is positive definite and c>@. The state error x =

Xm—x satisfies

Amx + (Am—A)x + b(um-u).

Xl
]

%

u
"



The derivative of V becomes

1 =

T T

_ - T - -T N - 7
V = x (AmP + PAm)x + 2x (P(Am A)x + Pb(um u)) + 2cl

Ti) =

= -;TQx + 2(pr1aTx N prllTx + cl

= -xTox + 2(1Txprl+ c1T1)

where the matrix Q is given by the well known Lyapunov

equation Agp + PA, = -Q and P; 1is the first column
of P. Thus, if the parameter updating is chosen as

= - 1T

P~ 1o

then the derivative of the Lyapunov function becomes
negative definite. This means that x tends to zero and
consequently that y tends to Yoo

a

Admittedly the two examples given describe cases with fairly
strong assumptions. All the same they show that for a
restricted class of problems the Lyapunov design gives a
straightforward and simple solution that guaranties over-all
stability. However, the above examples also illustrate two
serious drawbacks of most of the algorithms presented till
1969.

Firstly, the zeros are assumed to be unaltered or known. It
is difficult to see how the technique used in the examples
should be extended to handle the case of unknown zeros which
are different from the zeros in the model. The adaptation
rule generally has the form of (2.1). The parameter deri-

vative is thus set equal to an error (in example 2.2 pfx)



times a state vector (x). This means that the adaptation
rule allows adjustment of n (=the order of the system)
parameters only. A generalization to adjust more than n
parameters thus requires some sort of non-minimal state

vector.

Secondly, it is a serious restriction that all the state
variables are assumed to be measurable. There are two major
techniques available to handle the problem:

a) The state variables can be obtained as 1linear combi-
nations of input and output derivatives. 1In the adaptive
formulation, the linear combinations have to be
determined by adaptation. In practise the
differentiators have also to be replaced by approximative
differentiators. The result is known as the ‘state
variable filter' technique [37,38].

b) The state variables can be estimated by some observer.
Since the plant is unknown, the parameters of the
observer must also be adjusted. This approach thus leads
to the problem of making an adaptive observer.

It is <clear that the two techniques are basically
equivalent. The state estimates are calculated as linear
combinations of filtered input and output signals. The
solution a) will be the one of main interest here. A
partial solution of the problem with non-measurable state
which wuses method a) will be described in the next section.
The general solution however uses some ideas from the
technique in b). These are described in section 2.3.
Finally, section 2.4 returns to method a) 1in the general
case.
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2.2. Non-measurable state - a special case.

The first attempt to solve the adaptive servo problem using
the state variable filter concept as described in a) above,
was 4given by Gilbart, Monopoli and Price [7]. Their
solution was later reformulated by Monopoli [14].

Monopoli's approach is described below.

Example 2.3. Monopoli's [14] solution in a simple case.

The plant is assumed to be governed by

B(p) blp + b2

u(t) = 5 u(t)

A(p) p- o+ alp + a2

y(t) =

where p denotes the differential operator. The model is

m bmp + bT
yot) = By (1) = oA —2 —y (¢
A" (p) p- o+ a;p + a,

and the object 1is to make y tend to Yn. The error e=y -y

satisfies

AT (p)e(t) = BM(p)u_(t) - A™(p)y(t) =
(2.2)

= B™(p)u_(t) + (A(p)-A"(p))y(t) - B(p)u(t).

Guided by the idea of the state variable filters which uses
filtered input and output signals, define

C(p) = ptc ;
- - u_ (t) ~
= u(t) - 0 . A
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The equation (2.2) can then be rewritten as

a™(p)e (£)=C(p) [-B(p)u(t) +B™ (p)u_ (t)+(A(p)-A"(p) )y ()] =

=C(p) [~ (byp+b,) u(t) +(b]p+bD) u_(t)+((a;-aT p+(a,-aT) )y (t) ]
(2.3)

It will be clear below that it is possible to include an
unknown, nonzero constant with known sign in C(p) without

influencing the conclusions. Therefore, if the sign of b

1
is known, (2.3) can be simplified into
A" (p)e(t)=
=C(p) [~ (p*b)u () + (bTp+b™ u_(t)+((a,~a™) p+(a,-a™))y(t)]
=C(p) I=(ptb)u AP YL ((ay-ay)p+(ay-ay))y
(2.4)
where the parameters are different from those in (2.3). It

must however be assumed that bl*ﬂ to obtain (2.4) from
(2.3). This means that the difference between the number of
poles and the number of zeros (the 'pole excess') is equal

to one.

A natural way to try to make e(t) =zero is to choose the
control signal u(t) according to

(p+6(£))u(t)=(bTo+bTyu, (£)+ (&) (£)-a]) p+ (5, (t)-aD)) ¥ (¢)
(2.5)

where Bb(t) etc. stands for estimates of the unknown para-
meters. Insertion of the control law (2.5) into the error

equation (2.4) gives
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A" (p)e(t) =

C(p) [(B(t)-b)u(t)-(F; (t)-a;)p+(d,(t)-ay))y(t)] =

.
-~

C(p) [b(t)u(t) = aj(B)y(t) = ay(t)y(t)] =

cipyet(t) e(t), (2.6)

where 5(t)=6(t)-b etc. are the parameter errors,

oT(t) = [b(t) a () ay(t)] and ¢T(£) = [u(t) -y(t) -y(t)].

It is seen from (2.6) that the error depends linearly on the
parameter errors. This is an important point which will be
used below.

It now remains to choose the parameter adjustments so that

overall stability is achieved. Let x be the state vector

when realizing (2.6) as

Ax(t) + BOT(t)e(t) (2.7)

;(t)

cTx(t) = (10 ... 6)x(t).

e(t)
A suitable Lyapunov function is

V = x'Px + OIRE (2.8)

where P and R are positive definite. The key result to be
used now is the Kalman-Yakobovich lemma, which can be stated

as

Lemma [39]. Let A be asymptotically stable and (A,B)
controllable. If G(s)=CP(sI—A)—lB is strictly positive real
(SPR) there exists matrices P>9, 0>8 such that

ATP + pa = -Q (2.9)

(]
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This lemma was first exploited by Parks [3].
Differentiation of (2.8) gives:

Tre. (2.10)

v = x2(ATP + PA)x + 2xTPBOTe + 26

If the transfer function C(p)/A™(p) is strictly positive
real the lemma can be used to simplify (2.10) as

Troy = -xTox + 2(07T B

V = -xT0x + 2(xTcoTe + 0 e + OTRO).

By choosing the parameter updating

6 = -R 1ve, (2.11)

the derivative becomes negative definite and x tends to
zero. This implies that e tends to zero. The updating
(2.11) is given in terms of parameter errors, but it could
also be written as

.
~

e(t) = -R Ye(t)e(t), (2.12)

where ©(t) is a vector containing the parameter estimates
themselves.

The resulting configuration, which is a typical 'MRAS-
configuration', 1is shown in fig 2.2. The block diagram
reflects one part of the closed-loop behaviour, namely the
generation of the error e(t). The importance of this 'MRAS-
configuration' is that it consists of two positive operators
[39], connected with a negative feedback. This fact implies
that e(t) tends to zero. It should however be noted that
the block diagram does not give any information about other

important properties of the MRAS.

0
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o't Pt Clp) elt)

") ? 1)

Fig 2.2. ‘'MRAS-confiqguration' of example 2.3.

Remark l. There is a 'compatibility condition' that has to
be fulfilled in the above solution. This is the assumption,
that the regulator contains as many parameters as in the
known parameter case. If this assumption is not introduced,
the analysis becomes very difficult.

Remark 2. The requirement on C/A™ o be positive real is

easy to  fulfill, because AM™(p) is known and C(p) can be
chosen freely.

Remark 3. The adaptive law (2.12) is similar to the one
used in example 2.2, However, the vector ¢ has three
elements. According to the discussion in connection with
example 2.2 ¢ can be interpreted as a non-minimal state

vector.

The above example can be generalized and the adaptive servo
problem can be solved under the important assumption that
the pole excess is equal to one (bltﬂ). The result 1is a
relatively simple adaptive requlator, which has the desired
stability properties. It is seen in the example that the

control law will contain derivatives of the output if

b,=2. It 1is this point which motivates further efforts in
order to solve the general problem. New ideas are required
to proceed. Historically these entered via the theory of
adaptive observers, which will come next in our
presentation.
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2.3. Adaptive observers.

The adaptive observers deal with the problem of estimating
the state vector of the wunknown plant (here in phase

variable form):

. -a, 1 b
X = Ax + bu = .l ’.1 X + .1 u
-a, @ by (2.13)

y=c¢cx=1(10 ... 0]x.

An observer, or a Kalman filter, for a known system can have

the form

X = AX + bu + a(y - cTi) = (A - acT)i + bu +ay. (2.14)

Here X denotes the state estimate and a is a column vector,
which determines the matrix

K = A - acT = :1 '.1
-k %}
n

and thereby the observer dynamics. The convergence rate of
the estimation error x=x-x is determined by K:

oo - T- . Tyve - &

X = AXx + bu - (Ax + bu + a(y-c'X)) = (A-ac")x = Kx.(2.15)
An adaptive observer can be implemented straightforwardly by

fixing the observer dynamics and using (2.14) with estimates

of the unknown parameters. Hence

)‘E . K;( + 5y +6U' K = . 1 . (2 16)
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The error equation is then given by

AX + bu - (K&+ay+Bu) = Kx + (A-K)x + (b-B)u -ay =

>
[

- kl-al . - 3 =
Kx + . y - ay + (b-b)u = Kx + 8,y + 8,u, (2.17)

[}

kK -
nan

where el and 62 are vectors of parameter errors.

Guided by the solution to the regulator problem, the
intention now is to get an overall structure as described in

fig 2.2. Introducing

y=y-9y= cTx - Tz = Tk,

the following conditions should be satisfied:
1) The output error y should be governed by

y(t) = G(p) (BT (t)v(t)),

where G(p) is strictly positive real,

ol () = (ef(t) eg(t)) and ¢(t) is a vector whose

components are known signals.
2) The parameter updating should be given by
2 -1 -
o(t) -R "e(t)y(t).
Compare with equation (2.12).

The condition 1) can also be reformulated as to find vectors
d and , such that

- Gy -1,- - T -1_ T
y = ¢ (pI-K) "(8yy + 8gu) = c (pI-K) d(® ¢) (2.18)
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and cT(pI—K)-ld is SPR.

There is no immediate solution to this problem, and the
first papers dealing with adaptive observers [40-45] made
use of a trick, which consists of feeding an extra input
signal into the observer. This makes the structure general
enough to accomplish 1) above. The idea will be

demonstrated in the following example.

Example 2.4. Observer with known b-vector.

When b is known, the error equation (2.17) is simplified

. - - T
into x = Kx + Qy, where Q0 (t) = [cl(t) c,(t)] for a
second order system. Adding an extra input signal

WT(t) = [w; () W, (t)] as mentioned above now gives

y(t) = cT(pI-K) "1 (8(t)y(t) + w(t)).

With ¢T(t) = [vi(t) v,(t)] and d = [4; d,],
the equation (2.18) can be written as

T ooy ~L[C1 (B) v (E) 4wy (6)] |
€ B ) [c%(t)y(t)+wg(tJ

_.T _ey-lldy (e, (B) v, (B)+c,(t)v, (L))
= € (RS [d%(ci(t)v}(t)+c§(t)v§(t)J

or, equivalently,
B = pley (b)y(B)+w ()] + [c,(E)y(E)+uy(t)] -
'Pdllcl(t)vl(t)+cz(t)V2(t)]-dzlcl(t)Vl(t)+Cz(t)V2(t)]=

= ¢, (£) [y(£) = (pd;+d,) vy (£) 14c, (£) [y (t)=(pd +d,) v, (£) ]+

+

S (B) [Y(£)=dv; ()] + c,p(£)d v, (E) + wy(£) + wy(t)

The equation is satisfied if the signals are chosen to be
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1

v, = Y ¢ vV, T /=Y
1 pdl+d2 2 pd1+d2
w, = ] A P (czdl—cldz)v

Now choose d;, 4, such that cT(pI-X)™!'d is SPR and
let the parameter updating be given by

.
-~

o(t) = -R Te(t)y(t)

It then follows that y tends to zero. Under additional
assumptions on the input it can then be shown that x tends

to zero.

a

Remark 1. Analogously to the regulator problem in example
2.3, there is a ¢-vector, consisting of filtered data.
Remark 2. The solution for the general case uses the same
idea as above, but there will be more extra signals.

Remark 3. The form of the parameter adjustment guarantees
that the signal wo(t) can be generated without
differentiation.

The important point in the above solution is the
transformation into the configuration shown in fig 2.2 and
the necessity to introduce an exogenous signal to achieve
this. It has been shown later that it is possible to use a
suitable, nonminimal representaion of the system instead of
introducing the extra signal [46,47]. The basic property of
these solutions is the wuse of a description, where the
outputs (or errors) are bilinear in states and unknown
parameters ('linearity in parameters'). Related problems
are treated in [43,48,49].

After this short review of the adaptive observer technique,
attention is once again focussed on the adaptive servo

problem.



19

2.4. Non-measurable state - the general case.

Two different approaches to the problem of unaccesible state
were described 1in section 2.1. The adaptive servo problem
was solved in section 2.2 for the special case when the pole
excess 1s equal to one. The concept of state variable
filter was used. Ideas from the adaptive observer solution
given in section 2.3 will now be used to solve the general

problem with pole excess greater than or equal to one.

As in example 2.3 it is assumed that the plant is described
by the differential equation

m
_ bﬂp +...+bm
P +alp +...+an

e

y(t) = 3

—

p)

and the desired performance is specified with the model

m_m m
_ Bm! ) _ bﬂp +...+bm
Yo(t) = = Un(t) = a1 m Yn(t)-
A" (p) P +alp +...+an
The numerator degree m 1is assumed smaller than n. The

solution for the case m=n-1 was given in example 2.3. As

before the error e = Yn~Y is given by

m e . - m it _am -
AT(p)e(t) = C(p) [-B(P)u(t)+B" (Plu (£)+(A(P)-A"(P))Y{5) ]y,

where u, u, and y are filtered values of u, un and Yy

(cf. equation 2.3). It was noted in example 2.3 that
the paranthesis on the right hand side of (2.19) can be

written as GT(t) Y (t). If m<n-1 the control 1law will
however contain derivatives. This can be avoided by using
the methods suggested by the observer solutions. This idea

is due to Monopoli [18] and has been used in various forms
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in [19,24-26]. The main idea is as follows. An extra
signal w(t) (to be specified later on) can be added to the
right hand side of (2.19) in order to rewrite the
paranthesis as was done in the observer solution. There is
however an important difference between the observer and
regulator cases. In the observer case, addition of the
extra signal just means that the estimates are calculated in
a somewhat different manner. In the regulator case, the
error e(t) in (2.19) is defined once for all, and a change
in the r.h.s. must be accompanied by a similar one in the
l.h.s. This means that a new quantity, below denoted 7(t),
will replace e(t) in (2.19). Thus, introduce

m
A7 (p)

7(t) = e(t) + el(t).

The quantity 7(t) is called the 'augmented error' in Mono-
poli [18]. It satisfies

A"(p)n(t) =
(2.20)

= C(p) [-B(P)u(t)+B™ (p)u_(t)+(a(p)-A™ (p)y (£)+w (t) 1.

In analogy with the observer problem, the signals G(t) and
w(t) can be chosen so that (2.28) transforms into

A" (p) 7(t) = C(p) (8% (t) o(t))
and 7n(t) can thus be made to tend to zero.

The extra signal w(t) is composed of products of derivatives
of parameter estimates and elements of the ¢-vector as in
the observer solution. This means that w(t) only influences

the transients. It is zero when the parameter estimates
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move very slowly and ¢ is bounded. However, the boundedness
of ¢ has to be proved in order to conclude that e(t)->8 from
the fact that #(t)->@#. It seems that this is not quite
rigorously done in [18] as also mentioned in [24,25]. An
alternative way to achieve e(t)->0 is to modify the choice
of input and extra signal, i.e. not relying on the observer
solution. This has been done by Feuer and Morse [24], but
the solution is unfortunately complex. For easy reference,
the major steps of the solutions by Monopoli [18] and Feuer
and Morse [24] will be described in two examples.

Example 2.5. Monopoli's solution [18].

To be consistent with the rest of this paper, the notations
are different Monopoli's. A cross-reference is therefore

given in table 1.

The plant is described by the differential equation

bgsB(P) bg(pm+blpm-l+...+bm)
y(t) = my uiv) = = — u(t) (2.21)

P +alp +...+an

where the parameters are unknown. It is necessary to know
the degree m of the numerator to write the equation in this

form. It is assumed that m<=n-1. The model is given by

brgpm+ ® e o +bm

m
_ B (p) -
Yolt) = m un (t) = n, m n-1 m

u_(t). (2.22)
A" (p) R P +aip +...+an m

It is thus assumed that the degree of Bm(p) is less than or
equal to the degree of B(p). This assumption is natural to

avoid differentiators in the control law.
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As before the goal is to force the error e = Y=Y to zero.
Introducing the filter

- -2
) = p" 4 qo" % v gy,

the error satisfies the equation

b,B(p) m m
m = - el B _(p) A(p)=A (p)
AT(ple(t)=0(p) [- rpyult)+ Sproru, (£) +5E5reBly (1) ]

(2.23)
Compare with (2.19). Define the augmented error as

n(t) = e(t) + el(t), where

m
A" (p)

and w(t) will be specified later. Then n(t) satisfies

A" (p) n(t) =
b _B(p) m m
= N B _(p) A(p)-A (p)
Q(p) [ o (p) u(t)+ o) u (t)+ 9(p) y(t)+w(t)]
(2.24)
as in (2.20). In order to specify the control signal

explicitly define an arbitrary but stable polynomial

n-m-1 n-m-2

C(p) = p + cyp +...+ ¢

n-m-1°*

and solve the identity

Q(p) = B(p)C(p) + D(p)/b,

for the polynomial D(p) of degree n-2,



= n-2 n-3
D(p) dgp + d;p to..t A o

The equation (2.24) can then be written as

A" (p) n(t) =

b m m

D(p B =A

23

= - 9 _D(p) B_(p) A(p)-A (p)
A I A T A 1T e, AT R A

+ w(t)]. (2.

The operator C(p) will later be applied to this equation
determine the control signal. To avoid differentiating
output y, it is then necessary to rewrite the 4:th term
the r.h.s. of (2.25). The object 1is to make all

25)

to
the
on
the

transfer operators in the r.h.s. have pole excesses greater

than or equal to n-m-1l. This means that they are still

proper after multiplication with C(p).

For this reason, define the polynomials F and G to

be

respectively the quotient and the rest when dividing

(A(p)-a"(p))C(p) by A(p), i.e.

(A(p)-A™(p))C(p) = A(p)F(p) + G(p), where

F(p) = fgp + flp +...+ £
n

G(p) = g4o + 9,p to.ot g

Inserting this identity into (2.25) now gives

by D(p) +b 4B (P) F (p)
oy YY) Y —Tmom

A™(p)n(t) = Q(p) (- u(t) +

B" (p) G

Sp)
Yo Ya® t Emom YIB) el i’

26)
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Collecting the unknown parameters of the numerators (divided

by bﬂ) into the vector 8 and defining the vector ¢(t) as

m n=-2
ot (0 =252y :

i .
o) (B T Y e o v (B

Dn--l 1
CoamY V- remamY(t]

gives (2.26) the alternative form

m _ . bﬁ TQ
A (p)n(t) = Q(p) [- GTETu(t) t w(t) + b8 X(t)]. (2.27)

Now, let Bg(t), 8(t) denote estimates of bg and ©. Let the
extra signal w(t) be chosen as

wit) = —Bg(t)wl(t)

and determine w;(t) and u(t) so that

+wp () = 8T (r)e(e). (2.28)
Equation (2.27) then transforms into

A" (p) m(£)=0(p) [(bg=B4 () )w) () + by(e-0(tN)Te(t) ). 5 59

This is the well-known form used before. Therefore, if the
sign of bg is known and if ng(p)/Am(p) is SPR, it
follows that 7(t)->0 with a suitable parameter updating.
The exact choices of u(t) and Wi (t) in (2.28) are
postponed until the next chapter.
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Table 1. Monopolis notation compared to the present
one (notations not listed are the same).

Monopolis This paper
x(t) y(t)
xp () Y ()
£ (t) ug (t)
r(t) B" (p)u, (t)
y(t) e, (t)
D, (p) A(p)
D, (p) bgB(p)
D (p) A" (p)
D_(p) B™ (p)
D, (p) Q(p)
Df(P) C(p)
A(p) -D(p)
B(p) G(p)
C(p) bgB(p)F (p)

Example 2.6. Feuer and Morse's solution [24].

In this example there will also be some changes compared to
the original presentation. These are listed in table 2.
As in example 2.5 the plant is given by

m=1

b,B(p) b, (P +b,p" T+...+b )
_ _D _ _0 1 m
y(t) = 2o v = — u(t). (2.39)

+ o +...+
P a4k an

The model is written somewhat differently.

m
= 2.(p) S S—
Yn(®) = T Un(®) = Ty bR (o), (2.31)

where Yp(P), 7Y3(p) are monic polynomials of degree 1 and
n-m-1 respectively. This implies that h{(p) is a proper
transfer operator. Once again introduce a stable filter
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n

T(p) = p" + t;p"7!

oot b,

and define F and G to be the quotient and the rest when

dividing Yg(P) Y1 (P)T(p) by A(p), i.e.

Yg(P) Y1 (P)T(p) = A(p)F(p) + G(p), where

F(p) = p" ™+ £,00™™ L w4+ f _,

n-1

Using these relations the error equation can be rewritten in

a suitable form

vg(p)vl(p)bgB(p)
vg(p)vl(p)e(t) B h(p)um(t) - A (p) u(t) =

bgB (P)E (P)
= - - &(p)
h(p)u (t) T (V) - ey v,

Division by Yl(p) gives

b8 (P) F (D)
= (o) & o et ]
rp(Pelt) = et T T Y T erm (Y
(2.32)

Introduce the augmented error defined by

n(t) = e(t) + e,(t), where

6,(t)

el(t) = - ;ETET wl(t)

and 50(t) is the estimate of bg. Insertion into (2.32)
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gives the following equation for the augmented error

- . by (R) B (D) F (p)
- 6 - -
T (e T(p) Y(E) = Bg(t)w;(¥)
b b, (B(p)F(p)-T(p))
= hip) - - _ -
71 (P) Up (£) Y (P) BE v, (P) T(p) it
- G _ -
’Yl(p)T(p) y(t) Sg(t)wl(t)
= -bﬂ(§f%§% + Wy (E)) + (by=By(t))wy(t) +
G(p) /b
h (p) _ B(p)F(p)-T(p) _ 2P0y
tPolg gy @Y T T T Y Ty mrm Y (]
(2.33)

Once again form the parameter vector © from the numerator
coefficients in the last paranthesis and define the vector

-1
T ¢y = (hip) e I
(t) lyl(p)um(t)' ?l(p)T(p)u(t)'°"’ 71(D)T(p)u(t),
n-1

B 1
et e SrETE Y (V-

Equation (2.33) can then be written as

u(t)

'Yg (p) n(t)= -bg(vl(p)

+wy (£)) + (bg=B,(t))wy(t) + byeTe(t)

(2.34)
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If now, as in Monopoli's scheme, the control signal and the

extra signal w,(t) are chosen to satisfy

u(t)

e} £ (t) = oT (t) e(t), (2.35)

the error equation (2.34) becomes
v (P)1(t) = (by=B,(t))wy (t) + by(e-6(t)) Te(t). (2.36)

This equation is of the desired type. Notice that the
stable transfer function l/yﬂ(s) is always SPR and so the
only requirements for 7n(t) to tend to zero are that bﬂ>ﬂ
and that a parameter updating similar to the previous ones
is used.

Table 2. Feuer and Morse's notation compared to the
present one.

Feuer and Morse This paper
r(t) u(t)
xg(t) el(t)
X, (t) wy(t)
e(t) n(t)
q e
() (t)
gp by,
ap(P) B (p)
ﬂp(P) A(p)
(p) B" (p)
B(p) A" (p)
n(p) T(p)
3(p) F(p)
p(p) G(p)
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2.5. Discrete time systems.

So far all the results of this paper have been given for
continuous time systems. Since the algebra for continuous
time and discrete time systems have much in common, it is
clear that a similar development can be given for discrete
time systems. In fact, schemes which are just discrete time
translations of the algorithms described have been presented
by Ionescu and Monopoli [19,26].

However, as pointed out by Landau and Béthoux [28], the
discrete time problem suffers from an additional difficulty
compared to the continuous time case. The reason is
basically that £for discrete time systems a positive real
transfer function must have a feedthrough term (i.e. the
impulse response contains a constant term), in contrast to
the continuous time case. The implication is that there is
no 'easy' case correspondingy to the case of the pole excess
equal to one for continuous time systems. The problems will
be discussed in more detail in the next chapter.
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3. A UNIFIED DESCRIPTION - CONTINUOUS TIME

The MRAS schemes are motivated from stability considerations
only. This has the advantage that overall stability, which
is of primary interest, is automatically assured. On the
other hand, it has the implication that the development is
not at all points easy to interpret. This is in contrast to
the self tuning approach, where the algorithms can naturally
be divided into identification and control using a

separation principle.

To understand the MRAS schemes more fully, there are 1in

particular two items which require careful investigations.

- The augmented error is introduced ad hoc in order to treat
the problem with pole excess greater than one (section
2.4). It is desirable to give an interpretation.

- There are no connections between the adaptive solution and

the corresponding known parameter situation.

The first guestion, how to interpret the augmented error, 1is
relatively easy to answer. Consider the algorithm by
Monopoli given in example 2.5. Combining the definitions of
€1(t), w(t) and wy(t), it is easily verified that

ey (t) = B (5 ()WL 5 (£)8T(¢) 0(t) 1.

u(t)
A™(p) (@)

Compare this with the identity

- _9(p) (_, u(t) T
e(t) Am(p) [ bg C(o) + bge p(t)].
It follows that ey (t)=-a(t), where  é(t) is the

estimate of e(t) using the model

e(t) = ;%{i% (-6, g{%} + BméTw(t)l.
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This means that the augmented error n(t) is simply the
difference between the error e(t) and the corresponding
estimate ée(t). This is an important observation. It
makes possible to generate the algorithms in a more
systematic way. This will be done in two steps 1in the
following. To obtain a suitable model structure for the
algorithms, some results for the known parameter case are
summarized in section 3.1l. At the same time an answer to
the second question raised above is given. With the results
for the known parameter case and the interpretation of the
augmented error as wmotivation, a class of adaptive
algorithms 1is defined 1in section 3.2, The interesting
property of this class of algorithms 1is that it contains
several of the earlier proposed MRAS schemes as special
cases. This fact 1is demonstrated in some examples in
section 3.3.

3.1. The known parameter case.

The plant is assumed to satisfy

byB (p) by (™ +b, 0™ T4, L 4b_)
y(t) = _KTET-U(t) = . v u(t), (3.1)

P +alp +...+an

where A(p) and B(p) are relatively prime. The problem
consists of designing a controller which makes the closed-

loop transfer function equal to a given model transfer

function
m_m m
Bm{o) ) bﬂp +...+bm (3.2)
m n n-1 m l
A (p) P +alp +...+an
where A" (p) and B™ (p) are relatively prime.
Furthermore, it is assumed that B(p) and BM(p) are

relatively prime. This means that the plant is in practice
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restricted to be minimum phase, in order to keep the control
signal bounded. The approach taken here is to consider the
general controller configuration depicted in €fig. 3.1,
where R', S' and T' are polynomials in the differential
operator. This structure will be seen to include
interesting special cases. It should be noted that the
realization of the controller does not look exactly as in
fig. 3.1, because this would incorporate differentiators in
the control law. Instead the feedforward transfer function
T'/S’ and the feedback transfer function R'/S' are
implemented.

r_ 1 Plant
u 1 by Blp)
m: " 7' (p) s’ (p) - " A :
| -R'(p) |
hzyﬂrouer ]

Fig 3.1. Controller configuration.

The desired closed-loop transfer function is obtained if the
polynomials R', 5' and T' are chosen to satisfy the eguation

a®(p) A(PIST(P)+byB(P)R" (p)

or, egquivalently,

byB(p)T' (P)A"(p) = B™(p) [A(P)S’ (P)+b B(PIR' (p)].  (3.3)
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It 1is possible to simplify this polynomial equation.
B™ (p) divides T'(p) since B™(p) is relatively prime to
B(p) and AM™(p). In the same way byB(p) divides S'(p)
because  b,3(p) is relatively prime to BM(p) and A(p).
Thus, introduce new polynomials R, S and T defined by:

R'(p) = R(p)
S'(p) = byB(p)S(p) (3.4)
T'(p) = B™(p)T(p)

The identity (3.3) is then reduced to

T(p)A™(p) = A(p)S(p) + R(p) (3.5)

and the controller structure is now as shown in fig. 3.2.

r ] Plant

u ]
S 1 L1 TkﬂB"nd T b, BlpISTp

|

|

, |

-R(p) ¢ |

' Controller ]

Fig 3.2. Controller configuration with polynomials in (3.4).

The polynomials byB(p) and T(p) are cancelled in the
closed 1loop transfer function. These polynomials represent
unobservable or uncontrollable parts. The polynomial T(p)
can thus be chosen freely without changing the closed-loop
transfer function. When T(p) has been determined, the
equation (3.5) has many solutions S(p) and R(p). However,
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in all the algorithms considered it is assumed. that the
degree of R(p) is less or equal n-1, which assures that the
equation has a unique solution, Astrom [58]. -Since the
polynomials A(p) and Am(p) both have degree n, T(p) and
S(p) will also have the same degree. They are also assumed
to be monic. There is however one additional condition on
T(p) and S(p). For the control 1law not to contain
derivatives of the output, it is necessary to assume that
the degree of S(p) (and therefore the degree of T(p)) is
greater or equal n-m-1.

To summarize, the controller polynomials R, S and T are
determined in the following way:
1) choose the monic polynomial T(p)

T(p) = pk + tlpk-l +...+ tk’ k>=n-m-1 (3.6)
2) solve the equation
T(p)A"(p) = A(p)S(P) + R(p) (3.7)

for the unique solutions R(p) and S(p), defined by:

R(p) = 1 + £,p +...+r (3.8)

S(p) +...+ s

]
e
+
12}
[
T

K+ Same k as in (3.6) (3.9)

The first step, the choice of T(p) (including its degree),
is quite arbitrary in the above formulation. However, this
choice is of importance in the presence of noise, and this
fact 1is clear when considering a special case. If k in
(3;6) and (3.9) is chosen to be equal to n, it can be shown,
see Kstram [58], that the described controller is nothing
but a standard solution consisting of a Kalman filter and

state feedback, auginented with a zero placement. It also
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follows that T(p) can be interpreted as the characteristic
polynomial of the Kalman filter. 1In the same way the choice
k=n-1 makes the controller a frequency domain counterpart to
a state space solution with a Luenberger observer and state
feedback.

3.2. A class of adaptive controllers.

As described in the beginning of this chapter, the augmented
error used in the MRAS approach has an important
interpretation. It consists of the difference of a
quantity, the error, and its estimate. This difference is
used in the parameter estimation. The implication 1is that
there 1is a strong relationship between the MRAS and the
self-tuning regulators.

In order to make this relationship even more <clear, the
self-tuning principle will be used to define a general class
of adaptive regulators. This class of algorithms will later
be shown to include the described MRAS schemes as special
cases. Apart from the parameter estimation, a suitable
model structure for the algorithms is also needed. This is
provided by the results for the known parameter case
discussed in section 3.1. The first step in the development
is to use these results to obtain expressions for the error
or, more dgenerally, the error filtered by some transfer

function.

The polynomial identity (3.7) is used to get the following
expression for the error e(t) = y(t)-ym(t):

TaMe (t)

TATy (t) - TAmym(t) -

(AS + R)y(t) - TATy_(t) =

= byBSu(t) + Ry(t) - T8"u_(t) (3.10)
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Now define the filtered error

O

= (o)
eg(t) = 5oy (), (3.11)

where Q(p) and P(p) are stable monic polynomials of degree
n+k-1 with the same k as in (3.6) and (3.9). Assume that P

can be written as
(3.12)

where Pl is of degree n-m-1 and P, of degree m+k. The
filtered error ef(t) can then be written as

= 0 -
ef(t) =P e(t)
b,.BS m
0 0 R T8
= = [ u(t) + 5 y(t) = = u_(t)] =
- P P P “m
b_(P.+BS-P.) m
) 2
= L Lz ute) + 5 y(t) - B u (6)] =
TA
- 9 ult) _p yult) y(t) _ 8"
AT [bﬂ Pl + bﬂ(BS PZ) B + R 5 P um(t)]
(3.13)
Define filtered u as
up(t) = L&) (3.14)
1

and let © be a vector containing the unknown parameters of

the polynomials (BS'PZ) (degree m+k-1) and R/by (degree
n-1) and the constant l/b9 as the last element.
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Furthermore, define the vector

T m+k-1 1 Dn--l 1
@ (t) = [%u(t)r---lﬁu(t)ITY(t)rOO-I§Y(t)'
m
B
- —;—um(t)]. (3.15)

It is then possible to rewrite the expression (3.13) for the

filtered error ef(t) as

= 9 T
ef(t) = al [bﬂuf(t) + bﬂe e(t)]. (3.16)

This identity suggests the model structure for the algorithm

that was mentioned above, namely a model of the form

g () = <L (Byu (t) + BﬂéTq)(t)]. (3.17)

u
TAm - f
Define the difference between the filtered error and the

corresponding model error (cf. the augmented error)
e(t) = ef(t) - ef(t). (3.18)
The following egquation is then obtained for e(t):

e(t) = =L (by-8, () (ug(e)+aT (£) w(t) ) +by (0-0(£)) To(e) )
A (3.19)

This equation has the special form used several times in
chapter 2 for the augmented error. It is therefore easy to
choose the parameter updating in such a way that e(t) tends
to zero, provided that the transfer operator Q/TAM ig
strictly positive real.
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The parameter estimation described above, which is wused in
the MRAS schemes, is by no means the only possible solution.
In presence of noise it could e.g. be suitable to have a
gain of the parameter adjustment which decreases with time.
The development done so far thus proposes a class of
adaptive algorithms, consisting of two parts:

- a parameter estimator using the model (3.17);

- a control law based on the estimated parameters.

Parameter estimation

In the first step, the estimation part, the solution for the
MRAS:s are based on Lyapunov theory or positivity concepts,
whereas the self tuning schemes often use a 1least squares
identification in the presence of noise. The LS
identification is obviously derived from the minimization of
a guadratic error criterion. It 1is in fact possible to
derive an alternative to the MRAS estimation scheme in the
same way.

Thus, write (3.16) as
ep(t) = byG(P)ug(t) + b,87G(p) (t), (3.20)

where

. _ Q(p)
G(p) = - .
T(p)A (p)

Consider a model of the form
&p(t) = ByG(plug(t) + B8 G(p) o(t) (3.21)

instead of (3.17).
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Then e(t) in (3.18) satisfies the equation

e(t) = (Dy-By(t)) [G(pug(t) + 6T (t) (G(p) o(t))] +

+ by (8-0(t)) " (G(p) #(t)) (3.22)

which is written as

e(t) = 87 (£) (G(p) o(t)). (3.23)
Now choose ez(t) as a criterion. Regarding it as a
function of e, the gradient Ww.r.t. e is

2e(t) (G(p)eo(t)). It 1is natural to make the parameter
adjustment in a modified steepest descent direction, i.e.

8(t) = -R1(G(p) ¢(t)) e(t), R pos definite. (3.24)

It is possible to verify that this estimation scheme has the
.desired stability property. Choose the Lyapunov function

V = 6°RE. (3.25)

Its derivative becomes

v = 20T (£)RO(t) = -20T(t) (G(p) o(t)) e(t) = =2 €2 (k)

and it follows that e(t)->@8. It is thus possible to use an
identification algorithm, similar to the MRAS schemes, but

without requiring any transfer function to be SPR.

Choice of control law

The choice of control signal contains one difficulty. It is

natural to determine the control law such that the estimate
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ef(t) of the error is equal to zero. Qccording to
equation (3.17) this means that uf(t)+eT(t) o(t)=0.
It can be seen from (2.28) that this corresponds to the
choice w(t)=#d, i.e. no extra signal is used. This control
law however uses derivatives of parameter estimates. This
means that 1in practice the control law must be modified.
There are different solutions proposed in the 1literature.
Monopoli (18] choses the control signal for the algorithm in

example 2.5 as

u(t) = 8l (t) (C(p) o(t)] (3.26)

and Wl(t) is chosen to satisfy (2.28). Feuer and Morse
(24] propose a different control law. It is desirable to
use a control law which has the property that ef(t) tends
to zero if ef(t)—éf(t) tends to zero. A trivial case
is when m=n-1l, i.e. the pole excess is equal to one. Then
the filtered U, Ug(t) 1is simply u(t). It is therefore

possible to achieve éf(t)—>ﬂ without differentiators.

A class of adaptive algorithms has thus been proposed.The
interpretation of the augmented error for the MRAS was the
motivation. The augmented error, which is identical to e(t)
in (3.18, 3.19), is used in the parameter estimation part.
One special version of the parameter estimation makes the
algorithm equivalent to the MRAS schemes. However, sofar
the relations between the proposed algorithm and the MRAS
schemes have not been shown in detail. This will be done in

a few examples in the next section.
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3.3. Examples of the general algorithm.

It will now be shown how the algorithms by Monopoli (ex.2.5)
and Feuer and Morse (ex.2.6) fit into the general algorithm
given in section 3.2. It will also be shown that an
algorithm by Narendra and Valavani [25] can be put into the

general description.

Example 3.1. Monopoli's scheme (example 2.5).

The definition of the error e(t) is at first changed
compared to the one in example 2.5,namely e(t)=y(t)-ym(t).
It then follows from equation (2.26) that

D/b,+BF . m
= 9 u(t) _, 8 = 2 a B

A (3.27)
Here Q', which replaces Q in (2.26), is of degree n-1, C of
degree  n-m-1, (D/b,+BF) of n-2 and G of degree n-1. Now
compare this with the identity (3.13):

BS-P m
ep(t) = L [bﬂ% + by—s—fu(t) + Sy(t) - B-u _(t)].

AMT P P omtTi328)

If k in (3.6), (3.9) and (3.11) is chosen to be equal n-m-1,
the polynomial degrees are: Q: 2n-m=-2; T: n-m-1; P1=n’m‘17
P2: n-1; P: 2n-m-2; B5-P,: n-2; R: n-1, It is
straightforward to verify that (3.27) coincides with (3.238)

with the following relations between the polynomials:

l=T=C
2 =9
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Because Q = P, it follows that in this case the filtered
error ec(t) is simply equal to the error e(t) itself. The
conclusion is that Monopolis scheme is a special case of the
general algorithm, namely the case ef(t)=e(t) and k=n-m-1.
The parameter estimation is chosen to be the one wusually
used in the MRAS schemes.

g

Example 3.2. Feuer and Morse's scheme.

As in the above example the error is redefined compared to
example 2.6, i.e. e(t)=y(t)-ym(t). A major
simplification is done in this scheme in eq. (2.31), and
the effect is that the development proceeds as if Bm=1,
AM= Y Vi- For simplicity, thus assume h(p)=1l. It then
follows from (2.32) that the error e(t) obeys (T' is used in
stead of T):

1 (b u(t)
Vg (P)

(t)
ey ul(t) y(t) _ “m
TN * by (BF-T )rl'r' ¥ GFI'I" rlT'l

(3.29)

e(t) =

The polynomial degrees are: Yyt g Vit n-m-1; T': n;
(BF-T'): n-1; G: n-1. This identity shall once again be
compared with the identity (3.13):

B3-P
u(t) 2 R T
0P + bg-—;rnu{t) + gY(t) - 5um(t)]

! (3.39)

Q

]b}ﬁT

ef(t) = [b

In this case it is relevant to note the polynomial degrees
in the case k=n-m: Q: degree 2n-m-1l; T: n-m; Pl; n-m-1;
P,: n; P: 2n-m-1; BS-P,: n-1; R: n-l. Once again a
comparison of (3.29) and (3.30) shows that they are in fact
identical with the following relations between the

polynomials:
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It has thus been shown that the algorithm of Feuer and Morse
also fits into the gensral description. Similar to
Monopolis scheme the filtered error es(t) is equal to the
error e(t) and the estimation part is the ordinary MRAS

algorithm.
[]

Example 3.3. Narendra and Valavani's scheme.

Since this scheme is not described in this paper, no details
are given. However, it can be snown that this MRAS also is
possible to generate within the general framework. The
algorithm has k=n-m-1 and once again the filtered error is
equal to the error itself. The error is given by (3.13),

where the polynomials are chosen as:

el

1 L (degree n-m-1)
P2 B"T (degree n-1)
g =P = PlP2 (degree 2n-m=-2)

The polynomial L is chosen to make the transfer function
LB™/A™  sprR  and the ordinary MRAS estimation scheme is
used.

(1
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4, A UNIFIED DESCRIPTION - DISCRETE TIME

The MRAS filosophy was originally developed for continuous
time systems but can also be applied to discrete time.
Stability is still the major consideration. The inter-
pretation of the augmented error and the relations to the
known parameter case will be considered for the discrete

time case too.

The augmented error can be interpreted in the same way as
for the continuous time case. It is easy to verify that the
augmented error is equal to the difference between the error
e(t) and é(tit-1), the prediction of e(t) using estimates
from time t-1. This important observation provides a bridge
to the self-tuning regulators. The connections with the

known parameter case are treated in the same way as earlier.

As in chapter 3, a class of algorithms will be defined in
two steps. The results for the known parameter case are
summarized in section 4.1. The algorithm is defined 1in
section 4.2 using the self-tuning idea. The results for the
known parameter case suggests a model structure for the
parameter estimation, where the augmented error enters in a
natural way. A MRAS algorithm is described as a special
case in section 4.3. It is also shown that two self-tuning
controllers are special cases. This makes it possible to
relate the MRAS and the self-tuning regulators closely. \
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4,1. The known parameter case.

The following discussion is analogous to the corresponding
discussion for continuous time systems in section 3.1.

The plant is assumed to be given by

-(k+ =
q” ¥y s(g7h
y(t) = =1 u(t) =
A(q )
a*™p 1+ bjg™ +iit b g™
= -3 — u(t) (4.1)
(1 + a, g teoota g )
where q'l is the backward shift operator and k is an extra
time delay. The polynomials A(q_l) and B(q-l) are

assumed to be relatively prime. The desired <closed 1loop
transfer function is given by

~(k+1 -1 -{k+1 -1 -(n-1
g kHgmgtly gk "6 + Tt 4.4 b"_ g~ ("))
m, -1 = m_ -1 m_-n
AT (g 7) 1+ a)q t...+ agq (4.2)
where Am(q°l) and Bm(q-l) are assumed to be
relatively prime. As in the continuous time case, it is

also assumed that B(q'l) and Bm(q'l) are relatively
prime, with the same implication that only non-minimum phase
systems can be treated. There is a time delay in the model
which is greater than or equal to the original one. This is

a natural assumption to avoid non-causal control laws.

As in the continuous time case, the proposed solution
consists of a controller with feedforward T'/S' and feedback
-R'/S', where R', T' and S' are polynomials in the backward
shift operator g~ 1. It is possible to simplify the

controller to the configuration seen in fig. 4.1. The
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assumptions on relatively primeness above are used and the
arguments are the same as for the continuous time case. It
should be noted that there is no realizability problem with

this configuration, because the polynomials are defined in

g L.
- ] Plcmt
_JDT_—+Tm5qu5 b Bl IS (q ) | 'k_ Am*)
-R(q'l) l
. Controller -

Fig 4.1, Controller configuration.

The following identity must be satisfied

T(q Ha"(q7Y) = a@Hs(g7l) + gD

R(q ) (4.3)
if the closed-loop transfer function should be equal to the
desired one. The T-polynomial can be chosen arbitrarily
without affecting the closed-loop transfer function. When T
is determined, the equation (4.3) has many solutions 5 and R
but for all the considered algorithms the solution is unique

because one of the following conditions is satisfied:

Case 1. Degree(R) < degree(A) <=n
or
Case 2. Degree(S) <= k.
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The requirement for the controller to be causal does not
imply any conditions on the polynomial degrees. In stead,
it. must be required that S(@)#*0, which from (4.3) |is
equivalent to T(#)#*P. Furthermore the S- and T-polynomials
are scaled so that T(0)=S(9)=1. The resulting design
procedure is thus as follows:

1) Choose the polynomial T(q-l) defined by

(g Y) = 1 + th‘l 4ot t g T (4.4)

T
2) Solve the polynomial equation

q-(k+l)

(g Ha™q ) = a@ Hs Tl + R(g™") (4.5)

for the unique solutions R(q-l) and S(q'l), defined by

R(g™Y) = £y + rlq'l +...+r_ g ™R (4.6)

nr

S(q-lj 1+ slq-1 +...+ s_ q s (4.7)

Ng

with one of the following conditions

Np < degree(A) (case 1) or ng <= k (case 2).

The arbitraryness in the choice of the polynomial T(q'l)
can be commented in the same way as for continuous time
systems. Thus, for the case Np=n and ng=n-1 (case 1) it
is easy to interpret the controller as a Kalman filter and
state feedback, together with a zero placement. Also in
this case the T-polynomial is the characteristic polynomial
for the Kalman filter and so it has importance when noise is
affecting the system. Analogously, the choice Np=np=n-1
corresponds to the situation above but with the Kalman

filter replaced by a Luenberger observer.
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4.2, A class of adaptive controllers.

The interpretation of the augmented error given in the
beginning of this chapter suggests that the MRAS and the
self-tuners have much in common. Using this interpretation
and the results for the known parameter case given in
section 4.1, it is possible to carry through a general
development parallell to the one for continuous time
systems. The first step towards the definition of a general
algorithm is to obtain expressions for a filtered error.

Use the identity (4.5) to write for the error e(t) = y(t) -
Ya(t):

Ta"e () = TA"y(t) - TA"y (t) =

-(k+l) o

(AS + g )y(t) - TATy (t)

= q-(k+1)[bgBSu(t) + Ry (t) - TB"u_(t)] (4.8)

Define the filtered error er(t) as

-1 -1
ectt) = Hddey) = Qe ) ot (4.9)
P(q") P, (a7 )P, (aT)

where the stable polynomials Q and P are defined by

o(a™h

-1 -n
1 + 49,9 S q, 9 Q
0

(4.10)

P(q-l) plq-l +ooo¥ D q "p.

]
=
+
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The partition of P into PP, is done, if possible, with
Pl of degree k. The following equation for ef(t) is now
obtained:

b, BS m
SQ - =(k+1) g__, B - 'Ii =
e ¢ (t)=He (t) #q [(—5u(e) + fy(t) - -y (t)]
m
=9  ~(k+l)  u(t) -p yu(t) y(t) _ TB
-TAm o [bg Pl + bg(BS P2) 5~ + R 5 3 um(t)]
(4.11)
Introduce the filtered input
= ult)
uf(t) N (4.12)

and define the vector 8, consisting of the unknown
parameters of the polynomials BS-P2 and R and the constant

l/bg as the last element. Also define the vector o(t),

- - o m
q’T(t) . [LL(E 1)' U(E 2)'0--12(5)1 Y(tpl)v--or- T_g'um(t)]

Equation (4.11) can then be written as

ec(t) = =L q-(k+l)[bﬂuf(t) + b 8 o(t) ] (4.13)

ral 0

Guided by the discussion of the continuous time case, it
a_

seems réﬁgnable to consider a model of (4.13) 1in the

following form:

~ _ ~(k+1) ~
() = ;ﬁa a [Bgup(t) + 650 p(t)]. (4.14)

For purposes of identification, it 1is of interest to
calculate the prediction error using the model (4.14). The
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latest available parameter estimates are used in this

calculation. Thus define the prediction error
€(t) = eg(t) - ep(tit-1), (4.15)

where

& (t1t-1)=—21[B, (t-1)u, (t-k-1) + B, (t-1)0T(t-1) ¢(t-k-1)]
£ A 0 £ 0 (4.16)

Equations (4.13),(4.15) and (4.16) give

e(t) = ;95 [(by=Bg(t-1)) (ug (t-k-1)+6T (t-1) o(t-k-1)) +
A

+ bg(e-e(t—l))T¢(t—k—l)]. (4.17)

It is now possible to define a class of adaptive controllers
consisting of two parts:

- a parameter estimator using the model (4.14);

-~ a control law based on the estimated parameters.

In the estimation part, the discrete time MRAS:s use a
simple translation of the common continuous time algorithm.
The assumption that Q/TA™ js SPR plays an important role.
There 1is however one additional difficulty in the discrete
time case. It was pointed out in section 3.2 that it is not
always possible to obtain uf(t)+éT(t) ¢(t)=0 without
differentiators. The corresponding situation now is seen in
(4.17). Only with k=0 is it possible to choose the control
so that uc(t-k-1)+6T(t-1) ¢(t-k-1)=8, provided that the
control law should be non-anticipative. The extra
difficulty mentioned above means that not even in the case
k=0 is the problem solved. The reason is the following one.
For simplicity, write (4.17) with k=0 as

e(t) = H(g ) 6T (t-1) o(t-1)] (4.18)
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with © being the parameter error vector as before.
Compare this with the continuous time equation

e(t) = G(p) [6To(t)] (4.19)

as written in section 3.2. The extra time delay in (4.18)
implies that we cannot conclude, with the same technique as
in the continuous time case, that e€(t) tends to zero with
1) is SPR.
The extra time delay cannot be included in H(q'l) because
of the requirement that H(q'l) is SPR. The transfer
function H(q_l) must contain a feedthrough term to be SPR.
This 1is different from the continuous time case, where G(p)

the ordinary estimation approach, even if H(g~

is strictly proper. Methods which try to resolve this
difficulty have been presented e.g. in Ionescu and Monopoli
[26]. They will not be discussed further.

In addition to the problem with the time delay, there is one
point in the estimation part to be discussed. With the
simplified notation in (4.18) and the assumption k=8 the
ordinary MRAS estimation scheme 1is characterized by the
parameter updating

8(t) = 8(t-1) - R 1o(t-1) e(t), R positive definite. (4.20)
Even if the problem with the time delay is neglected, the
positive realness of H(q'l) in (4.18) can be shown to play

a crucial role for e(t) to converge to zero. However, if a
modified model

gc(t) = oT(a(g™h) w(e-1)) (4.21)

is considered and the parameter updating is done according
to the formula

e(t) = o(t-1) - R 1(u(g™!) o(t-1)) e(t), (4.22)
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it 1is not necessary to reguire H(q-l) to be SPR. In
contrast to the continuous time case, it is not possible to
prove convergence in a straightforward way even with this
modification. With a boundedness condition and the
stochastic convergence results of Ljung, it is shown in
Ljung and Landau [51) that the positive realness condition
may be dispensed with if the estimation algorithm includes
filtering of  ¢(t) by H(g™!) as in (4.22). The problem
formulation in [51] also contains noise. The estimation
scheme 1is therefore a variant of (4.22) with a decreasing
gain. The important point is that the positive realness
condition can be eliminated by choosing an estimation
algorithm that differs from the MRAS algorithm.

A general algorithm, motivated by the interpretation of the
augmented error, has thus been defined. It can be
interpreted as composed of two parts, identification and
control and is therefore similar to the self tuning schemes.
Explicit relations with both MRAS and self tuners are shown

in the next section.

4.3. Examples of the general algorithm.

As in chapter 3 for continuous time systems, some special
cases o0f the general algorithm defined in section 4.2 will
now be considered. One algorithm mentioned before, the MRAS
by ionescu and Monopoli [26], will be shown to fit into the
prototype algorithm. The basis for the defined algorithm is
a 'self-tuning principle' and it is natural that some of the
proposed self-tuners have a relationship with the present
one. This 1is also demonstrated in some examples in this

section.

Example 4.1. Ionescu and Monopoli's scheme [26].

Since this scheme is just a translation of the one in ex.3.1

into discrete time, no details are given. It is however
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straightforward to show that the scheme falls into the
description for case 1 and 2 with €s(t)=e(t). It is also
noted that the polynomial degrees are nR=n-1, ng=np=k,

nQ=nP=n+k—l and that the ©polynomials are related in the
same way as ~or the continuous time version (see ex.3.1).

{1

In the continuous time case, €r(t) was defined as ee(t)=
Q(p)/P(p)e(t), where Q and P are of the same degree. This
is important, because derivatives of e(t) are not wanted in
order to generate €g(t). In the discrete time case, Q0 and
P are polynomials in g1 yith the constant term equal to
one. This means that the coefficients in either polynomial
could be zero without causing any trouble when computing

€s(t). This is utilized in the following example.

Example 4.2, &ster and Wittenmark's self-tuning

controller [36].
Motivated by the discussion above, it is natural to choose
Q=TA™ ang p=1, 1i.e. ef(t)=TAme(t). This implies that
(4.13) has a simple form:

ep(t) = a " b ruie) + 6To(e)]

where the elements of ¢ are lagged input and output wvalues.
There are two interesting aspects of this structure.
Firstly, because Q/TAM=}], the positive realness condition
does not enter at all, and the MRAS estimation scheme (4.293)
coincides with the modified one in (4.22). Secondly, if the
error e(t) 1is the object of main interest, it is easy to
conclude asymptotic stability of e(t) from asymptotic
Stability of ef(t) because both T and A" are
asymptotically stable polynomials.

The structure described above is used in [356] for some

algorithms which correspond to the solutions with Kalman



54

filter or Luenberger observer (see section 4,1). The
problem formulation includes noise and therefore a least
squares identification is used. The implication is that the
proposed algorithms are special cases of the general
algorithm described above.

ad

Example 4.3, Self-tuning regqulator [27,28].

The basic self-tuning regulator described in Astrdm and
Wittenmark [27] and Wittenmark [28] is based on a minimum
variance strategy. This means that the desired closed 1loop
g~ (k*1) | j.e. both A™ ang
B™  are equal to 1. In this case the identity (4.5)

transfer operator is just

simplifies into:

as + g~ (ktlg = ¢ (4.23)
It is assumed that the conditions both for case 1, i.e. the
degree of R is n-1, and for case 2, i.e. the degree of S is
k, are fulfilled. Furthermore, it is assumed that T is of
degree  n.  With P=Q=1 and e.(t)=e(t), the identity (4.11)
now yields:

=1

19 T lbgute) + by (Bs-1iu(t) + Ry(t) - Ty (6))

(4.24)

e(t)

This is however not the model wused in the self tuning
regulator. Firstly, the latter is based on a minimum

variance strategy for the stochastic system

g (kD)

Al My (e) bgB(a Du(t) + c(g Ne(r),  (4.25)

where e(t) is white noise. Since the goal is to minimize

the output variance, u,(t) is equal to zero. Furthermore,
it can be shown that the optimal choice of observer

characteristic polynomial is C(q-l), which is unknown (in
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fact, the identity (4.23) with T=C is the same as the
identity wused to derive the minimum variance strategy). 1In
the self tuning regulator it is therefore assumed that (=1
in the model.

Summarizing, the identity (4.24) for the self tuning

regulator is

ef(t) e(t) = y(t) =

q_(k+l)[bﬂu(t) + by (BS-1)u(t) + Ry(t)] =

(@11

q-(k+l)[b0u(t) + byeTo(t) ] (4.26)

(@]

whereas the corresponding model does not include the unknown
C-polynomial:

-~

Selt) = &(t) = g(r) = g~ (k¥ g

gult) + BgéT¢(t)] a2

In the stochastic framework noise should be added 1in the
r.h.s. of (4.206). The fact that the C-polynomial is
included in (4.26) but not in the model (4.27) makes it
somewhat unexpected that the algorithm really converges to
the optimal minimum variance regulator. 1In Ljung [34] it is
shown that the scheme (with least squares identification)
converges if 1/C - 1/2 1is SPR. This result once again
demonstrates the <close relationship between the model
reference adaptive approach and the self tuning approach.

[

It is interesting to compare the convergence result above
with the discussion in section 4.2. There it was suggested
that the estimation algorithm should include filtering by
dq~d),  (4.22). If this is not done, but in stead the
MRAS algorithm (4.20) is used, the positive realness
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condition on H(q-l) enters automatically. Applied to the
self tuning regulator, this result implies that filtering by
1/C would improve the algorithm. However, C 1is not known
and therefore the filtering cannot be done. The implication
is that the estimation scheme becomes similar to the MRAS
scheme, and the positive realness condition on 1/C enters.
The use of a least squares algorithm slightly changes the
condition to the one cited above. A natural modification in
order to weaken the condition on C is to filter with 1/6,
where E is an estimate of C. This modification, as well
as other aspects of the convergence problem of MRAS and self
tuning schemes, including the positive realness condition,
are discussed by Ljung and Landau (51]. They also
investigate the connections between the MRAS and self-

tuners, mainly in the state space.

Example 4.4. Clarke and Gawthrop's self-tuning
controller [32].

Generalizing the ideas of the self tuning regulator, as

described in example 4.3, Clarke and Gawthrop consider a

'generalized output'’

oty = P(@ Hy(t) + 0@ Hu(t-k-1) - rR(g™Hu_(t-k-1)
(4.28)

and applies the basic self tuner to the system generating
this output. However, for the special case with Q=0 it is
possible to derive the algorithm in another way. Thus
change the notation in (4.28) into:

-(k+l)Bm

bty = a"@ hy(t) - q (@ Hu, (t) (4.29)

Then it follows that ¢(t) equals Ce(t) = Ale (t) with the
present notation. This relation betweern the filtered error
and the error is obtained with the choices P=1 and Q=aml,
As in example 4.3 (but now with general A™ and Bm) the

identity (4.11) simplifies into
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ef(t)=%q-(k+l)[bgu(t) + bg(BS=1)u(t) + Ry(t) -TB™u_(t)]

(4.39)
where the polynomials satisfy the identity

Ta® = as + g~ (Ktl)g

(4.31)
As in example 4.3 the identity (4.31) with T=C is the same
as the identity used to derive the minimum variance strategy
for eg(t), provided that the degree of S is k (case 2).
This 1is easily seen as follows. The process is still
assumed to be governed by (4.25). Then the following is
obtained, using (4.31):

ep(t+k+l) = Aly(t+k+1) - BMu_(t) =
_ As R -~ g" =
= T Y({t+k+l) + Z y(t) - Bu (t) =
b,BS R m
= —¢ ult) + Se(t+k+l) + 5 y(t) - Blu_(t) =

é (byBSu(t) + Ry(t) - CBmum(t)) + Se (t+k+1)

(4.32)

Because the degree of S is k, the term Se(t+k+l) contains
noise that 1is independant of the left term in brackets.
Thus the minimum variance strategy clearly is to choose the
control signal according to

bgBSu(t) + Ry(t) - cBMu_(t) = @ (4.33)

This result is a special case of the one derived by Clarke
and Gawthrop and their notation is compared to the present
one in table 3.
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The conclusion 1is that Clarke and Gawthrop obtain the
identity (4.30) with T=C for the generalized output that

eguals ef(t), i.e.

ef(t)=%q-(k+l)[b0u(t) + by(BS-1)u(t) + Ry(t) - CB™u_(t)]

=% q_(k+l)[bﬂu(t) + b,8Te(t)] (4.34)

)

where the unknown C-polynomial is included in the ©-vector
and of course noise should be added in the stochastic
formulation. The C-polynomial still has to be replaced by 1
in the model:

“k* 1) 15 u(e) + B,8T0(t)] (4.35)

ec(t) = gq
The algorithm by Clarke and Gawthrop essentially uses this

model structure and the identification part consists of a
least squares algorithm.

Table 3. Clarke and Gawthrop's notation compared to
the present one.

Clarke/Gawthrop This paper

P Al
R BM

F R

G bgBs
H (of : 10

(]
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5. CONCLUSIONS

A short summary of the techniques wused in the theory of
model reference adaptive systems was given in chapter 2.
Some recent schemes, which illustrate current ideas, were
described in some detail. It could be concluded from the
review that the MRAS schemes have two major disadvantages:
The schemes do not relate to the case of known paramete{f7
and it is difficult to interpret the augmented error.

In chapters 3 and 4 the MRAS were examined for the
continuous and discrete time cases. It resulted in a fairly
natural interpretation of the MRAS schemes. They can be
thought as composed of two parts. The first is a parameter
estimator based on a model structure obtained from analysis
of the known parameter case. The second part consists of a
feedback law based on the estimated parameters. A general
class of adaptive algorithms with this two-step structure
was defined. Apart from the MRAS schemes it was shown that
some other algorithms of the so called "self-tuning" type
can be incorporated into the same description. The most
important implication of the analysis is that there are in
principle no differences betweenthe MRAS and self-tuning
approaches,

There have been arguments in the literature why one should
prefer MRAS or self-tuners. The result mentioned above
however shows that the differences appear only because of
minor changes in the general structure of the algoritms,
which 1is the same for the two approaches. The
identification method is perhaps the most striking
difference. It has been shown in sections 3.2 and 4.2 that
the important assumption for the MRAS:s, that a transfer
function should be strictly positive real, is possible to
eliminate. This condition essentially depends on a specific
choice of estimation algorithm and a minor change of the

latter makes it unnecessary to introduce the condition.
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There is another interesting problem within the general
structure, namely the choice of control signal. The goal is
to achieve over-all stability and to make the error itself,
not only the augmented error (e(t)), tend to zero. As
mentioned earlier a partial answer to this problem is given
in Feuer and Morse [24].
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