
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Numerical and Symbolic Methods for Dynamic Optimization

Magnusson, Fredrik

2016

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Magnusson, F. (2016). Numerical and Symbolic Methods for Dynamic Optimization. [Doctoral Thesis
(monograph), Department of Automatic Control]. Department of Automatic Control, Lund Institute of Technology,
Lund University. https://www.control.lth.se/media/2016/dynopt_thesis_web.pdf

Total number of authors:
1

Creative Commons License:
Unspecified

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/4b50a0a7-844c-499b-9506-cfe9eee14e4b
https://www.control.lth.se/media/2016/dynopt_thesis_web.pdf

Numerical and Symbolic Methods
for Dynamic Optimization

Fredrik Magnusson

Department of Automatic Control

PhD Thesis TFRT-1115
ISBN 978-91-7753-004-6 (print)
ISBN 978-91-7753-005-3 (web)
ISSN 0280–5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2016 by Fredrik Magnusson. All rights reserved.
Printed in Sweden by Media-Tryck.
Lund 2016

Abstract

Mathematical optimization is becoming increasingly important for engi-
neering in general and control in particular. This thesis deals with numer-
ical methods, primarily direct collocation, and symbolic methods, primarily
block-triangular ordering and tearing, for numerical solution of general
dynamic optimization problems involving dynamical systems modeled by
large-scale differential-algebraic equations (DAE). These methods have been
implemented in a software framework in the open-source JModelica.org
platform, which is a software tool for simulation- and optimization-based
analysis of DAEs described in the modeling language Modelica. The frame-
work relies heavily upon the open-source, third-party software packages
CasADi for symbolic operations and algorithmic differentiation and IPOPT
for solving the resulting nonconvex optimization problems.

Modelica is a standardized modeling language, which permeates the
thesis. One of the many benefits of Modelica is that it is supported by sev-
eral different tools, allowing implemented models to be used for different
purposes. However, Modelica models are often developed for dynamic sim-
ulation and sometimes with little regard for numerics, which is enabled
by the power of the available simulation software. Consequently, the mod-
els may be difficult to reuse for dynamic optimization, which is one of the
challenges addressed by this thesis.

The application of direct collocation to DAE-constrained optimization
problems is conventionally done by discretizing the full DAE. This often
turns out to be inefficient, especially for DAEs originating from Modelica
code. The thesis proposes various schemes to symbolically eliminate many
of the algebraic variables in a preprocessing step before discretization to
improve the efficiency of numerical methods for dynamic optimization, in
particular direct collocation. These techniques are inspired by the causal-
ization and tearing techniques often used when solving DAE initial-value
problems in the Modelica community. Since sparsity is crucial for some dy-
namic optimization methods, we also propose a novel approach to preserving
sparsity during this procedure.

3

A collection of five computationally challenging and industrially relevant
optimal control problems is presented. The collection is used to evaluate
the performance of the methods. We consider both computational time and
probability of solving problems in a timely manner. We demonstrate that the
proposed methods often are an order of magnitude faster than the standard
way of discretizing the full DAE, and that they also increase probability
of successful convergence significantly. It is also demonstrated that the
methods are beneficial not only for DAEs originating from Modelica code,
but also for more conventional textbook DAEs that have been developed
specifically for optimization purposes.

4

Acknowledgments

I am most grateful to my supervisor Johan Åkesson, who convinced me
to pursue a PhD in the first place. He also guided me all the way from
start to finish, and somehow managed to maintain his interest in my work
despite leaving the world of academia. I am also appreciative of my two other
supervisors, Anders Rantzer and Bo Bernhardsson, who have always shared
their different—but valuable—perspectives on my work with enthusiasm.

I have also had occasional opportunities to bask in the wisdom of Claus
Führer and Carl Laird, who shared their expertise on differential-algebraic
equations and optimization, respectively (although both of them like to think
that they know a bit about the other topic as well).

My years at the Department of Automatic Control have been delightful,
in no small part due to the many great colleagues. Special thanks go to
Jacob Bergstedt, who endured my constant company for years. He always
took my many trifling questions seriously (and gave me ample opportu-
nity to return the favor). Jacob has also—together with Erik Henningsson,
Christian Grussler, Mahdi Ardakani, and whomever else I managed to
engage—satisfied my basic need to regularly discuss mathematics for no
particular reason.

My many research collaborators have given me very valuable experiences
and also inspired my own work. I am especially grateful to Roel De Coninck,
who proved the industrial applicability of my research, as well as Anders
Holmqvist (and his protégé Anton Sellberg), who time and again managed
to concoct crazy application ideas and somehow make them work despite
my recurring initial skepticism.

The people of Modelon have been a great aid to my work, with the model
developers contributing valuable use cases and the tool developers getting
JModelica.org to behave as I desire (and sometimes aligning my desires
with how JModelica.org behaves). Special thanks go to Toivo Henningsson,
whom I very much enjoyed working with while it lasted.

I also thank Joel Andersson and Joris Gillis for developing the great

5

tool that is CasADi and helping me get the most out of it.
To the benefit of you, the reader, I have received many valuable sugges-

tions for improvements of the thesis manuscript from Leif Andersson, Karl
Berntorp, Erik Henningsson, and Björn Olofsson.

I thank my friends of HALT HAMMERZEIT and Nöbbelövs spelförening
(with an honorary mention to Ylva Johansson) for making everything not
related to this thesis more fun.

Finally, I thank my parents for never helping me any less than I want
them to.

6

Contents

1. Introduction 9
1.1 Motivation . 10
1.2 Contributions . 12
1.3 Publications . 12
1.4 Notation . 15

2. Background 16
2.1 Hierarchical Acausal Modeling with Modelica 16
2.2 Differential-Algebraic Equations 20
2.3 Dynamic Optimization . 26
2.4 Nonlinear Programming . 32

3. Dynamic Optimization in JModelica.org 36
3.1 Problem Formulation . 36
3.2 Related Software and Languages 39
3.3 Direct Local Collocation . 45
3.4 Implementation . 53
3.5 Additional Features . 55
3.6 Example . 58
3.7 Conclusion . 60

4. Symbolic Elimination Based on Block-Triangular Ordering 62
4.1 Illustrative Example . 63
4.2 Related Work . 65
4.3 Causalization, Tearing, and Pivot Selection 66
4.4 Symbolic Elimination for Dynamic Optimization 71
4.5 Conclusion . 79

5. Problem Suite 81
5.1 The Many Colors of Block-Triangular Decompositions . . . 82
5.2 Car . 82
5.3 Combined-Cycle Power Plant 86
5.4 Double Pendulum . 90
5.5 Fourbar1 . 93

7

Contents

5.6 Distillation Column . 96
5.7 Conclusion . 99
5.8 Heat Recovery Steam Generator 100

6. Scheme Benchmarks 105
6.1 Benchmark Setup . 105
6.2 Problem Results . 108
6.3 Performance Profiles . 112
6.4 Computation Times . 114
6.5 Global Collocation . 116
6.6 Conclusion . 117

7. Conclusion 118
7.1 Summary . 118
7.2 Directions for Future Research 119

Bibliography 120

8

1
Introduction

The application of optimization to large-scale dynamical systems has become
more common in both industry and academia during the last decades.
Dynamic optimization problems occur in many different fields and contexts,
including optimal control, design optimization, parameter estimation, and
state estimation. Examples of applications are minimization of material and
energy consumption during setpoint transitions in power plants [Krüger et
al., 2004] and chemical processes [Prata et al., 2008], estimating occupancy
and ambient air flow in buildings [Zavala, 2014], and optimal experimental
design for estimation of kinetic parameters in fed-batch processes [Baltes
et al., 1994].

Optimization enables the exploration of the limits of performance of a
system, which often elucidates the need for performing tradeoffs. An ex-
ample of this is the use of chromatography in chemical engineering for
separation of components from multicomponent mixtures, where a tradeoff
between target component purity and the two competing objectives of (nor-
malized) production rate and recovery yield arises. Performing this tradeoff
optimally is considered in [Holmqvist and Magnusson, 2016] based on a
novel control scheme, with the resulting Pareto frontiers being shown in
Figure 1.1. We see how an increase in recovery yield comes at the expense
of production rate, and also how a lower bound on purity affects the effi-
ciency of the system.

The applications of dynamic optimization are diverse and occur in both
online and offline settings. Online refers to the case in which an optimiza-
tion problem needs to be solved in real time (often repeatedly) to find the
desired operating conditions of a system, adapting to the changing state
of the system. In these cases the execution time for algorithms is often a
performance bottleneck. Conversely, offline refers to the case in which all
computations can be performed before the system is up and running, and
consequently without any hard time constraints. Algorithm execution times
can however still be important for the sake of reducing engineering research
and development costs.

9

Chapter 1. Introduction

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.7

0.8

0.9

1.0
R
ec
ov
er
y
yi
el
d
[1
]

Normalized production rate [1]

95.0% purity
97.5% purity
99.0% purity

Figure 1.1 Pareto frontiers for chromatographic separation of chemical
components: A tradeoff between production rate, recovery yield, and purity.

Online optimal control is usually done in the form of Model Predictive
Control (MPC) [Maciejowski, 2002] and online state estimation based on
dynamic optimization is usually done in the form of Moving Horizon Esti-
mation (MHE) [Allgöwer et al., 1999]. Offline applications include finding
optimal trajectories, which can be used either as a reference during manual
control [Larsson, 2011] or as reference trajectories combined with online
feedback to handle deviations caused by model uncertainty and distur-
bances [Giselsson et al., 2009]. The study of Pareto frontiers is also usually
done offline.

This thesis concerns the development of algorithms for general-purpose
dynamic optimization of systems described by Differential-Algebraic Equa-
tions (DAE).

1.1 Motivation

The purpose of this thesis is twofold: To build and improve upon the state
of the art of algorithms for solving dynamic optimization problems and to
provide a software implementation of these that is viable both for academic
research and for industrial application.

As computers and algorithms become more powerful, so too do the com-
plexity and size of problems that can be successfully solved increase. How-
ever, dealing with large, heterogeneous problems often requires significant
expertise and effort from the user. There are abundant opportunities for
failure when solving dynamic optimization problems, and the symptoms of
failure are often difficult to diagnose. In particular, a sufficiently good initial

10

1.1 Motivation

guess is often needed for iterative methods to converge to a local solution to
nonconvex optimization problems, let alone a desirable one. Implementing
accurate and efficient large-scale models and using them to solve dynamic
optimization problems is therefore demanding work.

While there already exist many efficient software packages for dynamic
optimization, almost all of them are inherently tied to a specific—and of-
ten limited—model representation. Some tools rely on general-purpose pro-
gramming languages such as C++, MATLAB, or Python, to represent mod-
els, which are ill-suited for modeling large-scale, heterogeneous dynami-
cal systems. Other tools support dedicated modeling languages; however,
these languages are typically tied to that specific tool. Considering the ex-
pense of implementing large-scale physical models, it is undesirable to have
the model implementation tied to a specific tool or even algorithm. The
algorithms of this thesis have thus been implemented for use with Mod-
elica [Mattsson et al., 1998; Fritzson, 2015], which is a tool-agnostic and
standardized language for modeling of heterogeneous dynamical systems
that greatly facilitates model reuse through acausal, hierarchical modeling.
Using Modelica allows the model implementations to be used not only in all
of the several different tools that support Modelica, but also for purposes
other than dynamic optimization. The most important of such purposes
is dynamic simulation. Examples of other ones are linear and nonlinear
controller design [Thümmel et al., 2005], parametric sensitivity analysis
[Elsheikh and Wiechert, 2008], and analysis using formal methods [Klenk
et al., 2014].

While the acausal modeling approach of Modelica is a great aid to devel-
opers of models, it shifts some of the burden of analysis onto the algorithms
that are used to simulate or otherwise “solve” the system. Applying state-
of-the-art dynamic optimization algorithms out-of-the-box on models from
typical Modelica libraries is often met with failure, typically in the form of
iterative methods failing to converge. One reason for this is that Modelica
components are often developed for general purposes, modeling phenomena
that may have no relevance for a particular application, thus blowing up
the size of the model. Another reason for the blown-up size is the multitude
of algebraic equations that result from acausal, hierarchical modeling. The
models may therefore end up being overly complicated for the purposes of
dynamic optimization. This thesis attempts to overcome these issues, pri-
marily through the use of symbolic elimination and automated initialization
and scaling based on dynamic simulation.

However, there are limits to what can be achieved by automated algo-
rithms. Hence, it is important to provide advanced users with the means
to manually investigate convergence issues and other numerical problems.
This is achieved by providing a symbolic interface to the equations to be
solved, both before and after their discretization.

11

Chapter 1. Introduction

1.2 Contributions

The main contributions of this thesis are:

• An efficient, open-source implementation of a direct collocation al-
gorithm for dynamic optimization and its integration in a Modelica-
based toolchain. This is the focus of Chapter 3.

• Methods for symbolic elimination of algebraic variables in DAEs and
their tailoring for dynamic optimization. In particular, a novel scheme
for preservation of sparsity is presented. This is the focus of Chapter 4.

• A suite of five computationally challenging and industrially relevant
optimal control problems, which is used to demonstrate the efficiency
of the methods and their implementation. The suite is presented in
Chapter 5 and the method benchmark is performed in Chapter 6.

All implementations of this thesis are integrated and distributed to-
gether with the open-source Modelica platform JModelica.org [Åkesson et
al., 2010a] under the GNU General Public License and code for reproducing
the key results of this thesis is distributed with JModelica.org. The most
significant contributions to the JModelica.org codebase are the Python mod-
ules pyjmi.casadi_interface, pyjmi.optimization.casadi_collocation,
and pyjmi.symbolic_elimination.

The framework of Chapter 3 has seen widespread use in both academia
and industry. Section 1.3 lists publications using the framework in which
the author has been involved. Dozens of other publications have also made
use of the framework independently of the author, such as [Norén, 2013;
Yang et al., 2014; Belkhir et al., 2015; Maree and Imsland, 2016].

1.3 Publications

This section lists all of the (to be) peer-reviewed publications by the author.
The thesis is primarily based on the following two publications.

Magnusson, F. and J. Åkesson (2015). “Dynamic optimization in JModel-
ica.org”. Processes 3:2, pp. 471–496.

Magnusson, F. and J. Åkesson (2016). “Symbolic elimination in dynamic
optimization based on block-triangular ordering”. Optimization Methods
and Software. Submitted for publication.

The first publication serves as a basis for Chapter 3 and the second
publication for Chapters 4 and 6. Chapter 5 is largely unpublished ma-
terial, although a brief description of the same suite can be found in the

12

1.3 Publications

second publication. Most of the overarching ideas are primarily due to J.
Åkesson, while working out the details has been a joint effort between the
two authors. An important idea that is due to F. Magnusson is the sparsity
preserving aspect of the symbolic elimination. F. Magnusson has made the
implementations and written the manuscripts.

The following two publications are the basis of the two former publica-
tions.

Magnusson, F. and J. Åkesson (2012). “Collocation methods for optimization
in a Modelica environment”. In: Proceedings of the 9th International
Modelica Conference. Munich, Germany, pp. 649–658.

Magnusson, F., K. Berntorp, B. Olofsson, and J. Åkesson (2014). “Symbolic
transformations of dynamic optimization problems”. In: Proceedings of
the 10th International Modelica Conference. Lund, Sweden, pp. 1027–
1036.

The following 14 publications have, for the most part, not been included
in the thesis.

Axelsson, M., F. Magnusson, and T. Henningsson (2015). “A framework for
nonlinear model predictive control in JModelica.org”. In: Proceedings of
the 11th International Modelica Conference. Paris, France, pp. 301–310.

Berntorp, K. and F. Magnusson (2015). “Hierarchical predictive control for
ground-vehicle maneuvering”. In: 2015 American Control Conference.
Chicago, IL, pp. 2771–2776.

De Coninck, R., F. Magnusson, J. Åkesson, and L. Helsen (2014). “Grey-box
building models for model order reduction and control”. In: Proceedings
of the 10th International Modelica Conference. Lund, Sweden, pp. 657–
666.

De Coninck, R., F. Magnusson, J. Åkesson, and L. Helsen (2016). “Toolbox for
development and validation of grey-box building models for forecasting
and control”. Journal of Building Performance Simulation 9:3, pp. 288–
303.

Fouquet, M., F. Magnusson, H. Guéguen, S. Velut, D. Faille, D. Dumur, and
T. Henningsson (2016). “Hybrid dynamic optimization of power plants
based on physical models and the collocation method”. Journal of Process
Control. Accepted subject to major revision.

Ghazaei Ardakani, M. M. and F. Magnusson (2016). “Ball and finger system:
modeling and optimal trajectories”. Robotics and Autonomous Systems.
To be submitted.

Holmqvist, A., C. Andersson, F. Magnusson, and J. Åkesson (2015a). “Meth-
ods and tools for robust optimal control of batch chromatographic sepa-
ration processes”. Processes 3:3, pp. 568–606.

13

Chapter 1. Introduction

Holmqvist, A. and F. Magnusson (2016). “Open-loop optimal control of batch
chromatographic separation processes using direct collocation”. Journal
of Process Control 46, pp. 55–74.

Holmqvist, A., F. Magnusson, and B. Nilsson (2015b). “Dynamic multi-
objective optimization of batch chromatographic separation processes”.
In: 12th International Symposium on Process Systems Engineering and
25th European Symposium on Computer Aided Process Engineering.
Vol. 37, pp. 815–820.

Holmqvist, A., F. Magnusson, and S. Stenström (2014a). “Scale-up anal-
ysis of continuous cross-flow atomic layer deposition reactor designs”.
Chemical Engineering Science 117, pp. 301–317.

Holmqvist, A., T. Törndahl, F. Magnusson, U. Zimmermann, and S. Sten-
ström (2014b). “Dynamic parameter estimation of atomic layer deposi-
tion kinetics applied to in situ quartz crystal microbalance diagnostics”.
Chemical Engineering Science 111, pp. 15–33.

Larsson, P.-O., F. Casella, F. Magnusson, J. Andersson, M. Diehl, and J.
Åkesson (2013). “A framework for nonlinear model-predictive control
using object-oriented modeling with a case study in power plant start-
up”. In: Proceedings of the 2013 IEEE Multi-Conference on Systems and
Control. Hyderabad, India, pp. 346–351.

Magnusson, F., K. Palmer, L. Han, and G. Bollas (2015). “Dynamic paramet-
ric sensitivity optimization using simultaneous discretization in JMod-
elica.org”. In: 2015 International Conference on Complex Systems Engi-
neering, pp. 37–42.

Sellberg, A., A. Holmqvist, F. Magnusson, C. Andersson, and B. Nilsson
(2016). “Discretized multi-level elution trajectory: model calibration, op-
timization, and validation”. Journal of Chromatography A. Submitted
for publication.

Most of these publications concern application-oriented work in which
the results of this thesis have been used, primarily that of Chapter 3.
The only one of these publications to utilize Chapter 4 is [Berntorp and
Magnusson, 2015]. While virtually all of these publications are mainly
application-oriented, some of them have elements of method development
for dynamic optimization, in particular [Axelsson et al., 2015; Magnusson
et al., 2015; Holmqvist and Magnusson, 2016; Fouquet et al., 2016]. Two of
these publications have made contributions to Chapter 5, namely [Larsson et
al., 2013] and [Berntorp and Magnusson, 2015]. The author’s contribution
to most of these works has been to aid the formulation of the desired
optimization problems and to overcome numerical issues encountered in
their solution.

14

1.4 Notation

1.4 Notation

Scalars and scalar-valued functions are denoted by regular italic letters x.
Vectors and vector-valued functions are denoted by bold italic letters x. The
dimension of x (or in the case of functions, its codomain) is denoted by nx
and component k of x is denoted by xk. Matrices are denoted by bold Roman
letters A and element (i, j) of A is denoted by Ai, j. Row i and column j of A
are denoted by Ai,: and A:, j, respectively. The diagonal matrix with x along
the diagonal is denoted by diag x.

Systems of equations f = 0 that are to be considered as being
parametrized by p and having x as unknowns are denoted by f (x;p) = 0.
The Jacobian of f with respect to x is denoted by∇x f . The integer interval
from a ∈ Z to b ∈ Z (inclusive) is denoted by [a..b].

15

2
Background

If I have seen further it is by standing
on the sholders [sic] of Giants.

Isaac Newton

In this chapter we review relevant background material, with the purpose
of introducing well-known core concepts that are fundamental to the rest
of the thesis. Details are sometimes omitted, but can be found in cited
references.

2.1 Hierarchical Acausal Modeling with Modelica

The classical equation-based approach to modeling dynamical systems us-
ing software is that of causal, block-oriented modeling, which is used in
general-purpose tools such as Simulink [MathWorks, 2016]. The corre-
sponding mathematical formalism is that of explicit ordinary differential
equations, which facilitates efficient numerical solution, but may be incon-
venient for modeling systems that are more naturally described by DAEs.
Furthermore, causal modeling inhibits model reuse because of the need of
defining causal input-output connections between components, see [Fritz-
son, 2015, Section 2.7.1] for an illustrative example of this.

A more modern—but by now well-established—approach to modeling is
the use of acausal, declarative equations, which is used in tools such as
SPICE [Nagel and Pederson, 1973] and ASCEND [Piela et al., 1991].

2.1.1 Modelica
Most acausal modeling tools and languages are domain-specific, focusing
on, for example, electrical circuits, or chemical processes. A more general-
purpose language for acausal modeling is Modelica [Mattsson et al., 1998;
Fritzson, 2015]. Modular modeling is supported in Modelica by defining

16

2.1 Hierarchical Acausal Modeling with Modelica

acausal physical ports for elementary components, building systems by hi-
erarchical aggregation of subsystems, and managing model variants by
replacing some parts of the model by others that share the same physical
interface.

Modelica is a textual and graphical language standardized and devel-
oped by the Modelica Association [Modelica Association, 2016b], a nonprofit
organization. Several different software tools exist based on Modelica. Its
development started in 1996, although it has roots dating back to the
70s [Elmqvist, 1978]. An important part of Modelica is the description of
hybrid systems; that is, systems with both continuous and discrete dynam-
ics. Since such systems are outside the scope of this thesis, these aspects of
Modelica will not be considered.

As an example of Modelica’s syntax, consider the Van der Pol oscillator,
which is a single-input, explicit ordinary differential equation described by

ẋ1(t) =
(
1− x2

2(t)
)
x1(t) − x2(t) + u(t), x1(0) = 0,

ẋ2(t) = x1(t), x2(0) = 1,
(2.1)

where we have imposed initial conditions at t = 0 to get a unique solution
given u. This system can be encoded in Modelica as shown in Listing 2.1.

Listing 2.1 Modelica implementation of the Van der Pol oscillator.

model VDP
Real x1(start=0, fixed=true);
Real x2(start=1, fixed=true);
input Real u;

equation
der(x1) = (1-x2^2)*x1 - x2 + u;
der(x2) = x1;

end VDP;

This is the simplest form of Modelica models, consisting first of a decla-
ration of the system variables—with specifications of initial state and which
variables are top-level inputs—and then the equations.

2.1.2 Object-Oriented Modeling
Typical Modelica models look nothing like Listing 2.1. They are hierarchi-
cal, rather than flat, meaning that rather than only having declarations of
variables and equations, they also have declarations of components—which
themselves are made up of components, variables, and equations—and the
connections between them. They also consist of implicit DAEs, rather than
explicit ODEs, because of the acausal connections of components and com-
mon occurrence of physical phenomena that are more naturally described
by algebraic rather than differential equations.

17

Chapter 2. Background

For a more typical Modelica example, consider a kinematic loop formed
by connecting four rigid bars with revolute joints. Such a system can be
encoded in Modelica as shown in Listing 2.2. The web version of the the-
sis contains an appendix with a three-dimensional animation of the me-
chanical system. The appendix is not available in the printed version of
the thesis. The model consists of predefined components for the bars and

Listing 2.2 Textual representation of the Modelica example Modelica.
Mechanics.MultiBody.Examples.Loops.Fourbar1. Slight modifications of the
original have been made for aesthetic purposes.

model Fourbar1
"One kinematic loop with four bars (with only revolute joints)"
inner Modelica.Mechanics.MultiBody.World world;
Modelica.Mechanics.MultiBody.Joints.Revolute j1(
n={1,0,0},
stateSelect=StateSelect.always ,
phi(fixed=true),
w(displayUnit="deg/s",
start=5.235987755982989 ,
fixed=true));

Modelica.Mechanics.MultiBody.Joints.Prismatic j2(
n={1,0,0}, s(start=-0.2), boxWidth=0.05);

Modelica.Mechanics.MultiBody.Parts.BodyCylinder b1(
r={0,0.5,0.1}, diameter=0.05);

Modelica.Mechanics.MultiBody.Parts.BodyCylinder b2(
r={0,0.2,0}, diameter=0.05);

Modelica.Mechanics.MultiBody.Parts.BodyCylinder b3(
r={-1,0.3,0.1}, diameter=0.05);

Modelica.Mechanics.MultiBody.Joints.Revolute rev(n={0,1,0});
Modelica.Mechanics.MultiBody.Joints.Revolute rev1;
Modelica.Mechanics.MultiBody.Joints.Revolute j3(n={1,0,0});
Modelica.Mechanics.MultiBody.Joints.Revolute j4(n={0,1,0});
Modelica.Mechanics.MultiBody.Joints.Revolute j5(n={0,0,1});
Modelica.Mechanics.MultiBody.Parts.FixedTranslation b0(
animation=false, r={1.2,0,0});

equation
connect(j2.frame_b , b2.frame_a);
connect(j1.frame_b , b1.frame_a);
connect(rev.frame_a , b2.frame_b);
connect(rev.frame_b , rev1.frame_a);
connect(rev1.frame_b , b3.frame_a);
connect(world.frame_b , j1.frame_a);
connect(b1.frame_b , j3.frame_a);
connect(j3.frame_b , j4.frame_a);
connect(j4.frame_b , j5.frame_a);
connect(j5.frame_b , b3.frame_b);
connect(b0.frame_a , world.frame_b);
connect(b0.frame_b , j2.frame_a);

end Fourbar1;

18

2.1 Hierarchical Acausal Modeling with Modelica

joints. This is a more typical usage of Modelica, where libraries defin-
ing physical components from various physical domains are relied upon
for creating a system model. This example is created using the Model-
ica Standard Library (MSL), and is one of the examples in MSL called
Modelica.Mechanics.MultiBody.Examples.Loops.Fourbar1. MSL is a freely
available library developed by the Modelica Association. There are many
other libraries [Modelica Association, 2016a]—some of which are open
source and freely available and others commercial—from various engineer-
ing domains, including thermodynamics, electronics, and control.

While Modelica is primarily a textual language, models like Listing 2.2
are usually not made textually, but rather graphically. The graphical rep-
resentation of Listing 2.2 in Dymola [Dassault Systèmes, 2016], the most
widely used Modelica tool, is shown in Figure 2.1.

world

x

y

a b

n={1,0,0}

j1

ba

n={1,0,0}

j2

b1

r=
{0

,0
.5

,0
.1

}
a

b

b2

r=
{0

,0
.2

,0
}

a
b
b3

r={-1,0.3,0.1}
ab

a
b

n=
{0

,1
,0

}

re
v

a b

n={0,0,1}

rev1

a b

n={1,0,0}

j3
a b

n={0,1,0}

j4 a b

n={0,0,1}

j5

b0

r={1.2,0,0}

a b

Figure 2.1 Dymola object diagram of a four-bar system in Modelica. The
closed kinematic loop is easily constructed by graphically connecting com-
ponents from the Modelica Standard Library for rigid bodies as well as
revolute and prismatic joints. No particular knowledge is required of the
user; no cut-joints or a spanning tree has to be determined.

While acausal modeling is convenient for the modeler, the resulting
mathematical model is often unwieldy in its raw form and requires symbolic
processing before it can be simulated efficiently using numerical methods.

19

Chapter 2. Background

This holds especially true when the model is the result of object-oriented
aggregation of many subcomponents, which gives rise to a multitude of
variables and equations through connection equations. This challenge is
further exacerbated when the used components have been developed for
general purposes, requiring the computation of quantities which may hold
no relevance for a particular application. The seemingly simple example of
Listing 2.2 is a case in point: The resulting DAE system has 2670 equations
and variables prior to symbolic processing. Chapter 4 reviews techniques
that often are used to alleviate these issues and how they can be adapted
for the purposes of dynamic optimization. While these techniques often are
paramount to efficiently treat hierarchical, acausal models, we will see that
they hold merit also when applied to examples of specialized, flat models in
the context of dynamic optimization.

2.2 Differential-Algebraic Equations

The mathematical formalism of causal, block-oriented modeling is explicit
ordinary differential equations (ODE) of the form

ẋ(t) = f (t, x(t),u(t),p), (2.2)

where t is time—the sole independent variable—x is the state variable, u
is the system input, and p is system parameters that are to be optimized.
Such systems are usually readily solved numerically with run-of-the-mill
ODE solvers. On the other hand, acausal, hierarchical modeling gives rise
to implicit DAEs of the form

Φ(t, ξ̇ (t),ξ (t),υ(t),u(t),p) = 0, (2.3)

where ξ is the differential variable and υ is the algebraic variable. DAEs
are a generalization of explicit ODEs in that the differential variables occur
implicitly. Consequently, the equations can depend nonlinearly on the differ-
ential variables, or not at all, giving rise to purely algebraic equations and
an accompanying world of trouble when combined with differential equa-
tions. For simplicity we assume that the system is balanced; that is, that
the dimension of the codomain of Φ equals the sum of the dimensions of ξ
and υ .

2.2.1 DAE Index
An important notion in the analysis and numerical solution of DAEs is
the index [Brenan et al., 1996; Hairer and Wanner, 1996]. There are many
different, nonequivalent definitions of the DAE index [Campbell and Gear,
1995]. The perhaps most illuminating and easily understood—but typically

20

2.2 Differential-Algebraic Equations

not the most useful for analysis and classification purposes—is the differen-
tiation index. Assuming sufficient differentiability, the differentiation index
is the smallest integer ν such that ξ̇ and υ̇ are uniquely determined as
continuous functions of

ξ , υ , u, d
dtu, . . . ,

dν
dtν u, p, t (2.4)

by the derivative array equations

Φ(t, ξ̇ (t),ξ (t),υ(t),u(t),p) = 0, (2.5a)
d
dtΦ(t, ξ̇ (t),ξ (t),υ(t),u(t),p) = 0, (2.5b)

...
dν
dtν Φ(t, ξ̇ (t),ξ (t),υ(t),u(t),p) = 0, (2.5ν)

which should be considered as a static system of equations with derivatives
of ξ and υ of order up to ν + 1 and ν , respectively, as unknowns. Note
that d

dt denotes the total—rather than partial—derivative with respect to
t. Hence, the differentiation index ν can be appropriately viewed as the
number of times that the equations need to be differentiated to transform
the system into an implicit ODE1. The resulting ODE, which is called the
underlying ODE, is equivalent to the original DAE in the sense that there
exists a bijection between the solution sets.

2.2.2 System State
The notion of state is another important concept of dynamical systems.
The state is a minimal set of system variables such that if their current
values are known and all future system input values are known, then the
future behavior of the system is uniquely determined. For explicit ODEs,
the differential variable x is a natural and valid candidate for the system
state. For typical low-index DAEs—index 0 or 1—the differential variable ξ
is still a suitable state (for counterexamples, see [Pantelides, 1988, Exam-
ple 2; Campbell and Gear, 1995, Example 4] for counterexamples), and will
henceforth usually be referred to as such. However, for high-index DAEs—
index 2 or higher—the system state is overdetermined by the differential
variables; only a proper subset of them will yield a suitable state represen-
tation. We use x to denote such a subset, and its construction is discussed
further in Sections 2.2.3 and 2.2.5.

1By implicit ODE we mean an implicit DAE such that∇ξ̇ Φ(t, ξ̇ ,ξ ,υ ,u,p) is nonsingular in

21

Chapter 2. Background

The problem of selecting state variables for high-index DAEs is related
to the method of index reduction described below and does in general not
have a unique solution. Also, certain selections can have better numerical
properties. Automated selection of state variables is a difficult problem, so
algorithms often need input from the modeler to select appropriate state
variables. In general, it is not even possible to preserve solvability with a
static choice of state variables [Cellier and Kofman, 2006; Mattsson et al.,
2000]. Such cases are however outside the scope of this thesis.

In order for the explicit ODE (2.2) to have a unique solution, it needs
to be combined with boundary conditions; for example, by prescribing the
value of the state x at some initial time t0 according to

x(t0) = x0, (2.6)

the state trajectory x is uniquely determined (assuming that f is suffi-
ciently regular). The combination of (2.2) and (2.6) is called an initial-value
problem, which we sometimes also will refer to as the problem of (dynamic)
simulation.

Initial conditions prescribing the initial state is not always convenient
for DAEs, since the modeler is not always aware of which variables will be
selected as states. Furthermore, it may be desirable to initialize the system
in steady state—that is, ẋ(t0) = 0—rather than in a specific point. Ergo,
rather than (2.6), we consider general initial conditions

Φ0(ξ̇ (t0),ξ (t0),υ(t0),u(t0),p) = 0, (2.7a)

which together with

Φ(t0, ξ̇ (t0),ξ (t0),υ(t0),u(t0),p) = 0 (2.7b)

form the initial equations that should uniquely determine consistent ini-
tial values ξ̇ (t0),ξ (t0), and υ(t0). We assume that the dimension of the
codomain of Φ0 equals the dimension of the state.

2.2.3 Index Reduction
The concept of differentiation index and underlying ODE suggests an ap-
proach to numerically solving DAEs, which is called index reduction: Dif-
ferentiate the equations until the underlying ODE is obtained, and then
solve the underlying ODE. Pantelides’s algorithm [Pantelides, 1988] can be
used to determine the minimal number of differentiations needed to find
the underlying ODE.

a neighborhood of the solution. Consequently by the implicit function theorem, an implicit
DAE is an implicit ODE if and only if it is index 0.

22

2.2 Differential-Algebraic Equations

An alternative approach is to use specialized DAE solvers [Brenan et al.,
1996; Hairer and Wanner, 1996]. However, such solvers are restricted to cer-
tain classes of DAEs. There are no satisfactory methods for solving initial-
value problems for the general class of high-index DAEs on the form (2.3).
In particular, the discretization methods of Chapter 3 have capabilities for
solving certain high-index systems, which are further enhanced in the con-
text of dynamic optimization [Campbell and Betts, 2016]. However, applying
the methods of Chapter 3 on high-index systems can cause reduced order
of convergence or even numerical instability. Furthermore, the methods of
Chapter 4 are only applicable on low-index systems. Therefore, we utilize
methods based on index reduction.

While index reduction is more widely applicable than typical high-index
DAE solvers, it has two potentially major drawbacks: inefficiency and inaccu-
racy. The inefficiency is caused by the abundant number of state variables
that result from differentiating index-1 equations, as this transforms all
algebraic variables υ to state variables. This issue can be alleviated by
stopping the index reduction once an index-1 DAE is obtained and then in-
stead rely on causalization techniques, which is the topic of Chapter 4. The
second issue of inaccuracy is caused by the loss of information that occurs
when replacing an equation by its differentiated equivalent. The algebraic
relations of the original DAE are only implicitly preserved in the underlying
ODE as solutions invariants, which in general will not be preserved under
discretization. The result is that the numerical solution will drift away from
the solution manifold.

There are various remedies to the issue of numerical drift. Most of
them are specialized to certain classes of DAEs and based on techniques
such as constraint stabilization [Baumgarte, 1972] or projections [Campbell,
1985]. Another way of preventing numerical drift is the method of dummy
derivatives [Mattsson and Söderlind, 1993], which is applicable to a large
class of DAEs. This method is related to the approach of index reduction
outlined above, but retains both the original and differentiated equations
and introduces new variables called dummy derivatives to obtain a balanced
system. This method however requires the selection of state variables.

2.2.4 Example
To illustrate the concept of DAE index and the method of dummy derivatives,
we review the introductory example of [Mattsson and Söderlind, 1993].
Consider the DAE

ẋ(t) = y(t), (2.8a)
ẏ(t) = z(t), (2.8b)
x(t) = u(t), (2.8c)

23

Chapter 2. Background

where x and y are differential variables, z is an algebraic variable, and u is
a prescribed system input. This example may be thought of as a prescribed-
trajectory problem in mechanics, where x, y, and z are position, velocity and
force per unit mass, respectively, and u is the desired trajectory. This is an
index-3 DAE, since by differentiating (2.8a) once and (2.8c) twice we obtain

ẍ(t) = ẏ(t), (2.9a)
ẏ(t) = z(t), (2.9b)
ẍ(t) = ü(t), (2.9c)

which can be seen to be a second-order index-1 DAE.
Numerical drift may actually not be an issue in the index-reduced for-

mulation (2.9), because of the linearity of (2.8). Had it however been non-
linear, the numerical solution of (2.9) would not necessarily have satisfied
x(t) = u(t) even if x(t0) = u(t0). The method of dummy derivatives deals
with this by first combining the original DAE with the index-reduced equa-
tions, in this case yielding

ẋ(t) = y(t), (2.10a)
ẏ(t) = z(t), (2.10b)
x(t) = u(t), (2.10c)
ẍ(t) = ẏ(t), (2.10d)
ẋ(t) = u̇(t), (2.10e)
ẍ(t) = ü(t). (2.10f)

This system is however overdetermined, having six equations but only the
three unknowns ẍ, ẏ, z (the highest-order derivative of each noninput vari-
able). This is resolved by for each differentiated equation, designate one of
the noninput variables occurring in the differentiated equation as a dummy
derivative, replacing it by a new nondifferentiated variable. In general there
are multiple possible selection of dummy derivatives, but in our example
there are only three alternatives—ẍ, ẋ, and ẏ—which is exactly how many
dummy derivatives we need, since we have exactly three differentiated equa-
tions: (2.10d)–(2.10f). Consequently, we replace these three variables by their
corresponding dummy derivatives ddx, dx, and dy—which become algebraic

24

2.2 Differential-Algebraic Equations

variables and hence are not subject to discretization—yielding

dx(t) = y(t), (2.11a)
dy(t) = z(t), (2.11b)
x(t) = u(t), (2.11c)

ddx(t) = dy(t), (2.11d)
dx(t) = u̇(t), (2.11e)
ddx(t) = ü(t). (2.11f)

The differential variables whose derivative have not been selected as dummy
derivatives form a natural choice of state variables. As it turns out in
this very special example, there are no differential variables left, and the
system consequently has no internal state. Indeed, the position, velocity, and
acceleration (force) is entirely determined by the prescribed trajectory u for
the position; no initial conditions are needed to define a unique solution.

2.2.5 Summary
Applying the method of dummy derivatives on the high-index DAE (2.3)
results in a balanced, (usually) low-index DAE

F(t, ẋ(t), x(t), y(t),u(t),p) = 0, (2.12)

where x is the differential variable, which is the subset of ξ whose deriva-
tives have not been designated as dummy derivatives, and y is the remain-
der of ξ as well as all of υ . We will in general use ξ and υ to denote
the differential and algebraic, respectively, variables of a general—possibly
high-index—DAE Φ, as well as x and y to denote the differential (state)
and algebraic, respectively, variables of a low-index DAE F.

The DAE (2.12) resulting from the method of dummy derivatives will
satisfy that the Jacobian[

∇ẋF(t, ẋ(t), x(t), y(t),u(t),p) ∇yF(t, ẋ(t), x(t), y(t),u(t),p)
]

(2.13)

is structurally nonsingular—that is, it can be permuted to have a diagonal
with no identically zero elements—which is a prerequisite for numerical
nonsingularity. What the method does not guarantee, but that we never-
theless further assume, is that the Jacobian is nonsingular in all relevant
points, which is a sufficient condition for x to be a possible static choice of
state. It is also sufficient for F to be index 1.

With the outlined method of dummy derivatives we have a way of treat-
ing a wide class of high-index implicit DAEs by transforming it to a class
of low-index DAEs that lends itself better to numerical solution by general-
purpose solvers.

25

Chapter 2. Background

2.2.6 Semi-Explicit Form
Another form of DAEs is the semi-explicit form

ξ̇ (t) = f (t,ξ (t),υ(t),u(t),p), (2.14a)
�(t,ξ (t),υ(t),u(t),p) = 0, (2.14b)

which often lends itself better to analysis; for example, it is index 1 if and
only if

∇υ�(t,ξ (t),υ(t),u(t),p) (2.15)
is nonsingular. While most literature on dynamic optimization focuses on
the semi-explicit form, this thesis focuses on the fully implicit form (2.3),
because of the goal of treating general Modelica models. Although the fully
implicit form (2.3) is more general, it can always be transformed to the
semi-explicit form (2.14), which however comes at the price of increased
index and number of variables and equations.

2.3 Dynamic Optimization

Before we consider general formulations of dynamic optimization problems,
we will have a look at a simple example of optimal control.

2.3.1 Example
Consider again the Van der Pol (VDP) oscillator (2.1). The problem we will
solve is to drive the state (x1, x2) from (0, 1) toward the origin using a
quadratic Lagrange cost on the state and input on a fixed time horizon
going from t0 = 0 to t f = 10 using different weights r ∈ (0,∞) for the input
cost. We will also have an upper limit on the input u of 0.8. The resulting
problem is

minimize
∫ 10

0

(
x2

1(t) + x2
2(t) + ru2(t)

)
dt, (2.16a)

with respect to x : [0, 10] → R2, u : [0, 10] → R,
subject to ẋ1(t) =

(
1− x2

2(t)
)
x1(t) − x2(t) + u(t), (2.16b)

ẋ2(t) = x1(t), (2.16c)
x1(0) = 0, x2(0) = 1, (2.16d)
u(t) ≤ 0.8, (2.16e)
∀t ∈ [0, 10].

This problem is readily solved by JModelica.org, and code for doing so will
be given in Chapter 3. For now, we just look at the solution in Figure 2.2,
where we see that smaller values of r yield better state control at the
expense of larger control action.

26

2.3 Dynamic Optimization

1.0 0.5 0.0

0.0

0.5

1.0

0 2 4 6 8 10

2

1

0

1

x2

x1

u

t

r = 0.1
r = 1
r = 10

Figure 2.2 Optimal control of the Van der Pol oscillator on a fixed time
horizon of 10 seconds. The initial state is (0, 1) and the objective is a quadratic
penalty on the state and input, with the input penalty being weighted by r.

2.3.2 A General Case
A fairly general formulation of dynamic optimization problems (DOP) simi-
lar to what is found in most literature [Liberzon, 2012; Biegler, 2010; Betts,
2010] is

minimize φ(t f , x(t f)) +
∫ t f

t0
L
(
x(t), y(t),u(t)

)
dt, (2.17a)

with respect to x : [t0, t f] → Rnx , y : [t0, t f] → Rny ,
u : [t0, t f] → Rnu , t f ∈ R, p ∈ Rnp ,

subject to ẋ(t) = f (t, x(t), y(t),u(t),p), (2.17b)
�(t, x(t), y(t),u(t),p) = 0, (2.17c)
x(t0) = x0, (2.17d)
h(t, ẋ(t), x(t), y(t),u(t),p) ≤ 0, (2.17e)
H(t f , x(t f), y(t f),p) ≤ 0, (2.17f)
∀t ∈ [t0, t f],

where the objective (2.17a) comprises the Mayer term φ and Lagrange inte-
grand L, (2.17b) and (2.17c) are the low-index, semi-explicit system dynam-
ics, (2.17d) is prescribed state initial conditions, (2.17e) is path inequality
constraints, and (2.17f) is the terminal constraints. The optimization vari-
ables are x (which inherently determines ẋ), y, u, t f , and p. The degrees
of freedom are induced by u, t f , and p, with x and y being determined
by the system dynamics (2.17b) and (2.17c). It is possible to also consider

27

Chapter 2. Background

equality versions of the path and terminal constraints (2.17e) and (2.17f),
which further reduces the available degrees of freedom.

Problem (2.16) is an example of a control problem. Dual to such problems
are dynamic estimation problems, where unknown variables and parame-
ters are estimated by fitting the model response to measurement data. There
are many similarities between these two classes of problems, allowing them
both to be captured within the general problem (2.17).

We will in Chapter 3 introduce a more general version of (2.17), which
the thesis focuses on. An important and common generalization of (2.17)
that we however do not consider is the introduction of multiple phases, in
which the time horizon [t0, t f] is divided into subphases and the constraints,
objective, and variables are allowed to be redefined within each phase. We
choose to neglect this generalization mainly because of laborious implemen-
tation rather than theoretical difficulties. Another important generalization
that the thesis does not consider (although the author has done some work
related to this [Fouquet et al., 2016; Ghazaei Ardakani and Magnusson,
2016]) is the inclusion of hybrid dynamics, which often is computationally
intractable when combined with large-scale, nonlinear dynamics.

2.3.3 Optimica
Modelica is designed mainly with simulation-based analysis in mind, and
lacks native support for optimization formulations. In the encoding of (2.17),
we can therefore only rely on Modelica for (2.17b) to (2.17d). To accommo-
date the need for formulation of DOPs based on Modelica code, the language
extension Optimica [Åkesson, 2008; Åkesson, 2007] was developed and in-
tegrated with JModelica.org. Optimica defines new syntax and semantics
for specifying constraints and an objective.

Example We revisit the VDP example (2.16). Listing 2.1 was used to en-
code (2.16b) to (2.16d) in Modelica. The remainder of (2.16) is encoded in
Optimica in Listing 2.3, where we inherit the model and add the time hori-
zon, Lagrange cost, and input bound on top of it. Note the clear separation
between model and optimization formulation offered by Optimica, facilitat-
ing the reuse of the model for purposes entirely different than dynamic
optimization.

Listing 2.3 Optimica implementation of VDP oscillator optimal control.

optimization VDP_DOP(finalTime=10,
objectiveIntegrand=x1^2 + x2^2 + r*u^2)

extends VDP(u(max=0.8));
parameter Real r = 1; // Can be changed after compilation

end VDP_DOP;

28

2.3 Dynamic Optimization

Syntax Optimica introduces the specialized class optimization, which be-
haves similarly to model from Modelica but with some extra constructs. The
class has four2 new attributes: objective, objectiveIntegrand, startTime,
and finalTime. The terms φ and L in the objective (2.17) are encoded using
objective and objectiveIntegrand, respectively. The time horizon [t0, t f]
is encoded using startTime and finalTime.

Two new attributes are defined for the built-in type Real: free and
initialGuess. The Boolean attribute free is used to turn a regular param-
eter into an optimization variable; that is, make it a part of p. It can also
be used for startTime and finalTime to signify free time horizon endpoints.
Initial guesses for each variable that are constant with respect to time can
be provided using the initialGuess attribute. It is however often both more
effective and convenient to rely on dynamic simulation to generate initial
guesses, as will be discussed in Section 3.5.1.

A new section called constraint is introduced to encode (2.17e) and
(2.17f). This is similar to the equation section of Modelica, but also includes
inequalities and also constraints that only hold at discrete points in time.

Finally, the JModelica.org implementation of Optimica also gives new
semantic meaning to the existing Modelica variable attributes min and
max to encode lower and upper variable bounds, respectively. While such
constraints are subsumed by (2.17e), there are reasons—which will become
clear in Section 2.4.1—for separating the simple variable bounds. While
this new attribute meaning often is convenient and useful, it can lead to
problematic semantic clashes, since in Modelica these attributes are mainly
used to specify model validity regions rather than constraints to be enforced.
This problem will be further discussed in Section 4.4.1

Proliferation Optimica was previously used only in JModelica.org but
has since also been adopted by OpenModelica [Bachmann et al., 2012] to
solve optimal control problems described in Modelica using direct multiple
shooting or collocation. Optimica also served as a basis for IDOS [Pytlak
et al., 2014], an online environment for solving a wide variety of optimal
control problems using different techniques.

Although the idea of applying Modelica for dynamic optimization has ex-
isted for many years, with [Krüger et al., 2004; Pettersson et al., 2005] being
early examples, the interest within the Modelica community ever increases.
Consequently, there were efforts within the MODRIO project [ITEA, 2015]
to standardize DOP formulations for Modelica. Incorporating Optimica into
the Modelica standard was however deemed too complex due to the many
additional keywords, which would encumber the already saturated seman-

2Optimica also defines a fifth attribute called static, which is used to formulate static,
rather than dynamic, optimization problems. Such problems—despite their relative
simplicity—are however outside the scope of both this thesis and today’s JModelica.org.

29

Chapter 2. Background

tics of Modelica. The MODRIO efforts thus focused on the use of custom
annotations [Zimmer et al., 2014].

2.3.4 Numerical Methods
The domain of (2.17)—that is, functions on [t0, t f]—is infinite-dimensional.
To (approximately) find a solution, we rely on numerical methods. The feasi-
ble set of (2.17) will in general also be nonconvex because of the nonlinearity
of f and �. We will not endeavor to find a global optimum. We will instead
rely on first-order, necessary optimality conditions to numerically find a
local optimum.

There are many approaches to numerically solving DOPs, which stem
from the theory of optimal control. The earliest methods date back to the
1950s and are based on Bellman’s dynamic programming, of which a modern
description can be found in for example [Bertsekas, 2005]. The main result
on dynamic programming for continuous-time systems is the Hamilton-
Jacobi-Bellman equation, which is a nonlinear partial differential equation.
The dynamic programming framework is theoretically appealing, due to
providing sufficient conditions for global optimality and also yielding so-
lutions in the form of state feedback laws. However, in practice it suffers
from the curse of dimensionality: The dimension of the domain of the par-
tial differential equation increases with the dimension of the system state.
Therefore, numerical methods based on dynamic programming are only
computationally tractable for small-scale problems.

The most widely used numerical techniques for optimal control today are
instead based on first-order necessary conditions for local optimality. Sur-
veys of these are available in for example [Betts, 1998; Rao, 2009; Biegler,
2010] and an overview is illustrated in Figure 2.3. They can be categorized
according to their respective answers to two questions: When to discretize
the system dynamics, and how to discretize them? There are essentially
two answers to the first question, which have led to the two categories of
indirect and direct methods. Indirect methods start by establishing the op-
timality conditions for (2.17), and then discretize the resulting differential
equations to find a numerical solution. Direct methods instead first dis-
cretize the dynamics and then establish the optimality conditions. Indirect
methods are based on calculus of variations and Pontryagin’s maximum
principle [Liberzon, 2012], which provide optimality conditions in the form
of boundary-value problems. Standard numerical methods for boundary-
value problems can then be employed to solve the problem numerically.
Direct methods instead reduce the DOP to a nonlinear program (see Sec-
tion 2.4) by discretization. The optimality conditions are then given by the
Karush-Kuhn-Tucker (KKT) conditions, as will be discussed in Section 2.4.

Both direct and indirect approaches discretize differential equations, and

30

2.3 Dynamic Optimization

Figure 2.3 Numerical methods for dynamic optimization. Indirect meth-
ods establish optimality conditions first and then discretize the differential
equations, whereas direct methods first discretize and then optimize. Both
categories of methods use essentially the same discretization techniques, of
which the most common ones are single shooting, multiple shooting, and
collocation. This thesis focuses on direct collocation.

the same discretization methods are commonly used for both approaches.
The most common methods belong to one of two families: shooting and col-
location. These two families of methods are sometimes also referred to as
sequential and simultaneous, respectively, with similar meaning. The sim-
plest form of shooting is single shooting, which parametrizes the input—
explicitly for the direct method and implicitly by the maximum principle
and costate initial values for the indirect method—and then numerically
integrates to t f and iteratively updates the control based on sensitivities.
The numerical robustness of single shooting can be improved by dividing
the time horizon into subintervals. Single shooting is then applied within
each subinterval, by introducing the subinterval boundary values as vari-
ables and imposing linking constraints between the subintervals. This is
called multiple shooting, which essentially decouples the dynamics between
the subintervals. Multiple shooting is a hybrid between sequential and si-
multaneous methods, which brings us to the second family of discretization
methods.

Simultaneous methods simultaneously discretize the differential equa-
tions over the entire time horizon, using implicit Runge-Kutta methods in
the case of collocation. Consequently, they do not rely on external numerical
integrators, because after the full discretization of the differential equations
the optimality conditions are reduced to an algebraic root finding problem.
Collocation methods can be either local, where the time horizon is divided
into elements and low-order polynomials are used to approximate the trajec-
tories within each element, or global, where a single high-order polynomial
is used over the entire time horizon. Global methods are also synonymously
referred to as pseudospectral methods.

Shooting methods (especially single shooting) lead to optimization prob-
lems with few variables but highly nonlinear functions—because of their

31

Chapter 2. Background

internalization of the differential equations and numerical integrators—
whereas simultaneous methods lead to problems with less severe nonlin-
earities but many variables. Indirect methods need good initial guesses of
the costates and also identification of the switching structure of inequality
constraints, both of which require proficiency in the maximum principle
for all but the most simple problems. Single shooting suffers from the nu-
merical sensitivity mentioned above. Thus, direct multiple shooting and
direct collocation appear to be the most suitable methods to be used in a
high-level, general-purpose framework for large-scale dynamic optimization.
This thesis focuses on direct collocation, the details of which are discussed
in Chapter 3.

2.4 Nonlinear Programming

The notation used in this subsection is independent of the rest of the thesis.
For example, x refers to variables of a nonlinear program, rather than the
state of a dynamical system.

Direct methods—in particular direct collocation—for dynamic optimiza-
tion transcribe the infinite-dimensional DOP (2.17) into a finite-dimensional
nonlinear program (NLP), which has the general form

minimize f (x), (2.18a)
with respect to x ∈ Rnx ,
subject to xL ≤ x ≤ xU , (2.18b)

�(x) = 0, (2.18c)
h(x) ≤ 0, (2.18d)

where the bounds (2.18b) are separated from the general nonlinear inequal-
ities (2.18d) to allow for more efficient treatment of them. The lower and
upper bounds, xL and xU , can attain infinite values, in which case the
corresponding components of x are unbounded.

There are many methods available for solving (2.18) [Nocedal and
Wright, 2006]. The most common ones are based on either active-set sequen-
tial quadratic programming, in which the NLP is iteratively approximated
by a quadratic program, or interior-point methods, which can be viewed as
approximating the NLP by an equality-constrained NLP. Since this thesis
mostly makes use of interior-point methods, we will review the basics of
these.

32

2.4 Nonlinear Programming

2.4.1 Interior-Point Methods
A common transformation of (2.18) is to get rid of the general inequality
constraints by introducing a slack variable s to obtain

minimize f (x), (2.19a)
with respect to x ∈ Rnx , s ∈ Rns ,
subject to xL ≤ x ≤ xU , (2.19b)

�(x) = 0, (2.19c)
h(x) − s = 0, (2.19d)
s ≤ 0. (2.19e)

For the sake of clarity, we will consider the simpler NLP

minimize f (x), (2.20a)
with respect to x ∈ Rnx ,
subject to �(x) = 0, (2.20b)

x ≥ 0. (2.20c)

Although (2.19) can be transformed to (2.20), the treatment of (2.18) typi-
cally instead relies on straightforward generalizations of the steps below.

A common variant of interior-point methods that uses logarithmic func-
tions can be viewed as transforming (2.20) to the equality-constrained NLP

minimize f (x) − µ
n∑
i=1

ln(xi), (2.21a)

with respect to x ∈ Rnx ,
subject to �(x) = 0, (2.21b)

where µ is the barrier parameter. By letting µ tend to zero, the solution
of (2.21) approaches the solution of (2.20) under mild assumptions, see for
example [Biegler, 2010, Theorem 6.7].

2.4.2 Karush-Kuhn-Tucker Conditions
To solve (2.21), we first introduce the Lagrangian function

L(x,λ) := f (x) − µ
nx∑
i=1

ln(xi) + �(x)Tλ, (2.22)

where λ is the dual variable, whose dimension equals the dimension of the
codomain of �. Assuming that some constraint qualifications are satisfied,

33

Chapter 2. Background

first-order local optimality conditions for (2.21) are given by the Karush-
Kuhn-Tucker (KKT) conditions

∇xL(x,λ) = ∇ f (x) − µx−1 +∇�(x)Tλ = 0, (2.23a)
�(x) = 0, (2.23b)

where x−1 denotes elementwise inversion. A common, but relatively re-
strictive, constraint qualification is the Linear Independence Constraint
Qualification (LICQ), which holds at a point of (2.18) if the Jacobian of the
equality and active inequality constraints at that point has full row rank.

The KKT conditions (2.23) are called the primal equations, and unfor-
tunately suffer from numerical ill-conditioning as xi approaches its lower
bound of 0 because of the µx−1 term. The equivalent primal-dual equations

∇xL̄(x,λ, z) = ∇ f (x) − z+∇�(x)Tλ = 0, (2.24a)
�(x) = 0, (2.24b)

diag(z)x = µ1 (2.24c)

alleviate this issue, where L̄ is implicitly defined by (2.24a) and z can be
seen as the dual variable of the original bound (2.20c) when µ = 0. The
primal-dual equations lend themselves better to algorithmic development,
and also present a different interpretation of interior-point methods: The
primal-dual equations are a perturbation of the KKT conditions for (2.20),
which are recovered by letting µ equal zero.

2.4.3 Newton’s Method
We can thus find a local solution of (2.20) by solving the square system of
equations (2.24). This can be done iteratively using Newton’s method, in
which we in the current iterate (xk,λk, zk) need to solve the linear system
of equations
∇2

xxL̄(xk,λk, zk) ∇x�(xk)T −I
∇x�(xk) 0 0
diag zk 0 diag xk




∆x

∆λ
∆z


 = −


∇xL̄(xk,λk, zk)

�(xk)
diag(zk)xk − µ1


 ,

(2.25)
where ∆x, ∆λ, and ∆z are the primal and dual search directions.

In order to successfully do this, L needs to be twice continuously dif-
ferentiable, and by extension also f and �. We will in Chapter 3 see the
implications this assumption has regarding differentiability of the functions
in the DOP (2.17), but in short, they also need to be twice continuously dif-
ferentiable.

34

2.4 Nonlinear Programming

2.4.4 Barrier Parameter Selection
An important part of interior-point methods is the selection of the barrier
parameter µ in each iteration. A simple but effective method is to do it
monotonously: Fix µ, solve (2.21) to some tolerance, decrease µ and repeat
until µ is smaller than some tolerance.

An alternative approach is to instead adaptively choose µ in each itera-
tion depending on the progress of the algorithm, which often yields better
performance than the monotone strategy. These strategies usually select µ
proportional to the complementarity; that is,

µk = σk
xTk zk
nx

, (2.26)

where σk is the centering parameter. Several different strategies have been
proposed for selection of σk [Nocedal and Wright, 2006; Nocedal et al., 2009].

35

3
Dynamic Optimization in
JModelica.org

[...] developers of models should consider in the initial
stages the ultimate need to solve an optimization
problem, since it is unlikely that optimization
software will ever reach the state wherein a general
routine can be used with impunity.

[Gill et al., 1981]

This chapter presents the current open-source toolchain in JModelica.org for
numerically solving large-scale dynamic optimization problems. Its develop-
ment has been an ongoing effort during the thesis work. The chapter focuses
on the direct collocation algorithm used to transcribe dynamic optimization
problems to nonlinear programs.

3.1 Problem Formulation

In Section 2.3.2 we discussed the general DOP formulation (2.17). This
section presents a further generalized DOP formulation, which is the target
of the remainder of the thesis. This formulation is strongly correlated with
what can be formulated using Optimica.

3.1.1 High-Index Formulation
For ease of notation, we introduce compositions of the time-dependent vari-
ables:

ζ (t) :=
(
ξ̇ (t),ξ (t),υ(t),u(t)

)
, (3.1a)

z(t) :=
(
ẋ(t), x(t), y(t),u(t)

)
, (3.1b)

36

3.1 Problem Formulation

where z is used for low-index DAEs and ζ is used for general DAEs. The
considered problem—whose concepts and notation are discussed below—is

min. φ(t0, t f ,ζT ,p) +
∫ t f

t0
L(t,ζ (t),ζT ,p) dt, (3.2a)

w.r.t. ζ : [t0, t f] → Rnζ , t0 ∈ R, t f ∈ R, p ∈ Rnp ,
s.t. Φ(t,ζ (t),p) = 0, Φ0(t0,ζ (t0),p) = 0, (3.2b)

�e(t0, t f , t,ζ (t),ζT ,p) = 0, �i(t0, t f , t,ζ (t),ζT ,p) ≤ 0, (3.2c)
Ge(t0, t f ,ζT ,p) = 0, Gi(t0, t f ,ζT ,p) ≤ 0, (3.2d)
ζL ≤ ζ (t) ≤ ζU , pL ≤ p ≤ pU , (3.2e)
t0,L ≤ t0 ≤ t0,U , t f ,L ≤ t f ≤ t f ,U , (3.2f)
∀t ∈ [t0, t f].

The time horizon endpoints t0 and t f may be either free or fixed. The
(possibly) high-index system dynamics (2.3) are incorporated in (3.2b) to-
gether with the fully implicit initial conditions (2.7). Note that solving the
initial equations for the initial state will be done as a part of solving the
optimization problem, which for example enables the treatment of problems
where the initial state is not known a priori.

3.1.2 Objective and Timed Variables
The objective (3.2a) is a typical optimal control objective, but general enough
to cover other problems of interest, such as parameter estimation. The
Mayer term has been generalized compared to the standard one in (2.17a).
The essence of the generalization is that instead of depending on only the
terminal state, it depends on the state at an arbitrary (but finite) number
of time points within the time horizon. This gives rise to the notion of
timed variables, which we denote by ζT , which we define by first denoting
the needed time points by T1, T2, . . . , TnT , where nT ∈ Z is the number of
such time points. We require each such time point to be equal to a convex
combination of t0 and t f ; that is,

∀ j ∈ [1..nT] ∃θ j ∈ [0, 1] : Tj = (1− θ j)t0 + θ j t f . (3.3)

For problems with a fixed time horizon, this simply means that Ti ∈ [t0, t f].
For problems with a free time horizon, this implies that the locations of the
time points depend on the optimal t0 and t f . We then let

ζT :=
(
ζ (T1),ζ (T2), . . . ,ζ (TnT)

)
∈ RnTnζ . (3.4)

For later use, zT is defined analogously.

37

Chapter 3. Dynamic Optimization in JModelica.org

The standard Mayer term only involves the single time point T1 = t f .
One application of the generalized Mayer term is the formulation of pa-
rameter estimation problems, where there typically is measurement data
for the system outputs at discrete time points, which is used to penalize
the deviation of the model output from the data values at these points. An
alternative approach in this case is to interpolate the measurement data to
form a continuous-time measurement trajectory. This trajectory can then
instead be used to form a Lagrange integrand which penalizes the devi-
ation of the model output from the measurements. The occurrence of the
timed variables ζT is not restricted to the Mayer term. The timed variables
can also be used in the Lagrange integrand and the constraints, as will
be discussed in Section 3.1.3. The introduction of timed variables can be
considered to be subsumed by the more common generalization of multiple
phases, as discussed in Section 2.3.2.

3.1.3 Constraints
The constraints (3.2c) and (3.2d) are path constraints and point constraints,
respectively, in both inequality and equality form. These are essentially the
same as (2.17e) and (2.17f), although they also include the timed variables
ζT . Hence, the number of time points nT is not only the number of time
points involved in the Mayer term, but also includes the number of time
points needed to formulate the path and point constraints as well as the
Lagrange term.

The constraints (3.2e) and (3.2f) are variable bounds, where ζL,pL, t0,L,
and t f ,L are lower bounds and ζU ,pU , t0,U , and t f ,U are upper bounds. While
serving a similar purpose as the path inequalities, they are separated for the
same reasons as the bounds in (2.18) were separated from the inequalities.
Likewise, the lower and upper bounds can attain infinite values.

3.1.4 Differentiability
As discussed in Section 2.4, we assume that the objective functions φ and
L, the DAE system and initial condition residuals Φ and Φ0, the path
constraint functions �e and �i as well as the point constraint functions Ge
and Gi are all sufficiently differentiable. The details of this assumption will
be specified in Section 3.3.

3.1.5 Low-Index Formulation
While the toolchain targets the high-index formulation (3.2), the methods of
this thesis target low-index problems. Hence, we rely on the JModelica.org
compiler, which will be described in Section 3.2.3, to perform index reduction
using the method of dummy derivatives outlined in Section 2.2. The result
is a low-index version of (3.2), in which essentially Φ, Φ0, ζ , ζT are replaced

38

3.2 Related Software and Languages

by F, F0, z, and zT , respectively, yielding

min. φ(t0, t f , zT ,p) +
∫ t f

t0
L(t, z(t), zT ,p) dt, (3.5a)

w.r.t. z : [t0, t f] → Rnz , t0 ∈ R, t f ∈ R, p ∈ Rnp ,
s.t. F(t, z(t),p) = 0, F0(t0, z(t0),p) = 0, (3.5b)

�e(t0, t f , t, z(t), zT ,p) = 0, �i(t0, t f , t, z(t), zT ,p) ≤ 0, (3.5c)
Ge(t0, t f , zT ,p) = 0, Gi(t0, t f , zT ,p) ≤ 0, (3.5d)
zL ≤ z(t) ≤ zU , pL ≤ p ≤ pU , (3.5e)
t0,L ≤ t0 ≤ t0,U , t f ,L ≤ t f ≤ t f ,U , (3.5f)
∀t ∈ [t0, t f],

where there is a slight abuse of notation in the use of �e, �i, Ge, Gi, φ,
and L, as the dimension of z is generally larger than the dimension of
ζ . It could be worthwhile to also consider index reduction of (3.5c) and
(3.5e)—especially in combination with multiple phases, which would enable
identification of switching points—which however is outside the scope of
this thesis.

3.2 Related Software and Languages

In this section we first give an overview of software tools that are available
for numerical solution of dynamic optimization problems. We then discuss
the software and languages used in the framework for dynamic optimization
in JModelica.org.

3.2.1 Tools for Dynamic Optimization
One approach to solving the DOP (3.2) numerically is to manually discretize
the dynamics and then encode the discretized problem in an algebraic mod-
eling language for optimization. Mature examples of such languages are
AMPL [Fourer et al., 2003] and GAMS [Brooke et al., 1988], whereas Py-
omo [Hart et al., 2012] is a recent example. Another approach is to use a
tool tailored for dynamic optimization in which DOPs can be formulated in
their natural, undiscretized form, which is more convenient. The tool then
handles the details of the discretization. An important dichotomy of such
tools is whether they use existing general-purpose programming languages
(such as Python, C++, or MATLAB) or dedicated modeling languages to
describe the system dynamics. Some examples of modern dynamic opti-
mization tools of the former category are ACADO Toolkit [Houska et al.,
2011], PSOPT [Becerra, 2010], and PROPT [Tomlab Optimization, 2016].
ACADO Toolkit is an open-source, self-contained C++ package for dynamic

39

Chapter 3. Dynamic Optimization in JModelica.org

optimization. It primarily uses direct multiple shooting. It is designed for
implementation of online MPC or MHE on embedded hardware. PSOPT
is another open-source C++ package for dynamic optimization supporting
many different flavors of simultaneous discretization with elaborate support
for multiple phases. PROPT is a commercial package for MATLAB based
on TOMLAB [Holmström, 1999] using direct global collocation. It supports
a wide range of dynamic optimization problems, including problems with
multiple phases and integer variables.

Component-based modeling of large-scale, complex dynamical systems
benefits greatly from the expressiveness offered by dedicated dynamical
modeling languages. It also decouples the modeling process from the com-
putational aspects, allowing the same model implementation to be used
for multiple purposes, such as simulation and optimal control. Examples
of modern dynamic optimization tools that utilize a dedicated language
for modeling are APMonitor [Hedengren et al., 2014], gPROMS [Process
Systems Enterprise, 2016], and JModelica.org [Åkesson et al., 2010a]. AP-
Monitor is freely available and uses its own modeling language and direct
local collocation. It has a tight integration between simulation, estimation,
and control of dynamical systems, both dynamically and in steady state. It
offers interfaces to Python, MATLAB, Julia, and web browsers. gPROMS is
a large family of commercial products for model-based chemical engineering,
which are based on gPROMS’s powerful object-oriented modeling language.
Although not its primary focus, it has capabilities for dynamic optimization
using shooting algorithms.

3.2.2 JModelica.org
JModelica.org [Åkesson et al., 2010a] is an open-source platform for dynamic
optimization and simulation of Modelica models. It originally started as an
academic effort [Åkesson, 2007] but is now mainly developed in industry by
Modelon AB, although still in collaboration with academia (as exemplified
by this thesis).

The use of Modelica in this thesis and JModelica.org serves two pur-
poses: First, it gives the user access to a powerful modeling language, which
is important for large-scale, component-based system modeling. Second, it
allows existing Modelica models to be reused for dynamic optimization. The
second feature is, however, a double-edged sword. Typical Modelica models
are intended for high-fidelity simulation. Consequently, they are often too
complex for optimization purposes out-of-the-box, to the dismay of many
JModelica.org users. As pointed out by this chapter’s introductory quote,
it can be necessary to rethink the modeling before it can be applied for
optimization. For example, unnecessary discontinuities should be avoided,
with the remaining ones being dealt with appropriately, and variables—

40

3.2 Related Software and Languages

especially differential ones—should only be introduced if the change in
dynamics have significant impact on the objective.

JModelica.org originally had a unified C-based interface for dynamic
simulation and optimization based on DAEs called JModelica.org Modeling
Interface (JMI) [Åkesson et al., 2010a]. It later became apparent that ef-
ficient simulation and optimization had quite separate needs, resulting in
two separate toolchains (although both utilize the JModelica.org compiler,
which will be described in Section 3.2.3): one for optimization and one for
simulation. An overview of these are given below. Further documentation
is available in [Modelon AB, 2016].

The previous optimization framework that was a part of JMI had several
drawbacks compared with the implementation of this thesis. It relied heav-
ily on code generation, not supporting the modification of parameter values
after compilation, much less the modification of the equations, constraints,
and objective of a DOP. A different tool was used for algorithmic differ-
entiation [Griewank and Walther, 2008], which led to considerably slower
NLP function evaluation and consequently longer solution times. Finally,
it only supported computation of first-order derivatives. Thus, it relied on
the use of limited-memory BFGS [Nocedal and Wright, 2006], often with
unsatisfactory performance.

Optimization The new framework for dynamic optimization is based on
CasADi [Andersson, 2013]. The framework’s first prototype is described
in [Andersson et al., 2011]. A core element of this framework is a direct
collocation algorithm, which was later refined and extended in [Magnusson,
2012; Magnusson and Åkesson, 2012].

The original coupling between JModelica.org and CasADi was based on
an XML representation of (3.5) [Parrotto et al., 2010]. While large parts of
Modelica can be mapped to this XML format, some crucial parts are missing,
most notably Modelica functions. Modelica functions are an important and
difficult part of the language, because of their use of imperative constructs,
as opposed to the declarative nature of both CasADi and Modelica. These
XML limitations limited the class of Modelica models supported by the
framework. While the XML format could be extended as needed to represent
additional Modelica constructs, such an extension would require significant
development efforts not only from the JModelica.org developers, but also
the CasADi developers.

After some time, the need for supporting Modelica functions in the
framework became too pressing. By then, the CasADi developers had other
priorities than extended Modelica support. A new effort was then made to
internalize the model representation within JModelica.org, so that CasADi
no longer had to be relied upon for XML import. This new framework is
called CasADi Interface and is described later in this section and also

41

Chapter 3. Dynamic Optimization in JModelica.org

in [Lennernäs, 2013]. The resulting toolchain is described in this chapter
(and also in [Magnusson and Åkesson, 2015]), with emphasis on the further
extended direct collocation algorithm. Although CasADi is no longer relied
upon for XML import, it still plays a central role in the framework. The
model representation is built up by CasADi constructs and CasADi is also
subsequently used in the implementation of the direct collocation algorithm.

Simulation JModelica.org also has a strong framework for dynamic sim-
ulation. While dynamic simulation is an end goal in itself, it also serves
important needs in a framework for dynamic optimization; for example,
it can be used to generate initial guesses (that do not have to be feasible)
and verify fixed-step discretization as will be discussed in Section 3.6. While
methods exist for incorporating adaptive step lengths into direct collocation,
either by repeatedly solving the problem and updating the discretization
[Betts and Huffman, 1998], which is called mesh refinement, or introducing
the element lengths as NLP variables and bounds or penalties on the dis-
cretization error estimate [Vasantharajan and Biegler, 1990], these are not
considered in this thesis. However, the author has done some work related
to this topic [Fouquet et al., 2016].

The simulation framework is based on the Functional Mockup Interface
(FMI) [Blochwitz et al., 2011; Blochwitz et al., 2012] for tool-independent
exchange of models. FMI started as an effort within the Modelica commu-
nity, but has quickly gained traction outside of it in industry and is now
supported to some extent in many different simulation tools. JModelica.org
is a strong supporter both in terms of import and export of Functional
Mockup Units (FMU), which are archive files comprising an XML descrip-
tion of the system variables and code (in binary or source form) for the
system equations.

Unlike Modelica, the mathematical paradigm of FMI is that of explicit
ODEs. The burden of DAE analysis—involving for example the index reduc-
tion and causalization techniques of Sections 2.2 and 4.3.1, respectively—is
consequently borne by the tool that exports the FMU rather than the one
that imports it. JModelica.org’s FMU export procedure is similar to that
of other Modelica tools: A compiler transforms the implicit DAE to an ex-
plicit ODE and then generates C code for efficient evaluation of the ODE
right-hand side. JModelica.org’s import of FMUs is based on PyFMI [An-
dersson et al., 2016], which connects an FMU to an ODE solver available
from a large suite of solvers through Assimulo [Andersson et al., 2015],
most notably CVODE from SUNDIALS [Hindmarsh et al., 2005].

3.2.3 Software Used to Implement Framework
JModelica.org integrates many different software packages. This section
presents the most important ones, especially those that are prominent in

42

3.2 Related Software and Languages

the framework for dynamic optimization.

CasADi Newton-based iterative solution of the primal-dual equations
(2.24) requires first- and second-order derivatives of the NLP cost and
constraint functions with respect to the NLP variables. The framework
uses CasADi to obtain these. CasADi [Andersson, 2013] (Computer algebra
system with Algorithmic Differentiation) is a low-level tool for efficiently
computing derivatives using algorithmic differentiation (AD) based on
source-code transformation and is tailored for dynamic optimization. Once
a symbolic representation of an NLP has been created using CasADi prim-
itives, the needed derivatives are efficiently and conveniently obtained and
sparsity patterns are computed and preserved. CasADi also offers interfaces
to numerical optimization solvers, allowing for seamless integration with,
for example, IPOPT [Wächter and Biegler, 2006] and WORHP [Büskens and
Wassel, 2013].

CasADi utilizes two different graph representations for symbolic expres-
sions. The first is SX, a scalar representation, where all atomic operations
are scalar-valued, as is typical for AD tools. The second is MX, a sparse ma-
trix representation where all atomic operations instead are multiple-input,
multiple-output, and matrix-valued. The MX representation is more general
and allows for efficient—especially in terms of memory and possibly con-
struction of expression graphs for derivatives—representation of high-level
operations, such as matrix multiplication and function calls. For example,
an SX graph for multiplying a dense matrix of size n $ n with a vector of
size n uses O(n2) nodes, whereas an MX graph would only use O(1) nodes.
On the other hand, the SX representation offers faster evaluation times by
reducing overhead and performing additional symbolic simplifications.

The JModelica.org Compiler The JModelica.org compiler [Åkesson et
al., 2010b] is implemented in the compiler construction framework Jas-
tAdd [Ekman and Hedin, 2007]. JastAdd is an extension to Java and fo-
cuses on modular extensible compiler construction by aspect orientation.
The compiler process is illustrated in Figure 3.1. The compiler first cre-
ates an internal representation of the Modelica and Optimica code in the
form of an abstract syntax tree (AST). The AST is then used to perform
standard compiler operations such as name and type analysis, but also
Modelica-specific operations as described below.

To get a representation of a hierarchical Modelica model that is closer
to a mathematical DAE system, one of the first steps, called flattening, is to
resolve the class inheritance and instantiation in the model to arrive at a flat
representation of the model. The flat representation essentially consists of
only variable declarations, equations, and functions. Before the DAE system
is interfaced with a numerical solver, various symbolic transformations are
performed on it, of which the following are of importance to us:

43

Chapter 3. Dynamic Optimization in JModelica.org

Figure 3.1 The compilation process in JModelica.org for DOPs. The process
starts with the user-provided Modelica and Optimica code and ends with a
symbolic representation of the DOP in CasADi Interface, which serves as an
interface between dynamic optimization algorithms and the Modelica and
Optimica code.

1. Alias elimination

2. Variability propagation

3. Index reduction

4. Causalization

5. Tearing

Alias elimination and variability propagation are conceptually simple
and serve to eliminate algebraic variables described by trivial equations.
Alias elimination identifies variables occurring in equations of the form x±
y = 0, which are ubiquitous in object-oriented modeling, and eliminates one
of them. Variability propagation identifies algebraic equations which are
independent of time, such as y = p + 1, where p is a parameter, allowing
the corresponding algebraic variables to be eliminated by solving the static
equations. Index reduction is done using the method of dummy derivatives
as outlined in Section 2.2. Causalization and tearing are by default not
performed in the dynamic optimization framework. We return to this topic
in Chapter 4.

Once all the symbolic transformations have been performed on the DAE
system, it is coupled with the DOP formulation in the Optimica code. The
AST is then used to transfer the resulting DOP (3.5) to CasADi Interface
by defining symbolic CasADi variables and using them to build up the
expressions represented by the AST.

44

3.3 Direct Local Collocation

CasADi Interface [Lennernäs, 2013] is a C++ package that enables the
symbolic creation of DOPs using CasADi constructs. It serves as an in-
terface between DOPs formulated using Modelica and Optimica and the
optimization algorithms that can be used to solve them, in particular the
one described in this chapter and the one in [Lazutkin et al., 2015]. When
using CasADi Interface, the JModelica.org compiler creates CasADi expres-
sions for the DOP, effectively mapping the Modelica and Optimica languages
onto CasADi constructs, which then can be used to obtain the derivative
information that is typically needed by numerical optimizers. While CasADi
Interface is designed with Modelica and Optimica in mind, there is noth-
ing in it that is inherently dependent on these languages. Hence, it could
potentially serve as an interface to other modeling languages as well.

Nonlinear Programming and Linear Solvers To numerically solve the
NLP arising from applying direct local collocation to (3.5), JModelica.org
uses third-party solvers. The use of IPOPT [Wächter and Biegler, 2006]
and WORHP [Büskens and Wassel, 2013] is supported through CasADi’s
NLP solver interface. IPOPT is a primal-dual interior-point method and
WORHP is an active-set sequential quadratic programming method. Both
solvers are designed for large-scale and sparse nonlinear programs. IPOPT
is open source, whereas WORHP is commercial but offers free academic
licenses. Both solvers use Newton’s method to solve KKT conditions similar
to (2.24), and hence need to solve a linear equation system in each iteration.
They utilize external sparse linear solvers for this purpose. Both IPOPT and
WORHP have interfaces to the open-source linear solver MUMPS, and also
the commercial HSL library [HSL, 2016], which has free academic licenses,
among others. Another important package related to linear algebra that
they make use of is MeTiS [Karypis and Kumar, 1998] to generate fill-
reducing orderings.

3.3 Direct Local Collocation

This section presents the details of the direct local collocation algorithm
that is implemented in JModelica.org and used to solve (3.5). Although
this section is largely a review of the literature on such methods [Biegler,
2010; Betts, 2010], we emphasize the particulars of the JModelica.org im-
plementation and also the treatment of the uncommon constructs of (3.5),
in particular timed variables and implicit initial conditions.

The fundamental idea is to discretize the differential equations using
finite differences, thus transforming the infinite-dimensional DOP into a
finite-dimensional NLP. The discretization scheme is based on collocation
methods, which are special cases of implicit Runge-Kutta methods and

45

Chapter 3. Dynamic Optimization in JModelica.org

are also commonly used for numerical solution of DAE and stiff ODE sys-
tems [Hairer and Wanner, 1996].

3.3.1 Collocation Polynomials
The optimization time horizon is divided into ne elements. Let hi denote
the length of element i, which has been normalized so that the sum of
all element lengths is one. This normalization facilitates the solution of
problems with free endpoints by keeping the normalized element lengths
constant and instead varying t0 and t f . The time is normalized in element i
according to

t̃i(τ) := ti−1 + hi · (t f − t0)τ, ∀τ ∈ [0, 1], ∀i ∈ [1..ne], (3.6)

where τ is the normalized time, t̃i(τ) is the corresponding unnormalized
time, and ti is the mesh point (right boundary) of element i. This normal-
ization enables a treatment of the below interpolation conditions that is
homogeneous across elements.

Within element i, the time-dependent system variable z is approximated
using a polynomial in the local time τ denoted by

zi = (ẋi, xi, yi,ui) : [0, 1] → Rnz , (3.7)

which is called the collocation polynomial for that element. The collocation
polynomials are formed by choosing nc collocation points, which in this
work are restricted to be the same for all elements. We use Lagrange
interpolation polynomials to represent the collocation polynomials, using the
collocation points as interpolation points. Let τk ∈ [0, 1] denote collocation
point k ∈ [1..nc], and let

zi,k = (ẋi,k, xi,k, yi,k,ui,k) ∈ Rnz (3.8)

denote the value of zi(τk).
Since the state variable x needs to be continuous on [t0, t f], we intro-

duce an additional interpolation point at the start of each element for the
corresponding collocation polynomials, denoted by τ0 := 0. Hence, we get
the collocation polynomials

xi(τ) =
nc∑
k=0

xi,k · {̃k(τ), (3.9a)

yi(τ) =
nc∑
k=1

yi,k · {k(τ), (3.9b)

ui(τ) =
nc∑
k=1

ui,k · {k(τ), (3.9c)

46

3.3 Direct Local Collocation

for all i ∈ [1..ne], where {̃k and {k are the Lagrange basis polynomials,
respectively with and without the additional interpolation point τ0. The
basis polynomials are defined as

{̃k(τ) :=
∏

l∈[0..nc]\{k}

τ − τl
τk − τl

, ∀k ∈ [0..nc], (3.10a)

{k(τ) :=
∏

l∈[1..nc]\{k}

τ − τl
τk − τl

, ∀k ∈ [1..nc]. (3.10b)

Note that the basis polynomials are the same for all elements, due to the
normalized time. These basis polynomials satisfy

{k(τ j) =
{

1, if j = k,
0, if j ,= k.

(3.11)

The collocation polynomials are thus parametrized by the values
zi,k = zi(τk).

To obtain the collocation polynomial for the state derivative ẋ in ele-
ment i, the collocation polynomial xi is differentiated with respect to time.
Using (3.6), (3.9a), and the chain rule, we obtain

ẋi(τ) =
dxi
dt̃i
(τ) = dτ

dt̃i
dxi
dτ (τ) =

1
hi · (t f − t0)

nc∑
k=0

xi,k · d{̃k
dτ (τ). (3.12)

There are different schemes for choosing the collocation points τk, with
different numerical properties—in particular regarding stability and order
of convergence. The most common ones are called Gauss, Radau, and Lo-
batto collocation [Hairer and Wanner, 1996; Biegler, 2010]. The framework
in JModelica.org has support for Radau and Gauss points. For brevity, we
will in the next subsection present a transcription based on Radau collo-
cation and then briefly comment on how it relates to Gauss and Lobatto
collocation.

3.3.2 Transcription of the Dynamic Optimization Problem
In this section, (3.5) is transcribed into an NLP, using the collocation poly-
nomials constructed above. The optimization domain of functions on [t0, t f],
which is infinite-dimensional, is thus reduced to a domain of finite dimen-
sion by approximating the trajectory z by a piecewise polynomial function.

Optimization Variables As optimization variables in the NLP we choose
the system variable values at the collocation points, zi,k, the state variable
values at the start of each element, xi,0, the free parameters, p, the initial

47

Chapter 3. Dynamic Optimization in JModelica.org

condition values, z1,0 := z(t0), and t0 and t f if they are free. In other words,
we let

Z := (z1,0, z1,1, z1,2, . . . , z1,nc ,
x2,0, z2,1, z2,2, . . . , z2,nc ,
x3,0, z3,1, z3,2, . . . , z3,nc ,
...,
xne,0, zne,1, zne,2, . . . , zne,nc ,
p, t0, t f) ∈ RnZ .

(3.13)

be the vector containing all the NLP variables, where

nZ = (1+ nenc)nz + (ne − 1)nx + np + 2. (3.14)

Note that the actual order of the variables in the implemented framework is
different to allow contiguous access for efficiency reasons [Rodriguez, 2014,
Section 5.2.2].

NLP With Radau collocation and the above choice of optimization vari-
ables, the NLP—whose concepts and notation are discussed below—that
results from the transcription of (3.5) is

min. φ(t0, t f , z̃T ,p) +
ne∑
i=1

hi · (t f − t0)
nc∑
k=1

ω kL (ti,k, zi,k, z̃T ,p) , (3.15a)

w.r.t. Z ∈ RnZ ,
s.t. F(ti,k, zi,k,p) = 0, F0(t0, z1,0,p) = 0, (3.15b)

u1,0 −
nc∑
k=1

u1,k · {k(0) = 0, (3.15c)

�e(t0, t f , ti,k, zi,k, z̃T ,p) = 0, �i(t0, t f , ti,k, zi,k, z̃T ,p) ≤ 0, (3.15d)
Ge(t0, t f , z̃T ,p) = 0, Gi(t0, t f , z̃T ,p) ≤ 0, (3.15e)
zL ≤ zi,k ≤ zU , pL ≤ p ≤ pU , (3.15f)
t0,L ≤ t0 ≤ t0,U , t f ,L ≤ t f ≤ t f ,U , (3.15g)
∀(i, k) ∈ ([1..ne] $ [1..nc]) ∪ {(1, 0)},

ẋi,k =
1

hi · (t f − t0)

nc∑
m=0

xi,m · d{̃m
dτ (τk), ∀(i, k) ∈ [1..ne] $ [1..nc],

(3.15h)
xn,nc = xn+1,0, ∀n ∈ [1..ne − 1], (3.15i)

where ti,k := t̃i(τk) denotes the unnormalized collocation point k in ele-
ment i.

48

3.3 Direct Local Collocation

Timed Variables There are two approaches in the treatment of the timed
variables zT during the transcription. The first is to approximate z(Tj) by
the value of its corresponding collocation polynomial, that is, zi(τ(Tj)). A
less general approach is to assume that every time point Tj coincides with
some collocation point ti,k; that is, that there exists a map

Γ : [1..nT] → [1..ne] $ [1..nc] (3.16)

such that Tj = tΓ(j). We can then proceed to transcribe zT , defined analo-
gously to (3.4), into

z̃T :=
[
zΓ(1) zΓ(2) . . . zΓ(nT)

]
. (3.17)

The former approach is more general, as it does not assume the exis-
tence of Γ. It is also more user-friendly, since it does not force the user to
align the element mesh with the time points Tj. On the other hand, the
latter approach is more efficient for large nT , which is typical for param-
eter estimation problems. Henceforth we adopt the latter approach, which
assumes the existence of Γ.

Objective Given the assumed existence of Γ, the Mayer term of the ob-
jective (3.15a) is straightforward to transcribe as

φ(t0, t f , zT ,p) →= φ(t0, t f , z̃T ,p), (3.18)

where a →= b denotes that b, which belongs to (3.15), is the corresponding
transcription of a, which belongs to (3.5). The transcription of the Lagrange
term is more involved and utilizes Gauss-Radau quadrature within each
element:∫ t f

t0
L(t, z(t), zT ,p) dt =

ne∑
i=1

∫ ti

ti−1

L(t, z(t), zT ,p) dt

(
ne∑
i=1

hi · (t f − t0)
nc∑
k=1

ω kL (ti,k, z(ti,k), zT ,p)

→=
ne∑
i=1

hi · (t f − t0)
nc∑
k=1

ω kL (ti,k, zi,k, z̃T ,p) ,

(3.19)

where the quadrature weights ω k are given by

ω k :=
∫ 1

0
{k(τ) dτ. (3.20)

The objective (3.5a) is thus transcribed into (3.15a).

49

Chapter 3. Dynamic Optimization in JModelica.org

DAE and Initial Conditions The essence of direct collocation is in the
transcription of the system dynamics (3.5b). Instead of enforcing the DAE
system for all times t ∈ [t0, t f], it is only enforced at the collocation points.
Thus

F(t, z(t),p) = 0, ∀t ∈ [t0, t f]
→= F(ti,k, zi,k,p) = 0, ∀i ∈ [1..ne], ∀k ∈ [1..nc]. (3.21)

Due to the introduction of the NLP variable z1,0, the initial conditions
(3.5b) are seemingly straightforward to transcribe into F0(t0, z1,0,p) = 0.
However, this approach sometimes fails. Consider the case when F0 only
depends on t0, x(t0), and p, making it similar to the explicit initial condi-
tions (2.6). The value of u1,0 will then have no effect on neither x(t0) nor
u1, and consequently has no effect on the trajectories or objective. Thus, the
resulting NLP is ill-posed and has no unique solution; the KKT conditions
are singular. The approach taken in JModelica.org follows [Magnusson and
Åkesson, 2015]. Since u1,0 is not used to parametrize the collocation polyno-
mial u1, its value is already determined by the collocation point values u1,k.
The transcription of the initial conditions consequently also gives rise to the
extrapolation constraint (3.15c). While this way of determining u1,0 allows
the NLP to have a unique solution, the value is still largely inconsequential,
although still useful for visualization purposes.

However, the above assumes that the initial conditions are akin to (2.6).
We will in Section 3.3.3 discuss potential failure of the above approach in
the general case.

Bounds as Well as Path and Point Constraints Given the assumed
existence of Γ, the point constraints (3.5d) can be transcribed into (3.15e).
In the same approximative manner that we only enforced the DAE system
at the collocation points, the path constraints (3.5c) and the bounds (3.5e)
as well as (3.5f) are straightforwardly transcribed into (3.15d), (3.15f), and
(3.15g), respectively.

State Variable To preserve the inherent coupling of x and ẋ, which is
implicit in the dynamic setting, we enforce (3.12) at all the collocation points,
giving us the additional constraints (3.15h). These are not enforced at the
start time t0, where the state derivative ẋ instead is determined by the
DAE system and initial conditions. Finally, to get a continuous trajectory
for the state variable x, we add the constraints (3.15i).

NLP Solution By solving the resulting NLP (3.15), we may obtain an
approximate local optimum to the DOP (3.5). An important question is
under what conditions the solution of (3.15) converges to the solution of
(3.5) as either ne or nc tend to infinity. This question is largely unanswered.
[Kameswaran and Biegler, 2008] shows convergence of Radau collocation for
a very simple, but nevertheless important, case of (3.5) where the objective

50

3.3 Direct Local Collocation

is just a standard Mayer term, the system dynamics are given by an explicit
ODE and explicit state initial conditions, with no further constraints (and
some further technical assumptions). This result is based on the classical
optimality conditions for an ODE-constrained optimal control problem given
by Pontryagin’s maximum principle [Liberzon, 2012]. Extending these re-
sults to DAEs would require a corresponding theory for DAEs. Such a theory
has only been recently developed [Kunkel and Mehrmann, 2008], with no
accompanying convergence results for direct collocation. Consequently, for
many problems of interest, we do not know whether the solution of (3.15)
approximates the solution of (3.2). However, this usually seems to be the
case in practice, and so we take a leap of faith when solving the problems
of Chapter 5.

Solving (3.15) using Newton’s method requires all expressions of (3.15) to
be twice continuously differentiable with respect to Z. As stated earlier, this
means that φ, L, F, F0, �e, �i,Ge, and Gi all need to be twice continuously
differentiable, with one important exception: They do not need to be even
continuous with respect to the time t. That is, L, F do not need to be
continuous with respect to their first arguments and �e as well as �i do
not need to be continuous with respect to their third argument. This allows
for the treatment of a simple, but important, class of hybrid systems, which
only involves time events; that is, all switchings occur at predetermined
points in time.

Gauss and Lobatto Collocation The presented transcription is special-
ized for Radau collocation, which always places a collocation point at the end
of each element, and the rest are chosen in a manner that maximizes nu-
merical accuracy [Biegler, 2010, Theorem 10.1]. Lobatto collocation instead
places a collocation point at both the beginning and end of each element,
and Gauss collocation has no collocation points at the element boundaries.

The adaptation of this section to Gauss collocation only requires a few
additional points of consideration, caused by the lack of collocation points at
the mesh points. While Gauss collocation theoretically has a higher order
of convergence, it often performs worse than Radau in practice [Bausa
and Tsatsaronis, 2001; Biegler, 2007]. One reason for this is the superior
stability properties for Radau [Kameswaran and Biegler, 2008; Biegler,
2010], especially for high-index DAEs, which is important in the presence
of high-index inequality constraints, even if the DAE itself is low-index.

On the other hand, Lobatto collocation gives rise to new complications
already during implementation. An approach based on (3.9a) will lead to
overdetermined equality constraints in the NLP, resulting from having both
DAE and continuity constraints for the state variables at the start of each
element. This can be partially resolved by instead constructing polynomials
for the state derivative and integrating them to obtain the collocation poly-

51

Chapter 3. Dynamic Optimization in JModelica.org

nomials for the states. However, the Lobatto method still potentially suffers
from divergence of the costates (dual variables of the DOP), yielding inac-
curate primal solutions [Garg et al., 2010]. For these reasons, this thesis
focuses on the use of Radau collocation, rather than Gauss or Lobatto.

3.3.3 Transcription of Initial Conditions
The extrapolation constraint (3.15c) was introduced to get a unique solution
of z1,0 when transcribing the initial conditions in (3.5b). This approach
was designed with initial conditions that are similar to the explicit initial
conditions (2.6) in mind, and works well in such situations.

However, for general implicit initial conditions it can sometimes yield
unnecessarily inaccurate solutions. Consider the problem

minimize (x(t0) − 1)2 +
∫ 5

0

(
x2(t) + u2(t)

)
dt, (3.22a)

subject to ẋ(t) = x(t) + u(t), (3.22b)
ẋ(t0) = 0. (3.22c)

The solution of (3.15) with ne = 20 and nc = 1 (yielding a piecewise
constant input) is shown in Figure 3.2. The initial input u(t0) is used both
to determine the optimal initial state x(t0) and to control the system during
the time span of the first element, forcing the system to remain in the steady
state in the first element, which is clearly suboptimal. While the solution
still converges to the correct one as ne approach infinity, the convergence
order is reduced because of the incorrect treatment of the first element.

The problem is that (3.15c) enforces u0 = u1, even though we would
like to have u0 ,= u1 to let u0 determine the optimal initial state and u1 to
determine the optimal initial input. The solution is to simply remove the
constraint (3.15c).

The question is then whether or not to introduce (3.15c). As discussed
earlier, the omission of (3.15c) can cause ill-posed problems, whereas its
inclusion can cause reduced order of convergence. The answer is that (3.15c)
should be introduced for a (not necessarily unique) subset of u of maximal
cardinality that is not needed to parametrize the solution manifold for the
initial state x(t0) of the index-reduced initial equations (2.7). Unfortunately,
determining such a parametrization in the general case requires analytic
solution of the initial equations, which in general is not possible.

We could devise a symbolic method that only relies on structural infor-
mation to find a suitable parametrization x(t0) and does not need to solve
any equations. By performing a causality analysis using a block-triangular
ordering similar to the ones we will use in Chapter 4, we can determine
which initial states depend on which components of u(t0), and then select
a suitable subset of u(t0) to be constrained by u1 via (3.15c). However, such

52

3.4 Implementation

0.00

0.05

0.10

0.15

0 1 2 3 4 5

0.20

0.15

0.10

0.05

0.00

u

x

t
Figure 3.2 Solution of (3.22) obtained with deficient transcription of im-
plicit initial conditions. The transcription leads to a suboptimal input in the
first element.

a method is surprisingly complicated in the general case, and also will not
be able to deal with nonstructural singularities that arise from the ne-
glect of numerical information. Furthermore, this entire issue seems highly
academic in nature, as the author has yet to encounter a real problem
where the initial equations could not be transformed to only depend on t0,
x(t0), and p (possibly involving offline computations prior to optimization
to, for example, compute a desired steady state). Hence, we will not further
consider the details of such a symbolic method.

The theoretical issue of order reduction resulting from the overzealous
introduction of (3.15c) has a very pragmatic solution: Choose the length of
the first element h1 to be sufficiently small to make the error resulting from
the incorrect treatment of the first element negligible. This is similar to how
multistep methods for numerical integration [Brenan et al., 1996; Hairer
and Wanner, 1996]—such as the popular Backward Difference Formula
(BDF)—often solve the issue of obtaining a history of trajectory values
needed to perform an integration step: Use a low-order method with tiny
step size until sufficiently many values have been computed.

3.4 Implementation

The presented collocation framework is implemented in Python and dis-
tributed with JModelica.org under the GNU General Public License. All
user interaction takes place in Python, and is centered around the Python

53

Chapter 3. Dynamic Optimization in JModelica.org

interface to CasADi Interface, which serves as a three-way interface be-
tween the user, the DOP, and the collocation framework. An overview is
illustrated in Figure 3.3, which begins where the compilation toolchain
ends, see Figure 3.1.

Figure 3.3 The framework surrounding the implemented collocation
framework in JModelica.org. The framework starts with a representation
of the DOP in CasADi Interface generated by the compiler. The DOP is
then discretized by the collocation algorithm into an NLP, utilizing CasADi
to perform the symbolic operations of the transcription. The NLP is finally
solved by either IPOPT or WORHP.

The user can then call upon the collocation framework to solve the DOP,
which will transcribe it into an NLP and then solve it using either IPOPT
or WORHP, as decided by the user. The user provides options to the col-
location framework using a dictionary-like class, specifying things such as
discretization scheme, which NLP and linear solver to use, and additional
features such as those presented in Section 3.5. The NLP and linear solver
options are also provided directly to the collocation framework. The commu-
nication with these solvers is handled by the collocation framework through
CasADi’s NLP solver interface, so the user never has to interact with these
solvers directly. The complete workflow in Python will be demonstrated in
Section 3.6.

The result is stored in a textual format compliant with Dymola [Dassault
Systèmes, 2016]. This result is then loaded into Python, allowing for conve-
nient extraction of the trajectories. Because the hardest part of nonconvex
optimization is usually to find a suitable initial guess, it is important that
initial guesses can be conveniently provided from different sources. To this
end, the same result format is used to provide initial guesses, making it
convenient to provide initial guesses in the form of optimization or simula-
tion results generated by JModelica.org or Dymola. There have been efforts
within the Modelica community to standardize the result format [Pfeiffer
et al., 2012], which certainly would improve the utility of the framework if
they were to come to fruition.

The framework is designed to be symbolic in nature for maximal trans-
parency and interactivity, with CasADi being the foundation of the symbolic
engine. After the JModelica.org compiler has transferred the DOP to CasADi

54

3.5 Additional Features

Interface, a symbolic representation of the DOP is presented to the user.
The DOP can be modified using Python and CasADi, to for example incorpo-
rate constructs that are more conveniently scripted rather than encoded in
Modelica or Optimica. The NLP resulting from the direct collocation is also
represented symbolically and is accessible by the user. This allows advanced
users to diagnose the behavior of the NLP solver and also to trace the NLP
variables and constraints back to the original DOP.

3.5 Additional Features

Additional considerations are needed to satisfactorily solve (3.5) in general.
This section discusses the most important ones.

3.5.1 Initialization and Scaling
Solving large-scale nonconvex optimization problems requires accurate ini-
tial guesses of the solution to the problem for several reasons. The initial
guess must lie within the method’s region of convergence, meaning that it is
sufficiently close to a local optimum, in order for the solver to succeed. Fur-
thermore, for problems with multiple local minima, the initial guess must
lie in a suitable region in order to converge to a desirable local minimum.
Finally, automatic numerical scaling of the optimization problem is often
done based on the initial guess. This approach achieves good scaling in the
vicinity of the initial guess, but as the solver moves away from the initial
guess, the scaling may deteriorate because of nonlinearities.

Initialization Many problems can not be solved without user-specified
initial guesses. There are many ways of generating initial guesses for
DOPs [Safdarnejad et al., 2015]. Since we are targeting Modelica mod-
els, we have some special needs to keep in mind. Because the user often
does not construct their model from scratch, but instead relies on model
libraries developed by others, they will not have complete understanding of
all the model variables. Hence, they can not be expected to provide initial
guesses or bounds for all of the variables, which is a common approach in
tools for dynamic optimization. And even if they can, doing so is tedious
because of the size of typical Modelica models.

It is however reasonable to expect the user to be familiar with the
degrees of freedom of the problem, that is, u, p, t0 and t f . By forcing the
user to provide initial guesses of these, the system can then be simulated
to generate initial guesses for all of the variables. This approach has been
found to be convenient and work well in practice. It also has the added
benefit of generating initial guesses in the form of complete trajectories,
rather than constant values.

55

Chapter 3. Dynamic Optimization in JModelica.org

Scaling The performance of numerical optimizers relies on the problem
being reasonably well scaled numerically. Although Newton’s method and
quasi-Newton methods such as SR1 and BFGS are scale-invariant [Nocedal
and Wright, 2006], this only holds when employing exact arithmetic. Hence,
poor scaling can cause floating-point implementations to suffer from de-
creased convergence speeds or even divergence. There are many approaches
to scaling problems, all with the goal of achieving close to unitary mag-
nitude for relevant quantities, such as variables, functions, and condition
numbers [Betts, 2010, Section 1.16]. There is no way to achieve perfect scal-
ing, so the procedure is based on heuristics. For direct collocation, scaling
techniques can be applied either directly to the NLP (3.15), or to the original
DOP (3.5) (which then will propagate to the NLP during the transcription).

The scaling procedure can largely be automated, based on user-specified
variable initial guesses (some tools also utilize variable bounds to perform
scaling, but this would have limited use in Modelica). The automated scal-
ing in the implemented framework focuses on variable scaling, that is, it
exchanges the NLP variable Z j for the scaled variable Z̃ j according to
Z j = d j Z̃ j + e j. By an appropriate choice of d j and e j, the new variable
Z̃ j will have magnitude one. There are three strategies available in the
framework for choosing d j and e j, with the possibility of applying different
strategies for each individual DOP variable:

Time-Invariant Linear Scaling: The first approach is applied on the
level of the dynamic problem (3.5), by setting e j = 0 and d j to the nominal
value of the DOP variable corresponding to Z j. This nominal value is defined
either by the absolute value of the nominal attribute of the DOP variable,
which typically is set by the user, or computed based on the initial guess.
If the initial guess is given as a trajectory, the nominal value is chosen as
the maximum absolute value of the trajectory over time. Otherwise, the
nominal value is simply the absolute value of the constant initial guess.

Time-Invariant Affine Scaling: The second strategy is also applied on
the level of (3.5) and requires an initial guesses in the form of a trajectory for
the corresponding DOP variable. The idea is to choose d j and e j such that
the scaled trajectory has a minimum value of 0 and a maximum value of 1.
Let Zmax

j and Zmin
j denote the maximum and minimum value, respectively,

for the initial-guess trajectory of the DOP variable corresponding to Z j. The
scaling factors are then chosen as

d j = Zmax
j − Zmin

j , e j = Zmin
j . (3.23)

Time-Variant Linear Scaling: The third and final strategy is applied
on the level of the NLP. It simply sets e j = 0 and d j to be the absolute value
of the initial guess for Z j. Thus, it is only different from the time-invariant

56

3.5 Additional Features

linear scaling when initial guesses for the DOP variables are provided in
the form of trajectories rather than constant values.

Additional caution is needed in the choice of d j for all of the strategies,
since d j = 0 does not work and values relatively close to zero are prone to
make matters worse unless chosen with great care. The framework attempts
to detect these cases and fall back to more conservative scaling strategies
for the problematic variables.

The default scaling strategy is the time-invariant linear scaling, regard-
less of the form of the initial guess. It is preferred over the time-invariant
affine scaling for its simplicity and over the time-variant linear scaling be-
cause the time-variant scaling requires more accurate initial guesses than
typically are available to work better and is also more computationally
expensive because each collocation point is treated individually.

As mentioned before, it is not only the variables that need to be scaled,
but also other quantities, primarily the constraints. Unlike variable scaling,
numerical optimizers (including IPOPT and WORHP) usually implement
their own strategies for constraint scaling, most of which are also based on
the user-provided initial guess. The current framework relies on external
solvers to perform constraint scaling. This could however be improved upon,
by exploiting the temporal structure of the problem. The constraint scaling
of NLP solvers is akin to the time-variant linear scaling, in that it computes
an individual scaling factor for each constraint. Just like the time-variant
variable scaling, this puts high requirements on the initial guess to not
generate bad scaling factors. IPOPT however is less aggressive in its com-
putation of scaling factors, reducing them by a factor with a default value of
100. It may be preferable to instead do aggressive time-invariant constraint
scaling.

3.5.2 Input Discretization
Sometimes further restrictions on the input u are desirable in the DOP (3.5),
in particular constraining it to be piecewise constant. This is necessary to
for example take into account that modern controllers usually are digital,
which is especially important when using model predictive control (MPC),
where the input signals are kept constant between each sample. This is
supported in the framework by optionally enforcing ui to be constant for all
i and also possibly equal to ui+1; that is, only allowing changes in the input
at a user-specified subset of the element boundaries defined by blocking
factors, which may differ for different inputs. It is then also possible to
add penalties or constraints on the difference in the input values between
the element boundaries. This corresponds to penalizing or constraining the
input derivative in the case that the input is not enforced to be piecewise
constant.

57

Chapter 3. Dynamic Optimization in JModelica.org

3.5.3 Algorithmic Differentiation Graphs
Using the framework to solve large-scale problems is computationally expen-
sive, both in terms of memory and computation time. The most memory is
usually used during the computation of the Hessian of the NLP Lagrangian
by CasADi’s algorithmic differentiation (AD), which often requires memory
in the order of gigabytes. The framework implements collocation based on
either CasADi’s SX or MX graphs (see Section 3.2.3), or a mixture of both,
allowing the user to conveniently perform a tradeoff between memory use
and execution time by choosing which graph types to use. The mixture em-
ploys SX graphs to build up the expressions for the constraints and objective
in the DOP (3.5), which then are used to construct MX graphs for the NLP
(3.15) by function calls in each collocation point.

3.5.4 Further Extensions
The collocation framework of this thesis has been extended with several
other features, many of which are primarily due to the work of others. We
briefly describe the notable ones here.

[Rodriguez, 2014] interfaced the framework with a prototypical paral-
lelized NLP solver [Word et al., 2014] via C-code generation of the NLP
functions and their derivatives. An important part of this is a new way of
constructing the AD graphs similar to what is discussed in Section 3.5.3, but
instead using MX graphs to construct a hierarchy of functions calls, which
not only allows for generation of more efficient C code, but also reduces
memory usage (at the cost of function evaluation times).

[Axelsson et al., 2015] made a high-level framework for MPC on top of
the collocation framework, which was further extended in [Ekström, 2015]
with real-time capabilities and code generation. In a similar fashion, high-
level frameworks have also been made for grey-box identification [Palmkvist,
2014] and moving horizon estimation [Larsson, 2015].

[Magnusson et al., 2015] extended the framework with capabilities for
solving problems involving parametric sensitivities, in particular for solving
optimal experimental design problems. [Fouquet et al., 2016] extended the
framework with capabilities for handling a special class of hybrid systems,
in which the switchings depend explicitly on the system input, based on an
extension of the sum up rounding method [Sager, 2005].

3.6 Example

To demonstrate how the framework is used, we will present the full code for
solving (2.16). We will go through the full procedure of first simulating the
system to generate an initial guess, then solve the DOP for different values

58

3.6 Example

of r, and then simulate the system again using the optimal inputs with
adaptive step sizes in the discretization to control the numerical accuracy.

A Modelica implementation of the VDP oscillator was given in List-
ing 2.1. Listing 2.3 extended the VDP model with the optimization formu-
lation corresponding to (2.16) using Optimica. This Modelica and Optimica
code can be used to solve the problem using the Python and JModelica.org
code in Listing 3.1.

Listing 3.1 Python code for optimal control of the VDP oscillator using
JModelica.org. The code first simulates the system to generate an initial
guess, then finds the optimal input, and then simulates again using the
optimal input and adaptive step sizes. The Modelica and Optimica code of
Listings 2.1 and 2.3 are assumed to have been collected in a file vdp.mop.

Import JModelica.org methods
from pymodelica import compile_fmu
from pyfmi import load_fmu
from pyjmi import transfer_optimization_problem

Compile and simulate model
fmu = compile_fmu('VDP', 'vdp.mop')
model = load_fmu(fmu)
sim_res = model.simulate(final_time=10.)

Compile DOP and transfer to CasADi Interface
dop = transfer_optimization_problem('VDP_DOP', 'vdp.mop')

Set solver options
opts = dop.solve_options()
opts['n_e'] = 100 # Number of elements
opts['init_traj'] = sim_res # Initial guess trajectories
opts['IPOPT_options']['linear_solver'] = "ma27"

Solve for different values of r
for r in [0.1, 1.0, 10.0]:

dop.set('r', r)
dop_res = dop.solve(options=opts)

Simulate with optimal inputs to verify discretization
model.reset() # Reset state
sim_res = model.simulate(

final_time=10., input=dop_res.get_opt_input(),
options={'CVode_options': {'rtol': 1e-6}})

We first import the compilation methods from JModelica.org and then
compile and simulate the model to generate an initial guess. By not speci-
fying the input values, it defaults to zero, which is sufficient for this simple
problem. Next we compile the dynamic optimization problem and solve it

59

Chapter 3. Dynamic Optimization in JModelica.org

for r ∈ {0.1, 1, 10} after setting some solver options. Finally, we simulate
the model again, but this time with the different optimal inputs. By com-
paring the direct collocation trajectories with the simulated trajectories, it
can be ascertained that a sufficiently fine discretization has been used in
the direct collocation. The simulated trajectories were previously shown in
Figure 2.2. The code for generating plots, which uses matplotlib [Hunter,
2007], is omitted.

This example demonstrates the flexibility and modularity of the frame-
work. The modeling process is cleanly separated from the solution procedure
and the same model is conveniently used to simulate the system to generate
initial-guess trajectories, to solve the optimal control problem, and finally
to verify the fixed-step collocation discretization by simulating the optimal
input. It also hints at the interactivity offered by Python scripting, which
allows us to easily solve and modify the problem formulation repeatedly in
an interactive manner.

3.7 Conclusion

We have presented the framework for dynamic optimization in the open-
source platform JModelica.org. The framework solves problems formulated
using the modeling language Modelica and its extension Optimica. The
framework implements a method utilizing direct collocation, of which the
details have been discussed based on the Radau scheme. The implementa-
tion uses CasADi to construct the nonlinear program to efficiently obtain
derivative information using algorithmic differentiation, and also to get con-
venient access to state-of-the-art nonlinear programming numerical solvers.
The use of the framework has been demonstrated on a simple optimal con-
trol problem.

While no rigorous benchmark has been made to compare the efficiency of
the framework with other tools for general-purpose dynamic optimization,
the author believes the framework to be highly competitive in terms of
online computational times (but probably not in terms of memory usage).
This belief is corroborated by the following work.

• [Magnusson and Åkesson, 2012] found the framework of this chapter
to be almost an order of magnitude faster than the old JMI-based
framework in JModelica.org for optimal control of a large-scale power
plant.

• [Lazutkin et al., 2014] found JModelica.org to be on par with other
CasADi-based implementations of different flavors of multiple shoot-
ing for a small-scale satellite control problem.

60

3.7 Conclusion

• [Magnusson et al., 2015] found JModelica.org to be faster than
gPROMS [Process Systems Enterprise, 2016]—state of the art of solv-
ing optimal experimental design problems—and a custom MATLAB
framework for optimal experimental design of a small-scale fed-batch
reactor.

• [Parini, 2015] found JModelica.org to be almost two orders of magni-
tude faster than OpenModelica [Ruge et al., 2014] for optimal control
of a large-scale power plant (albeit with worse convergence properties,
which we address in Chapter 4).

61

4
Symbolic Elimination Based
on Block-Triangular
Ordering

A problem solved, is a problem caused.

Karl Pilkington

The DAE (3.5b) is the main source of computational expense in the solution
of (3.15). This holds especially true for Modelica models, where simple
models can contain hundreds of variables, which turn into thousands of
variables after simultaneous discretization. When dynamically simulating
DAE systems, this is commonly dealt with by transforming the DAE to
an ODE using techniques including index reduction, causalization, and
tearing [Cellier and Kofman, 2006]. This transformation is (when possible)
done in a symbolic preprocessing step, prior to numerical solution, which
essentially hides the algebraic variables from the numerical solver, exposing
only a minimal set of equations and variables: the state variables.

On the other hand, direct collocation is conventionally applied on the
full DAE [Biegler, 2010; Betts, 2010]. In this chapter we consider the use
of ODE transformation techniques on dynamic optimization problems. But
rather than completing the transformation all the way to an explicit ODE,
we will try to find the middle ground between the full implicit DAE and an
equivalent ODE that maximizes computational efficiency and convergence
robustness.

While these techniques can be applied in combination with any of the
standard numerical methods for solving DAE-constrained optimization prob-
lems that were discussed in Section 2.3.4, the performance of some methods
will be affected more than others. We will focus on the use of direct colloca-
tion and how it is affected by these transformation techniques.

62

4.1 Illustrative Example

Modelica models tend to be large, sparse, and have considerably more
algebraic than differential variables, making them a prime target for the
considered methods. We will however in Chapter 6 see that the presented
methods hold merit also for more typical textbook DAEs.

4.1 Illustrative Example

To demonstrate the main ideas of the symbolic eliminations that we will
employ, we will first go through a simple example. If some steps are unclear
to the reader, they should be revisited after Section 4.3, where the general
case is treated in detail. Consider the simple time-invariant DAE

ẋ+ y1 + y2 − y3 = 0, (4.1a)
xy3 + y2 −

√
x− 2 = 0, (4.1b)

2y1y2y4 −
√
x = 0, (4.1c)

y1y4 +
√
y3 − x− y4 = 0, (4.1d)
y4 −

√
y5 = 0, (4.1e)

y2
5 − x = 0. (4.1f)

A structural incidence matrix for (4.1) is (4.2).

ẋ y1 y2 y3 y4 y5
(4.1a) 1 1 1 1 0 0
(4.1b) 0 0 1 1 0 0
(4.1c) 0 ∗ ∗ 0 ∗ 0
(4.1d) 0 ∗ 0 ∗ ∗ 0
(4.1e) 0 0 0 0 1 ∗
(4.1f) 0 0 0 0 0 ∗

(4.2)

where zeros indicate independence, ones indicate linear dependence, and
asterisks indicate nonlinear dependence. Inspection of (4.1) reveals that we
can eliminate y4 using (4.1e), so we use

y4 =
√
y5 (4.3)

to substitute y4 with √y5, yielding

ẋ+ y1 + y2 − y3 = 0, (4.4a)
xy3 + y2 −

√
x− 2 = 0, (4.4b)

2y1y2
√
y5 −

√
x = 0, (4.4c)

y1
√
y5 +

√
y3 − x−

√
y5 = 0, (4.4d)

y2
5 − x = 0. (4.4e)

63

Chapter 4. Symbolic Elimination Based on Block-Triangular Ordering

Such eliminations can be identified by permuting (4.2) to a block-triangular
matrix with blocks along the diagonal—henceforth referred to as diago-
nal blocks, despite them not being diagonal in general—of minimal size.
Permuting (4.2) to such a form yields (4.5).

y5 y4 y1 y2 y3 ẋ
(4.1f) ∗ 0 0 0 0 0
(4.1e) ∗ 1 0 0 0 0
(4.1b) 0 0 0 1 1 0
(4.1c) 0 ∗ ∗ ∗ 0 0
(4.1d) 0 ∗ 1 0 ∗ 0
(4.1a) 0 0 ∗ ∗ ∗ 1

(4.5)

Note that some previously linear incidences have been reclassified as nonlin-
ear and vice versa; we are no longer interested in the linearity of incidences
outside of the diagonal blocks, and hence mark them all with asterisks.
Within the diagonal blocks, we only care about linearity with respect to the
variables in the block. For example, the incidence of the equation–variable
pair ((4.1d), y1) that was previously considered to be nonlinear is now con-
sidered to be linear. An elimination such as (4.3) can be found by identifying
the diagonal blocks that are scalar and linear. The only algebraic variable
that can be eliminated with this approach in this example is y4.

We can however go further in our elimination procedure by eliminating
y1 and y2 from (4.1d) and (4.1b), respectively. That is, we identify

y1 =
x+√y5 −

√y3
√y5

, (4.6a)

y2 = 2+
√
x− xy3, (4.6b)

and through substitution obtain the DAE

ẋ+
x+√y5 −

√y3
√y5

+ 2+
√
x− xy3 − y3 = 0, (4.7a)

2
x+√y5 −

√y3
√y5

(2+
√
x− xy3)

√
y5 −

√
x = 0, (4.7b)

y2
5 − x = 0. (4.7c)

The eliminations (4.6) can be found by tearing the 3 $ 3 diagonal block.
Selecting y3 as tearing variable and (4.1c) as tearing residual, we get the

64

4.2 Related Work

torn incidence matrix (4.8).

y5 y4 y1 y2 y3 ẋ
(4.1f) ∗ 0 0 0 0 0
(4.1e) ∗ 1 0 0 0 0
(4.1d) 0 ∗ 1 0 ∗ 0
(4.1b) 0 0 0 1 1 0
(4.1c) 0 ∗ ∗ ∗ 0 0
(4.1a) 0 0 ∗ ∗ ∗ 1

(4.8)

The eliminations (4.6) are then identified as the diagonal incidences in the
upper left subblock of the torn block, which are feasible since this subblock
is triangular (in this case it is even diagonal) and each element along the
diagonal is linear. Comparing (4.7) with (4.1), we have only 2 instead of 5
algebraic variables, but the residuals are more complicated.

4.2 Related Work

The standard approach of discretizing the full DAE relies on fill-reducing
orderings, such as nested dissection [George, 1973], for efficient numerical
linear algebra and numerical pivoting for stability [Duff et al., 1986]. While
our proposed approach of using causalization techniques has been used in
the context of dynamic optimization before [Franke, 2002; Bachmann et al.,
2012; Pfeiffer, 2012; Franke et al., 2015], in this thesis we consider the
effects they have on the solution procedure. We also do not complete the
causalization all the way to an explicit ODE, but rather choose to keep some
algebraic variables and implicit equations for efficiency.

[Safdarnejad et al., 2015] consider the use of block-triangular decom-
positions for the purpose of more efficiently generating initial guesses to
(3.2) by solving square problems (with fixed degrees of freedom), and in
particular identifying infeasibilities. They do however not consider block-
triangular decompositions for the actual solution of (3.2). [Fletcher, 1998]
considers the use of block-triangular ordering and tearing for efficient and
sparsity-preserving orderings for implicit LU factorization tailored for linear
programming.

The main purpose of causalization is the efficient treatment of algebraic
equations. There are other approaches to achieving this. One technique
that is common when using direct multiple shooting is the elimination of
all algebraic variables in the shooting nodes by linearizing the consistency
conditions (algebraic equations) in each iteration [Diehl et al., 2002], which
is possible for semi-explicit index-one DAEs. Another loosely related concept
is the use of reduced-space methods [Cervantes et al., 2000] which primar-
ily work in the null space of the NLP equality constraints, which can be

65

Chapter 4. Symbolic Elimination Based on Block-Triangular Ordering

beneficial when there are few degrees of freedom, as is typically the case in
dynamic optimization problems. Since these techniques are applied to the
NLP rather than the dynamic problem (3.5), they could be combined with
the ideas presented in this chapter with potential benefits, but such pos-
sibilities are not considered further in this thesis. Reduced-space methods
are also related to the concept of condensing quadratic programs arising in
MPC with linear(ized) dynamic equations, allowing for elimination of the
state variables. [Axehill, 2015] considers sparsity preservation in this con-
text through partial condensation, which exploits temporal sparsity rather
than the sparsity of the dynamics. Another possibility of exploiting this
temporal sparsity when employing direct local collocation is the use of par-
allelization by exploiting the arrowhead structure of the KKT system that
arises due to the temporal decoupling of the finite elements [Word et al.,
2014]. This has great potential speedups when there are significantly more
algebraic than differential variables, a sufficiently large amount of finite
elements is used, and a large number of processor cores are available.

4.3 Causalization, Tearing, and Pivot Selection

In Section 3.2.3 we listed five important symbolic transformation steps per-
formed by the JModelica.org compiler. In this section we review how the two
final steps, causalization and tearing, are commonly employed when solv-
ing DAE simulation problems. We also describe well-established techniques
for selecting pivot elements in direct, sparse linear solvers, which serve as
inspiration for the sparsity-preservation techniques that we devise.

4.3.1 Causalization
Conceptually, an explicit ODE allows the computation of ẋ(t) given the
current known variables t, x(t),u(t), and p. After having performed index
reduction as discussed in Section 2.2.3, the remaining steps of the ODE
transformation can thus be considered equivalent to solving the square
system

F(z; t, x,u,p) = 0, (4.9)

where z := (ẋ, y). Note that unlike Chapter 3, z no longer includes x and
u. Also note that we have now dropped the dependence on time for ẋ, x, y,
and u, since we with this perspective only consider them as elements of Rn

rather than functions.
While solving (4.9) can be done in a straightforward numerical manner

by applying, for example, Newton’s method, such an approach may be ineffi-
cient and may also be practically challenging because of the need of a having
a sufficiently good initial guess of the solution for convergence. The idea of

66

4.3 Causalization, Tearing, and Pivot Selection

causalization and this chapter is to apply symbolic transformations to the
problem to allow for more efficient subsequent numerical solution. Note that
it is dubious whether the application of numerical methods to (4.9) really
can be considered to result in an explicit ODE, since a closed-form expres-
sion for f has not been found (in fact, one may not even exist). However,
typical numerical ODE solvers will not be able to tell the difference as long
as f can be evaluated.

Causalization can be divided into two steps: matching and block-lower
triangular (BLT) ordering. The first step is to find a perfect matching be-
tween each scalar component of F and each scalar component of z, meaning
that each equation is matched to a single variable and vice versa. Such a
matching exists if and only if the structural Jacobian (2.13) is structurally
nonsingular, as guaranteed by JModelica.org’s index reduction. Finding per-
fect matchings is a well-studied graph-theoretic problem with several avail-
able efficient algorithms. JModelica.org uses the Hopcroft-Karp [Hopcroft
and Karp, 1973] algorithm, which has the best known worst case perfor-
mance and often performs acceptably in practice [Setubal, 1993].

To construct a desired BLT ordering, we define the structural incidence
matrix of the DAE, whose elements are defined by

struct Fi, j :=


0 or ∗, if ∇z j Fi " 0,
1 or ∗, if ∇z j Fi ," 0 and ∇2

z,z j Fi " 0,
∗, otherwise,

(4.10)

that is, 0 denotes incidences that do not depend on unknowns, 1 denotes
incidences that depend affinely—henceforth called linearly—on unknowns,
and ∗ denotes any kind of incidence. The reason for the incomplete definition
of struct Fi, j regarding the occurrence of ∗ was elucidated in Section 4.1,
where we noted that certain elements of the incidence matrix are of no con-
sequence to us. The main step of the causalization procedure is to permute
the DAE structural incidence matrix to a BLT form. The result is that the
equations and variables of the DAE have been sorted so that the DAE can
be described by

F1(z1; v1) = 0, (4.11a)
F2(z2; v2) = 0, (4.11b)

...
Fm(zm; vm) = 0, (4.11c)

where Fi corresponds to a diagonal block (colloquially known as an algebraic
loop if it is not scalar valued), m is the number of such blocks, zi is the

67

Chapter 4. Symbolic Elimination Based on Block-Triangular Ordering

unknown variables of Fi, and

vi := (z1, z2, . . . , zi−1, t, x,u,p) (4.12)

is the unknown variables of preceding blocks and the known variables. In
other words, we have found permutation matrices P and Q such that

P struct(F)Q =




F1,1 0 0 · · · 0
F2,1 F2,2 0 · · · 0
F3,1 F3,2 F3,3 · · · 0
...

...
...

. . .
...

Fm,1 Fm,2 Fm,3 · · · Fm,m


 , (4.13)

where Fi, j := struct Fi(z j; z1, . . . , z j−1, z j+1, . . . , zi, t, x,u,p).
This form allows the sequential treatment of each diagonal block, allow-

ing us to solve multiple small systems rather than a single large. Further-
more, it enables specialized treatment of each diagonal block, allowing the
exploitation of equation structure that may exist within a diagonal block
but not in the full system F, such as linearity.

Consequently, we are interested in a BLT decomposition that has the
maximal number of diagonal blocks, or equivalently, diagonal blocks of
minimal size. This form turns out to be unique in the sense that the number
of diagonal blocks and their respective sizes and the variables and equations
within a diagonal block are unique, but the ordering of diagonal blocks and
orderings of variables and equations within the blocks are in general not
unique. A trivial consequence of this form is that the diagonal blocks are
irreducible.

Finding a BLT ordering that is optimal in this sense is equivalent to
finding the strongly connected components of the directed graph defined
by the equation–variable matching as follows. For each matched equation–
variable pair, create a vertex. For each nonzero struct Fi, j, create an edge
from the vertex corresponding to equation i to the vertex corresponding
to variable j. This will create loops on all of the vertices, which may be
removed.

Tarjan’s algorithm [Tarjan, 1972] is widely regarded as the most efficient
algorithm for finding the strongly connected components of a directed graph
[Cellier and Kofman, 2006], with linear complexity in the number of vertices
and edges. It also has the added benefit of not only identifying the strongly
connected components, but also topologically sorting them so that all edges
out of a component lead to preceding components, giving us the sought BLT
ordering.

Block-triangular orderings are also useful in contexts other than DAE
systems, such as solving sparse, unsymmetric linear equations [Duff and
Reid, 1996].

68

4.3 Causalization, Tearing, and Pivot Selection

4.3.2 Tearing
All that remains in the computation of ẋ is the solution of each Fi. In
general this will require iterative numerical methods. We will however not
proceed down this route at this stage. We will instead only rely on symbolic
techniques, without involving iterative methods, in our computation of ẋ.
Consequently, we will not go all the way to an explicit ODE. The details
of this are discussed in Section 4.4. An important part of this procedure is
the use of tearing [Kron, 1963; Duff et al., 1986; Elmqvist and Otter, 1994;
Baharev et al., 2016a]. Tearing is a method for solving sparse systems of
equations that lack significant structure, such as being banded or block di-
agonal. The idea is to order the variables and equations to get a partitioning
of the system

0 = Fi(zi; vi) =
[
F̄i(z̄i; ẑi, vi)
F̂i(ẑi; z̄i, vi)

]
(4.14)

such that the first partition F̄i is highly structured, allowing this part of the
system to be solved efficiently on its own and then utilized in the solution
of the full system by block elimination.

Tearing can be done in different ways, for different applications, with
different goals in mind. We apply tearing to the diagonal blocks of the BLT
form. We seek a partitioning such that one part of the diagonal block is
triangular and linear along the diagonal. That is, we find permutations Pi

and Qi such that

Pi struct
(
Fi)Qi =

z̄i ẑi





1
0 ∗ F̄i1

∗ . . .
1

∗ ∗ F̂i

, (4.15)

where z̄i is called the causalized variables, F̄i the causalized equations
(because of the lower-triangular structure), ẑi the tearing variables, and F̂i

the tearing residuals. This form is appealing because it allows for symbolic
elimination of the causalized variables in terms of the tearing variables;
that is,

z̄i =
(
F̄i)−1

(0; ẑi, vi) =: H̄i(ẑi, vi). (4.16)

The fact that F̄i is triangular and linear along the diagonal allows for
efficient and numerically (backward) stable [Trefethen and Bau, 1997] com-
putation of

(
F̄i)−1 through forward substitution. The remaining equations

69

Chapter 4. Symbolic Elimination Based on Block-Triangular Ordering

to be solved for ẑi numerically, typically using Newton’s method, are given
by

Ĥi(ẑi) := F̂i (ẑi; H̄(ẑi, vi), vi) = 0. (4.17)

The benefits of this approach over solving the full diagonal block (4.14)
numerically is that (4.17) has fewer variables and equations, equal to the
number of tearing variables, often allowing it to be solved more efficiently.
But a perhaps more important benefit is that a sufficiently good initial guess
for convergence is only needed for ẑi, whereas solving the full system would
also require a sufficiently good guess for z̄i. For these reasons, it is desirable
to find a partitioning that minimizes the number of tearing variables and
residuals. Unfortunately, this problem is NP-hard [Baharev et al., 2016c].
While in many cases it is tractable to solve the problem to optimality, it
is common to instead apply heuristics to find near-optimal partitionings.
The tearing algorithm used in JModelica.org, and in this thesis, is based
on the heuristics described in [Meijer, 2011]. The core of these heuristics is
to choose variables and equations that have a large number of incidences
as tearing variables and residuals, making the remaining equations more
sparse and therefore more likely to be causalizable.

The use of tearing is however a double-edged sword. While the symbolic
solution of (4.16) and numerical solution of (4.17) are numerically stable,
the tearing residuals (4.17) may be ill-conditioned even if the full system
(4.14) is not. Furthermore, even if the tearing residuals and full system
are well-conditioned, the numerical computation of z̄i through (4.16) af-
ter having computed the solution of (4.17) may be numerically unstable.
Another potential drawback is that (4.17) is significantly more dense than
(4.14), which may cause it to actually be more expensive to solve if sparsity
is exploited in the computations. This topic is discussed further below. In
conclusion, there is more to the choice of tearing variables and residuals
than just minimizing their number.

4.3.3 Pivot Selection in Direct, Sparse Linear Solvers
When solving a nonlinear system of equations with Newton’s method, the
symbolic elimination of variables is computationally equivalent to a priori
selection of pivot elements in the linear equation solver in each Newton
iteration. Since pivots are selected based on numerical values to prevent
numerical instability (caused by error growth because of numerical round-
off), a priori selection based entirely on structural, as opposed to numerical,
information can lead to numerical instability, as mentioned in Section 4.3.2
and discussed in [Duff et al., 1986].

Another potential issue of blindly eliminating variables is that the re-
duced system may be significantly more dense. As opposed to dense direct
linear solvers, sparse direct linear solvers do not only select pivots to min-

70

4.4 Symbolic Elimination for Dynamic Optimization

imize error growth, but also to minimize fill-in. The typical approach is
to select as pivot element the element that causes the least amount of
estimated fill-in in the matrix factors while also being bigger (in magni-
tude) than a fraction of the largest element in the same column. This is
called partial pivoting. The reason that only an estimate of the fill-in is
used is because of the computational intractability of computing the fill-in
caused on a global level (the final matrix factors). The most widely used
estimate of fill-in is the Markowitz criterion [Markowitz, 1957]. Let nnz M
denote the number of nonzero elements of M. When LU-factorizing a sparse
(sub)matrix M, the Markowitz criterion selects as the next pivot the element
Mi, j that minimizes

(−1+ nnzMi,:) · (−1+ nnzM:, j), (4.18)

typically out of those elements satisfying

pMi, jp ≥ ptol max
l
pMl, jp, (4.19)

where 0 < ptol ≤ 1 is the pivot tolerance. The red part of (4.18) corresponds
to the number of dependencies used in the elimination of element Mi, j, with
the incidence of Mi, j itself being subtracted. The blue part of (4.18) is the
number of equations in which Mi, j will be substituted by its dependencies,
with the equation used to eliminate Mi, j being subtracted. A small value
of ptol allows for a small value of (4.18), leading to fast computations. On
the other hand, a smaller value of ptol leads to worse error bounds of the
solution.

Another useful estimate is that of local minimum fill-in, also proposed
in [Markowitz, 1957], which is a better but more expensive estimate. The
difference is that local minimum fill-in computes the actual fill-in in each
stage, whereas the Markowitz criterion estimates the fill-in by the amount of
incidences in the pivot row and column; that is, it does not take into account
that some of the incidences already occur in the remaining equations and
hence do not cause additional fill-in. The sparsity-preservation techniques
of Section 4.4.3 are related to these ideas.

4.4 Symbolic Elimination for Dynamic Optimization

In Section 4.3 we reviewed how implicit DAEs can be transformed to explicit
ODEs. While almost all of the steps were symbolic in nature, in the end we
were left with the algebraic loops Fi = 0 (which can be further symbolically
reduced through the use of tearing), which in general will require numerical
iterative methods to solve. However, going all the way to an explicit ODE is
not necessary when applying direct collocation, as collocation methods are

71

Chapter 4. Symbolic Elimination Based on Block-Triangular Ordering

perfectly capable of dealing with low-index (and to some extent also high-
index) implicit DAEs. In this section (and also in [Magnusson and Åkesson,
2016]) we describe how the causalization techniques can be applied to (3.5)
to symbolically eliminate many of the algebraic variables.

We will describe various approaches to symbolic elimination which can
be combined in different ways, giving rise to different schemes of symbolic
elimination. In Chapter 6 we will compare the performance of these schemes
to each other. All schemes start by applying the first three steps of the sym-
bolic procedure of Section 3.2.3—alias elimination, variability propagation,
and index reduction—to the DAE in (3.5b) in the standard manner. The
first scheme is obtained by stopping the symbolic transformations at this
point.

Scheme 0
Do not eliminate any algebraic variables (other than those eliminated by
alias elimination and variability propagation). 2

This scheme can be considered to be the standard approach when em-
ploying direct collocation to dynamic optimization problems, although many
dynamic optimization tools do not perform any of the the first three sym-
bolic steps. Our lofty goal is to devise a scheme that always outperforms
Scheme 0 in terms of computation time, which requires us to strike a bal-
ance between the benefits and drawbacks of the techniques discussed in
Section 4.3

4.4.1 Elimination in Scalar, Linear Diagonal Blocks
We proceed by applying the standard causalization procedure described in
Section 4.3.1. We next identify the diagonal blocks Fi of the BLT form
that are both scalar and linear; that is, struct Fi = 1. The corresponding
variables zi of these blocks, which are scalar, are considered for elimination.
By elimination we mean that all occurrences of zi in (3.5) are substituted
by (Fi)

−1
(0; vi) using (4.11). Note that the computation of (Fi)

−1 in this
case is just division by a single, scalar, closed-form expression1. After this
elimination step, the variable zi and the equation to which it has been
matched are removed from the problem.

In a first effort, we choose to eliminate all such variables (whose matched
equations are scalar and linear with respect to the variable) that are un-
bounded, that is, those for which the corresponding elements of L and U
are −∞ and +∞, respectively. No other variables are eliminated.

1 In the general case, care is needed to ensure that this scalar expression is nonzero [Meijer,
2011; Baharev et al., 2016b]. However, since this is always the case for the problems of
Chapter 5, we henceforth ignore this issue for the sake of simplicity.

72

4.4 Symbolic Elimination for Dynamic Optimization

Scheme 1
Eliminate those algebraic variables that are unbounded, belong to scalar
diagonal blocks, and whose incidences in the diagonal blocks are linear. 2

A consequence of eliminating bounded variables is that the linear bound
is transformed into a nonlinear inequality constraint (it is moved from
the first part of (3.5e) to the second part of (3.5c)). Since IPOPT trans-
forms (2.18) to (2.19), any bounded variable that we eliminated will get
reintroduced again as a slack variable, leading to no difference in the di-
mension of the KKT system that is solved. So there is no obvious benefit
in eliminating bounded variables. But while the size of the KKT system is
unaffected, the structure is not. One situation when the change in struc-
ture is potentially harmful is when the NLP functions are undefined if the
algebraic variable bound is not satisfied. Since IPOPT iterates always are
feasible with respect to the variable bounds, but not necessarily the non-
linear inequality constraints, eliminating bounded algebraic variables can
cause evaluation errors which otherwise would not have occurred. For these
reasons, we do not consider the elimination of bounded variables.

There is a problem with the approach of only eliminating unbounded
variables. Unbounded variables are in JModelica.org identified by their
lack of finite values of their min and max attributes. As pointed out in Sec-
tion 2.3.3, these attributes are already defined by Modelica with a slightly
different meaning. Many variables in Modelica models are thus assigned
min and max values that are not originally intended to be used as constraints
in an optimization problem. For example, all variables declared as temper-
atures inherit a lower bound of 0 [K], even though these bounds will never
be active at feasible points. Because of this, we force the user to specify
which variables are expected to be actively bounded, and consider all other
variables as unbounded for the purpose of elimination, even if they have
finite min and max values.

We only consider the elimination of algebraic variables, and not state
variables. While the techniques we use to find closed-form expressions for
computing algebraic variables also can be used to find closed-form expres-
sions for the state derivatives (which indeed is what is done when doing full
causalization to obtain an explicit ODE), finding these expressions is not
sufficient for the elimination of the state derivatives. In order to eliminate
the state derivatives, we would also have to eliminate the corresponding
state variables, which would require the solution of differential equations.
Finding closed-form solutions to differential equations is rarely possible for
the cases of interest, so this possibility is not considered further in this
thesis.

There is however another potential use of the closed-form expressions
for the state derivatives, that does not involve their elimination. All occur-

73

Chapter 4. Symbolic Elimination Based on Block-Triangular Ordering

rences of a state derivative, except the ones in the matched diagonal block
equations, can be substituted by the closed-form expression. While this will
never affect NLP size, it will affect the NLP sparsity in a way that depends
on the simultaneous discretization method. The collocation framework of
Chapter 3 creates NLP variables for all state derivatives, see (3.15h). So
from a sparsity perspective it is never good to substitute the differential
variable derivatives in JModelica.org. However, another common approach
to direct collocation is to eliminate the state derivatives by using (3.15h). In
this case it is not obvious whether such substitutions would be beneficial.
Comparing the number of incidences from a sparsity perspective would be
easy enough, but since the closed-form expressions found via the causal-
ization tend to be highly nonlinear whereas the collocation equations are
linear, a pure sparsity perspective is probably too narrow to be useful.

While it is known that performing eliminations along the lines of
Scheme 1 can be beneficial for dynamic optimization, tools usually require
such eliminations to be manually identified and performed by the user.
Such work can be tedious and, depending on the modeling language, lead
to convoluted and model code and inefficient computations. The techniques
of Section 4.3.1 enable the automation of Scheme 1.

4.4.2 Elimination in Nonscalar Diagonal Blocks
We next consider the elimination of variables in nonscalar diagonal blocks.
If the diagonal blocks are linear—that is, struct Fi ∈ {0, 1}ni$ni , where ni
is the dimension of zi—a conceivable approach would be to invoke a nu-
merical (rather than symbolical) factorization algorithm to solve for zi. This
approach however requires the use of MX graphs already at the level of the
DAE, see Section 3.5.3. While this has been implemented in JModelica.org,
the resulting NLP function evaluation times are exceedingly slow. This can
be circumvented in two ways. Either a sophisticated mixture of SX and MX
graphs to represent the DAE in JModelica.org could be used, or CasADi’s
SX graphs could be extended to allow function calls. Both of these possibil-
ities are beyond the scope of this thesis. Hence, we do not further consider
the embedding of numerical methods in the DAE.

Another possibility of treating linear, nonscalar blocks is symbolic fac-
torization. While this is readily supported by the implemented framework,
experiments on the problems that will be presented in Chapter 5 have
shown that symbolic QR factorization all too often leads to numerical is-
sues caused by instability because of the lack of numerical pivoting. This
often prohibits its practical use, and so is not considered further in this
thesis.

There is however another approach that allows us to eliminate some of
the variables in nonscalar diagonal blocks, which even extends to nonlinear

74

4.4 Symbolic Elimination for Dynamic Optimization

blocks: tearing. By tearing the diagonal blocks as described in Section 4.3.2,
we can then symbolically eliminate the causalized variables in the torn
blocks by forward substitution.

There are two issues with the choice of causalized variables by the
JModelica.org compiler. The first is that it can choose to causalize state
derivatives, which is useful when the causalization goal is to get an explicit
ODE. But as per the discussion in Section 4.4.1, we are not interested in
eliminating state variables or their derivatives. Likewise, we are not inter-
ested in eliminating (actively) bounded variables. Hence, our approach is to,
besides using the tearing variables and residuals selected by the compiler,
add all state derivatives and bounded variables as tearing variables and
their respectively matched equations as tearing residuals. It would have
been better to force the compiler to make these choices, allowing it to po-
tentially make better choices in choosing the remaining tearing variables
and residuals, but this has not been implemented.

Scheme 2
Eliminate those algebraic variables that are unbounded, belong to scalar
diagonal blocks, and whose incidences in the diagonal blocks are linear.
Also eliminate causalized, unbounded algebraic variables in torn, nonscalar
diagonal blocks. 2

4.4.3 Sparsity-Preserving Elimination
In our attempt to eliminate as many variables as possible using only sym-
bolic techniques, we may actually end up eliminating too many in terms
of computational efficiency. As briefly mentioned before, although the elim-
ination of variables leads to smaller systems, they also tend to be more
dense. The increased density can cause crippling slowdowns when per-
forming sparse computations, in particular when solving the sparse KKT
system (2.25).

Therefore, we propose to avoid some of the eliminations performed by
Scheme 1 and 2, by analyzing the effect each elimination has on the DAE
structural incidence matrix in a sixth step of the symbolic transformations
presented in Section 3.2.3. We define a density measure µ of a causalized
block variable z̄ij which measures how much denser the resulting NLP
will become if it is eliminated using (4.16). To facilitate uniform treatment
of scalar, linear diagonal blocks and torn diagonal blocks, we consider a
scalar, linear diagonal block equation and its corresponding variable to be
causalized. Unfortunately, any useful measure will depend on which other
eliminations are performed. This fact makes it intractable to consider all
possible combinations, just like it is not tractable for direct, sparse linear
solvers to find the pivot sequence with minimal fill-in. However, due to
the causalization, we can consider the blocks and the variables within the

75

Chapter 4. Symbolic Elimination Based on Block-Triangular Ordering

blocks in sequence to devise a greedy algorithm which only considers the
current block. Hence, for a given block, whether to perform the eliminations
in preceding blocks has already been decided, and we only consider the
situation in which no eliminations are performed in succeeding blocks,
consequently disregarding how eliminations in succeeding blocks will be
affected by the eliminations in the current block. This simplified approach
is analogous to how linear solvers use the Markowitz criterion or local
minimum fill-in as discussed in Section 4.3.3.

Hence, we want to estimate howmuch the number of nonzero elements in
the KKT system will increase if z̄ij is eliminated. We perform the elimination
if

µ(i, j) ≤ µtol, (4.20)

where µtol is a user-provided tolerance. Rather than considering the sparsity
of the KKT matrix, we instead only consider the number of nonzeros in the
structural incidence matrix of the DAE—which is the dominant part of
the KKT system of a typical dynamic optimization problem—for simplicity
and computational efficiency during symbolic preprocessing. An estimative
measure for this is

µ(i, j) =
(
−2+

∑
α∈{ẋ,x,y,u,p}

nα∑
k=1

I(∇αk F̄ i
j)·d(αk)

)
· (−1+nnz∇z̄ij F

)
, (4.21)

where I is the indicator function (mapping zero functions to 0 and all other
functions to 1), and d(αk) is the number of post-elimination dependencies
of αk. A recursive expression for d is

d(αk) :=


1, if αk is not eliminated,∑
β∈{ẋ,x,y,u,p}

nβ∑
l=1

I(∇βl h̄αk) · d(βl), otherwise,

(4.22)
where h̄ z̄ij := H̄i

j (see (4.16)). Note that d(αk) not only depends on αk but
also which variables have been chosen for elimination, which changes over
the course of the sparsity analysis. The measure (4.21) is similar to the
Markowitz criterion (4.18) in that the red and blue parts correspond to each
other. A difference is that (4.21) considers the whole system simultaneously
rather than a single stage of Gaussian elimination, and also takes into
account that the full system not only depends on z but also v. Another im-
portant difference is that the Markowitz criterion estimates fill-in, whereas
(4.21) estimates the increase in number of nonzeros, hence the subtraction
of 2 rather than 1 in the red part. For example, the elimination of an alias
variable can cause a lot of fill-in, but will not increase the number of nonze-
ros in the structural incidence matrix of the DAE. Thus, the value given by

76

4.4 Symbolic Elimination for Dynamic Optimization

(4.18) of an alias variable will be equal to the number of incidences in the
subsequent equations, whereas the value given by (4.21) will be 0.

To demonstrate (4.20)–(4.22), consider the torn incidence (4.8) of the
previous example with µtol = 3. The variables that are eligible for elimi-
nation are y4, y1, and y2. At the start of the procedure, we have d(α) = 1
for all α. Since the first block F1 has no eligible variables, we move on to
F2 where we find the pair ((4.1e), y4)—noting that F̄2

1 is the residual for
(4.1e)—for which we compute

µ(2, 1) =
(
− 2+

∑
α∈{ẋ,x,y}

nα∑
k=1

I(∇αk F̄2
1) · d(αk)

)
· (−1+ nnz∇z̄2

1
F
)

=
(
− 2+

∑
α∈{ẋ1,x1,y1,y2,y3,y4,y5}

I(∇α F̄2
1) · d(α)

)
· (−1+ nnz∇y4F)

=

(
− 2+ I(1) · d(y4) + I

(
−

1
2√y5

)
· d(y5)

)
· (−1+ nnz(0, 0, 2y1y2, y1 − 1, 1, 0)) ,

= (−2+ 2) · (−1+ 3) = 0 ≤ µtol = 3, (4.23)

and hence proceed to eliminate y4 and compute d(y4) = 1. In the next block
we find the eligible pairs ((4.1d), y1) and ((4.1b), y2). For the first pair we
compute

µ(3, 1) = (−2+ 4) · (3− 1) = 4 > µtol, (4.24)

and consequently do not eliminate y1. Moving on to the second and final
pair, we compute

µ(3, 2) = (−2+ 3) · (3− 1) = 2 ≤ µtol, (4.25)

and hence eliminate y2, for which we compute d(y2) = 2.
The measure (4.21) is locally suboptimal in the same sense as the

Markowitz criterion: It does not take into account that not all incidences
will cause fill-in; it is a worst case estimate. To address this, we can instead
of (4.21) use the measure

µ(i, j) =
m∑
ı=i

nı∑
=

{
j + 1, if ı = i,
1, otherwise

I(∇z̄ij F
ı
)

(
− 1

+
∑

α∈{ẋ,x,y,u,p}

nα∑
k=1

(
1− I(∇αk F ı

)
)
I(∇αk F i

j)d(αk)

)
, (4.26)

77

Chapter 4. Symbolic Elimination Based on Block-Triangular Ordering

where F i
j is element j in block i with the ordering obtained after tearing;

that is,

F i
j :=

{
F̄ i
j , if j ≤ n̄i,

F̂ i
j−n̄i , if j > n̄i.

(4.27)

This measure is analogous to local minimum fill-in in the same way as
(4.21) is analogous to (4.18).

As discussed in Section 4.3.3, the Markowitz criterion is generally re-
garded as the best for general-purpose pivot selection, with local minimum
fill-in being a lot more computationally expensive while usually only yield-
ing slightly better results. However, for our purposes, we only perform the
sparsity-preservation analysis once offline. Furthermore, the computation
times of both (4.21) and (4.26) are negligible compared to the other offline
computations (model compilation, BLT analysis, collocation discretization,
algorithmic differentiation graph construction, and so on). So while both
measures have been implemented in JModelica.org, we will henceforth only
consider the use of (4.26) because of its slightly better expected performance.

Sparsity preservation can be used both with and without tearing, yield-
ing two new families of schemes, parametrized by the density tolerance µtol.

Scheme 3µtol

Eliminate those algebraic variables that are unbounded, belong to scalar
diagonal blocks, whose incidences in the diagonal blocks are linear, and
whose density measures are smaller than or equal to µtol. 2

Scheme 4µtol

Eliminate those algebraic variables that are unbounded, belong to scalar
diagonal blocks, whose incidence in the diagonal blocks are linear, and
whose density measures are smaller than or equal to µtol. Also eliminate
causalized, unbounded algebraic variables in torn, nonscalar diagonal blocks
whose density measures are smaller than or equal to µtol. 2

The choice of density tolerance is important and nonobvious. A tolerance
of 0 means that we only perform eliminations that do not increase the num-
ber of nonzeros in the other equations. Such variables are similar to alias
variables. A tolerance of −∞ means that no eliminations are performed at
all, and so we preserve the original DAE. A tolerance of ∞ means that we
eliminate all causalized variables. Hence, we get

Scheme 0 = Scheme 3−∞ = Scheme 4−∞, (4.28a)
Scheme 1 = Scheme 3∞, (4.28b)
Scheme 2 = Scheme 4∞. (4.28c)

78

4.5 Conclusion

4.5 Conclusion

DAE-constrained optimization problems are usually solved by exposing the
full DAE to a discretization method. We considered ways of preprocessing
the DAE by symbolically eliminating most of the algebraic variables us-
ing techniques based on block-triangular orderings, tearing, and sparsity
preservation, resulting in 4 different schemes which are summarized in Ta-
ble 4.1. These schemes have been implemented in JModelica.org and their
relative performances will be evaluated in Chapter 6.

Table 4.1 Summary of techniques used in schemes.

Scheme BLT Tearing Sparsity preservation
0
1 3
2 3 3
3µtol 3 3
4µtol 3 3 3

The proposed schemes are more relevant for simultaneous (rather than
sequential, see Section 2.3.4) approaches to dynamic optimization where
they have a major impact on the size and structure of the NLP, whereas they
often only affect the NLP function evaluation times when using sequential
approaches. Nevertheless, these methods certainly have the potential to be
beneficial also when using sequential approaches, since the DAE simulation
in shooting methods is often the computational bottleneck and a source of
numerical problems.

While block-triangular ordering and sparsity preservation guarantees
preservation of numerical stability, tearing does not. This is a well-known
drawback of tearing, which is difficult to address under the typical circum-
stance of having no reliable a priori numerical information regarding the
solution. However, in the context of dynamic optimization a decent initial
guess of the full solution is often required to solve the problem. Utilizing
this initial guess, it might be tractable to design a numerical tearing algo-
rithm which guarantees numerical stability, under the assumption that the
initial guess is sufficiently close to the solution, using techniques such as
those considered by Westerberg et al. [Westerberg and Edie, 1971; Gupta
et al., 1974].

The sparsity preservation approach is based on the DAE incidence ma-
trix. The system whose sparsity we really are interested in is the KKT
system. However, the sparsity of the DAE plays a major role in the sparsity
of the KKT matrix via the Jacobian of the equality constraints. An impor-
tant part of the KKT matrix that we have neglected is the Hessian of the

79

Chapter 4. Symbolic Elimination Based on Block-Triangular Ordering

Lagrangian, which however often plays a minor role in the sparsity of the
KKT matrix compared to the Jacobian when employing direct collocation.

The used tearing algorithm first selects tearing variables and residu-
als using the JModelica.org compiler to obtain causalized equations that
are triangular and linear along the diagonal, and then selects additional
tearing variables and residuals to not eliminate variables that are bounded,
differential, or cause too much fill-in. Considering all of these criteria simul-
taneously, rather than sequentially, would enable fewer tearing variables
and residuals to be selected. Simultaneously minimizing the number of
tearing variables and the amount of fill-in would however require more
sophisticated heuristics than (4.20), because of their complex interaction.

80

5
Problem Suite

Inside of every problem lies an
opportunity.

Robert Kiyosaki

To demonstrate the capabilities of the framework in Chapter 3 and evalu-
ate the schemes proposed in Chapter 4, we need a suite of test problems.
Unfortunately, there is little in the way of an established suite of test prob-
lems for dynamic optimization. [Hedengren, 2008] is a collection of DAEs
implemented in MATLAB that are suitable for dynamic optimization. But
most of the models are of modest size and not representative of typical
Modelica models. Furthermore, there are no accompanying optimization
formulations, only models. The popular test suite for nonlinear program-
ming CUTEr [Gould et al., 2003] contains discretized dynamic optimization
problems, but these are of little value to us in their discretized form.

Hence, we present our own small suite of dynamic optimization problems
that is suitable for evaluating the methods of Chapters 3 and 4. The suite
consists of five different optimal control problems that are computationally
challenging and have industrial relevance. The systems in the five problems
are respectively a:

• Car

• Combined-cycle power plant (CCPP)

• Double pendulum

• Closed kinematic loop with four bars

• Distillation column

All of the problems are encoded in Modelica and Optimica and are available
as a part of JModelica.org’s collection of examples. For each problem, we

81

Chapter 5. Problem Suite

first present the system, then the considered optimization problem, and
finally optimal trajectories corresponding to the optimization problem.

The problems have been chosen to together span a large part of all
models of interest for dynamic optimization. The systems originate from
various engineering domains and the DAEs have properties suitable for
comparing the different schemes of Chapter 4. The DAE sizes range from
moderate (36 equations) to large (1125 equations), to demonstrate how the
implementation fares on problems of different sizes. Three out of the five
problems have been developed by others for the sake of application-oriented
research. The remaining two problems are based on examples from the
Modelica Standard Library (MSL), to show that the optimization framework
of the thesis to some extent can deal with general-purpose Modelica models
that have not been developed specifically for optimization purposes.

The notation in each section is independent from the rest of the thesis.

5.1 The Many Colors of Block-Triangular Decompositions

For most of the models, we show a BLT decomposition of the DAE obtained
with Scheme 430 (see Chapter 4). In these figures, linear incidences are
marked by green dots, and nonlinear incidences are marked by red dots.
Since we do not distinguish between linear and nonlinear incidences out-
side of the diagonal blocks, such incidences are marked by black dots. Torn
blocks are marked by red edges. Variables, and their respective matched
equations, that have been user-specified as actively bounded (and hence
are not eliminated) are marked by orange edges. State variable deriva-
tives (which are not eliminated) and their respective matched equations
are marked by blue edges. Variable–equation pairs along the diagonal that
are not sparsity preserving—that is, do not satisfy (4.20)—are marked by
yellow edges. The remaining variable–equation pairs along the diagonal are
the ones used for elimination, which are marked by green edges.

5.2 Car

The first problem is a minimum-time problem, where a car maneuvers a
90-degree turn. Variations of this problem and suitable models and method-
ology have been investigated in [Berntorp et al., 2014; Berntorp and Mag-
nusson, 2015] and several other publications by the same group of authors.
The motivation for studying these problems is both to understand the limi-
tations of system performance and to design automated vehicle control and
safety systems.

82

5.2 Car

5.2.1 Model
The model we use in the thesis has a nonlinear, single-track chassis model
[Rajamani, 2006], where the two wheels on each axle are lumped together,
see Figure 5.1. The chassis model has three degrees of freedom: two trans-
lational and one rotational. The model is described by

v̇X − vYψ̇ = 1
m
(F x

f cos(δ) + F x
r − F y

f sin(δ)), (5.1a)

v̇Y + vXψ̇ = 1
m
(F y

f cos(δ) + F y
r + F x

f sin(δ)), (5.1b)

IZZψ̈ = l f F y
f cos(δ) − lrF y

r + l f F x
f sin(δ), (5.1c)

wherem is the vehicle mass, IZZ is the vehicle inertia about the Z-axis,ψ is
the yaw, δ is the steer angle, vA is the velocity at the center of gravity along
axis A ∈ {X, Y}, li is the distance from the mass center to wheel i ∈ { f , r}
(front or rear), and Fa

i is the tire force for wheel i along axis a ∈ {x, y} in
the coordinate system of the wheel.

lf lr

Fx
f F y

f

v

β

vf

δ

αy
f

Fx
r

F y
r

vr

αy
rX

Y

ψ

Figure 5.1 The single-track chassis model.

The nominal tire forces Fa
i,0 in wheel i along axis a under pure slip

conditions are computed with the Magic formula [Pacejka, 2006], given by

Fa
i,0 = µai F z

i sin
(
Ca
i arctan

(
Ba
iαa

i − Ea
i (Ba

iαa
i − arctan Ba

iαa
i)
))
, (5.2)

where F z
i is the tire normal force, µai is a friction coefficient, Ba

i , Ca
i , as

well as Ea
i are parameters depending on the physical properties of the tires

and road, and αy
i and αx

i are the lateral and longitudinal slip, respectively,
of wheel i defined as in [Pacejka, 2006]. The actual tire forces Fa

i under
combined longitudinal and lateral slip are modeled by scaling the nominal
forces Fa

i,0 with a weighting function Ga
i [Pacejka, 2006]. The relations are

Fa
i = Fa

i,0Ga
i ,

Ga
i = cos(Ca

i,1 arctan(Ha
i αa

i)),
Ha
i = Ba

i,1 cos(arctan(Ba
i,2αb

i)),
(5.3)

83

Chapter 5. Problem Suite

where Ba
i,1, Ba

i,2, as well as Ca
i,1 are physical parameters and b is the axis

opposing a; that is,

b :=
{
x, if a = y,
y, if a = x.

(5.4)

The wheel dynamics are modeled by

τi = Iiω̇ i − RiF x
i , (5.5)

where Ii is the wheel inertia, Ri is the wheel radius,ω i is the wheel angular
velocity, and τi is the applied torque.

The resulting DAE is index 1 and has 13 state variables, 23 algebraic
variables, and 3 inputs. The inputs are the steer angle δ and the torque
reference τ ref

i on each wheel (related to the torque τi via linear dynamics).
A BLT decomposition for the DAE is shown in Figure 5.2. Since all

diagonal blocks are linear and scalar, the DAE can be transformed to an
explicit ODE on closed form (despite all the nonlinear expressions in (5.1)–
(5.3)), although we do not do this since four algebraic variables have bounds
as discussed in the next subsection.

Figure 5.2 BLT decomposition of Car with Scheme 430, see Section 5.1. All
diagonal blocks are linear and scalar. Furthermore, the system is sufficiently
sparse to not require sparsity preservation. Consequently, all schemes—
except 0—yield the same result for µtol = 30.

5.2.2 Optimization Problem
The problem is to find the time-minimal maneuver for the car in a 90-degree
turn on dry asphalt and with the initial velocity 25 m/s. This initial velocity

84

5.2 Car

makes it hard simply to stay on the road and this maneuver is often used
in the evaluation of active safety systems. The road boundary is described
by two hyperellipses with exponent 8. The constraint of staying inside the
road is thus a high-index, nonlinear path inequality constraint.

The objective is to minimize the time needed to go from a fixed point on
one end of the curve to a fixed point on the other end of curve without leaving
the road. The absolute values of the three system inputs are bounded. There
are also theoretical upper bounds on the nominal tire forces Fa

i,0—from
(5.2) we see that pFa

i,0p ≤ µai F z
i —which in this thesis have been incorrectly

considered as potentially active, leading to the four orange incidences in
Figure 5.2.

The input is constrained to be piecewise constant using blocking factors
(see Section 3.5.2), with 30 different values of δ and 15 values of τ ref

i . The
absolute change in steer angle is further bounded by 2 degrees in each
step. From a physical perspective, this use of blocking factors is rather
nonsensical for two reasons. First, the update frequency depends on the
optimal t f , since the time horizon is free and the frequency is coupled to
the fixed collocation element distribution. Second, as a result of the optimal
t f , the update frequencies are artificially low. The purpose of this use of
blocking factors is more to demonstrate their use rather than adhering to
physics.

This optimization problem is similar to the high-level trajectory genera-
tion problem considered in [Berntorp and Magnusson, 2015], with the only
difference being some parameter values and the use of blocking factors.

5.2.3 Solution
The problem is solved with ne = 60 elements and nc = 3 Radau points
per element. The initial guess is generated by simulating the system using
linear state feedback together with feedforward to control the system. The
closed-loop controller tracks the middle of the road, and a predefined velocity
profile is fed forward. The details of this controller are described in [Berntorp
et al., 2014]. Since this controller has no chance of generating a feasible
trajectory for the high initial velocity v(t0) = 25 m/s, the initial guess is
instead generated for the case v(t0) = 10 m/s, resulting in t f (11.0 s. The
optimal solution instead has t f (4.0, with the position trajectory being
shown in Figure 5.3 and optimal inputs in Figure 5.4.

85

Chapter 5. Problem Suite

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

position

road

Y [m]

X [m]

Figure 5.3 Optimal geometric path for Car. The car starts in the lower
right corner and reaches the upper left corner in minimal time.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
6

4

2

0

2

4

6

8

δ [deg]
τ ref
f [kN]

τ ref
r [kN]

t [s]

Figure 5.4 Optimal inputs corresponding to Figure 5.3. The torques are
actively bounded above in the beginning and end, and the change in δ is also
actively bounded.

5.3 Combined-Cycle Power Plant

The next case considers warm startup of a combined-cycle power plant
(CCPP), where hot exhaust gas is used to heat and evaporate cold water to
86

5.3 Combined-Cycle Power Plant

drive a steam turbine that generates electricity. The problem of optimizing
power plant startup has recently become highly industrially relevant, be-
cause of an increasing need to improve power-generation flexibility caused
by the unpredictable output of renewable energy sources such as solar and
wind power. Hence, there is a need to be able to efficiently start and shut
down other power plants in order to balance the power grid.

5.3.1 Model
The model we use was first developed in [Casella et al., 2011], but the
problem has been further studied in [Larsson et al., 2013; Parini, 2015].
Its object diagram is shown in Figure 5.5. The system has one input, which
is the percentual load u [1] of the gas turbine. This load determines both
exhaust gas flow from the turbine and the gas temperature. The two rela-
tionships between load and gas flow as well as temperature are accurately
modeled as being piecewise affine with two pieces and the junction being
at u = 0.5. Such a model is however not continuously differentiable, and is
hence smoothly approximated using the shifted sigmoid step function

arctan(100(u− 0.5))
π

+ 0.5, (5.6)

which is used to connect the two affine pieces of each relation.

gasTurbine

P

environment

econom
izer_ht

superheater_ht

evaporator_ht

steamTurbine
sigma

PI

PI-

alpha_SP

k=0.5

WaterLiquidSource

Q_flow=0

load

Figure 5.5 Dymola object diagram of CCPP. The exhaust from the gas
turbine heats and evaporates cold, liquid water. Each heat exchanger has a
component for the water side and the gas side. The superheated vapor then
drives the steam turbine to generate electricity.

87

Chapter 5. Problem Suite

The exhaust gases then heat liquid water through three countercurrent
heat exchangers: a superheater, evaporator, and economizer. With the ex-
ception of the water side of the evaporator, the gas and water sides of the
heat exchangers are modeled by dynamic energy balances, accounting for
the energy stored in the gas and for the heat transfer, while neglecting
changes in mass storage and pressure losses.

To model the phase change of water from liquid to vapor in the evapo-
rator, the water side of the evaporator also needs an equation for dynamic
mass balance, with the thermodynamic properties of the water being ap-
proximated by low-order polynomials. The water flow is controlled by a PI
controller to keep the volumetric fraction of liquid and vapor in the evapo-
rator at 0.5. The superheated vapor finally generates electricity by driving
the rotor of the steam turbine.

The resulting DAE has 10 state variables, 123 algebraic variables, and
1 input. Its BLT decomposition is shown in Figure 5.6, where we see that
all diagonal incidences are linear, but there are two linear 2-by-2 algebraic
loops. One of the loops has been torn, whereas the other remains untouched
because it only involves state derivatives. Hence, we can eliminate all al-
gebraic variables except the tearing variable in the first algebraic loop and
another one on which we impose a bound according to the discussion in the
next subsection.

5.3.2 Optimization Problem
The goal is to perform a quick warm start of the power plant. The plant
is running at full capacity when u = 1 and the evaporator pressure p has
reached its reference value. The objective is therefore a quadratic Lagrange
function penalizing the deviation of u and p from their respective constant
references. The problem is solved over a fixed time horizon of t f = 4000 s.

Starting the plant too quickly, for example using u " 1, will lead to large
thermal stress σ in the steam turbine shaft. This drastically reduces the
lifetime of the steam turbine, which is one of the most expensive components
of the system. Hence, an upper bound is added on the algebraic variable σ .
Furthermore, the gas turbine load has a physical upper bound on the rate
of change and is also forbidden to be negative during startup.

This problem is the closest thing to a standard problem of dynamic
optimization in the Modelica community1, having been used several times
for benchmark purposes [Andersson et al., 2011; Word et al., 2014; Lazutkin
et al., 2015; Axelsson et al., 2015; Parini, 2015].

1Another often studied dynamic optimization problem in the Modelica community is the
drum boiler in [Krüger et al., 2004], which however has hybrid dynamics and hence is out
of scope for this thesis.

88

5.3 Combined-Cycle Power Plant

Figure 5.6 BLT decomposition of CCPP with Scheme 430. All diagonal
blocks are linear and sparsity preserving. All blocks except two are scalar.

5.3.3 Solution
The problem is solved with ne = 40 elements and nc = 4 points per element.
The initial guess is generated by simulating the system using an open-loop
input that is an affine function of time that avoids any constraint violations,
but is far from completing the startup within the fixed t f . The optimal
solution is shown in Figure 5.7.

89

Chapter 5. Problem Suite

4
5
6
7
8

0
75

150
225

0 1000 2000 3000 4000

0.2
0.4
0.6
0.8
1.0

u [1]

σ [MPa]

p [MPa]

t [s]

Figure 5.7 Optimal CCPP startup. The load u and evaporator pressure p
reach their reference values in approximately 1 hour. During most of the
startup, either the upper bound on σ or u̇ is active.

5.4 Double Pendulum

Since no PhD thesis in automatic control is complete without an inverted
pendulum, we next consider a double pendulum. The system is unstable
and chaotic, so numerical methods based on single shooting are unsuitable
for this system.

5.4.1 Model
One of the elementary examples of multibody mechanics in the Model-
ica Standard Library (MSL) is a damped double pendulum: Modelica.
Mechanics.Examples.Elementary.DoublePendulum. This example’s object di-
agram is shown in Figure 5.8. Since the model is unactuated in its original
form, we add a torque on the first revolute joint revolute1, yielding the sole
system input u [Nm].

A schematic of the considered double pendulum is shown in Figure 5.9.
While this double pendulum is a conceptually simple fourth-order system,
the MSL components for rigid bodies and revolute joints contain equations
for computing forces and torques in various frames and transformation ma-
trices from one frame to another. So the resulting DAE, which is of index 3,
has 4 state variables and 124 algebraic variables after index reduction. The
state variable vector is

x =
[
φ1 φ̇1 φ2 φ̇2

]
, (5.7)

90

5.4 Double Pendulum

where φ i [rad] is the angle of revolute joint i. A BLT decomposition of the
DAE is shown in Figure 5.10.

world

x

y

a b

n={0,0,1}
revolute1

damper

d=0.1

boxBody1

r={0.5,0,0}

ba a b

n={0,0,1}

revolute2 boxBody2

r={0.5,0,0}

ba

Figure 5.8 Dymola object diagram of the damped double pendulum from
MSL. A rigid body is attached to a damped revolute joint in one end, and in
the other end is another revolute joint with another rigid body.

φ1

φ2

u

Figure 5.9 Double pendulum schematic. The torque u is used to control
the angles φ1 and φ2.

5.4.2 Optimization Problem
The goal is to drive the pendulum from x(0) = −0.25π · 1 to

x f =
[
0.5π 0 0 0

]T , (5.8)

which corresponds to the unstable equilibrium where both bodies are in-
verted. We do this over the fixed time horizon t f = 3 s with the quadratic
Lagrange objective∫ 3

0

(
(x(t) − x f)TQ(x(t) − x f) + Ru(t)2

)
dt, (5.9)

91

Chapter 5. Problem Suite

Figure 5.10 BLT decomposition of Double Pendulum with Scheme 430. All
diagonal blocks are linear and sparsity preserving. All but one block are
scalar. The nonscalar block has 16 variables from both joints and bodies,
many of which are dummy derivatives and a few being temporary variables
introduced by the compiler. The block is torn with 2 tearing variables.

where
Q = diag

[
1 5 0.1 0.1

]
, R = 0.02. (5.10)

We also impose the input bound pup ≤ 500 Nm (which may sound like a lot,
but the two bodies each have a length of 0.5 m and are made of steel).

5.4.3 Solution
The problem is solved with ne = 100 elements and nc = 3 points per
element. The initial guess is generated by simulating the system using
linear state feedback to determine u. Only φ1 and φ̇1 are fed back and used
to stabilize the first body of the pendulum in the inverted position, while

92

5.5 Fourbar1

the second body runs amok. The initial guess also violates the upper bound
on u. The optimal solution is shown in Figure 5.11.

−0.5π

−0.25π

0

0.25π

0.5π

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−500

−250

0

250

500

u [Nm]

t [s]

φ1 [rad]
φ2 [rad]

Figure 5.11 Optimal Double Pendulum swing-up with bounded torque u.

A benefit of using MSL’s multibody mechanics library is that Dymola
implements three-dimensional animations for many components. The web
version of the thesis contains an appendix with an animation of the optimal
trajectory. The appendix is not available in the printed version of the thesis.

5.5 Fourbar1

Next we consider another conceptually simple multibody mechanical sys-
tem: a fourbar. Four rigid bodies are connected by 6 revolute joints and 1
prismatic joint. The resulting closed kinematic loop gives rise to a nonlinear
algebraic loop.

5.5.1 Model
Once again the model is based on an example from MSL: Modelica.
Mechanics.Examples.Loops.Fourbar1. The block diagram of the model was
previously shown in Figure 2.1. To actuate the system, we add a torque on
the first revolute joint, yielding the sole system input u [Nm].

The index-reduced DAE has 2 state variables and 452 algebraic vari-
ables. The state variables are the angle φ [rad] of the joint driven by the
torque u and the corresponding angular velocity. A BLT decomposition of
the DAE is shown in Figure 5.12.

93

Chapter 5. Problem Suite

Figure 5.12 BLT decomposition of Fourbar1 with Scheme 430. Almost all
of the diagonal blocks are scalar and diagonal, but there are three large
algebraic loops of dimensions 54, 68, and 119. Each loop is torn using a
handful of variables. The smallest of the loops is nonlinear. 7 variables are
retained to preserve sparsity.

It is noteworthy that this system can be modeled more efficiently by
modeling the joints differently, as done in Modelica.Mechanics.MultiBody.
Examples.Loops.Fourbar2, which only has a single algebraic loop, and
Modelica.Mechanics.MultiBody.Examples.Loops.Fourbar_analytic, whose
only algebraic loop is also linear. However, since the purpose of this problem
is not to efficiently solve an actual problem, but rather to get something that
is computationally challenging, we choose to work with Fourbar1.

94

5.5 Fourbar1

5.5.2 Optimization Problem
We consider the problem of controlling the translation s [m] along the
prismatic joint j2 in one end of the mechanism by the torque u applied in
the other end. We move it from s(0) (0.43, which corresponds to the stable
equilibrium of the system, to s(t f) = 0.35 with t f = 1. We impose the bound
pup ≤ umax = 90 Nm and use the Lagrange objective∫ 1

0

(
(s(t) − 0.35)2 + 10−8(u(t) − 54.52)2

)
dt, (5.11)

where u(t) (54.52 is the steady-state input yielding s(t f) = 0.35.
Although this problem is silly, not only because of its artificiality, but also

because it is adequately (albeit suboptimally) solved by a PI controller, it is
still computationally challenging and the model itself contains fundamental
building blocks of multibody mechanics.

5.5.3 Solution
The problem is solved with ne = 60 elements and nc = 3 points per ele-
ment. This problem requires a very good initial guess (at least when using
Scheme 0). The initial guess is generated by solving a sequence of optimiza-
tion problems with increasing values of umax. The value is increased from 0
in increments of 10 until the desired value of 90 is reached. The solution is
shown in Figure 5.13. The web version of the thesis contains an appendix
with a three-dimensional animation of the optimal trajectories.

0.41

0.38

0.35

1.8

2.2

2.6

3.0

0.0 0.2 0.4 0.6 0.8 1.0
90
45
0

45
90

t [s]

u [Nm]

φ [rad]

s [m]

Figure 5.13 Optimal Fourbar1 repositioning with bounded torque u.

95

Chapter 5. Problem Suite

5.6 Distillation Column

The final problem concerns optimal control of a high-purity binary dis-
tillation column, which separates methanol from n-propanol and has 40
trays. Distillation columns are widely used in chemical engineering for the
purpose of separating compounds into its separate parts.

5.6.1 Model
A schematic of a binary distillation column with only 8 trays is shown
in Figure 5.14. The liquid mixture of the two components is boiled at the
bottom. The resulting vapor rises through the column to the condenser, and
the resulting liquid flows back down the column through each tray. Only the
most volatile vapor reaches the top of the column, thus separating the most
volatile of the components, methanol, from the other, n-propanol. Liquid
mixture is fed at the middle tray with constant flow, temperature, and
concentration. Pure liquid is extracted from the reflux drum and reboiler
after separation. The system inputs are the reboiler heat Q [kW] and reflux
flow rate Lvol [l/h].

We use a model that was developed in [Nagy et al., 2000; Diehl, 2002]
and its Modelica implementation is based on the MATLAB implementation
from [Hedengren, 2008].

Let Xi denote the liquid mole fraction of methanol (consequently, the
liquid mole fraction of n-propanol is 1 − Xi) in tray i ∈ [1..42], numbered
from top to bottom, where tray 1 is the condenser and tray 42 is the reboiler
for notational convenience. Assuming constant molar holdup n in each tray,
componentwise mass conservation yields

Ẋi =
1
n
(Yi+1Vi+1 + Xi−1Li−1 − YiVi − XiLi), (5.12)

where in each tray i, Yi is the vapor mole fraction of methanol and Li as
well as Vi are the outgoing liquid and vapor molar flux, respectively.

The total pressure Pi on each tray is assumed constant with a constant
pressure increase from each tray to the next. The tray temperatures Ti [○C]
are implicitly defined by the assumption that the sum of the partial pres-
sures Ps

j for each component j ∈ {1, 2} equals the total pressure on each
tray, yielding

Pi = Ps
1(Ti)Xi − Ps

2(Ti)(1− Xi), (5.13)

where the partial pressures are computed according to the Antoine Equation

Ps
j(T) = exp

(
A j −

B j

T + C j

)
, (5.14)

where A j, B j, and C j are component-specific parameters.

96

5.6 Distillation Column

Condenser

Receiver

Reflux Distillate product

Reboiler

Bottoms

Receiver

Feed

Column
(or Tower)

Reflux
drum

offgas line

water outlet

Figure 5.14 Schematic of binary distillation column, courtesy of [Sponk,
2010]. Liquid is boiled at the bottom, and the rising vapor is condensed at the
top and then flows back down to the bottom through trays. This separates
a binary mixture into the most volatile part, extracted at the top, and the
least volatile part, extracted at the bottom.

The vapor molar flux is in each tray governed by the energy balance

�hLi
�Xi

Ẋi +
�hLi
�Ti

dTi =
1
n
(
hVi+1Vi+1 + hLi−1Li−1 − hVi Vi − hLi Li

)
, (5.15)

where hLi and hVi is the liquid and vapor stream enthalpy, respectively, and
dTi is the dummy derivative of Ti, implicitly determined by the differentia-
tion of (5.13).

Note that (5.12) and (5.15) are slightly different for the condenser, feed,
and reboiler trays 1, 22, 42, due to the inlets and outlets.

The resulting index-one DAE has 42 state variables—the liquid mole
fraction of each tray—1083 algebraic variables, and two system inputs—Q
and Lvol. For each tray, there is a 3-by-3 nonlinear algebraic loop corre-
sponding to (5.13) and (5.14) in the BLT decomposition of the DAE. These
are torn using (5.13) as residual and Ti as variable. Then there is a large,
linear diagonal block of size 205, torn using the tearing variables Vi and Ẋi.

97

Chapter 5. Problem Suite

Eight additional variables are retained by Scheme 430 for sparsity preser-
vation. The remainder of the algebraic variables belong to linear, scalar
diagonal blocks and are hence eliminated. The MATLAB implementation
from [Hedengren, 2008] has manually eliminated all the algebraic variables
except for those chosen as tearing variables by the JModelica.org compiler,
with the slight difference that the compiler chooses the additional tearing
variable L41.

The Modelica implementation has been previously used for benchmark-
ing purposes in [Magnusson and Åkesson, 2015; Lazutkin et al., 2015],
albeit with a faulty implementation. The old implementation had incorrect
versions of (5.13) and (5.15) involving Ṫi and V̇i, turning them into state
variables.

5.6.2 Optimization Problem
We consider the short reflux breakdown scenario from [Diehl, 2002], where
the reflux flow rate is reduced by nearly 90% for 5 minutes, causing the
system to drift from the desired steady state. The objective is to steer back
to the desired high-purity steady state after the breakdown.

The aim is to control the purities X1 and X42 in the condenser and
reboiler, respectively. This is best achieved by instead controlling the tray
concentrations X14 and X28, which are more sensitive to input disturbances.
Since concentrations are difficult to measure, the temperatures T14 and
T28 are instead controlled, which implicitly determine the corresponding
concentrations.

The problem is solved over the fixed time horizon t f = 5000 s, us-
ing quadratic Lagrange costs on the normalized deviation of the two tray
temperatures and input signals from the high-purity steady state. The nor-
malized state penalties are weighted by identity, and the inputs Q and
Lvol by 0.02 and 0.015, respectively. There are nonnegativity bounds on the
flux out of the condenser and reboiler, which are algebraic variables. These
bounds put implicit upper limits on the two system inputs.

5.6.3 Solution
The problem is solved with ne = 20 elements and nc = 3 points per element.
The initial guess is generated by simulating the system with constant input
values equal to the reference values. The optimal solution is shown in
Figure 5.15.

98

5.7 Conclusion

74

75

76

77

78

93

94

95

0 1000 2000 3000 4000 5000
2.1

2.2

2.3

2.4

2.5

0 1000 2000 3000 4000 5000

4.5

5.0

5.5

t [s] t [s]

Q
[k
W
]

T 2
8
[○
C]

L v
ol
[l/
h]

T 1
4
[○
C]

Figure 5.15 Optimal Distillation Column control to recover from a short
reflux breakdown. The dashed lines correspond to the desired steady-state
values, which are used to form the quadratic objective. The reflux flow Lvol
is implicitly constrained roughly the first 300 seconds by the nonnegativity
bound on the flow out of the condenser.

5.7 Conclusion

Five different optimal control problems have been presented, which we
in the next chapter will use to evaluate the methods of Chapter 3 and
Chapter 4. Two of the problems, Double Pendulum and Fourbar1, have
been chosen to represent general-purpose Modelica models. The remaining
three problems have been developed as part of research done by others for
actual application.

The Modelica code for two of the problems, Car and Distillation Column,
are atypical in their being flat, rather than hierarchically object-oriented,
leading to them consisting of relatively few lines of code in their entirety
and no trivial algebraic equations resulting from component connections.
Hence, they will serve to demonstrate the effects of symbolic elimination on
more typical representations of DAEs, rather than the verbose equations
that result when using Modelica model libraries.

The remaining problem, CCPP, is constructed using an object-oriented
Modelica model library developed specifically for optimization purposes.

99

Chapter 5. Problem Suite

The Modelica and Optimica implementation of all the problems are
distributed with JModelica.org’s example suite, as detailed in Table 5.1.

Table 5.1 Problems distributed with JModelica.org.

Problem Main file
Car pyjmi.examples.vehicle_turn.py

CCPP pyjmi.examples.ccpp.py

Double Pendulum pyjmi.examples.double_pendulum.py

Fourbar1 pyjmi.examples.fourbar1.py

Distillation Column pyjmi.examples.distillation4_opt.py

5.8 Heat Recovery Steam Generator

Finally, we present one additional problem concerning the startup of a Heat
Recovery Steam Generator (HRSG). The model has been developed and
studied as part of industrial research projects and master’s theses [Runvik,
2014; Thelander Andrén and Wedding, 2015; Åberg, 2016]. The model is
proprietary, and consequently not a part of the publically available problem
suite presented in this chapter. The problem is however an important use
case and highly industrially relevant, so we will use this problem in the
benchmark of Chapter 6.

5.8.1 Model
The system is similar to the CCPP of Section 5.3 and serves a similar
purpose, but it has a few different components and is modeled in greater
detail. It is also similar to the CCPP in the regard that the Modelica
implementation is hierarchical and based on model components that have
been developed specifically for optimization purposes.

The block diagram of the model is shown in Figure 5.16. Flue gas
comes from the gas source, a boiler, with constant flow and a temperature
determined by the firing power, whose derivative uFP_der is one of the
system inputs. The flue gas is used to evaporate the liquid water. The vapor
then goes through the first and second superheater, being further heated by
the flue gas which goes through the superheaters in reverse order. After the
second superheater, the vapor is collected in a header, where it is important
to keep the thermal stress sufficiently low. The pressure and temperature in
the header is controllable by the superheater valve input, whose derivative
uSH_der is another system input.

If the vapor has sufficiently high pressure and temperature after being
collected in the superheater header, it drives a turbine to generate electric-

100

5.8 Heat Recovery Steam Generator

evap

gasSink

.
m

steamSource

.
m

gasSource

reheatSink

pressureBoundary

firstOrder

SH1

SH2

RH

headerSH

Q=0headerRH

Q=0

turbine

pressureBoundary2

uRH_der

uSH_der

uFP_der

Figure 5.16 Dymola object diagram of the HRSG. Water is evaporated and
superheated. If the vapor has sufficient temperature and pressure, it drives
a turbine to generate electricity.

ity. After the turbine, the vapor is reheated and once again collected in a
header whose thermal stress should be kept sufficiently low. At the end the
water is recirculated to the evaporator after being condensed, here modeled
by boundary conditions.

While the model is moderate in size, it contains high-fidelity modeling
of thermodynamic properties of media—unlike the CCPP model, which uses
low-order polynomials—causing high NLP function evaluation times. The
standard way of modeling thermodynamic properties involves state events
as the phase of the media changes, leading to nondifferentiable equation
residuals, making such models unsuitable for the optimization methods of
this thesis. This model instead uses high-order piecewise polynomials which

101

Chapter 5. Problem Suite

are twice continuously differentiable at the junction points, as described
in [Åberg, 2016]. Unlike the CCPP model, the system model also takes into
account the water pressure drop between the heat exchangers.

The resulting index-1 DAE has 18 states, 84 algebraic variables, and 3
inputs. Its BLT decomposition is shown in Figure 5.17.

Figure 5.17 BLT decomposition of HRSG with Scheme 430. Most of the
diagonal blocks are scalar and linear, except for two small algebraic loops
and a large one of dimension 47, which is torn with 14 tearing variables.

102

5.8 Heat Recovery Steam Generator

5.8.2 Optimization Problem
The goal is to control the system from a point where the boiler is running
at low load to a point where the vapor pressure and temperature are suf-
ficiently high to connect the turbines. The model is thus slightly artificial
in its use of the turbine, as we connect the turbine already from the start.
The model was developed to test the optimization-friendly high-fidelity me-
dia property models developed in [Åberg, 2016]. So the artificial use of the
turbine was introduced to test additional media models, in particular the
modeling of specific enthalpy and entropy.

The objective is a quadratic Lagrange function penalizing the deviation
of the vapor pressures out of the the reheater and second superheater as
well as the vapor temperature out of the second superheater from their
respective reference values. The reference values correspond to when the
turbines can be connected to generate electricity, at which point the next
phase of the startup can begin. There are also quadratic penalties on the
three system inputs (the derivatives of the firing power and the two header
valve positions).

Besides penalties on the inputs, their absolute values are also bounded.
Furthermore, the thermal stresses in the headers are constrained by bound-
ing the temperature gradients in the spatially discretized header walls.

5.8.3 Solution
The problem is solved with ne = 25 elements and nc = 5 points per element.
The initial guess is generated by simulating the system using a constant
firing power derivative, constant superheater valve position, and a closed-
loop integral controller for the reheater valve position to keep the reheater
pressure at its reference. The optimal solution is shown in Figure 5.18.

103

Chapter 5. Problem Suite

550
600
650
700
750

T
e
m

p
.

[K
]

0
20
40
60
80

P
re

ss
u

re
 [

b
a
r]

0.0

0.1

0.2

0.3

0.4

V
a
lv

e
 P

o
s.

 [
1

]

0 500 1000 1500 2000

Time [s]

0

5

10

15

T
e
m

p
.

g
ra

d
.

[K
]

Figure 5.18 Optimal HRSG startup. The green curve is the boiler temper-
ature. The red solid curves are the quantities in the second superheater and
the blue solid curves are the quantities in the reheater. The dashed curves
are the corresponding reference values used in the objective function, except
for the temperature gradients, where the dashed curve is the upper bound
for both heat exchanger headers.

104

6
Scheme Benchmarks

In this chapter we evaluate the various proposed schemes of Chapter 4
when combined with the collocation algorithm of Chapter 3 on the problems
from Chapter 5. We look at the average online solution time, offline pre-
processing time, and convergence robustness. Since six problems is too small
a test suite to draw any general conclusions regarding computational speed,
and in particular convergence robustness, we will generate a larger number
of problem instances by using randomized initial states. We will primarily
focus on direct local collocation, but will in the end of this chapter also
present a small benchmark on how the schemes perform when using direct
global collocation.

Python scripts (which depend on JModelica.org) for reproducing the
results of this chapter are available in [Magnusson, 2016].

6.1 Benchmark Setup

To generate a large test suite, we start with the solution to each of the six
nominal problems described in Chapter 5. We then randomly perturb the
initial state x0 and solve the perturbed problem using the nominal solution
as initial guess. The purpose of this approach is to emulate the setting of
Model Predictive Control (MPC), without actually doing MPC, which would
have had the drawback of introducing correlation between the problems
solved in each sample point. Hence, the information gained from solving a
single DOP would be reduced, leading to a waste of computational effort.

The nominal value of each initial state variable x0,i is multiplicatively
perturbed by independently, identically, normally distributed random vari-
ables with standard deviation σ to yield the new initial state variable x̄0,i;

105

ー
ア
ン
チ
ス
パ
イ
ラ
ル

知
れ
ば
い
い
。

分
か
る
必
要
は
な
い
、
た
だ

Chapter 6. Scheme Benchmarks

that is
x̄0,i := ν i · x0,i, ν i ∼ N (1, σ 2), i ∈ [1..nx]. (6.1)

The standard deviation σ is handpicked for each problem to make the
corresponding instances suitably difficult with high probability, although
never higher than 0.3 to stay within the realm of reason. The resulting
perturbed problem, henceforth referred to as an instance, may be infeasible.
To counteract this, we make sure that the initial state satisfies all the
problem constraints enforced at the initial time t0. To satisfy the bounds
on state variables, we project x̄0,i inside of its bounds. We therefore modify
(6.1) according to

x̄0,i = max
(

min
(
ν i · x0,i, x0,i + 0.9(xU,i − x0,i)

)
, x0,i − 0.9(x0,i − xL,i)

)
, (6.2)

where xU,i is the element of the bounds zU that corresponds to xi. The factor
0.9 in (6.2) is used instead of 1.0 to project strictly inside the interior of
the bounds, which is needed for (3.15b) to satisfy the linear independence
constraint qualification (see Section 2.4.2). Projecting inside the feasible
region of general path inequality constraints and algebraic variable bounds
is more difficult. To satisfy these, we use JModelica.org’s FMI-based DAE
initialization algorithm to compute the value of ȳ0 that corresponds to x̄0
and then check if they satisfy the constraints with a safety margin analogous
to the one in (6.2); that is, the projected distance to the boundary should
decrease by no more than 90%. If they do not, we discard the problem
instance and generate a new one and repeat.

We solve each instance with all schemes and use the values
{5, 10, 20, 30, 40} for µtol. The problem sizes are detailed in Tables 6.1
and 6.2. Each scheme is only allowed a lax CPU time tmax [s] for each
problem instance, after which we regard the scheme as having failed. The
time tmax has been chosen as approximately the average observed solution
time of the slowest scheme for a given problem plus 5 estimated standard
deviations. For some problems, some schemes yield identical results, as
indicated in the table. For example, Car has no algebraic loops, and so
Scheme 1 and Scheme 2 are the same for this problem.

All problems—except Distillation Column—are solved with JModel-
ica.org revision [8915], IPOPT 3.12.5, and the linear solver MA57 [HSL,
2016] with ordering by MeTiS [Karypis and Kumar, 1998] using a common,
contemporary desktop computer. Distillation Column is instead solved with
JModelica.org revision [9153] and IPOPT 3.12.6, in order to use the correct
model implementation discussed in Section 5.6.1. The acceptable NLP tol-
erance in IPOPT is set equal to the NLP tolerance of 10−8. To put a focus on
convergence robustness rather than speed, the automatic scaling of MA57 is
enabled and the pivot tolerance (see (4.19)) is increased from 10−8 to 10−4.

106

6.1 Benchmark Setup

Table 6.1 The first four benchmark problems and the considered schemes
for each problem, where tmax [s] is the allotted CPU time for each instance,
ny the number of noneliminated algebraic variables, n the number of NLP
variables, nnz J the number of nonzero elements in the NLP constraint
Jacobian, nnz H the number of nonzero elements in the Hessian of the
NLP Lagrangian. The details of the two remaining benchmark problems are
shown in Table 6.2.

Problem σ tmax Schemes ny
n

1000
nnz J
1000

nnz H
1000

Car 0.1 30

0 23 9.7 37 9
1, 2, 320, 330, 4 6.3 30 10

340, 420, 430, 440

35, 310, 45, 410 5 6.4 30 9

CCPP 0.3 40

0 123 23.6 73 11.6
1, 310, 320, 330, 340 3 4.3 19 4
2, 410, 420, 430, 440 2 4.1 19 4

35 6 4.7 21 4
45 5 4.6 20 4

Dbl. Pend. 0.3 50

0 124 40.4 123 24
1, 310, 320, 330, 340 16 7.9 25 5

2, 420, 430, 340 2 3.7 13 5
35 17 8.2 27 5
410 3 4.0 15 5
45 5 4.6 17 5

Fourbar1 0.03 30

0 452 82.8 334 192
1, 330,340 246 45.5 215 160

2 23 5.2 50 24
320 247 45.7 216 161
310 249 46.1 217 161
35 255 47.2 220 162
440 29 6.3 63 29
430 30 6.5 63 32
420 46 9.3 88 58
410 85 16.4 127 107
45 114 21.7 142 128

The IPOPT barrier parameter selection strategy is changed to adaptive (see
Section 2.4.4) to avoid the issue of selecting the initial value of the barrier
parameter and also because of the improved performance perceived by the
author. Other than the above exceptions, all the default values of the options
of all the algorithms are used.

107

Chapter 6. Scheme Benchmarks

Table 6.2 The last two benchmark problems and the considered schemes
for each problem. The notation is the same as in Table 6.2, where the details
of the first four benchmark problems are shown.

Problem σ tmax Schemes ny
n

1000
nnz J
1000

nnz H
1000

Dist. Col. 0.3 40

0 1083 72.1 258 96
1 291 23.8 223 153
2 85 11.2 269 238
340 294 24.0 148 75
330 296 24.1 143 68
320 298 24.2 136 62
310 305 24.6 132 57
35 331 26.2 130 53
440 90 11.5 128 83
430 93 11.7 114 66
420 97 12.0 102 55
410 108 12.6 69 38
45 138 14.4 86 33

HRSG 0.3 60

0 84 15.9 56 6
1, 35, 310, 320, 330, 340 56 12.4 47 6

2, 430, 440 19 7.7 42 7
420 20 7.9 41 6
410 22 8.1 39 5
45 23 8.2 39 5

6.2 Problem Results

This section presents the results of the benchmark described in Section 6.1.
We generate 1000 instances whose initial states are in the interior of the
constraints for each problem. We will use the same table headers throughout
this section, with the following meanings. A scheme is considered to have
succeeded on a problem instance if it converges to within tolerance of a local
solution within the maximum CPU time. A problem instance is considered
valid if at least one scheme succeeds on it. Success [1] is the ratio of success
of a scheme on the valid instances. For the instances on which all schemes
succeed, Time [s] is the average solution CPU time, σt [s] is the sample
standard deviation of the solution time, and Iter [1] is the average number
of iterations needed by a scheme.

108

6.2 Problem Results

6.2.1 Car
The results for the valid instances of Car are shown in Table 6.3. On 68.0%
of the instances, all schemes succeed. 18.6% of the instances are invalid. The
most significant difference between the schemes is that Scheme 0 is approx-
imately 35% slower than the others and slightly less robust. The dominant
reason for failure is maximum CPU time, with some cases of convergence
to a point of local infeasibility (meaning that there is no search direction
decreasing the primal infeasibility). A likely reason for the high percentage
of invalid instances is that the nominal solution is close to the boundaries of
feasibility, because of the high initial car velocity. The perturbed problems
can hence end up being infeasible with significant probability, which is also
why we chose the relatively small value of σ = 0.1.

Table 6.3 Scheme performances on Car.

Schemes Success Time σt Iter
0 89.8% 8.9 4.5 104.0

1, 2, 320, 330, 340, 420, 430, 440 97.2% 6.8 4.9 94.3
35, 310, 45, 410 95.2% 6.4 5.0 103.9

6.2.2 Combined-Cycle Power Plant
The results for CCPP are shown in Table 6.4. On 70.1% of the instances, all
schemes succeed. 20.9% of the instances are invalid. We see that Scheme 0
is an order of magnitude slower and also sometimes fails unlike the other
schemes. There is little difference between the other schemes, which is to be
expected, since tearing and sparsity preservation only makes minor changes
to the problem as seen in Table 6.1. On almost all of the instances in which
all schemes fail, all schemes except 0 report local infeasibility. Scheme 0
only fails because of maximum CPU time.

Table 6.4 Scheme performances on CCPP.

Schemes Success Time σt Iter
0 88.6% 13.6 5.3 101.9

1, 310, 320, 330, 340 100.0% 0.9 0.6 46.3
2, 410, 420, 430, 440 100.0% 0.9 0.5 46.4

35 100.0% 1.0 0.7 46.4
45 99.9% 1.0 0.6 46.5

109

Chapter 6. Scheme Benchmarks

6.2.3 Double Pendulum
The results for Double Pendulum are shown in Table 6.5. On 99.6% of
the instances, all schemes succeed. All instances are valid. We see that
Scheme 1 reduces the solution time by an order of magnitude compared to
Scheme 0, which is further halved by Scheme 2. The overzealous sparsity
preservation that is needed to have an impact on the number of variables
is not beneficial.

Table 6.5 Scheme performances on Double Pendulum.

Schemes Success Time σt Iter
0 99.6% 15.5 7.0 99.9

1, 310, 320, 330, 340 100.0% 2.1 1.0 72.4
2, 420, 430, 340 100.0% 0.8 0.4 58.3

35 100.0% 2.2 1.0 71.1
410 100.0% 0.9 0.4 58.7
45 100.0% 1.0 0.5 58.9

6.2.4 Fourbar1
The results for Fourbar1 are shown in Table 6.6. On 56.1% of the instances,
all schemes succeed. 34.0% of the instances are invalid. The dominant
reasons for failure are restoration failure in IPOPT and maximum CPU
time. We see that Scheme 2 performs significantly better than all the other
schemes, and that despite significant density in the problem after applying
tearing, sparsity preservation actually does more harm than good. One
might have suspected this already when inspecting Table 6.1, as Fourbar1 is
the only problem where sparsity preservation significantly increases nnz J
rather than decrease it. Also, the Lagrangian Hessian is relatively denser
for this problem than the others, which we have neglected in the sparsity
preservation.

6.2.5 Distillation Column
The state variable x for this problem consists entirely of molar fractions.
Although x is formally unbounded, each component lies in the interval
[0, 1] by definition. For the purposes of (6.2), we hence impose the bounds
0 ≤ x ≤ 1 to adhere to physics. These bounds are not enforced during
the numerical solution of the optimization problem. Scheme 0 is unable to
solve a single instance of Distillation Column. The results for the remaining
schemes for Distillation Column are shown in Table 6.7.

On 97.2% of the instances, all remaining schemes succeed. All of the
instances are valid. On the valid instances, the sole reason for failure is

110

6.2 Problem Results

Table 6.6 Scheme performances on Fourbar1.

Schemes Success Time σt Iter
0 86.8% 8.9 2.4 15.6

1, 330,340 87.1% 4.6 1.3 15.4
2 99.8% 1.4 0.4 15.2

320 87.1% 4.6 1.3 15.4
310 87.1% 4.6 1.3 15.4
35 86.8% 5.0 1.4 15.4
440 93.5% 1.6 0.5 15.3
430 95.2% 1.5 0.4 15.2
420 90.8% 1.7 0.5 15.4
410 85.8% 2.3 0.7 15.4
45 95.6% 3.2 0.9 15.4

Table 6.7 Scheme performances on Distillation Column. Scheme 0 fails all
generated instances.

Schemes Success Time σt Iter
1 98.8% 10.2 1.5 16.3
2 99.9% 10.7 1.0 14.3

340 99.5% 4.3 1.2 16.5
330 99.4% 4.7 0.5 16.2
320 99.4% 6.0 1.0 16.3
310 99.3% 4.1 1.1 16.3
35 99.6% 4.8 0.6 15.8
440 100.0% 3.6 0.3 14.4
430 100.0% 3.0 0.3 14.5
420 100.0% 2.6 0.2 14.4
410 99.9% 2.2 0.2 14.4
45 100.0% 3.4 0.3 14.2

maximum CPU time. While tearing slightly improves robustness, it also
slightly increases the solution time in the absence of sparsity preservation.
Sparsity preservation however greatly reduces the solution time, especially
in combination with tearing.

6.2.6 Heat Recovery Steam Generator
The results for HRSG are shown in Table 6.8. On 72.2% of the instances, all
schemes succeed. 23.1% of the instances are invalid. The dominant reasons
for failure are local infeasibility and maximum CPU time. We see that
Scheme 1 only offers a slight improvement over Scheme 0, but the use of

111

Chapter 6. Scheme Benchmarks

tearing and sparsity preservation improves both robustness and solution
times.

Table 6.8 Scheme performances on HRSG.

Schemes Success Time σt Iter
0 96.0% 13.5 8.2 66.0

1, 35, 310, 320, 330, 340 96.9% 11.1 7.2 68.8
2, 430, 440 99.3% 8.9 4.1 48.5

420 99.2% 7.7 4.4 49.8
410 99.1% 6.7 4.0 49.3
45 99.2% 6.8 4.2 49.7

6.3 Performance Profiles

In Section 6.2 we saw that Scheme 1 on average outperforms Scheme 0
for each considered problem, and that Schemes 2, 3µtol , and 4µtol usually
yield further improvements. To illustrate the aggregated results, Figure 6.1
shows the performance profile [Dolan and Moré, 2002] for all schemes on
the valid portion of the 6000 problem instances. The performance ρ s(τ) of a
scheme s is defined as the ratio of instances in which s solves the problem no
slower than a factor τ of the fastest scheme of that instance. In particular,
ρ s(1) is the ratio of instances in which s was the fastest scheme, and ρ s(∞)
is the ratio of instances in which s succeeds.

There is however no clear best value for µtol in Figure 6.1, and average
performance as a function of µtol is far from convex, suggesting that a larger
suite than that of Chapter 5 is needed to pinpoint a suitable default value
for µtol. Suitable values however seem to lie in the range of [10, 30], and so
15 is chosen as the default value of JModelica.org.

For a clearer comparison of the various schemes without excessive focus
on µtol, we generate a new performance profile where we only consider
µtol = 30, which was the density tolerance yielding the best robustness,
that is, ρ s(∞). The result is shown in Figure 6.2. Fourbar1 was the only
problem where sparsity preservation significantly deteriorated robustness,
which leads to Scheme 2 being the most robust scheme.

112

6.3 Performance Profiles

100 101 102
0.0

0.2

0.4

0.6

0.8

1.0

0

1

2

340

330

320

310

305

440

430

420

410

45

ρ

τ
Figure 6.1 Performance profiles for the valid portion of 6000 problem
instances of all considered schemes with 5 different values of µtol. Scheme 0
is outperformed by Scheme 1, which is outperformed by both Scheme 2 and
Scheme 3µtol , both of which are outperformed by Scheme 4µtol .

100 101 102
0.0

0.2

0.4

0.6

0.8

1.0

0

1

2

330

430

ρ

τ
Figure 6.2 Performance profile for the valid portion of 6000 problem in-
stances using only µtol = 30. Scheme 430 is on average superior both in terms
of speed and robustness, although Scheme 2 has slightly better robustness.
In particular, Scheme 430 is an order of magnitude faster than Scheme 0 in
approximately half of the instances.

113

Chapter 6. Scheme Benchmarks

In Chapter 4 we stated the goal of devising a scheme that always out-
performs Scheme 0. To see whether we have succeeded, we generate a
performance profile for only Scheme 0 and 430, the most promising scheme.
The result is shown in Figure 6.3. Our goal translates to ρ430 " 1 for this
profile. Although we fall short of this goal, both in terms of speed and
robustness, we are quite close.

100 101 102
0.0

0.2

0.4

0.6

0.8

1.0

0

430

ρ

τ
Figure 6.3 Performance profile of the conventional scheme and the most
promising scheme.

6.4 Computation Times

Regarding computation times, we have so far focused on the respective so-
lution times of the schemes. For many applications, such as online MPC,
these are the only times that matter. For other applications, the compu-
tation time of the full toolchain is important, in which case the proposed
techniques add additional computational steps during preprocessing com-
pared to Scheme 0. Excepting Scheme 0, there is little difference in the
offline computations times between the remaining schemes, and so this
section focuses on the comparison of Scheme 0 and Scheme 430.

The main parts of the offline computation times are model compila-
tion, BLT analysis, collocation discretization, and algorithmic differentiation
graph construction (including first- and second-order derivatives). Another
significant part of offline computation times is starting the java virtual
machine of the compiler, which takes approximately 1 second. We however
neglect this, since it only needs to be performed once per Python session and

114

6.4 Computation Times

is entirely independent of the considered optimization problem. Note that
each of these offline steps only has to be performed once in for example the
benchmark of Section 6.2 for each problem, rather than for each instance,
since the only thing to change is numerical parameter values; the problem
structure remains unaltered. The main parts of the online computation
times are NLP function evaluations and KKT matrix factorization. While
Scheme 430 adds computation time compared to Scheme 0 in the form of
BLT analysis, it also results in a smaller DAE which may reduce computa-
tion in subsequent offline steps, allowing the additional computation time
to be regained before we even reach the online computations.

Table 6.9 compares the offline and online computation times of Scheme 0
and Scheme 430 for the six benchmark problems. The online times are the
averages observed in Section 6.2. We see that for all except one problem,
Scheme 430 has a lower total time. We also see that the offline times for
Scheme 430 become significantly larger for problems with many DAE vari-
ables. Since the implementation of Scheme 430 is just a prototype with little
effort spent on efficient offline computations, its implementation can prob-
ably be optimized to scale better. The bottleneck for Distillation Column
lies in the construction of the structural incidence matrix: Identifying the
nonzero incidences and determining which of those are linear, which affects
all schemes except 0. These computations are not inherently expensive;
the JModelica.org compiler performs very similar computations for larger
systems much faster.

Table 6.9 Offline and online computation times [s].

Problem Scheme Offline Online Total

Car 0 2.7 8.9 11.6
430 2.7 6.8 9.5

CCPP 0 3.5 13.6 17.1
430 3.6 0.9 4.5

Double Pendulum 0 7.8 15.5 23.3
430 7.1 0.8 7.9

Fourbar1 0 31.3 8.9 40.2
430 43.4 1.5 44.9

Distillation Column 0 14.7 ∞ ∞
430 119.2 3.0 122.2

HRSG 0 10.7 13.5 24.2
430 12.5 8.9 21.4

115

Chapter 6. Scheme Benchmarks

6.5 Global Collocation

We have so far only evaluated the schemes when combined with local col-
location. Global collocation methods, where a large number of collocation
points and a small number of elements are used instead of vice versa, have
become increasingly popular the last decade. Hence, we will also consider
these methods, but only briefly to avoid the inadvertent comparison between
the performances of the two flavors of collocation that a more thorough in-
vestigation would have entailed. One important difference between local and
global collocation to keep in mind is that the NLPs resulting from global
collocation tend to be smaller, owing to their potential spectral (exponen-
tial) convergence rate, but also more dense, because of their global temporal
coupling.

We will limit our evaluation with global collocation to the Distillation
Column problem. Instead of using ne = 20 and nc = 3, we use ne = 1
and nc = 25. Just as we observed for local collocation, Scheme 0 is unable
to solve the problem. The results for the remaining schemes are shown
in Table 6.10. All of the instances are valid. The results are similar to
those obtained with local collocation, see Table 6.7. Two notable differences
are that every scheme (except 0) solves every instance and that smaller
values of µtol are preferable. This indicates that it is crucial to preserve
what little sparsity there is in an NLP resulting from global collocation.
However, if the problem dimensions allow it, it may be more efficient to
combine Scheme 2 with dense rather than sparse numerical linear algebra,
which is a possibility we do not consider further in this thesis.

Table 6.10 Scheme performances on Distillation Column with global col-
location.

Scheme Success Time σt Iter
1 100.0% 9.4 1.4 9.1
2 100.0% 8.9 1.1 8.6

340 100.0% 3.1 0.5 9.1
330 100.0% 3.5 0.6 9.1
320 100.0% 2.6 0.4 9.1
310 100.0% 2.4 0.4 9.1
35 100.0% 2.7 0.4 9.1
440 100.0% 6.0 0.8 8.6
430 100.0% 3.6 0.5 8.6
420 100.0% 2.6 0.4 8.6
410 100.0% 3.8 0.5 8.6
45 100.0% 2.0 0.2 8.6

116

6.6 Conclusion

6.6 Conclusion

We evaluated the schemes of Chapter 4 on the problems of Chapter 5 using
the collocation algorithm from Chapter 3. We found that the scheme that
utilizes all of the proposed techniques performed the best on average, often
being an order of magnitude faster than the conventional scheme of exposing
the full DAE to the discretization method.

We found that a suitable value of the density tolerance µtol seems to be
15 when employing local collocation, although it is problem dependent and
more data is needed to pinpoint a suitable default value. It also seems that
smaller tolerances are preferable when there are more collocation points
per element.

We observed that the techniques of Chapter 4 lend themselves well to
DAEs resulting from the hierarchical modeling of Modelica, but that they
also show potential for flat DAEs.

Sparsity preservation was beneficial for the problems where it made
a significant difference, excepting Fourbar1. A possible and tractable re-
finement of the proposed sparsity preservation procedure that may remedy
this is to not only consider the sparsity of the NLP Jacobian, but also the
Hessian of the NLP Lagrangian.

While block-triangular ordering and sparsity preservation guarantees
preservation of numerical stability, tearing does not, as discussed in Chap-
ter 4. Although numerical instability caused by tearing does not appear
to have been an issue for the considered problems, the author is confident
that there are industrially relevant problems where JModelica.org selects
numerically troublesome tearing variables and residuals.

117

7
Conclusion

This chapter concludes the thesis by a summary and directions for future
research.

7.1 Summary

We have considered methods and software for numerical solution of DAE-
constrained optimization problems. The presented software framework is
integrated in a Modelica-based toolchain in the open-source platform JMod-
elica.org. The framework implements a method using direct collocation and
relies heavily upon the open-source third-party software packages CasADi
for symbolic operations and algorithmic differentiation and IPOPT for solv-
ing the resulting nonlinear programs.

Models from typical Modelica libraries are often developed for general
purposes and high-fidelity simulation, making them ill-suited for optimiza-
tion purposes. Even if they are sufficiently differentiable—for example, do
not involve hybrid dynamics—they sometimes model phenomena which may
have no relevance for a particular application and also involve a multitude of
algebraic equations that result from acausal, hierarchical modeling. Hence,
the models may end up being overly complicated for the purposes of dynamic
optimization. This causes the conventional approach of discretizing the full
DAE using direct collocation to often lead to convergence failure, which
is difficult to troubleshoot. This thesis proposed methods for overcoming
this problem by eliminating algebraic variables using techniques based on
block-triangular ordering, tearing, and sparsity preservation. Methods for
automated initialization and scaling of the many variables based on dynamic
simulation were also discussed. These help to streamline the workflow when
dealing with large-scale, heterogeneous models.

A suite of computationally challenging optimal control problems was
presented and used to evaluate the methods of the thesis. The proposed
elimination methods were shown to improve both convergence robustness

118

7.2 Directions for Future Research

and also average computational speed. In particular, the proposed meth-
ods are an order of magnitude faster than the conventional approach of
discretizing the full DAE for approximately half of the considered prob-
lems. While the thesis focuses on DAEs described by Modelica code, it was
demonstrated that the proposed methods are also beneficial when applied
on conventional DAEs not originating from hierarchical modeling.

7.2 Directions for Future Research

There is always room for extensions of the framework for dynamic opti-
mization of JModelica.org. Notable missing features are mesh refinement,
support for multiphase and mixed-integer problems, and shooting-based
algorithms. A particularly important research direction is the dynamic
optimization of systems described by hybrid Modelica models. There are
several possible approaches to treating hybrid dynamics in dynamic opti-
mization, for example the use of complementarity constraints [Baumrucker
and Biegler, 2009], mixed-integer nonlinear programming based on branch-
and-bound [Belotti et al., 2009] or sum-up-rounding [Fouquet et al., 2016;
Kirches and Lenders, 2016], multiple phases for predetermined switching
sequences [Betts, 2010], and widely applicable derivative-free methods such
as genetic algorithms [Thieriot et al., 2011]. The various approaches each
have their respective strengths and weaknesses. Identifying suitable strate-
gies for the diverse hybrid dynamics of Modelica should prove challenging.

The problem suite of this thesis would benefit from enlargement. How-
ever, constructing a suite for public use is not a one-man job; the perspectives
of multiple experts of any gender are necessary. And before a coordinated
effort can be made to establish a suite of dynamic optimization problems
involving Modelica, the Modelica community needs to standardize the for-
mulation of optimization problems. While there have been efforts in this
direction, they have yet to see fruition.

One reason for enlarging the problem suite is that the proposed elim-
ination techniques have, to some extent, been adapted to the considered
problem suite. The performance profiles may tell a different story when
applying the schemes on other problems. In particular, few measures are
taken to prevent numerical instability caused by tearing or division by zero.
Such measures however tend to be conservative, so there is a trade-off to be
made between reliability and performance. Another possible improvement
of the elimination techniques is to coordinate them, rather than applying
them in a sequential manner.

119

Bibliography

Åberg, M. (2016). Optimisation-Friendly Modelling of Thermodynamic Prop-
erties of Media. M.Sc. thesis. Department of Automatic Control, Lund
University, Sweden.

Åkesson, J. (2007). Languages and Tools for Optimization of Large-Scale
Systems. Ph.D. thesis. Department of Automatic Control, Lund Univer-
sity, Sweden.

Åkesson, J. (2008). “Optimica—an extension of Modelica supporting dy-
namic optimization”. In: Proceedings of the 6th International Modelica
Conference. Bielefeld, Germany, pp. 57–66.

Åkesson, J., K.-E. Årzén, M. Gäfvert, T. Bergdahl, and H. Tummescheit
(2010a). “Modeling and optimization with Optimica and JModelica.org—
languages and tools for solving large-scale dynamic optimization prob-
lems”. Computers & Chemical Engineering 34, pp. 1737–1749.

Åkesson, J., T. Ekman, and G. Hedin (2010b). “Implementation of a Mod-
elica compiler using JastAdd attribute grammars”. Science of Computer
Programming 75, pp. 21–38.

Allgöwer, F., T. A. Badgwell, J. S. Qin, J. B. Rawlings, and S. J. Wright
(1999). “Nonlinear predictive control and moving horizon estimation—
an introductory overview”. In: Frank, P. M. (Ed.). Advances in Control:
Highlights of ECC ’99. Springer, Berlin, Germany, pp. 391–449.

Andersson, C., J. Åkesson, and C. Führer (2016). PyFMI: A Python Package
for Simulation of Coupled Dynamic Models with the Functional Mock-
up Interface. Tech. rep. LUTFNA-5008-2016. Centre for Mathematical
Sciences, Lund University, Sweden.

Andersson, C., C. Führer, and J. Åkesson (2015). “Assimulo: A unified
framework for ODE solvers”. Mathematics and Computers in Simulation
116, pp. 26–43.

120

Bibliography

Andersson, J. (2013). A General-Purpose Software Framework for Dynamic
Optimization. Ph.D. thesis. Arenberg Doctoral School, KU Leuven, Bel-
gium.

Andersson, J., J. Åkesson, F. Casella, and M. Diehl (2011). “Integration
of CasADi and JModelica.org”. In: Proceedings of the 8th International
Modelica Conference. Dresden, Germany, pp. 218–231.

Axehill, D. (2015). “Controlling the level of sparsity in mpc”. Systems &
Control Letters 76, pp. 1–7.

Axelsson, M., F. Magnusson, and T. Henningsson (2015). “A framework for
nonlinear model predictive control in JModelica.org”. In: Proceedings of
the 11th International Modelica Conference. Paris, France, pp. 301–310.

Bachmann, B., L. Ochel, V. Ruge, M. Gebremedhin, P. Fritzson, V.
Nezhadali, L. Eriksson, and M. Sivertsson (2012). “Parallel multiple-
shooting and collocation optimization with OpenModelica”. In: Proceed-
ings of the 9th International Modelica Conference. Munich, Germany,
pp. 659–668.

Baharev, A., H. Schichl, and A. Neumaier (2016a). “Decomposition meth-
ods for solving sparse nonlinear systems of equations”. Submitted for
publication. Available online: http://reliablecomputing.eu/baharev_
tearing_survey.pdf.

Baharev, A., H. Schichl, and A. Neumaier (2016b). “Ordering matrices to
bordered lower triangular form with minimal border width”. Submit-
ted for publication. Available online: http://reliablecomputing.eu/
baharev_tearing_exact_algorithm.pdf.

Baharev, A., H. Schichl, A. Neumaier, and T. Achterberg (2016c). “An ex-
act method for the minimum feedback arc set problem”. Submitted for
publication. Available online: http://reliablecomputing.eu/baharev_
minimum_feedback_arc_set.pdf.

Baltes, M., R. Schneider, C. Sturm, and M. Reuss (1994). “Optimal experi-
mental design for parameter estimation in unstructured growth models”.
Biotechnology Progress 10:5, pp. 480–488.

Baumgarte, J. (1972). “Stabilization of constraints and integrals of motion
in dynamical systems”. Computer Methods in Applied Mechanics and
Engineering 1:1, pp. 1–16.

Baumrucker, B. T. and L. T. Biegler (2009). “MPEC strategies for optimiza-
tion of a class of hybrid dynamic systems”. Journal of Process Control
19:8, pp. 1248–1256.

Bausa, J. and G. Tsatsaronis (2001). “Dynamic optimization of startup and
load-increasing processes in power plants—Part I: Method”. Journal of
Engineering for Gas Turbines and Power 123:1, pp. 246–250.

121

Bibliography

Becerra, V. M. (2010). “Solving complex optimal control problems at no cost
with PSOPT”. In: 2010 IEEE International Symposium on Computer-
Aided Control System Design. Yokohama, Japan, pp. 1391–1396.

Belkhir, F., D. K. Cabo, F. Feigner, and G. Frey (2015). “Optimal startup
control of a steam power plant using the JModelica platform”. In: Pro-
ceedings of the 8th Vienna International Conference on Mathematical
Modelling. Vienna, Austria, pp. 204–209.

Belotti, P., J. Lee, L. Liberti, F. Margot, and A. Wächter (2009). “Branching
and bounds tighteningtechniques for non-convex MINLP”. Optimization
Methods & Software 24:4–5, pp. 597–634.

Berntorp, K. and F. Magnusson (2015). “Hierarchical predictive control for
ground-vehicle maneuvering”. In: 2015 American Control Conference.
Chicago, IL, pp. 2771–2776.

Berntorp, K., B. Olofsson, K. Lundahl, and L. Nielsen (2014). “Models and
methodology for optimal trajectory generation in safety-critical road–
vehicle manoeuvres”. Vehicle System Dynamics 52:10, pp. 1304–1332.

Bertsekas, D. P. (2005). Dynamic Programming and Optimal Control. 3rd
edition. Vol. 1. Athena Scientific, Belmont, MA.

Betts, J. T. (1998). “Survey of numerical methods for trajectory optimiza-
tion”. Journal of Guidance, Control, and Dynamics 21, pp. 193–207.

Betts, J. T. (2010). Practical Methods for Optimal Control and Estimation
Using Nonlinear Programming. 2nd edition. SIAM, Philadelphia, PA.

Betts, J. T. and W. P. Huffman (1998). “Mesh refinement in direct transcrip-
tion methods for optimal control”. Optimal Control Applications and
Methods 19, pp. 1–21.

Biegler, L. T. (2007). “An overview of simultaneous strategies for dynamic
optimization”. Chemical Engineering and Processing: Process Intensifi-
cation 46:11, pp. 1043–1053.

Biegler, L. T. (2010). Nonlinear Programming: Concepts, Algorithms, and
Applications to Chemical Processes. MOS-SIAM, Philadelphia, PA.

Blochwitz, T., M. Otter, J. Akesson, M. Arnold, C. Clauss, H. Elmqvist,
M. Friedrich, A. Junghanns, J. Mauss, D. Neumerkel, H. Olsson, and
A. Viel (2012). “Functional Mockup Interface 2.0: The standard for tool
independent exchange of simulation models”. In: Proceedings of the 9th
International Modelica Conference. Munich, Germany, pp. 173–184.

Blochwitz, T., M. Otter, M. Arnold, C. Bausch, C. Clauß, H. Elmqvist, A.
Junghanns, J. Mauss, M. Monteiro, T. Neidhold, D. Neumerkel, H. Ols-
son, J.-V. Peetz, and S. Wolf (2011). “The Functional Mockup Interface
for tool independent exchange of simulation models”. In: Proceedings of
the 8th International Modelica Conference. Dresden, Germany, pp. 105–
114.

122

Bibliography

Brenan, K., S. Campbell, and L. Petzold (1996). Numerical Solution of
Initial-Value Problems in Differential-Algebraic Equations. Vol. 14. Clas-
sics in Applied Mathematics. SIAM, Philadelphia, PA.

Brooke, A., D. A. Kendrick, A. Meeraus, and R. E. Rosenthal (1988). GAMS:
A User’s Guide. Scientific Press, Redwood City, CA.

Büskens, C. and D. Wassel (2013). “The ESA NLP solver WORHP”. In:
Fasano, G. et al. (Eds.). Modeling and Optimization in Space Engineer-
ing. Vol. 73. Springer, New York, NY, pp. 85–110.

Campbell, S. L. (1985). “The numerical solution of higher index linear time
varying singular systems of differential equations”. SIAM Journal on
Scientific and Statistical Computing 6:2, pp. 334–348.

Campbell, S. L. and J. T. Betts (2016). “Comments on direct transcrip-
tion solution of DAE constrained optimal control problems with two
discretization approaches”. Numerical Algorithms. In press. Available
online: http://dx.doi.org/10.1007/s11075-016-0119-6.

Campbell, S. L. and C. W. Gear (1995). “The index of general nonlinear
DAEs”. Numerische Mathematik 72:2, pp. 173–196.

Casella, F., F. Donida, and J. Åkesson (2011). “Object-oriented modeling and
optimal control: A case study in power plant start-up”. In: Proceedings
of the 18th IFAC World Congress. Milano, Italy, pp. 9549–9554.

Cellier, F. E. and E. Kofman (2006). Continuous System Simulation.
Springer, New York, NY.

Cervantes, A. M., A. Wächter, R. H. Tütüncü, and L. T. Biegler (2000).
“A reduced space interior point strategy for optimization of differential
algebraic systems”. Computers & Chemical Engineering 24:1, pp. 39–51.

Dassault Systèmes (2016). Dymola. url: http://www.dymola.com (visited
on 2016-08-15).

Diehl, M. (2002). Real-Time Optimization for Large Scale Nonlinear Pro-
cesses. Ph.D. thesis. Heidelberg University, Germany.

Diehl, M., H. G. Bock, J. P. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer
(2002). “Real-time optimization and nonlinear model predictive control
of processes governed by differential-algebraic equations”. Journal of
Process Control 12:4, pp. 577–585.

Dolan, E. D. and J. J. Moré (2002). “Benchmarking optimization software
with performance profiles”. Mathematical Programming 91:2, pp. 201–
213.

Duff, I. S., A. Erisman, and J. K. Reid (1986). Direct Methods for Sparse
Matrices. Clarendon Press, Oxford, United Kingdom.

123

Bibliography

Duff, I. S. and J. K. Reid (1996). “The design of MA48: A code for the
direct solution of sparse unsymmetric linear systems of equations”. ACM
Transactions on Mathematical Software 22:2, pp. 187–226.

Ekman, T. and G. Hedin (2007). “The JastAdd system—modular extensible
compiler construction”. Science of Computer Programming 69, pp. 14–
26.

Ekström, S. (2015). Real Time Model Predictive Control in JModelica.org.
M.Sc. thesis. Department of Automatic Control, Lund University, Swe-
den.

Elmqvist, H. (1978). A structured model language for large continuous sys-
tems. Ph.D. thesis. Department of Automatic Control, Lund Institute of
Technology, Sweden.

Elmqvist, H. and M. Otter (1994). “Methods for tearing systems of equa-
tions in object-oriented modeling”. In: Proceedings of the 1994 European
Simulation Multiconference. Barcelona, Spain, pp. 326–332.

Elsheikh, A. and W. Wiechert (2008). “Automatic sensitivity analysis of
DAE-systems generated from equation-based modeling languages”. In:
Bischof, C. H. et al. (Eds.). Advances in Automatic Differentiation.
Springer-Verlag, Berlin Heidelberg, Germany, pp. 235–246.

Fletcher, R. (1998). “Block triangular orderings and factors for sparse ma-
trices in LP”. In: Griffiths, D. et al. (Eds.). Numerical Analysis 1997.
Longman, Harlow, United Kingdom, pp. 91–110.

Fouquet, M., F. Magnusson, H. Guéguen, S. Velut, D. Faille, D. Dumur, and
T. Henningsson (2016). “Hybrid dynamic optimization of power plants
based on physical models and the collocation method”. Journal of Process
Control. Accepted subject to major revision.

Fourer, R., D. M. Gay, and B. W. Kernighan (2003). AMPL: A Modeling
Language for Mathematical Programming. Thomson Brooks/Cole, Pacific
Grove, CA.

Franke, R. (2002). “Formulation of dynamic optimization problems using
Modelica and their efficient solution”. In: Proceedings of the 2nd Inter-
national Modelica Conference. Oberpfaffenhofen, Germany, pp. 315–322.

Franke, R., M. Walther, N. Worschech, W. Braun, and B. Bachmann (2015).
“Model-based control with FMI and a C++ runtime for Modelica”. In:
Proceedings of the 11th International Modelica Conference. Paris, France,
pp. 339–347.

Fritzson, P. (2015). Principles of Object-Oriented Modeling and Simulation
with Modelica 3.3. 2nd edition. Wiley-IEEE Press, Piscataway, NJ.

Garg, D., M. Patterson, W. W. Hager, A. V. Rao, D. A. Benson, and G. T.
Huntington (2010). “A unified framework for the numerical solution of

124

Bibliography

optimal control problems using pseudospectral methods”. Automatica
46:11, pp. 1843–1851.

George, A. (1973). “Nested dissection of a regular finite element mesh”.
SIAM Journal on Numerical Analysis 10:2, pp. 345–363.

Ghazaei Ardakani, M. M. and F. Magnusson (2016). “Ball and finger system:
modeling and optimal trajectories”. Robotics and Autonomous Systems.
To be submitted.

Gill, P. E., W. Murray, and M. H. Wright (1981). Practical Optimization.
Academic Press.

Giselsson, P., J. Åkesson, and A. Robersson (2009). “Optimization of a pen-
dulum system using Optimica and Modelica”. In: Proceedings of the 7th
International Modelica Conference. Como, Italy, pp. 480–489.

Gould, N. I., D. Orban, and P. L. Toint (2003). “CUTEr and SifDec: A
constrained and unconstrained testing environment, revisited”. ACM
Transactions on Mathematical Software 29:4, pp. 373–394.

Griewank, A. and A. Walther (2008). Evaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation. 2nd edition. SIAM, Philadel-
phia, PA.

Gupta, P. K., A. W. Westerberg, J. E. Hendry, and R. R. Hughes (1974).
“Assigning output variables to equations using linear programming”.
AIChE Journal 20:2, pp. 397–399.

Hairer, E. and G. Wanner (1996). Solving Ordinary Differential Equa-
tions II: Stiff and Differential-Algebraic Problems. 2nd edition. Springer-
Verlag, Berlin, Germany.

Hart, W. E., C. Laird, J.-P. Watson, and D. L. Woodruff (2012). Pyomo –
Optimization Modeling in Python. Springer, Berlin, Germany.

Hedengren, J. D. (2008). “A nonlinear model library for dynamics and
control”. url: http://www.hedengren.net/research/Publications/
Cache_2008/NonlinearModelLibrary.pdf (visited on 2016-08-15).

Hedengren, J. D., R. A. Shishavan, K. M. Powell, and T. F. Edgar (2014).
“Nonlinear modeling, estimation and predictive control in APMonitor”.
Computers & Chemical Engineering 70, pp. 133–148.

Hindmarsh, A. C., P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E.
Shumaker, and C. S. Woodward (2005). “SUNDIALS: Suite of nonlin-
ear and differential/algebraic equation solvers”. ACM Transactions on
Mathematical Software 31:3, pp. 363–396.

Holmqvist, A. and F. Magnusson (2016). “Open-loop optimal control of batch
chromatographic separation processes using direct collocation”. Journal
of Process Control 46, pp. 55–74.

125

Bibliography

Holmström, K. (1999). “The TOMLAB optimization environment in Matlab”.
Advanced Modeling and Optimization 1, pp. 47–69.

Hopcroft, J. E. and R. M. Karp (1973). “An n5/2 algorithm for maxi-
mum matchings in bipartite graphs”. SIAM Journal on Computing 2:4,
pp. 225–231.

Houska, B., H. J. Ferreau, and M. Diehl (2011). “ACADO toolkit—An open-
source framework for automatic control and dynamic optimization”. Op-
timal Control Applications and Methods 32, pp. 298–312.

HSL (2016). A collection of Fortran codes for large scale scientific computa-
tion. Software available at http://www.hsl.rl.ac.uk.

Hunter, J. D. (2007). “Matplotlib: a 2D graphics environment”. Computing
in Science & Engineering 9:3, pp. 90–95.

ITEA (2015). Model driven physical systems operation. url: https://itea3.
org/project/modrio.html (visited on 2015-06-16).

Kameswaran, S. and L. T. Biegler (2008). “Convergence rates for direct
transcription of optimal control problems using collocation at radau
points”. Computational Optimization and Applications 41:1, pp. 81–126.

Karypis, G. and V. Kumar (1998). “A fast and high quality multilevel scheme
for partitioning irregular graphs”. SIAM Journal on Scientific Comput-
ing 20:1, pp. 359–392.

Kirches, C. and F. Lenders (2016). “Approximation properties and tight
bounds for constrained mixed-integer optimal control”. Mathematical
Programming. Submitted for publication. Available online: http://www.
optimization-online.org/DB_FILE/2016/04/5404.pdf.

Klenk, M., D. G. Bobrow, J. De Kleer, and B. Janssen (2014). “Making
Modelica applicable for formal methods”. In: Proceedings of the 10th
International Modelica Conference. Lund, Sweden, pp. 205–211.

Kron, G. (1963). Diakoptics: The Piecewise Solution of Large-Scale Systems.
Vol. 2. MacDonald, London, United Kingdom.

Krüger, K., R. Franke, and M. Rode (2004). “Optimization of boiler start-
up using a nonlinear boiler model and hard constraints”. Energy 29:12,
pp. 2239–2251.

Kunkel, P. and V. Mehrmann (2008). “Optimal control for unstructured non-
linear differential-algebraic equations of arbitrary index”. Mathematics
of Control, Signals, and Systems 20:3, pp. 227–269.

Larsson, P.-O. (2011). Optimization of low-level controllers and high-level
polymer grade changes. Ph.D. thesis. Department of Automatic Control,
Lund University, Sweden.

126

Bibliography

Larsson, P.-O., F. Casella, F. Magnusson, J. Andersson, M. Diehl, and J.
Åkesson (2013). “A framework for nonlinear model-predictive control
using object-oriented modeling with a case study in power plant start-
up”. In: Proceedings of the 2013 IEEE Multi-Conference on Systems and
Control. Hyderabad, India, pp. 346–351.

Larsson, T. (2015). Moving Horizon Estimation for JModelica.org. M.Sc.
thesis. Department of Automatic Control, Lund University, Sweden.

Lazutkin, E., A. Geletu, S. Hopfgarten, and P. Li (2014). “Modified multiple
shooting combined with collocation method in JModelica.org with sym-
bolic calculations”. In: Proceedings of the 10th International Modelica
Conference. Lund, Sweden, pp. 999–1006.

Lazutkin, E., A. Geletu, S. Hopfgarten, and P. Li (2015). “An analytical hes-
sian and parallel-computing approach for efficient dynamic optimization
based on control-variable correlation analysis”. Industrial & Engineering
Chemistry Research 54:48, pp. 12086–12095.

Lennernäs, B. (2013). A CasADi Based Toolchain for JModelica.org. M.Sc.
thesis. Department of Automatic Control, Lund University, Sweden.

Liberzon, D. (2012). Calculus of Variations and Optimal Control Theory: A
Concise Introduction. Princeton University Press, Princeton, NJ.

Maciejowski, J. M. (2002). Predictive Control with Constraints. Prentice-
Hall, Upper Saddle River, NJ.

Magnusson, F. (2012). Collocation Methods in JModelica.org. M.Sc. thesis.
Department of Automatic Control, Lund University, Sweden.

Magnusson, F. (2016). Symbolic elimination performance profiles. GitHub
repository. url: https : / / github . com / Bleevoe / blt _ performance _
profiles (visited on 2016-10-05).

Magnusson, F. and J. Åkesson (2012). “Collocation methods for optimization
in a Modelica environment”. In: Proceedings of the 9th International
Modelica Conference. Munich, Germany, pp. 649–658.

Magnusson, F. and J. Åkesson (2015). “Dynamic optimization in JModel-
ica.org”. Processes 3:2, pp. 471–496.

Magnusson, F. and J. Åkesson (2016). “Symbolic elimination in dynamic
optimization based on block-triangular ordering”. Optimization Methods
and Software. Submitted for publication.

Magnusson, F., K. Palmer, L. Han, and G. Bollas (2015). “Dynamic paramet-
ric sensitivity optimization using simultaneous discretization in JMod-
elica.org”. In: 2015 International Conference on Complex Systems Engi-
neering, pp. 37–42.

Maree, J. P. and L. Imsland (2016). “Combined economic and regulatory
predictive control”. Automatica 69, pp. 342–347.

127

Bibliography

Markowitz, H. M. (1957). “The elimination form of the inverse and its
application to linear programming”. Management Science 3:3, pp. 255–
269.

MathWorks (2016). Simulink. url: http : / / mathworks . com / products /
simulink (visited on 2016-09-15).

Mattsson, S. E., H. Elmqvist, and M. Otter (1998). “Physical system model-
ing with Modelica”. Control Engineering Practice 6:4, pp. 501–510.

Mattsson, S. E., H. Olsson, and H. Elmqvist (2000). “Dynamic selection
of states in Dymola”. In: Modelica Workshop 2000 Proceedings. Lund,
Sweden, pp. 61–67.

Mattsson, S. E. and G. Söderlind (1993). “Index reduction in differential-
algebraic equations using dummy derivatives”. SIAM Journal on Scien-
tific Computing 14:3, pp. 677–692.

Meijer, P. (2011). Tearing Differential Algebraic Equations. M.Sc. thesis.
Centre for Mathematical Sciences, Lund University, Sweden.

Modelica Association (2016a). List of Modelica libraries. url: https://www.
modelica.org/libraries (visited on 2016-08-31).

Modelica Association (2016b). Modelica home page. url: http : / / www .
modelica.org (visited on 2016-08-01).

Modelon AB (2016). JModelica.org User Guide. url: http://www.jmodelica.
org/page/236 (visited on 2016-08-30).

Nagel, L. W. and D. Pederson (1973). SPICE (Simulation Program with
Integrated Circuit Emphasis). Tech. rep. UCB/ERL M382. EECS De-
partment, University of California, Berkeley, CA.

Nagy, Z., R. Findeisen, M. Diehl, F. Allgöwer, H. G. Bock, S. Agachi, J. P.
Schlöder, and D. Leineweber (2000). “Real-time feasibility of nonlinear
predictive control for large scale processes - a case study”. In: 2000
American Control Conference. Chicago, IL, pp. 4249–4253.

Nocedal, J., A. Wächter, and R. A. Waltz (2009). “Adaptive barrier update
strategies for nonlinear interior methods”. SIAM Journal on Optimiza-
tion 19:4, pp. 1674–1693.

Nocedal, J. and S. Wright (2006). Numerical optimization. 2nd edition.
Springer, New York, NY.

Norén, C. (2013). Path Planning for Autonomous Heavy Duty Vehicles Using
Nonlinear Model Predictive Control. M.Sc. thesis. Department of Elec-
trical Engineering, Automatic Control, Linköping University, Sweden.

Pacejka, H. B. (2006). Tire and Vehicle Dynamics. 2nd edition. Butterworth-
Heinemann, Oxford, United Kingdom.

128

Bibliography

Palmkvist, E. (2014). Implementation of Grey-Box Identification in JModel-
ica.org. M.Sc. thesis. Department of Automatic Control, Lund University,
Sweden.

Pantelides, C. C. (1988). “The consistent initialization of differential-
algebraic systems”. SIAM Journal on Scientific and Statistical Com-
puting 9:2, pp. 213–231.

Parini, P. (2015). Object Oriented Modeling and Dynamic optimization of En-
ergy Systems with Application to Combined Cycle Power Plant Start-Up.
M.Sc. thesis. Dipartimento di Elettronica Informazione e Bioingegneria,
Politecnico di Milano, Italy.

Parrotto, R., J. Åkesson, and F. Casella (2010). “An XML representation of
DAE systems obtained from continuous-time Modelica models”. In: 3rd
International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools. Oslo, Norway, pp. 91–98.

Pettersson, J., U. Persson, T. Lindberg, L. Ledung, and X. Zhang (2005).
“On-line pulp mill production optimization”. In: Proceedings of the 16th
IFAC World Congress. Prague, Czech Republic, pp. 443–448.

Pfeiffer, A. (2012). “Optimization library for interactive multi-criteria opti-
mization tasks”. In: Proceedings of the 9th International Modelica Con-
ference. Munich, Germany, pp. 669–680.

Pfeiffer, A., I. Bausch-Gall, and M. Otter (2012). “Proposal for a standard
time series file format in HDF5”. In: Proceedings of the 9th International
Modelica Conference. Munich, Germany, pp. 495–506.

Piela, P. C., T. Epperly, K. Westerberg, and A. W. Westerberg (1991). “AS-
CEND: An object-oriented computer environment for modeling and anal-
ysis: the modeling language”. Computers & Chemical Engineering 15:1,
pp. 53–72.

Prata, A., J. Oldenburg, A. Kroll, and W. Marquardt (2008). “Integrated
scheduling and dynamic optimization of grade transitions for a contin-
uous polymerization reactor”. Computers & Chemical Engineering 32,
pp. 463–476.

Process Systems Enterprise (2016). gPROMS. url: https : / / www .
psenterprise.com/products/gproms (visited on 2016-08-15).

Pytlak, R., T. Tarnawski, B. Fajdek, and M. Stachura (2014). “Interactive
dynamic optimization server – connecting one modelling language with
many solvers”. Optimization Methods and Software 29, pp. 1118–1138.

Rajamani, R. (2006). Vehicle Dynamics and Control. Springer-Verlag, Berlin
Heidelberg, Germany.

Rao, A. V. (2009). “A survey of numerical methods for optimal control”. In:
Proceedings of the 2009 AAS/AIAA Astrodynamics Specialists Confer-
ence. Pittsburgh, PA.

129

Bibliography

Rodriguez, J. S. (2014). Large-scale Dynamic Optimization Using Code Gen-
eration and Parallel Computing. M.Sc. thesis. Department of Mathemat-
ics, KTH Royal Institute of Technology, Sweden.

Ruge, V., W. Braun, B. Bachmann, A. Walther, and K. Kulshreshtha (2014).
“Efficient implementation of collocation methods for optimization using
OpenModelica and ADOL-C”. In: Proceedings of the 10th International
Modelica Conference. Lund, Sweden, pp. 1017–1025.

Runvik, H. (2014). Modelling and Start-Up Optimization of a Coal-Fired
Power Plant. M.Sc. thesis. Department of Automatic Control, Lund Uni-
versity, Sweden.

Safdarnejad, S. M., J. D. Hedengren, N. R. Lewis, and E. L. Haseltine
(2015). “Initialization strategies for optimization of dynamic systems”.
Computers & Chemical Engineering 78, pp. 39–50.

Sager, S. (2005). Numerical Methods for Mixed-Integer Optimal Control
Problems. Ph.D. thesis. Heidelberg University, Germany.

Setubal, J. C. (1993). “New experimental results for bipartite matching”. In:
Proceedings of netflow93. Pisa, Italty, pp. 211–216.

Sponk (2010). Continuous binary fractional distillation. Licensed under CC
BY-SA 3.0 http://creativecommons.org/licenses/by- sa/3.0. url:
https://commons.wikimedia.org/wiki/File%3AContinuous_Binary_

Fractional_Distillation_EN.svg (visited on 2016-08-27).
Tarjan, R. E. (1972). “Depth-first search and linear graph algorithms”. SIAM

Journal on Computing 1:2, pp. 146–160.
Thelander Andrén, M. and C. Wedding (2015). Development of a Solution

for Start-up Optimization of a Thermal Power Plant. M.Sc. thesis. De-
partment of Automatic Control, Lund University, Sweden.

Thieriot, H., M. Nemura, M. Torabzadeh-Tari, P. Fritzson, R. Singh, and
J. J. Kocherry (2011). “Towards design optimization with OpenModel-
ica emphasizing parameter optimization with genetic algorithms”. In:
Proceedings of the 8th International Modelica Conference. Dresden, Ger-
many, pp. 756–762.

Thümmel, M., G. Looye, M. Kurze, M. Otter, and J. Bals (2005). “Nonlin-
ear inverse models for control”. In: Proceedings of the 4th International
Modelica Conference. Hamburg, Germany, pp. 267–279.

Tomlab Optimization (2016). PROPT. url: http://tomdyn.com (visited on
2016-08-15).

Trefethen, L. N. and D. Bau (1997). Numerical Linear Algebra. SIAM,
Philadelphia, PA.

130

Bibliography

Vasantharajan, S. and L. T. Biegler (1990). “Simultaneous strategies for
optimization of differential-algebraic systems with enforcement of error
criteria”. Computers & Chemical Engineering 14, pp. 1083–1100.

Wächter, A. and L. T. Biegler (2006). “On the implementation of a primal-
dual interior point filter line search algorithm for large-scale nonlinear
programming”. Mathematical Programming 106, pp. 25–57.

Westerberg, A. W. and F. C. Edie (1971). “Computer-aided design, part 1:
Enhancing convergence properties by the choice of output variable as-
signments in the solution of sparse equation sets”. Chemical Engineering
Journal 2:1, pp. 9–16.

Word, D. P., J. Kang, J. Åkesson, and C. D. Laird (2014). “Efficient par-
allel solution of large-scale nonlinear dynamic optimization problems”.
Computational Optimization and Applications 59:3, pp. 667–688.

Yang, D., B. Jacobson, M. Jonasson, and T. J. Gordon (2014). “Closed-
loop controller for post-impact vehicle dynamics using individual wheel
braking and front axle steering”. International Journal of Vehicle Au-
tonomous Systems 12:2, pp. 158–179.

Zavala, V. M. (2014). “Inference of building occupancy signals using mov-
ing horizon estimation and Fourier regularization”. Journal of Process
Control 24, pp. 714–722.

Zimmer, D., M. Otter, and H. Elmqvist (2014). “Custom annotations: Han-
dling meta-information in Modelica”. In: Proceedings of the 10th Inter-
national Modelica Conference. Lund, Sweden, pp. 174–182.

131

