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Interference effects in two-color high-order harmonic generation

X. He,1 J.M. Dahlström,1 R. Rakowski,1 C. M. Heyl,1, 2 A. Persson,1 J. Mauritsson,1 and A. L’Huillier1

1Department of Physics, Lund University, P. O. Box 118, SE-221 00 Lund, Sweden
2Department of Physics, University of Marburg, Marburg, Germany

We study high-order harmonic generation in argon driven by an intense 800 nm laser field and
a small fraction of its second harmonic. The intensity and divergence of the emitted even and odd
harmonics are strongly modulated as a function of the relative delay between the two fields. We
provide a detailed analysis of the underlying interference effects. The interference changes drastically
when approaching the cutoff region due to a switch of the dominant trajectory responsible for
harmonic generation.

PACS numbers: 32.80.Rm, 32.80.Qk, 42.65.Ky

High-order harmonic generation (HHG) from the in-
teraction of an intense infrared (IR) laser field and a gas
target provides a coherent table-top radiation source in
the extreme ultraviolet (XUV) range, of interest for a
number of applications, in particular the production of
attosecond light pulses [1, 2]. The underlying physics of
HHG is well described by the so-called three-step model
[3–5]. An electron wave packet is created by tunneling
through the Coulomb barrier deformed by the laser field.
It is subsequently accelerated by the laser field, returns
to the atom and recombines to the ground state, leading
to the production of an XUV light burst. This process is
repeated every half-cycle of the IR laser field, resulting
in an attosecond pulse train (APT) with a pulse sepa-
ration of one half IR period and to a spectrum of odd
harmonics.

There is a growing interest to achieve even better con-
trol of the generation process [6], e.g. to obtain higher
conversion efficiency or to tailor attosecond pulses or
pulse trains for specific applications. Two-color HHG
driven by an IR laser and its second harmonic (blue)
provides subcycle control of the generating electric field,
with the interesting property that two consecutive half-
cycles become different, and not simply opposite in sign.
This breakdown of the electric field inversion symmetry
has been used for several applications e.g. the generation
of even and odd high-harmonics with increased conver-
sion efficiency [7, 8] and the production of attosecond
pulse trains with one pulse per IR cycle [9, 10]. In some
conditions, when the intensity of the second harmonic
is much weaker than that of the fundamental laser field,
even harmonics can be used to provide information about
the generation process [11–13].

In this letter, we investigate both experimentally and
theoretically high-order harmonic generation driven by a
two-color laser field consisting of a a 800 nm fundamen-
tal and a fraction of its second harmonic. The even and
odd harmonic intensities are found to be modulated as
a function of IR-blue delay, forming in some cases a rich
interference pattern (Fig. 1). We investigate how these
oscillations depend on harmonic energy and intensity of
the blue field and how the spatial profiles of the emit-

ted harmonics are affected. We provide an interpretation
based on quasiclassical calculations.
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FIG. 1: 21st to 24th harmonic spectra as a function of the
relative delay between the IR and blue fields for different in-
tensity ratios, increasing from about half a percent in (a) to
a few percent in (b) and (c). The IR intensity is estimated to
be 1.8× 1014 W/cm2, based on the cutoff position. The color
code indicates the harmonic intensities in arbitrary units.

Experiments were performed using an amplified 10 Hz
titanium sapphire laser system delivering 40 fs pulses at
800 nm with energy up to 1 J. The results presented in
this article are obtained with only a small fraction (less
than 10 mJ) of this energy. The laser beam was sent
through a 1.3 mm-thick type I KDP (Potassium Dihydro-
gen Phosphate) crystal to generate the second harmonic.
A Michelson interferometer was used to separate and de-
lay the second harmonic and to make the polarizations
of the two laser fields parallel to each other. The relative
delay was adjusted with a 500µm-thick glass plate. After
recombination of the two colors, the beam was focused
by a spherical mirror with a 2 m focal length into a cylin-
drical gas cell with 1 mm diameter and 15 mm length,
filled with Ar gas. Variable apertures were placed in the
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fundamental and second harmonic beams to adjust in-
tensities and focusing geometries. These conditions are
such that phase matching is optimized and energies per
harmonic reaching 100 nJ have been measured. The har-
monic spectra were detected by a flat-field XUV spec-
trometer, located 1.5 m from the source and allowing us
to obtain spatial and spectral information simultaneously
[14].

Fig. 1 (a-c) presents the spectra of the 21st to 24th

harmonics as a function of relative delay in units of the
period of the blue field TB = 1.3 fs. The color code indi-
cates the intensity of the emitted light. When the blue
intensity is less than a percent of the IR [panel (a)], the
odd and even harmonics oscillate with opposite phase
twice per blue cycle [11–13]. When the blue intensity is
increased to a few percent [Fig. 1 (b)-(c)], even and odd
harmonics become comparable in strength and vary more
strongly with the IR-blue delay (τ).
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FIG. 2: Intensities of the 22nd (a) and 23rd harmonics (b),
normalized to the maximum value of the 23rd harmonic for
the three cases in Fig. 1. The thin red line, green dashed line
and thick blue line correspond to (a), (b) and (c).

Fig. 2 compares the intensities of the 22nd (a) and 23rd

(b) harmonics as a function of τ for the three different in-
tensities of the blue field used in Fig. 1. At low intensity
(thin red line), the odd and even harmonics oscillate out
of phase. When the blue intensity is increased, the pat-
terns become more complex, exhibiting multiple maxima
per half blue period. The number and position of these
maxima depend on the blue intensity, as well as harmonic
order. These results arise from the interferometric nature
of the HHG process, which will be analyzed in more de-
tail in the following.

To understand the interference structure shown in
Figs. 1 and 2, let us consider the radiation emitted every
IR cycle over a certain energy range. It comprises pre-
dominantly two bursts, one each half-cycle. In absence
of the blue field, they are identical except for a change
of sign. We further assume that the emitted bursts are
identical from one IR cycle to the next. The radiation
emitted from the interaction of an intense laser field com-
prising n periods with an atom can be generally expressed

as

s(t) =
j=n∑
j=1

a+(t)⊗δ(t− jT )+a−(t)⊗δ
(
t− jT − T

2

)
, (1)

where a+(t) and a−(t) are the fields emitted in the
first and second half period respectively, and T is the
IR field period. If the blue field is weak, it mainly
affects the phase of the emitted radiation. a±(t) ≈
±a(t) exp[±iσ(t)], where a(t) is the pulse emitted from
the first (positive) half period due to the interaction with
the fundamental field only, and σ(t) is a slow function
over time. The Fourier transform of the pulse train can
then be approximated as

S(Ω) ≈ A(Ω)
j=n∑
j=1

eijΩT+iσ(Ω) − eijΩT+iΩT
2 −iσ(Ω), (2)

where A(Ω) is the Fourier transform of a(t) and σ(Ω) =
σ[tr(Ω)]. tr(Ω) represents the time at which the compo-
nent at frequency Ω of the light burst is emitted, i.e. the
return time of the corresponding classical electron tra-
jectory. The Ω dependence accounts for the chirp of the
emitted radiation [15]. The power spectrum reduces to
the form

|S(Ω)|2 ≈4 |A(Ω)|2
∣∣∣∣∣ sin(nΩT

2 )
sin
(

ΩT
2

) ∣∣∣∣∣
2∣∣sin [ΩT

4 − σ(Ω)
]∣∣2, (3)

which has a straightforward interpretation. The first fac-
tor is the spectrum emitted by a single attosecond pulse,
the second factor modulates this broad spectrum, leading
to a comb of even and odd harmonics. Finally the last
factor cancels the even harmonic components when there
is no second harmonic (σ = 0). When a second harmonic
field is present, it modulates the amplitude of both even
and odd harmonics. For the even harmonics (Ω = qω
where ω is the IR frequency and q is an even integer),
|S(qω)|2 ∝ |sin[σ(qω)]|2, while for the odd harmonics (q
odd), |S(qω)|2 ∝ |cos[σ(qω)]|2.

The phase change induced by the blue field can be cal-
culated using quasiclassical considerations. By treating
the blue field as a perturbation, σ(Ω) is found to be [13],

σ(Ω) =
e

~

∫ tr

ti

dt′ xR(tr, t′)EB(t′), (4)

where ti is the ionization time and e the electron charge.
xR denotes the position at time t′ of an electron that
starts its motion in the IR field [ER(t) = E0

R sin(ωt)] at
time ti. Finally, EB is the second harmonic field EB(t) =
E0
B sin(2ωt+ φB). Eq. (4) can be rewritten as

σ(Ω) = σ0 sin[φB + δ(Ω)], (5)

with σ0 = eE0
B∆(Ω)/~. ∆(Ω) and δ(Ω) are the

frequency-dependent modulus and argument of the
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FIG. 3: Harmonic intensity as a function of σ0 and IR-blue
delay for even (a) and odd (b) harmonics. The σ0 correspond-
ing to the intensities used in Fig. 1 (a-c) are indicated by the
thick blue solid (1a), green dashed (1b) and thin red lines
(1c). Panels (c) and (d) show the corresponding lineouts.

Fourier transform at 2ω of the electron trajectory in the
IR field.

Figure 3(a,b) shows the calculated intensity of two con-
secutive harmonics (even and odd) as a function of σ0

and delay, expressed here as (φB + δ)/2π, while (c,d)
presents lineouts at three different σ0, indicated by the
corresponding lines in (a) and (b). The odd and even
harmonic intensities strongly varies with delay in oppo-
site phase with each other, so that the total intensity
remains constant. The number of maxima increases with
σ0, i.e. with the blue field intensity.

When the blue field is weak (σ0 � 1), the intensity of
the even harmonic varies as | sin(φB +δ)|2, while the odd
harmonic intensity varies as | cos(φB + δ)|2 [thin red line
in Fig. 3(d)]. At moderate blue intensity, corresponding
to the conditions of Fig. 1(b), the even harmonic intensity
(green dashed line) show two peaks of equal strength over
a delay of TB/2, while the odd harmonics show one strong
and one weak peak. This behavior compares well to that
observed experimentally in Fig. 2 where two (one) peaks
are visible in the even (odd) harmonics. We estimate
σ0 to be just above π/2 in this case. At higher blue
intensity, as in Fig. 1(c), the even harmonic intensity
(thick blue line) show two peaks (1,2), while the odd
harmonics presents a broad peak with two maxima (1,2)
and an additional sharp peak (3). The same qualitative
behavior is observed experimentally [blue line in Fig. 2].
σ0 is thus estimated to be slightly above π. From this
analysis, we can estimate the ratios of the blue to IR

intensities to be 0.4, 5 and 20 % in Fig. 1(a), (b), (c). The
relative strength of the experimental peaks in Fig. 2 is not
accurately modeled using Eq. (3) since we include neither
amplitude effects nor propagation in our calculation.
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FIG. 4: Spatial profiles for the 22nd (a) and 23rd (b) harmon-
ics as a function of delay, in the conditions of Fig. 1(c). The
experimental divergence angles (red symbols) are compared
to the theoretical half-cycle divergences in (c) and (d) for the
22nd and 23rd harmonics respectively.

Complementary information on the generation process
can be obtained by studying the spatial distributions of
the 22nd and the 23rd harmonics [Fig. 4(a,b)]. In the one-
color case, the divergence of the qth harmonic Θq can be
estimated using Gaussian optics by the simple expression
[14],

Θq =
λq
πwq

√
1 + 4α2

qI
2
R

w4
q

w4
R

≈ |αq|IR
λqwq
πw2

R

, (6)

where IR is the peak IR intensity, wR, wq are the radii
of the IR and qth harmonic fields and λq the qth har-
monic wavelength. αqIR is the single-atom phase, cor-
responding to the phase accumulated by the electron on
its trajectory, often called “dipole phase”. When αqIR
is large, it dominates the diffraction limit in Eq. (6) and
the divergence takes the simple expression shown on the
right side in Eq. (6). For the short trajectory, we have
|αq| ≈ 2.7×10−14 cm2/W for the 23rd harmonic [14, 16].

As shown in Eq.(2), the addition of a weak blue field
affects the phase of each half-cycle contribution by ±σ.
The divergence of the qth harmonic is then expected to
vary between Θq(1± σ/|αq|IR), the limits being reached
when one half-cycle is dominant. These limits are indi-
cated by the grey lines in Fig. 4 (c,d), calculated by us-
ing the experimentally determined one-color divergence
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Θq = 0.33 mrad. The two lines (solid and dashed) show
the variation of the divergence for two (positive or neg-
ative) half cycles. Our experimental results for the 22nd

and the 23rd harmonics are indicated by the red sym-
bols. As expected, the measured divergence angles are
comprised between the theoretical values for two consec-
utive half-cycle contributions. The variation of the mea-
sured divergence can be interpreted as follows: In (c),
one half-cycle (corresponding to the dashed line) is dom-
inant from τ = 03TB to 0.7TB , while the other half-cycle
prevails for the other delays. In contrast in (d), no half
cycle dominates on the other, resulting in divergences
well within the theoretical half-cycle limits. In fact, the
experimental data in (d) clearly shows how dominance is
shifted from one half-cycle towards the other, confirming
the interpretation of (c).
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FIG. 5: (a) Harmonic spectra as a function of delay. (b) High
energy region using a saturated color scale. The white crosses
indicate the position of the nodes of the oscillations obtained
by Fourier transform analysis. (c) 30th harmonic intensity
as a function of delay, spatially integrated (green dashed),
integrated over the wings of the profile (thin red line) and
over the central area (thick blue line). The + and ∗ symbols
refer to the nodes of the thick and thin lines in (c).

Finally, we investigate how the interference pattern de-
pends on Ω, i.e. harmonic order, from the plateau to the
cutoff region. Fig. 5 shows the harmonic spectra as a
function of delay, in the weak blue intensity case [corre-
sponding to Fig. 1(a)]. The phases of the oscillations of
the even harmonics are indicated by the white crosses.
In the plateau spectral region [Fig. 5(a)], the phase in-
creases approximately linearly with harmonic frequency,
with a slope that is approximately equal to the derivative
of tr(Ω) according to

∂

∂Ω

(
tr
T

)
≈ ∂

∂Ω

(
δ

2πTB

)
. (7)

We find a good agreement with the prediction for HHG in
Ar from the short trajectory [18]. In Fig. 5 (b), we exam-

ine the behaviour of higher-order harmonics, approaching
the cutoff region. Surprisingly, the 30th harmonic hardly
oscillates, while the 32nd and 34th oscillate almost out of
phase with the 28th. To understand the apparent lack
of oscillation of the 30th harmonic, we analyse its spatial
profile. In Fig. 5 (c), we present the 30th harmonic in-
tensity obtained by integrating over the outer (central)
part of the spatial profile, plotted as a thick (thin) line.
This allows us to unravel two different oscillations almost
opposite in phase. The phase obtained by integrating the
wings of the spatial profile is close to that obtained for the
32nd and 34th harmonics in Fig. 5 (b). We interpret this
result as due to the long trajectory which becomes dom-
inant when approaching the cutoff region. The switch
between the two trajectories occurs at the 30th harmonic
in our experiment. This harmonic has comparable (and
approximately out of phase) contributions from the two
trajectories and it, therefore, only weakly oscillates over
τ . Phase matching calculations performed using our ex-
perimental conditions show a switch from the short tra-
jectory to the long trajectory when approaching the cut-
off region and thus confirm this interpretation.

In summary, we have experimentally identified and
theoretically analyzed interference effects in two-color
HHG. Adding a weak blue field allows us to control the
intensity and divergence of the harmonic emission. An
interesting switch between the short and long trajecto-
ries of the harmonic emission has been identified when
approaching the cutoff region. This seems to be a gen-
eral feature of harmonic generation in optimized phase
matched conditions.
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