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of ten eye movement event-detection algorithms
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Abstract Almost all eye-movement researchers use algo-
rithms to parse raw data and detect distinct types of eye move-
ment events, such as fixations, saccades, and pursuit, and then
base their results on these. Surprisingly, these algorithms are
rarely evaluated. We evaluated the classifications of ten eye-
movement event detection algorithms, on data from an SMI
HiSpeed 1250 system, and compared them to manual ratings
of two human experts. The evaluation focused on fixations,
saccades, and post-saccadic oscillations. The evaluation used
both event duration parameters, and sample-by-sample com-
parisons to rank the algorithms. The resulting event durations
varied substantially as a function of what algorithm was used.
This evaluation differed from previous evaluations by consid-
ering a relatively large set of algorithms, multiple events, and
data from both static and dynamic stimuli. The main conclu-
sion is that current detectors of only fixations and saccades
work reasonably well for static stimuli, but barely better than
chance for dynamic stimuli. Differing results across evalua-
tion methods make it difficult to select one winner for fixation
detection. For saccade detection, however, the algorithm by
Larsson, Nyström and Stridh (IEEE Transaction on
Biomedical Engineering, 60(9):2484–2493,2013)

outperforms all algorithms in data from both static and dy-
namic stimuli. The data also show how improperly selected
algorithms applied to dynamic data misestimate fixation and
saccade properties.

Keywords Eye-tracking . Inter-rater reliability . Parsing

Introduction

Eye movements are a common source of data in neurology,
psychology, and many other fields. For example, many
conditions and syndromes cause saccades that are
Bhypometric^, i.e. undershooting the target (see Leigh &
Zee, 2006, for many examples). It would thus be extremely
unfortunate if the offset of the saccade was erroneously
determined by the computer algorithm used to parse the
data. Nonetheless, such algorithms are indeed frequently
used when analysing data, and often without a conscious
decision and evaluation of the algorithm candidates. There
is little agreement on what combination of algorithms,
thresholds, types of eye movements, sampling frequency,
and stimuli that achieves sufficient classification accuracy
for the researcher to be able to confidently draw conclu-
sions about the parameters of the eye movements in ques-
tion. This makes it very hard to confidently generalize re-
search findings across experiments using different hard-
ware, algorithms, thresholds, and stimuli. This paper com-
pares eye movement parameters and similarities of ten dif-
ferent algorithms, along with two human expert coders,
across five different eye movement events and using data
from three types of stimuli. The overall goal is to evaluate
the algorithms and to select a clear winner to recommend
to the community.
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The reasons for parsing eye movements into distinct
events

The act of classifying eye movements into distinct events is,
on a general level, driven by a desire to isolate different inter-
vals of the data stream strongly correlated with certain oculo-
motor or cognitive properties. For example, the visual intake
of the eye is normally severely limited during a saccade, and
this, along with a general need for data reduction, seems to
have been motivating factors for the early fixation/saccade
detectors (Kliegl & Olson, 1981; Matin, 1974; Rayner,
1998). Similarly, smooth pursuit movements are triggered by
perceived motion, indicating visual intake (Rashbass, 1961),
but these movements may stretch acrossmany areas of interest
(AOI), ruining standard AOI and fixation measures if the
movements are treated as fixations. The eye blink is another
form of movement, although not by the eyeball, but this is
typically detected in order to exclude it from the data stream
so it does not interfere with further eye movement classifica-
tion, or used as training to remove eye-related artefacts in
electro-oculographic data. The eye blink is also associated
with a limited visual intake, even before the closing of the
lid and after the re-opening (Volkmann, Riggs, & Moore,
1980). This is particularly important, as the raw data when
the eyelid closes and opens may appear, in some eye-trackers,
identical to saccades moving down and up again (see p.177,
Holmqvist, Nyström, Andersson, Jarodzka & Van de Weijer,
2011).

Also, the wobble of the crystalline lens in the eye during a
saccade is thought to produce deformations in the iris (and
hence pupil) around the time of the saccade, producing what
is known as post-saccadic oscillations (PSOs) in the eye-
tracker signal (Hooge, Nyström, Cornelissen, & Holmqvist,
2015; Nyström, Andersson, Magnusson, Pansell, & Hooge,
2015a; Tabernero & Artal, 2014). PSOs are less commonly
searched for, but are increasingly important as new studies and
eye-trackers push the limits of temporal and spatial resolu-
tions. The corresponding data samples of PSOs are not sys-
tematically grouped with either fixations or saccades
(Nyström & Holmqvist, 2010). As there is still uncertainty
about the precise nature of visual intake during such oscilla-
tions (e.g., intake but with distortions; Deubel & Bridgeman,
1995; Tabernero & Artal, 2014), how this event is classified is
therefore crucial for a researcher using eye-movement classi-
fication algorithms for selecting periods of maximum visual
intake.

It is up to the individual researcher to either manually iden-
tify these events or to use any of the commercial or freely
available computer algorithms. Manual identification is of
course best if you want a classification that best matches the
researcher's conception of a fixation, saccade, or some other
event. A human coder can also adaptively update his or her
beliefs regarding what the typical event looks like, and can

stop and discuss the problem when there are tricky borderline
cases or incomplete event definitions. However, a human
working manually on this problem is very slow compared to
a computer, which is why computer-based algorithms today
are the only practical solution. The most common practice is
simply to use the event classifier provided with your system,
and often leaving any parameter thresholds at their default
settings. This practice is indeed fast, easily dividing up large
amounts of raw samples into distinct events.

Current algorithms for eye-movement classification

There exists a large number of different algorithms today and
it is impossible to evaluate them all, for several reasons. First,
some algorithms are commercial closed-source solutions from
the eye-tracker manufacturer and thus impossible to imple-
ment identically. Although it is possible to get both raw data
and identified oculomotor events from a closed-source sys-
tem, the original data are stored in a binary file particular to
that commercial system, and the commercial event classifiers
only accept their own binary files. Thus, we have to use algo-
rithms that allow us to input data in an open format. Secondly,
not all algorithms exist as actual ready-made implementations,
so an evaluation means adapting or finishing these
implementations, which in turn may add bugs and biases. So
any valid algorithm needs to be an officially released imple-
mentation. Thirdly, not all algorithms work out-of-box on
real-world data. For example, the algorithm by (Mould,
Foster, Amano, & Oakley, 2012) failed when we evaluated it
with a data file that had missing samples. Although this is a
simple task to fix, it affects the original algorithm and is thus
no longer objectively evaluated by us. Finally, for practical
reasons, we limited ourselves to ten algorithms which further-
more should have no support for smooth-pursuit identifica-
tion, which complicates matters further and is beyond the
scope of this paper (but see Komogortsev & Karpov, 2012,
for an evaluation of these algorithms). A search for a set of ten
algorithms that fulfilled these criteria produced the algorithms
that are described in the following paragraphs (see Table 1).

The Fixation Dispersion Algorithm based on Covariance
(CDT) by Veneri et al. (2011) is an improvement of the fixa-
tion dispersion algorithm based on F-tests (FDT) previously
developed by the same authors (Veneri et al., 2010). The im-
provement consists in complementing their previous, F-test-
based, algorithmwith co-variance calculations on the x- and y-
coordinates of the gaze. The logic behind this is that the F-test
is very sensitive to violations to the normality assumption of
the data. This algorithm uses variance and co-variance thresh-
olds as well as a duration threshold.

The algorithm used by Engbert and Mergenthaler (2006;
henceforthEM) is a further development of the algorithm used
earlier by Engbert and Kliegl (2003). This algorithm uses a
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velocity threshold to detect saccades, but it sets the threshold
adaptively, in relation to the identified noise level of the data.
Additionally, this algorithm enforces a minimal saccade dura-
tion to reduce the effects of noise. It should also be noted that
this algorithm was primarily developed for detecting micro-
saccades, but that is also works for detecting voluntary (larger)
saccades.

One of the most common algorithms for detecting fixations
is the Identification by Dispersion-Threshold (IDT) algorithm.
According to Salvucci and Goldberg (2000), it is based on the
data reduction algorithm by Widdel (1984). The IDT algo-
rithm works with x- and y data, and two fixed thresholds: the
maximum fixation dispersion threshold and the minimum fix-
ation duration threshold. To be a fixation, data samples con-
stituting at least enough time to fulfill the duration threshold
has to be within a spatial area not exceeding the dispersion
threshold. The samples fulfilling these criteria are marked as
belonging to a fixation. One particular detail of this specific
implementation is that it is part of a package that also merges
short nearby fixations, and also paired with a saccade detector
(Komogortsev, Gobert, Jayarathna, Koh, & Gowda, 2010).

Real data is often noisy and may suffer from data loss. An
algorithm that is designed to overcome this problem should be
very promising. A Kalman filter is a recursive filter that pro-
vides an optimal, i.e. minimized error, combination of the
current measurement and the predicted measurement given
previous input. Strictly speaking, the Kalman filter in this

Identification by Kalman Filter (IKF) algorithm does not clas-
sify the eye-tracker signal into events, but in this particular
implementation (Komogortsev & Khan, 2009) it is done by
a χ2-test. This test classifies all samples within a set window
length as belonging to a fixation if the χ2 value is below the set
threshold and fulfils a minimum duration threshold, or as be-
longing to a saccade if this value is above the threshold. This
particular implementation, as others by Komogortsev et al.
(2010), uses the same post-processing as the other algorithms,
and thus clusters nearby fixations.

Another approach to event detection is the Identification by
Minimal Spanning Tree (IMST). This algorithm creates a
Btree^ of the data, which branches out to the data samples.
The algorithm strives to capture all the data with a minimum
of branching so that samples from two different clusters are
better captured by branches to two separate nodes (which are
connected higher up in the tree) rather than forcing a very
extensive branching to a single node at a lower level. By
enforcing certain thresholds on the samples at the edges of a
cluster, saccades are identified and excluded from the fixation
detection. The implementation in question is created by
Komogortsev et al. (2010).

Considering that the most common type of event distinc-
tion is that between the almost stationary fixation and the fast-
moving saccade, an algorithm that classifies based on proba-
bilistic switching between two states appears intuitive. Such
an algorithm for Identification by Hidded Markov Model
(IHMM) is described in Komogortsev et al. (2010), and is
formed around a velocity-based algorithm and then wrapped
by two additional algorithms. The first algorithm re-classifies
fixations and saccades depending on probabilistic parameters
(e.g., initial state, and state transition probability), and the
second algorithm that updates these parameters.

A very common basis for separating samples belonging to
fixations from samples belonging to saccades, is to identify
the velocities of these samples. The Identification by Velocity
Threshold (IVT) is a simple algorithm that functions in this
way (Salvucci & Goldberg, 2000). It uses a fixed velocity
threshold to identify fixation and saccades, where fixations
are segments of samples with point-to-point velocities below
the set velocity threshold, and saccades are segments of sam-
ple with velocities above this threshold. This basic velocity
criterion is often the core of other algorithms. This particular
implementation is from Komogortsev et al. (2010).

The algorithm presented by Nyström and Holmqvist
(2010; henceforth NH) was the first algorithm to explicitly
also identify post-saccadic oscillations (called Bglissades^ in
the paper) along with fixations and saccades. It is an adaptive
algorithm in the sense that it adjusts the velocity threshold
based on the noise level in the data.

Detecting small saccades from noise is a challenge, and it
makes sense to take advantage of the fact that the eyes are
most often directed at the same object. So if the left eye moves

Table 1 Algorithm classifications

Events

Algorithm Fixation Saccade PSO Smooth
pursuit

Blink Undefined

(Humans) √ √ √ √ √ √
CDT √
EM √
IDT √ √
IKF √ √
IMST √ √
IHMM √ √
IVT √ √
NH √ √ √
BIT √
LNS √ √

Note. The oculomotor events that are explicitly detected by each algo-
rithm implementation are indicated with a check mark. The algorithms
presented are, in order: human coders, Fixation Dispersion Algorithm
based on Covariance (CDT), Engbert & Mergenthalser (EM),
Identifiacation by Dispersion-Threshold (IDT), Identification by
Kalman Filter (IKF), Identification by Minimal Spanning Tree (IMST),
Identification by Hidden Markov Model (IHMM), Identification by
Velocity Threshold (IVT), Nyström & Holmqvist (NH), Binocular-
Individual Threshold (BIT), and Larsson, Nyström & Stridh (LNS)
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to a certain object, then the right eye should be doing so too.
This makes it easier to determine whether a peak in velocity is
due to a real movement or simply noise, as both eyes should
show this peak in the velocity curve simultaneously. This idea
is taken advantage of by the Binocular-Individual Threshold
(BIT) algorithm, developed by van der Lans, Wedel and
Pieters (2011). Like several other algorithms, this is an algo-
rithm that adaptively sets thresholds.

The final algorithm that we consider in this paper is a recent
development by Larsson, Nyström and Stridh (2013;
henceforth LNS). This algorithm is the second algorithm that
is able to detect post-saccadic oscillations, but it also detects
saccades. The algorithm is adaptive, but what is novel is that it
was designed with the aim to detect saccades and post-
saccadic oscillations even in the presence of smooth pursuit
movements of the eye. Smooth pursuit movements generate
velocities that are inconsistently handled by algorithms that
maintain standard velocity thresholds. Thus, there is generally
no clear classification of these movements as either fixations
or saccades, but they rather depend on the particular smooth
pursuit movement and the current algorithm thresholds.

Evaluation of classification algorithms

The lack of a single standard algorithm used in all systems and
that many algorithms addressing the same problem exist, sug-
gests that eye movement classification is not a trivial problem,
and that evaluating the performance of different algorithms
may not be a trivial task. Crucially, determining a winner
among several algorithms means that an appropriate evalua-
tion method has to be devised. As this study is not the first one
attempting to evaluate algorithm performance, it is fruitful to
consider the benefits and drawback of already established
methods.

The most basic evaluation technique, used for identifying
events in early eye-movement research, was simply the man-
ual inspection by the researcher (e.g., Javal, 1879). At this
point in time, the purpose was to identify certain events
(saccades) rather than evaluate algorithms. Modern evalua-
tions, however, used this manual approach together with au-
tomated methods of evaluating classifications. For example,
raw data samples cluster together in a fixation, and a fixation
detection algorithm should detect all samples belonging to
these clusters, and reject samples outside of the clusters (see
for example Fig. 2 on p. 883 in Blignaut, 2009).
Unfortunately, such manual parts of an evaluation are often
mentioned in passing, e.g., that Vig, Dorr, and Barth (2009, p.
399) manually tweaked their parameters until it looked good,
as referenced by Mould et al. (2012, p. 22).

This manual evaluation, however, can more rigorously be
put to use if the human evaluators systematically code the
same data using the same categories an algorithm would.

Then it is possible to directly compare the performance of
algorithms relative to human experts. This is often also done
when evaluating new algorithms, e.g., by Larsson, Nyström
and Stridh (2013), and Mould et al. (2012). A Human –
Algorithm comparison, however, often assumes that humans
behave perfectly rationally and that, consequently, any devia-
tion from perfect agreement is due to the mistakes of the
algorithm. Thus, a question highly related to this approach is
how reliable the human coders are. In many fields of research,
this is analyzed using specific measures for inter-rater reliabil-
ity, like Cohen's Kappa (K; Cohen, 1960), the ratio of non-
agreeing samples, or calculating a correlation between coders
(e.g., Munn, Stefano, & Pelz, 2008).

Another approach is to assume an optimal or rational rela-
tion between the stimuli and the viewing behavior of an
individual. For example, Komogortsev et al. (2010)
used an approach where an experiment participant is
instructed to look at an animated single target that makes a
series of jumps. Given a known number of jumps, known
positions, known amplitudes, among other things, it is possi-
ble to calculate how the ideal eye movement behavior would
look like. The gaze data parsed by the algorithms are then
compared against this ideal gaze behavior, and the more sim-
ilar, the better the algorithm. Although there may be some
intuitive appeal in this approach, there are also some potential
concerns. Primarily, participants are not always perfectly ra-
tional in their behavior, nor can they control their eye to the
extent they want. In fact, they frequently undershoot their
intended target and produce corrective saccades (see
Kapoula & Robinson, 1986, for a nuanced view). A partici-
pant may be distracted and forget a target, or try to anticipate a
future target, and in so doing, incurring a penalty to even a
perfect eye-movement classification algorithm. This set up
could also be biased towards simple tasks that are easy to
follow for the participants, so the algorithms are never tested
with eye movements that deviate from this norm.
Additionally, Oculomotor events such as post-saccadic oscil-
lations are also, by all current accounts, beyond the volition of
the participant.

Finally, there are two aspects of the data that can be
evaluated. The first aspect is the event that each sample
gets assigned to, i.e. the label, regardless of the actual
values of the particular data samples. The second is the
actual data values contained in that sample which in turn
determines the properties of the event it is part of. In the
evaluations in this paper, we have decided to focus on the
labeling process, i.e. the classification of samples as be-
longing to certain oculomotor events. One reason for this
decision is that a pure classification task is rather straight-
forward as it is either hit or miss in assigning the correct
label. The second reason is that these sample classifica-
tions in turn, Bfor free^, provide three event parameters:
the number of events, the durations (i.e. how many

Behav Res

Author's personal copy



consecutive samples) of these events, and the variance of
these event durations. So, one evaluation task provides
three possible quality values to evaluate. Furthermore, as
saccades on average follow the main sequence, i.e., there
is a systematic relationship between the duration and am-
plitude of a saccade, we get an indirect measure of the
amplitude of the saccades as well (Bahill, Clark, & Stark,
1975).

The challenges for event detection algorithms

The detection of eye movement events is not a completely
solved problem, for a number of reasons. First of all, and
relating to the previous section, is that there is no consensus
on how to evaluate the algorithms, which means that further
refinement of the algorithms is hindered as we do not know
whether differences are due to the algorithms or the evaluation
process. Surprisingly little effort has gone into investigating
the classifications of human coders, and what combination of
knowledge, instructions, data, and visualizations drive the
humans to code more (or less) similarly. Even measures tai-
lored for estimating inter-rater reliability, such as Cohen's K,
have flaws. Cohen's K estimates the reliability depending on
the base rate of events, so it compensates for the fact that some
events may be more common than others, but this base rate
also assumes that humans would pick randomly across events
if they are not certain, which may not be likely. Therefore,
humans may achieve higher or lower reliability scores than
warranted.

Secondly, we are not even always completely sure what
we mean when we talk about an event. There is e.g., no
theoretically motivated threshold for when the eye is mov-
ing sufficiently in a particular direction to be classified as a
saccade, and anything below that threshold to be classified
as something else. Often a saccade is detected with the
motivation that our visual intake is severely limited during
the movement, and the data from this event should be re-
moved. However, visual intake is also limited even before
(50 % detection at −20 ms) and after (50 % detection at
+75 ms) a saccade onset (Volkmann, Schick, & Riggs,
1968), a fact which is not reflected in any event classifica-
tion algorithms that we have seen. The classification algo-
rithms seem to focus on a strict oculomotoric definition of
fixations and saccades. Even from a purely oculomotor
definition of eye movements, it is difficult to identify the
point where a fixation ends and an extremely slow-moving
smooth pursuit starts. This point is arbitrary and more or
less determined by the precision of the system. Also, if
human experts have a hard time agreeing on the same data,
then of course computer algorithms designed by humans in
the first place would also classify the same data stream
differently. This is not helped by the fact that not all

algorithms can detect every event, which affects the few
events it actually does detect. For example, an algorithm
incapable of detecting a post-saccadic oscillation may see
the oscillating movement as two saccades, divided by an
implausibly short, e.g., 1 ms, fixation (p. 165, Holmqvist
et al., 2011).

Thirdly, many algorithms have some form of settings that
need to be set by the researcher, such as minimum fixation
duration, saccade velocity threshold, etc. If there was a clear
and theoretically driven threshold, then this would already
be hard-coded into the algorithm. Now it is up to the re-
searcher, which means that novel results deviating from pre-
vious results can be due to the selected algorithm, the se-
lected thresholds, or both, or something completely else. It is
common knowledge that different algorithms and different
parameter values for these algorithms produce different clas-
sification results (e.g., Komogortsev et al., 2010; Salvucci &
Goldberg, 2000; Shic, Chawarska & Scassellati, 2008).

Fourthly, there exist many algorithms, but not so many
comparisons of the algorithms. Often, a modest evaluation is
performed when presenting a novel algorithm, but this often
considers only a few algorithms and is primarily oriented to-
wards showcasing the new algorithm.

Fifthly, dynamic scenes are increasingly common as stim-
uli, but not all researchers are aware that it is improper to use
standard fixation detection methods in the presence of smooth
pursuit (the commercial software packages that we have seen
do not prompt a warning about this), or dynamic stimuli are
treated in research without mention of this challenge. As one
example of several, a conference paper by Ali-Hasan,
Harrington and Richman (2008) present Bbest practices for
using eye-tracking to answer usability question for video
and TV. Although they mention fixations, there was no men-
tion at all of event detection algorithms in this inherently dy-
namic domain. Although the researchers may well be aware of
this problem, their readers are not alerted to this potentially
problematic issue.

Standard (non-smooth pursuit) algorithms should not be
accurate for data from dynamic stimuli, but we also do not
know the extent of the problem. We do not know whether the
problem affects primarily fixations, or saccades, or both. This
problem can also be viewed in relation to the fact that most
algorithms do not detect post-saccadic oscillations. Is the
problem of accurate post-saccadic oscillation identification a
more pressing research area than the accurate identification of
smooth pursuit?

Finally, despite fuzzy definitions, researchers talk about
fixations, saccades, and other events at conferences with ap-
parent ease. So there must be some intuitions between experts
on what events occur in a given stream of data, although it is
currently unclear around what events or types of data these
intuitions are the strongest. Would they agree on the number
of different events in the data, and just differ in where the
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precise borders are, or would they even select completely
different events for the same segment of data? So the human
experts seem to have consistent intuitions that enable them to
talk unhindered about these event with colleagues, which sug-
gests that there is some ground truth against which the data
can be evaluated, and ultimately find a winner among the
evaluated algorithms. Nonetheless, an evaluation should not
trust the human experts, but also include them on equal terms
with the algorithms in the evaluation. If the human experts do
not agree, than it would be unfair to hold the algorithms to that
standard.

Aims of the reported evaluation

In a previous section, we pointed out several groups of prob-
lems with evaluating current eye movement classification al-
gorithms. Naturally, it is beyond the scope of this paper to
address all of them. Our focus is rather to evaluate ten event
detection algorithms against two human experts in order to
recommend one winner to researchers. However, we will also
address a set of related questions:

& How does the number of detected events and their dura-
tions vary with the choice of an algorithm?

& How similar are the events detected by algorithms com-
pared to events manually identified by human experts?

& How similar are algorithms and humans in a simple
sample-by-sample comparison, which is the most hu-
man-like?

& How similar are our two human coders? Are they inter-
changeable, or will the event detection process depend on
the human experts we use?

& Does the algorithm – human or human – human similarity
depend on the stimuli used for eliciting the eye movement
data, i.e. will it differ between static and dynamic stimuli?

& What are the consequences of trying to detect events in the
presence of smooth pursuit using improper, i.e. not de-
signed to handle smooth pursuit, algorithms? Is this a se-
rious violation, or will such a use provide acceptable ap-
proximations of the properties of the true (human-
identified) events?

& How congruent are different evaluation techniques, such
as similarity based on event durations, compared to simi-
larity based on Cohen's Kappa?

& Given that algorithms do not classify identically with hu-
man experts, what types of deviating classifications do the
algorithms do? Are the deviations random, or do they
indicate a clear bias in some direction? What area should
developers focus on improving, to gain the highest mar-
ginal improvement (i.e., similarity to humans) of the
algorithm?

Method

Stimuli and data set

The data consisted of 34 data files of binocular data from 17
different students at Lund University. The used data files are a
pseudo-random (picked blindly by a human) selection of a
larger set of recorded data files. The data were recorded at
500 Hz and spanned a total of 103,872 samples. A sample
refers to a time-stamped (x,y) coordinate pair. In order to in-
crease the number of coded data files, only data from the right
eye were used. The data came from three different types of
stimuli (abbreviation later used are inside parentheses): pho-
tographies (img; 63,849 samples), linearly moving targets in
the form of a dot (dot; 10,994 samples), and a real-world video
ofmoving targets such as a rollercoaster and dolphins (vid; 29,
029 samples). The instructions were to freely view the images,
look at the moving objects in the videos, and to follow the
moving dot targets.

The data were recorded using a tower-mounted Hi-Speed
1250 system, from SensoMotoric Instruments GmbH (Teltow,
Germany), which minimizes head movements using a chin-
and forehead rest. All data were recorded during one session
in one of the experiment rooms of the Lund University
Humanities Lab. Average gaze offset for the participants ac-
cording to a 4-point validation procedure was 0.40° (note that
offset is not important as neither algorithms nor human coders
can see the stimuli, only the raw data). Precision was estimat-
ed by measuring the root-mean-square deviation (RMSD) of
the x, y coordinates of samples identified by both human ex-
perts to be fixations. This resulting precision value was 0.03°
RMSD. An overview of the participants, their contributing
data, and there quality values can be seen in Table 11 in
Appendix A.

No explicit filters were used, except the Bbilateral filter,^
which is the default filter for this system, active at the record-
ing stage. The filter Bpreserves the edges of large changes in
the signal while averaging small changes caused by noise^ (p.
310, Sensomotoric Instruments, 2009), and introduces no la-
tency in the signal.

Human evaluation procedure and human Bparameters^

The two human coders, 10 and 11 years of experience of
working with eye movements, come from the same eye-
tracking lab, but have slightly different backgrounds. Coder
MN has a primarily worked with video compression and the
evaluation thereof using eye-tracking, but he has also been
involved in the design of the NH algorithm in this evaluation.
Coder RA has a background primarily in psycholinguistics,
and has not been involved in the design of any algorithm at the
time of the data coding.
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The two coders labeled the data samples manually and
separately, using the same Matlab GUI. This GUI, shown in
Fig. 1, contains several panels that together show, for a stretch
of data in time, the current x- and y- positions (in pixels), the
velocity (point-to-point, in degrees per second), and
scatterplot representations of the data. Additionally, the GUI
also showed a zoomed in portion of the sample positions, as
well as a one-dimensional representation of the pupil size
across time. Although the data was recorded binocularly, the
human coding used only the right eye. Because the manual
coding was very labor-intensive, we prioritized coding new
material rather than a second eye for the same material.

The coders did not agree on any particular strategy for
identifying the event, other than what events to identify and
that they should have no information about the type of stimuli
used for the particular data stream. This approach was inten-
tional, and the rationale behind it was that each coder should
be used as, to the extent it was possible, an independent ex-
pert, and have no more information available than the algo-
rithms. Had we more strictly agreed on guidelines for how to
identify events and code border-cases, then the agreement
would be higher, but artificially so as the agreement would
be less likely to generalize to a member outside of the raters.

Furthermore, a coding approach with two Bnaïve experts^ is a
one-time situation, that after the resulting classifications are
shown and discussed, can never be recreated by the same
coders. Together, this motivated an approach with little initial
discussion about the details of the coding process.

The only thing the two coders agreed on was the events to
identify in the data streams. These were: fixation, saccade,
post-saccadic oscillation (PSO), smooth pursuit, blink, and
undefined. The last event is a catch-all for any odd event that
did not fit with the pre-defined events. In retrospect, this event
was hardly ever used. These events were agreed on because
they represent the most common events, except the PSO,
which was detected because it is of special interest to our
research group and has recently been the object of interest
for two new algorithms (Larsson, Nyström & Stridh, 2013;
Nyström & Holmqvist, 2010).

Furthermore, in order to get algorithm parameter values
that were as equal as possible to the human decision criteria,
or Bhuman parameters,^ we extracted the empirical minimum
fixation duration, maximum fixation dispersion threshold, and
minimum saccade velocity from the files coded by the
humans. These three parameters were selected as they are
commonly understood by most eye-tracking researchers and

Fig. 1 The Matlab graphical user interface for hand-coding events on a
sample-by-sample level. It provides curves of the (x,y) coordinates (A)
and the gaze velocities (B), as well as drawing the data in the windows as

a trace in a coordinates system matching the dimensions of the stimuli
(D). Two windows also show the current segment of data zoomed in (E),
and the vertical pupil diameter (C)
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constitute the minimum parameters needed to be set for the
different algorithms in this evaluation. As minimum and max-
imum values are sensitive to outliers and errors, we manually
inspected these distributions of parameter values.

For fixation durations, we visually identified a small subset
of fixations with durations between 8 and 54 ms, and the
nearest following fixation duration was 82 ms. We therefore
selected a minimum fixation duration of 55 ms to exclude this
subset of very short fixations with durations outside the fre-
quently defined ranges (Manor & Gordon, 2003). This value
is also supported by previous studies (Inhoff & Radach, 1998;
see also Fig. 5.6 in Holmqvist et al., 2011).

The maximum fixation dispersion for the human coders
was, after removing one extreme outlier at 27.9°, found to
be 5.57°. This was clearly more than expected, especially for
data of this level of accuracy and precision, and the distribu-
tion had no obvious point that represented a qualitative shift in
the type of fixations identified. However, after 2.7°, 93.95 %
of the fixations values have been covered and the tail of the
distribution is visually parallel to the x-axis. Thus, any select-
ed value between 2.7 and 5.57 would be equally arbitrary. So,
as even a dispersion threshold of 2.7 would be considered a
generous threshold, we decided to not go beyond this and
simply set the maximum dispersion at 2.7°. Do note that we
used the original Salvucci and Goldberg (2000) definition of
dispersion (ymax − ymin + xmax − xmin) which is around twice as
large as most other dispersion calculations (see p. 886,
Blignaut, 2009). The dispersion calculation for the humans
was identical to the one implemented in the evaluated IDT
algorithm.

For minimum saccadic velocity, we found no visually ob-
vious subsets in the data. As the minimum peak saccadic
angular velocity (unfiltered) in the distribution was 45.4°/s ,
a value in range with what to be expected from unfiltered
values, we decided to keep this as is (Sen & Megaw, 1984).

To summarize, the parameter values extracted from the
human expert coders are presented in Table 2.

Algorithm parameters

These algorithms have been used Bas is^ with only minimal
changes in order to fit them into our testing framework. Thus,
we have preferred implementations with some post-
processing implementations over Bbare^ event detection

algorithms which would have required our tampering with
the original code.

We did the modification expected of an intermediate user.
That is, any person motivated enough to download a third-
party implementation of an eye-movement classifier is also
motivated to set obvious parameters that are relevant to this
person's system. However, this person will only set the obvi-
ous parameters and not tweak every possible variable. That is,
no algorithm was optimized with a full walk through the pa-
rameter space, but obvious mismatches in parameter selection
should be avoided. One obvious drawback with optimizing
the parameters of each algorithm is the risk of over-fitting
the algorithms to this particular evaluation data. Although this
could be mitigated by dividing our expert-coded data, such
manually coded data is too precious for this approach. A sec-
ond drawback is that we are giving an unfair advantage to
non-adaptive algorithms, which then become Badaptive^ by
our tweaking. Thirdly, optimizing parameters would favor al-
gorithms with a large number of parameters, which can then
be perfectly fit to match our data, rather than data in general.
An ideal algorithm would require no parameter tweaking from
the user, but rather set thresholds automatically and then ex-
haustively classify all the samples of the data stream.
Examples of parameters we did set are geometry parameters
such as screen size, sampling frequency, or filter window size
(if measured in samples or real time), if these are clearly indi-
cated by comments in the code. Furthermore, we have set
minimum fixation duration, maximum fixation dispersion,
and minimum saccade velocity, according to our parameters
derived from the human coders. By setting the parameters
equal to the human parameters, we are giving the algorithms
a fair chance to be similar to the human experts, without op-
timally tuning the algorithms. Also, these last three parameters
are variables that we believe the average eye-tracking re-
searcher is familiar with and so could set herself.

For reproducibility, we briefly report all used parameter
values for each algorithm.

Fixation dispersion algorithm based on covariance (CDT)

We used the default .05 α significance level of the F-test, but
changed the window size from six samples (for their 240 Hz
system, which was equivalent to 25 ms) to 13 samples to
match our 500 Hz system (equivalent to 26 ms).

Engbert and Mergenthaler, 2006 (EM)

The parameter specifying how separated the saccade velocity
should be from the noise velocity, λ, was kept at the default
value of 6. We used the type 2 velocity calculation recom-
mended in the code. Minimum saccade duration (in samples)
was also kept at the default value, which was three samples
(equivalent to 6 ms), as both Engbert and Kliegl (2003) and

Table 2 Empirical human parameters

Parameter Min Max Used

Minimum fixation duration (ms) 8 4428 55

Maximum fixation dispersion (°) 0.17 28.0 2.7

Minimum saccade velocity ( °/s) 45.4 1096 45.4
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Engbert and Mergenthaler (2006) used three samples despite
using data sampled at different rates (equivalent to 12 and 6
ms, respectively).

Identification by dispersion threshold (IDT)

We used the minimum fixation duration (55 ms) and maxi-
mum fixation dispersion (2.7°) as extracted from our human
experts. The dispersion was calculated in exactly the same
way in both cases. The original default values for this imple-
mentation were 100 ms minimum fixation duration and 1.35°
maximum fixation dispersion.

Identification by Kalman filter (IKF)

The parameters for this algorithm was set using the GUI de-
fault, which gave us a chi-square threshold of 3.75, a window
size of five samples, and a deviation value of 1000.

Identification by minimal spanning tree (IMST)

The saccade detection threshold was by default set to 0.6°, and
the windows size parameter was set to 200 samples. There
were the default values from their GUI.

Identification by hidden Markov model (IHMM)

For the IHMM, we set the saccade detection threshold to 45°/
s, and used their GUI default for the two other parameters
(Viterbi sample size = 200; Baum-Welch reiteration = 5).

Identification by velocity threshold (IVT)

This algorithm uses only one parameters, the velocity thresh-
old for saccade detection, and this was set in congruence with
humans and other algorithms, i.e. 45°/s.

Nyström and Holmqvist, 2010 (NH)

For this algorithm we used all the default values, except the
minimum fixation duration, which was set using our human-
extracted values (55 ms).

Binocular-individual threshold (BIT)

We changed the original three sample minimum fixation du-
ration (equivalent to 60ms at 50 Hz in the original study) to 28
samples (resulting in 56 ms, which is approximately equiva-
lent to the human-derived threshold of 55 ms). All other pa-
rameters were left at default values.

Larsson, Nyström and Stridh, 2013 (LNS)

For this algorithm, we did not set any parameters at all and
used all the default hard-coded values. The two most relevant
values were the minimum time between two saccades and the
minimum duration of a saccade, which were kept at 20 ms and
6 ms, respectively.

Evaluation procedure

The algorithms were evaluated based on their similarity to
human experts in classifying samples as belonging to a
certain oculomotor event. This was done in two ways: first,
comparing the event duration parameters (mean, standard
deviation, and number of events), and second, to the over-
all sample-by-sample reliability via the Cohen's Kappa
metric. The first evaluation answers how the duration prop-
erties of the actual eye-movement events changes as a re-
sult of an algorithm. The second evaluation provides a
statistic on how well the algorithms and humans agree in
their classifications on the actual samples. Finally, a third
analysis investigates what sample classification errors each
algorithm produced compared to the humans. For example,
whether a certain algorithm consistently under-detects fix-
ations in favor of saccades, and thus in turn inflates sac-
cade durations. Such systematic biases in a certain direc-
tion are important to highlight to both researchers and al-
gorithm designers. This will also highlight what area each
algorithm needs to improve in order to gain the greatest
classification improvement.

Similarity by event duration parameters

The primary problem of event detection algorithms is that
the event durations, such as fixation durations, vary de-
pending on the choice of algorithm and settings. Thus, the
output that is the most intuitive to compare are the distri-
butions of the event durations. That is, how many events
that are detected, the mean duration of these, and the stan-
dard deviation of the durations. Algorithms that work in an
identical fashion should also produce identical results for
these three parameters. However, an algorithm may achieve
similar mean durations as a human expert, but detect a
different number of events. Another algorithm could detect
the identical number of events, but differ in the detected
mean duration. To join these three parameters to a single
similarity measure, we calculated the root-mean-squared
deviations (RMSD) for all algorithms against the two hu-
man coders. A single similarity measure is needed if we are
to rank the algorithms and provide some general claim that
one is better than another.

First, the evaluation parameters (mean duration, stan-
dard deviation, and number of events) were rescaled to
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the [0, 1] range according to Eq. 1. Here, M is the matrix
consisting of the algorithms and humans, and their
resulting distributions parameters, as rows (k) and columns
(l) respectively.

M klð Þ ð1Þ

The normalized data is then separated into a matrix for the
algorithms, A, and a matrix for the human experts, H. Then,
the summed RMSD for the column of algorithms, a, was
calculated as follows:

aiRMSD ¼
X

∀ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ai j−
X

m

Hmj

n

� �2
s

ð2Þ

where i is the algorithm index, j is the index for the event
distribution parameter, m is the index for the human experts,
and n is the number of human experts.

The algorithm with event parameters most similar to the
humans experts, i.e., the Bwinner^ (aw), was then simply the
algorithm having the minimum RMSD value produced by
Eq. 2. It should be noted that this RMSD value is used to rank
the similarity, but the absolute values do not guarantee some
minimum level of similarity which warrant binary terms like
Bsimilar^ or Bdifferent.^ Because each parameter property is
scaled against its maximum value, an RMSD values from one
set of comparisons are not transferable to another set of com-
parisons. Thus, the rank and distance to the next rank is of
interest, and not the absolute value.

Similarity by Cohen's Kappa

The similarity between human and algorithm performance
was also evaluated using Cohen's Kappa (Cohen, 1960).
This measure is simply concerned with agreement on a
sample-by-sample basis, ignoring effects of event durations
(which can be seen as uninterrupted chains of samples with
the same label). The metric is calculated as in Eq. 3, where Po

is the observed proportion of agreement of coders a and b for
the samples n, and Pc is the proportion of chance agreement
between the coders given their proportion of accepting (1) or
rejecting (0) the label for the ith sample. The chance agreement
reflects the level of agreement achieved if two coders selected
events at random but followed their inherent bias for certain
events, e.g., 90 % of event A and 10 % of event B. This metric
ranges from -infinity to 1, where negative numbers indicate a
situation where the chance agreement is higher than the ob-
served agreement, i.e. the coders are worse than chance. A
zero indicates the case where the observed and the chance
agreement are identical. A perfect one (1) indicates a
(theoretical) situation where the chance agreement is exactly
zero (impossible to agree at all by chance) and the two coders
are in perfect agreement of all events.

K ¼ Po−Pc

1−Pc
ð3Þ

Confusion analysis

To answer the question how algorithm designers should receive
the best marginal improvement of their algorithm, we calculated
confusionmatrices for all algorithms against the human experts.
A confusion matrix, C, can be described as a symmetrical ma-
trix with sides equal to the size of the set of classification codes
c. Two raters, a and b, then independently classify each sample
in the data set (of size n) using codes i and j, respectively, and
increment the value of the cell Cij in the confusion matrix. A
perfect agreement, i.e. no confusion, would result in a diagonal
of 1 (if normalized), and 0 in every other cell.

The number of pair-wise comparisons is very large and not
possible to exhaustively report in this article. Instead, we have
collapsed the full confusion matrices into simpler matrices
showing what events each algorithm, when they disagree with
human experts, they over- or under-classify. For example, an
algorithm that can detect saccades, but not fixations, will def-
initely under-classify samples as fixations, and so a major
improvement could be achieved by adding fixation-detection
capabilities. Also, any algorithm that detects events sequen-
tially is likely to under-classify events that are detected later in
this chain, unless the algorithm has the functionality to roll
back previous classifications.

Results

Event durations per algorithm and stimuli type

The number of fixations and saccades vary dramatically with
the algorithm and the type of stimuli used, as is evident from
Tables 3 and 4, as well as visualized in Fig. 2.

According to the minimized root-mean-squared deviations
against human experts (RMSD within parentheses, lower is
better), the fixation detection algorithm most similar to human
experts for image data was NH (0.36), with IMST (0.54) as
runner-up. For moving dot stimuli, the winning fixation de-
tector was the BIT (0.73) algorithm, with IMST (0.81) as
runner-up. For video stimuli, IKF (0.68) was the most similar
algorithm, then NH (0.78).

The most human-like saccade detection algorithm for im-
age data was LNS (0.23), with IDT (0.49) in second place. For
moving dots, LNS (0.23) was the winner, with IVT (0.97) as
runner-up. With video data, LNS (0.28) was the winner and
the runner-up was IDT (0.72).

Only two algorithms detected post-saccadic oscillations,
and how they fared against human coders is shown in Table 5.

The algorithm most similar to humans experts when com-
paring post-saccadic oscillations was LNS (0.99, 1.12, 1.15),
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with NH (2.24, 2.44, 2.16) in second (last) place. This order
was the same for all three stimuli types.

For completeness, the events only detected by the human
coders are listed in Table 6.

Algorithm – human sample-by-sample similarity

We compared the similarity of the algorithms to the human
coders using Cohen's Kappa (higher is better). The results are
presented in Table 7.

Starting with fixations, for the image data the IHMM,
IVT, and BIT were the best ones, achieving very similar
Kappa scores. For the moving dot data, no algorithm fared
well, but the algorithm performing the least poorly was the
CDT. For video data, the IKF and BIT were the best algo-
rithms. For saccades, the LNS and the IVT were the two
best algorithms for image data. For moving dots, the LNS
and the EM algorithm were the best ones. For video data,
LNS was best and IVT was the runner-up when detecting
saccades. Considering post-saccadic oscillations, only two

Table 3 Fixation durations

Images Moving dots Videos

Algorithm Mean SD No. RMSD Mean SD No. RMSD Mean SD No. RMSD

CoderMN 248 271 380 <0.1 161 30 2 0.2 318 289 67 0.2

CoderRA 242 273 369 <0.1 131 99 13 0.2 240 189 67 0.2

CDT 397 559 251 2.3 60 127 165 1.6 213 297 211 1.0

EM - - - - - - - - - - - -

IDT 399 328 242 1.4 323 146 8 1.1 554 454 48 1.5

IKF 174 239 513 0.9 217 184 72 1.1 258 296 169 0.9

IMST 304 293 333 0.5 268 140 12 0.8 526 825 71 1.9

IHMM 133 216 701 1.6 214 286 67 1.5 234 319 194 0.9

IVT 114 204 827 2.1 203 282 71 1.4 202 306 227 1.1

NH 258 299 292 0.4 380 333 30 2.1 429 336 83 0.8

BIT 209 136 423 0.8 189 113 67 0.7 248 215 170 0.9

LNS - - - - - - - - - - - -

Note. Fixation durations for the different algorithms and stimuli types. Algorithmswith dashes as values do not detect fixations. The algorithms presented
are, in order: Coder MN, Coder RA, Fixation Dispersion Algorithm based on Covariance (CDT), Engbert & Mergenthalser (EM), Identifiacation by
Dispersion-Threshold (IDT), Identification by Kalman Filter (IKF), Identification by Minimal Spanning Tree (IMST), Identification by Hidden Markov
Model (IHMM), Identification byVelocity Threshold (IVT), Nyström&Holmqvist (NH), Binocular-Individual Threshold (BIT), and Larsson, Nyström,
& Stridh (LNS)

Table 4 Saccade durations

Images Moving dots Videos

Algorithm Mean SD No. RMSD Mean SD No. RMSD Mean SD No. RMSD

CoderMN 30 17 376 <0.1 23 10 47 0.4 26 13 116 0.1

CoderRA 31 15 372 <0.1 22 11 47 0.4 25 12 126 0.1

CDT - - - - - - - - - - - -

EM 25 22 787 1.5 17 14 93 1.4 20 16 252 1.6

IDT 25 15 258 0.5 32 14 10 1.3 24 53 41 0.7

IKF 62 37 353 2.1 60 26 29 2.4 55 20 107 2.1

IMST 17 10 335 0.8 13 5 18 1.3 18 10 76 0.9

IHMM 48 26 368 1.0 41 17 27 1.3 42 18 109 1.4

IVT 41 22 373 0.6 36 14 28 1.0 36 16 112 0.9

NH 50 20 344 0.9 43 16 42 1.0 44 18 1104 1.5

BIT - - - - - - - - - - - -

LNS 29 12 390 0.2 26 11 53 0.2 28 12 122 0.3

Note Saccade durations for the different algorithms and stimuli types. Algorithms with dashes as values do not detect fixations
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algorithms can detect that event, and LNS outperforms NH
decisively.

Across all stimuli types, a human expert was always better
at matching the classifications of the other human than any
algorithm was at matching the average of the two humans.
Considering the detection across all events for image-
viewing data, fixation detection algorithms achieved a high
inter-rater reliability as the data contained mostly fixations
and saccades, and post-saccadic oscillations were small com-
pared to the other events. When presented with data from
almost exclusively dynamic stimuli, these fixation detectors
do not perform above chance. The video-viewing data, how-
ever, represent a more natural blend of dynamic and static
stimuli, and here the algorithms were clearly not matching

the reliability of the humans, although they were better than
chance.

Confusion analysis: Images

The confusion analysis reveals how each algorithm (or human
expert) over- and under-classifies certain events in comparison
to the human experts. Considering the human CoderRA, for
example, this person under-classifies samples as fixations in
comparison to the human CoderMN. As the samples that are
under-classified as fixations must be classified as something
else, we see that CoderRA tends to over-classify samples as
smooth pursuit instead. However, the two humans agree to a

Fig. 2 Visualized similarity in events produced by the classifications
from the different algorithms (blue, filled) and humans experts (green,
unfilled). The ordinate shows the number of events, the abscissa the mean
duration in milliseconds of these events, and the radius of each bubble

shows the relative (within each panel) standard deviation of the durations.
Note that not all algorithms are plotted for all events, as not all algorithms
detection fixations or saccades (see Table 1)

Table 5 Post-saccadic oscillation durations

Images Moving dots Videos

Algorithm Mean SD # RMSD Mean SD # RMSD Mean SD # RMSD

CoderMN 21 11 312 0.2 15 5 33 0.4 20 11 97 0.7

CoderRA 21 9 309 0.2 15 8 28 0.4 17 8 89 0.7

NH 28 13 237 2.2 24 12 17 2.5 28 13 78 2.2

LNS 25 9 319 1.0 20 9 31 1.1 24 10 87 1.2

Note. PSO durations for the different algorithms and stimuli types. Algorithms with dashes as values do not detect fixations
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large extent, only disagreeing on 7 % of the data from image
viewing, as indicated by the ratio column in Table 8.

Turning our attention to the algorithms and still considering
the image-viewing data, the algorithms that detect fixations
performed distinctly better than the two algorithms that do
not (EM & LNS). A fixation-detecting algorithm disagreed
on at most 24 % of the samples, compared to algorithms that
do not detect fixations (at best 84 % disagreement). The
fixation-detecting algorithms vary in their behavior. For ex-
ample, the IDT over-classifies samples as fixations and rarely
under-classifies the samples. However, the IHMM algorithm
is much more balanced in its errors, over-classifying samples
as fixations as much as it underclassifies them. In general,
however, a large chunk of the samples where they disagree
with humans are under-classified as fixations. Looking at the
events that are not detected by the algorithms, it seems around
30% of the disagreeing samples can reach agreement with the
humans if classification support for PSO and smooth pursuit is
implemented. For algorithms that only detect saccades,

around 84–92 % of the samples can reach agreement if only
fixation detection capabilities are added.

To visualize how the different coders and algorithms clas-
sify an image-viewing trial, and what mistakes they make, the
raw positional data along with the classifications as scarf plots
are shown in Fig. 3.

Table 6 Miscellaneous event durations

Images Moving dots Videos

Algorithm Mean SD # RMSD Mean SD # RMSD Mean SD # RMSD

MN pursuit 363 187 3 2.7 375 256 37 2.1 521 347 50 2.2

RA pursuit 305 184 16 2.7 378 364 33 2.1 472 319 68 2.2

MN blink 335 153 20 1.47 336 0 1 0.5 297 189 3 2.0

RA blink 392 237 19 1.47 212 0 1 0.5 187 31 3 2.0

Note PSO durations for the different algorithms and stimuli types. Algorithms with dashes as values do not detect fixations

Table 7 Cohen's Kappa reliability between algorithms and human
coders

Fixations Saccades PSOs

Algorithm Img Dots Vid Img Dots Vid Img Dots Vid

CoderMN .92 .81 .83 .95 .91 .94 .88 .82 .83

CoderRA .92 .84 .82 .95 .91 .94 .88 .80 .81

CDT .38 .06 .11 .00 .00 .00 .00 .00 .00

EM .00 .00 .00 .64 .66 .67 .00 .00 .00

IDT .36 .00 .03 .45 .26 .38 .00 .00 .00

IKF .63 .03 .14 .58 .46 .59 .00 .00 .00

IMST .38 .00 .03 .54 .30 .52 .00 .00 .00

IHMM .67 .03 .13 .69 .60 .71 .00 .00 .00

IVT .67 .03 .13 .75 .63 .76 .00 .00 .00

NH .52 .00 .01 .67 .60 .68 .24 .20 .25

BIT .67 .03 .14 .00 .00 .00 .00 .00 .00

LNS .00 .00 .00 .81 .75 .81 .64 .59 .63

Note. Fixation, Saccade, and PSO agreement between algorithms and
human coders, expressed in Cohen's Kappa. Negative values are set to
zero. Higher is better

Table 8 Confusion matrix for data from images

Algorithm Ratio Error Fix Sacc PSO SP Blink Other

coderMn 7 % over .68 .09 .18 <.01 .02 .03

under .13 .13 .17 .46 .11 <.01

coderRA 7 % over .13 .13 .17 .46 .11 <.01

under .68 .09 .18 <.01 .02 .03

CDT 23 % over .66 .00 .00 .00 .00 .34

under .04 .38 .22 .10 .25 <.01

EM 92 % over .00 .08 .00 .00 .00 .92

under .84 .01 .06 .03 .06 <.01

IDT 20 % over .80 .09 .00 .00 .00 .11

under .05 .27 .26 .12 .29 <.01

IKF 24 % over .18 .39 .00 .00 .00 .43

under .40 .03 .22 .10 .25 <.01

IMST 20 % over .78 .03 .00 .00 .00 .18

under .06 .26 .26 .12 .29 <.01

IHMM 20 % over .30 .29 .00 .00 .00 .41

under .27 .03 .27 .12 .30 <.01

IVT 19 % over .33 .20 .00 .00 .00 .47

under .26 .04 .27 .12 .30 <.01

NH 32 % over .08 .18 .12 .00 .00 .63

under .59 .03 .12 .08 .18 <.01

BIT 31 % over .12 .00 .00 .00 .00 .88

under .28 .29 .17 .08 .19 <.01

LNS 84 % over .00 .02 .03 .00 <.01 .95

under .92 .02 .02 .03 <.01 <.01

Note. Proportion of samples classified in disagreement with expert
coders, for the image stimuli. The Ratio column indicates the proportions
of samples, out of all classified samples, where the algorithm disagreed
with the humans, or in the humans case how much one human disagreed
with another. The columns for the different events show what proportion,
out of the disagreeing samples, that can be explained as over- or under-
classification of that particular event
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Confusion analysis: Moving dots

For the data from the moving dot stimuli, we find that humans
disagree on 11 % of the data, and the algorithms disagree on at
least 84 % of the data. The SP column in Table 9 reveals that
this is largely driven (81–92 %) by the inability of the consid-
ered algorithms to detect smooth pursuit.

For the algorithms that only detect fixations and saccades,
smooth pursuit motion is primarily misclassified as fixation
data. The net over-classification of fixations is likely from the
smooth pursuit motions, and at least 52 % of the misclassified
fixation samples can be recovered by adding smooth pursuit
support to the algorithms. The over-classifications in the Other
category are primarily samples that the algorithm could not
classify at all, i.e. not meeting the criteria of any known
events. It is preferable that the smooth pursuit samples end
up here, rather than being falsely accepted as fixation samples.

Confusion analysis: Video

Finally, in Table 10, the data from the natural video stimuli
shows that the humans now disagree on 19 % of the samples.
Again, we see a distinction between the algorithms that can
detect fixations and the ones that cannot. The prevalence of

fixations in natural videos allows the fixation detectors to
disagree on fewer samples than what they did during the mov-
ing dot stimuli. The non-fixation detectors are particularly
punished by not detecting fixations.

Another obvious issue is that some algorithms do not clas-
sify samples that do not match a particular category, whereas
others revert to some default category, as can be seen in the
Other category in Table 10. For video stimuli, implementing
smooth pursuit detection capabilities should be prioritized to
recover the largest number of misclassified samples.

Discussion

The purpose of this study has been to find the best event
detection algorithm to recommend to researchers. This was
done by evaluating the performance of ten different event
classifier algorithms for eye-movement data, and examining
how they compare to human evaluators. Researchers use al-
gorithms such as these, sometimes seemingly mindlessly as
they are often tightly integrated in the eye-tracking software.
The study controlled parameter differences between algo-
rithms using a combination of sensible default values and
reverse-engineered human-implicit parameters. Even though

Fig. 3 Positional data from the first 1,000 samples of an image-viewing
trial. The (x,y) coordinates are plotted as position over time in blue and
red, respectively. The classification of the coders and the algorithms are

plotted as scarf plots below, with fixations in red, saccades in green, and
PSOs in blue. Absence of color (white) means the sample was not
classified by the algorithm. The x-axis is in samples

Behav Res

Author's personal copy



we expected some variance, we were completely surprised to
find that the choice of an algorithm produced such dramatic
variation in the event properties, even using identical and oth-
erwise default settings.

In order to make sense of the results, let us revisit our aims
from the beginning.

Which is the best algorithm?

Interestingly, it is not quite as simple as that. Considering
fixation detection in static stimuli, perhaps the most common
form of event detection, the NH algorithm was the most sim-
ilar to the human experts in terms of matching the number of
events and their durations. However, when we considered
sample-by-sample comparisons, the IHMM, IVT, and BIT
algorithms performs the best and with similar scores. If you
have access to binocular data, then BIT could possibly per-
form even better. Interestingly, when NH ranks well, IHMM

ranks poorly, and vice versa, depending on the evaluation
approach. We will discuss this in more detail shortly. For
detecting fixation in dynamic stimuli, the algorithms are not
near the human experts, leading us to conclude that there are
no winners in these contexts.

Concerning saccades and post-saccadic oscillations, the
LNS algorithm, however, was consistently the most suitable
choice, no matter the underlying stimuli. This was supported
by both the event duration distributions, and the sample-by-
sample comparison.

The answer to this research question is further elaborated
on in the following sections.

How does the number and duration of events change
depending on the algorithm?

Considering detecting fixations in data from image-viewing, a
very common type of event-detection, the average fixation

Table 9 Confusion matrix for data from moving dots

Algorithm Ratio Error Fix Sacc PSO SP Blink Other

coderMn 11 % over .11 .09 .08 .64 .05 .04

under .59 .06 .06 .27 .00 .01

coderRA 11 % over .59 .06 .06 .27 .00 .01

under .11 .09 .08 .64 .05 .04

CDT 89 % over .67 .00 .00 .00 .00 .33

under .02 .05 .02 .87 .01 .02

EM 96 % over .00 .03 .00 .00 .00 .97

under .14 .01 .02 .81 .01 .01

IDT 86 % over .98 .01 .00 .00 .00 .02

under <.01 .05 .02 .90 .01 .02

IKF 85 % over .81 .06 .00 .00 .00 .14

under .02 .02 .02 .91 .01 .02

IMST 86 % over .98 <.01 .00 .00 .00 .01

under <.01 .05 .02 .90 .01 .02

IHMM 84 % over .98 .02 .00 .00 .00 .09

under <.01 .02 .02 .92 .01 .02

IVT 84 % over .89 .02 .00 .00 .00 .09

under .01 .02 .02 .92 .01 .02

NH 93 % over .64 .05 .02 .00 .00 .30

under .12 .01 .02 .83 .01 .02

BIT 89 % over .72 .00 .00 .00 .00 .28

under .03 .05 .02 .87 .01 .02

LNS 93 % over .00 .02 .01 .00 .01 .95

under .14 .01 .01 .83 <.01 .01

Note. Proportion of samples classified in disagreement with expert
coders, for the moving dot stimuli. The Ratio column indicates the pro-
portions of samples, out of all classified samples, where the algorithm
disagreed with the humans, or in the humans case how much one human
disagreed with another. The columns for the different events show what
proportion, out of the disagreeing samples, that can be explained as over-
or under-classification of that particular event

Table 10 Confusion matrix for data from videos

Algorithm Ratio Error Fix Sacc PSO SP Blink Other

coderMn 19 % over .72 .03 .07 .15 .04 <.01

under .16 .04 .04 .76 .00 <.01

coderRA 19 % over .16 .04 .04 .76 .00 <.01

under .72 .03 .07 .15 .04 <.01

CDT 64 % over .80 .00 .00 .00 .00 .20

under .02 .08 .05 .82 .02 <.01

EM 95 % over .00 .04 .00 .00 .00 .96

under .40 <.01 .03 .55 .03 <.01

IDT 61 % over .98 .01 .00 .00 .00 .01

under <.01 .06 .05 .86 .03 <.01

IKF 62 % over .74 .09 .00 .00 .00 .18

under .07 .01 .05 .85 .03 <.01

IMST 61 % over .97 .01 .00 .00 .00 .03

under .01 .05 .05 .86 .03 <.01

IHMM 59 % over .83 .05 .00 .00 .00 .12

under .03 .01 .05 .88 .03 <.01

IVT 59 % over .84 .04 .00 .00 .00 .12

under .03 .01 .05 .88 .02 <.01

NH 70 % over .58 .05 .04 .00 .00 .33

under .18 .01 .03 .75 .03 <.01

BIT 67 % over .66 .00 .00 .00 .00 .35

under .07 .08 .04 .78 .03 <.01

LNS 92 % over .00 .01 .02 .00 <.01 .97

under .41 .01 .01 .57 <.01 <.01

Note. Proportion of samples classified in disagreement with expert
coders, for the video stimuli. The Ratio column indicates the proportions
of samples, out of all classified samples, where the algorithm disagreed
with the humans, or in the humans case how much one human disagreed
with another. The columns for the different events show what proportion,
out of the disagreeing samples, that can be explained as over- or under-
classification of that particular event
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duration varied with a factor of four due to the algorithm
choice. Assuming the Baverage human^' classification was
true, then for the same data, the fixation duration estimates
deviated from the true value by up to a factor of three. For
dynamic stimuli, the fixation durations differed with a factor
of nearly eight and a factor of nearly three from the human
experts.

For saccades, the corresponding algorithm differences were
a factor of four for both static and dynamic stimuli. For dif-
ferences against the humans experts, static stimuli produced a
factor of two, and dynamic stimuli a factor of three.

How similar are algorithm-detected events
to human-detected events?

We estimated the similarity of the events detected by algo-
rithms and humans using the root-square-mean deviations of
the unweighted combination of the number of events, the
mean duration (i.e., how many samples were included in the
event) and the standard deviation of these events. The algo-
rithm that minimized the deviation was considered the most
similar to the human experts. This value varies theoretically
from zero (no deviation at all) to three (maximal deviation for
all three event properties).

We found that for detecting fixations in data from static
stimuli, NH was the most similar with a deviation of 0.36,
and the closest alternative was at 0.54. For the dynamic stimuli
types, the deviation increased to 0.81 and 0.98, respectively,
showing that the algorithms have a harder time properly de-
tecting fixation when the data contain smooth pursuit.

For saccades, the LNS was clearly more similar to the
humans than the second closest algorithm, even across differ-
ent stimuli types (RMSD: 0.23, 0.23, 0.28, vs. 0.49, 0.97,
0.72, for image, dot, and video, respectively).

How similar are algorithms to humans in a simple
sample-by-sample comparison?

The sample-by-sample comparison in the form of Cohen’s K
evaluates the classification of each sample independently, and
it also adjusts for the base rate of each event type. The evalu-
ation is thus a matter of correctly classifying each sample, but
also doing so better than a random guess given knowledge of
the proportion of samples from each event.

For detecting fixations from static stimuli, the algorithms
with fixation detection capabilities fared reasonably well (K
values between .36 and .67 compared to the humans .92). For
the stimuli with moving dots, they were almost indistinguish-
able from chance (.00 to .14). For natural videos they per-
formed slightly better but not well (.01 to .14).

Detecting saccade samples appeared easier than detecting
fixations. The averageK scores for image, dot, and video data,
respectively, were in the ranges .45–.81, .26–.75, and .38–.81,

compared to human experts (.95, .91, .94). Thus saccade de-
tection even in data from dynamic stimuli appeared to be not
completely improper, at least for sample-by-sample
evaluation.

Are the human experts interchangeable?

Evaluations against manual classifications such as these typi-
cally only have a single human coder, as the coding process is
very laborious. This raises the question whether the results are
mainly determined by the human, rather than the algorithms.
To explore this concern, we looked at the results against each
coder in isolation, and against each other. If the results were
consistent, then human biases would have been negligible.

Humans were the most similar to each other, if we evalu-
ated them in the same way as the algorithms, i.e. against a
hypothetical Baverage coder.^ This is perhaps completely ob-
vious, as each human has contributed half of the data for this
average coder. If we compare the human coders and algo-
rithms to only one human coder at a time, then the same
pattern with the humans remain: they are more similar to each
other than any algorithm. The same pattern for the algorithm
rankings remain when considering only one human coder at a
time. For fixation-detection in data from static stimuli, the NH
algorithm is the most similar candidate, with IMST as a run-
ner-up. The same was also true for saccade detection: the LNS
algorithm was consistently the most similar to any human,
regardless of what underlying stimuli elicited the eye move-
ment data.

The patterns also largely remained for the individual coders
when we considered the sample-by-sample evaluation using
Cohen's Kappa. Both coders were the most similar to each
other, the BIT algorithm was the best fixation-sample
classificator for static stimuli for coder RA. For coder MN
the BIT was among the top three algorithms (IHMM, IVT,
and BIT) with very similar scores. For both coders the LNS
algorithm was the best saccade- and PSO-sample classificator
for sample-by-sample classification.

We had an initial concern that coderMN had been involved
in the development of two of the algorithms (which performed
well), and this coder's particular view on event detection bi-
ased both the design of the algorithm and the coding process,
leading to inflated agreement levels. However, since both
coders shared the same top-ranking algorithms, it was clear
that this design–coder contamination could not undermine our
algorithm ranking results.

Are the algorithm–human similarities dependent
on the underlying stimuli that elicited the data?

It was clear from our results that the stimuli that elicited the
data determined the evaluation scores. Consistently, for both
evaluation methods, we saw that data from static stimuli were
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easier than dynamic stimuli (moving dots and natural videos).
This was hardly surprising, as most algorithms only detected
fixations and saccades, which are the predominant events of
static stimuli viewing.

Naturally, humans are at an advantage, for several reasons.
They can form a model of the underlying stimuli, and then
make use this model in the coding process whenever the un-
certainty is high. Humans can also code the full set of events,
and change strategies if needed (e.g., to some backward-
elimination process if forward positive identification appears
difficult).

The evaluation accuracy was also a question of the type of
event that was to be identified (see Table 7). Fixation-detec-
tion, e.g., was almost indistinguishable from random chance
for moving dots, but better than random chance for videos.
Saccade-detection was more consistent across stimuli type,
although this varied much between algorithms.

Are there consequences of using algorithms designed
for static stimuli on data from dynamic stimuli?

If we ignore the question of evaluating similarity between
humans and algorithms, and are simply interested in detecting
fixations and saccades for our research, then what are the
consequences? The answer is not straight-forward.
Considering the RMSD, algorithms could completely change
their ranking when going from one type of stimulus to the
other. For example, NH (rank 3, just after the two humans)
fell to rank 9 when going from image stimuli to moving dot
stimuli, but back up again to rank 3 when proceeding to the
video stimuli. One reason for this dramatic change is that the
moving dot stimuli almost entirely consists of motion, which
distorts the detected fixations if the algorithm does not expect
smooth pursuit in the data. This fixation output would be
nonsensical to use. The fixations detected by NH from the
video-elicited data look like they are decent, but it is not ob-
vious that they can be trusted. The deviation (RMSD) from the
coders is clearly larger than for image-elicited data (0.36 vs.
0.81). When considering the scores from the sample-by-
sample evaluation, the performance drops dramatically for
NH from .52 (images) to .01 (videos). In other words, even
if the event duration distributions for video-elicited data ap-
pear roughly similar to human-classified events, the algo-
rithms are not adding much value to the detection process,
and the result would have been roughly similar had a simple
proportional guess been made. Such a decent proportional
guess can possibly be made by an algorithm with thresholds
and criteria that coincide with the expected event measures.
This would superficially look appealing, but there is no guar-
antee that the samples are classified well, leading to improper
onsets and offsets of the events. In other words, using an
algorithm design for static stimuli data on dynamic stimuli
data may result in almost nonsensical event classifications.

How congruent are algorithm evaluation methods based
on event properties compared to sample-by-sample
comparisons?

The previous discussion led us to the question of how much
one evaluation method could say about another evaluation
method. The short answer is that they answer different aspects.
The durations, and their distributions, of different events rep-
resent the level most close to researchers, i.e. measures such as
fixation durations. Given the right data, it is possible to have
algorithms performing at 100 % accuracy. However, this
could then be more driven by the nature of the data rather than
the quality of the algorithms. That is why a method such as
Cohen's K, which adjusts for the base-rate of the events, is
motivated.

Also, because the twomethods focus on different aspects, it
is possible for an algorithm to perform poorly in one aspect,
but perform well in another one. For example, an event could
be identified as a very long fixation by the human, but could
have some noisy sample in the middle of the event which the
human disregards as noise. The algorithm, however, interprets
that noisy sample as some non-fixation sample, and terminates
the fixation. This results in two, shorter, fixations. So the
number of fixations and durations deviate decidedly, but in
terms of a sample-by-sample comparison all the samples but
that one noisy sample are coded in agreement with the human.
This is what we found for the NH and BIT algorithms that we
looked more closely at. BIT gets disrupted in the fixation
detection, and produces chains of shorter fixations. Although
it detects each sample well, and scores high on a sample-by-
sample comparison, it performs poorly in matching the
human-detected events in terms of duration, and number.

To conclude this section, the researcher must decide herself
what aspect is relevant, and select the appropriate algorithm
accordingly. Is the priority to get unbiased durations of fixa-
tions or saccades, or is it to classify the largest amounts of
sample correctly?

What are the most pressing areas in which to improve
the algorithms?

The evaluated algorithms are not similar, so it is difficult to
give general advice. However, we can distinguish between the
saccade or fixation algorithms, and the algorithms that seem to
have an ambition to detect all events. The largest improvement
can be found when adding fixation-detection capabilities to a a
saccade-only algorithm. Fixations are a very common and
relatively long type of event, which consequently carries
much weight in the data file (cf. Fig. 3). Thus, it is no surprise
that these algorithms, although excellent at what they do (e.g.,
the LNS algorithm), get a poor overall score when considering
the coding of the individual samples (see confusion matrices
in Tables 8, 9, and 10). The lack of this capability explains
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around 47–90 % of the disagreements, if we consider image
and video stimuli where fixation events are common. The BIT
algorithm is a fixation-only algorithm, and should benefit
from having saccade-detection capabilities. We should note
that we may have also underestimated the performance of this
algorithm, as it is capable to taking binocular data into ac-
count. No other algorithm does this.

The second family of algorithms are the fixation- and sac-
cade-detectors, which detect the two most common events,
and achieve an OK overall detection accuracy. However,
adding support for detecting smooth pursuit can provide great
improvements. More than 83 % of the disagreeing samples
can be explained by this, at least for stimuli with a large prev-
alence of smooth pursuit (see Table 9). For a more moderate
prevalence, as in our natural videos, around 73 % seem to be
the proportion of disagreeing samples that can be recovered.
This improvement would not only have the benefit of detect-
ing smooth pursuit, but would also improve the performance
of fixation and saccade detection, as there is a clear treatment
of this Bno man’s land^ of the velocity curve, which causes
some algorithms to assign slow pursuit movements to the
fixation category. It remains to be seen, however, if adding
smooth pursuit detection makes the algorithms worse off in
their fixation and saccade detection. Our human coders, with
no knowledge of the underlying stimuli, indicated smooth
pursuit motion in data from static stimuli. If the humans make
this error, then it is likely that algorithms will also make such
errors. It should also be noted, as is evident from Fig. 3, that
even saccade detection, even though it is a distinct movement,
has room for improvement. Failure to detect a saccade often
means (as is the case in Fig. 3) that two separate fixations are
instead identified as a single large fixation. This will of course
have consequences for the estimated fixation durations, for
example.

Post-saccadic oscillations, however, are fairly small events
occurring at the end of saccades. Considering the data from
the confusion matrices, the proportion of misclassification
driven by these samples normally falls below the misclassifi-
cation proportion from fixations and saccades. Thus, it is
better for a designer to improve the existing fixation and
saccade detection than to add support for this new event.
However, as can be seen in Fig. 3, the amplitude of the
post-saccadic oscillation is more likely to trigger some algo-
rithms than others, forcing a premature termination of the
saccade. In this figure, the IDT and IMST algorithms have
notably shorter saccade amplitudes than other algorithms.
Also, it is visible that the CDT algorithm identifies a segment
at the peak of the first oscillation as a small fixation. This
happens for the IHMM and IVTalgorithms as well, but is less
clearly visible in the scarf plot (after the fifth identified
saccade).

Considering the distribution of average event durations
in Fig. 2, it seems a number of algorithms can improve

simply by tweaking the settings, or adding automatic
threshold adjustments. At least for the fixation durations
from image viewing, it becomes apparent that the average
fixation duration follows a negative exponential curve,
where the duration of the fixations go up as the number of
detected fixations go down. This is most likely due to
smaller separate fixations merge as settings, like a disper-
sion threshold, become more inclusive. When the algorithm
is inclusive, it captures more sampling and the resulting
fixation has longer durations.

Are humans a gold standard?

On the one hand, humans seem to, across the board, agree
with each other very well. For data from the different stimuli
types (image, dot, and video), the resulting RMSD and the
proportion of disagreeing samples, it is clear that, on average,
the human experts are the most similar to each other. On the
other hand, it is difficult to draw any far-reaching conclusions
based on only two raters.

Currently, the humans are most similar to each other, but
humans also make mistakes. However, once an algorithm
reaches a level of accuracy on par with the humans, it
becomes challenging to say whether the errors are driven
primarily by the inaccurate algorithm, or the inaccurate
humans. At the moment there seems to be no experimental
data on what factors influence a human expert's coding
behavior, but it is reasonable that not all coding instruc-
tions are equal. For example, in our case there could be a
difference between a coder actively trying to figure out the
underlying stimulus of the data, and not trying to do this. If
sufficient evidence is accumulated for the data being from
a static stimulus, then any implicit thresholds for detecting
smooth pursuits are likely to be raised.

Similarly, there is a difference between coding for the pres-
ence of a single or several events. A sample classified as
belonging to one event cannot, in the current coding scheme,
be a part of another event. More event categories would mean
increasing the coding difficulty, which also means that
misclassified samples are less likely to be correct by chance,
further increasing the difficulty for the algorithm.
Additionally, the raw data was visualized in a particular way,
in a particular GUI for this study. It is likely that the way the
data are presented will alter the classification thresholds and
biases of the humans.

A part of the underlying problem of the current classifica-
tion approach is that the current oculomotor events are fuzzy,
human-defined labels. If the definitions were algorithmic,
there would by definition always be a winning standard algo-
rithm, barring the potential influence of noise. So the solution
for the problem should perhaps be sought in the intuitions of
the researchers using these events. Or, the evaluation standard
should be switched from accurately classifying artificial
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labels, to a more grounded phenomenon, such as the level of
visual intake during a certain state of the eye. Usually the
events are detected for a particular reason and not for an inter-
est in the labels per se, and these motivations could also be
used to form the new measurement sticks for algorithm
performance.

In summary, we have a classification problem without a
solid gold standard against which we can verify oculomotor
event classifications, of which the events lack clear defini-
tions. Strictly, this would mean that this is apparently an
insolvable problem. Human coders are not perfect and there
are indeed difficult classification cases, but the general sen-
timent is that, in the simple case, what is a fixation and what
is a saccade is something we can agree on. The point of
agreement may be arbitrary, but humans are still in some
agreement, much like agreeing on meaning in language. We
also find that for detecting fixation durations from viewing
static stimuli, the same algorithm is the best match for both
of the two coders. The same is true for saccades and post-
saccadic oscillations, across all stimuli types. Thus, it ap-
pears some intuitions of the coders are shared and not
completely arbitrary.

Generalizability of the results

Having answered the questions we had at the start of this
study, we wondered whether these results would general-
ize. First of all, the data are recorded using a particular
system. In this case it is a video-oculographic system, the
SMI HiSpeed 1250. Although producing good data com-
pared to other VOG systems, it produces data with the
typical characteristics of a VOG system, such as distinct
overshoots during saccades and a higher noise-level, com-
pared to e.g., scleral coil systems (see for example Hooge,
Nyström, Cornelissen & Holmqvist, 2015). Although all
systems have an overshoot component to some degree,
the eye-tracker signal does not look the same across sys-
tems. This emphasizes that we should not expect event-
detection to look the same either. The consequences of
system type for the data signal, and consequently for the
event detection has been, at least for microsaccades,
discussed in Nyström, Hansen, Andersson and Hooge
(2015b). There, the system type together with a common
event-detection algorithm created an interaction that pro-
duced an artificially large microsaccade amplitude.
Additionally, not all VOG systems are the same. An
EyeLink 1000 system (SR Research, 2014) can track the
pupil using an ellipse-fitting procedure, or a center-of-mass
procedure, which determines the noise-level and tracking
robustness. The tracking algorithm for the SMI HiSpeed,
however, is not obvious from the manual (Sensomotoric
Instruments, 2009).

Furthermore, VOG systems are affected by the natural
changes of the pupil size, which does not change uniformly
in all directions, and thus introduces a bias in the gaze
estimation (see Drewes, Masson, & Montagnini, 2012).
This may be one part of the explanation why one of our
coders classified some segments of samples as belonging
to smooth pursuits, rather than fixations, in data from static
image viewing.

This hints at the larger question of how data quality
affects event detection, which is discussed, e.g., by
Holmqvist, Nyström and Mulvey (2012). It is expected that
as the signal becomes noisier, it becomes increasingly
harder to reliably detect the events, and especially so for
the smaller and less distinct events. Likely, the PSO would
become impossible to detect. Smaller saccades, as well as
short and slow pursuit movements would become difficult
to separate from a regular (noisy) fixation. With higher
noise levels it is critical that the algorithms can adequately
filter the signal, and perhaps adaptively so. This becomes
especially important if the goals is to have an algorithm
that can be used Bout of the box^ with none or few user-
controlled parameters. Evaluations such as this, that use
humans as some form of standard or reference, may also
produce increasing higher human – algorithm deviations as
the noise level increases. The expert knowledge and stra-
tegic flexibility in human coders suggests that the humans
would not be disrupted to the same extent that algorithms
would be. In this light, this would indicate that this study,
using data with low noise, actually over-estimates the abil-
ity of the algorithms, compared to data from noisier
systems.

Going beyond the question of system type and data
quality, this evaluation was conducted by two humans at
the same lab. Working in the same lab means attending
the same seminars and the same discussions, often
aligning the views of the people. Therefore, even when
explicitly trying not to discuss the coding process too
much beforehand, this may likely have led to similar de-
cisions in cases of uncertainty. A future study could ad-
dress this by having members from different labs, yet
somehow coming together for this coding task despite
minimal previous exchanges. To compensate for biases
towards algorithms that were developed at our lab, for
our eye-trackers, we did explore the possibility to tune
some of the other algorithms parameters. The results are
presented in Appendix B, and although we can see im-
provements in several cases, it does not change the main
findings in this evaluation.

It should also be noted that perhaps this evaluation has
actually overestimated the classification quality of the algo-
rithms. In order to get around the problem of what default
values to use for the algorithm parameters, we reverse-
engineered the human coders. This also means that the
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algorithms were somewhat tuned to the coders. Although this
was done to ensure a fair competition between algorithms, this
solution may have caused a slight overestimation of the per-
formance of the algorithms.

We should not forget that there are also researchers that
use whatever algorithm is provided by their (commercial)
system. Should these results matter to them? Although we
did not evaluate commercial algorithms, the variation in
results between algorithm in this study should be a sign
of warning. The commercial algorithms are at their core
developed around known algorithms, such as a velocity-
th r e sho ld a lgo r i t hm (Tob i i Techno logy, 2012 ;
Sensomotoric Instruments, 2010) or a velocity-and-
acceleration-threshold algorithm (SR Research, 2014),
and their closed-source nature makes it more difficult to
evaluate them. There is no reason to believe that these
algorithms are immune to the challenges raised in this ar-
ticle. Their primary advantage, however, is their prolifera-
tion, which means there are plenty of other publications
with the same algorithm which the researcher can compare
the results against. This provides an indication of the reli-
ability of the algorithms, but not necessarily the validity of
these algorithms.

To summarize, there are a number of factors that were not
systematically explored in this evaluation, and thus we cannot
confidently generalize across factors such as eye-tracker mod-
el, noise levels, or coders from different labs. However, this
study could indicate what expectations to hold for event-
detection performance, given the limited number of evaluation
studies at the moment.

Future directions of algorithm design

During this work, and having manually reviewed much
raw eye-tracker data, we have noted some ideas of event
detection algorithm design that seems to have been left
unexplored.

The first idea is that events are assumed to be mutually
exclusive. Whereas this makes sense for fixations and sac-
cades, it does not make sense for, e.g., post-saccadic oscilla-
tions. We have seen data where saccades to a moving target
results in an eye-movement that is tracking the moving target
(smooth pursuit), but also oscillating from the end of the sac-
cade (post-saccadic oscillation). What is the correct classifica-
tion for such an event? Using current algorithms, no classifi-
cation will be fully correct. It seems a new framework is need-
ed, where different properties of the eye (movement) can
overlap.

The second idea is whether thresholds separating two
or more events should be placed in an unbiased manner,
e.g., balancing the false-positive and false-negative rates
between these events. From what we can see, e.g., by
studying Table 8, algorithms are not balanced, and this

issue is not discussed at all. However, it would make
sense to explicitly address this for both the algorithm de-
signers, and the researchers using them. In one context, an
unbiased trade-off between events may be desired, but for
another context, more biased thresholds are important. For
example, if the researcher has a strong desire to extract
segments of data that are near-guaranteed to contain no
smooth pursuit movements, then smooth-pursuits must
first be detected in order to be discarded. Then, perhaps
an algorithm which detects smooth pursuits, at the ex-
pense of a higher false-positive rate for smooth pursuits
and higher false-negative rates for other events, is desired.
Although this can be achieved by setting the thresholds
for the different events accordingly, this could be made
more explicit by allowing the use other types of thresh-
olds. For example, an algorithm that also tries to set the
certainty level of a particular classification, would in turn
allow a researcher to select, e.g., only data from fixations
with a certainty above 90 %. Or, if there is a probability
for every event type for a given sample, then a desired
certainty delta could be set, rejecting the sample if there is
a too high chance of it belonging to a particular compet-
ing event. Related to this, it is evident from Fig. 3 that
some of our algorithms refrain from classifying a sample
if it does not meet the critera, whereas others operate with
a more exhaustive strategy. Thus, modern algorithms are
not consistent in whether they should only classify when
they are Bcertain^ or if they should be forced to make an
informed guess about the sample. This is likely an option
that the researcher would like to make for the particular
study.

A third idea, which has previously been mentioned, is
to actually make use of information in the stimuli. By
knowing where animated objects are located in the visual
fields, it should become easier for an algorithm to dis-
tinguish between a fixation and a smooth pursuit move-
ment. To our knowledge, all current algorithm are stimuli
blind.

A fourth idea is to make use of the pupil size signal, as well
as the common x and y signals. As pupil size changes cause
shifts in the position of the pupil center (Drewes, Masson, &
Montagnini, 2012), drift movements may occur that may be
very difficult to separate from smooth pursuit movements, and
is likely what caused our coders to identify smooth pursuit in
data from static stimuli. As far as we can tell, this information
is not used in any algorithm.

A final idea is perhaps to forgo the process that revolves
around (ill-) defined labels of oculomotor events, and de-
velop a new ground truth against which the algorithm can
be compared more straight-forwardly and in line with the
aims of the researchers using the algorithms. One such
approach, which has already been mentioned, would be
to optimize algorithms against actual visual intake, which
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may be easier to empirically ground compared to the label
intuitions of researchers.

To conclude this section, there is much underused informa-
tion in the eye and the output from most eye-tracking hard-
ware, which can inform and improve, algorithms for eye
movement event detection in the future.

Author note This work was supported by the Swedish strategic
research programme eSSENCE.

Appendix A

Appendix B

Parameter tuning
To explore whether the algorithms for which we had

used the default parameters could be improved, we per-
formed a simple parameter walk to see which combination
of parameters that yielded the best (lowest) RMSD. This
was performed with one parameter combination across all
stimulus types, but separately for fixations and saccades,
respectively.

Fixations
NH: no change at 0.67 (best)
CDT: no improvement
IMST: improvement from 1.58 to 0.75 (SaccDetThres 0.7;

window_size 175)
IHMM: no improvement
BIT: improvement from 1.13 to 1.08 (n_lost 2; perc_control

0.96)

Saccades
EK: improvement from 1.46 to 0.61 (vfac 7, mindur 12)
IKF: no improvement
IMST: improvement from 1.09 to 0.21 (shared best with

LNS) (saccDetThres 0.8; winsize 300)
IHMM: improvement from 1.09 to 1.00 (Viterbi 100;

Baum Welch 7)
NH: no improvement

Conclusion
Some algorithms did improve. The only finding that upsets

our previous results is that IMST can be made as accurate as
the LNS algorithm. However, do note that the IMST is tuned
separately for fixations and saccades, and the optimal param-
eter combination is not the same for the two events. In other
words, the saccade detection will improve at the cost of the
fixation detection, and vice versa.
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