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Supplemental Figure 1. (A-H) Linkage disequilibrium (LD) block structure at eight T2D 

susceptibility loci included into the proof-of-concept analysis. (I) Cell-type specific cis-

regulatory effects of complex regions at T2D loci. Related to Figure 1. 

 

(A-H) LD blocks derived from eight tag SNPs that were included in the primary PMCA 

analysis are shown. Pairwise LD, measured as R
2
, was calculated from 1000G Pilot 1 data 

CEU (1000 Genomes Project Consortium, 2010) using the SNAP viewer Tool (Johnson et al., 

2008), Broad Institute. R² is displayed in a range of plain white (R² = 0) to red (R² = 1.0). 

Plots were drawn using the LDheatmap package in R version 2.15. Detailed information on 

the presented LD blocks is summarized in Table S1. 

(I) Cell type-specific cis-regulatory effects of complex regions. Luciferase constructs of the 

respective complex regions were transfected into INS1 pancreatic β-cells (insulin secretory 

cell line), and differentiated 3T3-L1 adipocytes, C2C12 myocytes, and Huh7 cells (insulin 

responsive cell lines), respectively. The allele-dependent fold change in relative luciferase 

activity comparing the risk and non-risk alleles is shown for each SNP, representing an 

activating or repressing effect of the risk allele on transcriptional activity. Data are 

represented as mean +/− SD (n=9), ***p < 0.001, p-values from paired t-test. 
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Supplemental Figure 2. (A-E) Performance of PMCA for candidate SNPs at 47 T2D 

susceptibility loci; (F,G) Correlations of cis-regulatory predictions from PMCA at 

Crohn’s disease susceptibility loci with evolutionary constraint elements and 

functionally annotated genomic regions; (H) Frequency distribution of complex regions; 

and (I,J) Distance to transcriptional start site of predicted cis-regulatory SNPs. Related 

to Figure 2. 

 

(A-E) PMCA results are shown for 47 T2D susceptibility loci comprising 1,465 candidate 

SNP-surrounding regions (R
2
 ≥ 0.7, Table S7).  

(A-C) Box-whisker plots of the numbers obtained for each classification strategy in the 

analysis based on sequence number constraint. Plots show the distributions for TFBS (A), 

modules (B) and TFBS_in_modules (C), including the median (horizontal bars), the interquartile 

region (IQR) representing the middle 50% range (boxes), extreme values (whiskers) and 

outliers (dots). Data points covered by the IQR and the whisker values were explicitly added 

as rug at the sides of the plot. The median for complex regions (highlighted in red) was higher 

than for the non-complex regions for each classification.  

(D,E) Histograms showing the distribution of –log10 of the estimated probability p-est to 

randomly observe an equal or higher TFBS (D) and the distribution for an equal or higher 

overall score from all three criteria (E), as calculated from observations in the random set 

derived from 1,000 shuffled sequences per ortholog set. The blue curve illustrates the 

empirical density function of the histogram data. The red vertical dashed line indicates the 

cut-off scores separating complex from non-complex regions (SNP regions with a value to the 

left of this were defined as non-complex). The isolated peak at the right (low p-est / high 

overall score data) refers to data points that hit the lower limit of p-est calculations. 

(F,G) Correlations of PMCA results with DNase-seq (F) and ChIP-seq (G) data for 1,218 

SNPs associated with Crohn’s diseases. For PMCA classification of SNP-adjacent genomic 

regions in complex and non-complex regions see Table S8. The occurrences of DNase-seq 

and ChIP-seq DNA peaks in vicinity of complex and non-complex T2D-associated SNP 

regions are shown (each position ± 500 bp from the SNP position of complex and non-

complex regions was scanned for overlaps with DNase- or ChIP-seq peaks, see Extended 

Experimental Procedures). The number of complex and non-complex regions that directly 

overlap DNase-seq and ChIP-seq regions was determined by a comparison of their genomic 
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positions. Complex regions were significantly enriched for overlaps with DNase-seq and 

ChIP-seq regions in the set of Crohn’s disease associated SNPs (P = 4.17 x 10
-13 

and P = 3.06 

x 10
-6

, respectively, Fisher’s exact test, see also Table S10). 

(H) Frequency distribution for fractions of complex regions obtained for 47 analyzed T2D LD 

blocks. PMCA separates the SNPs at susceptibility loci into complex and non-complex 

regions. The frequency histogram (bin of LD block sizes = 0.05) displays the fractions of 

complex regions in the 47 analyzed T2D susceptibility LD blocks (Table S7). The frequency 

distribution illustrates that the number of complex regions identified per LD block spreads 

over a large range (median = 29 %, average = 34.2 % (vertical dashed line), SD = 22.6 

(horizontal arrow)). 

(I,J) Distance to transcriptional start sites (TSS) for complex and non-complex regions 

obtained for 47 analyzed T2D LD blocks. Density histograms show all distances (bin size 500 

bp) between SNPs and transcription start sites (TSSs) (TSS annotated within 30,000 bp 

downstream of SNP position). The distance distribution is shown for 487 complex regions (N) 

and 978 non-complex regions (O) identified by PMCA within the set of 47 T2D loci (for 

detailed information see Table S9). The histogram shapes of (N) and (O) illustrate the equal 

positioning of PMCA categories (complex and non-complex regions) relative to downstream 

TSSs. 
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Supplemental Figure 3. (A-D) Positional bias analysis of TFBS matrices at complex and 

non-complex regions; (E-H) Performance of PMCA for candidate SNPs at asthma and 

Crohn’s disease susceptibility loci; and (O-T) Combinatorial framework analysis of 

PMCA, bias analysis and RNA-seq-identified homeobox TFs associated with metabolic 

processes and impaired glucose stimulated insulin secretion. 

 

(A,C,D) No apparent positional bias of TFBS matrices at non-complex regions. Distribution 

of TFBS matrices relative to SNP position (denoted by grey lines) within non-complex 

regions at eight T2D loci (A), eight asthma loci (C), and a set of Crohn’s disease 

susceptibility variants (D), assessed by positional bias analysis (Table S6). Positional bias was 

calculated from TFBS match occurrence over 1,000bp SNP regions for 192 TFBS matrix 

families (Genomatix Matrix Library version 8.4) within sliding 50bp windows under a 

binomial distribution model (detailed in Extended Experimental Procedures). Positional bias 

profiles are presented for a subset of analyzed TFBS matrix families including the matrix 

families that matched the selection criteria of central SNP position and –log10 (P) > 6 in the 

complex regions (Figure 3). 

(B) Positional bias of TFBS matrices at complex regions identified in a set 1,218 candidate 

SNPs at Crohn's diseases susceptibility loci. Distribution of TFBS matrices relative to SNP 

position (denoted by grey lines) within complex regions at the set of Crohn’s disease variants 

(Table S6D), assessed by positional bias analysis. Positional bias was calculated from TFBS 

match occurrence over 1,000bp SNP regions for 192 TFBS matrix families (Genomatix 

Matrix Library version 8.4) within sliding 50bp windows under a binomial distribution model 

(detailed in Extended Experimental Procedures). Positional bias profiles are presented for a 

subset of analyzed TFBS matrix families including the matrix families which matched the 

selection criteria of central SNP position and –log10 (P) > 6 in the complex regions. The 

positional bias analysis within complex regions reveals specific clustering at SNP position +/- 

20bp (denoted by grey dashed lines) of the TFBS matrix families NR2F, MYOD, HOXF 

(green) and HOMF and HBOX (red, see also bias at the size matched set of T2D loci, Figure 

2B). 

(E-N) PMCA results are shown for asthma (E-I) and Crohn’s disease (J-N) susceptibility loci 

(R
2
 ≥ 0.7, Table S7).  
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(E-G,J-L) Box-whisker plots of the numbers obtained for each classification strategy in the 

analysis based on sequence number constraint. Plots show the distributions for TFBS (A), 

modules (B) and TFBS_in_modules (C), including the median (horizontal bars), the interquartile 

region (IQR) representing the middle 50% range (boxes), extreme values (whiskers) and 

outliers (dots). Data points covered by the IQR and the whisker values were explicitly added 

as rug at the sides of the plot. The median for complex regions (highlighted in red) was higher 

than for the non-complex regions for each classification.  

(H,I,M,N) Histograms showing the distribution of –log10 of the estimated probability p-est to 

randomly observe an equal or higher TFBS (D) and the distribution for an equal or higher 

overall score from all three criteria (E), as calculated from observations in the random set 

derived from 1,000 shuffled sequences per ortholog set. The blue curve illustrates the 

empirical density function of the histogram data. The red vertical dashed line indicates the 

cut-off scores separating complex from non-complex regions, SNP regions with a value to the 

left of this were defined as non-complex). The isolated peak at the right (low p-est / high 

overall score data) refers to data points that hit the lower limit of p-est calculations. 

(O-U) Homeobox TFs, inferred from a combined analysis using PMCA, positional bias 

analysis and RNA-seq co-expression correlation data from primary human islets, are 

associated with metabolic pathways (O-T) and impaired glucose stimulated insulin-secretion 

(U). (1) PMCA identified 487 complex regions out of 1,465 SNPs at 47 T2D loci (Table S4), 

(2) bias analysis identified five TFBS matrix families (Figure 3B), comprising a set of TFBS 

matrices for 63 homeobox TFs (Table S11), and (3) subsequent analysis of mRNA levels in 

RNA-seq data from primary human islets, comparing donors with and without T2D, 

implicated the homeobox TFs RAX, PRRX2, BARX1, PITX1, EMX2, NKX6-3, BARX2, 

MSX2 and PDX1 (Table S14) as novel candidate TFs in T2D pathophysiology. 

(O-T) Pathway analysis for gene sets co-expressed with the identified homeobox TFs in 

pancreatic islets. Gene sets are from co-expression analysis in islets from 51 donors without 

T2D, correlating the expression levels of all transcripts identified by RNA-seq with the 

expression levels of the identified genes encoding homeobox TFs PRRX2, PITX1, NKX6-3, 

BARX2, MSX2 and PDX1 (for which significantly co-expressed genes with FDR 5% were 

identified, see Table S15). The top five significantly enriched pathways (hypergeometric test, 

FDR 5%) inferred from WEBGESTALT analysis using the KEGG database are presented; 
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including the T2D-related categories metabolic pathways, MAPK signaling, Notch signaling, 

calcium signaling and pancreatic secretion. 

(U) Glucose-stimulated insulin secretion in rat INS-1 β-cells transfected with non-targeting 

(NT) control siRNA and siRNAs targeting expression of the homeodomain TFs Barx1, Barx2, 

Msx2, Emx, Nkx6-3, Pitx1, Rax2, Prrx2 or Pdx1 that were differentially regulated in the 

human islets of subjects with T2D (Table S14). Insulin levels in the medium after 1 h 

stimulation with high glucose were measured by ELISA (Extended Experimental Procedures). 

The ratio of (glucose-stimulated insulin levels in siNT transfected cell) / (glucose-stimulated 

insulin levels in siRNA-homeobox TF) was calculated for siNT control and for each 

homeobox TF siRNA. p-values from paired t-test, n = 5. The experiments were performed in 

triplicate. 
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Supplemental Figure 4. Computational predicted cis-regulatory variants at the PPARG 

T2D risk locus and the homeobox factor PRRX1 as regulator of endogenous PPARγ2 

expression. Related to Figure 4 and Table 2. 

 

(A) Validation of cis-regulatory predictions at the PPARG T2D risk locus. Cis-regulatory 

predictions for complex regions (red dots) were validated at the level of transcriptional 

activity. Non-complex regions were included as a control (black dots). Reporter assays were 

performed with luciferase promoter constructs matching the risk and non-risk alleles of the 

respective SNP-surrounding regions, reflecting the allele-specific change in transcriptional 

activity. The quantified change in luciferase expression comparing the risk/non-risk or non-

risk/risk allele (change ≥ 1) is shown for each SNP as mean of repeated measures ± SD (n=3-

13), p-value from linear mixed-effects model. Details on the analyzed SNPs are given in 

Table S12. Complex regions significantly differed from non-complex regions at the 

transcriptional level. 

(B) Genotype-dependent increase in mRNA expression of total PPARγ in human 

subcutaneous adipose tissue (n = 36). Box plots of the total PPARγ expression level is shown 

for risk- and non-risk haplotype carriers of rs7638903, Pro12Ala and rs4684847 (cis-

regulatory variant). Risk-haplotype (GG + CC + CC) versus non-risk haplotype (GA/AA + 

CG/GG + CT/TT). The three SNPs are in perfect LD in the 1000G Pilot 1 data set (1000 

Genomes Project Consortium, 2010) (R
2
 = 1.0). mRNA was measured by microarrays and 

analyzed by Wilcoxon rank-sum test. 

(C) Allelic imbalance of PPARγ2 mRNA expression levels during early stages of adipocyte 

differentiation measured in samples of primary hASC (human adipose stromal cells) 

heterozygous for the risk allele (genotyped for Pro12Ala and rs4684847, R2 = 1.0) at different 

time points after induction of differentiation. Allele-specific primer extension analysis of 

RNA (n = 6), calculated as ratio of the non-risk allele to risk allele. Data are presented as 

mean +/− SD, p-values from Dunn’s Multiple Comparison post-test after Kruskal-Wallis 

Oneway ANOVA (p < 0.0001).  

(D) Mapping of experimentally verified complex regions to H3K27ac regions at the PPARG 

locus. H3K27ac regions in undifferentiated primary hASC, hASC three days and hASC nine 

days after induction of adipogenic differentiation were extracted from (Mikkelsen et al., 2010) 

(data accessible at NCBI GEO database Edgar et al., 2002, accession GSE20752). H3K27ac 

chromatin state across the PPARG locus is shown as region plot, the localizations of SNPs at 

complex regions and the PPARG exons A1, A2, the PPARγ2 specific exon B and the first 

exon of PPARγ1 and PPARγ2 at the PPARG locus are indicated. rs4684847 and rs71304101 

reveal cell stage-dependent H3K27ac marks. rs4684847 is distinguished from rs71304101 by 

H3K4me1, H3K4me2 and H3K36me3. 



15 

 

(E,F) All reporter assays were performed with luciferase promoter constructs matching the 

risk and non-risk alleles of the respective SNP-surrounding regions, reflecting the allele-

specific changes in transcriptional activity. The data are presented as mean ± SD, p-values 

from paired t-tests. 

(E) Reporter assays with constructs harboring the rs4684847-surrounding region in 5´-, 3´-, 

forward and reverse orientation (arrows) transfected in 3T3-L1 adipocytes (n = 9). 

(F) Allele-dependent repression of reporter gene activity in 3T3-L1 adipocytes, Huh7 

hepatocytes, C2C12 myocytes, INS1- β-cells and 293 cells. Luciferase assays in 3T3-L1 

adipocytes, Huh7 hepatoma cells, C2C12 muscle cells, INS1 pancreatic β-cells and 293T cells 

reveal cell type-specific cis-regulatory activity of the complex region SNP rs4684847. 

(G) Regulation of PPARG1 mRNA expression in SGBS adipocytes with homozygous risk or 

non-risk allele introduced by the CRISPR/Cas9 genome editing approach. siPRRX1 and siNT 

were transfected concurrent with induction of differentiation. PPARG2 mRNA was assessed 

by qRT-PCR, standardized to HPRT mRNA. The data are presented as mean±SD, n = 12, p-

values from paired t-test. 

(H) Genotype-dependent expression of PRRX1 mRNA levels in insulin resistant and insulin 

sensitive subjects matched for BMI, body fat, age and sex. PRRX1 mRNA in abdominal 

subcutaneous and omental adipose tissue was measured by qRT-PCR, standardized to HPRT 

mRNA. Insulin sensitivity was measured by euglycemic hyperinsulinemic clamp. Data are 

presented as mean +/−SD (n = 30 per group), p-values from unpaired t-test.  
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Extended Experimental Procedures 

 

1. Definition of LD blocks 

Tag SNPs were derived from reported GWAS loci (corresponding references are listed in 

Tables S1, S7 and S8A). For each tag SNP, LD blocks were defined based on 1000G Pilot 1 

CEU data {1000 Genomes Project Consortium 2010 #31} (r
2
 ≥ 0.7, NCBI GRCh37/hg19) 

using the SNAP viewer tool {Johnson 2008 #81}, Broad Institute. For Crohn's diseases 

susceptibility loci, a previously published SNP set {Schaub 2012 #214} was chosen for 

PMCA analysis of candidate SNPs at (Tables S8B).  

 

2. Search for orthologous regions 

For each SNP the 120 bp sequence with the SNP at central position (SNP region) was 

extracted from the human genome (NCBI GRCh37/hg19). Moreover, orthologous sequences 

for each of the 120 bp SNP-surrounding region of the human reference sequence were 

searched in 15 closely and distantly related vertebrate species, using the RegionMiner tool 

(Genomatix, Munich). First, loci homologous to the human SNP region were searched across 

the target organisms. In case no homologous loci could be identified, the flanking genes (up to 

20 gene loci in both directions) were considered in order to identify a syntenic region in the 

target species. To be assigned as a syntenic region, two homologous genes in the target 

organism need to be on the same contig and must show the same relative strand orientation as 

the genes in the source organism. Second, the input sequence (SNP region) was aligned to the 

syntenic region using a Smith-Waterman alignment. The syntenic regions had to fulfill the 

following alignment criteria: the alignment contained a highly conserved 50 bp stretch; the 
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alignment had to be shorter than 1.5-fold the length of the input SNP region, and a sufficient 

overall alignment quality had to be reached. 

Reference genome:  Human (Homo sapiens) 

Aligned genomes: Rhesus macaque (Macaca mulatta) 

Common chimpanzee (Pan troglodytes) 

Mouse (Mus musculus) 

Rat (Rattus norvegicus) 

Rabbit (Oryctolagus cuniculus) 

Horse (Equus caballus) 

Dog (Canis lupus familiaris) 

Cow (Bos Taurus) 

Pig (Sus scrofa) 

Opossum (Monodelphis domestica) 

Platypus (Ornithorhynchus anatinus) 

Zebrafish (Danio rerio) 

Chicken (Gallus gallus) 

Western clawed frog (Xenopus tropicalis) 

Zebra fish (Taeniopygia guttata) 
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3. PMCA-Procedures: Description of the PMCA method 

 

This chapter describes the PMCA method at different degrees of detail. After the description 

of the general motivation for the choice of the method we describe the general design of the 

PMCA method that is intended for a general readership. We then provide a detailed 

description of the PMCA algorithm in the form of a pseudo-code that an experienced 

bioinformatician can use to implement the steps described in the method in an automated 

manner. Finally, we provide a step-by-step example for running PMCA manually using 

the graphical user interface 

 

3.1 Motivation 

Bioinformatics approaches that reliably assess the regulatory role of specific genetic variants 

would be highly desirable. However, rapid evolutionary turnover results in many lineage-

specific regulatory regions that are functionally conserved, have low phylogenetic 

conservation, challenging the use of phylogenetic conservation of genomic sequences as a 

sole denominator in the search for non-coding regulatory regions. Nucleotide-level 

evolutionary conservation alone has proven to be a poor predictor.  

 Gene regulatory regions in eukaryotes tend to be organized into cis-regulatory 

modules (CRMs), comprising complex patterns of co-occurring TFBSs for the combinatorial 

binding of TFs. CRMs integrate a variety of upstream signals to regulate the expression of 

coordinated sets of genes, making them an obvious target to achieve broad phenotypic 

changes as a result of adaptive evolution. 

 Here we hypothesize that the presence of patterns of evolutionarily conserved TFBSs 

in a CRM (TFBS modularity), within genomic regions surrounding a candidate variant are 
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predictive of its cis-regulatory functionality, regardless of the cross-species conservation of 

the complete sequence on the nucleotide-level. In order to test this hypothesis we need a 

bioinformatics method that is able detect and classify genetic regions that contain 

evolutionary conserved TFBS modules. In the following, we describe such a method, called 

phylogenetic module complexity analysis (PMCA). 

 

3.2 General design of the PMCA method 

The starting point of the PMCA method is a genetic variant that has been reported in a 

genome-wide association study as a tag SNP for the risk of a given disease or a phenotype. In 

this analysis we individually test all non-coding SNPs that are in linkage disequilibrium (LD, 

r
2
<0.7) with the tag SNP (see Definition of LD blocks for the analysis performed in this 

manuscript. Note that any set of variants may be analyzed by PMCA). For each non-coding 

SNP the PMCA method shall eventually provide a classification of the region surrounding the 

non-coding SNP as being either complex or non-complex. Complex regions are defined as 

being significantly enriched in phylogenetically conserved TFBS modules according to the 

scoring scheme we developed for this purpose. In non-complex regions, in contrast, the 

number of phylogenetically conserved TFBS modules does not exceed what is expected by 

chance. We estimate this significance using randomized sequences. 

 The following procedure is executed for each non-coding SNP. We use the 

commercially available Genomatix software suite (Genomatix Co., Munich) for these tasks, 

i.e. the RegionMiner for extraction of orthologous regions and the FrameWorker, which 

extracts TFBS modules from a set of DNA sequences. Briefly, the FrameWorker tool returns 

the most complex TFBS modules that are common to the input sequences, satisfying the user 

parameters. TFBS modules are defined as all TFBS that occur in the same order and in a 

certain distance range in all (or a subset of) the input sequences. However, in principle any 
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equivalent method can be applied. A more detailed description of the individual computing 

steps in terms of pseudo-code is given further down.  

 

1. The flanking region (+/-60nt) of the non-coding SNP is extracted from the human 

genome; 

2. Ortholog regions are searched in the genomes of 15 fully sequenced vertebrate species
 
and 

extracted if a region with a high degree of similarity is found; 

3. TFBS are identified in the set of ortholog sequences using position weight matrices from 

the Genomatix library; 

4. TFBS modules are identified in each ortholog sequence; TFBS modules are specifically 

defined as all two or more TFBSs that occur in the same order and in a certain distance 

range in all or a subset of the input sequences.  

5. Phylogenetically conserved TFBS (ΩTFBS), TFBS modules (Ωmodules), and occurrence of 

TFBSs in TFBS modules (ΩTFBS_in_modules) are counted.  

6. Repeated counting weighs the degree of cross species conservation and the number of 

TFBS in the modules. This counting scheme alone would overestimate genetic regions 

that only have orthologs in a subset of closely related vertebrate species (e.g. mammal-

linage specific TFBSs). To account for this possibility, we also determine 

phylogenetically conserved TFBS with more restricted parameters (Ωrestr-TFBS, details see 

below). 

7. Steps 3-5 are repeated one thousand times using randomized input sequences to estimate 

the probability of observing a given ΩTFBS, Ωrestr-TFBS, Ωmodules, and ΩTFBS_in_modules. 

Randomization of the sequences is done using local shuffling in order to conserve local 

nucleotide frequency distributions. The randomization accounts for the issue that certain 

TFBSs might be favored merely due to the sequences nucleotide composition, i.e. high 
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GC content may predict additional matches for matrices of the SP1 transcription factor; 

which might provoke overestimation of the variant-surrounding sequence; and that 

different ortholog set sizes for candidate variants might result in an artificial bias, i.e. a set 

of only three sequences allows only two combinations of sequences that contain the 

reference sequence and fulfill the 50% quorum in contrast to larger sets. Contrary, a 

region with only primate sequences as orthologous shows a much higher, probably 

overestimated score. 

8. Based on the four weighed counts ΩTFBS, Ωrestr-TFBS, Ωmodules, and ΩTFBS_in_modules and the 

estimated background probability of observing these counts by chance, we determine an 

overall classification criterion.  

9. The overall classification criterion labels the input region as complex or non-complex. 

 

 The basic assumption of the PMCA methods is that a genetic variant in a complex 

region has a measurable functional effect. For classification of a genomic regions as complex 

or non-complex we determined scoring criteria on the weighed counts (described in detail 

below) based on the experimental validation of cis-regulatory functionality for 21 sequence 

variants (whether this variant was functional or not in one of two assays: DNA binding 

activity or reporter gene activity), including the cis-regulatory SNPs in Table S2. The gold 

standard for the test of a classification method is replication in an independent data set that 

has been measured after the method was fully established. In order to provide such as test we 

conducted experiments on DNA binding activity or reporter gene activity for a set of 62 SNPs 

that were selected from a representative set of potential candidate SNPs at genomic regions 

with different levels of GC content and different intronic or intergenic localization. The 

PMCA method with the parameters set as described below (and fixed before the experiments 

on the 62 SNPs were conducted) results in 57 correct classifications, only 3 SNPs were 
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misclassified as false positives and 2 SNPs as false negatives. We thus expect the PMCA 

method to have over 90% selectivity and sensitivity. 

 

3.3 Detailed description of the PMCA algorithm (pseudo-code) 

Here we describe in detail the steps that need to be taken when using the PCMA method with 

the Genomatix software in the format of a pseudo-code. In order to get a better feeling of 

these steps, and how complex regions differ from non-complex regions for a region of 

interest, we provide a step-by-step tutorial that can be followed manually using the interactive 

version of the Genomatix software (see provided screenshots). In order to process a large 

number of SNPs, and to compute the randomized background distributions, we recommend 

use of the command-line version and scripting of the processing and counting of the output 

(XML format). While we believe that the RegionMiner and FrameWorker tools (Genomatix 

Co., Munich) presently represent the state-of-the-art, all steps in our method can be replaced 

by open-access tools and databases, such as AlignACE {Roth 1998 #381} for the 

identification of homologous regions, TRANSFAC {Matys 2006 #380} as TFBS databases, 

and custom-made TFBS module identification schemes. 

 

Pseudo-code for the PMCA algorithm 

 

For a given tagSNP select all non-coding SNPs in the LD region. 

 

For each non-coding SNP do the following: 

 

1. Prerequisites 

1.1 Generate a BED-file with  



23 

 

- start position = SNP position – 60 bp  

- end position = SNP position + 60 bp  

1.2 Search for orthologous regions:  

Input the BED-file from step 1.1 input to RegionMiner subtask ‘Search for 

orthologous regions in other species’ 
 
 

1.3 Download all sequences found in step 1.2  

 

2. Assessment of ‘modular complexity’  

 

2.1 From 1.3 obtain a set of sequence files (S) where each file contains the human 

sequence surrounding the SNP according to the BED-file contents from 1.1 and 

up to 15 orthologous sequences from other species as found in 1.2. (Called 

‘ortholog sets’). 

 

ΩTFBS = 0 

Ωmodules = 0 

ΩTFBS_in_modules = 0 

 

2.2 For each sequence set S do the following: 

 

NS = number of sequences in S 

 

For ( i = 2 to NS ) do the following: 

 

Call FrameWorker
 
 using these parameters: 



24 

 

ζ = i / number (ζ is the ‘quorum’)
 
 

number of elements in Module: 2 to 10 

maximal distance variance: 10 

distance between elements: 5 to 200 

 

Parse the output file and determine the following numbers by parsing 

the XML output: 

 

ωTFBS = number of TFBS in at least ζ * Ns sequences of S  

ΩTFBS = ΩTFBS + ωTFBS 

 

For γ = 2 to 10 do the following  

# γ is the number of TFBSs that are required to occur  

# in a module to be counted 

 

ωγ-modules = number modules with γ TFBS in at least ζ * Ns 

sequences of S 

 

ωTFBS_in_γ-modules = number of TFBS modules with γ TFBS 

in at least ζ * Ns sequences of S 

 

Ωmodules = Ωmodules + ωγ-modules 

ΩTFBS_in_modules = ΩTFBS_in_modules + ωγ-modules 
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2.3 Repeat the calculations in step 2.2 but limited to parameter settings of 

ζ >= 0.5 sequence set to compute Ωrestr-TFBS (note that Ωmodules and ΩTFBS_in_modules 

are not used in the scoring later and thus need not be computed on the restricted 

set) 

 

2.4 Repeat the following 1,000 times 

 

Randomly shuffle the sequence set S; use a sliding window of 10 bp and 

permutate the bases in each window, thus leaving the local nucleotide 

distribution mainly unchanged. This generates randomized sequence sets 

that are similar in their local nucleotide distribution to S. 

 

Repeat steps 2.2 and 2.3 to obtain a random distribution of ΩTFBS
rnd

, Ωrestr-

TFBS
rnd

, Ωmodules
rnd

, and ΩTFBS_in_modules
rnd

. 

 

3. Scoring and classification 

 

3.1 Estimate the probability p-esti = f(Ωi
rnd

> Ωi) of observing a given number Ωi 

(where i stands for TFBS, rest-TFBS, modules, or TFBS_in_modules) as the 

fraction of randomly observed values of Ωi
rnd 

that are greater
 
or equal than the Ωi

 

observed on the true sequences. For numeric stability reasons p-esti is set to 

1/1001 if this never occurs: 

 

p-estTFBS = f(ΩTFBS
rnd

> ΩTFBS) 

p-estrestr-TFBS = f(Ωrestr-TFBS
rnd

> Ωrestr-TFBS) 
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p-estmodules = f(Ωmodules
rnd

> Ωmodules) 

p-estTFBS_in_modules = f(ΩTFBS_in_modules
rnd

> ΩTFBS_in_modules) 

 

3.2 Compute an Overall-score Sall = -log(p-estTFBS * p-estmodules * p-

estTFBS_in_modules)  

 

3.3 Classify a non-coding SNP as being located in a complex region if and only if: 

 ( Sall > 6.5 ) and (p-estrestr-TFBS < 0.15) and (p-estTFBS < 0.075) 

(Scoring criteria for classification)  
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3.4 Step-by-step example for running PMCA manually using the graphical 

user interface 

 

Generate a BED-file describing the regions +/- 60 bp around the SNPs. A bed file can be 

created with any text editor and should contain a single line containing the chromosome, 

genomic start and end position of the 120 nucleotide region and the SNP identifier.  

 

Below is an example for such a BED-file: 

chr3 12386277 12386397 rs468484 

 

 

Upload the bed file to the Genomatix genome analyzer (GGA) software.  
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Search for orthologous regions by clicking on ‘Orthologous regions’ 

 

 

Extract the sequences 
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Start FrameWorker 

 

 

 Load the ortholog set that has been extracted in the previous step 
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Select parameter as described below and click on ‘Start Frameworker’ 

 

(Note that in the Genomatix software TFBS modules are designated as models). 

 

 

 

 

Count TFBS in the graphical output according to counting scheme described in the 

algorithm 

 

 
 

Quorum constraint 
How many sequences must 
contain the model(s)? 

Mandatory sequence. This sequence must contain the models 

Distance constraint 
What distances are allowed 
between adjacent TFBS? 

Distance variance 
By how many bp may 
distances of adjacent TFBS 
vary? 

Elements in modules 
 
How many TFBS should be in 
the found models? 

 
No models were found 
here. 
 


TFBS

: count the common 

sites in the Human 
founder  sequence = 6 


Models
: =  0 


TFBS in Models

 = 0  
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 Repeat the step with the next quorum setting 

 

 
Repeat with different 
Quorum settings 
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 Count again 

 

 

 

 

 

Two models of 2 TFBS 
were found 


Models

 =  2 

If models with more 
elements are found 
the numbers are added. 


TFBS

 : count the common 

sites in the Human 
founder sequence = 12 

 

 

 

 

Still the same output, 
switch to the models 
If models with more 
elements are present  
do this for each model 
type. 

Count the number of sites in the 
human founder sequence 

 
TFBS in models

  = 3 

If models with more elements are 
present  
do this for each model type and add 
the numbers. 
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The counting is cumulative over the Quorum constraint steps, i.e. at this point we have: 

TFBS = 6 + 12 = 18 

modules = 2 

TFBS in modules = 3 

Keep a second counting for Ωrestr-TFBS which shall only be counted for Quorum constraints of 

>= 50%. 

 

Finally for the ortholog set of rs4684847 we obtain four count values: 

1. TFBS over all Quorum constraints 

2. modules over all Quorum constraints 

3. TFBS in modules over all Quorum constraints 

4. Ωrestr-TFBS over Quorum restricted to  >= 50% 

 

The cumulative counting over all TFBS modules and Quorum constraints gives more weight 

on sets that yield TFBS modules with higher numbers of TFBS.  

 

Generate a large number of randomized sequence sets and repeat the same steps while 

keeping track of the count values as above. In order to get robust statistics this step should be 

performed a thousand times using the command line version of Frameworker tool. 

 

The Genomatix Genome Analyzer (GGA) provides a Unix command line interface 

(Bioinformatics Workbench) to access the programs through scripting. FrameWorker 

generates XML output files that can be parsed to obtain the ΩTFBS, Ωrestr-TFBS Ωmodules, ΩTFBS in 

modules counts as shown in the manual examples. 

  

Finally each of the counts ΩTFBS, Ωrestr-TFBS, Ωmodules, ΩTFBS in modules from the 1,000 random sets 

is compared to the numbers from the original set. These values are then used to estimate the 

random occurrence of these counts and to derive the final overall-score as described above.  
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3.5 Key Definitions of PMCA methodology 

Key definitions 

SNP region. Candidate SNP +/- 60 bp. 

TFBS module. At least 2 TFBSs (transcription factor binding sites) that co-occur in the 

same orientation and a defined distance range across several species. 

TFBS modularity. Patterns of conserved TFBSs, reflecting functional conservation of the 

human candidate SNP region. TFBS modularity is assessed by three criteria (1) TFBS, (2) 

TFBS modules and (3) TFBS forming TFBS modules that are found across 15 vertebrate 

species (orthologous regions).  

Ortholog set. The orthologous regions that are found in 16 vertebrate species for the human 

reference SNP region. 

Random set. The set of randomly shuffled sequences obtained from an ortholog set by 

shuffling each orthologous region (simulations were performed with 1,000 random sets). 

Random sets were used to estimate the probability for random occurrence of a PMCA 

measure (p-estimates; p-est.). 

Complex region. A human candidate SNP region meeting the threshold or above for 

PMCA scores assessed for (1) TFBS, (2) TFBS modules and (3) TFBS in modules within 

the ortholog set and the shuffled random sets. PMCA identifies SNP regions as complex, 

based on the conserved complex TFBS modularity, to predict those SNPs that affect gene 

expression (i.e,. cis-regulatory SNP). 

 

 

4. Positional Bias Analysis: Calculation of the TFBS positional bias 

The positional bias of a TFBS matrix was calculated as outlined for the assessment of de novo 

detected motifs {Hughes 2000 #78}. For positional bias analysis, the 120 bp sequences 

analyzed with PMCA were extended to 1,000 bp sequences, serving as a background to check 

for a significant clustering of certain TFBS at SNP position. The 1,000 bp sequences with the 

respective SNP at central position were extracted from the human genome build (NCBI 

GRCh37/hg19) for all complex SNP regions and non-complex SNP regions. The sequences 

were scanned by MatInspector {Cartharius #47}{Quandt 1995 #121}(Genomatix, Munich, 

Germany) for the presence of TFBS matrix family matches with respect to SNP position (192 
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TFBS matrix families; 182 vertebrate families plus 10 other general families, Genomatix 

Matrix Library version 8.4). Matrix is used in the sense of positional weight matrix (PWM). 

This is a concept describing TFBSs by the information content of the nucleotide distribution 

of the positions within a binding site. Hence the scale in the most popular visualization of 

TFBS matrices (PWMs), the so called LOGO is in bits. What we refer to is weight matrix 

matches as indicators of putative binding sites. Individual weight matrices describing highly 

similar binding sites are placed into matrix families {Cartharius #47}. Searching with families 

eliminates redundant output by giving only the best match within a family. Match positions on 

the sequences were scanned using overlapping 50 bp sliding windows in steps of 10 bp. The 

total number of matches for a given TFBS matrix family is regarded as independent 

individual trials that may match anywhere in the sequence. The positional bias for a scan 

window under this model becomes the cumulative binomial probability to obtain the exact 

number of matches found there up to the total number of matches in the sequence. The 

probability for the occurrence of a single match within a scan window, independent of any 

sequence constraint, is given as the ratio of the window size to the sequence length. The 

positional bias (P) was calculated for each matrix family and each window (Table S6). For 

graphical visualization, –log10(P) was plotted over the mid-positions of the scan windows. 

The evaluation of the positional bias was done by parsing the output of MatInspector with a 

perl script that tabulates for each TF-family the total number of matches, the scan windows, 

number of matches in the scan windows and binomial P values. For graphical output these 

tables were input to R and used for plotting. 

 

5. Correlation of SNP regions with evolutionary constraint regions. 

Genomic regions surrounding a candidate SNP were classified as complex and non-complex 

and were correlated to evolutionary constrained regions according to the method and data 
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from Lindblad-Toh et al {Lindblad-Toh 2011 #27}. We used the RegionMiner-

GenomeInspector tool (Genomatix, Munich) for this task. From the mid position (anchor 

position; 0 on the x axis of the plot) of each constrained region (determined by Siphy-π-

method Lindblad-Toh et al., 2011) 500 bp in up and downstream direction were scanned for 

the positions overlapping with the 120 bp of analyzed SNP regions. For each position relative 

to the anchor the overlaps are counted (correlations) and these correlations versus position 

relative to the anchor are plotted. A preferred distance of complex or non-complex SNPs to 

constrained elements would be visible as enrichment at defined positions relative to the 

anchor position. We used the 120 bp extended SNP regions in this analysis since we used the 

same regions to determining the TFBS module complexity. The use of 120 bp regions has the 

effect of smoothing the correlation graph, which in case of using exact SNP positions would 

more adopt the shape of a bar graph since accumulation of overlaps for extended regions is 

more likely than for single positions. The use of the midpoint of constrained regions as an 

anchor was chosen since constraint regions do not have the same size. The results are 

presented in Figure 3, Table S9. 

 

6. Correlation of SNP regions to DNase-seq regions and ChIP-seq regions 

Genomic regions surrounding a candidate SNP were classified as complex and non-complex 

and were correlated to DNase hypersensitive regions (referred to as DNase-seq peaks; 

summary of Encode data wgEncodeRegDnaseClustered.bed from UCSC regulation super-

track) and regions of Transcription Factor binding (referred to as ChIP-seq peaks; summary of 

Encode ChIP seq data wgEncodeRegTfbsClusteredV2.bed from UCSC regulation super-

track). We used the RegionMiner-GenomeInspector tool (Genomatix, Munich) for this task. 

From the mid position (anchor position; 0 on the x axis of the plot) of each SNP region 500 

bp in up and downstream direction were scanned for the positions overlapping with the 120 
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bp of analyzed SNP regions. For each position relative to the anchor the overlaps were 

counted (correlations) and these correlations versus position relative to the anchor were 

plotted. Enrichment in the vicinity of SNPs would become visible as a peak around the anchor 

position (0). We used the 120 bp extended SNP regions in this analysis since PCMA used the 

same regions in determining the TFBS module complexity. The use of 120 bp regions further 

has the effect of smoothing the correlation graph, which in case of using exact SNP positions 

would more adopt the shape of a bar graph since accumulation of overlaps for extended 

regions is more likely than for single positions. The results are presented in Figure 3, Figure 

S5 and Table S10. 

 

7. Enrichment of complex SNPs in diseases loci 

Matched random variants were drawn from the 1000G data. Matching was done as follows: 

Minor allele frequencies (MAF) of the disease associated SNPs were group into 10 bins. Then 

for each disease-associated SNP a random equivalent was drawn with a MAF score in the 

same bin, with the same genomic context (either intergenic, intronic, or exonic) according to 

Genomatix ElDorado 2012 annotation (Genomatix, Munich, Germany), and for the distance 

to the nearest TSS within ±10% of the disease-associated SNP. The process of random 

drawing was done using a Pearl Script. 

 

8. Assessment of SNP to TSS distance annotations 

We analyzed SNPs by the Annotation and Statistics task of RegionMiner tool (Genomatix, 

Munich) with the option next neighbor analysis. This results in the transcript start sites (TSS) 

which are next to each SNP upstream and downstream and on either strand of the DNA 

(Table S9). For visualization we used all distances where a TSS was annotated within 30,000 
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bp downstream of a SNP. To directly compare theses distances for complex and non-complex 

SNPs we used density histograms with a bin size of 500 bp (Figure S6B). 

 

9. Culture of cell lines  

The rat insulinoma cell line INS-1 was cultured in RPMI medium (supplemented with 10 % 

FBS (fetal bovine serum), 100 mM sodium pyruvate, penicillin/streptomycin and 50 μM 2-

mercaptoethanol). Human Huh7 hepatoma, mouse C2C12 myoblast and mouse 3T3-L1 

preadipocyte cell lines were cultured in DMEM medium (supplemented with 

penicillin/streptomycin and 10 % FBS). The human preadipocyte SGBS (Simpson–Golabi–

Behmel Syndrome) cell line was cultured as previously described {Fischer-Posovszky 2008 

#178} in DMEM/Ham's F12 (1:1) medium (supplemented with 10% FCS, 17 μM biotin, 

33 μM pantothenic acid and 1% penicillin/streptomycin). All cells were maintained at 37°C 

and 5% CO2. To promote adipose differentiation of the mouse preadipocyte cell line 3T3-L1, 

cells were grown to confluence with 10% FCS and medium was then additionally 

supplemented with 250 nM dexamethasone and 0.5 mM isobutyl-methylxanthine for the first 

three days and 10% FCS and 66 nM insulin throughout the entire differentiation period. 

C2C12 myoblasts were cultured in DMEM medium containing 10% horse serum to induce 

differentiation. The SGBS preadipocyte cell strain was grown to confluence. For induction of 

adipocyte differentiation cells were cultured in serum free MCDB-131/DMEM/Ham's F12 

(1:2) medium supplemented with 11 μM biotin, 22 μM pantothenic acid, 

1% penicillin/streptomycin, 10 μg/ml human transferrin, 66 nM insulin, 100 nM cortisol, 1 

nM triiodothyronine, 20 nM dexamethasone, 500 μM 3-isobutyl-1-methyl-xanthine (Serva, 

Germany) and 2 μM rosiglitazone (Alexis, Germany). 72 hours after induction of 

differentiation  the cells were harvested in TRIzol reagent (Invitrogen, Germany). Unless 
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other suppliers are mentioned, all cell culture materials were obtained from Invitrogen 

(Germany) and all chemicals from Sigma-Aldrich (Germany). 

 

10. Luciferase expression constructs 

To characterize the SNP-adjacent regions for allele-specific transcriptional activity, genomic 

sequences surrounding the respective SNPs were cloned into a basal pGL4.22 promoter 

vector. For the promoter construct, a 752 bp thymidine kinase (TK) promoter was cloned 

upstream of the firefly luciferase gene into the EcoRV and BglII sites of the pGL4.22 firefly 

luciferase reporter vector (Promega, Germany). SNP regions were extracted from human 

genome build (NCBI GRCh37/hg19). SNP regions were commercially synthesized as plasmid 

vectors (Mr. Gene, Germany) and as double-stranded oligonucleotides (MWG, Germany). 

Complementary oligonucleotides were annealed and purified on a 12% polyacrylamide gel. 

SNP regions were subcloned either upstream of the TK promoter into the KpnI and SacI sites 

of the pGL4.22-TK vector or downstream of the luciferase gene into the BamHI site of the 

pGL4.22-TK vector. To further test for enhancer activity, SNP-adjacent regions were 

subcloned downstream of the luciferase gene in both 5´-to-3´ and 3´-to-5´ orientations into the 

BamHI site. The QuickChange Site-Directed Mutagenesis Kit (Stratagene, Germany) was 

used to alter single nucleotides (for the respective SNP, NCBI dbSNP). The orientation and 

integrity of each luciferase vector was confirmed by sequencing (MWG, Germany). 

 

11. Luciferase expression assays 

Huh7 cells (96-well plate, 1.1 x 10
4 

/ well) were transfected one day after plating with 

approximately 90% confluence, INS-1 cells (12-well plate, 8 x 10
4 

/ well) were transfected 

three days after plating with approximately 70% confluence, 3T3-L1 cells (12-well plate, 

8 x 10
4 

/ well) were transfected at day eight after the induction of differentiation with 
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approximately 80% confluence and C2C12 cells (12-well plate, 2 x 10
5 

/ well) were 

transfected at day four after induction of differentiation with approximately 90% confluence. 

Huh7 were transfected with 0.5 µg of the respective firefly luciferase reporter vector and 1 µl 

Lipofectamine 2000 transfection reagent (Invitrogen, Germany), differentiated C2C12 

myocytes were transfected with 1 µg of the respective pGL4.22-TK construct and 2 µl 

Lipofectamine reagent, and both INS-1 β-cells and differentiated 3T3-L1 adipocytes were 

transfected with 2 µg of the respective pGL4.22-TK construct and 2 µl Lipofectamine 

reagent. The firefly luciferase constructs were co-transfected with the ubiquitin promoter-

driven renilla luciferase reporter vector pRL-Ubi {Laumen 2009 #249} to normalize the 

transfection efficiency. Twenty-four hours after transfection, the cells were washed with PBS 

and lysed in 1x passive lysis buffer (Promega, Germany) on a rocking platform for 30 min at 

room temperature. Firefly and renilla luciferase activity were measured (substrates D-luciferin 

and Coelenterazine from PJK, Germany) using a Luminoscan Ascent microplate luminometer 

(Thermo, Germany) and a Sirius tube luminometer (Berthold, Germany), respectively. The 

ratios of firefly luciferase expression to renilla luciferase expression were calculated and 

normalized to the TK promoter control vector. P-values comparing luciferase expression from 

risk and non-risk alleles or from overexpression experiments was calculated using paired t-

test. 

 For validation of PMCA-driven cis-regulatory predictions, and for the comprehensive 

analysis of the PPARG gene locus, allele-dependent change in reporter gene activity was 

calculated from 3-14 independent experiments for each analyzed SNP (ratio of the respective 

allelic activities). The quantified change in luciferase activity comparing risk / non-risk or 

non-risk / risk alleles (change ≥ 1) was calculated for each SNP as mean and standard 

deviation. P-values were derived from linear mixed-effects model comparing the binary 
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logarithm of the quantified ratios in allelic luciferase activity between SNPs in complex 

regions versus SNPs in non-complex regions. 

 

12. Electrophoretic mobility shift assay (EMSA) 

EMSA was performed with Cy5-labelled oligonucleotide probes. Respective SNP-adjacent 

region oligonucleotides were commercially synthesized containing either the major or the 

minor variant (MWG, Germany). Cy5-labelled forward strands were annealed with non-

labeled reverse strands, and the double-stranded probes were separated from single-stranded 

oligonucleotides on a 12% polyacrylamide gel. Complete separation was visualized by DNA 

shading. The efficiency of the labeling was tested by a dot plot, which confirmed that all of 

the primers were labeled similarly. For analysis of overexpressed PRRX1 protein in EMSA, a 

PRRX1 expression vector (pCMV-PRRX1-flag, provided by M. Kern) and the empty 

expression vector as control were transiently transfected into 293T cells using Lipofectamine 

2000 (Invitrogen, Germany). 24 h after transfection, the transfected cells were harvested as 

total native protein. Nuclear protein extracts from each analyzed cell line were prepared with 

adapted protocols based on the method described by Schreiber et al (Schreiber et al., 1989). 

The supernatant was recovered and stored at -80°C. DNA-protein binding reactions were 

conducted in 50 mM Tris-HCl, 250 mM NaCl, 5 mM MgCl2, 2.5 mM EDTA, 2.5 mM DTT, 

20% v/v glycerol and the appropriate concentrations of poly(dI-dC). For DNA-protein 

interactions, 3-5 µg of nuclear protein extract from the respective cell line was incubated for 

10 min on ice, and Cy-5-labelled genotype-specific DNA probe was added for another 20 

min. For competition experiments 11-, 33- and 100-fold molar excess of unlabeled probe as 

competitor was included with the reaction prior to addition of Cy5-labeled DNA probes. 

Binding reactions were incubated for 20 min at 4°C. For supershift experiments, cell extracts 

were pre-incubated with 1 μl of antibody αPRRX1, provided by M. Kern) or 0.4 μg of control 
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IgG (Santa Cruz Biotechnology, USA) for 20 min at 4 °C. The DNA-protein complexes were 

resolved on a non-denaturation 5.3% polyacrylamide gel in 0.5x Tris/borate/EDTA buffer. All 

EMSAs were performed in triplicate or more, and fluorescence was visualized with a 

Typhoon TRIO+ imager (GE Healthcare, Germany). For comparison of genotype-specific 

DNA-binding activity in EMSA, competition EMSA and supershift experiments, the intensity 

of the DNA-protein complexes was quantified for both the major and minor allelic DNA-

protein interactions using ImageJ Software (http://rsbweb.nih.gov/ij/). Quantification was 

related to the fluorescence intensity of the whole lane. Quantification was performed in 

quintuplicate for each single EMSA, and the change in quantified allele-dependent 

fluorescence intensity was calculated (ratio of the respective allelic activity). For validation of 

PMCA-driven predictions on allele-specific DNA-binding activity, the quantified change in 

fluorescence comparing risk / non-risk or non-risk / risk alleles (change ≥ 1) is calculated for 

each SNP as mean and standard deviation. 3-4 independent EMSA experiments were 

conducted per SNP and p-values are derived from linear mixed-effects model comparing the 

decadic logarithm of the quantified change in fluorescence between SNPs in complex regions 

versus SNPs in non-complex regions. 

 

13. DNA-Protein affinity chromatography, LC-MS/MS and label free 

quantification 

To identify DNA-binding proteins interacting with the cis-regulatory SNP rs4684847 at the 

PPARG gene locus, we performed DNA-Protein affinity chromatography, LC-MS/MS and 

label free quantification. Affinity chromatography. Streptavidin magnetic beads (Dynabeads 

M-280, Invitrogen) were coupled with allele-specific biotinylated DNA-probes (the risk and 

non-risk allele, respectively, of rs4684847 at central position in a 42 bp sequence probe) 

overnight, washed, equilibrated with 1 x binding buffer (10 mM Tris-HCl, 1 mM MgCl2, 0.5 
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mM EDTA, 0.5 mM DTT, 4% v/v glycerol) and incubated with nuclear extracts (binding 

buffer with 50 mM NaCl and 0.01% CHAPS) and poly (dI-dC) was added. Supernatant was 

recovered and beads were washed in binding buffer without CHAPS followed by stepwise 

elution of bound protein from the magnetic beads using increasing concentrations of NaCl. 

All steps were performed at 4°C. Input protein, wash supernatants and eluates were assayed in 

EMSA to confirm the binding activity. Mass Spectrometry. Eluates revealing allele-specific 

DNA-protein binding activity were subjected to tryptic digest and mass spectrometry was 

performed as described before (Hauck et al., 2010; Merl et al., 2012). Briefly, eluted samples 

were precipitated and protein pellets were resolved in ammoniumbicarbonate followed by 

tryptic digestion. LC-MS/MS analysis was performed on an Ultimate3000 nano HPLC system 

(Dionex, USA) online coupled to a LTQ OrbitrapXL mass spectrometer (Thermo Fisher 

Scientific, Germany) by a nano spray ion source. Peptides were automatically injected and 

loaded onto the trap column in 5% buffer B (98% ACN/0.1% formic acid in HPLC-grade 

water) and 95% buffer A (2% ACN/0.1% FA in HPLC-grade water). The peptides were 

eluted from the trap column and separated on the analytical column by gradient from 5 to 31 

% of buffer B followed by a gradient from 31 to 95 % buffer. From the MS prescan, the 10 

most abundant peptide ions were selected for fragmentation in the linear ion trap if they 

exceeded an intensity of at least 200 counts and if they were at least doubly charged. During 

fragment analysis a high-resolution (60,000 full-width half maximum) MS spectrum was 

acquired in the Orbitrap with a mass range from 200 to 1500 Da. Label-free quantification. 

The mass spectrometry data were analyzed and quantified using the Progenesis LC-MS 

software (version 2.5, Nonlinear) as described {Hauck 2010 #166}. Proteins were identified 

by searching MS and MS/MS data of peptides against the Ensembl mouse protein database 

(Version NCBI m37; 56410 sequences; 26202967 residues). Averaged LF quantification 

(LFQ) intensity values were used to calculate protein risk versus non-risk allele ratios. At the 
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end, the analysis revealed an allele-specific 2.3-fold increased binding of the homeobox TF 

PRRX1 at the risk-allele of the rs4684847-adjacent region (p = 0.034 from one-way Anova 

comparing the allelic difference of three independent experiments). 

 

14. Genome editing of SGBS preadipocytes 

To change the rs4684847 risk allele in SGBS preadipocytes to the non-risk allele we applied 

an adopted CRISPR/Cas homology directed repair (HDR) genome editing approach {Wang 

2013 #353}{Ding 2013 #356}. The CRISPR/Cas expression vector and the sgRNA-

expression vector were kindly provided by Dr. Ralf Kühn (Helmholtz Zentrum München, 

München-Neuherberg). For cloning of the NGG PAM sequence located 203 bp upstream of 

the rs4684847 variant we annealed the primers 5’CACCGAAACTCACAACAATGCTGGG-

3’ and 5’AAACCCCAGCATTGTTGTGAGTTTC-3’ (the sgRNA target sequence 

(underlined) and nucleotides for cloning (italics) are indicated) and cloned the resulting 

double-stranded DNA into a BbsI cloning site of the sgRNA expression vector in front of the 

U6 promoter, resulting in the sgRNA-rs4684847 vector. The sgRNA target sequence was 

predicted as high quality guide sequence for the low numbers of off-target sites using the 

algorithms published by {Hsu 2013 #352} (the online tool Optimized CRISPR Design at 

http://www.genome-engineering.org/ predicted 220 potential off-target sites). To generate a 

genomic DNA targeting-vector providing the rs4684847 risk and non-risk allele (C- and T-

allele, respectively) for HDR-mediated genome editing we amplified the genomic region 

surrounding the rs4684847 variant (-600 bp and +1,200bp from chr3:12386337, NCBI 

37.1/hg19) from SGBS genomic DNA using the Q5 Hot Start High-Fidelity DNA Polymerase 

(New England Biolabs) and the primers 5’-GGCTTCCCAAAGTCCTGGGATTA-3’ and 5’-

CTTCCTTTTCTGCCCAGCTTCAAA-3’. The PCR-product was cloned into the pJET1.2 

vector using the CloneJET PCR Cloning kit (Fermentas). Next, the endogenous homozygous 
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rs4684847 C-allele was changed to the T-allele (underlined) using the primers 5’-

CATCTCTAATTCTTACAACTCCGAAAAGATAAGAAAACAGAG-3’ and 5'-

CTCTGTTTTCTTATCTTTTCGGAGTTGTAAGAATTAGAGATG-3'. Additionally in both 

targeting-vectors the NGG-PAM sequence was mutated from AGGACG (underlined) using 

the primers 5'-GCTTTGAATAACGTCCCAGCATTGT-3' and 5'-

ACAATGCTGGGACGTTATTCAAAGC-3' to avoid that targeting-vector DNA which was 

successfully integrated into SGBS genomic DNA will be recognized by the sgRNA-

rs4684847. The site directed mutagenesis was performed by overlap-extension PCR (Ho 

1989) and both, orientation and integrity of each vector was confirmed by sequencing (MWG, 

Germany). Next, the sgRNA-rs4684847 vector, the CRISPR/Cas expression vector, the 

rs4684847 allele-specific targeting-vectors and a GFP-expression vector (to assess 

transfection efficiency) were co-transfected into the SGBS-preadipocyte cell line using the 

Amaxa-Nucleofector device (program U-033) and the basis nucleofector kit for primary 

mammalian fibroblasts (Lonza). Additionally, a truncated CD4 expression vector – lacking all 

intracellular domains – was co-transfected to enable sorting of transfected cells after 

transfection, by magnetic bead selection using the MACSelect™ Transfected Cell Selection 

Kit (Miltenyi Biotec). The sorted cells were grown to confluence (transfection efficiency 

reached >95%, visually assessed by determining GFP-positive cells) and induced for 

adipogenic differentiation as described in the Extended Experimental Procedure chapter 

Culture of cell lines, PPARγ1 and PPARγ2 expression levels were determined as described in 

the chapter Quantitative RT-PCR and allele-specific primer extension analysis. We assessed 

the genotype of the rs4684847 variant after HDR-mediated genome editing by sequencing 

200bp surrounding the SNP and confirmed homozygous C-allele and T-allele in the cells 

transfected with the respective genomic DNA targeting-vector. 
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15. Analysis of human tissue samples 

Informed consent was obtained from all patients who donated biological samples. The study 

was approved by the local ethics committee of the Faculty of Medicine of the Technical 

University of Munich, Germany or the local ethics committee of Karolinska University 

Hospital, Stockholm, Sweden. 

PRRX1 mRNA was measured by qRT-PCR (see section 21) in subcutaneous and 

omental adipose tissue samples obtained from severely obese subjects matched for BMI (45 

+/- 1.3kg/m
2
), body fat, age and sex, as described previously {Klöting 2010 #285}. Linear 

regression analyses were performed for free fatty acids (FFA) and glucose infusion rate (GIR) 

during euglycemic hyperinsulinemic clamps, for risk-allele and non-risk-allele carriers, 

respectively. Subjects in both the high and low range of GIR were included to enable 

comparison of different levels of insulin sensitivity. 

 To determine correlation with insulin sensitivity and circulating lipids (HOMA-IR and 

TG/HDL ratio), PRRX1 mRNA was also measured in another cohort comprising 30 obese 

(BMI>30 kg/m2) otherwise healthy and 26 non-obese (BMI<30 kg/m2) healthy women 

{Arner 2012 #382}. All were pre-menopausal and free of continuous medication. They were 

investigated in the morning after an overnight fast. A venous blood sample was obtained for 

measurements of glucose, insulin, and lipids, and for preparation of DNA. HOMA-IR was 

calculated by the formula fP-Glucose (mmol/L) x (fS-Insulin (microU/ml)/ 22.5) {Bonora 

2000 #392} After the blood sampling an abdominal subcutaneous adipose tissue biopsy was 

obtained by needle aspiration. Adipose microarray analysis was performed exactly as 

described {Arner 2012 #382} using the Affymetrix GeneChip miRNA Array protocol with 

1μg of total adipose RNA from each subject. Gene and miRNA expression have been 

deposited in the National Center for Biotechnology Information Gene Expression Omnibus 

(GEO; http://ncbi.nim.nih.gov/geo) and are accessible using GEO series accession number 
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GSE25402. Linear regression analyses were performed to assess correlation of PRRX1 

mRNA with HOMA-IR and TG/HDL in a genotype-dependent and BMI- and age-

independent manner for 20 risk-allele and 18 non-risk allele carriers with available phenotype 

data. 

 

16. Analysis of RNAseq data from primary human islets 

Informed consent was obtained from all patients who donated biological samples. The study 

was approved by the local ethics committee of Lund University, Sweden. 

RNA-seq libraries of total RNA from 59 human pancreatic islet donors were made 

using the standard Illumina mRNA-Seq protocol. Sequencing was done in an Illumina HiSeq 

2000 machine. Paired-end 101bp length output reads were aligned to the human reference 

genome (hg19) with TopHat {Trapnell 2009 #389}. Gene expression was measured as the 

normalized sum of expression of all its exons. The dexseq_count python script {Anders 2012 

#390} was used by counting uniquely mapped reads in each exon. Gene expression 

normalization was done with the TMM method {Robinson 2010 #391}. Further normalization 

was applied by adjusting the expression to gene length. 

Differential gene expression between normoglycaemic (n=51) and T2D donors (n=8) 

was assessed with the edgeR Bioconductor package {Robinson 2009 #393}, and significance 

was defined as FDR < 1%. Further, Pearson’s correlation and linear regression analyses were 

run using the R statistical computing environment for the 9 TFs, i.e. BARX1, BARX2, 

EMX2, MSX2, NKX6-3, PDX1, PITX1, PRRX2 and RAX, separately for the 

normoglycaemic and T2D subject groups against 18,567 genes with available gene expression 

data. The linear regression analysis was performed adjusting for sex, age and BMI. The 

obtained p-values of correlation/regression were FDR-corrected and a 5% significance 

threshold was used to select significantly co-expressed genes. Interestingly, expression levels 
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for RAX from the group with HbA1c < 6 was found to be equal to 0 for all individuals, 

therefore no genes were co-expressed with RAX for HbA1c < 6. Similarly, after FDR-

correction BARX1 did not have any significantly co-expressed genes for HbA1c < 6. 

Using the lists of significantly co-expressed genes (FDR 5% ) for each of the 9 TFs, 

pathway analysis was performed by WEBGESTALT {Wang 2013 #394} with KEGG 

{Kanehisa 2011 #395} and Disease Association Analysis databases. The pathway enrichment 

analysis was based on the hypergeometric test, and an FDR threshold of 5% was used for 

selecting pathways significantly associated with the lists of significantly co-expressed genes 

for each TF. No pathway analysis was possible for RAX and BARX1. EMX2 had only 6 

significantly co-expressed genes which could not be unified to any pathway. In summary, 6 

out of the 9 TFs had pathway analysis information for HbA1c < 6. 

Using the 47 T2D tagSNPs, a list of genes located ± 500kb away from the tagSNPs 

was created which included 380 genes in total. For each TF we determined how many of these 

380 “T2D genes” were among the FDR 5% significantly co-expressed genes and compared 

this number with the total amount of significantly co-expressed genes for this TF, i.e. the T2D 

gene enrichment analysis was performed based on the Fisher’s exact test for each TF for 

individuals with HbA1c < 6. P-values and odds ratios (ORs) of significant enrichment of the 

T2D genes were calculated using R statistical computing environment. 

 

17. eQTL analysis 

Informed consent was obtained from all patients who donated biological samples. The study 

was approved by the local ethics committee of Lund University, Sweden. Total PPARγ 

expression levels of carriers and non-carriers of the protective allele of the rs7638903 variant 

(perfect LD (r2 = 1.0) to the tag SNP Pro12Ala and the rs4684847 cis-regulatory variant; 

1000G Pilot 1 (1000 Genomes Project Consortium, 2010)) were compared using Wilcoxon 
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signed rank test. RNA was extracted from subcutaneous adipose tissue biopsies from 31 

males from Malmö, Sweden, recruited for an exercise intervention {Elgzyri 2012 #259}. Only 

baseline (before exercise) examination data have been used here. Microarray analysis was 

performed using the GeneChip® Human Gene 1.0 ST whole transcript based array 

(Affymetrix, Santa Clara, CA, USA) following the Affymetrix standard protocol. Basic 

Affymetrix chip and experimental quality analyses were performed using the Expression 

Console Software, and the robust multi-array average (RMA) method was used for 

background correction, data normalization and probe summarization. Genotyping was 

performed using the Illumina Omni express following the Illumina standard protocol. 

 

18. Isolation, culture and differentiation of primary human adipose stromal 

cells (hASC) 

Primary human adipocyte progenitor cells for allele-specific primer extension analysis were 

obtained by lipoaspiration or surgical excision of subcutaneous adipose tissue, and were 

isolated and cultured as previously described {Hauner 2001 #177} with some modification. 

Briefly, after expansion and freezing, the cells were cultured in 6-well plates DMEM/F12 

(1:1) medium (supplemented with 10% FCS and 1% penicillin/streptomycin) for 18 h, 

followed by expansion in DMEM/F12 medium (supplemented with 2.5% FCS, 1% 

penicillin/streptomycin, 17µM biotin, 33µM pantothenic acid), 132nM insulin (Sigma, 

Germany), 10ng/ml EGF (R&D, Germany), and 1ng/ml FGF (R&D, Germany)) until 

confluence. Adipogenic differentiation was then induced by additionally adding  50µL 

insulin (10mg/ml), 100µL cortisol (0.1mM), 1ml transferrin (1mg/ml), 50µL T3 (1nM/L), 

50µL rosiglitazone (2mM), 100µL dexamethasone (25µM) and  1.25ml IBMX (20mM). 

The cells were harvested in TRIzol reagent (Invitrogen, Germany) (qRT-PCR) or buffer RLT 

(Qiagen, Germany) (microarrays, see section 22). 
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19. Genotyping 

Primary hASCs and adipose tissue samples were genotyped for rs1801282 and rs4684847 

with a concordance rate of > 99.5% using the MassARRAY system with iPLEX™ chemistry 

(Sequenom, USA), as previously described {Holzapfel 2008 #77}. Genotypes in primary 

hASC were additionally confirmed by Sanger sequencing. For rs1801282 the following 

primers were used: F, 5’-GATGTCTTGACTCATGGGTG-3’ and R, 5’-

CTGGAGTGTACACATGATAGT-3’ (PCR primers) and 5’-

GACTCATGGGTGTATTCACA-3’ (sequencing primer). For rs4684847 the following 

primers were used: F, 5’-CCTGAAGCGTATTTATGTAGCTCC-3’ and R, 5’-

CATTCAAGCCTTGTCACATCTCTG-3’ (PCR primers) and 5’-

CCTGAAGCGTATTTATGTAGCTCC-3’ (sequencing primer). The PCR reaction was 

performed with around 50ng of input genomic DNA in a Professional Thermocycler 

(Biometra, Jena, Germany) as follows: 12 min at 95°C, 50 cycles of 20 sec at 95°C, 40 sec at 

56°C and 90 sec at 72°C, and finally 2 min at 72°C before cooling. 

 

20. Gene knock-down by siRNA 

SGBS cells grown to confluence in 6-well plates (day 0) were treated to induce adipocyte 

differentiation (section 9) and simultaneously transfected using the same protocol and siRNA 

as for primary hASCs. 72 hours after induction of differentiation, the cells were harvested in 

TRIzol reagent (Invitrogen, Germany) and frozen at -80ºC. 

The rat insulinoma cell line INS-1 was cultured as described above. Cells were treated 

with 25nM non-targeting (NT) control or siRNA targeting the homeodomain transcription 

factors Barx1, Barx2, Msx2, Emx, Nkx6-3, Pitx1, Rax2, Prrx2 or Pdx1 (ON-TARGETplus 

human siRNA SMARTpool (Dharmacon, USA)) using HiPerFect (Qiagen, Germany) 
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according to the manufacturer’s protocol. After 72 hours, the medium was changed to low 

glucose concentration (5 mM) for 24 h. On the next day the medium was changed to low 

glucose (5mM) or high glucose medium (25mM) for 1 hour to induce glucose-stimulated 

insulin-secretion. The medium supernatant was collected an insulin-concentrations were 

measured using a commercially available insulin-ELISA (Mercodia, Sweden). The cells were 

harvested in buffer RLT (Qiagen, Germany) and frozen at -80ºC for extraction of RNA and 

determination of knockdown efficiency. 

 

21. Quantitative RT-PCR and allele-specific primer extension analysis 

RNA from SGBS cells, adipose tissue biopsies and primary hASCs was isolated by TRIzol 

reagent (Invitrogen, Germany) followed by the NucleoSpin Kit (Macherey-Nagel, Germany). 

The high capacity cDNA Reverse Transcription kit (Applied Biosystems, Germany) was used 

for transcription of 1µg total RNA into cDNA. qPCR analysis of PRRX1, the human PPARγ1 

and PPARγ2 isoform transcripts (NCBI Accession: NM_138712, NM_015869), and other 

genes (Table 1, primers are shown in table below) was performed using a qPCR SYBR-Green 

ROX Mix (ABgene, Germany) and using the Mastercycler Realplex system (Eppendorf, 

Germany) with an initial activation of 15 min at 95°C followed by 40 cycles of 15 sec at 

95°C, 30sec at 60°C and 30 sec at 72°C. Amplification of specific transcripts was confirmed 

by melting curve profiles (cooling the sample to 68°C and heating slowly to 95°C with 

measurement of fluorescence) at the end of each PCR. Mean target mRNA level was 

calculated by the ΔΔCT method relative to the level of hypoxanthin 

phosphoribosyltransferase (HPRT) (human) or Gapdh (rat) based on technical duplicates. 

For allele-specific primer extension analysis of the human PPARγ2 isoform transcript 

in primary hASCs (heterozygous for rs1801282 and rs4684847) mRNA was reverse 

transcribed into cDNA using random hexamers. Next, the region surrounding the SNP 
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rs1801282 was amplified using the cDNA forward and reverse primers. Genomic DNA 

regions surrounding the SNP rs1801282 was amplified using the genomic DNA primers. 

Annealing temperatures for genomic DNA PCR and RT-PCR were 59°C and 60°C 

respectively. PCR products were analyzed on an agarose gel and purified by gel extraction 

using the Wizard VS Gel and PCR Clean-Up System (Promega, Germany). Molarity of 

purified amplicons were calculated and primer extension assays were performed with 

Snapshot forward (51°C annealing temperature) and Snapshot reverse (54°C annealing 

temperature) primers using the ABI Prism SNaPshot Kit. cDNA synthesis and primer 

extension assays were performed with kits from Applied Biosystems (Germany). For 

amplification of genomic DNA the GoTaq DNA Polymerase Kit (Promega, Germany) was 

used. The reaction products were analyzed by gel capillary electrophoresis on ABI 3100 DNA 

Analyzer and the electropherograms were analyzed with the Gene Mapper 4.0 software. The 

peak area values from RNA (or cDNA) primer extension products were normalized to the 

corresponding peak area values from genomic DNA primer extensions products in each 

experiment for both, the risk allele and the non-risk allele. To normalize for the mean 

expression level from the risk allele, the (RNA/genomic DNA) ratios for both, risk and non-

risk allele, were divided by the mean of all risk-allele ratios (Figure 4D). To assess allelic 

imbalance of PPARγ2 mRNA expression during adipogenic differentiation the ratio of RNA 

levels (normalized to genomic DNA levels) from non-risk to risk allele were calculated 

(Figure S7C).  

Isoform specific primers for PPARG mRNA (MWG, Germany) were designed using 

the NCBI Primer Blast software (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) and 

optimized for secondary structures using the Net Primer analysis software 

(http://www.premierbiosoft.com/netprimer/). 
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Primers and probes used for qPCR 

Target gene Forward primer Reverse primer 

Human   

PCK1/PEPCKC GCTCTGAGGAGGAGAATGG TGCTCTTGGGTGACGATAAC 

PDK4 TGCCAATTTCTCGTCTGTATG AAAAACAGATGGAAAACTGAGG 

LIPE AGAAGATGTCGGAGCCCATA GGTCAGGTTCTTGAGGGAATC 

BBOX1 TTTCCAAGCAGGCCAGAG CTGAACCCCAGGTGGATG 

ADIPOQ CATGACCAGGAAACCACGACT TGAATGCTGAGCGGTAT 

OPG TTATGAGCATCTGGGACGGTGCTGT AAGGAAGGTACAGTTGGTCCAGGGT 

GLUT4 CTGTGCCATCCTGATGACTG CCAGGGCCAATCTCAAAA 

TIMP3 CTGACAGGTCGCGTCTATGA AGTCACAAAGCAAGGCAGGT 

THRSP CGAGAAAGCCCAGGAGGTGA AGCATCCCGGAGAACTGAGC 

PPARG1 CGTGGCCGCAGATTTGA AGTGGGAGTGGTCTTCCATTAC 

PPARG2 GAAAGCGATTCCTTCACTGAT TCAAAGGAGTGGGAGTGGTC 

PRRX1 GTGGAGCAGCCCATCGTA TGGGAGGGACGAGGATCT 

HPRT TGAAAAGGACCCCACGAAG AAGCAGATGGCCACAGAACTAG 

   

Rat   

Pdx1 TCCCGAATGGAACCGAGA GTCAAGTTGAGCATCACTGCC 

Barx2 AGTACCTCTCTACCCCAGACAG 
CGTCTTCACCTGTAACTGGCT 

Pitx1 
ACTCAGCCAGCGAGTCATCC 

TTCTTCTTGGCTGGGTCTTCC 

Rax2 
AGCGGGACCTTCAGTTTGG CTTGGTCTTCGTGCCGTACTC 

Msx2 
AAGGCAAAAAGACTGCAGGA GGATGGGAAGCACAGGTCTA 

Emx2 
GTCCCAGCTTTTAAGGCTAGA CTTTTGCCTTTTGAATTTCGTTC 

Nkx6-3 
ATGCAGCAACACCCCAGA CCAGTGAATAAGCCAGCCTC 

Prrx2 
ACTTCTCGGTGAGCCACCT 

GCTGCTTCTTCTTCCGTTTG 

Barx1 
CCTAGCCGTGGTCGCAT 

GCCAGTGGGAACTTGAACA 

Gapdh 
TGGGAAGCTGGTCATCAAC 

GCATCACCCCATTTGATGTT 

 

Allele-specific primer extension analysis PPARγ2 

 Forward primer Reverse primer 

genomic DNA TCCATGCTGTTATGGGTGAA GGAGCCATGCACAGAGATAA 

cDNA TCCATGCTGTTATGGGTGAA GATGCAGGCTCCCATTTGAT 

Snapshot CTCTGGGAGATTCTCCTATTGAC TATCAGTGAAGGAATCGCTTTCTG 
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22. Genome-wide expression analysis in primary human hASC 

Subcutaneous stromal vascular cells were obtained from liposuction aspirate of ten healthy 

rs4684847 risk-allele carriers, with written informed consent from each subject. The study 

was approved by the Regional Committee for Medical Research Ethics (REK) of Haukeland 

University Hospital, Bergen, Norway. The tissue was prepared as described previously 

{Veum 2011 #179}. Briefly, tissue was digested for 2 hours at 37ºC using a 1:1 ratio of tissue 

and KRP buffer containing ~55 Wunch/liter collagenase with thermolysin (Liberase 

Blendzyme TM 10X, Roche) and 0.1% BSA. The digested tissue was filtered through a 

210μm nylon mesh into a cup, adipocytes were allowed to float, and the other cells in solution 

underneath were collected and centrifuged at 200g for 10 min. The floating fraction was 

washed two times with 15ml PBS to release more cells. Red blood cells were lysed using a 

buffer with 155mM ammonium chloride, 5.7mM dipotassium phosphate and 0.1mM EDTA, 

followed by filtration through a 70μm nylon mesh cell strainer (BD Falcon). 

The stromal vascular cells were cultured in 12-well plates in DMEM GlutaMax 

(Gibco) supplemented with 10% FCS and 1% penicillin/streptomycin, and induced to 

differentiate the day after (“day 1”) by adding cortisol (100nM/L), insulin (66nM/L), 

transferrin (10μg/ml), biotin (33μM), pantothenate (17μM/L), T3 (1nM/L) and rosiglitazone 

(10μM). On day 1 or 2, cells were additionally transfected with 35nM non-targeting (NT) 

control or siRNA targeting PRRX1 or PRRX1 and PPARG simultaneously (25 and 10nM 

siRNA, respectively) (ON-TARGETplus human siRNA SMARTpool, Dharmacon, USA), 

using HiPerFect (Qiagen, Germany) according to the manufacturer’s protocol. After 72 hours, 

the cells were harvested in buffer RLT (Qiagen, Germany) and frozen at -80ºC. 
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RNA was extracted from siRNA-transfected lysates using the RNeasy Lipid Tissue 

Mini Kit (Qiagen, Germany), and quality controlled by the Agilent 2100 Bioanalyzer (RIN > 

9). About 240ng of total RNA from each sample was biotin-labelled using the Illumina 

TotalPrep RNA Amplification Kit. 750 ng cRNA amplified from each sample with T7 RNA 

Polymerase was then hybridised at 58˚C for 17 hours, according to the Whole–Genome Gene 

Expression Direct Hybridization Assay Guide from Illumina. Global gene expression was 

measured with Illumina Bead Array Technology (HumanHT-12 v4 Expression Bead Chip, 

including 47,323 probes covering more than 28,000 annotated coding transcripts). The raw 

data are available in the MIAME compliant public repository ArrayExpress (accession 

number to be included upon publication). 

Data were quantile normalized and log2-transformed, and differential expression was 

determined by paired Significance Analysis of Microarray (SAM) using the J-Express 

software ({Dysvik 2001 #396}. A total of 2,258 transcripts were defined as differentially 

regulated by PRRX1 knock-down (q-value < 0.2), thereof 1,072 up-regulated transcripts. We 

selected a matching number of transcripts regulated by simultaneous PPARG knock-down 

(q<0.428), of which 1,125 were up-regulated, and identified 364 PRRX1-regulated transcripts 

that were also regulated by PPARγ2, 336 for which siPPARG reversed the effect of siPRRX1 

(anti-regulation). Because the PPARG siRNA targeted total PPARG mRNA, we assume that 

these anti-regulated transcripts were regulated via PPARγ2 and not PPARγ1, since PRRX1 

specifically regulates PPARG2 mRNA expression (verified by qPCR, data not shown; see 

also Table 1 and Figure S4G). 

Gene Set Enrichment Analysis (GSEA) {Subramanian 2005 #397} was performed for 

the 336 transcripts regulated by siPRRX1 and reversed by siPPARG, to evaluate to what 

extent the effect of PRRX1 on global gene expression was mediated via PPARγ2. Ranking all 

2,258 PRRX1-regulated transcripts by fold change, an accumulated score for the 336 anti-
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regulated genes was calculated by starting at the top of the FC-ranked list, giving a positive 

value 1 for each transcript in the 336 list, while a negative value 1 was subtracted for each 

transcript not in the list. All genes at the top of the list within a positive accumulated score 

comprise the “leading edge”, which was used to obtain the enrichment p-value relative to the 

full set of 2,258 transcripts. Finally, for the 336 genes that were inversely regulated by 

PRRX1 and PPARγ2, Ingenuity Pathway Analysis (IPA, www.ingenuity.com) (Qiagen, 

Germany) was performed to describe the best scoring molecular and cellular functional 

categories and molecular networks. Standard settings for IPA were used. The top-scoring 

network (Figure 5E) is displayed with color overlay for each gene corresponding to the sum 

of fold change after PRRX1 knock-down and PRRX1+PPARG knock-down (darker red color 

indicates up-regulation by PRRX1 knock-down/down-regulation by PRRX1/PPARG knock-

down, and green vice versa). 

 

23. Assessment of lipid accumulation after PRRX1 overexpression 

To assess an inhibitory effect of PRRX1 on lipid accumulation in adipose cells, we stably 

overexpressed PRRX1 using lentiviral transduction in SGBS cells. Cells were differentiated 

into mature adipocytes as described above (section 9). Eight days after induction, medium 

was removed, cells were washed twice with PBS, followed by fixing in 3.7% formaldehyde 

for 5 min. The fixation solution was then changed and the cells were incubated for an 

additional 1.5 hours at room temperature, followed by two washes with PBS and incubation 

with 60% isopropanol for 5 minutes. The isopropanol was removed and replaced by Oil-Red-

O stain solution (0.3% Oil-Red-O in 60/40 isopropanol/H2O, filtered through a 0.2µm mesh) 

for 60 min, before carefully washing twice with PBS, adding 1ml PBS, and photography 

under a Nikon TE2000 microscope. 

 



- 

- 57 - 

24. Glyceroneogenesis and 2-deoxyglucose uptake measurements in 

primary hASC 

For metabolic studies, primary hASCs were treated with NT control or PRRX1 siRNA as 

described above and treated or not with 10 µM rosiglitazone. After 72 hours, cells were fasted 

for 3 hours in serum-deprived, glucose-free DMEM containing 0.3% (w/v) fatty acid-free 

BSA. Then, cells were transferred in a Krebs Ringer Bicarbonate buffer containing 0.3% 

BSA, 5 mM pyruvate and 20 µM [1-
14

C]-pyruvate (0.5 μCi) as precursor of glycerol-3-

phosphate. 2 hours later, cells were rinsed in PBS and scraped in 10 mmol/l Tris-Cl, pH 7.4, 

containing 0.25 mol/l sucrose, 0.1 mmol/l EDTA, 0.1 mmol/l dithiothreitol, and 0.1% Triton 

and frozen in liquid nitrogen before lipid extraction according the simplified method of Bligh 

and Dyer {Bligh 1959 #384}. The subsequent [1-
14

C]-pyruvate incorporation was estimated 

by counting the radioactivity associated with the lipid fraction. The incubation medium (2 h) 

was stored at −20 C for further NEFA (Free Fatty Acids Half Micro Test, Roche Diagnostics) 

determinations.  

Insulin-stimulated 2-deoxyglucose (2DG) uptake studies were performed as 

previously described {Richling 2011 #385}. Briefly, hASCs were transferred to glucose-free 

Krebs-Ringer-Hepes buffer containing 2.5 mM pyruvate, and 0.5% BSA 2.5 hours prior to the 

experiment. Cells were stimulated or not with 1µM insulin for 30 sec. Basal and insulin-

stimulated 2-DG uptake was initiated by the addition of KRH buffer containing 0.5% BSA, 

2.5 mM pyruvate, 50 µM 2-DG and [
3
H]-2-DG [2 µCi/ml]. Uptake was terminated by 

addition of ice-cold KRH containing 150 µM phloretin and 15 µM cytochalasin B. Cells were 

lysed in 0.1 M NaOH and radioactivity was measured using liquid scintillation counting. 

Quenching of radioactivity was considered applying an external standard. 2-DG transport 

values were corrected for protein content determined by the bicinchoninic acid method (BCA 

Protein Assay Reagent, PIERCE, Rockford, USA). 
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25. Statistical analysis 

A P < 0.05 was considered statistically significant. P-values in luciferase assays were 

calculated by unpaired t-test. In experiments assessing allelic imbalance of PPARγ2 mRNA 

expression during adipogenesis, p-values were calculated using Kruskal-Wallis Oneway 

ANOVA followed by Dunn’s Multiple Comparison post-test. For qRT-PCR analysis of 

siRNA experiments, p-values were calculated using the Wilcoxon rank-sum test (INS1 cells, 

n=9) or paired t-test (hASC, n=16/32). Unpaired t-test was used for qRT-PCR experiments 

assessing genotype-dependent effects on mRNA expression (hASC, n=16/32), and Mann 

Whitney U test was used for allele-specific primer extension analysis. Correlations of PRRX1 

mRNA with PPARG2 mRNA, pyruvate incorporation and free fatty acid release were 

calculated by Pearson’s correlation. For correlation analysis of adipose tissue PRRX1 mRNA 

expression with FFA levels and GIR (glucose infusion rate) in the BMI-matched study sample 

(n=67), we performed linear regression with log transformed values. For correlations with 

HOMA-IR, BMI and TG/HDL levels (n=38) we performed linear regression with log-

transformed residuals (adjusted for age, sex and BMI). Statistical analyses were done using 

the Graph Pad Prism software version 5.02 or the Statistical Software R, version 2.14.2. 
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