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A bs tr ac t

Background

The nature and underlying mechanisms of an inverse association between adult 
height and the risk of coronary artery disease (CAD) are unclear.

Methods

We used a genetic approach to investigate the association between height and CAD, 
using 180 height-associated genetic variants. We tested the association between a change 
in genetically determined height of 1 SD (6.5 cm) with the risk of CAD in 65,066 
cases and 128,383 controls. Using individual-level genotype data from 18,249 per-
sons, we also examined the risk of CAD associated with the presence of various 
numbers of height-associated alleles. To identify putative mechanisms, we analyzed 
whether genetically determined height was associated with known cardiovascular 
risk factors and performed a pathway analysis of the height-associated genes.

Results

We observed a relative increase of 13.5% (95% confidence interval [CI], 5.4 to 22.1; 
P<0.001) in the risk of CAD per 1-SD decrease in genetically determined height. 
There was a graded relationship between the presence of an increased number of 
height-raising variants and a reduced risk of CAD (odds ratio for height quar- 
tile 4 versus quartile 1, 0.74; 95% CI, 0.68 to 0.84; P<0.001). Of the 12 risk factors that 
we studied, we observed significant associations only with levels of low-density lipo-
protein cholesterol and triglycerides (accounting for approximately 30% of the as-
sociation). We identified several overlapping pathways involving genes associated 
with both development and atherosclerosis.

Conclusions

There is a primary association between a genetically determined shorter height and 
an increased risk of CAD, a link that is partly explained by the association between 
shorter height and an adverse lipid profile. Shared biologic processes that deter-
mine achieved height and the development of atherosclerosis may explain some of 
the association. (Funded by the British Heart Foundation and others.)
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There is a well-established associa-
tion between a shorter adult height and an 
increased risk of coronary artery disease 

(CAD).1 Shorter stature is also associated with 
risk factors for CAD, including high blood pres-
sure, high levels of low-density lipoprotein (LDL) 
cholesterol, and diabetes.2,3 An individual-level 
meta-analysis showed that a decrease of 1 SD 
(approximately 6.5 cm) in height was associated 
with a relative increase of 8% (95% confidence 
interval [CI], 6 to 10) in the risk of fatal or non-
fatal CAD.2 The effect was largely unchanged af-
ter adjustment for smoking status, systolic blood 
pressure, history of diabetes, body-mass index, 
lipid markers, alcohol consumption, education 
level, and occupation.2 Therefore, the precise 
mechanisms linking shorter height with an in-
creased risk of CAD remain unclear.

Genetic variants that affect a trait provide a 
means of exploring the relationship between 
the trait and the disease and to identify puta-
tive mechanisms. In a genomewide association 
study, Lango Allen et al.4 identified a large num-
ber of independent genetic variants associated 
with adult height, which is a highly heritable 
trait. Large-scale genomewide association stud-
ies have also been undertaken to determine 
genetic variants associated with CAD5-7 and 
several cardiovascular risk factors.8-15 Here, we 
used the 180 single-nucleotide polymorphisms 
(SNPs) that explain about 10% of the variation 
in height, as identified by Lango Allen et al.,4 
and leveraged CAD-association data for the same 
variants for up to 193,449 persons to examine 
the association between genetically mediated 
variation in height and the risk of CAD. We 
also examined the association between the 
height-associated variants and several cardiovas-
cular risk factors and performed bioinformatics 
analyses of the height-associated variants to iden-
tify other potential biologic mechanisms that 
could link a shorter height with an increased 
risk of CAD.

Me thods

Height-Associated Variants

To identify height-associated genetic variants, 
Lango Allen et al.4 (in the Genetic Investigation 
of Anthropometric Traits [GIANT] Consortium) 
analyzed 183,727 persons of European descent 

and observed that variants at 180 loci showed an 
association with height at a genomewide signifi-
cance level (P<5×10−8). We used the lead SNP from 
each locus (i.e., the SNP showing the strongest 
association) in the current analysis. None of these 
variants lie in loci implicated by genomewide as-
sociation studies in susceptibility to CAD.5-7

Association between Height-Associated 
Variants and CAD

To examine the association between height-associ-
ated genetic variants and CAD, we extracted sum-
mary association statistics for these variants for the 
cohorts that contributed to the meta-analyses of 
genomewide association studies of CAD performed 
by the Coronary Artery Disease Genomewide Rep-
lication and Meta-Analysis (CARDIoGRAM) Con-
sortium5 and the Coronary Artery Disease (C4D) 
Consortium.6 Of the 180 SNPs, 112 were also 
included on the Metabochip array, a customized 
array containing 200,000 SNP markers.16 We 
also extracted data for these 112 SNPs from the 
Metabochip-array CAD meta-analysis performed 
by the combined CARDIoGRAM+C4D Consor-
tium for cohorts that were not included in the 
previous CARDIoGRAM or C4D meta-analyses.7 
Each of the studies that were included in these 
meta-analyses adhered to a case–control design, 
including some nested within cohorts.5-7

The numbers of cases and controls that were 
contributed by each consortium are provided in 
Table S1 in the Supplementary Appendix, avail-
able with the full text of this article at NEJM.org. 
The number of samples and SNPs that were 
contributed by individual studies within each 
consortium are provided in Table S2 in the Sup-
plementary Appendix. Details regarding the ascer-
tainment of samples for each study are provided 
in the primary articles.5-7 All cases were required 
to have had a validated history of myocardial 
infarction, coronary revascularization, or angio-
graphic coronary disease.

Height-Associated Variants  
and Cardiovascular Risk Factors

In parallel, to investigate potential explanatory 
effects of genetically determined height on the 
risk of CAD through known cardiovascular risk 
factors, we extracted estimates of effect size for 
each of the height variants from publicly avail-
able meta-analyses of data sets from genome-

The New England Journal of Medicine 
Downloaded from nejm.org by Matthias Bank on December 11, 2015. For personal use only. No other uses without permission. 

 Copyright © 2015 Massachusetts Medical Society. All rights reserved. 



T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

n engl j med 372;17 nejm.org april 23, 20151610

wide association studies for systolic and diastolic 
blood pressures, mean and pulse pressures,8,9 
LDL cholesterol level, high-density lipoprotein 
(HDL) cholesterol level, triglyceride level,10 pres-
ence or absence of type 2 diabetes mellitus,11 
body-mass index,12,13 glucose and insulin levels,14 
and smoking quantity.15 The maximum sizes of 
these data sets ranged from 29,182 to 249,796 
samples (Table 1).

Statistical Analysis

For each height-associated variant, we calculated 
β3 values (the putative association between height 
and CAD mediated through that variant) from 
the direct measurements of β1 (the effect size of 
the association between the variant and height) 
and β2 (the effect size of the association between 

the variant and CAD), as described previously.8,17 
(A more complete description of β1, β2, and β3 
and the relationships among them and how β3 
was calculated is provided in Fig. S1 in the Sup-
plementary Appendix.) The value for β3 can be 
interpreted as the odds ratio for CAD per 1-SD 
increase in genetically determined height. Because 
the association between each SNP with height 
and the association with CAD is very small, indi-
vidual β3 values are likely to center around 1.0. 
Combining the β3 values from all SNPs provides 
additional power to assess the overall association 
between height and CAD (i.e., composite associa-
tion). We used inverse-variance–weighted ran-
dom-effects meta-analysis to combine individual 
β3 estimates. We performed the same analysis in 
a subgroup of patients with a history of myocar-

Table 1. Association between Genetically Determined Height and Coronary Artery Disease and Cardiovascular Risk Factors.*

Risk Factor
Maximum No. of 

Samples in Data Set
Estimated Association

(95% CI)† P Value I2‡

Coronary artery disease 65,066 cases, 
128,383 controls

0.88 (0.82 to 0.95) <0.001 55.7

Body-mass index§ 249,796 0.01 (−0.02 to 0.03) 0.74 14.7

Blood pressure

Systolic 69,899 0.34 (−0.31 to 1.00) 0.30 41.6

Diastolic 69,909 0.14 (−0.27 to 0.56) 0.50 42.1

Mean arterial pressure¶ 29,182 0.20 (−0.19 to 0.60) 0.32 41.6

Pulse pressure‖ 74,079 0.23 (−0.06 to 0.52) 0.12 26.9

Cholesterol

Low-density lipoprotein 95,454 −0.06 (−0.09 to −0.04) <0.001 31.6

High-density lipoprotein 99,900 −0.02 (−0.05 to 0.02) 0.44 54.0

Triglycerides 96,598 −0.05 (−0.08 to −0.03) <0.001 29.1

Type 2 diabetes 34,840 cases, 
114,981 controls

0.95 (0.83 to 1.07) 0.38 50.0

Glucose 96,496 0.01 (−0.01 to 0.02) 0.48 31.0

Log-transformed plasma insulin 85,573 0.01 (−0.01 to 0.02) 0.29 37.3

Smoking quantity** 41,150 0.04 (−0.01 to 0.09) 0.11 15.8

* Estimates of effect size for each of the height variants were extracted from publicly available meta-analyses of data 
sets from genomewide association studies.

† The average effect estimates for a 1-SD increase in height are shown as odds ratios for categorical diseases (coronary 
artery disease and diabetes). For quantitative traits, the β estimates are shown in either absolute values (systolic and 
diastolic blood pressure, pulse pressure, mean arterial pressure, smoking quantity, glucose, and log insulin) or in SD 
(body-mass index, high-density lipoprotein and low-density lipoprotein cholesterol, and triglycerides).

‡ I2 indicates the percentage of total variation in study estimates because of heterogeneity in the meta-analysis.
§ The body-mass index is the weight in kilograms divided by the square of the height in meters.
¶ Mean arterial pressure was defined as two thirds diastolic pressure plus one third systolic pressure.9

‖ Pulse pressure was defined as systolic pressure minus diastolic pressure.
** Scores for smoking-quantity levels among smokers (cigarettes smoked per day) were 0 (1 to 10 cigarettes per day),  

1 (11 to 20 cigarettes), 2 (21 to 30 cigarettes), and 3 (31 or more cigarettes).17
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dial infarction and in men and women separate-
ly, using sex-specific estimates of β1 released by 
the GIANT Consortium (www.broadinstitute.org/
collaboration/giant/index.php/GIANT_consortium_
data_files).

For a subgroup of CAD cohorts in which we 
had access to individual-level genotypes genome-
wide (Table S3 in the Supplementary Appen-
dix), we performed a weighted analysis of ge-
netic risk score to evaluate the effect of the 
presence of an increasing number of height- 
related variants on the risk of CAD. We calcu-
lated a value of 0 to 2 for every SNP for each 
individual on the basis of the sum of the pos-
terior probabilities for the height-increasing 
allele and multiplied by the effect size observed 
for height. We then totaled these values across 
all SNPs for each individual, and the individuals 
were then grouped into quartiles. We used logis-
tic regression to assess the quartiles, after ad-
justment for study, to estimate combined odds 
ratios for CAD.

To assess the association between height vari-
ants and cardiovascular risk factors, we combined 
the β3 estimates using a fixed-effects meta-
analysis, except in cases in which heterogeneity 
was high (I2, >40%), in which case we per-
formed a random-effects meta-analysis. For these 
analyses, the β3 values reflect the change in 
measurement unit of the variable per 1-SD change 
in height for quantitative variables (with a nega-
tive value reflecting an inverse association) or an 
odds ratio for categorical variables. Because we 
tested a total of 13 traits (including CAD), we 
considered a P value of 0.003 to indicate statisti-
cal significance (Table 1).

To identify common biologic processes that 
might explain the association between height 
and CAD, we performed pathway analysis using 
Ingenuity Pathway Analysis (IPA) software, ver-
sion 18488943 (Ingenuity Systems). Such an 
analysis requires the assignment of each height-
associated SNP to a specific gene that is then 
included in the pathway analysis. (Further de-
tails regarding the selection process for the 
genes are provided in the Supplementary Appen-
dix; the full list of genes that are included in the 
analysis is provided in Table S4 in the Supple-
mentary Appendix.) The IPA output includes 
Benjamini–Hochberg Q values for the false dis-
covery rate.18

R esult s

Study Cases and Controls

The maximum number of CAD cases and con-
trols available for analyses were 65,066 and 
128,383, respectively (Table S1 in the Supplemen-
tary Appendix); 73.8% of the cases and 49.8% of 
the controls were men. The average age was 57.3 
years (range, 42.4 to 75.6), and 65% of the cases 
reported a history of myocardial infarction.

Height-Associated Variants and CAD

The individual β3 odds ratios for the 180 SNPs 
that were analyzed to investigate the association 
between height and CAD are shown in Figure 1. 
In a random-effects meta-analysis, there was a 
significant association between the height-asso-
ciated SNPs and CAD (odds ratio, 0.88; 95% CI, 
0.82 to 0.95; P<0.001) (Table 1). This association 
translated to a relative increase of 13.5% (95% CI, 
5.4 to 22.1) in the risk of CAD per 1-SD decrease 
in height.

As anticipated, most individual β3 values cen-
tered around 1.0 and were nonsignificant (Fig. 1). 
However, some values had a nominally signifi-
cant association (P<0.05) both above and below 
1.0. Because 180 variants were tested, some of 
these associations could reflect chance (only 
3 survived Bonferroni correction), but they could 
also represent pleiotropy — in other words, an 
effect of these loci on the risk of CAD that was 
independent of any effect through height. To 
rule out the possibility that the observed genetic 
association between height and CAD was being 
driven by more extreme associations, we repeated 
the meta-analysis with the exclusion of six SNPS 
that showed an individual association at P<0.001. 
The combined association between the remaining 

Figure 1 (next pages). Forest Plot Showing the Effect 
Size of Height on the Risk of Coronary Artery Disease 
(CAD) for Each Height-Associated Genetic Variant.

Shown are odds ratios for each height-associated single-
nucleotide polymorphism (SNP) for β3 values (i.e., the 
putative association between height and CAD mediated 
through that variant). The number of cases and con-
trols that were analyzed for each variant are shown. 
The β3 odds ratios are organized in ascending values 
across two panels for ease of visualization. The overall 
β3 estimate (shown in red) is from a random-effects 
meta-analysis of all SNPs.
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variants and CAD was largely unchanged (odds 
ratio, 0.88; 95% CI, 0.82 to 0.94; P<0.001).

The association between genetically deter-
mined height and CAD remained significant in 
the subgroup of cases with a history of myocar-
dial infarction (odds ratio, 0.88; 95% CI, 0.80 to 
0.96; P = 0.003). In sex-specific analyses, the as-
sociation between the variant and CAD was 
significant in men (odds ratio, 0.88; 95% CI, 
0.81 to 0.95; P = 0.001) but not in women (odds 
ratio, 0.96; 95% CI, 0.86 to 1.07; P = 0.46). How-
ever, in an interaction test, the difference be-
tween the sexes was not significant (P = 0.19).

Genetic Risk Score and Risk of CAD

Individual-level data were available for 18,249 
persons (including 8240 cases) from six cohorts 
(Table S3 in the Supplementary Appendix). The 
risk of CAD among individuals, as partitioned 
into quartiles carrying an increasing number of 
height-raising alleles, is shown in Figure 2. Those 
with an increased number of height-raising al-
leles had a reduced risk of CAD, with an odds 
ratio for quartile 2 vs. quartile 1 of 0.90 (95% CI, 
0.83 to 0.98; P = 0.02), an odds ratio for quartile 3 
vs. quartile 1 of 0.88 (95% CI, 0.81 to 0.96; 
P = 0.003), and an odds ratio for quartile 4 vs. 
quartile 1 of 0.74 (95% CI, 0.68 to 0.80; P<0.001).

Height-Associated Variants  
and Cardiovascular Risk Factors

The findings from the analyses of the composite 
association between height-associated variants 
and specific cardiovascular risk factors are pro-
vided in Table 1. For most of the risk factors, the 
analyses did not identify any evidence of an as-
sociation between genetically determined height 
and the risk of CAD. The two exceptions were 
LDL cholesterol and triglyceride levels, for which 
there were small but significant associations.

For both LDL cholesterol and triglycerides, the 
associations were in a direction that could have 
contributed to the observed association between 
a shorter genetically determined height and an 
increased risk of CAD. To investigate this find-
ing further, we evaluated the quantitative asso-
ciations between LDL cholesterol and triglycer-
ides and the risk of CAD that were reported in 
observational studies,19 taking into account re-
gression dilution.20 We determined that for each 
1-SD increase, the risk of CAD was raised on 
average by 45% (log odds ratio, 0.37) for the LDL 
cholesterol level and by 32% (log odds ratio, 

0.28) for the triglyceride level. Then, from the 
respective changes from a 1-SD change in geneti-
cally determined height, we estimated that the 
risk of CAD would increase by 2.3% (95% CI, 
1.9 to 2.8) because of the increase in the LDL 
cholesterol level and by 1.5% (95% CI, 1.2 to 1.8) 
because of the increase in the triglyceride level. 
This suggests that approximately 19% of the 
observed association between a genetically deter-
mined decrease in height and an increased risk 
of CAD could be explained by the effect of 
shorter height on LDL cholesterol and approxi-
mately 12% by an effect on triglycerides. To 
confirm that the majority of the genetic asso-
ciation of height with CAD was not mediated by 
lipid levels, we repeated our analysis of the as-
sociation between height variants and the risk of 
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Figure 2. Analysis of the Association between the Pres-
ence of an Increasing Number of Height-Related Al-
leles and the Risk of CAD, According to Quartile of Ge-
netic Risk Score (GRS).

The analysis was performed in 18,249 samples (including 
8240 obtained from patients with CAD) with the use of 
individual-level genotype data. Shown are odds ratios 
and 95% confidence intervals. Participants were divided 
into quartiles on the basis of the number of height- 
increasing alleles that were present, with quartile 1 
(reference quartile) carrying the fewest.

The New England Journal of Medicine 
Downloaded from nejm.org by Matthias Bank on December 11, 2015. For personal use only. No other uses without permission. 

 Copyright © 2015 Massachusetts Medical Society. All rights reserved. 



Genetically Determined Height and Coronary Artery Disease

n engl j med 372;17 nejm.org april 23, 2015 1615

CAD with the exclusion of 60 SNPs that were 
associated with a lipid trait at P<0.05. An analy-
sis of the remaining SNPs resulted in an odds 
ratio of 0.89 (95% CI, 0.81 to 0.98; P = 0.01).

Pathway Analysis

Biologic pathways (incorporating genes at the 
height loci) with a Q value of less than 0.05 for 
the false discovery rate, as identified on the IPA 
analysis, are provided in Table 2. Also shown are 
the genes within each pathway that were present 
on the input list and also the proportion of genes 
in each pathway formed by them. Pathways in IPA 
software have a hierarchical organization, and 
many of the pathways that are identified are 
overlapping and, in some cases, are subsets of 
each other. For example, the pathway that is iden-
tified as “factors affecting cardiogenesis” is an 
amalgam of other pathways and overlaps with sig-
naling pathways for bone morphogenetic protein 
(BMP) and transforming growth factor β (TGF-β), 
and all three of these pathways share genes with 
other pathways. Likewise, there is overlap be-
tween the signaling pathways for growth hor-
mone and insulin-like growth factor 1 (IGF-1).

Discussion

In this study, we found an association between a 
genetically determined decrease in height and an 
increased risk of CAD. Our finding validates the 
epidemiologic observation of an inverse associa-
tion between height and CAD.1,2

A key advantage of using a genetic approach 
over a traditional epidemiologic approach to in-

vestigate an association such as that between 
height and CAD is that genotypes (because they 
are randomly distributed at birth) are unlikely to 
be confounded by lifestyle or environmental fac-
tors. Regardless of whether such factors are 
known (e.g., poor nutrition or socioeconomic 
conditions during childhood) or unknown, they 
can independently affect achieved height and the 
risk of CAD and lead to a spurious association 
between them (Fig. 3). It is nonetheless possible 
that the genetic variants themselves affect height 
and CAD risk through entirely different mecha-
nisms. However, given the large number of vari-
ants that we included in the analysis, all of 
which were selected only because of their asso-
ciation with height, it is likely that at least some 
of the processes are shared. This hypothesis is 
supported by the finding from the individual-
level analysis of genetic risk score showing a 
direct correlation between the presence of an 
increasing number of height-related alleles and a 
reduction in the risk of CAD (Fig. 2).

A genetic approach also offers novel methods 
to explore potential mechanisms linking shorter 
height with an increased risk of CAD (Fig. 3). In 
this context, we performed two analyses. First, 
we applied the same genetic approach to inves-
tigate the association between height-related 
genetic variants and several established and po-
tential cardiovascular risk factors. Notable nega-
tive findings here include the lack of an overall 
effect of height-associated SNPs on body-mass 
index. This suggests that the association be-
tween shorter stature and an increased risk of 
CAD is not mediated by an effect on obesity. On 

Table 2. Biologic Pathways Identified by Means of IPA of Height-Associated Variants.*

Canonical Pathways in IPA Q Value† Ratio‡ Proteins in Pathway

Factors promoting cardiogenesis  
in vertebrates

0.003 0.07 NKX2–5, BMP2, TGFB2, MEF2C, BMP6, PRKCZ, NOG

Growth hormone signaling 0.03 0.06 SOCS2, IGF1R, GH1, SOCS5, PRKCZ

Axonal guidance signaling 0.03 0.06 FGFR4, SOCS2, IGF1R, INSR, SOCS5

STAT3 pathway 0.03 0.03 SLIT3, PAPPA2, PAPPA, RHOD, ADAM28, GNA12, 
BMP2, PTCH1, HHIP, NFATC4, BMP6, PRKCZ

BMP signaling pathway 0.03 0.06 NKX2-5, RUNX2, BMP2, BMP6, NOG

TGF-β signaling 0.04 0.05 NKX2-5, AMH, RUNX2, BMP2, TGFB2

IGF-1 signaling 0.049 0.05 SOCS2, IGF1R, IGFBP7, SOCS5, PRKCZ

* BMP denotes bone morphogenetic protein, IGF-1 insulin-like growth factor 1, IPA Ingenuity Pathway Analysis, STAT3 
signal transducer and activator of transcription 3, and TGF-β transforming growth factor β.

† The Q value was calculated with the use of the Benjamini–Hochberg method for determining the false discovery rate.
‡ The ratio is the proportion of the genes in the IPA that were part of the input list for the height-related genes.
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the other hand, there was a significant overall 
association between height SNPs and LDL cho-
lesterol and triglycerides in a direction consis-
tent with their association with CAD. The asso-
ciation between shorter stature and increased 
plasma LDL cholesterol and triglyceride levels 
has also been observed in epidemiologic stud-
ies.2 The mechanisms by which height-associated 
SNPs have an effect on LDL cholesterol and tri-
glyceride levels are not clear. In any case, these 
effects in combination potentially explain less 
than one third of the observed association be-
tween genetically determined shorter height and 
an increased risk of CAD.

Second, we performed pathway analysis, 
which identified a number of overlapping path-
ways linking height-associated SNPs that could 
also have an effect on the risk of CAD, including 
the BMP- and TGF-β–signaling pathways, axon-
guidance pathways, and the STAT3 and IGF-I 
pathways, all of which have experimentally 
documented roles in the development of athero-
sclerosis.21-26 The limitations of pathway analy-
sis included the need to assign a specific gene 
for each height-associated locus and incomplete 
knowledge regarding how such pathways are 

constructed. (A fuller discussion of the pathways 
is provided in the Supplementary Appendix.) 
Taken together, these findings suggest that sev-
eral overlapping and complex biologic pathways 
on the one hand influence development and 
height and on the other hand influence the risk 
of atherosclerosis through an effect on vascular 
biology and function (Fig. 3).

In contrast to epidemiologic studies in which 
a similar inverse association between height and 
CAD was present in both men and women,2 we 
did not see a significant association in women. 
Whether this represents a genuine difference in 
the effect of genetically determined height on the 
risk of CAD between men and women or simply 
reflects the reduced power from the much small-
er sample size available for analysis in women is 
unclear. Notably, the effect sizes that were ob-
served in men and women were not signifi-
cantly different in an interaction analysis.

Height and other measurements of body size 
have a positive correlation with the diameter of 
coronary arteries.27 Therefore, a potential simple 
explanation for an increased risk of CAD in 
shorter persons is that they have proportionally 
smaller-caliber coronary arteries, so a similar 
plaque burden could result in greater probability 
of symptomatic disease. However, women also 
have smaller-caliber arteries than men, indepen-
dent of body size and height.27 Reduced height 
and female sex would therefore be expected to 
have an additive effect if this was the mecha-
nism linking shorter height with an increased 
risk of CAD. In this context, the finding of a 
weaker association between genetically deter-
mined shorter height and CAD in women than 
in men would argue against a structural expla-
nation on the basis of coronary-vessel caliber as 
the main explanation for the inverse association 
between height and CAD.

Although the genetic approach that we used 
allows us to reduce the possibility of confound-
ing of any observed association by socioeconom-
ic, lifestyle, or environmental factors, it does not 
rule out the possibility that the association be-
tween genetically determined shorter height with 
an increased risk of CAD is due to lifestyle 
choices or behavior adopted by such persons as 
a direct consequence of being shorter (Fig. 3). 
Indeed, in an exemplar exploration of this pos-
sibility, we examined whether the height-related 
variants showed an association with the quantity 

Genetic
Variants

Shared
Biologic

Pathways
Height

CAD

Confounders

Figure 3. Interpreting the Association between Genetically Determined 
Shorter Height and Increased Risk of CAD.

The main advantage of the genetic approach is that it reduces the likelihood 
of known and unknown demographic, lifestyle, socioeconomic, or behavioral 
confounders that have an independent effect on height and the risk of CAD 
(solid black lines) and could give rise to a false association between the two 
factors. It is possible that the association between the studied genetic vari-
ants and height and the association with CAD are through completely dif-
ferent mechanisms (dashed black lines). However, the more likely scenario 
on the basis of our findings is that height variants affect biologic pathways, 
which on the one hand determine achieved height and on the other hand 
influence the risk of CAD (solid red lines). It is also possible that genetically 
determined height itself alters lifestyle or behavior, which then affects the 
risk of CAD (dashed red line).
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of cigarettes smoked among smokers but found 
no evidence for this hypothesis (Table 1). Other 
relevant behavioral changes that could have an 
effect on the risk of CAD that could be adopted 
by persons of short stature include those related to 
diet, physical activity, and alcohol consumption.

In conclusion, using a genetic approach, we 
found an association between genetically deter-
mined shorter height and an increased risk of 
CAD. Part of this inverse association may be 
driven by the association between shorter height 
and an adverse lipid profile, although the major-

ity of the relationship is likely to be determined 
by shared biologic processes that determine 
achieved height and atherosclerosis development. 
More generally, our findings underscore the 
complexity underlying the inherited component 
of CAD.

Supported by the British Heart Foundation, the United Kingdom 
National Institute for Health Research, the European Union proj-
ect CVgenes@target, and a grant from the Leducq Foundation.

Disclosure forms provided by the authors are available with 
the full text of this article at NEJM.org.

We thank the members of the cited consortiums of genome-
wide association studies for making their data available.

Appendix
The authors are as follows: Christopher P. Nelson, Ph.D., Stephen E. Hamby, Ph.D., Danish Saleheen, M.B., B.S., Ph.D., Jemma C. 
Hopewell, Ph.D., Lingyao Zeng, M.Sc., Themistocles L. Assimes, M.D., Ph.D., Stavroula Kanoni, Ph.D., Christina Willenborg, Ph.D., 
Stephen Burgess, Ph.D., Phillipe Amouyel, M.D., Ph.D., Sonia Anand, F.R.C.P.C., Stefan Blankenberg, M.D., Bernhard O. Boehm, M.D., 
Robert J. Clarke, F.R.C.P., Rory Collins, F.R.C.P.E., George Dedoussis, Ph.D., Martin Farrall, F.R.C.Path., Paul W. Franks, Ph.D., Leif 
Groop, M.D., Ph.D., Alistair S. Hall, F.R.C.P., Anders Hamsten, M.D., Ph.D., Christian Hengstenberg, M.D., G. Kees Hovingh, M.D., 
Ph.D., Erik Ingelsson, M.D., Ph.D., Sekar Kathiresan, M.D., Frank Kee, M.D., Inke R. König, Ph.D., Jaspal Kooner, F.R.C.P., Terho 
Lehtimäki, M.D., Ph.D., Winifred März, Ph.D., Ruth McPherson, F.R.C.P.C., Andres Metspalu, M.D., Ph.D., Markku S. Nieminen, 
M.D., Christopher J. O’Donnell, M.D., Colin N.A. Palmer, Ph.D., Annette Peters, M.D., Markus Perola, M.D., Ph.D., Muredach P. 
Reilly, M.B., B.Ch., Samuli Ripatti, Ph.D., Robert Roberts, F.R.C.P.C., Veikko Salomaa, M.D., Ph.D., Svati H. Shah, M.D., Stefan 
Schreiber, M.D., Agneta Siegbahn, Ph.D., Unnur Thorsteinsdottir, Ph.D., Giovani Veronesi, Ph.D., Nicholas Wareham, M.B., B.S., 
Ph.D., Cristen J. Willer, Ph.D., Pierre A. Zalloua, Ph.D., Jeanette Erdmann, Ph.D., Panos Deloukas, Ph.D., Hugh Watkins, F.R.C.P., 
Heribert Schunkert, M.D., John Danesh, F.R.C.P., John R. Thompson, Ph.D., and Nilesh J. Samani, F.R.C.P.

The authors’ affiliations are as follows: the Departments of Cardiovascular Sciences (C.P.N., S.E.H., N.J.S.) and Health Sciences 
(J.R.T.), University of Leicester, and the National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit 
(C.P.N., S.E.H., N.J.S.), Leicester, the Department of Public Health and Primary Care, University of Cambridge (D.S., S. Burgess, J.D.), 
Wellcome Trust Sanger Institute (S.R., P.D.), and the Medical Research Council Epidemiology Unit, Institute of Metabolic Science, Ad-
denbrooke’s Hospital (N.W.), Cambridge, the Clinical Trial Service Unit and Epidemiological Studies Unit (J.C.H., R.J.C., R.C.), Divi-
sion of Cardiovascular Medicine, Radcliffe Department of Medicine (M.F., H.W.), and Wellcome Trust Centre for Human Genetics 
(M.F., H.W.), University of Oxford, Oxford, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, 
Queen Mary University of London (S.K., P.D.), Imperial College London (B.O.B.), and the National Heart and Lung Institute, Imperial 
College (J.K.), London, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds (A.S.H.), U.K. Clinical Research 
Collaboration Centre of Excellence for Public Health (Northern Ireland), Queen’s University of Belfast, Belfast (F.K.), and the Medical 
Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee (C.N.A.P.) — all in the United Kingdom; the 
Center for Non-Communicable Diseases, Karachi, Pakistan (D.S.); the Department of Medicine (D.S.) and Cardiovascular Institute, 
Perelman School of Medicine (M.P.R.), University of Pennsylvania, Philadelphia; Deutsches Herzzentrum München, Technische Univer-
sität München and Deutsches Zentrum für Herz-Kreislauf-Forschung, partner site Munich Heart Alliance (L.Z., R.J.C., R.C., C.H., H.S.), 
and German Center for Cardiovascular Research partner site Munich (A.P.), Munich, Institut für Integrative und Experimentelle 
Genomik, Universität zu Lübeck and German Center for Cardiovascular Research, partner site Hamburg–Lübeck–Kiel (C.W., J.E.), and 
Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck (I.R.K.), Lübeck, Clinic for General and Interventional Cardiol-
ogy, University Heart Center Hamburg, Hamburg (S. Blankenberg), Ulm University Medical Center, Department of Internal Medicine I, 
Ulm (B.O.B.), Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria (W.M.); 
Synlab Academy, Synlab Services, Medical Clinic V, Mannheim Medical Faculty, Heidelberg University, Mannheim (W.M.), Institute of 
Epidemiology II, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg (A.P.), and Institut 
für Klinische Molekularbiologie, Christian-Albrechts Universität, Kiel (S.S.) — all in Germany; the Department of Medicine, Stanford 
University School of Medicine, Stanford, CA (T.L.A.); Institut Pasteur de Lille, INSERM Unité 744, Université Lille Nord de France, Lille, 
France (P.A.); the Population Health Research Institute, McMaster University, Hamilton, ON (S.A.), and the John and Jennifer Ruddy 
Canadian Cardiovascular Genetics Centre and Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa (R.M., R.R.) 
— both in Canada; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore (B.O.B.); the Depart-
ment of Dietetics–Nutrition, Harokopio University, Athens (G.D.); the Genetic and Molecular Epidemiology Unit, Department of Clini-
cal Sciences, Lund University Diabetes Center, Skåne University Hospital (P.W.F.), and the Department of Clinical Sciences, Diabetes 
and Endocrinology, Lund University, University Hospital Malmö (L.G.), Malmö, the Department of Public Health and Clinical Medicine, 
Umeå University, Umeå (P.W.F.), the Atherosclerosis Research Unit, Department of Medicine, Karolinska Institutet, Stockholm (A.H.), 
and the Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory (E.I.), and Uppsala Clinical Research 
Center (A.S.), Uppsala University, Uppsala — all in Sweden; the Department of Nutrition, Harvard School of Public Health (P.W.F.), 
and the Cardiology Division, Center for Human Genetic Research, and Cardiovascular Research Center, Massachusetts General 
Hospital and Harvard Medical School (S.K.), Boston, Broad Institute of Harvard and MIT, Cambridge (S.K.), and the National Heart, 
Lung, and Blood Institute Framingham Heart Study, Framingham (C.J.O.) — all in Massachusetts; the Department of Vascular Medi-
cine, Academic Medical Center, Amsterdam (G.K.H.); the Department of Clinical Chemistry, Fimlab Laboratories and School of Medi-
cine, University of Tampere, Tampere (T.L.), and the Division of Cardiology, Department of Medicine, Helsinki University Central 
Hospital (M.S.N.), Department of Chronic Disease Prevention, National Institute for Health and Welfare (M.P., V.S.), and Hjelt Institute 

The New England Journal of Medicine 
Downloaded from nejm.org by Matthias Bank on December 11, 2015. For personal use only. No other uses without permission. 

 Copyright © 2015 Massachusetts Medical Society. All rights reserved. 



n engl j med 372;17 nejm.org april 23, 20151618

Height-Related Variants and Coronary Artery Disease

and Institute for Molecular Medicine Finland, University of Helsinki (S.R.), Helsinki — all in Finland; the Estonian Genome Center, 
University of Tartu, Tartu, Estonia (A.M., M.P.); Duke Molecular Physiology Institute, Division of Cardiology, Department of Medicine, 
Duke University, Durham NC (S.H.S.); deCODE Genetics, Reykjavik, Iceland (U.T.); the Research Center for Epidemiology and Preven-
tive Medicine, Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy (G.V.); the Departments of Inter-
nal Medicine, Human Genetics and Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor (C.J.W.); Lebanese 
American University, Chouran, Beirut, Lebanon (P.A.Z.); and King Abdulaziz University, Jeddah, Saudi Arabia (P.D.).

References
1. Paajanen TA, Oksala NKJ, Kuukasjärvi 
P, Karhunen PJ. Short stature is associated 
with coronary heart disease: a systematic 
review of the literature and a meta-analy-
sis. Eur Heart J 2010;31:1802-9.
2. Emerging Risk Factors Collaboration. 
Adult height and the risk of cause-specific 
death and vascular morbidity in 1 million 
people: individual participant meta-analy-
sis. Int J Epidemiol 2012;41:1419-33.
3. Gunnell D, Whitley E, Upton MN, 
McConnachie A, Smith GD, Watt GC. As-
sociations of height, leg length, and lung 
function with cardiovascular risk factors 
in the Midspan Family Study. J Epidemiol 
Community Health 2003;57:141-6.
4. Lango Allen H, Estrada K, Lettre G, 
et al. Hundreds of variants clustered in 
genomic loci and biological pathways 
 affect human height. Nature 2010;467: 
832-8.
5. Schunkert H, König IR, Kathiresan S, 
et al. Large-scale association analysis iden-
tifies 13 new susceptibility loci for coro-
nary artery disease. Nat Genet 2011;43: 
333-8.
6. Coronary Artery Disease (C4D) Genet-
ics Consortium. A genome-wide associa-
tion study in Europeans and South Asians 
identifies five new loci for coronary artery 
disease. Nat Genet 2011;43:339-44.
7. CARDIoGRAMplusC4D Consortium. 
Large scale association analysis identifies 
new risk loci for coronary artery disease. 
Nat Genet 2013;45:25-33.
8. Ehret GB, Munroe PB, Rice KM, et al. 
Genetic variants in novel pathways influ-
ence blood pressure and cardiovascular 
disease risk. Nature 2011;478:103-9.
9. Wain LV, Verwoert GC, O’Reilly PF, et 
al. Genome-wide association study iden-
tifies six new loci influencing pulse pres-

sure and mean arterial pressure. Nat 
Genet 2011;43:1005-11.
10. Teslovich TM, Musunuru K, Smith AV, 
et al. Biological, clinical and population 
relevance of 95 loci for blood lipids. Na-
ture 2010;466:707-13.
11. Morris AP, Voight BP, Teslovich TM 
et al. Large-scale association analysis 
provides insights into the genetic archi-
tecture and pathophysiology of type 2 dia-
betes. Nat Genet 2012;44:981-90.
12. Speliotes EK, Willer CJ, Berndt SI, et al. 
Association analyses of 249,796 individu-
als reveal 18 new loci associated with body 
mass index. Nat Genet 2010;42:937-48.
13. Yang J, Loos RJ, Powell JE, et al. FTO 
genotype is associated with phenotypic 
variability of body mass index. Nature 
2012;490:267-72.
14. Manning AK, Hivert MF, Scott RA, et al. 
A genome-wide approach accounting for 
body mass index identifies genetic variants 
influencing fasting glycemic traits and in-
sulin resistance. Nat Genet 2012;44:659-69.
15. Liu JZ, Tozzi F, Waterworth DM, et al. 
Meta-analysis and imputation refines the 
association of 15q25 with smoking quan-
tity. Nat Genet 2010;42:436-40.
16. Voight BF, Kang HM, Ding J, et al. The 
metabochip, a custom genotyping array 
for genetic studies of metabolic, cardio-
vascular, and anthropometric traits. PLoS 
Genet 2012;8(8):e1002793.
17. Lieb W, Jansen H, Loley C, et al. Ge-
netic predisposition to higher blood pres-
sure increases coronary artery disease risk. 
Hypertension 2013;61:995-1001.
18. Benjamini Y, Hochberg Y. Controlling 
the false discovery rate: a practical and 
powerful approach to multiple testing. J R 
Stat Soc B 1995;57:289-300.
19. Emerging Risk Factors Collaboration. 

Lipid-related markers and cardiovascular 
disease prediction. JAMA 2012;307:2499-
506.
20. Emerging Risk Factors Collaboration. 
Major lipids, apolipoproteins, and risk of 
vascular disease. JAMA 2009;302:1993-
2000.
21. Toma I, McCaffrey TA. Transforming 
growth factor-β and atherosclerosis: inter-
woven atherogenic and atheroprotective 
aspects. Cell Tissue Res 2012;347:155-75.
22. van Gils JM, Derby MC, Fernandes LR, 
et al. The neuroimmune guidance cue 
netrin-1 promotes atherosclerosis by inhib-
iting the emigration of macrophages from 
plaques. Nat Immunol 2012;13:136-43.
23. Wanschel A, Seibert T, Hewing B, et al. 
Neuroimmune guidance cue Semaphorin 
3E is expressed in atherosclerotic plaques 
and regulates macrophage retention. Arte-
rioscler Thromb Vasc Biol 2013;33:886-93.
24. Gharavi NM, Alva JA, Mouillesseaux 
KP, et al. Role of the Jak/STAT pathway in 
the regulation of interleukin-8 transcrip-
tion by oxidized phospholipids in vitro and 
in atherosclerosis in vivo. J Biol Chem 2007; 
282:31460-8.
25. Higashi Y, Sukhanov S, Anwar A, Shai 
SY, Delafontaine P. IGF-1, oxidative stress 
and atheroprotection. Trends Endocrinol 
Metab 2010;21:245-54.
26. von der Thüsen JH, Borensztajn KS, 
Moimas S, et al. IGF-1 has plaque-stabi-
lizing effects in atherosclerosis by alter-
ing vascular smooth muscle cell pheno-
type. Am J Pathol 2011;178:924-34.
27. O’Connor NJ, Morton JR, Birkmeyer 
JD, Olmstead EM, O’Connor GT. Effect 
of coronary artery diameter in patients 
undergoing coronary bypass surgery. Cir-
culation 1996;93:652-5.
Copyright © 2015 Massachusetts Medical Society.

receive immediate notification when an article  
is published online first

To be notified by e-mail when Journal articles  
are published Online First, sign up at NEJM.org.

The New England Journal of Medicine 
Downloaded from nejm.org by Matthias Bank on December 11, 2015. For personal use only. No other uses without permission. 

 Copyright © 2015 Massachusetts Medical Society. All rights reserved. 


