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Linear Parameter-Varying Spectral Decomposition

Fredrik Bagge Carlson* Anders Robertsson Rolf Johansson

Abstract— A linear parameter-varying (LPV) spec-
tral decomposition method, based on least-squares
estimation and kernel expansions, is developed. Sta-
tistical properties of the estimator are analyzed and
verified in simulations. The method is linear in the
parameters, applicable to both the analysis and mod-
eling problems and is demonstrated on both simulated
signals as well as measurements of the torque in an
electrical motor.

Index Terms— System Identification, Spectral Esti-
mation, Spectral Decomposition, LPV-modeling

I. Introduction

Standard spectral density estimations techniques such
as the discrete Fourier transform (DFT) exhibit sev-
eral well-known limitations. These methods are typically
constructed for data sampled equidistantly in time or
space. Whenever this fails to hold, typical approaches
employ some interpolation technique in order to perform
spectral estimation on equidistantly sampled data. Other
possibilities include employing a method suitable for non-
equidistant data, such as least-squares spectral analysis
[1]. Fourier transform-based methods further suffer from
spectral leakage due to the assumption that all sinusoidal
basis functions are orthogonal over the data window [2].
Least-squares spectral estimation takes the correlation
of the basis functions into account and further allows
for estimation of arbitrary/known frequencies without
modification [1].

In some applications, the spectral content is varying
with an external variable, for instance, a controlled input.
As motivating example, we consider the torque ripple
induced by the rotation of an electrical motor. Spectral
analysis of the torque signal is made difficult by equidis-
tant, time-based sampling, which causes the spectrum
to vary with the velocity of the motor, both due to the
frequency of the ripple being directly proportional to the
velocity, but also due to the properties of an electric DC-
motor. A higher velocity both induces higher magnitude
torque ripple, but also a higher filtering effect due to the
inertia of the rotating parts. The effect of a sampling
delay on the phase of the measured ripple is similarly
proportional to the velocity.

*An open-source implementation of the method is available at
https://github.com/baggepinnen/LPVSpectral.jl. The reported
research was supported by the European Commission under
the Framework Programme Horizon 2020 under grant agreement
644938 SARAFun.
Lund University, Dept Automatic Control, PO Box 118
SE22100 Lund Sweden
Fredrik.Bagge_Carlson@control.lth.se

Time-frequency analysis traditionally employ window-
ing techniques [3] in order to reduce spectral leakage [4],
[5], mitigate effects of non-stationarity, reduce the influ-
ence of ill-posed autocorrelation estimates [5] and allow
for time-varying spectral estimates [2]. The motivating
example considers estimation of the spectral content of
a signal which is periodic over the space of angular
positions X , with a spectral content varying with time
solely due to the fact that the velocity is varying with
time. Time does thus not hold any intrinsic meaning to
the modification of the spectrum, and the traditional
windowing in time is no longer essential.

This paper develops a spectral estimation technique
using basis function expansions identified with the least-
squares method, that allows the spectral properties
(phase and amplitude) of the analyzed signal to vary
with an external signal. Apart from a standard spectrum,
functional relationships between the scheduling signal
and the amplitude and phase of each frequency will be
identified.

II. LPV Spectral Decomposition

A. Basis function expansions
In order to decompose the spectrum along an exter-

nal dimension, we consider basis function expansions.
Intuitively, a basis function expansion decomposes an
intricate function or signal as a linear combination of
simple basis functions. The Fourier transform can be
given this interpretation, where an arbitrary signal is
decomposed as a sum of complex-valued sinusoids, simi-
larly, a stair function can be decomposed as a sum of step
functions. With this intuition, we aim for a method which
allow decomposition of the spectrum of a signal along
an external dimension, in LPV terminology called the
scheduling dimension, V. If we consider a single sinusoid
in the spectrum, the functional dependence decomposed
by the basis function expansion will thus be the complex-
valued coefficient k in keiω as a function of the scheduling
variable, v, which in the motivating example is the
angular velocity of the motor. Using complex valued
calculations, we simultaneously model the dependence
of both amplitude and phase of a real frequency by
considering the complex frequency.

Radial Basis Functions (RBFs) have been widely used
in nonlinear modeling through RBF expansions or RBF
networks [6]. The motivation for considering RBFs as
opposed to other basis functions include their, in prac-
tice, local support, which often make the modeling more



intuitive and the result easier to interpret. This in con-
trast to basis functions with global support, such as
sigmoid-type functions. Another motivation for the use
of RBFs is the implicit assumption that the underlying
functional dependence is smooth. The method proposed
in this paper is not limited to the use of RBFs as basis
functions, and extend without difficulty to other basis
functions when motivated. A typical set of RBFs is shown
in Fig. 1.

B. Least-squares identification of periodic signals
This paper deals with estimations of models which are

linear in the parameters, and can thus be written on the
form

y = Ak (1)

where A denotes a regressor matrix and k denotes a
vector of coefficients to be identified. Models on the form
(1) are commonly identified with the well-known least-
squares procedure [3]. For the model y(n) = k1 sin(ωn)+
k2 cos(ωn), this amounts to arranging the data according
to

y =

 y(1)
...

y(N)

 , A =

 sin(ω1) cos(ω1)
...

...
sin(ωN) cos(ωN)

 ∈ RN×2

k =
[
k1 k2

]T

and solving the optimization problem1 of Eq. (2) with
solution (3).

k∗ = arg min
k

∥∥Ak − y
∥∥

2 (2)

= (ATA)−1ATy (3)

This can be written in compact form by noting that
eiω = cos ω + i sin ω, which will be used extensively
throughout the paper to simplify notation.2

We will now proceed to formalize a method for spec-
tral decomposition using a perspective based on basis
function expansions.

C. Model
We start by establishing some notation. Let k denote

the Fourier series coefficients of interest. The kernel
activation vector φ(vn) : (v ∈ V) → RK maps the input
to a set of basis function activations and is given by

φ(vn) =
[
κ(vn, θ1) · · · κ(vn, θJ)

]T ∈ RJ (4)

κ(v, θj) = κj(v) = exp
(

− (v − µj)2

2σ2
j

)
(5)

where κ is a basis function parameterized by θj =
(µj , σj), µ ∈ V is the center of the kernel and σ2 is
determining the width.

1This problem can easily be solved also for other norms or convex
loss functions.

2Note that solving the complex LS problem using complex re-
gressors eiω is not equivalent to solving the real LS problem using
sin/cos regressors.
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Fig. 1. Gaussian (dashed) and normalized Gaussian (solid) win-
dows. Regular windows are shown mirrored in the x-axis for clarity.

Let y denote the signal to be decomposed and denote
the location of the sampling of yn by xn ∈ X . The space
X is commonly time or space, in the motivating example
of the electrical motor, X is the space of motor posi-
tions.3 Let the intensities of a set of complex frequencies
iω ∀ ω ∈ Ω be given by basis function expansions along
V, according to

ŷn =
∑
ω∈Ω

J∑
j=1

kω,j κj(vn)e−iωxn (6)

=
∑
ω∈Ω

kT
ω φ(vn)e−iωxn , kω ∈ CJ (7)

The complex coefficients to be estimated, k ∈
CO×J , O = card(Ω), constitute the Fourier series co-
efficients, with intensities split over V. This formulation
reduces to the standard Fourier style spectral relation (8)
in the case φ(v) ≡ 1

ŷ =
∑
ω∈Ω

kω e−iωx = Φk (8)

where Φ = [e−iω1x ... e−iωOx]. If the number J of basis
functions equals the number of data points N , the model
will exactly interpolate the signal, i.e., ŷ = y. If in
addition to J = N , the basis function centers are placed
at µj = vj , we obtain a Gaussian process regression
interpretation where κ is the covariance function. Due
to the numerical properties of the analytical solution of
the least-squares problem, it is often beneficial to reduce
the number of parameters significantly, so that J � N .
If the chosen basis functions are suitable for the signal of
interest, the error induced by this dimensionality reduc-
tion is small. In a particular case, the number of RBFs to
include, J , and the bandwidth Σ is usually chosen based
on evidence maximization or cross validation [6].

To facilitate estimation of the parameters in Eq. (6),
we rewrite the model by stacking the regressor vectors in
a regressor matrix A, see Sec. II-B, such that

An,: = vec
(
φ(vn)ΦT

)T ∈ CO·J , n = 1...N

We further define Ã by expanding the regressor matrix
into its real and imaginary parts

Ã =
[
<A =A

]
∈ RN×2OJ

3We note at this stage that x ∈ X can be arbitrarily sampled
and are not restricted to lie on an equidistant grid, as is the case
for, e.g., Fourier transform-based methods.



such that routines for real-valued least-squares problems
can be used. The complex coefficients are, after solving
the real-valued problem (3), retrieved as k = <k + i=k
where

[<kT =kT]T = arg min
k̃

∥∥Ãk̃ − y
∥∥

2

Since the purpose of the decomposition is spectral
analysis, it is important to normalize the basis function
activations such that the total activation over V for each
data point is unity, to this end, the expressions (6) and
(7) are modified to

ŷ =
∑
ω∈Ω

J∑
j=1

kω,j κ̄j(v)e−iωx

=
∑
ω∈Ω

kT
ω φ̄(v)e−iωx

κ̄j(v) = κj(v)∑
j κj(v) , φ̄(v) = φ(v)∑

φ(v)

(9)

This ensures that the spectral content for a single fre-
quency ω is a convex combination of contributions from
each basis function in the scheduling dimension. Without
this normalization, the power of the spectrum would be
ill-defined and depend on an arbitrary scaling of the
basis functions. The difference between a set of Gaussian
functions and a set of normalized Gaussian functions is
demonstrated in Fig. 1. The normalization performed
in Eq. (9) can be viewed as the kernel function being
made data adaptive by normalizing φ(v) to sum to one.
D. Amplitude and phase functions

In spectral analysis, two functions of the Fourier series
coefficients are typically of interest, the amplitude and
phase functions, which are easily obtained and are stated
here without proof:

Proposition 1: Let a signal y be composed by the
linear combination y = k1 cos(x) + k2 sin(x), then y can
be written on the form

y = A cos(x − ϕ)

with
A =

√
k2

1 + k2
2 ϕ = arctan

(
k2

k1

)
From this we obtain the following two functions for a

single frequency ω

A(ω) = |kω| =
√

<kω
2 + =kω

2

ϕ(ω) = arg(kω) = arctan (=kω/<kω)

In the proposed spectral decomposition method, these
functions are further dependent on v, and are approxi-
mated by

A(ω, v) =

∣∣∣∣∣∣
J∑

j=1
kω,j κ̄(v)

∣∣∣∣∣∣ =
∣∣kT

ω φ̄(v)
∣∣ (10)

ϕ(ω, v) = arg

 J∑
j=1

kω,j κ̄(v)

 = arg
(
kT

ω φ̄(v)
)

(11)

E. Covariance properties
We will now investigate and prove that Eq. (10) and

Eq. (11) lead to asymptotically unbiased and consistent
estimates of A and ϕ and will provide a strategy to obtain
confidence intervals. We will initially consider a special
case for which analysis is simple, whereafter we invoke
the RBF universal approximation results of Park [7] to
show that the estimators are well motivated for a general
class of functions. We start by considering signals on
the form Eq. (12), for which unbiased and consistent
estimates of the parameters are readily available:

Proposition 2: Let a signal y be given by
y = a(v) cos(x) + b(v) sin(x) + e

a(v) = αTφv

b(v) = βTφv

e ∈ N (0, σ2)

(12)

with φv = φ(v) and let α̂ and β̂ denote unbiased
estimates of α and β, then

Â(α̂, β̂) =
√(

α̂Tφv

)2 +
(
β̂Tφv

)2 (13)

is a biased estimate of A with

A < E
{

Â
}

<
√

A2 + φT
vΣαφv + φT

vΣβφv (14)

Proof: Since α, β and e appear linearly in Eq. (12),
unbiased and consistent estimates α̂ and β̂ are available
from the least-squares procedure [3]. The expected value
of Â2 is given by

E
{

Â2
}

= E
{(

α̂Tφv

)2 +
(
β̂Tφv

)2
}

= E
{(

α̂Tφv

)2
}

+ E
{(

β̂Tφv

)2
} (15)

We further have

E
{(

α̂Tφv

)2
}

= E {α̂Tφv}2 + V {α̂Tφv}

= (αTφv)2 + φT
vΣαφv

(16)

where Σα and Σβ are the covariance matrices of α̂ and
β̂ respectively. Calculations for β are analogous. From
Eqs. (15) and (16) we deduce

E
{

Â2
}

= (αTφv)2 + (βTφv)2 + φT
vΣαφv + φT

vΣβφv

= A2 + φT
vΣαφv + φT

vΣβφv

(17)

Now, due to Jensen’s inequality, we have

E
{

Â
}

= E
{√

Â2
}

<

√
E
{

Â2
}

(18)

which provides the upper bound on the expectation of Â.
The lower bound is obtained by writing Â on the form

Â(k) =
√(

α̂Tφv

)2 +
(
β̂Tφv

)2 =
∥∥k̂
∥∥

2 (19)

with k̂ = [α̂Tφv β̂Tφv]. From Jensen’s inequality we have

E
{

Â
}

= E
{∥∥k̂

∥∥
2

}
>
∥∥∥E{k̂

}∥∥∥
2

=
∥∥k
∥∥

2 = A (20)



which concludes the proof.
Corollary 1:

Â =
√(

α̂Tφv

)2 +
(
β̂Tφv

)2 (21)

is an asymptotically unbiased and consistent estimate
of A. Proof: Since the least-squares estimate upon
which the estimated quantity is based, is unbiased and
consistent, the variances in the upper bound in Eq. (14)
will shrink as the number of datapoints increases and
both the upper and lower bounds will become tight,
hence

E
{

Â
}

→ A as N → ∞

Analogous bounds for the phase function are harder
to obtain, but the simple estimator ϕ̂ = arg k̂ based
on k̂ obtained from the least-squares procedure is still
asymptotically consistent [8].

Estimates using the least-squares method (3) are, un-
der the assumption of uncorrelated Gaussian residuals
of variance σ2, associated with a posterior parameter co-
variance σ2(ATA)−1. This will in a straightforward man-
ner produce confidence intervals for a future prediction
of y as a linear combination of the estimated parameters.
Obtaining unbiased estimates of the confidence intervals
for the functions A(v, ω) and ϕ(v, ω) is made difficult by
their nonlinear nature. We therefore procede to establish
an approximation strategy.

The estimated parameters k are distributed according
to a complex-normal distribution CN (x+iy, Γ, C), where
Γ and C are obtained through

Γ = Σxx + Σyy + i(Σyx − Σxy)
C = Σxx − Σyy + i(Σyx + Σxy)

Σ =
[
Σxx Σxy

Σyx Σyy

]
= σ2(ÃTÃ)−1 (22)

For details on the CN -distribution, see, e.g., [9]. A linear
combination of squared variables distributed according
to a complex normal (CN ) distribution, is distributed
according to a generalized χ2 distribution, a special
case of the gamma distribution. Expressions for sums
of dependent gamma-distributed variables exist, see,
e.g., [10], but no expressions for the distribution of linear
combinations of norms of Gaussian vectors, e.g., Eq. (10),
are known to the authors. In order to establish esti-
mates of confidence bounds on the spectral functions,
one is therefore left with high-dimensional integration or
Monte-Carlo techniques. Monte-Carlo estimates will be
used in the results presented in this paper. The sampling
from a CN -distribution is outlined in Proposition 3:

Proposition 3: The vector

z = x̃ + iỹ ∈ CD

where [
x̃
ỹ

]
= L

[
x
y

]
, x, y ∼ N (0, I) ∈ RD

and
Σ = LLT

is a Cholesky decomposition of the matrix

Σ = 1
2

[
<(Γ + C) =(−Γ + C)
=(Γ + C) <(Γ − C)

]
∈ R2D×2D

is a sample from the complex normal distribution
CN (0, Γ, C). Proof: Proof is given in the appendix.

By sampling from the posterior distribution p(kω|y)
and propagating the samples through the non-linear
functions A(ω, v) and ϕ(ω, v), estimates of relevant con-
fidence intervals are easily obtained.

The quality of the estimate thus hinges on the ability
of the basis function expansion to appriximate the given
functions a and b in Eq. (12). Park [7] provides us with
the required result that establishes RBF expansions as a
universal function approximator.4

F. Comparison to related methods
The act of performing a basis function expansion in

V could be compared to performing windowing along
V with a Gaussian window, with the added constraint∑

j κj(v) = 1 imposed by the formulation

κj(v)∑
j κj(v) (23)

which implies an adaptation of the window to the win-
dows surrounding it.

III. Experimental Results
A. Simulated signals

To asses the qualities of the proposed spectral decom-
position method, a test signal yt is generated as follows

yt =
∑
ω∈Ω

A(ω, v) cos
(
ωx − ϕ(ω, v)

)
+ e

vt = linspace(0, 1, N)
x = sort(U(0, 10))
e ∈ N (0, 0.12)

(24)

where Ω = {4π, 20π, 40π}, the scheduling variable vt

is generated as N = 500 equidistantly sampled points
between 0 and 1 and x is a sorted vector of uniform ran-
dom numbers. The sorting is carried out for visualization
purposes and for the Fourier based methods to work, this
property is not a requirement for the proposed method
to work. The functions A and ϕ are defined as follows

A(4π, v) = 2v2

A(20π, v) = 2/(5v + 1)
A(40π, v) = 3e−10(v−0.5)2

ϕ(ω, v) = 0.5A(ω, v)

(25)

where the constants are chosen to allow for convenient
visualization.

4For well behaved functions.
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three frequencies, where the amplitude and phase are modulated
by the functions (25) depicted in Fig. 3.
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confidence intervals.

The signals yt and vt are visualized as functions of
the sampling points x in Fig. 2 and the functions A and
ϕ together with the resulting estimates and confidence
intervals using J = 50 basis functions are shown in Fig. 3.
The traditional power spectral density can be calculated
from the estimated coefficients as

P (ω) =

∣∣∣∣∣∣
J∑

j=1
kω,j

∣∣∣∣∣∣
2

(26)

and is compared to the periodogram and Welch spectral
estimates in Fig. 4. This figure illustrates how the peri-
odogram and Welch methods fail to clearly identify the
frequencies present in the signal due to the dependence
on the scheduling variable v. The LPV spectral method,
however, correctly identifies all three frequencies present.
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Periodogram Welch LPV

Fig. 4. Estimated spectra, test signal. The periodogram and Welch
methods fail to identify the frequencies present in the signal due to
the dependence on the scheduling variable v. The LPV spectral
method correctly identifies all three frequencies present.
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Fig. 5. Measured signal as a function of sampling location, i.e.,
motor position. The color information indicates the value of the
velocity/scheduling variable in each datapoint. Please note this is
not a plot of the measured data sequentially in time. This figure
indicates that there is a high amplitude periodicity of 4 rev−1 for
low velocities, and slightly higher frequencies but lower amplitude
signals at 7 rev−1 and 9 rev−1 for higher velocities.

B. Measured signals

The proposed method was used to analyze measure-
ments obtained from an ABB YuMi robot. Due to torque
ripple and other disturbances, there is a velocity depen-
dent periodic signal present in the velocity control error,
which will serve as the subject of analysis. The analyzed
signal is shown in Fig. 5.

The influence of Coulomb friction on the measured
signal is mitigated by limiting the support of half of the
basis functions to positive velocities and vice versa. A to-
tal number of 10 basis functions was used and the model
was identified with ridge regression. The regularization
parameter was chosen using the L-curve method [11].
The identified spectrum is depicted in Fig. 6, where the
dominant frequencies are identified. These frequencies
correspond well with a visual inspection of the data.
Figure 6 further illustrates the result of applying the
periodogram and Welch spectral estimators to data that
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Fig. 6. Estimated spectra, measured signal. The dominant frequen-
cies are identified by the proposed method, while the Fourier based
methods correctly identify the main frequency, 4 rev−1, but fail
to identify the lower amplitude frequencies at 7 rev−1 and 9 rev−1

visible in the signal in Fig. 5.
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Fig. 7. Estimated functional dependences with 99% confidence
intervals. The left axis and histogram illustrates the number of
datapoints available at each velocity v. The right axis illustrate
the estimated amplitude functions together with their confidence
intervals.

has been sorted and interpolated to an equidistant grid.
These methods correctly identify the main frequency,
4 rev−1, but fail to identify the lower amplitude frequen-
cies at 7 rev−1 and 9 rev−1 visible in the signal. The
amplitude functions for three strongest frequencies are
illustrated in Fig. 7, where it is clear that the strongest
frequency, 4 rev−1, has most of its power distributed
over the lower velocity datapoints, whereas the results
indicate a slight contribution of frequencies at 7 rev−1

and 9 rev−1 at higher velocities, corresponding well with
a visual inspection of the signal. Figure 7 also displays
a histogram of the velocity values of the analyzed data.
The confidence intervals are narrow for velocities present
in the data, while they become wider outside the repre-
sented velocities.

IV. Conclusions
We have developed a spectral estimation method that

can decompose the spectrum of a signal along an external
dimension, which allows estimation of the amplitude
and phase of the sinusoids as functions of the external
variable. The method is linear in the parameters which
allows for straight-forward calculation of the spectrum
through solving a set of linear equations. The method
does not impose limitations such as equidistant sampling,
does not suffer from leakage and allows for estimation of
arbitrary chosen frequencies. The closed-form calculation
of the spectrum requires O(J3O3) operations due to the
matrix inversion associated with solving the LS-problem,
which serve as the main drawback of the method if the
number of frequencies to estimate is large (the product
JO greater than a few thousands).

An open-source implementation of the method is avail-
able at github.com/baggepinnen/LPVSpectral.jl.

Appendix
Proof: Proposition 3

Let vT =
[
xT yT

]
. The mean and variance of ṽ = Lv is

given by

E {ṽ} = LE {v} = 0
E {ṽṽT} = E {LvvTLT} = LILT = Σ

The complex vector z = x + iy ∈ CD composed of the
elements of v is then CN (0, Γ, C)-distributed according
to [9, Proposition 1].
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