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Abstract 

In mass spectrometry-based shotgun proteomics, protein identifications are usually the 

desired result. However, most of the analytical methods are based in the identification of 

reliable peptides and not the direct identification of intact proteins. Thus, assembling 

peptides identified from tandem mass spectra into a list of proteins, referred as protein 

inference, is a critical step in proteomics research. Currently, different protein inference 

algorithms and tools are available for the proteomics community. Here, we evaluated five 

dominant software tools for protein inference (PIA, ProteinProphet, Fido, ProteinLP, 

MSBayesPro) using three popular database search engines: Mascot, X!Tandem, and MS-

GF+. All the algorithms were evaluated using a highly customizable KNIME workflow using 

four different public datasets with varying complexities (different sample preparation, 

species and analytical instruments). We defined a set of quality control metrics to evaluate 

the performance of each combination of search engines, protein inference algorithm, and 

parameters on each dataset.  
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1. Introduction 

Proteomics can be used for the study of the biological functions of proteins, cellular 

localization, post-translational modifications (PTMs), and interactions between proteins (1, 

2). The field has seen great development in the last years due to advances in mass 

spectrometry (MS) instrumentation, the development of new analytical methods (3-5), and 

novel computational approaches (2, 6). Bottom-up proteomics is currently the standard 

analytical method to identify and quantify proteins based on the presence of peptides 

obtained by digestion of the protein mix during sample preparation. Current computational 

approaches can typically be broken down into three main steps: 1) peptide identification, 

2) quality assessment of the peptide identifications, and 3) the assembly of the identified 

peptides into a final protein list using protein inference algorithms (7, 8). During peptide 

identification, peptide fragmentation spectra (MS/MS) are assigned to peptide sequences 

to generate a set of Peptide-Spectrum Matches (PSMs) using database search engines, 

such as Mascot (9), MS-GF+ (10), or X!Tandem (11). Then, it is necessary to assess the 

reliability of these identifications (12) by estimating collective false discovery rates or by 

assessing correctness probabilities for each PSM. Finally, the identified peptide 

sequences are assembled into a set of confident proteins, which enables protein 

quantitation or pathway analysis (13). 

Ideally, protein inference produces a protein list from the identified peptides with all 

proteins of the original sample prior to digestion. Unfortunately, ambiguities arise when an 

identified peptide sequence can be explained by more than one entry in a protein 

database (14). Under certain assumptions, some of these ambiguities can be resolved 

when taking other peptide identifications, physicochemical properties, or quantities into 

account. Unfortunately, there are cases when it is not possible to resolve an ambiguity, 

e.g. if two protein entries map to exactly the same sets of identified peptides (15). 

In 2003, PeptideProphet and ProteinProphet were published as some of the first 

algorithms and tools to address the challenges of protein inference, using a probabilistic 

model (16). ProteinProphet, a widely used algorithm integrated into the Trans-Proteomic 

Pipeline (TPP), employs an iterative heuristic probability model to estimate protein 

probabilities based on peptide probabilities. Other algorithms have been proposed using 

Bayesian methods (14) or linear programming (17), incorporating additional information 

like the isoelectric point, retention time, or detectability during protein inference (18, 19). 

As a result, several protein inference implementations are available to the proteomics 

community (20) including the implementations provided by search engines such as Mascot 
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(9) or Andromeda (21, 22). In addition, a number of commercial tools provide protein 

inference, such as ProteomeDiscoverer (Thermo Scientific, 

http://www.thermoscientific.com/en/products/mass-spectrometry.html) and Scaffold (23). 

Despite this wide range of tools and algorithms, only a few evaluations have been 

performed to benchmark their performance (20, 24, 25). In 2012, Claassen and co-workers 

benchmarked ProteinProphet with different “gene locus inference” approaches and 

opened the field to perform other studies including other inference approaches (24). A 

thorough comparison is hampered by the large number of possible combinations of tools, 

problems with interoperability of tools (e.g., the use of proprietary file formats, insufficient 

documentation or platform-dependence), and the lack of a clear set of metrics for unbiased 

evaluation of the performance. 

Here, we evaluate and benchmark five leading tools for protein inference: ProteinProphet 

(16), MSBayesPro (26), ProteinLP (27), Fido (14) and PIA (28). To achieve this, three 

popular search engines including Mascot (9), X!Tandem (11), MS-GF+ (10) and their 

combinations were used with every protein inference tool. We implemented a workflow in 

the highly customizable KNIME (29) workflow environment using a series of OpenMS 

nodes and several new workflow nodes (https://github.com/KNIME-OMICS) to study all 

combinations of these search algorithms and inference algorithms. This approach is 

scalable to arbitrary numbers of algorithms. We provide different metrics to benchmark the 

algorithms under study. Amongst others, the numbers of reported proteins, peptides per 

protein, and uniquely reported proteins per inference method are used to evaluate the 

performance of each inference method. Four datasets of different complexities and from 

different species were employed to evaluate the performance of protein inference 

algorithms including one “gold standard” or “ground truth” dataset previously used to 

compare protein inference algorithms (28, 30). The final results for complex samples (the 

yeast “gold standard” dataset and the human lung cancer dataset - PXD000603 -) vary not 

only regarding the actual numbers of protein groups but also concerning the actually 

reported groups. The robustness of the numbers of reported proteins when using 

databases of differing complexities is depending on the applied inference algorithm. The 

final results also showed that merging the identifications of multiple search engines does 

not necessarily increase the number of reported proteins, but does increase the number of 

peptides per protein and thus can generally be recommended. At the same time, the 

present study shows that proper selection of search engine and inference algorithm is 

crucial to the yield of information from proteomic data sets. 

http://www.thermoscientific.com/en/products/mass-spectrometry.html
https://github.com/KNIME-OMICS
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2. Material and methods 

 

2.1 The benchmark workflow 

The presented protein inference comparison workflow is based on KNIME (29) and 

OpenMS (31). We made use of the existing OpenMS nodes, but we also implemented 

additional nodes for some of the tools. The developed workflow can be split into seven 

different steps (Figure 1). The first step (A) configures basic variables like the regular 

expression to identify decoys in the FASTA protein database and the allowed FDR q-value 

threshold. Also, if a gold-standard dataset is analyzed, the reference protein list is loaded 

with the set of proteins known to be in the data. Step (B) performs conversion to mzML, 

optional peak centroiding for spectra recorded in profile mode, and removal of MS1 

spectra. The remaining tandem spectra are searched in step (C) using three different 

search engines (X!Tandem, Mascot, and MS-GF+) using the adapter nodes provided by 

OpenMS. Furthermore, the results are filtered for peptides with a minimum length of 7 

amino acids and exported to idXML files, OpenMS’s internal format, for further processing. 

In step (D) all possible combinations for the results of the three search engines are 

created. Peptide posterior error probabilities are calculated with the 

IDPosteriorErrorProbability tool, which is a standalone OpenMS node used for estimating 

the probability of peptide hits to be incorrectly assigned (32). For the assessment of the 

combined search engine results, results are combined using the Consensus ID (33) 

incorporated in OpenMS with the PEPMatrix algorithm. After calculating the PSM FDR 

using the target decoy information, all peptides with FDR q-value > 0.01 are filtered out 

and no longer considered in the analysis. To evaluate the FDR on the protein level later 

on, the target and decoy PSMs below the 0.01 FDR q-value threshold are passed together 

to all protein inferences. 

Since MSBayesPro requires a peptide detectability additional to the probability during the 

inference process, we compute a detectability model of all results in step (E) using the 

OpenMS node PTModel (34). The IDFilter node was used to get the high scoring 

identifications (500 distinct peptides or at least one fourth of all available) to train the 

PTModel model. Additionally, we provide a subset of the PSMs for low-confidence 

peptides (i.e. those 500 peptides with lowest identification scores/probabilities or the 
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lowest scoring fourth of all available) as training input to the model (Supplemental File S1, 

section 6). In the next step (F) of the workflow the final list of peptides with the 

corresponding probabilities and detectability values are imported into the PIA (28, 35, 36), 

Fido (14), ProteinLP (17), MSBayesPro (26) and ProteinProphet (16) nodes (Supplemental 

File S1, section 7) to generate the protein lists. 

PIA used the SpectrumExtractor algorithm with the recommended settings (using the best 

PSM FDR Score per peptide as basis for protein score with multiplicative protein scoring). 

This algorithm selects for each spectrum only the peptide that increases the total 

probability or score of the corresponding protein (28). The Fido node performs a fast 

Bayesian inference in order to solve the protein inference problem. The recommended 

parameters for gamma, alpha and beta (0.5, 0.1 and 0.01) were used for each run. 

ProteinProphet (PP) (16) takes a pepXML file as input that contains peptides with 

associated probability scores. Different peptide identifications corresponding to the same 

protein are combined together to estimate the probability that their corresponding protein is 

present in the sample. The pepXML files were refined using PP’s xinteract to correct the 

decoy annotations and FASTA file connection. Afterwards, PP was executed without any 

parameters except MINPROB0.05 to include only peptides with probability of at least 5% 

into the inference. MSBayesPro (26) is a Bayesian protein inference algorithm. Besides 

peptide probabilities derived from the spectrum scoring it also incorporates the peptide 

detectability from the PTModel node in the probabilistic model. ProteinLP (17) introduces 

the marginal probability of each identified peptide being present is known. The algorithm 

tries to find a minimal set of proteins while peptide probabilities should be as close to its 

known value as possible. Also ProteinLP does not need any further parameters. 

The FDR q-values were calculated, based on the target-decoy approach, to control the 

false rates at the protein level (37). We employed the protein FDR q-value <= 0.01 

threshold for all metrics except for the pseudo-ROC plots. Finally, in (G) the inference 

reports are generated, including both numbers and graphs (Supplemental File S1, section 

8 and Supplemental Files S03-S14). For each search engine combination the number of 

FDR filtered PSMs is reported to give an overview of the identification step. Besides the 

target and decoy labels, all reference proteins in “gold standard datasets” were labeled to 

be true positives in the samples. A pseudo-ROC curve is generated with the number of 

true positives against the q-value of the FDR on protein level (28, 38). For all further 

metrics, the analyses were restricted to the high confidence proteins with a q-value below 

0.01 or 1%.  
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2.2 Benchmark metrics 

Benchmarking requires both a high-quality dataset/workflow and defined metrics to 

evaluate the improvements and potential pitfalls for these tools (39). We used a set of 

metrics based in previous studies to benchmark the inference algorithms and tools (24). 

The number of protein groups represents the first intuitive metric for a quick overview of 

the inference performance (20). We used the number of protein groups below the 1% FDR 

q-value on protein level for each inference algorithm (see Figure 5). A protein (ambiguity) 

group is an indistinguishable entity reported by an algorithms (40). In such groups, the sets 

of peptides overlap perfectly in the set of proteins from which they come. In addition, we 

studied the overlap of protein groups between all inference algorithms since the number of 

protein groups reported may be the same and yet the identities may be different. The 

proportions of mutually reported groups were calculated to gain deeper insight into the 

consensus of the reported protein groups (see Figure 4). It is furthermore possible for 

uniquely reported protein groups (i.e. groups reported by one inference algorithm alone) to 

distinguish whether the proteins in a group are reported in another combination of 

accessions as a group by any inference algorithm (light orange in plot) or whether they are 

truly uniquely reported (dark orange in plot). We additionally created Venn diagrams to 

visualize the overlap of the reported protein groups in a widely known way (see Figure 3a 

and Supplemental Files 3-14, sections 4 and 5).  

Also, we used a heat-map to represent how many groups are shared by which reports 

(see supplemental Figures 4 in the supplemental reports). We studied the behavior of the 

number of reported protein groups along FDR q-values (0-5%) on protein level using 

pseudo-ROC curves (Figure 2 and 3) (28, 38). We also highlighted the true positive protein 

groups for the ground truth datasets (the yeast and the iPRG2008 dataset). Furthermore, 

we reported the number of identified peptides and peptide-spectrum matches by protein 

groups (see Figure 9 for peptides per protein). Finally, we plotted the number of reported 

proteins compared with the respective protein length to assess the performance of each 

algorithm retrieving proteins with short/long lengths (see section 13 in the Supplemental 

Files S3-S11). In Figure 8, we plotted comparisons of protein ranks by inference method 

for groups reported uniquely (i.e. groups which are not reported by any other method 

below the 1% protein FDR q-value threshold). All metrics for each search engine 

combination and dataset were plotted in the supplemental report files (Supplemental Files 

S3-S11). For all the current metrics we use the protein groups and protein sub-groups if 
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the inference algorithm reports them by default (Fido and ProteinLP). A protein sub-group 

is a protein group whose peptides are completely explained by another protein group (see 

an example in Section 10, Supplemental File S1). 

 

2.3 Benchmark Datasets  

In the present study we have tested four public datasets: the mouse lysate from the 

iPRG2008 study (http://www.abrf.org/research-group/proteome-informatics-research-

group-iprg), a subset (the 070119-zl-mudpit07-1 files) of the “Gold Standard of Protein 

Expression in Yeast” also used by Ramakrishnan et al., the lung cancer samples (LC1-

LC12) of a more recent human dataset from the PRIDE repository (PXD000603) (41) and 

the HCD measurements of the histone enrichment study deposited in PRIDE under the 

identifier PXD001118 (42). For the iPRG2008 and the PXD00118 dataset the provided 

MGF files were used for identification, for the other two datasets the collections of spectra 

were converted to the mzML format using ProteoWizard (43). Tandem mass spectra were 

searched against appropriate protein sequence databases using the target/decoy 

approach (TDA) with three different search engines: X!Tandem (version Sledgehammer 

2013.09.01.1), MS-GF+ (version beta v10089) and Mascot (version 2.5). The first two tools 

are not the most recent versions, but the ones shipped with the currently stable OpenMS 

version 2.0. 

To analyze the influence of the database complexity in protein inference, each dataset was 

searched against three different databases: (i) UniProtKB/Swiss-Prot, (ii) Uniprot reference 

proteome, and (iii) Uniprot reference proteome containing known isoforms for each gene, 

in contrast to the first two, which contain only the longest isoform for each gene (Section 9, 

Supplemental Files S1). Only two databases were analyzed for the yeast dataset because 

the Swiss-Prot and the reference proteome sets are equal. The iPRG2008 dataset was 

additionally identified using the provided mouse database. The decoy databases were 

created with the DecoyDatabaseBuilder (27) by shuffling the protein sequences and 

appending them to the target database creating a concatenated target-decoy database. An 

exception was the provided iPRG2008 database, where the provided target-decoy 

sequences with reversed decoys was used. We used the same search parameters 

wherever possible for each search engine, for the individual settings of each dataset (see 

Table 1). For the digestion of proteins to peptides a fully tryptic digestion was selected for 

the iPRG2008, yeast and PXD000603 datasets. For the histone dataset (PXD00118) the 

cleavage at lysine was masked by a fixed modification and therefore neglected. The 

http://www.abrf.org/research-group/proteome-informatics-research-group-iprg
http://www.abrf.org/research-group/proteome-informatics-research-group-iprg
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workflows, search engine results and all of the final results are available via 

ProteomeXchange and GitHub.  

 

3. Results 

3.1 General assessment of the protein inference algorithms 

 

Running the aforementioned workflow, we analyzed 420 different protein lists due to the 

combination of the three different search engines, the five inference tools and the four 

datasets using ten different databases. We analyzed the number of FDR filtered PSMs for 

each single search engine and their combinations before performing any protein inference 

evaluation. The benefit of combining search engine results for spectrum identification has 

already been shown extensively in other publications (44, 45). It is generally accepted that 

search engines in combination yield more valid PSMs, especially in low-resolution 

fragment ion measurements (see section 1 in the Supplemental Files S3-S11). X!Tandem 

and MS-GF+ identified more PSMs than Mascot in almost all setups; the only exception 

was in the Swiss-Prot PXD000603 run, where X!Tandem was slightly outperformed by 

Mascot, and the UniProt proteome PXD001118 run. In the latter MS-GF+ alone was 

performing surprisingly suboptimal (X!Tandem reported 3.4, Mascot 2.7 times as many 

PSMs), due to relatively high-ranking decoy PSMs. The second biggest discrepancy 

between two single search engines was when the PXD000603 dataset was searched 

against the proteome set with isoforms, where MS-GF+ reported 1.55 times as many 

PSMs as Mascot. The average ratio between the lowest and highest single search engine 

was 1.62 (1.44 excluding the two prior mentioned outliers). Each combination of two 

search engines returned more than the respective single engines. The combination of all 

three engines yielded the most PSMs for each dataset, increasing the report of the best 

single result by 90% on average and ranging from 17% (iPRG2008 dataset with proteome 

database) to 173% (UniProt Proteome on the PXD001118 dataset). For all analyses in this 

work it must be considered that we inspected only the Consensus ID with the PEPMatrix 

algorithm provided by OpenMS for the combination of PSM results and the posterior error 

probabilities (PEPs) calculated by IDPosteriorErrorProbability. 

Figure 2 shows pseudo-ROC curves of the number of reported target protein groups 

against the local protein FDR q-values for all datasets, the three search-engines 

combination and the respective Swiss-Prot database. The overall number of reported 

protein groups under a certain q-value varies slightly between the different inference 
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algorithms. Fido outperforms the other inference algorithms at 1% FDR q-value for the 

more complex datasets yeast and PXD000603 by 5.8% and 0.2% more protein groups 

respectively (see also further discussion of other metrics). However, all other approaches 

outperform Fido significantly on the iPRG2008 dataset. The main reason in this particular 

case is the highly unbalanced composition of target (34’127) versus decoy (332) PSMs. 

This resulted in much larger groups for target proteins reported by Fido, leading to reduced 

posterior probabilities of them, eventually boosting the ranks and therefore the q-values of 

decoys. The MSBayesPro results showed that the detectability algorithm implemented into 

PTModel did not perform as well as the algorithm from the original publication (Section 4, 

Supplemental Files S3 to S14). For this reason, the results from MSBayesPro were moved 

to Supplemental information; however, we will discuss in the manuscript some major 

drawbacks (but also advantages) of using detectability algorithms for protein inference. 

 

3.2 Analysis of ground truth datasets: Yeast and iPRG2008 

 

The reported protein groups for a given threshold is a basic metric to evaluate the 

performance of a given inference algorithm. However, it should be complemented with 

other metrics to label a protein inference superior to any other. In fact, it is more relevant to 

see whether the true protein groups are reported. There are several publicly available 

datasets containing ground truth data for peptides (46) and only relatively small protein 

datasets (47). Only the yeast dataset used can be considered as a complex mixture. We 

used three Venn diagrams for the reference set using Swiss-Prot database to examine the 

content of correctly identified proteins in the yeast dataset (Figure 3). We consider a 

protein group as true-positive if it contains at least one accession of the reference set of 

accessions, which are known to be in the sample. Figure 3a shows all the proteins 

identified in the yeast dataset by every inference algorithm without discrimination of true 

and false positives regarding the reference set. The yeast reference set contains 4,253 

protein entries that are known to be in the sample (also validated by 2D-DIGE).  

The number of reference proteins reported by Fido, PP, ProteinLP and PIA were 1193, 

1152, 1149, 1095, respectively (Figure 3b). Fido identified 98, 44, and 41 more reference 

proteins than PIA, ProteinLP and PP, respectively. Most of the proteins uniquely identified 

by Fido (78%) are included in the reference set (Figure 3a and b). However, the inference 

algorithms are also reporting proteins that are not included in the reference set (Figure 3c). 

These proteins can be considered as potential false positives or new evidences that were 

not labeled properly. The number of proteins reported by Fido, PP, ProteinLP and PIA that 
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are not included in the reference set were 44, 29, 29, and 27, respectively. These proteins 

have more probability to be false positives if they are reported by only one inference 

algorithm. A close inspection shows that Fido uniquely reports the highest number of 

protein groups (12 groups) that are not in the reference set (Figure 3c). In contrast, 

ProteinProphet, ProteinLP and PIA uniquely reported 0, 1 and 2 proteins that are not in the 

reference set.  

 Also, we studied the protein clusters for the iPRG2008 dataset. A cluster is a set of 

proteins with partially shared peptides and in the iPRG2008 study a certain number of 

these protein groups should be reported as true positives (see the original study on 

http://www.abrf.org/index.cfm/group.show/ProteomicsInformaticsResearchGroup.53.htm). 

This allows the calculation of numbers for false positives (FP, i.e. too many reported 

protein groups in a cluster), false negatives (FN, too few reported groups in a cluster) and 

true positives (TP, exact number of reported group in a cluster). Furthermore, the total 

number of reported protein groups is of interest for this analysis. Using this information, the 

results can be ordered on that the highest number of TP, the fewest FN, the fewest FP and 

last the total number of reported proteins with 1% FDR (see Supplemental File S2 – 

iPRG2008 analysis). PIA reports the most TP with fewest FN for all search engine 

combinations, but the same numbers for the Mascot search alone.  

ProteinProphet generally reports the TP more conservatively but is very good in controlling 

the FP. This result is correlated with the results in the yeast dataset where ProteinProphet 

does not uniquely report any protein that was not labeled in the reference set. On the other 

hand, it misses many proteins per cluster (higher FN rate than the before mentioned 

algorithms). Fido yields the highest number of FPs meaning that it reports too many 

separate protein groups per assumed cluster and relatively few TP.  

  

3.3 Evaluation of the overlap amount inference algorithm 

 

The next inspected metric is the number of reported protein groups as well as the fraction 

of protein groups reported by other inference algorithms (Figure 4). The plots show the 

numbers of protein groups reported for the iPRG2008 (a-c), yeast (d, e), PXD000603 (f-h) 

and PXD001118 (i-k) datasets for the combination of the three search engines. First, we 

analyzed the impact of the database complexity used for the identification by comparing 

results with Swiss-Prot (Figure 4 a, d, f, i), UniProt proteome (Figure 4 b, d, g, j) and 

Uniprot proteome with isoforms (Figure 2 c, e, h, k). It is important to note that the yeast 

Swiss-Prot and UniProt proteomes are identical. The overlap of protein groups reported by 
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all inferences (teal) is bigger when using the least complex database (Swiss-Prot) for 

identification.  

Figure 4 shows that Fido increases more than any other algorithm the number of uniquely 

reported proteins when more complex databases are used (UniProt proteomes). This is 

mainly because Fido reports sub-protein groups (groups whose peptides are contained in 

another group, section 10 in Supplemental File S1). In contrast, PIA, ProteinLP and PP 

seemed more robust against changes in the database complexity. PIA and ProteinLP 

tended to report the most groups on more complex databases (e.g. on PXD000603 PIA 

reports 16% more groups than PP for the UniProt proteome without isoforms and 15% 

more for the proteome with isoforms). On the iPRG2008 dataset, PIA and ProteinLP 

reported on average 42% and 40% more than PP, respectively. Here, Fido and PP 

reported similar numbers of protein groups for the Swiss-Prot dataset. However, on the 

other two databases (more complex ones) Fido reported 33% less than PP. In less 

complex databases Fido performs better than the other inference algorithms (e.g. an 

average of 5% more protein groups than PP on the yeast dataset). These results were 

also visualized using the more common Venn diagrams (Figure 3a and Supplemental Files 

3-14). Both analyses also show that even if the actual numbers of reported protein groups 

may be similar between the inference algorithms (Figure 3a and Figure 4d), the actually 

reported groups and their overlaps differ between the algorithms. 

The number of reported groups is increased when more search engines are combined 

compared with the results of single search engines (Figure 5). For each single dataset a 

pattern for the ratios between the inference algorithms and search engine combination is 

observed (e.g. Figure 5 showed that Fido reports most protein groups, followed by PIA and 

PP, then ProteinLP). However, the search engine and the inference algorithm should be 

selected carefully. For example in the PXD000603 dataset plotted in Figure 5, when 

X!Tandem alone is used with Fido the number of reported groups is decreased with 

respect to the other combinations. 

Fido and the underlying generative (Bayesian) model relies on reasonable probabilities for 

the observed peptides, which are besides the three model parameters the only input to the 

algorithm. Although being relatively robust for multiple types and shapes of distributions of 

these input probabilities, even with parameter estimation, it cannot correct for heavily ill-

shaped ones (this is similar to the saying “garbage in, garbage out”). This happens to be 

the case with unfiltered X!Tandem results as described in Figure 6 c, f. If we have a look at 

the different score distributions of the three used search engines: Mascot-EValue, MS-

GF+-SpectralEValue, and X!Tandem-EValue in Figure 6 a-c, we can highlight different 
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points. Whereas Mascot and MS-GF+ yield distributions of an expected shape (a large 

peak in the lower region of the scores corresponding to false-positive hits and a flat right 

tail coming from an assumed second true-positive distribution), X!Tandem has a different 

distribution. It is not well-suited for the estimation of posterior probabilities with the fitting-

based algorithm used by algorithms like IDPosteriorProbability in OpenMS. The 

distribution of the X!Tandem-EValues actually poses two problems when fitting a mixture 

of two distributions to it: Firstly, due to the bimodal nature of the distribution of the 

X!Tandem-EValues coming from an unexplainable valley at EValues around 1.0, the used 

expectation-maximization algorithm (EM) will try to distinguish between the two peaks and 

uses the second flat distribution of true-positives to explain parts of the second peak’s 

density. In extreme cases where the algorithm fully picks up the second peak in the bad 

scoring region as a true-positive peak, it will yield wrongly interpreted posterior 

probabilities. Secondly, even if the impact of this second peak on the true-positive 

distribution is marginal, the density at bad values is very high compared to the remaining 

scores, resulting in a very strong and importantly narrow distribution for the false-positives. 

This results in the probability of a value to be generated by the false-positive distribution 

starting to be near zero at relatively low scores, which leads to many posterior peptide 

probabilities of 1.0 (Figures 6 d-f).  

For Fido, one should be careful with inputs of extreme probabilities for the peptides, such 

as 0.0 or 1.0. In a Bayesian model this strictly excludes every combination not using this 

peptide although other information suggests differently (which is especially is a problem 

when assigning a probability of 1.0 to so many peptides as in the case for X!Tandem). A 

second problem is the lack of discriminative power between equal scores. Since the 

parameter estimation of Fido tries to create well-calibrated and well-discriminating results 

at the same time, this creates an issue. Extreme values for peptide probabilities as inputs 

are likely to generate extreme probabilities for the proteins. If more than a minor 

percentage of the proteins are assigned probabilities of 1.0 and these include decoy 

proteins, the first q-value-cutoff considered in a corresponding receiver operating curve 

(ROC) results in an uninformative straight line in the upper part of the curve covering all 

proteins of probability 1.0. This, in turn, makes it hard to compare it to other methods and 

limits the usefulness of the parameter estimation. 

Interestingly, the inference of Fido in some runs that include results from Mascot alone is 

significantly superior regarding numbers of protein groups to all other inferences. 

Additionally, this can be seen on the combination of Mascot and MS-GF+ results in the 

iPRG2008 dataset with the provided database. This effect can be explained by the fact 
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that the local FDR and the FDR q-value on protein level differ under certain circumstances 

(Figure 7). Under specific conditions the local FDR (and therefore the q-value of all 

preceding elements in a sorted report) returns to a low value, after increasing steadily due 

to several reported decoys. If during this increase and decrease of the local FDR many 

targets are reported the respective pseudo-ROC shows a step or a peak (if this occurs at 

the end of the list). The effect can be seen in several of the created pseudo-ROC curves 

(section 5 in Supplemental Files S3-S11) for Fido and ProteinLP. Though except for only a 

few combinations this effect occurs on q-values exceeding the threshold of 0.01 (i.e. 

somewhere between 0.01 - 0.05, e.g. in Figure 7 at 0.022). For the analyses we used the 

q-value, as it is currently a widely accepted method. This behavior shows that a method 

controlling both FDR q-value and local FDR might be more applicable.  

An evaluation of the ranks of the uniquely reported protein groups sorted by 

probability/score revealed some unintuitive distributions (Figure 8). If we assume that the 

top ranking protein groups are the most valid, an intuitive distribution should represent 

protein groups that are not reported in consensus (unique) at the end of the reported lists 

with low scores. For PIA almost all uniquely reported groups are at the end of the list. On 

the other hand, Fido and ProteinLP distributed the unique groups over the complete range 

of indices, with a tendency to the end of the list. The most extreme case is ProteinProphet 

that reports its unique groups at the very beginning. This reveals that the intuitive 

assumption that the majority of the uniquely reported groups are located at the end of the 

report is not correct.  

 

3.4 Impact of multiple search engines 

 

As a further quality assessment metric for reliable identifications, we analyzed the number 

of peptides per protein groups for each protein inference algorithm (46). The numbers of 

peptides per protein group were plotted in a heatmap-like way for the results of the 

PXD000603 dataset with the Swiss-Prot database (Figure 9). Independently of the 

inference algorithm, most protein groups are reported with few peptides and only a small 

fraction is represented by ten or more peptides. In the plotted dataset, the number of 

inferred protein groups with ten or more peptides from the single search engines’ results 

with PIA, Fido and ProteinProphet are on average 5.7% (ranging from 5.1% - 6.7%) of all 

reported groups. Using the results from multiple search engines increases these groups in 

average to 6.5%, though for the X!Tandem-Fido combination the percentage is decreased 

by 0.2%. The actual numerical values are always increased by at least eight protein 
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groups with ten or more peptides. To assess the bias introduced by the reporting of sub-

groups by Fido, we additionally analyzed all metrics after removing these sub-groups. For 

this, all protein groups, whose peptides were a subset of one or more other reported 

protein groups, were removed from the report, before calculating the FDR. This generally 

removed a big fraction of the groups, which were unique for Fido when not removing the 

sub-groups (Supplemental Files S3-14, sections 6 and 7). All analyses (except the 

spectrum identifications by Mascot) were performed on a laptop computer with an Intel(R) 

Core(TM) i7-4800MQ and 16 GB RAM. 

 

4. Discussion 

We have evaluated in detail the performance of difference inference algorithms using four 

different datasets and a set of well-define metrics. MSBayesPro needs detectability 

predictions for each peptide as an input of the inference algorithm. These values can only 

be calculated using the results of preceding experiments or estimated using algorithms like 

the PTModel. Both modeling approaches have drawbacks when experimenting with 

analytical methods (e.g., enrichment, different fractionation methods) for which there are 

no preceding reference results. In these cases, these inference algorithms will not perform 

well (see Supplemental Files S3-S14). Prediction of detectability increases the running 

time and the predicted model (MSBayesPro) is not available making difficult the integration 

into bioinformatics pipelines. However, different authors have demonstrated theoretically 

that the use of properties such as the isoelectric point, retention time or MS1 information 

can be used to improve the inference and identification process (15, 19, 47).  

A uniqueness of the Fido implementation in OpenMS is that it requires a decoy database 

to find the best values of the parameters (α, β, and γ- the prior for the presence of 

proteins) by combining an ROC optimization (in a supervised manner) with FDR 

estimation. If the input data is biased as explained before (see Results section), this 

optimization step leads to suboptimal results. Fido is a very fast implementation with a 

small memory footprint. Meanwhile it is integrated into OpenMS and thus can easily be 

used in bigger workflows. Fido reports in most of the analysis more proteins that the others 

algorithms. However, its performance relies on multiple factors such as PSM score 

distribution, target/decoy database distributions, and redundancy of the database 

(isoforms). These factors make the results of Fido less constant than other algorithms and 

demand more benchmark and tuning of the pipeline (48).  

ProteinLP and Fido have as a main concept not the parsimony of peptides or spectra but 



 16 

the probability of proteins’ occurrences given the PSM or peptide probabilities. By design, 

they report sub-proteins if the respective probabilities are sufficiently high. This difference 

with the parsimonious approaches such as PIA or ProteinProphet should be evaluated 

when choosing an inference algorithm. If many sub-protein groups were reported (e.g. in 

the data in Figure 4g and h, which shows many unique groups for Fido), the FDR q-value 

did increase due to reported decoy sub-groups as well, and the total number of reported 

protein groups decreased. In some combinations of databases, datasets and search 

engines the number of reported groups rises significantly above the reports of the other 

inference algorithms. This is due to an effect of the protein FDR q-value and the local 

protein FDR values (Figure 7). During this effect, the local FDR may exceed a given 

threshold significantly and drop below it after reporting many target proteins. This leads 

into steps in a corresponding pseudo-ROC curve and suggests more advanced methods 

than the q-value or local FDR alone, either combining these or algorithms like Mayu (49). 

ProteinProphet has a very low memory imprint and thus scales to process big datasets. It 

is more conservative in reporting protein groups than other approaches reporting less 

false-positives in the reference datasets. It should be observed in the Venn diagrams and 

the iPRG2008 cluster analysis that it reports a low amount of unique proteins reducing the 

possibility of false positive identifications (Figure 3). One of its main strength is the 

integration into the Trans-Proteomic Pipeline, which incorporates multiple other search 

engines like SEQUEST (50), Comet (51) or Mascot. ProteinLP consumes the highest 

amount of memory and time. Although, it performs well for most of the datasets; in all the 

metrics it is out performed by other inference options.  

Among parsimonious approaches, PIA mostly reports more target protein groups than 

ProteinProphet in the studied datasets. PIA consumes a relatively large amount of memory 

analyzing a not-FDR-filtered or very big dataset. It reports high numbers of confident 

protein groups and like other parsimonious approaches it is relatively fast. However, 

ProteinProphet yields in less false positive identifications when it was used to analyzed the 

ground truth datasets (section 3.2). For both of these datasets Fido reports more proteins 

than other algorithms but also more possible false positives (proteins that are not labeled 

in the reference set).  

A feature that should be considered when choosing an inference algorithm is the 

robustness when using complex databases for spectrum identification. While PIA, 

ProteinLP and ProteinProphet were only slightly affected by this, Fido and MSBayesPro 

reported significantly fewer valid protein groups when using more complex databases at 

1% FDR q-value (Supplemental Files S5, S8, S11 and S14). Figure 9 presented a 
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drawback for parsimonious approaches that reported more single peptide proteins 

compared with probabilistic models such as Fido and ProteinLP. The “two peptides”-rule, 

applied quite often in proteomics to control protein false discoveries (46), can affect and 

change the results of the experiment depending of the inference algorithm used.  

Also, the interoperability and ease of use of an inference algorithm will influence its 

application by a user. All analyzed algorithms except PIA need special non-standard input 

formats. It would be very beneficial for users, if standard formats like mzIdentML or even 

the search engines’ default result files could be used as input. PIA also has the advantage 

that it works with spectrum identifications coming from various file formats, search engines 

and bioinformatics workflows (28, 35). It is the only implementation that works natively with 

standard file formats such as mzIdentML and mztab and it is integrated in PRIDE 

Inspector Toolsuite for the analysis of public datasets (36). It also can be fully integrated 

into OpenMS pipelines, when using KNIME as workflow environment. ProteinProphet uses 

the pepXML format that does have converters for many search engine results, but is well 

known in the proteomics community (52). PIA and Fido are the only algorithms at the 

moment which can be fully integrated into an OpenMS workflow and thus inside KNIME. 

 

5. Conclusion 

 

We introduced a workflow that uses three search engines and five open-source and 

generally applicable protein inference algorithms for the fair and in-depth comparison of 

protein inference results. The workflow and inference methods were tested on four 

datasets with different complexities of protein databases. While there is no explicit best 

inference algorithm, different considerations for choosing a tool can be given. 

The analysis of identifications using protein databases with varying complexity shows 

some algorithm specific results. Due to the occurrence of more decoys, all inference 

algorithms report fewer groups when more complex databases are used. The numbers of 

reported groups by PIA and ProteinProphet are much less dependent on the database 

complexity than Fido. If the detection of specific isoforms is important in the scientific 

context, this could compensate for slightly less protein groups. 

Depending on the underlying report, the FDR q-value may be not sufficient to filter for 

good identifications. This is especially the case if the local FDR exceeds a given threshold 

for a big part of the report, but finally drops below the threshold again. To improve on this 

problem, other strategies should be developed. Another very interesting comparison of 
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protein inference algorithms and the fundamental search engines would be how the 

reported isoforms or splice variants matched on a gold standard dataset, containing the 

knowledge of isoforms and splice variants. This could not be tested thoroughly, due to the 

lack of current publicly available datasets at the time of writing. We also expect that more 

“gold standard” datasets in larger scale will lead to a fairer comparison of protein inference 

algorithms, than the usage of target decoy strategies alone.  

Using Fido and PIA results in more proteins than the other approaches. However, 

ProteinProphet has a more conservative approach and reports less false positives in all 

the analysis. The parsimonious approaches are less dependent on the search engine 

scores distribution than Fido. Although being relatively robust for multiple types and 

shapes of distributions of the input probabilities, even with parameter estimation, Fido 

cannot correct for heavily ill-shaped distributions like some results from X!Tandem in the 

discussed analyses. 

Furthermore, the created workflow could easily be adjusted to benchmark different protein 

inference algorithms in the future and thus gives a fair framework for testing of protein 

inference algorithms in general. Overall, one possibility for future improvements to the 

inference methods could be the use of additional information during the inference process, 

especially, since data from the MS1 level (e.g. deviation from predicted retention time or 

intensities) is readily available in almost all experiments (15, 19, 47). Another source of 

information could come from technical replicates, where agreeing identifications may boost 

the confidence of its correctness. It might additionally be helpful to view protein inference 

as a (binary) subtask of quantification to leverage knowledge from this related problem. 
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Availability 

 

All of the analyzed protein inference algorithms are available as KNIME nodes and can be 

used together with OpenMS workflows to yield protein identification lists. The designed 

workflow also allows the exchange of the tested inference algorithms and thus 

comprehensive benchmarking of new implementations. The plugins for the newly 

developed nodes and the complete workflow are available as open source on 

https://github.com/KNIME-OMICS. The workflows, search engine results and all of the final 

results are available via ProteomeXchange with the identifiers PXD003066, PXD003067, 

PXD003068, PXD003072, PXD003953, PXD003954, PXD003955, PXD003956, 

PXD003957, PXD003958, PXD003959, PXD003960. 
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Table 1. The datasets and search engine settings used in this work. 

 

Datasets URL Instrument 
Fragmentation 

method 

Peptide/fragment 

tolerance 
Modifications 

iPRG2008 

http://www.abrf.org/index.

cfm/group.show/Proteomi

csInformaticsResearchGr

oup.53.htm 

3200 QTRAP CID 
0.45 Da 

0.45 Da 

Fixed: iTRAQ 4-plex (K, N), Methylation (C) 

Variable: Oxidation (M) 

Cleavage: [KR]|{P} 

Yeast Gold 

Dataset 

http://www.marcottelab.or

g/MSdata/Data_02 
LTQ Orbitrap CID 

25 ppm 

0.5 Da 

Variable: Oxidation (M) 

Cleavage: [KR]|{P} 

PXD000603 

http://www.ebi.ac.uk/prid

e/archive/projects/PXD00

0603 

LTQ Orbitrap 

XL 
CID 

10 ppm 

0.8 Da 

Fixed: Carbamidomethyl (C) 

Variable: Oxidation (M) 

Cleavage: [KR]|{P} 

PXD001118 

http://www.ebi.ac.uk/prid

e/archive/projects/PXD00

1118 

LTQ Orbitrap 

Velos 
HCD 

10 ppm 

0.02 Da 

Fixed: Propionyl (N-Term and K) 

Enzyme: [R]|{P} (K is blocked by modification) 

 

http://www.abrf.org/index.cfm/group.show/ProteomicsInformaticsResearchGroup.53.htm
http://www.abrf.org/index.cfm/group.show/ProteomicsInformaticsResearchGroup.53.htm
http://www.abrf.org/index.cfm/group.show/ProteomicsInformaticsResearchGroup.53.htm
http://www.abrf.org/index.cfm/group.show/ProteomicsInformaticsResearchGroup.53.htm
http://www.marcottelab.org/MSdata/Data_02
http://www.marcottelab.org/MSdata/Data_02
http://www.ebi.ac.uk/pride/archive/projects/PXD000603
http://www.ebi.ac.uk/pride/archive/projects/PXD000603
http://www.ebi.ac.uk/pride/archive/projects/PXD000603
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Figure 1: Simplified representation of the workflow used for the peptide identification and protein inference in 

KNIME. As input of the workflow, the raw MS data in mzML format is used; the output consists of graphs and 

numbers, as well as a complete report of the analyzed protein inferences. This workflow can be split into 

seven different stages A-G. (A) Settings and database, import of protein knowledge of gold standard 

datasets, (B) spectrum pre-processing, (C) peptide identification, (D) merging of PSMs (E) creating a model 

for peptide detectability, (F) protein inferences, (G) calculating numbers and graphs of the inferences. 
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Figure 2: Pseudo-ROC curves show the number of reported protein groups against the FDR q-value for the 

four datasets using the Swiss-Prot database and the combination of the three search engines: a) iPRG2008, 

b) yeast-, c) PXD000603, and d) PXD001118 dataset. The plots indicate that the main trend is similar for all 

inference algorithms. Depending on the dataset, different algorithms perform worse than others for certain q-

value ranges, like Fido in the iPRG2008 dataset, PIA in the yeast dataset and ProteinProphet in the 

PXD000603 dataset. 

 

a)  b)  

c) d)  
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Figure 3: Venn diagrams plotting the number of reported protein for each inference algorithm at 1% FDR for 

the ground truth yeast dataset using the Swiss-Prot database. (a) Number of reported proteins for the yeast 

dataset (not only the labeled proteins). (b) Number of reported proteins included in the reference set. (c) 

Number of reported proteins that are not in the reference set.  

a)  b)  

 
c) 
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Figure 4: Number of protein groups reported for the datasets using different inference algorithms and 

databases. Number of protein groups under a 1% FDR q-value for the iPRG2008 (a-c), yeast (d, e), 

PXD000603 (f-h) and PXD001118 (i-k) dataset with the corresponding Swiss-Prot (a, d, f, i), Uniprot 

proteome (b, d, g, j, Swiss-Prot and proteome set being equal for the yeast dataset) and Uniprot proteome 

a)  b)  c)  

 

d)               e)  

f)  g)  h)  

i)  j)  k)  
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with isoforms (c, e, h, k). The bars color-code represent the overlap: protein groups reported by all inferences 

are in teal (bottom), groups reported by 2, 3 and 4 groups in light blue with increasing darkness. Unique 

groups are orange, where light orange codes for groups whose accessions are reported in different 

combinations by other inferences and dark orange stands for groups with members, which are not reported 

by other inference algorithms. It can be seen, that with increasing complexity of the database, the reports’ 

consensus decrease. Fido’s results are also decreasing but the number of uniquely reported groups 

increases. This can be explained due to reported sub-proteins. PIA, ProteinLP and PP seem to be relatively 

robust against the change in database complexity 
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Figure 5: Number of protein groups reported using different inference algorithms and the Swiss-Prot 

database for the PXD000603 dataset. The bars show the number of FDR 1% valid protein groups reported 

for all analyzed inference algorithms and combinations of search engine identifications. For most 

combinations the same pattern for a ratio between the inference algorithms can be seen, as well as an 

increase in the number of reported protein groups when combining the search engines. 
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Figure 6: Distribution of scores for reported PSMs for the three search engines, the Swiss-Prot database for the PXD000603 dataset. a) Density of EValues of the 

Mascot search, b) Density of EValues of the MS-GF+ search, c) Density of EValues of the X!Tandem search, d) Posterior probabilities with OpenMS’ 

IDPosteriorErrorProbability tool on the Mascot EValues, e) Posterior probabilities with OpenMS’ IDPosteriorErrorProbability tool on the MS-GF+-SpectralEValues. f) 

Posterior probabilities with OpenMS’ IDPosteriorErrorProbability tool on the X!Tandem-EValues. 

a)    b)   c)  

 d)          e)    f)     
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Figure 7: Pseudo-ROC plots of the protein groups reported for the PXD000603 datasets using the merged 

results of all search engines on the proteome database with isoforms and either the FDR q-values or the 

local FDR. This plot shows, plotted for the Fido results, that under certain circumstances the q-value can 

differ significantly from the local FDR. If this effect emerges under the given q-value threshold (usually 1%), 

the affected method generates more reports than expected. Larger differences between the local FDR and 

q-values can be seen at two ranges: one at q-values of 0.001 and one for q-values of 0.022. The respective 

plot for the PIA q-values is given for reference, here no larger discrepancies could be detected, and therefore 

the PIA local FDR values were not plotted. 
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Figure 8: Distribution of the ranks of uniquely reported protein groups. This plot shows for the analyzed 

inference methods, on which ranks in the reported list of protein groups uniquely reported groups occur. 

Depicted is the data from the merge of PSMs from Mascot, X!Tandem and MS-GF+ for the PXD000603 

dataset using the Swiss-Prot database. For PIA it can be seen, that almost all uniquely reported groups are 

at the end of the list. Fido and ProteinLP, on the other hand, distribute the unique groups over the complete 

range of indices, though with a tendency to the list’s end. The most extreme case is ProteinProphet which 

reports its unique groups at the beginning. This reveals that an intuitive assumption, that the relatively high 

consensus of reported groups is found in the top of the report, is not correct for all algorithms. 
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Figure 9: Numbers of identified peptides per protein. The graphics show the numbers of peptides identified 

per protein in a heatmap-like plot for identifications from a) X!Tandem, b) Mascot, c) MS-GF+ and d) 

combination of all for the PXD000603 dataset and the Swiss-Prot database. It can be seen, that the most 

proteins are identified with relatively few peptides, while only few proteins have ten or more peptides in this 

dataset. With the single search engines, PIA, Fido and ProteinProphet report on average 5.7% of proteins 

with ten or more peptides, while with the merge of the PSM results they report 6.5% with at least ten 

peptides, and also numerically at least eight proteins more with these many peptides. This shows that also 

on protein level a qualitative improvement is yielded by merging search results. 

 

a)  b)  

c)  d)  


