
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Dopant Engineering of Inter-Subband Linewidth and Lineshape in Multiwell
Heterostructures

Ndebeka-Bandou, Camille; Wacker, Andreas; Carosella, Francesca; Ferreira, Robson;
Bastard, Gerald
Published in:
Applied Physics Express

DOI:
10.7567/APEX.6.094101

2013

Link to publication

Citation for published version (APA):
Ndebeka-Bandou, C., Wacker, A., Carosella, F., Ferreira, R., & Bastard, G. (2013). Dopant Engineering of Inter-
Subband Linewidth and Lineshape in Multiwell Heterostructures. Applied Physics Express, 6(9), Article 094101.
https://doi.org/10.7567/APEX.6.094101

Total number of authors:
5

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.7567/APEX.6.094101
https://portal.research.lu.se/en/publications/1963b99e-e035-4a21-9c89-7a18ac6eaccf
https://doi.org/10.7567/APEX.6.094101


Typeset with apex.cls <ver. 1.0.1> Published in Applied Physics Express 6, 094101 (2013)

Dopant engineering of inter-subband linewidth and lineshape in multi-well
heterostructures

C. Ndebeka-Bandou1, A. Wacker2, F. Carosella1, R. Ferreira1, G. Bastard1,3

1Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS (UMR 8551), Université P. et M. Curie,
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We show by numerical diagonalization of the electronic Hamiltonian including screened Coulombic

impurities that the inter-subband absorption lineshape and linewidth in heterostructures can be controlled

by a suitable location of the dopants. We also point out that the usual optical conductivity calculations that

employ the self consistent Born approximation often lead to incorrect lineshapes although the trends for

the linewidths versus the dopant location are the same as found in the present numerical approach.

It is well established that there exist many possibilities to taylor the widths and barrier heights of

multi-well heterostructures in order to produce a given set of energy levels. The ultimate accomplish-

ment of this bandgap engineering is probably the Quantum Cascade Laser1) where lasing between

subbands with a prescribed energy difference has been realized thanks to a very precise control of the

widths of hundreds of layers. The inter-subband transition lineshape ofan ideal structure is a delta

function peaked at the subband energy difference, if non parabolicity is neglected.2) Actual samples

display an inter-subband absorption linewidth that is affected by inelastic and elastic scatterers, which

essentially perturb the in-plane motion of electrons.3–6) One of them, the scattering at the Coulomb

potential of ionized impurties, is unavoidable due to the requirement of supplying carriers. They are

known to be of relevance and the corresponding scattering rate surpasses, e.g., the electron-electron

scattering.7) In this letter we will show that there exists room for a dopant engineering that allows

a manipulation of the absorption and emission lineshapes in typical Quantum Cascade Laser (QCL)

structures. We will show that a suitable placement of donor atoms results in a narrowing of the inter-

subband lineshape, and that one may create at will inter-subband absorption lines that comprise one

or two peaks (the latter effect has already been observed8)). Moreover, we will show that despite the

in-plane disorder due to coulombic impurities and interface defects (witnessed by the width of the

spectral function) there exists quasi-selection rules for inter-subbandabsorption; in other words that

the width of the inter-subband absorption line can be very small while the intra-subband scattering is

very strong.

The structure we are going to use as representative example is a GaAs/Ga0.75Al0.25As Double
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Quantum Well (DQW) withL1 = 9 nm,L2 = 3 nm and an intermediate barrier width ofh = 2 nm.

The conduction band offset is 217.5 meV. There are three bound states in this structure labelledEn,

n = 1,2,3. In the following, we study the optical transitions betweenE1 and E2 subbands with an

unperturbed energyE2−E1 = 73.8 meV. We shall consider a diluted concentration of donor impurities

nimp = 2.17×1010 cm−2. This corresponds to 8 impurities randomly placed on aS = 200 nm× 200 nm

(x, y) plane located atz = zl. These impurities are screened by mobile electrons and we use the three

dimensional Debye Ḧuckel screening: each screened ionized donors located at~rp = (~ρp, zl) creates a

Yukawa potential

VS C(~r − ~rp) = −
e2

4πε0εr |~r − ~rp|
exp

(

−
|~r − ~rp|

λ

)

(1)

whereλ =
√

ε0εrkBT
e2n3D

is the Debye screening length withεr the static dielectric constant andn3D the

equivalent three dimensional electronic concentration (see Ref.9) for a discussion).

The numerical calculations have been performed by diagonalizing the complete Hamiltonian

H =
p2

2m∗
+ Vb(z) + Vimp(~r) (2)

Vimp(~r) =
∑

p

V sc(~r − ~rp) (3)

including coulombic impurities on a basis of plane waves that are periodic in the 200 nm× 200 nm

box. By expanding on the two subbandsE1 andE2:

Ψν(~ρ, z) =
∑

n

ϕν,n(~ρ)χn(z) (4)

−
~

2

2m∗
∇2ϕν,n +

∑

n′
Vn,n′

impϕν,n′ = (εν − En)ϕν,n (5)

Vn,n′

imp =

∫

dzχn(z)χn′(z)Vimp(~r) (6)

wheren = 1,2 andν labels the eigenstates of the complete Hamiltonian for a given realization of dis-

order.ϕ(~ρ) is the in-plane envelope function. With the numerically calculated eigenstates and eigenen-

ergies, we will compute the absorption coefficient of an electromagnetic wave that propagates in the

layer plane with its polarization parallel toz growth axis:10,11)

α(ω) =
2π

m∗2ωε0cnLzS

∑

ν,µ

( fν − fµ)|〈Ψν|pz|Ψµ〉|
2 × δ(εµ − εν − ~ω) (7)

wherenr is the refractive index,Lz is the effective thickness of the waveguide in relation to the active

region considered – for QCLs filling the entire waveguide this is one period,and we useLz = 19.6 nm

here. fν is the occupation of the stateΨν which we take as a Fermi-Dirac function usingT = 100 K

throughout this paper. For our numerical study, we consider different statistical realizations of disorder

and the results to be presented below are the average over 30 such trials.

The numerical solutions are exact but may be cumbersome to obtain. There however exist many

ways to compute approximately the effects of disorder on the eigenstates as well as the optical con-
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Fig. 1. Spectral functions versus the kinetic energy for two energiesε = 58 meV and 130 meV and for three

dopant locations:zl = 3 nm (panel a),zl = 8.45 nm (panel b),zl = 12.3 nm (panel c). Panel d shows the

conduction band profile of the DQW and the squared modulus of theχ1 andχ2 envelope wavefunctions. The

vertical green solid line represent the impurity plane positions:z1 = 3 nm,z2 = 8.45 nm andz3 = 12.3 nm.

ductivity perturbatively. Unumaet al.6) used Ando’s approach3,4) based on a density matrix treatment

of the conductivity to evaluate the absorption coefficient. As shown in Ref.12) a Non Equilibrium

Green’s Function (NEGF) formalism within the self-consistent Born approximation provides essen-

tially similar results, but allows to treat QCLs self-consistently under operatingconditions, for details

see Ref.13) In this formalism broadening of the unperturbed states of subbandn with in-plane motion

k is expressed by the spectral functions14)

An(ε, k) =
−2ℑ{Σn(ε, k)}

(

ε − En −
~2k2

2m∗ −ℜ{Σn(ε, k)}
)2
+ ℑ{Σn(ε, k)}2

(8)

whereΣn(ε, k) is the retarded electron self-energy. Evaluating the dynamical conductivity with all self-

energy corrections, provides a linewidth, which is typically of the order of−2ℑ{Σ} for the involved

states, but can also show compensation effects.12)

Since we consider a dilute concentration of impurities, except in the vicinity of these impurities

there is|~ρ − ~ρp| ≫ |z − zl| and the matrix element of the single impurity Coulomb potential reduces to

Vn,n′

S C (|~ρ − ~ρp|) ≈ −
e2

4πε0εr |~ρ − ~ρp|
× exp

(

−
|~ρ − ~ρp|

λ

)

δnn′ (9)

On the other hand, very close from an impurity center there is

Vn,n′

S C (|~ρ − ~ρp|) ≈ −
e2

4πε0εr
χn(zl)χn′(zl) ln(|~ρ − ~ρp|) (10)

Hence, we see that the effective potential close to the impurity has a weaker divergence than a coulom-

bic law and that the strength of the short range potential depends explicitly on the location of the dopant

plane. It can immediately be anticipated that the latter feature is at the heart of the dopant engineering.
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In fact, Figs. 1a,b,c show the spectral functionsAn(ε, k) plotted versus~
2k2

2m∗ for the subbandn = 1 at

ε = 58 meV and forn = 2 atε = 130 meV at three dopant positions:zl = 3 nm, 8.45 nm and 12.3 nm,

respectively. The two chosen energies correspond in the unperturbed DQW to E1 and E2 subband

states with roughly the same kinetic energy for the in-plane motion. Atzl = 3 nm, a position where

the subband 1 is more affected by the Coulomb potential than the subband 2 (|χ1(zl)|2 > |χ2(zl)|2), the

width of the spectral function for subband 1 is wider than the one for subband 2. At the same time, the

real part of the self-energy is more negative for state 1. Conversely,atzl = 12.3 nm which corresponds

to the maximum of|χ2(z)|2, state 2 is more affected by the Coulomb scattering, and thus has a larger

width and a more negative real part of the self-energy. Finally, atzl = 8.45 nm, the spectral functions

are very simliar, as the two subbands are affected in about the same manner since|χ1(zl)|2 ≈ |χ2(zl)|2.

In all cases the width of the spectral functions is of the order of 10 meV, and consequently, a corre-

sponding linewidth for the absorption spectrum, would be expected.

We show in Fig. 2a the absorption spectra for the three dopant positions used in Fig. 1 as calculated

by numerical diagonalization. At first we notice, that the absorption spectra are shifted from the bare

transition energy of 73.8 meV corresponding to the relative shifts of the spectral functions. Secondly,

the absorption spectra forzl = 3 nm andzl = 12.3 nm display two peaks. At third, there is only a

single peak forzl = 8.45 nm, whose width is more than an order of magnitude smaller than the width

of the spectral functions. These features can be well understood by considering the density of states

(DOS) and the dipole matrix elements as shown in Fig. 3. For the low dopings considered, the density

of states exhibits a set of impurity related states at the bottom of each subband, whose seperation from

the main band increases with the magnitude of the respective scattering matrix elements. Atzl = 3 nm,

the set of impurity states below the first subband is more pronounced, and absorption to the bottom of

the second subband provides the peak around 78.5 meV (Fig. 2a). The second peak around 74.3 meV

is due to transtions between the continuum of both subbands. Fig. 3a shows, that the dipole matrix

element essentially only connects states with a constant energy difference, which results in the narrow

line width. Conversely, forzl = 12.3 nm, the set of impurity states below the second subband is more

pronounced, which reverts the scenario. The situation forzl = 8.45 nm is peculiar since the scattering

strength is almost identical for both subbands. Thus the transitions betweenthe set of impurity states of

both subbands have the same energy as the transistions between conventional subband states and there

is only one peak. Fig. 3b shows that the matrix element for the optical transions is very selective and

thus the linewidth is very narrow. It is interesting to point out that inter-subband absorption lineshapes

comprising two peaks have already been observed in doped superlatticesand doped quantum well

structures.8,15) Only a numerical modeling of the superlattice absorption was capable to account for

the double peak feature. In addition, varying the temperature affects the weight of the two absorption

peaks as discussed by Stehret al. for very dilute impurities.16) Note that in the present model we

neglected the depolarization effects because of the smallness of the carrier concentration. As a matter

of fact, by using Unuma’set al. formula (Eq. 14 in Ref.6)), and assuming an oscillator strength of 1
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Fig. 2. Absorption spectrum for theE2-E1 transition calculated by numerical diagonalization (Panel a) and by

using NEGF formalism (Panel b) for three dopant locations:zl = 3 nm (blue dashed-dotted line),zl = 8.45 nm

(green solid line) andzl = 12.3 nm (red dotted line).nimp = 2.17× 1010 cm−2. T = 100 K.

and an effective thickness of the 2D electron gas equal toL1 + h + L2, we find a plasma energy of

5 meV and thus a depolarization shift of 0.17 meV, which is negligible compared to the energy of the

impurity related localized states.

Most perturbative approaches, such as the self-consistent Born approximation, only take into ac-

count quadratic terms of the scattering potential. These are not able to reproduce impurity related

localized states, which are multiple scattering events.17) Thus, they result in single peak spectra, as

shown in Fig. 2b for the NEGF approach. Nevertheless, the full self-consistent treatment12) allows for

a good description of the narrow lines and the trends for the shift from thebare resonance are correctly

reproduced.

Both the exact diagonalization as well as the NEGF method predict very narrow inter-subband

absorption lineshapes when the wavefunction amplitudes for thez motion are about the same, at the

doping planez = zl, for the initial and final subbands. In fact, while the electrons undergo scatterings

on coulombic impurities, there seems to exist a quasi selection rule for the inter-subband absorption

(Fig. 3). The contour plot of the dipole matrix element|〈ν|pz|µ〉|
2 confirms this feature. Namely, there

is an extremely narrow energy range around the diagonal|εµ − εν| ≈ E2 − E1 where the states have a
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Fig. 3. Contour plot of the decimal logarithm for the optical matrixelement|〈ν|pz|µ〉|
2 as a function of the

energiesεµ andεν for the optical transitions studied in Fig. 2a. Panels a),b)and c) correspond tozl = 3 nm,

8.45 nm, and 12.3 nm, respectively. On the axes, the DOS for the initial states (red solid line) and final states

(blue solid line) are plotted in units of meV−1. E2 = 107.46 meV. The blue stripes aroundεν ≈ 30 meV (in a)

andεµ ≈ 105 meV (in c) indicate the vanishing density of states.

significant dipole matrix element. Note that there exists a deviation at low energyfor zl = 3 nm and

12.3 nm. It corresponds to the optical transitions between the bound states attached to theE1 subband

and the quasi bound states below theE2 subband. These effects are not taken into account by standard

perturbative approaches, such as the Born approximation.
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In conclusion, we have shown that a “dopant engineering“ in heterostructures leads to several

interesting features. Firstly, our numerical approach confirms that one might get very narrow inter-

subband absorption lines in spite of a very strong broadening of the subband states, which can be

seen both from our exact study and the NEGF approach. However, one has to bear in mind, that the

Born approximation does not reproduce correctly the impurity related localized states and thus, it

cannot correctly reproduce the double peak scenario, which is found, if one state is more affected

by the impurities than the other. Unless one engineers the doping in a way that ensures nearly equal

wavefunction amplitudes on the dopant plane, the inter-subband absorption usually displays two peaks.

This is the same for the inter-subband emission (not shown). The existenceof two peaks modifies the

absorption profile significantly and thus is important for a realistic descriptionof low doped devices.
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