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Abstract—Families of generalized spatially-coupled low-density
parity-check (GSC-LDPC) code ensembles can be formed by
terminating protograph-based generalized LDPC convolutional
(GLDPCC) codes. It has previously been shown that ensembles
of GSC-LDPC codes constructed from a protograph have better
iterative decoding thresholds than their block code counterparts,
and that, for large termination lengths, their thresholds coincide
with the maximum a-posteriori (MAP) decoding threshold of
the underlying generalized LDPC block code ensemble. Here
we show that, in addition to their excellent iterative decoding
thresholds, ensembles of GSC-LDPC codes are asymptotically
good and have large minimum distance growth rates.

I. INTRODUCTION

Low-density parity-check convolutional (LDPCC) codes
[1] have been shown to be capable of achieving capacity-
approaching performance with iterative message-passing de-
coding [2]. The excellent iterative decoding thresholds [3], [4]
that these codes display has been attributed to the threshold

saturation effect [5], [6]. In addition to good threshold perfor-
mance, it can also be shown that the minimum free distance
typical of most members of these LDPCC code ensembles
grows linearly with the constraint length as the constraint
length tends to infinity, i.e., they are asymptotically good [7],
[8]. A large free distance growth rate indicates that codes
randomly drawn from the ensemble should have a low error
floor under maximum likelihood (ML) decoding.

Generalized LDPC (GLDPC) block codes were first pro-
posed by Tanner [9] and have been shown to possess many
desirable features, such as large minimum distance [10],
[11] and good iterative decoding performance [12]. Following
this construction, more complicated constraints than a single
parity-check (SPC) constraint are permitted. In other words,
a constraint node with n inputs can represent an arbitrary
(n, k) linear block code. In [13], it was shown that ensem-
bles of generalized terminated LDPCC codes, called gen-
eralized spatially-coupled LDPC codes (GSC-LDPC) codes,
constructed from a protograph have better iterative decoding
thresholds than their block code counterparts, and that, for
large termination lengths, their thresholds coincide with the
maximum a-posteriori (MAP) decoding threshold of the un-
derlying GLDPC block code ensemble.

In this paper, using weight enumerator evaluation techniques
presented by Abu-Surra, Divsalar, and Ryan [14], we study the
asymptotic weight spectrum of GSC-LDPC code ensembles.
We show, using a (2, 7)-regular GLDPC block code with
(7, 4) Hamming code constraints as an example, that the
corresponding GSC-LDPC code ensembles are asymptotically
good and have large minimum distance growth rates. As the

termination length increases, we obtain a family of codes
with capacity approaching iterative decoding thresholds and
declining minimum distance growth rates. However, since
these are convolutional codes, a more appropriate distance
measure for assessing the ML decoding performance of such
code ensembles is the free distance growth rate of the associ-
ated ensemble of periodically time-varying generalized LDPC
convolutional (GLDPCC) codes. Consequently, in the final
part of the paper, we show that the terminated GSC-LDPC
code ensembles can be used to obtain an upper bound on
the free distance growth rate of ensembles of periodically
time-varying GLDPCC codes. The free distance growth rate
can also be bounded below by using ensembles of tail-biting
GLDPCC codes using a similar technique to one previously
presented for LDPCC code ensembles with SPC constraints
[15], [8]. By comparing and evaluating these bounds we find
that, for a sufficiently large period, the bounds coincide, giving
us exact values for the GLDPCC code ensemble free distance
growth rates.

II. BACKGROUND

A protograph [16] is a small bipartite graph that connects
a set of nv variable nodes V = {v1, . . . , vnv} to a set of nc

generalized constraint nodes C = {c1, . . . , cnc} by a set of
edges E. In a protograph-based GLDPC code, each constraint
node cm can represent an arbitrary block code of length ncm .
Figure 1 displays the protograph of a (2, 7)-regular GLDPC
block code.
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Fig. 1: Protograph of a (2, 7)-regular GLDPC block code. The white circles
represent generalized constraint nodes and the black circles represent variable
nodes. The labels on the edges indicate the corresponding columns of the
parity check matrix of the generalized constraint code.

A protograph can be represented by means of an nc ⇥ nv

bi-adjacency matrix B, which is called the base matrix of the
protograph. The entry in row i and column j of B is equal to
the number of edges that connect nodes ci and vj . The base
matrix of the protograph in Fig. 1 is given by

B =


1 1 1 1 1 1 1
1 1 1 1 1 1 1

�
. (1)



In order to construct ensembles of protograph-based
GLDPC codes, a protograph can be interpreted as a template
for the Tanner graph of a derived code, which can be obtained
by a copy-and-permute operation [16]. The protograph is lifted
by replicating each node N times and the edges are permuted
among these replicated nodes in such a way that the structure
of the original graph is preserved. Allowing the permutations
to vary over all N ! possible choices results in an ensemble of
GLDPC block codes.

A. Convolutional protographs

An unterminated GLDPCC code can be described by a
convolutional protograph [4] with base matrix

B[0,1] =

2

6666664

B0

B1 B0... B1
. . .

Bms

...
. . .

Bms . . .

3

7777775
, (2)

where ms denotes the syndrome former memory of the
convolutional code and the bc ⇥ bv component base matrices

Bi, i = 0, 1, . . . ,ms, represent the edge connections from the
bv variable nodes at time t to the bc (generalized) constraint
nodes at time t + i. An ensemble of (in general) time-
varying GLDPCC codes can then be formed from B[0,1]

using the protograph construction method described above.
The decoding constraint length of the resulting ensemble is
given as ⌫s = (ms + 1)Nbv .

Starting from the base matrix B of a block code ensemble,
one can construct GLDPCC code ensembles with the same
computation trees. This is achieved by an edge spreading

procedure (see [4] for details) that divides the edges from each
variable node in the base matrix B among ms+1 component
base matrices Bi, i = 0, 1, . . . ,ms, such that the condition
B0 + B1 + · · · + Bms = B is satisfied. For example, we
could apply the edge spreading technique to the (2, 7)-regular
block base matrix in (1) to obtain the following component
base matrices

B0 =


0 0 0 0 1 1 1
1 1 1 0 0 0 0

�
, (3)

B1 =


1 1 1 1 0 0 0
0 0 0 1 1 1 1

�
. (4)

From a convolutional protograph with base matrix B[0,1],
we can form a periodically time-varying N -fold graph cover
with period T by choosing, for the bc ⇥ bv submatrices
B0,B1, . . . ,Bms in the first T columns of B[0,1], a set of
N ⇥N permutation matrices randomly and independently to
form Nbc⇥Nbv submatrices H0(t),H1(t+1), . . . ,Hms(t+
ms), respectively, for t = 0, 1, . . . , T � 1. These submatrices
are then repeated periodically (indefinitely) to form a convo-
lutional parity-check matrix H[0,1] such that Hi(t + T ) =
Hi(t), 8i, t. An ensemble of periodically time-varying GLD-
PCC codes with period T , rate R = 1�NMCbc/Nbv = 1�
MCbc/bv , and decoding constraint length ⌫s = N(ms + 1)bv
can then be derived by letting the permutation matrices used to
form H0(t),H1(t+1), . . . ,Hms(t+ms), for t = 0, 1, . . . , T�
1, vary over the N ! choices of an N ⇥N permutation matrix.

III. TERMINATION OF GLDPCC CODES

Suppose that we start the convolutional code with parity-
check matrix defined in (2) at time t = 0 and terminate it
after L time instants. The resulting finite-length base matrix
is then given by

B[0,L�1] =

2

6666664

B0
...

. . .
Bms B0

. . .
...

Bms

3

7777775

(L+ms)bc⇥Lbv

. (5)

The matrix B[0,L�1] can be considered as the base matrix of
a terminated protograph-based GLDPCC code, or generalized
spatially-coupled LDPC (GSC-LDPC) code. This terminated
protograph is slightly irregular with lower constraint node
degrees at the beginning and end. These shortened constraint
nodes are now associated with shortened constraint codes in
which the symbols of the missing edges are removed. Note that
such a code shortening is equivalent to fixing these removed
symbols and assigning an infinite reliability to them. The
variable node degrees are not affected by termination.

The parity-check matrix H of the block code derived from
B[0,L�1] by lifting with some factor N has NbvL columns
and (L+ms)NbcMC rows, where MC denotes the number of
parity-checks of the constraint code.1 It follows that the rate
of the GSC-LDPC code is equal to

RL = 1� (L+ms)bcMC ��

Lbv
(6)

for some � � 0 that accounts for a slight rate increase due
to the shortened constraint nodes. If H has full rank, the rate
increase parameter is given by � = 0. However, shortened
constraint codes at the ends of the graph can cause a reduced
rank for H, which slightly increases RL. In this case, � > 0
and depends on both the particular constraint code chosen and
the degree of shortening. As L ! 1, the rate RL converges
to the rate of the underlying GLDPC block code with base
matrix B.

The generalized convolutional base matrix B[0,1] can also
be terminated using tail-biting [17], [18], resulting in a gen-
eralized tail-biting LDPC (GTB-LDPC) code. Here, for any
� � ms, the last bcms rows of the terminated parity-check
matrix B[0,��1] are removed and added to the first bcms rows
to form the �bc⇥�bv tail-biting parity-check matrix B

(�)
tb with

tail-biting termination factor �:2

666666666666666664

B0 Bms · · · B1

B1 B0
. . .

...
...

... Bms

Bms Bms�1

Bms

. . .
B0

. . .
... B0

. . . Bms�1

...
. . .

Bms Bms�1 · · · B0

3

777777777777777775

.

(7)
1We assume here that each generalized constraint node in the block

protograph is of the same type and has MC parity-checks. This assumption
can be relaxed in general.
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Fig. 2: Protograph of a (2, 7)-regular GLDPCC code ensemble. The white circles represent generalized constraint nodes and the black circles represent variable
nodes.

Note that, if ms = 1 and � = 1, the tail-biting base matrix
is simply the original block code base matrix, i.e., B(1)

tb = B.
Terminating B[0,1] in such a way preserves the design rate of
the ensemble, i.e., R� = 1��bcMC/�bv = 1�bcMC/bv = R,
and we see that B(�)

tb has exactly the same degree distribution
as the original block code base matrix B.

IV. MINIMUM DISTANCE ANALYSIS OF
PROTOGRAPH-BASED GSC-LDPC CODE ENSEMBLES

In [14], Abu-Surra, Divsalar, and Ryan presented a tech-
nique to calculate the average weight enumerator and asymp-
totic spectral shape function for protograph-based GLDPC
code ensembles. The spectral shape function can be used to
test if an ensemble is asymptotically good, i.e., if the minimum
distance typical of most members of the ensemble is at least as
large as �minn, where �min is the minimum distance growth

rate of the ensemble and n is the block length.
Consider the protograph with generalized constraint nodes

shown in Fig. 1. If we suppose the constraint nodes to be (7, 4)
Hamming codes with parity-check matrix

H1 =

2

4
1 0 0 1 1 1 0
0 1 0 1 1 0 1
0 0 1 1 0 1 1

3

5 ,

then the resulting ensemble has design rate R = 1/7, is
asymptotically good, and has growth rate �min = 0.186 [14].

We will construct the base matrix of a GSC-LDPC code
ensemble using (2) and component base matrices (3) and (4).
The resulting protograph is shown in Fig. 2. We use the
(7, 4) Hamming code with parity-check matrix H1 for the
generalized constraint nodes. The numbers on the edges of
the protograph in Fig. 2 indicate which columns of H1 (or
shortened version of H1) the nodes are connected to. After
termination, the resulting ensemble corresponds to a GSC-
LDPC code ensemble. The design rate of the ensemble is given
as

RL = 1� 6(L+ 1)� 2

7L
. (8)

Note that � = 2 in this example because the two leftmost
(shortened) constraint nodes in Fig. 2 correspond to shortened
codes with rate 1/3, i.e., the number of parity-checks in these
two constraint nodes is MC = 2, while all of the other
constraint nodes have MC = 3 parity-checks. These ensembles
were shown to have thresholds numerically indistinguishable
from the MAP threshold as L ! 1 in [13].

The evaluation of the asymptotic weight enumerators for
GSC-LDPC codes is complex, since the conjecture regarding
simplification of the numerical evaluation proposed in [14]

cannot immediately be applied to these ensembles. This con-
jecture relies on grouping together nodes of the same type
and optimizing them together. However, in the GSC-LDPC
case, nodes from different time instants must be optimized
separately, even if they are of the same type.

Fig. 3 shows the asymptotic spectral shape functions for
the GSC-LDPC code ensembles with termination factors L =
7, 8, 10, 12, 14, 16, 18, and 20. Also shown are the asymptotic
spectral shape functions for “random” codes of corresponding
rate RL calculated using (see [19])

r(�) = H(�)� (1�RL) ln(2), (9)

where H(�) = �(1� �) ln(1� �)� � ln(�). We observe that
the GSC-LDPC code ensembles are asymptotically good and
have large minimum distance growth rates. This indicates that
a long code based on this protograph has, with probability near
one, a large minimum distance. As L increases, the design rate
increases and the minimum distance growth rate decreases.
This behavior is the same as was observed in the SPC case
[20].
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Fig. 3: Spectral shape functions of GSC-LDPC code ensembles and random
linear codes of the corresponding rate.

V. FREE DISTANCE ANALYSIS OF PROTOGRAPH-BASED
GLDPCC CODE ENSEMBLES

In Fig. 3 we saw that the minimum distance growth rates
of GSC-LDPC codes decrease as the termination factor L
increases. However, since GSC-LDPC codes are terminated
GLDPCC codes, a more appropriate distance measure for
assessing the ML decoding performance of such codes is the
free distance growth rate of the GLDPCC ensemble. In this
section, we first calculate the minimum distance growth rates



for GTB-LDPC code ensembles and show that for sufficiently
large termination factors, the growth rates coincide with those
calculated for the GSC-LDPC code ensembles in Section IV.
We then show that the growth rates of the GTB-LDPC code
ensembles and GSC-LDPC code ensembles can be used to
obtain lower and upper bounds on the free distance growth
rate of the GLDPCC code ensemble, respectively.

A. Minimum distance analysis of GTB-LDPC code ensembles

We now consider terminating the protograph in Fig. 2 as
a GTB-LDPC code with termination factor �. Unlike the
previous termination technique, this results in a (2, 7)-regular
protograph with design rate R� = 1/7 for all �. The minimum
distance growth rates of the GTB-LDPC code ensembles are
presented in Fig. 4 alongside those corresponding to the GSC-
LDPC code ensembles. We observe that the growth rates
remain constant at �min = 0.186 (the growth rate of the
original GLDPC block code ensemble) for � = 1, 2, . . . , 8,
and then begin to decay to zero as � ! 1. Also, as a result
of the convolutional structure, we observe that the GTB-LDPC
and GSC-LDPC growth rates coincide for L,� � 10. This is
the same behavior that we observed for TB-LDPC and SC-
LDPC codes with SPC constraints [8].

B. Free distance bounds for GLDPCC code ensembles

Consider an ensemble of periodically time-varying GLD-
PCC codes with rate R = 1 � bcMC/bv and period T
constructed from a convolutional protograph with base ma-
trix B[0,1] (see (2)) as described in Section II-A. Using a
modification of the proof techniques in [8], [15], it is possible
to show that the average free distance of this ensemble can
be bounded below by the average minimum distance of an
ensemble of GTB-LDPC codes derived from the base matrix
B

(�)
tb (see (7)) with termination factor � = T . Here, we show

that the average free distance of the GLDPCC ensemble can
also be bounded above by the average minimum distance of the
ensemble of GSC-LDPC codes derived from the base matrix
B[0,L�1] (see (5)) with termination factor L = T .

Theorem 1: Consider a rate R = 1 � bcMC/bv untermi-
nated, periodically time-varying GLDPCC code ensemble with
memory ms, decoding constraint length ⌫s = N(ms + 1)bv ,
and period T derived from B[0,1]. Let d

(L)
min be the average

minimum distance of the GSC-LDPC code ensemble with
block length n = LNbv and termination factor L. Then
the ensemble average free distance d

(T )
free of the unterminated

convolutional code ensemble is bounded above by d
(L)
min for

termination factor L = T , i.e.,

d
(T )
free  d

(T )
min. (10)

Sketch of proof. There is a one-to-one relationship be-
tween members of the periodically time-varying GLD-
PCC code ensemble and members of the corresponding
GSC-LDPC code ensemble with termination factor L =
T . For any such pair of codes, every codeword x =
[ x0 x1 · · · xLNbv�1 ] in the GSC-LDPC (terminated
convolutional) code can also be viewed as a codeword
x[0,1] = [ x0 x1 · · · xLNbv�1 0 · · · ] in the unter-
minated code. It follows that the free distance d

(T )
free of the

unterminated code cannot be larger than the minimum distance

d
(T )
min of the terminated code. The ensemble average result

d
(T )
free  d

(T )
min then follows directly. 2

Since there is no danger of ambiguity, we will henceforth
drop the overline notation when discussing ensemble average
distance measures.

C. Free distance growth rates of GLDPCC code ensembles

For GLDPCC codes, it is natural to define the free distance
growth rate with respect to the decoding constraint length ⌫s,
i.e., as the ratio of the free distance dfree to ⌫s.

By bounding d
(T )
free using (10), we obtain an upper bound

on the free distance growth rate as

�
(T )
free =

d
(T )
free

⌫s
 �̂

(T )
minT

(ms + 1)
, (11)

where �̂
(T )
min = d

(T )
min/n = d

(T )
min/(NTbv) is the minimum

distance growth rate of GSC-LDPC code ensemble with ter-
mination factor L = T and base matrix B[0,T�1]. Similarly,
using a similar argument to that presented in [8], we have

�
(T )
free �

�̌
(T )
minT

(ms + 1)
, (12)

where �̌
(T )
min is the minimum distance growth rate of the GTB-

LDPC code ensemble with tail-biting termination factor � = T

and base matrix B
(�)
tb .

The free distance growth rate �
(T )
free that we bound from

above using (11) is, by definition, an existence-type lower
bound on the free distance of most members of the ensemble,
i.e., with high probability a randomly chosen code from the
ensemble has minimum free distance at least as large as
�
(T )
free⌫s as ⌫s ! 1. Note that the free distance growth rate

may also be calculated with respect to the encoding constraint
length ⌫e, which corresponds to the maximum number of
transmitted symbols that can be affected by a single nonzero
block of information digits. As a result of normalizing by the
decoding constraint length, it is possible to have free distance
growth rates larger than 0.5. For further details, see [8].

D. Numerical results

As an example, we consider once more the (2, 7)-regular
GLDPCC code ensemble with memory ms = 1 and rate R =
1/7 depicted in Fig. 2. For this case, we calculate the upper
bound on the free distance growth rate of the periodically time-
varying GLDPCC code ensemble as �

(T )
free  �̂

(T )
minT/2 using

(11) for termination factors L = T � 7. Fig. 4 displays the
minimum distance growth rates �̂

(L)
min of the GSC-LDPC code

ensembles defined by B[0,L�1] for L = 7, 8, 10, 12, . . . , 20
that were calculated using the technique proposed in [14] and
the associated upper bounds on the GLDPCC code ensemble
growth rates �(T )

free  �̂
(T )
minT/2 for L = T . Also shown are the

minimum distance growth rates �̌
(�)
min of the GTB-LDPC code

ensembles defined by base matrix B
(�)
tb for � = 1, 2, 4, . . . , 20

and the associated lower bounds on the GLDPCC code en-
semble growth rates �

(T )
free � �̌

(T )
minT/2 for � = T calculated

using (12).
We observe that the calculated GTB-LDPC code ensemble

minimum distance growth rates �̌
(�)
min remain constant for

� = 1, . . . , 8 and then start to decrease as the termination
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Fig. 4: Minimum distance growth rates of GSC-LDPC code ensembles and
GTB-LDPC code ensembles and calculated upper and lower bounds on
the free distance growth rates of the associated periodically time-varying
GLDPCC code ensembles.

factor � grows, tending to zero as � tends to infinity. Cor-
respondingly, as � exceeds 8, the lower bound calculated for
�
(T )
free levels off at �(T )

free � 0.805. The calculated GSC-LDPC
code ensemble minimum distance growth rates �̂(L)

min are larger
for small values of L (where the rate loss is larger) and
decrease monotonically to zero as L ! 1. Using (11) to
obtain an upper bound on �

(T )
free we observe that, for T � 10,

the upper and lower bounds coincide, indicating that, for these
values of the period T , �(T )

free = 0.805, significantly larger than
the underlying GLDPC block code minimum distance growth
rate �min = 0.186. In addition, we note that, at the point where
the upper and lower bounds on �

(T )
free coincide, the minimum

distance growth rates for both termination methods also coin-
cide. Recall that the GTB-LDPC code ensembles all have rate
1/7, wheras the rate of the GSC-LDPC code ensembles is a
function of the termination factor L given by (8). This general
technique can be used to bound the free distance growth rate
above and below for any regular or irregular periodically time-
varying protograph-based GLDPCC code ensemble.

While large free distance growth rates are indicative of
good ML decoding performance, when predicting the iterative
decoding performance of a code ensemble in the high SNR
region other graphical objects such as trapping sets, pseu-
docodewords, absorbing sets, etc., come into effect. Based on
results from the SPC case [8], we would expect GSC-LDPC
codes with large minimum/free distance growth rates to also
have large trapping set growth rates, indicating good iterative
decoding performance in the high SNR region.

VI. CONCLUSIONS

GSC-LDPC codes constructed from a protograph are known
to have better iterative decoding thresholds than their block
code counterparts, and, for large termination lengths, their
thresholds coincide with the MAP decoding threshold of the
underlying GLDPC block code ensemble. In this paper, we
used an asymptotic weight enumerator analysis to show that
GSC-LDPC code ensembles are also asymptotically good.
We saw, using a (2, 7)-regular GLDPC code as an example,
that the corresponding GSC-LDPC code ensembles have large
minimum distance growth rates for all computed values of L.

This indicates that long codes chosen from these ensembles
have, with probability near one, large minimum distances
as well as excellent iterative decoding thresholds. Finally,
we obtained asymptotic minimum distance growth rates for
GTB-LDPC code ensembles and showed that the growth
rates of GTB-LDPC and GSC-LDPC code ensembles can be
used to obtain lower and upper bounds, respectively, on the
free distance growth rate of the associated periodically time-
varying GLDPCC code ensemble.
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