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Abstract

This paper treats the radiation from a waveguide aperture in a perfectly con-
ducting plane. The shape of the aperture is arbitrary. The radiated field
into the half space, the reflected field in the waveguide, and the surface cur-
rents on the ground plane are calculated by means of a matching technique
between the waveguide modes and the free space plane waves. A system of
matrix equations determines the coupling between the radiation into the half
space and the wave propagation in the waveguide. The accuracy of commonly
used approximations of the aperture field is compared with the exact solution.
Several numerical examples illustrate the method.

1 Introduction

Generic electromagnetic geometries have always played a great role in the under-
standing of complex electromagnetic scattering problems and in the design of appli-
cations. Examples are such generic geometries are scattering by a wedge (perfectly
conducting or dielectric wedge), scattering by a cylinder, a sphere etc. Exactly
soluble generic cases are also important in comparing the validity of various approx-
imations that often are used to simplify the calculations.

The termination of a waveguide antenna in a perfectly conducting plane is often
solved by approximating the field in the aperture by the exciting field, the use of
magnetic currents, and the method of images, see e.g., [2]. Other techniques, that
apply to the two-dimensional case are presented in a recent paper [4]. The present
paper solves the three-dimensional geometry exactly in the electromagnetic case, and
we are therefore in a situation to find out how good the existing approximations are.

Provided the transverse electric field E,,(r) in the aperture is known, the field
in the far field zone in the half space is (the time convention exp{—iwt} is used)

eikor

E(r)=F(r) .

The far-field amplitude F'(7) can be expressed in terms of the aperture field E,,(r)

[2].
F(r) = 12—07A* X [fz X // E,,(r)e ™™ dz dy|, %-#=-cosf >0
T
Q

where 2 is the normal to the perfectly conducting plane, €) is the aperture, 7 is the
direction of observation, see Figure 1, and ky = w/cy (¢ is the speed of light in
vacuum). The question of determining the aperture field in a very general setting
is discussed and solved in this paper. We are then in a position of discussing the
accuracy of commonly used approximations of the aperture field and comparing the
results with the exact solution.

The fields in the waveguide and in the half space are analyzed in Sections 2 and
3, respectively, and in Section 4 the technique that matches the boundary conditions
in the aperture and on the perfectly conducting plane is presented. Sections 5 and 6



z2=0

Figure 1: The geometry of the problem.

contain a proof of the power conservation of the problem and the expressions of the
fields on the ground plane, respectively. The paper is completed by a presentation
of explicit examples and numerical computations in Section 7 and a conclusion in
Section 8.

2 Waveguide field

The perfectly conducting ground plane is located at z = 0. The sources in the
domain z < 0 in the waveguide generate a mode fyvg, (¢ is the collective mode
index, and v = TM, TE, or TEM'). The cross section of the waveguide is denoted
), see Figure 1, and it is arbitrary in shape and may consist of a central conducting
part, i.e., {) is not a simply-connected region in the z-y-plane. The region inside the
waveguide, z < 0 and r. = z& + yy € €, is assumed to be vacuous, and the domain
z > 0 is a half space, which also is assumed to be vacuum. Several generalizations
of these assumptions are trivial to relax, and they are not pursued in this paper.

The main objective of this paper is to determine the reflected power in the
waveguide, z < 0, the transmission power into the half space, z > 0, and to analyze
the current induced on the ground plane, z = 0.

The sources generate an electric field in the waveguide, which is a mode denoted
by Ej, (7). The corresponding magnetic field (mode) is denoted HJ , (r). We
assume the frequency of this exciting wave is above cutoff for this mode, i.e., w/cy =
ko > kig,,,, where ki, is the transverse wave number (the wave number of the cut-off
frequency).

!TEM-modes are present only in the case where the waveguide structure supports such waves.



Since the waveguide is terminated at z = 0, there is a reflected field in the region
z < 0. The electric and magnetic fields in the region z < 0 are therefore [1, 3]

E<r>=Eo( i)+ B )
Hm:fzo( ) S )

where 14, is the (relative) amplitude of the reflected fr-mode. The dimension of the
complex constant Fy is Vs.?2 The value of this constant is determined by the amount
of power sent in the waveguide in the positive z-direction, which is

(

2<0, r.e (2.1)

\

E
//z <S(t)> dz dy— 1ol ’ ReY), = ’2;‘ vp, (2.2)

where we have introduced the notion of energy admittance Y,”, see (4.15).
The notation of waveguide modes follows the established standards with a few
modifications [1]. The TM-modes propagating in the +z-directions are

{EiW)Z{E@WaiWOQQMﬁMﬂ

. v=TM
HZ,(T) = j:Ht@,,(rc)eilk””Z

where k,,, = (k:g — k;tgy) 1/2, and ki, are the transverse wave number of the cut-off
frequency. Similarly, for the TE-modes we have

{Eﬂ)—Ewmwﬂmz

v=TE
HZJ {j:Hw,('rC) + ng tw (e z} eFikzonz

In these expressions the index t denotes the transverse component of the field. The
TEM-modes are defined by

{ Eéty("') = Eteu(""c)eiikz

. v = TEM
ny(r) = theu(Tc)eilkz

The dimension of E, (7.) is 1/m. These expansion functions are only functions of
the geometry of the cross section of the problem.

The relations between the functions wy, v, and the transverse components E.,,
and H,, are

1 k. v c)s =TM
sy T

kg, | —kod - Viwg(re), v=TE

1 —koVive(re), v=TM
kt?y kz(y‘] : Vtwf(rc)7 v="TE

(2.3)
7703 : Htﬁu(rc) -

2Remember that the Fourier transform of the electric field (dimension V/m) has dimension
Vs/m.



where we have introduced the dyadic J = 2 x I3 that rotates a vector in the z-y-
plane /2 around the z-axis, and I3 is the identity dyadic in three dimensions. The
TEM-modes have transverse components defined by

{ Ey,(re) = —Vit(r) v = TEM

770'] : Htfy(rc> = _Et€u<rc> = vtd’(”’c)

Note that we for convenience keep the index ¢ for the TEM-modes even if there are
no dependence of the index /.

The eigenfunctions vy(r.) an we(r.) are normalized and orthogonal if integrated
over the cross section (2, i.e.,

/ / velreve(re) do dy = b,
Q
// wg(rc)wg/ (TC) dZE dy = 5@75/
Q
and the function v is normalized by
[ vutro - vitrg dray =1
Q

The dimensions of v,(r.) and wy(r.) are 1/m and ¢ has no dimension. The eigen-
functions ve(r.) and wy(r.) satisfy

_ Q*u(re) N 0?v(r)

2 2 c 2 _
Viv(re) + kig,v(re) = 52 0y + kipv(re) =0 (TM-case)
v(re) =0 reon I’
where I' denotes the boundary curve of the cross section €2, and
Pw(r.)  O*w(r.
Vaw(re) + ki w(re) = ;”(Z )4 g”(: ) 4 k(e = 0
t y (TE-case)

8_w
on

and for the TEM-case
{ V3(r.) =0

(ro)=0 roon I’

TEM-
¥ (r.) = constant r.on I’ ( case)

Moreover, the tangential field satisfy an orthogonal relation, which reads

o // Et&/(rc) J- Ht@’l/<rc> dw dy = nugﬁ,é’éu,u’ (24)
Q

where the waveguide admittance is given by

1/2
hoken, _ Ko (k= k) ™
= fvr=TE, TM
Yéz/ — kt?,/ ktzj , 1V ) (25)
1, if v = TEM




3 Fields in the half space

A general expansion of the fields in the domain z > 0 is given as a plane wave
expansion (we assume no sources in z > 0, i.e., all waves are propagation in the

+z-direction)

1 ikt"r’c ikzz
= 4_KQ//E(kt)e k= dk, dk,
R2
1 et
H(r)= / / H (ky)e*oreti== dk, dk,
R2

where the spectral components of the fields are

{ E(k) = E, (k) + E. (k)2
)

z>0

H(k,) = H,,(k;) + H.(k)2

and the relation between the transverse components E,,(k;) and H,,(k;), and

between the z-components and the transverse components are [5]

, k. (k.
wrﬂam%vf(;;+b)EMmﬁ~w@»EMm>
0 z
k 1
B.(k) = 2% 3 H (k) = ——Fk¢ - Eyy(ke)
]CO kz
k;

L nDHz(kt) = _k_ J- Ea:y(kt)

0

(3.2)

The dimension of E,,(k;) is Vsm. Notice that all fields can be constructed from the

field E,, (k). The longitudinal wave number k, is

b= (ki) \J K2 — K2 for ki < ko

i\ k2 — k2 for ky > ko
and the dyadic (k) is defined as

k' ktkt kz ktkt
k) = (55 1) = (o )

This dyadic has the following important projections:
K2k
k.

k.
0

k; - 7("%) ki =

The field at large distances from the aperture is

eikgr

E(r) = F(7)

r

(3.3)



where the far-field amplitude F'(2) is [2]

F(r) = 12@7“ X [z X E., (ki = kosin Q’PC)] cosf >0 (3.4)

T
The power radiated in the direction 7 is

) F(#)]*#
<S(r)>= % (3.5)

4 Mode matching

The boundary conditions at the interface z = 0 give the following condition for the
transverse electric field, see (2.1) and (3.1):

EOXQ (Tc) (Etéouo (rc> + Z TEVEt€u<rC)>

v
/ E,, (k)e* " dk, dk, r.€R? (4.1)

e

where xqo(7.) is the characteristic function of the aperture 2, and for the transverse
magnetic field we have

Eq (Htgouo rc) ZmHW rc> y= / / ekere dk, dk, r.€Q

(4.2)
Take the Fourier transform in the r.-variables of (4.1). With the use of the
definition of the Fourier transform, the result is

Eq (Eteoyo(kt) + Z WuEteu(kt)> = E,, (ki) (4.3)

Ly

where Ey,, (k) is the Fourier transform of the waveguide mode Ey,,(7.), i.e.,

Eo(ke) / / Ya(rd) By (ro)e *7 da dy — / Bo(roe ™7 de dy
R2 Q

with inverse ]
Ey(rc) = R/ Etey(kt)elkt'rc dk, dk,
RZ
The Fourier transform of the TEM-mode is most conveniently computed directly
from the field Ei,, (r.), but for the TM- and the TE-mode the Fourier transform



can be related to the Fourier transform of the functions vy(r.) and wy(r.), respecti-
Vely In fact, from (2.3) and Stokes’ analogous theorem [[, 2 x Vo(r.) dz dy =
Jrd(rc) dre we get (T is the boundary curve of the cross section Q)

1 szuktvfact)a v=TM

Ep (ki) = _E —koJ - kow,(ky) + iko fwe(rc)e_ikt"'c dr., v=TE (4.4)
v r

The dimension of Ey,, (k) is m, and the Fourier transforms of the eigenfunctions
ve(re) and wy(r.) are

ve(ky) = //Xgrcvgrc ‘kt“da:dy—//vgrc 1"’”"Cdxdy
we(key) //XQT‘C”LUgTC 1’“”“da:dy—//wgrc “ikere qg dy

and v} (ki) = vi(—k) and wj (ki) = we(—ky) if the eigenfunctions ve(r.) and wy(r.)
are chosen real-valued. The dimensions of vy(k;) and w,(k;) are m.

We now proceed with the second boundary condition in (4.2). Multiply the
second integral in (4.2) with Ep,/(r.)-J, integrate over the cross section {2 and use
(2.4). We get

EOY'E’ ! 5&) 6’51/0 v — Tew ’
47[2/ Eté’u’ ’l"c //J ny kft kT dl{? dl{? dz dy

.1 / Eipy(—ky)-J- H,y (k) dk, dk,

/ B (—ky) - ~v(ky) - Euylky) dk, dk,

where we also used (3.2). Solve for ry,, and we get
1
o = B + oy / B (—k0) -7 (ke) - Bay (k) dks db,  (4.5)
R2
which inserted in (4.3) becomes
Exy(kt) = QEOEteouo(kt)

+Z QYzyEt‘” (k) / Eop( (k) - B,y (K;) k., dK,

This equation can be written as an integral equation of the second kind in
E,, (k).

E,, (k) + / K(ki, K,) - B,y (k) Ak, dk! = 2B By, (k) (4.6)



where the kernel K(ky, k;) is given by

1

Kk k) = =D B (k) Bu (k) - (k)
lv v

This is the basic integral equation that determines the aperture field E,, (k).

We now aim at reformulating this integral equation as an infinite system of linear
equations. This is possible since the kernel K(k, k{) is separable. To simplify the
notation, we introduce the pertinent normalization factor defined as, cf., (2.5)

ko k2 — ki,

(

, if v = TM, TE, and ko > ki,

k't&/
Ny, =
e ko kt?l/ - k(2) iTE/4 .
7 e, if v = TM, TE, and kg < k¢,
tlv

i, ifr=TEM

Notice that N7, = Yj,. Introduce a dimensionless scalar quantity ay, (containing
the unknown E,,(k;)) defined by

1
Qpy = 12N, By // Ey(—ki) - (k) - Eoy(ky) dk, dk,
R2

Equation (4.6) is then rewritten as
E
Exy<kt> - (Z O‘éuN_ZOVEtEV(kt) = 2E0Et€()y0 (kt) (47)

Provided we can solve for the coefficients ay,, the solution E,,(k;) can be found
since the Fourier transformed functions Ey,, (k) are all defined by the geometry of
the waveguide.

If we multiply the equation (4.7) with the appropriate quantity and integrate
over the variable ki, we get

Qyy + Z AZVZ’V’OZE’I/ = BEV (48)

o

where

1
5[1/ = QKQNK // Et€u<_kt) ’ 7<k’t> ' Etfou()(kt) dkr dky
R2

. (4.9)

Appy = =
vy 47[2NZVN£’V’

/ Etgy(—kt) . ')’(kt) . Etell//(kt) dkm dky

R2

The expression in (4.8) is a set of linear equations for the unknown «y,, since the
entries of the matrix Ay, contain only known functions. Moreover, the entries of



Ay and By, are dimensionless, and the matrix Ay, is symmetric in the indices
lv and 'V’ since the dyadic ~(k;) is symmetric and even in k;. Notice that

Bev = —2Nyyu Avvegw,

The reflection coefficients ry, in (4.5) can also be written in the coefficients ay, .

Qyy

Ty = 5607351/0,1/ + —
N&/

To further simplify the matrix equation in (4.8), make a change in the variable
oy, and define a new quantity ay, as

Aoy = 5E0,€5V0,VNZOVO + g

Then ay, satisfies

Qpy + Z AZVZ’V’GZ’V’ = b&/ (410)
%
where
bﬁl/ = Nﬁou() (550,65%,1/ - A&/ZOVO) (411)
Moreover, we have from (4.7)
E
Exy(kt) = EOEtZ()uo (kt) + Z aﬁuN_:Etﬁu(kt) (412)
8% v
and a
y = — 4.13
& NEV ( )
The far-field amplitude is for cosé > 0, see (3.4)
F()i%%“xyxﬁa (ke = kosinfc) + > <2 By, (k ksefJ
= r z - c v = m c
T o tlovo \Fot oS . N, te t 0

and its absolute value is

Eo|” k2
‘F(‘iﬁ)ﬁ _ ’ 0‘ kO{

472

2
. ap Eip,(k
“'(E%w®0+§zl;ﬁ%Lﬁﬂ

IN%

3 uEt v kt
¢ (Euo,m(kzt) + ‘”N—j()>

Ly

+ cos? 6

| }
ky=kg sin 07

For the TM- and the TE-mode there is an alternative formulation of the matrix
entries in Ag,p,,. With the use of (4.4), we obtain

Vv kzéTM V kzZ’TM

42k prakeerm

4.1 The matrix entries

Arrmerv =

k2
// k—tw(—kt)v@/(kt) dkx dky
R2



10

ikov'Ek-erm // / ik
Ao e = Wy ’T'C —ReTe dp, dk, dk
T 47[2\/ E.orekoermkiers Y

ikor/ k. pr
Apreprv = — 5 0 cIM // —uvp(ky)k /U)g re)e 1"“ e dr. dk, dk,
4k rekiereFoerv

and

47[2 V szTE V sz/TE ktZTE kté’TE
+1i / / kowe(—ki )k - J - / we (r e * e dr, dk, dk,

R2 r

— 1// kowe (ky)ky - J - /wg(rc)eik“'“ dr. dk, dk,
R2 r
+// kzz/u)g(':°c)ei'““'7°c dr.
R2 r
k.k
( ]::gt +12> -/wg/(r) “iker Qg df, dk }
r

4.2 Orthogonality relation

1
ArrreTE = {// K2k wo(—k)we (ki) dk, dk,

The waveguide expansion functions satisfy an orthogonality relation, cf., (2.4).
There exists also another orthogonality relation related to the energy integral, which
is used in this section.

The use of the Parseval’s identity gives

_nfdf,é’dy,u/ = 770/ Etéu(rc> -J- thfy/('rc) dx dy

1 (4.14)
= HVE’V'/ Etéy(kt) . Etz’y/(kt) dl{?m dl{jy
2

where the energy admittance Y,F is very similar to the admittance defined in (2.5).

kok.s, .
0 26 , ifv=TM
kt&/*
Y =q Rk g (4.15)
kt?u
1, if v = TEM

We notice that only the TE part differs between Y,F and Y, and that ReY,} =
ReY,, (for the TEM-mode there is a difference in sign). Moreover, the difference
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between the electric and the magnetic expansion functions 7, is (noJ - Hyy,(re) =
Ve Eeg, (1))

LTI EY
kafy
_ ! k
T =\ 2 ify = TR
ko

1,  ify — TEM

In the Fourier domain, we therefore have the following orthogonality relation

/ Etg,j(kt) . Etzy/(k’t) dk’x dky = ’ygEyég,g/(S,,J/ (416)
where -
HEVify = TM
§t€u
Yo = ATV e =470 Ry,
tiv
1, if v = TEM

5 Power flow and conservation

The purpose of this section is to prove the conservation of power, i.e., the amount
of power introduced into the system, (2.2), is either reflected in the waveguide, P,,
or radiated into the half-space, P,. In this section we prove that P, = P, + P..

5.1 Power flow in the waveguide

The power flow in the waveguide is (use (2.1) and (4.14))

//2<S@>dx@p—~—4%//E - J - H*(r) dz dy

E2
o e - R e
0
\Eo |E0
Ly, - 3 vE bl = P (Y - X Vil =

L<ko,v L<kq,v

since it is assumed that kg > kiy,,,, and where ¢ < ky in the summation means
that the summation in ¢ is only over those modes for which ki, < ko (propagating
modes), i.e., Yy, real. The input power is given by (2.2)

éV’EO‘
z-<S(t)> doe dy = ——=—
210
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and the reflected power back into the waveguide is

E
=B S v

0 L<ko,v

Inserting (4.13) gives

SRS S

o, v

5.2 Power flow in the half space
The radiated power into the half space z > 0 is (see also Appendix B and (B.1))

S:

Re / B, (k) (k) - B2 (k) dk, dk,

ket |<ko

812nq

Using (4.12) we get

|E0 aKVEtZV(k:t)
Fs 8TE2770 Besan, (k) + Z Ny,

|kt | <Ko

ap Eip,(k "
v(ke) - (Etkouo(kt> +) %U) dk, dk,
L v

5.3 Power balance

We now prove that P, = P, — P,. We expand the domain of integration (see Appen-
dix B) and get

| Eo|? ap Eyp, (k)
Ps = 87[2770 Re Etgol/o(kt) —+ KZ T
R2 v

ap Eip,(k "
v (Ke) - (Eum(k:t) + %U) dk, dk,
I v

or

s 87[ . //{Etfoyo kt (kt) ' Etzoyo(k:t)

v * Gy *
+Z i Eyg, (ko) - (k) - By, (k) + N, Eip (ki) - (ki) - By, (k)
v Ly v

l/

A Ay .
+ ;; N ]\l}é Eop (k) -y (ky) - Ew,,,(kt)} dk, dk,
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Use the fact that
}/ZVEtEV(kt) = - (Yvef) Etéu(_kt>

and the definition of the matrix Agp,/, see (4.9). We get

|E0|2 (YEEV )* 2 § : (Yfl/) N,
Ps: Re{ o NVAZVZV +NZV - *Z,AZVZV
2770 Yeouo Lovg* Hovoboro 0v0 — YZVN&, Qy ovo
NEI ’
+ Negw Aggvoty + e Gy Agry 'eu}
oMo 00 ZV:; }/e/ /NZ’ ,
Since Y2, =Yy, is real and

YiENw | 1, ko > kiy, and the TEM-mode
Yo Ng, | £, ko < kg

where the upper (lower) sign holds for the TM (TE)-mode, we get

|‘E10|2 (}/Ey) NZV *
Py = 2—770 Re{Nézoqufovofovo + Nfollo ; TNZ, eyAZuZOzxo
}/éy) NZI/ *

+ Ngol/o (bfol/o - afouo) + Z Ay, (b&/ ale)}
L

}/KVNZ/

We have here also applied (4.10). Using (4.11), we have

Y,) Nuw Ny
Re {Ngoyo Z %a@z‘l@zou@ Neguotgvy + Z % g,,bzu}
L vitly vy

Y, N, v Yl/ N, Vo ox
=Re {Z u Zy (N€0V05€0 f(suo v bﬁu) - NEOVOGZOVO + Z w gl/bZV}
Lv

v YvKVN;V }/ZVNZ/
=0
since oo
(}/Kol/o) NZO”O — 1
}/KOVONZ;VO
We finally get (use (4.11))
| Eol ) (Yar)" New
p, == R {N _ . V}
277[) Lovg ; YZVNZL e,,aé
| Ey|” 9 2
= Re{ N, — Y lanl’} =P P
21 fovo e;k:(),y' ol

and power flow is conserved.
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6 Currents on the ground plane

The currents on the ground plane, z = 0, are determined by, see e.g., (3.1)

. 1 .
Jr)=2xH(r.)=J-H(r.) = E//J-H(kt)ek < dk, dk,
which, by (3.2) and (4.12), becomes

Aoy ik Te
o (1) = / [tk (Eg (k) +Z = B k:> kore dk, dk,

We introduce the notation

Fu(r.) = / / (ki) - Eig (ky)e® ™ dk, dk, (6.1)

These vectors are known and can be computed for a given geometry of the cross
section of the waveguide. The current on the ground plane can be written as

Ay
770'-]'(7"c) - EO (FEDVO 'rc + Z ]Vi F&/(Tc)>

7 Explicit examples

In this section we analyze a few explicit examples in detail and compare with often
used approximations.

7.1 Rectangular waveguide

The eigenmodes and eigenvalues for a waveguide with rectangular cross section,
sides a and b in the z- and the y-directions, respectively, see Figure 2, are given in
Table 1. The collective mode index ¢ = {m,n} in this case. The Fourier transforms
of the eigenmodes in Table 1 are

£y — 2\/—mn (1= (=1)me *=) nu (1 — (—1)"e~?)
( t> m2m2 — k2a2 n2m2 — k2p2
Y
m,n=123,.

( (_1)m —1kza) k? b (1 o (_1)ne—ikyb)
( ) \ €m€n\/_ mQTEQ k2a2 n2TC2 _ k2b2
Yy

m,n=0,1,2,3,...,(m,n) # (0,0)
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Figure 2: Geometry of the rectangular waveguide.

Eigenmodes v,(r.), wy(r.) Eigenvalues ki,
2 . /mux\ . /NNy m?  n?
TN ) = —=sin (55 )sin (5F) | w4
2 2
TE | we(r.) = EZZ" coS (m;ca:) cos (%) T % + %

Table 1: Table over the normalized eigenmodes in a rectangular waveguide, see

Figure 2. The

integer m and n assume the values m,n = 0,1,2,3,..., with the

exception that m and n are nonzero for the TM-modes, and that m and n are both
not zero for the TE-modes (€, = 2 — dy0)-

or in a form that more clearly shows the behavior at k, = £mmn and k, = £nn

/

\

Ug(k}t)

Vab o—i(kea—mm)/2—i(kyb—nz)/2
2

. kya—mn m . kga+mn
X sch — (—=1)Msinc———

Fyb — k,b
X (Sincy—m - (_1)nsimﬂ)
2 2
m,n=123,...
V EmEn'y ab —i(kza—mn)/2—i1 —nn
we(ky) = — ° (kz )/2=i(kyb—nm)/2
. kga—mn m . kga+mn
X | sinc———— + (=1)"sinc———
2 2
kb — k,b
X (SinCmi —+ (—1)”81nc#>

m,n=20,1,2,3,...,(m,n) # (0,0)

The general expressions of the Fourier transform of the eigenfunctions are for
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v ="TM, see (4.4)

kz 14
Ei (ki) =— i 5 kve(k)

tov
\/kg_ﬂ2<m_22+7;_22) mr
_ a m —ikza
=—2kVab > (72:22 n 2_22 R (1= (=1)"e )
nn n —ikyb
22 — k2b2 (1_( 1)te )
Y
m,n=1,2,3,
and for v =TE
ko . ko Cikeer
E (ki) = —J - kowe(ky) —i— [ we(re)e ¢ dre
tfy kt&/
— —J-knJeneVab k.a (1 B (_1)me—ikma)
(TLQ + 2—22) m?n? — k2a?
k b n —ikyb
’ n2n2 i k2b2 (1 —(=1)" )

+\/_ \/7 m2rc2 k2a2 ( - (_1)me_ikza)

" . <—1> NDY s
_ €n - J — (=1 1y
(2122 T n ) aY e /<:262( (—1)" )
m,n=0,1,2,3,..., (m’n)%(()?O)

The rectangular waveguide is not pursued further due to the fact that the matrix
entries of Ay, in (4.9) lead to integrals that involve extensive numerical integra-
tion. Instead, the circular waveguide is more suited for numerical computations.
This is done in the following subsection.

7.2 Circular waveguide

The next example is the circular waveguide. The eigenmodes and eigenvalues for the
circular waveguide with radius a, see Figure 3, are given in Table 2. The collective
mode index ¢ = {m,n,c} in this case. The mode with the lowest cutoff frequency
is TEH, z'.e.,

1k0a V2Ji(mire/a) cos ¢
Eiore(re) = J Vi /—7711 — () (sin ¢)
1k‘oa V2Jy(nre/a) <— sin ¢)
Tey/ T (i — 1)J1 () cos ¢
& V2Ji(nure/a) (cos qb)
\/ (3, — 1)Ji (1) \Sin0
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A 4

Figure 3: Geometry of the circular waveguide.

where 777 =~ 1.841. For the index o = o the field is oriented along the Z-axis. In

fact, we have
iko

V2 (i = V()

The Fourier transforms of the eigenmodes are, see (A.1), (A.5), and (A.6)

B m V Em Emna I, (k:ta) COS Mo
Uf(kt) =21 ( ) \/— ]{326L2 sin ma
210(—1)" \/EmNmna k‘taJm(k‘ta) cos ma
2 (2, —m?) Ny, — kia? \sinma
where the indices are m = 0,1,2,3,..., n=1,2,3,..., and ¢ = e, 0. Moreover, we
have, see (A.3)

/wz(rc)e—ikt.rc dr, = QTE(_i)m—l \/@nmn J. thJm(kta) (CF)S ma)

T (2, —m?)a sin ma

E orp(re =0) =

U)g(kt) =

T

The general expressions of the Fourier transform of the transverse components
E (r.) are for v = TM, see (4.4)

kz v
Eteu(kt) = - 2 5 ktvz(kt)

tly
— o \/k2a2 2 VEm kiady(kia) (cosma
= En VR Ka2— €2, \sinma
m=0,1,2,3,....n=1,23,...,0=¢,0




18

Eigenmodes v,(r.), wy(r.) Eigenvalues ki,
AV 6TrLJm <£mnrc/a> COs m¢ gmn
T™ c) = ) -—
ve(re) \/Eajfn(énn) sin mao a
m anm mn' c mn
TE | we(re) = Cm) Uimnre/ @) (CF)S m¢) il
VI (7712nn - mQ)CLJm(nmn) sinmg a

Table 2: Table over the normalized eigenmodes in a circular waveguide, see Figure 3.
The constant &, is the nth positive zero to J,,(z) and the constant 7,,, is the nth
positive zero to J! (z), i.e., Jp(&mn) = 0 and J (Nme) = 0, m = 0,1,2,3,...,
n=123,..., € =2 —0n0, and 0 = e, 0. Notice that &,, > m and 1, > m,
n=12,3,..., see Ref. 6.

and for v =TE

k K e
By (ki) :k_gJ - kowi(ke) — 1k—g/we(rc)e kere dp,

t[y tov
r

:CL%J . kta f—ﬂ: (77’,2”” — m2) 7772nn _ k?ag Sin mao

akoa 2n(—1)"\/€m
Thn A/ T <n72rm - m2)
‘ (J : ktaJ,/n(k’ta) (cf)sma) _ kiamdy(kia) (— sinmoz))
kia sin mao kia kia cos mo
., koa 2m(—1)"\/€m {J ka2, J (ka) (COS ma)

B 2 2,2 i
Nmn A/T (02, —m2) | ka  n5,, —kia* \sinma

_ kiamdy(ka) (—sinma
kia  kia cos mao

m=0,1,2,3,....n=1,2,3,...,0=¢€,0

koa 2n(—1)"/€m kead!, (kea) (cos ma)

From these expressions we get
Etﬁu(_kt) = (_1)m+1Etéu(kt)

We also have

0, v=TM
Et@u(kt = 0) = ik’oa2 5m,1 21 (—@> v —TE
Thnn 77727171 -1 T )
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7.2.1 Matrix entries of Ay 4,

The matrix entries of Ay, are needed to compute the interaction between the
ground plane and the waveguide modes. From (4.9) we have

_ 2

Aprverv =2 (1 — 81.0000) 5m,m'5a,a'\/ K2 = &2 o\ K2 =&
/OO 22 (Jo(z))? x dx
. (22—

'r2rm) ('1’2 - rzrm’) K% — x?

where we have introduced the dimensionless frequency parameter k = kga. To

continue, we have

2 _ ¢2
2mk K o 1

050’,e>
\/\/ K2 — nzrm’ \/(773171’ - m2)

/°° (Jm(x))2 x dz
0 r? — 72nn \/m

2 _ ¢2
2mk K ! 1

VAR V=

AETMZ’TE :5m,m/ ((sa,eda/,o - 5:7,

AZTE(’TM :5m,m’ (50',050'/,6 - 50’,650'/,0)

2

'/OO (J(2))?  z dzx

2
2?2 =& VR —x

and
22 1 1

=R/ =, N W = 7] 0 = 107)

AETEZ’TE :5m,m’ 60,0’ \/

K2 77727171 - 1'2) (ngf - x2)

o [ )

K2

2 2 00 / 2 /2 _ 2
. {(1 . 5m,05070) Thn hnn / ( (Jm(x)) K z r dr
0

7.2.2 Orthogonality relations

From (4.16) we can obtain integral identities for the different modes. These integral
identities seem not know in the literature and for this reason we give the explicit
expressions of these identities in this subsection. For the TM-modes the following

integral identity is obtained (m =0,1,2,3,..., n,n’ =1,2,3,...)

00 2
T Unle)) o =4,
0

- T2rm) ($2 - é-gm’)



20

and for the TM-modes we get (m =0,1,2,3,..., n,n' =1,2,3,...)

2 it U@ )
mQ)/o {( i } A2 =t

V02, —m?) (2, — M — 22) (02, — 22) 22

or

~ (@)
2 n2 (I de — 2 _m2) (02, —m2), . —
o | G Gy 47 = V=) G =

For the cross-mode terms we get (m =0,1,2,3,...,n=1,2,3,...)

/Ooowxdx:()

2 _
€ mn

7.2.3 The current on the ground plane

The expansion functions of the current on the ground plane are given by (6.1). For
the circular waveguide they are

Foru(re) = in Y — & \/aV/ xrc/a) T daz:x2 (Cosmgb)

Emn 2 w2 sin mao

and

NG
/Mo — M2 VT

{nan o / T 2 _(;L;;C/a) I e (cosmgb)

sin mao

mrc/a) dz —sinmg
_mmV/ ,{2_q;2<cosm¢>}

7.2.4 Numerical examples

Firp(r.) =

We illustrate the analysis presented in this paper with a series of numerical exam-
ples for the circular waveguide. The incident wave in the waveguide is assumed to
be a TEq;-mode. In Figure 4, the normalized intensity at the normalized frequency
k = koa = 1.01n;; ~ 1.86 is depicted as a function of the observation angle 6. This
frequency is just above the lowest cutoff frequency f = com1/2na. The approximate
solutions, when the aperture field is approximated by the incident mode, are illuatra-
ted with red lines. As expected, the agreement in the forward direction is very good.
Both curves are normalized with their forward intensities, which are 0.036 (exact)
and 0.23 (approximate), respectively. The directivities® of the aperture antenna are
4.09 dB (exact) and 3.80 dB (approximate), respectively.

3The directivity is related to radiation in a half space.
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Figure 4: The normalized intensity in a dB-scale as a function of the observa-
tion angle 6 at the normalized frequency x = koa = 1.01n;; ~ 1.86 (E-plane and
H-plane). The black lines are the exact solutions, while the red lines are the ap-
proximate solutions (see text), when the aperture field is identical to the incident
mode.

In Figure 5, the normalized intensity at a higher frequency, k = kga = 1.5&; ~
5.75, is shown. Both curves are normalized with their forward intensities, which are
21.1 (exact) and 21.4 (approximate), respectively. The directivities of the aperture
antenna are 11.6 dB (exact) and 11.6 dB (approximate), respectively. Both radiation
pattern and directivity are well predicted by the approximate solution. The reason
for this is found in Figure 6 which shows the reflected power in the waveguide. This
reflected power is negligible except for frequencies close to the cutoff frequency f =
com1/2ma. Notice the jump discontinuities at the location of the cutoff frequencies.
Finally, we give an illustration of the surface currents on the ground plane at the
normalized frequency k = kga = 1.5£1; /= 5.75 in Figure 7. The polarization ellipses
at several locations on the ground plane are depicted. Dots mark the center of the
ellipse and the current at a synchronized time (¢ = 0). This figure clearly illustrates
the confinement of the current to the aperture.

7.3 Coaxial waveguide

In this final example we address the coaxial waveguide. The waveguide has an outer
radius a and an inner radius b, see Figure 8. This geometry is slightly more complex
than the previous ones, but very important from an application point of view.

The collective mode index ¢ = {m,n, o} is the same as for the circular waveguide
in Section 7.2. The radial eigenfunctions, Z,,,(r.) and Y,,,(r.), and the normaliza-
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Figure 5: The normalized intensity in a dB-scale as a function of the observation
angle 6 at the normalized frequency k = koa = 1.5&1; =~ 5.75 (E-plane and H-plane).
The black lines are the exact solutions, while the red lines are the approximate
solutions when the aperture field is identical to the incident mode.

tion constants, C,,, and D,,,, are defined by (m =0,1,2,..., and n=1,2,3,...)

Zrn(Te) = (Cmnrc/@)Nm(Cmn) — (o) N (G / @)

Ct= 2 [t} dre = = (2, 00" - & (2"}
(Ymn(r>: ('anrc/CL)N (Ymn) = T (Vo) Now (Ymn7c/ @) (7.1)
D;Li—f—; | Yan(re)) e dre

| = o L =) (B 0))” = (= %) (Vi (@)

and the eigenvalues, (,, and 7., are determined by the positive roots (m =
0,1,2,...,and n =1,2,3,...) of the transcendental equations

{ Zmn(b) Im (Cmnb/a)Nm(Cmn> - Jm(Cmn)Nm(Cmnb/a) =0
J!

Y2 (8) = 7 s/ )Ny () — T () Vs Gbfa) =0 2

where the Bessel function and the Neumann function of order m are denoted J,,(2)
and N,,(2), respectively, and €,, = 2—0,, 0. Notice that Z,,,(a) =0and Y,  (a) = 0.
The Fourier transforms of the eigenmodes are presented in Table 3, see (A.1),
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Figure 6: The reflected power in a dB-scale in the waveguide as a function of the
normalized frequency . The vertical lines give the location of the cutoff frequencies
in the circular waveguide.

(A.4)
_ \m a2 (0) I (kea) — bZy,,, (D) T (Kib) (cos ma
Ué(kt) - _27'[(_1) mnagmn gln _ ktzag sin ma
' Yin(a)kiad) (kwa) — Yoo (b)kibJ!, (ki) [ cos ma
_ _a\m 2-mn m mn m
wy(ky) = 2n(—=1)" Dppna R sin mo
where the indices are m = 0,1,2,3,...,n=1,2,3,..., and ¢ = e, o. We also have

from (A.3)

/wg(rc)e_ik”’” dr, =2n(—1)""' Dy
r

COS mo
sin mao

X J - th {Ymn(&)Jm<kta) - Ymn(b)Jm(ktb)} (

The general expressions of the Fourier transform of the transverse components
of the electric field E,, (r.) are for v = TM, see (4.4)

k.o, o kia? — (2,
Bua(k) = = T4un(k) = 25(—i)"Cpya? YL = Sn
tiv mn
« k aZ! (a)Jy(kia) —bZ! () Jm(kib) (cosma
t 2 — k2a? sin mao

m=20,1,2.3,...,.n=1,2,3,...,0 =€, 0
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Figure 7: The polarization ellipse of the surface current on the ground plane at
the normalized frequency xk = kga = 1.5&1; = 5.75. The dots at the center of each
ellipse locate the points at which the currents are computed and the dots on the
ellipse give the currents at a synchronized time. The thick circle locates the circular
aperture r. = a.

and for v = TE
k?g 1 ]{30 —ik¢-r
By (k) =5 J - kywe(ke) — i [ we(re)e” ™7 drg
kte’/ ktfl/
T
2
% {J Ky Ymn(a)ktaﬂn(/ﬁ;a) — Zm;(b)kth,QL(ktb) (cQS ma)
’Ymn - ktaf SN Mo

sin mao

+J - Vi, {Yon(a) I (kia) — Yiun (0) I (ki) } (cos ma) }

m=0,1,23...,n=123,...0=eo0
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Figure 8: Geometry of the coaxial waveguide.

Similarly, the TEM-mode implies with the use of (A.2)

EtTEM<kt) = / / - ln&/b —lktrocos(qﬁ—a)rc dTC

k
= "(k o) dre = A L kb
lna/b/ Jo(kere) dr k’tlna/b (Jo(kea) — Jo(ked))

& Conclusions

In this paper, we have presented a method for computing the radiation into a half
space from a waveguide aperture in a perfectly conducting ground plane. The un-
derlying integral equation is rewritten as a matrix equation, which is easily solved
numerically by truncation. From the solution of the matrix equation, it is then
straightforward to calculate the reflected power in the waveguide and the power ra-
diated into the half space as well as the surface currents on the ground plane. Several
numerical computations illustrate the performance of the method. It is possible to
extend the present method to several apertures in a perfectly conducting ground
plane.

Appendix A Integrals

A.1 Circular waveguide integrals

The following integrals are useful:

27 ,
cos mao cosm'¢o
/0 (sin mgb) (sin m’gzb) do = € (1 — O 0500) 5m,m/5g,a'

m,m' =0,1,2,..., and 0,0’ =¢, 0
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Eigenmodes Eigenvalues k,,
cos mao Gmn
™ 'U@('T'C) = Cngmn<TC> (Sil’l me) 7
cos mo Ymn
TE U)g(’r'c) = DmnYmn<rC> (sin m(/)) T
TEM Vb(re) —fac 0
) =
i 21reIna/b

Table 3: Table over the normalized eigenmodes in a coaxial waveguide, see Fi-
gure 8. The functions, Z,,,(r.) and Y;,,(r.), the eigenvalues, (,,,, and 7,,,,, and the
normalization constants, Cy,, and D,,,, are defined in (7.1) and (7.2), respectively.
The indices m, n, and o take the valuesm =0,1,2,..., n=1,2,3,...,and 0 = e, 0.
Note that for m = 0 only o = e exists.

2n
[t ( m¢) a6 — 25 I, (ki) ( m“) (A1)
0

sin mao sin mao

Useful are also

2r ‘m—1
- 2
/ oikere cos(¢—a) <COS m¢> . dp = 1 Vi o (ki) <Cos ma)
0

sin mao sin ma

ST , (A.2)
= 2nim™ ! (I;ftjrln<kt7"c) (C?Smoz) + d—m m(kire) (_ Slnma))
sin mo ke cos mao
and
2n im—1
/ elfarecosoe) (Cf)s m(b) $ do= 3V T (i) (Cf)s mo‘)
0 sin mao . sin mao (A3)
_ 2TCim_1 (éJ,/n(k‘tT’C) (C.OS mOé) o ’%tm*]m(kltrc) <_ S1n ma))
sin mo kire COoSs Mo
Z Yo — QXL Y,
/Zm(aa:)Ym(ﬁx)x dz = feZn(az)Yn l(ﬁxz gf m-1(02) ¥ () (A.4)
a? —

where Z,,(z) and Y,,,(z) are two arbitrary solutions of the Bessel’s differential equa-
tion. Two special cases are

a &2 ganﬂ;(gm_TJém(ﬁa)a 6 7& fmn/a
/ I (Emn /@) I (Bx)x do = o2 pa mn (A.5)
0 E (Jm—i-l(fmn))z y 5 = €mn/a
and
Jm mn Jl
a e N T
/ I (Mmnx /@) I (Bx)x do = o2 mn ) m? (A.6)
0 ? (Jm(nmn)) (1 - 772 ) ) ﬁ = nmn/a
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Figure 9: The integration contour C' in the complex z-plane.

The entries in the matrix Ay, contain integrals that have to be computed
numerically. The following change of independent variable illuminates the square
root singularity that is present in these integrals. To this end, assume f(x) is a
smooth function for x € R. For real a and 3, we have

/f = 1/2 /f a:d:v /f $d_:va2

/f 2 12) t—l/ f(Va2+2) dt

A.2 Change of contour

To illustrate the effect of contour deformation, we consider the integral (&, = &1,
n=1,23,...)

. 22 (Jy(2))? z dz
Li(k,n,n") :/C (22— €2) (22 — 572#) (k2 — z2)1/2
_/ 22J1(Z) (Hl(l)(z) + Hf)('z)) z dz
c

N 2022 =) (2= &) (k2 - 22)

This integral enters in the matrix entries of Ayrymery for the circular waveguide.
The contour C' is along the real axis in the complex z-plane, and is located below
the branch line between the points z = £k, see Figure 9.

Deform the contour C' in the upper (lower) half plane for the integral contai-
ning AV (2) (H?(2)) and use I;(z) = —iJi(iz), and Ki(z) = —n/2H" (iz) =
—n/2H1(2)(—i:c) for z > 0. We get

I( /)Z%/Om(whm)m(x) x do

K,M,N

T P @8 e
© 2 (a)H,) d : n
) T a2
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Appendix B Power flow in the half space

The total power flow (average over one period) that passes the interface z = 2 is

//z <S(t)> dz dy———Re//Exy (J-H, (r ))|Z:Z1 dz dy

By the use of the Parseval’s identity (or use (3.1)) we get

- ——Re/ E,y(ki,21)-J- HY (ky, 1) dk, dk,

82

1kzz * —iklz
g e / [ Byl (i) B (e di, d,

Divide the domain of integration into |k¢| < ko and |k¢| > k.

Re / Exy(kt) . ’Y(kt) . E;y<kt) dkx dky —+ _[

|kt| <ko

N 810

where

I =

// \/ﬁ R R, (k)

|kt |>ko

8K Mo

kik
: (k2 - ;{2 +12) - E:(Kky) dk, dk, =0
0 t

since By (ki) - (kiko/k? + 1) - B}, (k) is a real quantity. Finally we have

S =

Re / E, (k) -~(k,) - E%) (k) dk, dE, (B.1)

ket |<ko

8710

which is independent of the plane, z = z;, at which the integral is evaluated on.

Finally, we prove that this expression, (B.1), of the radiated power is identical to
the radiated power over a half sphere of the far-field amplitude F'(7-). The radiated
power into the half space z > 0 is, see (3.4) and (3.5)

—//r <S(t)> ds
s 770/ /

This integral is of the form

2
J E., (k. = kosin Qrc)] ) sin 6 df d¢

2n  pr/2
I= / / f(kosin@r.)sin® do do
o Jo
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which we transform into (k; = ko sin 67)

]—//f dk, d/{l€2

|kt‘<k0

We can now write the radiated power into the half space z > 0 as

2
> Rk, dk, dk,
2 kt my kt + kt J- Ewy(kt) 3 5
~ 8n 770‘k J 0 kor/E2 — k.
t|<ko

where we used the decomposition

~ 2 2
7% [ Byl = | By — 5?0 ., | =

|Pe - Emy\Z + cos? 6 ‘fﬁ -E,,

The use of (3.3) implies

1 *
Ps = 87[2770 Re / Emy(kt) . ’7(kt) . Exy(k:t) dk’x dk’y
ket |<ko

which is identical to the expression above.
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