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AUTOMATIC CONSTRUCTION

OF LINEAR STOCHASTIC DYNAMIC MODELS

FOR STATIONARY INDUSTRIAL PROCESSES

WITH RANDOM DISTURBANCES USING OPERATING RECORDS

K. J. BAstrom T. Bohlin S, Wensmark

SYNOPSIS

We describe a new technique for automatic identification oi stationary,
linear systerns with a single output. This class of models includes all
linear, time-invariant, stochastic, difference equations driven by
arbitrary inputs and having stationary,normal disturbances with ra-
tional specira.

The parameters of the model are estimated by the method of maximum
likelihood. A numerical algorithm for solving the likelihood equations
is presented. The algorithm is essentially a modified Newton-Raphson
algovithm, which takes advantage of the particular structure of the
problem.

Conditions for consistency and asymptotic efficiency of the estimates
are given for increasing sample length. It is shown that these prop-=
erties are exclusively determined by the information matrix. An
estimate of the latter is obtained without additional computations.
The information matrix also yields an estimate of the accuracy of the
estimates in each case.

The approach has been tested on artificially generated input/output data.
It is also immediately applicable to power spectrum analysis of time
series, having advantages over ovdinary aon-parametric methods in
that it always gives a non-negative estimate without the problems of
trend removal and of the choice of spectral windows turning up.

The basic idea can be extended to larger classes of systems. Also the

identification is easily done recursively, which implies that the method
is well suited for real time modelling.

Locator Terms for the IBM Subject Index

Identification, analyzing

Mathematics, models, synthesizing, automatic
Equations of state, dynamic, stochastic disturbances
Estimating parameters

Process control., computer
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INTRODUCTION

Several powerful theoretical methods have been developed during the last
decade for the synthesis of control systems. Many of these techniques,
based on realistic assumptions, make it possible to include random dis-
turbances, measurement errors, etc. The synthesis can easily be
automatized using a digital computer, and can eagily handle multivariable
systems. The control algorithms obtained from these techniques also
contain the class of algorithms, such as those obtained from three-term
controllers (PID regulators), presently in use in the prpcess industries.
For example, the linear stochastic control theory (LSCT) leads to a regu-
lator which can be interpreted as a multivariable, linear, time-varying
network. This includes a set of interconnected three term controllers, as

a special case.

It seems very attractive to apply linear stochastic control theory to obtain
“an algorithm which in turn can be put into a digital computer and used as a
real time process controller. As the algorithm obtained by a number of
interconnected PID regulators is included in the algorithm produced by the
linear stochastic control theory, it is always possible to obtain a system
which is equal to or better than what can be achieved by a collection of PID

regulators.

To apply synthesis techniques such as those obtained from linear stochastic
control theory, we need a mathematical model of the process and its environ-
ment. Such models might be constructed from first principles, as is
generally the case with mechanical, electrical, and space technology systems,
or the process might be identified directly from measurements of the relevant

inputs and outputs.

When trying to identify an industrial process like paper, steel or cement-
making from first principles, one meets the obstacle that such principles
often do not exist, or at best are dubicus. Knowledge is lacking about the
processes, and at present, intuition acts as a substitute. Even if the structure

of the eqﬁations governing the process can be found, the parameters of these
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equations are often not known. Also, when a model of the process is
found, the problem of describing the transducers and measuring equip-

ment remains.

In this report we will describe a technique for numerical identification

of a process using operating data. This technique attempts to represent
the observed input/output relation as a single input, single output, linear
dynamical system with stationary normal disturbances and measurement
errors having rational spectra. Such a system can be described by a
finite number of parameters, and the identification problem can then be
regarded as a parameter estimation problem. The parameters are
estimated using the method of maximum likelihood, and the essence of the

method is a numerical algorithm for maximizing the likelihood function.

The identification algorithm requires samples of the input and the output

and gives estimates of:

e The dynamics of the systém including transducers and measuring |
equipment.

e The character (spectrum) of all disturbances affecting the output.
® The measurement errors, if they are uncorrelated.

] The accuracy of the estimates.

Let us exemplify with the dryer section of a paper machine in which the

input steam pressure in a number of steam heated cylinders are manipu-
lated to influence the moisture content of the dried paper. If the input
steam pressure is recorded and the output moisture is measured, then it

‘.
should be possible to obtain: ‘:

® The time constants of the heating cylinders.
® The spectrum and variance of the ingoing moisture + air moisture + |

any other disturbances. ;

With this information available it is possible to construct an optimal

strategy for controlling output moisture through steam pressure, using
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linear stochastic control theory. The strategy is optimal in the sense
that it minimizes the output variance for all possible strategies. The
numerical identification technique has been tested on artificially gener-
ated time series. The technique gives estimates which are efficient for
long series. The estimates of the parameters will also converge to true

values as the sample length increases.
There are two reasons for choosing our particular model:

@ It is linear, which implies that it is possible to attack mathematically,

with some generality.

® The linear stochastic control problem has previously been solved for
this particular model, and computer programs for computation of

the optimal control strategies are available [3].

In practice, the model should cover all stationary processes which are not
greatly disturbed. Hence, by solving this identification problem, we are
¢losing the chain data logging, mathematical model, control strategy.

In this way, much of the otherwise tedious manual work can be done by

computers.

The restrictive assumptions of our approach are as follows:

® The model is linear and invariant in time.
e The model has a single input and a single output.
@ The disturbances at the output are considered normal, stationary, and

with rational spectra.

@ The process is sampled with a fixed sampling rate.

There are two fundamental aspects to regard when discussing the signifi-

cance of these restrictions.

@ Concerning the algorithm: to what extent are the restrictions essential

for solving the problem ?
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o Concerning the process: to what extent are the restrictions essential

for applying the algorithm to actual physical processes?

The assumptions of time invariance and linearity of the model, and of
stationary disturbances with rational spectra imply a finite-dimensional
parameter space, which is essential for the algorithm. These assump-
tions can be relaxed in several directions to give similar algorithms for
other processes. Time-varying systems and nonlinear systems with a
given structure that are characterized by a finite number of parameters

as well as nonlinear systems with a given structure can be treated in the

same way. The crucial restriction is the demand that the independent
random component e(t) driving the model be expressed as a function of the

input record {u(t?), t"=1,...,t}, the output record {y(t9), t" = 1, ceouth

and the parameters 0 for every t. The condition of fixed sampling rate can
be relaxed. Several inputs are easily treated. The assumption of a single
output makes it possible to choose a canonical form for representing the
process. The problem can be extended to multiple-output linear systems
if a suitable canonical form can be found. The assumption of normality is
essential, since it makes it simple to write down the likelihood function

explicitly.

In theory, it is required that the process studied be linear and the dis-
turbances gaussian. In practice, it should be possible to estimate a
linearized model of a nonlinear process that operates sufficiently close to
its equilibrium. If the equilibrium is sl'owly drifting, e.g. due to seasonal
variations, the identification must naturally be repeated periodically. With
regards to the assumption of normality, let it suffice to mention that the
algorithm has been successfully used to identify simulated linear systems

with rectangularly distributed disturbances.

The identification algorithm is intrinsically capable of estimating built-in

transportation lags as multiples of the sampling intérval. However, more
accurate estimates Can}be obtained if we are able to incorporate the a priori
knowledge (or anticipation) that a pure transportation lag is present. It is

then advantageous to repeat the identification for systematically shifted
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input data and compare the minimal losses (likelihood functions). In this
way the process can generally be identified as a systermn of lower order
than would be possible otherwise. The statistical aspects of this pro-

cedure have not yet been investigated.

The assumption of linearity and time invariance generally prevents the
appli.cation of the identification alg‘o_rithm to batch processes, since here
the state of the process varies over a wide range, and most processes can
be considered linear only in a small region. It should be possible to
id‘entify batch processes that are indeed linear over the whole range.
However, in such cases the estimator is not efficient. A statement of the
problem is given in section 2. It is of interest to observé that the formulation
of the problem includes regression analysis, identification of linear noise-
free input/output systems, determination of parameters in moving averages
and autoregressive processes, and time series analysis as special cases.’
In section 2, we also give a description of the most general model of the
desired structure as a descrete-time, stationary, dynamical system

driven by a sequence of independent random variables. Alternative re-
presentations of the dynamical system are also discussed. Naturally all
representations contain the same number of parameters and can be trans-

formed from one to the other by changing parameters.

In sections 3 and 4, we derive an expression for the likelihood function and
its partial derivatives. The derivations of sections 3 and 4 are essentially
the same, the only difference is that in section 3 the difference equations
representing the process are kept as an implicit relation, but in section 4,
this relation is eliminated explicitly. In fact, the identification algorithms
were derived independently by the authors starting from different viewpoints
and with different mathematical means (difference equations and matrix
algebfa respectively). It gradually turned out that the two methods of
solution were merely two aspects of the same method, indicated by the
fact that the algorithms were similar and that exactly the same computa-
tional tricks could be utilized in both. Even the number of multiplications
and the amount of necessary storage space coincided. The remaining

difference is trivial and consists of the fact that the likelihood functions

are minimized with respect to different parameters, the transformation
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between the two sets of parameters being simple. However, both methods
have been included in order to give additional insight into the problem.
They represent two different viewpoints, each having advantages for
certain aspects of the problem, and we hope that the reader will benefit

from both. The authors certainly did.

The computation of the likelihood function and its derivatives can be in-
terpreted as the solution of a set of difference equations all having the
same homogeneous part but driven by inputs and observations indifferent

ways,

In section 5, we give the conditions for consistency and asymptotic effi-
ciency of the estimator for large samples. To show consistency, we must
assume that the system is stable and that the z-transform representation

of the disturbances have no poles and no seros on the unit circle.

The proofs of the results are collected in appendix A. They are extensions
of the well-known results of Wald and Cramé&r on the consistency and
asymptotic normality of the maximum likelihood estimate for independent
samples from the same distribution. In our case the observations are
dependent random variables. In order to extend Wald’s and Cramér’s
proofs, it is necessary to show almost certain convergence of the likelihood
function and the asymptotic normality of the partial derivatives of the

likelihood function.

Consistency is shown to be determined exclusively by the so called infor-
mation matrix, for which an estimate is also found. This estimate is
obtained as a by-product of the identification algorithm. Thus, it will be
possible to determine whether a computed estimate is actually consistent
and efficient in each case. The information matrix also yields the covar-
iances of the estimates so that estimates of the accuracy of the parameters
are obtained in each case. It is also necessary to have some restrictions
on the input signals. The essential factor is to guarantee that the system

is properly excited by the inputs. A simple criterion for this is also given.

In section 6, we discuss the numerical algorithm for maximizing the

likelihood function. Essentially the difficulty is to find the absolute maxi-
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mum of the likelihood function. There is no guaranteed way of doing
this. The algorithm used is a Newton-Raphson algorithm which will
converge to a local maximum under suitable regularity conditions. It
can, however, be shown that at least asymptotically there are not two
local, absolute maxima. There might, however, still be several local
maxima of lower magnitude. This must be investigated using different

starting points for the Newton-Raphson technique.

If the spectrum of the disturbances is known, the likelihood function is
convex and the algorithm converges in one step, (Markov estimates).
The choice of starting values for the Newton-Raphson technique is also
discussed. It is four‘ld that in many cases, the starting values can be

chosen as zero.

Several computer programs have been developed: A typical IBM 1401
FORTRAN program is listed in section 6. This program has been used to
test the identification algorithm and is practical (with respect to com-
puting time) for first and second order systems having 7 and 11 parameters
respectively, possibly third order systems having 14 parameters. Com-
puting time is then about an hour for 100 pairs of observations. In section
7 we give some numerical examples for the identification of artificially
generated processes, together with estimated accuracy. The true and |

estimated spectra of disturbances are shown by diagrams.

Our conclusions are given in section 8, where we also discuss the relation
of our identification scheme to others e.g. the model reference technique. -
The application of our algorithm to time series analysis is also briefly

covered in that section.

In section 9 we give some notes and references.
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STATEMENT OF THE PROBLEM

A sequence of inputs {u(’t), t=1, 2,...,N} are given and a sequence of
corresponding outputs {y(t)p t=1, 2,...,Nlfora dynamical system have
been observed. The problem is to find a representation of the observed

input/output relation with the form

y(t) + Ci,iy(tvi) oo+ any(t = n) (2.1)
= B ult) + Bu(t-1) +...+ B u(t-n) + Ale(t) + Yye(t-1) +.. .+ Y e(t-n)] + »
where {e(t), t= ..., -1, 0, 1,...}is a sequence of independent normal

random variables N(0,1). Introducing the translation operator 2z de-

fined by
x(t + 1) = z x(t) _ (2.2)

(See e.g. Fréberg [ 27 J)we find that the equation (2. 1) can be written as

a
Lta;+a,+ to

Bozn+ Blznml+8n zn+lennl+.,.+Yn ;

y(t) = = — u(t) + A ~ — e(t) + k (2.3) |
z taz +...+a 2 40,z 4...+0 |

n 1 n |

where rf
" |

k = (2,4) ;
r'

|

The rational functions of the right member of the equation have also inter-
pretations as pulse transfer functions. See Ragazzini and Franklin
(68 p. 66-69] and Zadeh and Desoer [ 89 ],

The reasonsthat disturbances have been included is that they are always
present in a practical problem and that a description of their character
is required to design a controller for the sy stem.

There are many Wways in which disturbances can enter the system, as

measurement errors in input and output, as inputs which are not
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measurable, as disturbances generated inside the system, etc. As we
are only considering linear models, the disturbances can always be
transformed so as to appeé,r as disturbances entering at the output.
The model structure given by (2.1) is equivalent to the assumption
that the disturbances are stationary random processes whose spectral
density functions are rational (functions of exp iwW). The model
structure of (2.1) is in fact the general representation of a finite -
dimensional, completely controllable, completely observable, single
input/single output system with arbitrary disturbances in terms of
stationary, gaussian,random processes with rational spectral densities.
To recognize this we can argue as follows. As the system is linear, we
can use the principle of superposition, and consider the influence of in-
puts and disturbances separately. Assuming no disturbances the input/
output relation of a finite dimensional, completely controllable and

completely observable linear systern can always be written as
yl(t) = 3, 2) u(t) (2.5)

where Pl(z) and Ql(z) are polynomials in the translation operator z with
no common factors. See Kalman [ 47 J]. Using linearity we can reduce
all disturbances to an equivalent disturbance at the output. When cal-
culating the spectral density function of this equivalent disturbance we

use the well-known rules for transformations of spectralldensities when

a random signal is passed through a linear system [ 68 J. Let® (W) be the
spectral density of the equivalent disturbance. The original disturbances
have rational spectra and the system is finite dimensional, the function

¢(w) will thus be rational in expiW

Introduce the function Y(z) defined by

Y(expiw) = @ (w) (2.6)

The function Y (z) can always be written as

v B P,(z"")
T o
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where PZ(Z) and QZ(Z} are polynomials. See Doob [ 19 p. 501-502 ]. We
assume that the polynomials PZ(Z) and QZ(Z) have all zeros strictly inside
the unit circie. Using the representation theorem the equivalent distur-

bance can be represented as

y,(t) = a,0) e(t) (2.8)

where {e(t)? t=..., -1, 0, 1,... } is a sequence of independent normal
N(0, 1) random variables. Using superposition, adding the influence of

the input, the disturbances, and a constant, we get

y(t) =y () +y,(t) + k

SLINC
70 = GHGT 0+ iy o)+ x
Pl 0y Py a,(e)
= %Q( j u(t) + o) e(t) + k
) P,

P_(z
= 5’(3“;”)—“ u(t) +é7';‘)=* e(t) + k (2.9)

which is of the same form as (2.1).
In this expression Q(z) is the least common denominator of Ql(z) and Qz(z)
Q(Z) = QI(Z) ° Q3(Z) = Qz(z) ¢ Q4(Z) (2 10)

Notice, there is no loss in generality in assuming that the coefficient of
y(t) is one, and that X is a common factor of all e(t). The last statement
follows from the fact that PZ(Z) of (2.8) can be multiplied with z without
altering the spectral density function ®(w). Also notice that we cannot

assume that anyone of the Bi:s is nonzero without losing generality.

From the above discus sion, it also follows that the dynamics represented
by the polynomial Q(z) is due partly to the system dynamics and partly to
the representation of the disturbances. An investigation of common factors

of P (z) P4( z) and Q(z) will separate one part from the other. An analysis

10 TP 18.150




of the polynomials will thus give interesting information about possible
structures for the system. For example, if P4(z) and Q(z) have all
zeros in common we can immediately conclude that a possible system

structure is a noise free system with independent measurement errors.

The equation (2. 1) contains 4n + 3 parameters: the coefficients %y Q

2!
ey O Boe B s BV Yoo oo Yo A # and n initial conditions.
The identification problem can be stated as follows.
PROBLEM
Given observations of the inputs {u(t), t=1, 2,...,N} and the outputs
{y(t), t =1, 2,...,N]} find an estimate of the 4n + 3 parameters of (2. 1).

Special cases of this problem have been solved previously; for n = 0 we

have
y(t) = n + B_u(t) + te(t)

that is a zero order model, a model without dynamics, or a regression
model. From this point of view the model (2. 1) can thus be regarded as
a natural extension of a regression model to include dynamics i.e. a

dynamic regression. The parameter n should actually be estimated. In

practice we will do this by repeating the estimation for different values of
n and observing the minimal values of the likelihood functions. As we
start this procedure with n = 0, we will always first try a regression
model. The problem of developing tests for the order n has not yet been

considered.
Associated problems and special cases have been considered in literature.

1. ap= ... :qnzo, 81:,.. :Bn=0, Y5 =Yn=01stheord1na:ry

case of regression analysis [ 84 ].

2, B =...=B =0, ¥, =... = Y, = 0 is the problem of identifying an

autoregressive series, and has been considered by many authors, e.g.
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Mann and Wald [ 59 ].

3.0, =...=0_ =0, B =.., :Bn:Oistheproblemofidentifyinga

moving average, considered by Whittle [ 87 ], Walker | 78 ], and
Durbin [ 20 1, etc. Whittle derives the Maximum Likelihood equa -
tions for the large sample case (N = ©) and proposes a method to
solve them. Walker reconsiders the problem and discards Whittle “s
method because of computational difficulties. He derives-an iterative
scheme for identifying the autocovariance function of the moving

average.

4, BO = L. 0= Bn = 0 is equivalent to parametric estimation of a rational
power spectrum of a stationary stochastic process and has been con-
sidered by Durbin [ 22 ]. The case of non-parametric spectral esti-
mation is treated in extensive literature, see e. g. Blackman and
Tukey [ 15 ]J. Durbin developes his method in three papers [ 20],

(21 ], [ 22 ]. Its essence is an iterative method of computing approx-
imate maximum likelihood estimates of the parameters of a rational
spectrum of fixed order from the sample covariances. His results
suggest that only the first few sample covariances (i.e. a fixed number
k as N = ®) are needed to obtain efficient estimation. Thus, less data
has to be stored (k << N) after the initial calculation of the sample covar-
iances. However, his method cannot be immediately extended to include
inputs (Bi # 0). Estimators based on sample covariances have also been
designed by Astrém [ 4 ] for the special case of 4) Y, = a. i=1,...,n,
i.e. an autoregressive series with independent measurement errors, or
equivalently, a rational spectrum consisting of an inverse trigonometric
poelynomial plus a constant term. This estimator is based on a quad-

ratic loss function.

5. ¥, = ... = Yn = 0 is the case of no measurement errors and was studied

by Kalman [ 46 ] and Bigelow and Ruge [ 13 ]. It leads to a least squares

estimate.
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6. G,i = Yi’ i=1,...,n corresponds to a noise-free process, whose output
is corrupted by independent measurement errors, and has been studied
by Levin [53]. His estimates are, however, not maximum likdihood

estimates and not shown to be asymptotically efficient.

The general case has been studied by Galtieri (28] [29]. He derives the
maximum likelihood equations and obtains Levin’s and Kalman’s estimates
for a noise-free system as simplified cases. The complete maximum
likelihood estimate is rejected due to the '"intolerable' amount of computa-
tions involved. Instead he proposes a Bayesian approach, i.e. a conditional
expectation of the parameters with respect to the observed output and an

a priori parameter distribution (which is taken to be one for a stable system
and zero for an unstable one). However, for a large number of parameters,
multi-dimensional integrals with integrands depending on the input and out-

put data have to be evaluated numerically.

A second method of Galtieri’s is a recursive estimation method, where he
derives relations between the a posteriori probability functions for the para-
meters, given an increasing number of data (on line identification). The
probability distributions can then be used to obtain Baye’s estimates of the
parameters of every sampling instant. The same computational difficulties

must arise, however.

General aspects and particular cases of model building (linear and non-linear),
using empirical data, have been presented by many authors. A clear and
simple presentation is given by Box [17]. General solutions to estimation

problems are given by the Bayesian estimates, e.g. Maslov [60 1.

It should be pointed out that the problem stated does not include estimation

of linear functional relations between the expected values of inputs and out-
puts, see e.g. Williams, [84 Chapter 11], Kendall and Stuart (48 Chapter 29 ],
Madansky [58],

The results for those special cases as well as analyses of other simple ex-
amples make it clear that we cannot hope to obtain a closed-form solution
of the problem. Instead we will consider the problem solved if we can find

an efficient computational algorithm.
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To solve the problem we will regard it as a statistical parameter-estima-
tion problem. The method of maximum likelihood will be used. As the
system equations are linear and the random variables normal, an explicit
equation for the likelihood equatioﬁ can be obtained. The essence of the

method is then a good numerical technique to maximize the likelihood

function.

Before proceeding with the identification problem we will discuss some
alternative representations for the systems described by equation (2. 1),
These representations are useful when the results of the identification

are to be applied and/or interpreted.

State Space Representation I.

After some calculations, we find the following equivalent representation

of input/output relationship given by equation (2. 1).

r 1 kT T ' ,
000...0 -a b C |
n n n !
100 0 =2 3 bn==1 €1
010 0 "2 bn-? “n-2
z(t + 1) = ) z(t) + u(t) + ' e(t)
\
000 1 -a. b c
1 1 1
i. i L L
y(t) = zn(t) + b u(t) + ce(t) + k (2.11)
where z(t) is an n-dimensional state-vector and
a, = Q,
i i ;
b.=8. -8 .q
i i o i
¢, = )\(Yi -Cli) (2.12)
b =8
o o
c = A
© A
K = T9a . 7a
1 n

!
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This representation is useful when the results of the identification is to
be used for the design of a control system because it is in a standard
form suitable for many design schemes. See e.g. [3] [75]. A block

diagram of the system is shown in Figure 1.

Nt Nit-
Unit dela, Vigare 1
Blockdiagram ol the s st to be
identiiied
AN L Multiphication

vt
. . \
*() Xy - Summat:un

15
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State Space Representation II

In (2.10) there is linear dependence between the disturbances representing
the measurement errors and the disturbances forcing the system. In
certain situations it is known a priori that the measurement errors are
independent of the other disturbances in the system. In such a case it is
of interest to have a representation which reflects this a priori knowledga,.
When deriving such a representation, we will again use the principle of
superposition, and consider the influence of the random disturbances

{ e(t) } on the output, separately. The spectral density of the disturbances

is given by the function Y (z) of equation (2.7). We rewrite ¥ (z) as

' -1
2 R(z) Rz )
Y{z)=d~ + . - (2.13)
o Qfz) oz 1) :
where
_ n-1 n-2
R(z) = d = +d,z + +d
(2.14)
Q(z)zzn+cxlzn by o

we then obtain the following representation of the input/output relation

given by equation (2. 1)

= o e ey r- oy
000... 0-a b d
n n n
{1oo 0-a_ b d_
010 0-a_ , b, d__,
z(t +1)=|" z(t) +|° u(t) + ) e(t)
000 1 - 2, b1 J cl1
L . [ - N
y(t) = zr'l(t) + bou(t) + dov(t) + k (2.15)
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where z(t) is an n-dimensional state vector and { e(t) }and { v(t) } are
sequences of independent normal random variables N(0, 1). The co-

efficients d, are related to the coefficients (2.10) by the equations

d%a = 22 Y
n n
a0, +a a)+d d = (v 4Y, Y) (2.16)
o ‘' n-1 1 ™n 1 n n-1 1 n
4
2 2 2 2 2 2_ )2 244y 2
d0(1+OL1 toooto Ty +dT4Hd T4 +d = AT(L+Y, Y, )
Even if the computation of all the components dl’ dZ’ oo oy dn involvés the

solution of algebraic equations, we observe that the computation of d2 »
_ o
which represents the measurement error,is wieldy. Notice also that

equation (2.16) does not always have a real solution.
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MAXIMUM LIKELIHOOD ESTIMATE I

We will now carry out the calculation of the maxirmum likelihood estimate

in detail. To do this we will find an expression for the probability density
function of the observations {y(t), t=1, 2,... ,N} as function of the in-
puts {uft), t=1, 2,.. .» N1} and the parameters. For this purpose we
express the variables e(t) of equation (2.1) as functions of the observations,
Exploiting the symmetry of equation (2.1) and the state-space representation

(2.14) we find the following relation

x(t + 1) = ®x(e) + Tu(t) + Aly(t) - k)
(3.1)

eft) = coe(’t) = xn(t) - bou(t) +y(t) = k

- where x in an n-dimensional state vector and

000. . .0-y
n
100 0~y
010 OmYn-Z
% =
000 L=y,
»-Bn +BOYn a - Y,
-B 1+80Yn~=l O'n-»].mYn--l .
T = - A = ° (3.2)
:Bl +BOY1 | _,al »Yl |

The variables € are thus independent normal N(o, co) random variables.

Liet L be the logarithm of the likelihood function and we get

®(t) + N log ¢+ N 1og 21 (3.3)
g c +35 log
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Notice that x(t) of the dy namical system (3.1) can be interpreted physically
as the maximum likelihood estimate of z(t), the state of the system (2.11),

at time t given the observations y(1), y{(2),...,y(N).

To find the maximum likelihood estimate of the 4n + 3 parameters, we
will have to find the minimum of the function (3.3) where {€(t)} is implic-
itly related to the observations {y(t)} and {u(t)} through equation (3. 1).
Instead of eliminating €(t) we will retain (3.1) as an implicit relation. We
notice that the likelihood function L has continuous partial derivatives of
all orders for Co# 0 and that the minimum is finite. The gradient of the
function will thus vanish at the minimum. Notice, however, that the
minimum is not necessarily unique. To simplify the notations we intro-

duce the parameter vector 8 whose components are defined by

o =, i=1, 2,...,n
nti = BT BY. i=1, 2,...,n
2n+i - % 7Yy i=1,2,...,n
€034 = % (1) i=1,2,...,n
e4n+l:bo
64n+22k
P4n+3 = %7 Y (3.4)

There is nothing special in this choice of parameters. The following

analysis.can be carried out in exactly the same way for other choices.

The solution of the identification problem is thus reduced to that of finding
the maximum of a function of 4n+3 parameters. There are a large number
of techniques ranging from simple search techniques to elaborate gradient
routines for solving this problem. The method to be described utilizes
the structure of this particular problem. It is a gradient technique where
fast convergence is obtained through the use of second partial derivatives,
equivalently a Newton-Raphson method applied to the likelihood equations.
See Kendall [48, sect. 18.21]. As with all procedures of this type, we
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may have the difficulty of multiple maxima. We first notice that the
sum Z e3“{'('(:) only depends on the parameters 91, RN 84n+2 and we can
thus maximize the likelihood function separately with respect to these

parameters. To do this we introduce the function V(6) defined by

p € () | (3.5)
where 6 from now on stands for the vector

8=1(6,i=1,...,4n+2} (3.6)

1

A
When we have found the value & for which V(8) has an absolute minimum,

the estimate of 84 3 is obtained from

14

n+t+

N
A2 A2 1
Y%n+3 = S5 = N Mem 2 €

“(t) (3.7)

A
To find 9 we use the following Newton-Raphson algorithm
ktl _ ok k|7l K
8 =07 - [Vee(e ) Ve(6 ) (3.8)

Where Vg denotes the gradient and Vgg denotes the matrix of second partial

derivatives of V(8) i.e.

3V (8 .
{Ve}i:a—e;(_L | i=1, 2,...,4n+2 (3.9)
2
Vool = 2% o
B6-1j aeibej i, j =1, 2,...,4n+2 (3.10)

Under suitable regularity conditions the algorithm (3.8) will converge to a
value /9\ for which the function V(6) has a local minimum. One essential
difficulty is that the function V(8) may have several local minima. The
choice of initial estimates for the algorithm is discussed in section 6

To use the algorithm (3. 8) the partial derivatives of V(6) must be evaluated.

This is done as follows

20 TP 18.150




N ~
VA 2e() . (3.11)
38, T t§1 €(t) o0, i=1,...,4n+2
1 1
2 N N 2
oV _ . %€ (t) oe(t) %(t) . . _
59,95, 1 % w0t (03 A 1, 2,...,4n+2
(3.12)
where the derivatives of €(t) are obtained from (3.1) i.e.
de(t ax(t) : . .
6 = ae 1=1’ Z,—--,4n
i i
3 (t)
ag : = ~u(t) i=4n +1
i
de(t ox(t) : . | ’
B, = it i=4n +2 (3.13)
i i v
2
3%¢ t o"x(t) o
6.06, -~ 3039, i, j=1, 2,...,4n
1 J 1 ]
2
o) €(t) :
o8 ate = 0 either of,j = 4n +1, 4n + 2
i)

and the derivatives of x(t) are given by
Ox(t + 1 ox(t 0d or | oA .
—%i—)- =§—5-g—) + 3@?x<t)+wi‘)(t)+5_6_;y“) i=1, 2,...,4n

axglz
S =0 i=1, 2,...,3n

[

TS = 6, i, j=3n+1, 3n+2,...,4n (3.14)
J
o)
et d) g ) _ i = 4n+2

= O» (3.15)
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9%%(1) - o Dl s . 5. 16)
eiaej - 8J B H o 0 0 g

and
ézx{t +1) _ %% (t L2 Ox(t)
g.00, - g.090, ] 0
1) 1 ] 1 J
3%x(1 - o i=1,2,...,n
aeiaej j=1, 2,...,3n (3.17)

Q)
D
fes; L
i
<

eitheri=1, 2,...n j=3n+1, 3n+2,...,4n

ori, j=n+1,...,4n

2
:QBXt +_a:?=' ° %%LE), i=1, Zv'-'in;.j:4n+2’

98, 98 8. ,
1 ) 1 J
= 0 (3.18)
2
Ox(t + 1) 9%x(t 34 _ C s
5600 = @'“a-é"%—g-ﬂ B va—é-j- 1-2n+1,...,3n,J—4n+2
i 7 i i
.2 4
0" x(1
- . .1
56,00, 0 (3.19)
1]
2t = 0 i=n+1l,...,n; j=4n+ 2 (3.20)
Biaﬁj ' ’

Notice that the logarithm of the likelihood function as given by equation
(3.3) is an analytic function of 8,8 if 0 #0. This
stable. If the parameters 61, cees Gn are constants, it follows from
equations (3.1) and (3. 3) that log L is a convex quadratic function of
en+l’ sy 84n+1 - Inthis case, the Newton-Raphson algorithm (3. 8) will
converge in one step for all initial values. This situation corresponds

physically to the identification of a linear model when the disturbance is

22 " TP 18.
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a known moving average of independent normal variables. In particular,
if 81 = 82 = .., = ﬁn = 0 we get in this way the least squares estimate of
the parameters Bn“, 6n+2" ce s 84n+1° Also notice that equations (3.1),
{3.5), (3.11) = (3.15) for the function V(0) and its derivatives can be
interpreted as dynamical systems and that the matrices defining the
dynamics of these systems are identical. This is illustrated in Figure 2

where we show a block diagram for the computation of function V and its

{first order derivatives.

Unit Delay with ={1) § 0

Usit Dalay with x({l) = 0

X puniplication of aigaals

Aslt)

u{t)
Multiplication by comatent
or matrix .
'
o xcol [0, 0, ...,0 §
Axding [0, 0, ..., 0 1]

Figure 2.
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Computational Considerations

We will now make 2 few observations which can be used to save on com-

puting timne.
@ Computation of the partial derivatives VG"

To compute the gradient of V(0) we must first compute the partial deriva-
tives of xn(t) with respect to 0. See the equation (3.11). Furthermore,
the form of the ¢ matrix (3.2) implies that the derivatives of the component
x with respect to ei cannot be computed without com?uting the derivatives_
of all the components. We also notice that fori= 1, 2,...,3n only one of
the terms of the right member of the equation (3.14) is non-vanishing and

we have

|

[0, 0,...,e"] i=1, 2,...,n . (3.21)

55 = e i=n+l, n+2,...,2n (3.22)
i

i
b
L]

2n+l, 2n42,...,3n (3.23)

where e’ is a vector whose components are given by
SEETE T (3. 24)

Hence in order to evaluate the derivatives of xn(t) with respect to Gi
i=1, 2,...,3n we have to solve difference equations of the type
i i i
z(t+1)=8z7(t) + evit) (3. 25)
with initial conditions

z(1)=20

The solution of equation (3.21) is
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i . .
zn(t)m() t=1, 2,...,1

The equations (3.26) and (3.27) imply

§el‘$@ll 122, ...o0, D+ 2,...,20, 20+ 2,...,30

Hence
2+ 1) = 27 HE) + e v(t)

and in particular
i i+l .
zn(t+l):zn t) i=2,...,n, n+2,...,2n, 2n +2,...,3n

Similarly we find that equation (3. 14) for the derivatives of x(t) with

respect to 0 0 cees 6411 can be written as

3n+l1’ "3n+2’

zi(t +1) = ézi(t)

and we can thus conclude that equation (3.28) holds also for

i=3n+2,...,4n. Summarizing we find

axn(t) i bxn(twiﬂ) -

ae. - ae 1= ,....,n
i 1

A (t) dx_(t-i+n+l)
po} n .

‘ae = ae 1=n+Z,.,.,2n
i n+l

TP 18. 150
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ox (t) %xn(tmi+2n+1)

- = i=2n+2,...,3n

08, B ont

axn(t) Ox_(t-i+3n+1)

- = née i=3n+2,...,4n (3.29)
i 3n+l

and we can thus conclude that in order to evaluate the partial derivatives of

eft) = % (t) with respect to ITRRER 04, it suffices to calculate four deriva-

tives.

@ Computation of the second partial derivatives Ve

To compute the second partial derivatives of V(0) we must first compute the
second partial derivatives of xn(t)° See equation (3.12). By differentiating

equation (3.29) and using equation (3. 28) we find

%5 (t) %% (t-i-j+2)

—— = 2 i=1, 2 j=1, 2

56,06, ° 56 06 PE R Geerean JE A &y ennn
i 1771

2%x_(t) 2°x_(t-i-j+2+n) . .

o5 = 5656 i=1,2,...,n j=mn+l, n+2,...,2n
i 1 " "n+l

2
0 xn(t—i—j+2.+2n)

= i=1,2,...,n j=2n+l, 2n+2,...,3n
561892n+1
>
*x_(t) 3% (t-i-j+2+3n)
TRERS = i=1, 2,...,n j=3n+l, 3n+2,...,4n
aeiaej E‘»Gl 593n+1

(3.30)

Hence in order to calculate the 3. an + 0. 5n nonzero second partial deriva-

tives with respect to 0

5, (0

TREEY eén it suffices to calculate four derivatives of

Finally we point out a possibility to save on time when computing the sums

n &xn(@;) éxn(t)
X . aej (3.31)

=1 98

Instead of treating a general case we assume 1 Si<n, i $j <n.
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Introduce

) t axn<s) a‘xn(s) t 3xn(s) an(’s)
s;;0= T 53 © %, = % 6. 98, (3.32)
s=] i J g=j+l i j

The equation (3.29) implies

t ox_(s-i+1) x_(s-j+1)
n ‘ n
sij(t) = % o
s=j+1 1 1
t-i+l axn(s) an(sj+l)
- 5 . . (3.33)
s=j-i+2 ael ael

and we can thus conclude that in order to obtain Sij (t) fori, j=1, 2,...,n
it suffices to calculate s”(t) Exploiting this idea, we find that in order

to calculate the 2n(4n+1) sums (3.31) it suffices to calculate 16n-6 sums.
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MAXIMUM LIKELIHOOD ESTIMATE II

Consider the representation (2.1) of the process

n n n

by @, y(t-k) = T Bult-k) + A & Vieelt=k) + x, t=1,...,N (4. 1)
=0 k=o k=o

Gy =Y =1

Here y(t) and u(t) are unknown for t < 0

Make

t t t
vy (ten+l) = - ¥ 4 y(t-k) + £ B uft-k) + A & vy e(t-k) + x,
o k k k

k=o k=o k=o

t=0,...,n-1 (4.2)

Then yo(t)ﬁ t=-ntl,...,0 may be regarded as the n initial conditions
required to determine the solution of the n'® order difference equation
(4.1). It is easily seen that the representation (4. 1) together with the

initial conditions (4.2) contains exactly the required 4n+3 parameters, viz,

ak . k=1, s N

Bk , k=0, ,

e K deen (4.3)
yo(t; t = -n+l, , 0

H

A

since {y(t), t=1,..., n} can be uniquely determined from (4.1), (4.2) |
given the parameters and the sequences {uft), t=1,... ,n} and
{et), t=1,.. cen ).
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Geometric Interpretation

Regard the sequences of inputs, outputs, and disturbances as points
u, v, and e in the N-dimensional euclidian space RN, i.e. introduce

the (row=) vectors

y= @) i=1,...,N]
{u(j), j=1,...,N]
e={e(j), j=1, /NJ

Then points y and u are observed, while e is a sample from an N-

dimensional normal variable, Ee = 0, EeeT: I.

Furthen introduce the parameter-dependent matrices

n
A= G’kik
k=o

n
B=2X B 1
k=o k 'k
n
C=1 v, 1
K=o k 'k
K=#nl
n-l
Y = z yg(kmn+l) L
k=o
Here

Ik: {Biwjmk’ i,j=1,...,N} = “ghift matrix

Notice that A, B, C, K, and Yo € T = the class of left triangular, Toepliz

(35] matrices. It is easy to verify the following rules

ABECET =
i)A,”1 ETifao#o
ii) AB = BA €T (i.e. A and B commute)
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In fact, we can perform any finite number of elementary algebraic

operations without ever leaving the class T.
Using matrix notations, a compact form of (4. 1) is obtained

yaT = uBT 1 aecT +ixT 41, v7 (4. 5)
y 1 "o

where

i={1, j=1,...,N} (a row vector with all components = unity)

il-‘l—’f- {8‘]@19 J = jwﬂaﬂsN}

Eguation (4.5) can be regarded as a linear relation between non-singular
transformations A, B, and C of the points y,u, and e respectively. The
problem is to estimate these transformations, the vectors iKT and

ig Y;Fg and the scalar )\, given y,u, and the distribution of e.

If the Maximum Likelihood estimate is chosen, we need the distribution

of y as a function of u and the parameters [83].

But this is readily obtained from (4.5). Since e is normal (0, I), theny
is normal and
T T T, T
Ey= (B +iK" +i Y ) A

=1
Cov {y,y) = vV atlc CT AT

so that the logarithm of the likelihood function is (except for a constant)

-1
= -N Log A -—=ecT ¢l (4. 6)
2\
gince det A = det C = 1,
Here
e=yal -uB’ - kT s»;ii‘sz < AeCT (4.7)
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= the disturbances in the output.

The Maximum Likelihood Equations

Include all parameters except A in the common V@ctvqr 0 and make
IR \

ng%}g%zecT cle ‘ (4. 8)

The M. L. sstimate % of 6 is then obtained from

v(8) = mé,n v{6) ' (4.9)

and the M. L. estimate of A from

Z _ 2
Wty (4.10)
by differentiating ( 4.6) with respect to A

It is now easy to find the derivatives of V(0 by straight forward differen-

tiation of {4.7). Notice that 1? and Cal commute. The results are

T | (4.11)
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The M. L. estimate is obtained as the zero @ of the firet derivatives
(4.11) minimizing V(8).

Solution of the Maximum Likelihood Equations

The estimation problem is essentially a problem of solving the Maximum

Likelibood eguations.

Notice that where C is known, the remaining equations can be solved
exactly for A, B, K, and ‘YO, in which case the solution takes the form
of weighted Least Squares ( = Markov) estimates. This is not true if C
is unknown. It is known [53)] that if C is not correct, the Markov esti-

mate may even be asymptotically biased (N =),

There are several hill climbing techniques which can be applied in
minimizing V(6. Since V(0) is given in closed form it is advantageous
to use one that utilizes the knowledge of the structure. A Newton-Raphson

technique will be used [45]

The second derivatives of V(0) are required. Since the parameters {@i}g
[@i}g #, and {yo(i +1 - n)} enter the vector €in essentially the same way
(4.5), there are only three different second derivatives that need to be

considered.

Let £, g, be any two of the parameters {di}' {Bij, #, OT {Yo(i +1-n)}.
Let € 1 be the corresponding vectors -y, u, i, i19 and Nge Nnthe corres-

ponding appropriate sets of subscripts r, 8. Thus a correspondence is

obtained

if - 3 — Ng

E. - gyl NT’]

@’r — =y —— {1@”,,n}
Sz‘ — u {0,...,n}

" — i 0

y (rtl-n) — i  — [0,....n-1]
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Also let

We have for £,

r €N

TENG

Y] -
r€Ng, 8 €N (4.12)

r €N s €N,

gﬁ

¥, 8 ENe

Let V@ be the column vector of firs

t derivatives and Vg, the matrix of
second derivatives according to (4.12). Then the Newton-Raphson
algorithm is

é\k+l Ak =1 /\k)

Ak
05T = B - vy (859 v(e (4.13)

A A A
If the sequence {ek} convergen, then U = lim ok is a root of v@(e) s 0.
Ig—

- . s . o .
Concerning the initial estimate @ see section 6.

Finally, notice that so far nothing ig assumed about th% stability of the

process; i.e., the stability of the difference equation C X K = 0
k=o t-
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Fach cycle of the Newtor cedure (4.13) requires essentially

the following compu

J
1) vectors £ and €, viz.
2 Z 2 1.2 1 2. 3
L E: “vfgs}?«%u@uég iz 1391@*12? 135 195 g€, €7, '%j;: €
¥
2) inner products ’r’} izi E, viz.
1 a7
function: €” €
T , T T T T
18t derivatives 61 I *;fz s SE\L u’ o, E‘»l I 52 ’ €1 zl s 61 I 13’
T 1 ¥ r 1
- 3 T - T T,
2nd derivatives: 1.2 A 1.7 1 1.T 1
2 y igif’y » U Igiry ; U Zglgu .
. T T
2. T 1
ef1tr Wt el e
8 r r+8

Ky

It is advantageous to solve it b*gf inverting @889 gince V%e is needed for

estimating the covariance of @ See section 5.

@

Now v and u are given, and € is easily computed from (4.7)
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. a e n-1
et = T a y(t-k) - T B uft-k) -x =% y_(k+l-n) 8

J k=o ke k=0 k k=0 t-1-k

i

!

i y{)=ult)=0 =0 (¢.14)
v, ) ) v vl 1!
The vectors £ (which will be called state-vectors) satisfy £ = E C

. VI © Ve . , Y Ve
go that £ is obtained from E ! through the linear equation § CT = g 1
(4.15)
But this equation is solved easily, since C is triangular.

%’ :9\") gj \) vl

| 8{th= -2 v B (t-k) +& T (t), t=1,...,N

) k=1l °

: v

3 E{t)=0 t£0 (4.16)

solution of a linear difference equation (4.16} (which is stable according
9 Y 3,9 - o 42 3, 8 ° \)“l .

to postulate} with zero initial conditions and driven by & ~(j). Or

:ntly ag the output of a linear filter, defined by {Yi} with the input

We need the outputs of this {ilter for the following inputs

u = the observed input ’
v = the observed output =1,
€ =

@

i= a unilt step

R
B 0 BN NN
W

\Y)

V
the calculated error V=

pY)
if a unit pulse Y

. \Y .
The inner products zre formed between vectors Iri ., which are the state
vectors shifted a certain number of steps r (always = 2n). They may be

. . . . . AY
interpreted as various cross-correlations between the filter outputs & .

There are O(n") different such inner products, corresponding to the
varicus second derivatives, each of them a sum of N products. However,

there exist numerical dependences between the products which can be

utilized in reducing the number of necegsary multiplications in the following

WAY .
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Let B, 7 stand for any two of =y, u, & i, il and define the scalar

function
Vi \ \;)T oo v
YHE(E 1 t) =1 J, 1 g€ =% 7 (k) §{k-x) (r 20)
=1 (4.17)
VL LY
v )= T (0 8 1) (r <0)
Here
Jo= (s, ,i=1,...,8 0, i=t+l,...,N), j=1,...,N}
t S
= “truncate matrix’,
< . T v
27 o have then.. gin = . >
We have then,-since I 1 =J I (r 28),
woT o v _
NIt g =YY" (€ 7, N-s), (r 28) (4.18)
8 r res
R S s =
Since ‘l’r (& 7, t) are computed sequentially fort=1,..., N,

'y : : : ;
‘i‘rj@(gs N, N-g) for 8 = 0,...,n is computed with the same effort as

‘y\f(i 71, N), and only NO(n) multiplications are required. (The number

of storage locations are however still O(nz).)

Of special interest is the case where N is a large number, while n is
moderate. It is then desirable to perform the computations in such a way
that the storage space required does not increase with N (éxcept for the

external memory necessary to store the input/output u, Y)-

This is accomplished if the computations are organized in the following way.
For eacht=1,..., N

® €(t) is computed according to (4.14). 2n + 2 storage locations are

required to store y(t-k), u(t-k), k=0,...,n
© The values gv(t) are computed from (4.16). Only a moderate

( = bounded, N = «) number of storage locations are necessary

. =V
(i.e. for the various §(t-k), k= 0,...,n)
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® The cross products Ev(tmr) “f’]u'(t) according to (4.12) are computed
and added to ‘f:“(g M, t-1) according to (4.17)

) The state variables i\)(t-»k-%»l) and the accumulated inner products
Vi
Y:M(ﬁg T, t-k+1) are moved to the locations for Ev(t»k) and ‘l’r“(g, M t-k)

respectively.

The inversion of Vg is done by standard techniques [27]. No caution is

required here as to computing time and storage space.

Finaﬂ.y, notice that if N is large

T

e T VT W
et g ~ M (g 0, N

: . . =1
the relative error is of the order N ~. This follows, as the difference equation

n .
L Y, X, ) = 0 being stable implies cls O(1).
k=0 N =0

The Asymptotic Number of Multiplications

Of crucial importance for the computing time necessary to execute the
identification algorithm, when N is large, is the number of multiplications
necessary t.o perform one step of the Newton-Raphson algorithm, times
the number of such steps required to obtain an approximate root with pre-
scribed accuracy. The number of multiplications will now be derived.
What matters is the number of multiplications inside the main loop
t=1,...,N (which is gone through only once per step), because the

number of operations outside is constant when N increases.

For eacht=1,...,N the following table is obtained. The zercs hola
asymptotically for large t, since the responses to the step and pulse
inputs i and i; can be computed to any degree of accuracy with a bounded

number of multiplications.
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38

Quantity to Rangoe of sub or Formula Number of
be computed Supsracripts multiplications
v
y (t) v= 1,2 {4.16) 2n
u ) v=1,2 (4. 16) 2n
i) v 1,2 (4.16) 0
i)(6) va1,2 (4.16) 0
elt) (4.14) 2+l
D) ve1,2,3 (4.16) 3a
y‘ljlienett} (4.17) 1
,?ll
r(my,ﬁ,t) £5 l,000,0 {4.17) n
11
?r (s, & ¢) r=z0,...,0 {4.17) a+l
21
‘?x_(%%t) r=ly,...,0 (4.17) n
11,
B (RS (4.17) 0
v e, e) =0 -1 (4.17 0
1, 1f e T=EUyoespD . )
Y“’
g T =yot) r=0,,..,001 (4.17) n
i1
¥ (-y,u, ¢} EE ef,...,0=1 {¢.17) 2n
7,0, 1) r=0,...,n (6.17) a+l
‘iiz(-»y,egt) = ntl,...,n°1 {4.17) 2Zn-1
21
Y2 -y, e, t) *=2,...,20 (4.17) 2n-1
Y:g(u,C,t) = -n+l,...,n (4.17) 2n
21
Yo (n, & t) r=l,...,2n (¢.17) 2n
Y:’,z(‘-\%t) ra0,...,0=1 (¢.17) n
Yf,l(e,gt) ra2,uie,20 (4.1%) 2a-1
viy, s .
, Cyadnt) r=l,...,n (4.17) 0
v iy, s =0
o (uist) r=0,...,n (4.17) 0
v2le, i, 1) r=1,....n (4.17) 0
v4e,1,0) r=1,....n (4.17) 0
‘f‘il(i. i, t) (4.17) 0
il :
Yo (yedgse) Fz on4Z,0..,0 (4.17) 0
11, .
Yo (u,xl,t) r=-n+l,...,n (4.17) 0
‘?fl(%il,t) = <nt2,...,0 (4.17) 0
1 :
‘?f(%xl,:) r=l,...,28-1 {¢.17) 0
1. . 5
Y. (z,xl,t) r=-ntl,...,0 (4.17) 0
v,y =0 1 4.17
y Upedg, r=0,...,m- (4.17) 0
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The components of Vg and Vae are obtained from the quantities
‘i’?(g, N, N-8), s=0,...,n, according to (4.18) and (4.12), by a

fixed number of multiplications.

Summing the left column of the table, we obtain the asymptotic
number of multiplications necessary to compute one step of the

Newton-Raphson procedure
~N{(27n + 1)

This is very convenient, since it implies that doubling the order of

the model just doubles the computing time needed to identify it.

The number of multiplications per parameter is

N(z7n + 1)/ (3n +3) ~9N, n~ =

TP 18.150
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CONSISTENCY AND ASYMPTOTIC NORMALITY OF THE ESTIMATES

In this section we analyze the properties of the maximum likelihood
estimate. In particular, we are interested in the behaviof of the
estimate (0) as the number of observations (N) increases. The standard
results for the maximum likelihood estimate of parameters from inde-

pendent equally distributed samples do not apply directly.

We first analyze the consistency of the estimate. Before giving any
general results we will consider a few special cases which illustrate

the case when the estimate is not consistent.

Example 1

Let the system be described by

x(t + 1) = ax(t)

y(t) = x(t) + e(t)

where {e(t) }are independent normal (0,0 ) random variables, a is a given
number -1 <a <1 and y(1),...,y(N) are the observed outputs. Let the
initial condition x(0) = 6 be the parameter which is to be estimated. The
maximum likelihood estimate of 8is given by
(P — 2’ Ig ty(t)
© 72 _2N+2 2y
a -a t=1

This estimate is unbiased and has the variance

A 2 2

_a l - a
Var § == 2N+2
a 1 -a

As N »® the variance converges to 02(1 - a.‘z), and the estimate of 0= x(0)
thus is not consistent. If in this case the parameter a also should be

estimated, it can be shown that this estimate is not consistent.

40 TP 18.150




The results of the example can be generalized to cover the general
case of section 2. The conclusion is that if the system defined by
equation {2.1) is stable, the estimate of the initial state is never con-
sistent. Notice, however, that this is not a serious matter because
for a stable system the contribution of the initial conditions to the

likelihcod function will be negligible, as N —»=,

We will now give another example which shows that the estimates of the

coefficients bi cannot be consistent for all possible choices of the input u.

Consider the system
®(t + 1) = ax(t) + bu(t)
y(t) = =(t) + e(t)

where x(0) = 0, and a is a given number -1 <a <1 and

1 t=20
uft) =

Iterating the equation once we find
x(t + 1) = ax(t)

x(1) = b « u(l)

The situation is then the same as the one discussed in Example 1 and we
can immediately conclude that the estimate of the parameter b is not
consistent. Roughly speaking, this example shows that in order to obtain

consistent estimates of the parameters b, the input u must excite the

system persistently.

We will finally give a third example which illustrates another difficulty.
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Example 3
Consider the system
Xl(t + 1) = -0.06 xz(t) + 0.3 uft)

xz(t + 1) =x(t) - 0.5 xz(t) + uft)

1

y(t) = 3, (1) + ot)

Introducing new state-variables z related to the x variables by

4 5 -1 x

-1
© 5

LZZ ? -10 3 x
we find that the input/output relation can be written as
Zl‘(ﬁ + 1) = -0.2 z,(t) + 0.1 u(t)
zz(t +1}= -0.3 zz(t)

y{t) = 10 Zi(t) +5 ZZ(t) + e(t)

From this representation it is clear that regarding the parameter -0.3
entering the squation for zz(t) we have the same situation as when esti-
mating the parameter 0 in example 1. The conclusion is thus that this
parameter cannot be estimated consistently. Back-tracking, we find
that the parameter -0.3 enters both the coefficients a; and a, of the
original representation and the conclusion is thus that it is not possible

to estimate the parameters a; 0.5 and'az = 0.06 consistently. On the

other hand, it is clear from the representation with z as state variable
that the input/output relation can be represented by a first order system.
The parameters of this system can be estimated consistently. The
reason for this is that the states 3 and x, are not controllable from the

output u.
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Consistency

We will now proceed to give conditions for the consistency of the
estimator. We first introduce some notations: 0 denotes the vector

of parameters defined by equation (3.4) or any other vector of 4n+3
parameters completely defining the procees, the vector of true para-
meters is denoted by 90, ly denotes the vector of observed outputs
defined by equation (2.1) or (4. 5), and E denotes mathematical ex-
pectation with respect to the distribution of y when the parameters

0 have their true values 90. The logarithm of the likelihood function

is denoted by L(y; 6). Both L(y; 6) and the maximum likelihood estimate
@ will depend on the number of observed outputs N. To indicate this we

A
introduce the notations 87 and LN(y; 0).

We will prove consistency by modifying the elegant proof of Wald [76]
for independent samples. The possibility of doing such extensions was
pointed out by Wald [76] [77].

The present case differs {from Wald’s case in two respects. The samples
are not independent and there are inputs u. Naturally some restrictions
must be placed on the inputs. We will generally assume that the following

regularity condition is satisfied.

ASSUMPTION A

Assume that the input u is such that u(t) and u(t) u(t +t) are Cersaro

summable i. e. the following limits

1
lim u(t)
Noe Ny
1 N
lim & T u(t) u(t + t)
N~ t=1

exist forallt =1,2,...
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Before stating the main theorem we will give some sub-results which
are of interest in themselves. These results concern the convergence

of the logarithm of the likelihood function LN(y; 9).
LEMMA 1

Let R be a region in 4n+3 dimensional Euclidian space defined by
R= {8 | A>0 and all zeros of the pelynomials

zn+<1 Z +...+ Q4
1 n

and z" + Y A2y Y, have magnitudes strictly less than one.}

Further let the input satisfy assufnption A. Then

lim & L' (y; §) = lim

N
E L (y;0) = L(8;8 ) (5.1)
N —e0 N==

1
N
with probability one if 8 € R and 80 €R.

This is essentially an ergodic theorem. It gives the asymptotic properties
of the likelihood function. The proof is given in the appendix where we

also show
LEMMA 2

Let the input satisfy assumption A and let R°S R be a closed set. Then

L (8; 60) is an analytic function of 0 in R” and we have
13 N, o 10 N, . ay_ d .
NN e T (v; 9 = lim § 35, B, L (y; 0) = 3T L(8;8) (5.2)

with probability one. The above equation also holds for higher derivatives.

We further have
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THEOREM 1

Let SO be a get in 4n+3 dimensional Euclidian space defined by

= {8 ]L(0 = L(9,6 )
s = (0]L(8 8 )=1(8,0)] (5.3)

Assume that the input satisfies the assumption A, and that for all
A
sufficiently large N, ol € R where R'CR is a closed set. Then

0 (5. 4)

with probability one, where P0is the projection of 8 on So NR i.e.

the nearest point €5 NR~.

The proof of this theorem is also given in the appendix. Notice in
particular that the proof depends critically on the fact that @N ig chosen
so that the likelihood function has an absolute maximum. This is very
difficult to guarantee in practice. Our algorithm will always yield a
lecal maximum but not necessarily a global maximum. However, if
two local maxima of equal magnitude exist, one can choose either one

A
and in the limit 8" will still belong to the set S_ NR” .

Apparently 80 € S, furthermore, if S_ only contains one point the theorem
implies that the maximum likelihood estimate is consistent. This implies
that the maximum of the likelihood function is unique for sufficiently large
N if So is a point, even if the likelihood function has several maxima of

equal magnitude for finite N,

In the appendix we alsc show that under the assumption A the following
holds:

N

1 /\N /\\N
” N Leg (Y» g ) - Lee( 6

;6 )1 =0 (5.5)
. . . . N AN . .
.thy sility ore. This means that the quantity L@e(y, 8°) which is
computed in the numerical algorithm is an almost sure estimate of the
N
(

information matrix I (9) =N Lee(egeo) for largevalues of N. It is thus

not necessary to compute the information matrix separately.
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We further have the following result

THEOREM 2

N, A
Let Obe defined by (4.3), let AN(y; 9N) be the diagonal matrix of eigen-

N (y: 8

A
values of % o6 (v; N) and let PN(y; GN) be a matrix of corresponding

orthongonal eigenvectors.

Then

‘ N, AN, .NT, AN.AN .N, AN .NT AN

Lim [| A7 (y; 87) P (y; 87) 8N - AV (y; 8 P (Y59)901'=0 (5.6)
N-’%oo .

with probability one.
The proof is given in the appendix.

The theorem is a kind of consistency theorem for certain lineaf trans-
formations of /éNn Even if some or all components of @N are inconsistent,
the theorem gives the linear combinations that are consistent. The fact
that those combinations vary with N is due to the fact that the consistency

property is expressed in terms which are observable (computable).

A
Theorem 2 implies in particular that if %-ILIe\Ie(y; GN) converges then the

N A A .
quality Il\IL";"“ (y;®8 N) 5 N is strongly consistent,

We will now consider the set SO introduced in Theorem 1. A complete
characterization of this set is given in Lemma 3 and Lemma 4 of the
appendix. The essential result is that the set SO can be represented as

So = S(; N R’ where SO’ is a set which is linear in the 3n+3 parameters

s Ooseees Oy Yo Yosaues Y s Bo' Bl""' Bn’ w and A. In particular,

we have found that the set So will always contain the n-dimensional sub-
space spanned by the parameters associated with the initial conditions i. e.
the se parameters can never be consistently estimated, A simple demon-

stration of this was given in Example 1. This situation is not disturbing
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because in the practical application we are only interested in the 3n+3
parameters which describe the system. The parameters associated
with the initial conditions were only introduced for the purpose of
writing the likelihood function explicitly. This will motivate the

following concept,

DEFINITION

A system is said to be completely identifiable if the maximum likelihood

estimates of the parameters g Gooooes Qs Yyo Ypoeoes Yo 80, Bl, ey Bn, %
and \ (or an equivalent set of 3n+3 parameters which completely defines

the system) are all consistent,
We will finally give a convenient condition for a system to be identifiable.
To do so we have to impose some additional restrictions on the input

signal u. This is done as follows

DEFINITION

An input signal u is said to be persistently exciting of order m if the limits

- p N
u=lim g Z u(t) (5.7)
Now =7 =1
1 N
r (t) =lim = ¥ u(t)u(t+t) t=0,1,2,... (5.8)
v Neo N =1,

exist, and if the matrix

wru(O) ru(l) o e e ru(m) ]

ru(l) ru(O) ru(mnl)

: 5.9)
ru(m.) ru(:mu- 1) ru(O)

is positive definite.




We can now state the main result

THEOREM 3

The system (2.1) is completely identifiable if the input u is persistently
exciting of order 2n, and the system (2.1) is completely controllable

either from u or e,

The theorem is proven in the appendix. Both conditions are easy to

verify. In fact, when stating the problem in section 2, we actually made

assumptions which imply that the system (2.1) is completely controllable

~from u or e. In practice, however, we never know the properties of the

system to be identified and the condition on controllability may be violated.

This occurs e.g. when we try to identify a model of higher order than the

original system. Compare Example 3. However, whenever the system
is not identifiable the estimate of the information matrix becomes

singular for large values of N (Theorem 2).

Asymptotic Normality

We have the following result

THEOREM 4

Let 8denote the (3n+3) dimensional vector of parameters where those

corresponding to the initial states have been deleted. Assume that S0
A

contains only the point 60 so that aN is consistent.. Then the stochastic

\ .
variable L@ﬁ(eo’ %,lo)\/N (N -l)) is asymptoticallv novinal (L~ - L)
AN
If in addition L ..(6 , GO) is non-singular, thenr N is asymptotically

]
- 1.1 . e
normal (bo,—-’NLea) and asymptotically efficient.

This theorem is analogous to one of the standard theorems for maximum

likelihood estimates with independent samples. The proof is given in

1e appendix.
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The Information Matrix

Fisher s information matrix IN(@) is defined by

N

N g (vi€) [L}g(ygeo)]T (5.10)

N
9= -E_Lyg (v °,) = E L
This matrix yields valuable information about the estimation procedure.
We have previously seen that Theorem 2 implies that an analysis of the
rank of the information matrix reveals which components of 8 that can be
consistently estimated. In particular, Theorem 3 implies that if the sub-

matrix Ayo s e o O Yy Y . Yn’ Bop Bl” o s Sn,n and ) is positive

2°°
definite then all system parameters are consistently estimated. Theorem
4 then tells that the estimate of the system parameters is asymptotically
normal with a covariance matrix that is easily obtained from the informa-

tion matrix.

We have the following asymptotic expression for the value of the information

matrix at the true parameters 80
M8 )= -NLg(8,8 ) +o(N)
o 80" "o

See Lemma 2. In the computational procedure we are actually evaluating

N AN
' Lee(YS 8°7)

But according to Lemma 5, this quantity converges with probability one to
the information matrix as N increases. Hence, with the numerical pro-
cedure we will actually obtain an almost sure estimate of the value of the

/\ .
information matrix at € = 6 N

We will now evaluate the information matrix directly. We have (3. 3)
N
-LN(y; 0) = 1 €2(t) + N log c. - log 2m

2c t=1
o

[aN]

where €(t) is related to the input u and the observation y by (3.1). In the
equation (3. 1) the quantities &, [}, 4, bo and n are functions of the para-

meters 8 as given by (3.2) and (3.4). The output y is generated by the
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dynamical system (2.11) which we write in the compact form

z(t + 1) = F_z(t) + G_u(t) + H_e(t)

y(t) =z (t) + b _u(t) + c elt) +k (5.11)
where F_, G , H, b_, ¢ and k_are functions of the true parameters 6 .
o o o’ To00' oo o o
- -
000 0 -a
n
1 00 0 -a
n-1
010 0 -am_-Z
F=
3 00 1 -3, ]
b ] e ]
n n
bnul “n-1
G = , H =
°1 REN (5.12)

Differentiating (3.3) we get

N N
dL(B) 1 . 2 N
ol SO
o
(o]

2. N N
oL, (0 2 o€t . '
e 0 =3 b €(t) -é—-(—)»a : i=1,2,...,4n+2
i C t=1 i
o
2. N '
°L7(8) s N 2, N
2 =TT - e -5
‘o ‘o t=1 o
50
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o€
But €(t) and “‘é’“(“la Y oare independent if 0 = 90 see (3.13) - (3.15). Hence
i 4

2*1N(e )
EO gz’:g@‘;mm = 0 i=1,2,...,4n+2
2. N
"1, (60) N
E p—
o 3 2 2
c C
o e}
The information matrix thus has the form
- > . —
c E Vee 3 0
i
N(0) = | ememmmmea- e |
4
-2
0 ! ZNCO (5.13)
]

We will now evaluate EO Vlgeq To do this we will proceed in the same way
as was done in section 3. One could equally well proceed along the lines

of section 4. Using the fact that for 0 = 90 the random variables €(t) and

2

0%

5 ate are independent and taking mathematical expectation of the
i

equation (3.12) we get

2 N
N _ 0°vV(8) o€ (t) %€ (t)
I;;(8) = By 3§.g§. = E 33, 5,
i t=1 i J
N O€ (t) N Og(t) o€t -
= Z—lEO ‘aei +t2_1c0v0( ei ’ aj ) i,j=1,2,...,4n+2 (5.14)

To evaluate the information matrix, we thus have to compute the first two

o€ ) ) Q€
moments of 55 t In section 3, we found that these derivatives %@’(ﬂ could
i i

be conveniently represented as outputs of dynamical systems driven by the
inputs u(t) and the observatiens y(t). This representation is now conve-
niently used when evaluating the moments of the derivatives. It is

convenient to consider the two terms of (5.14) separately.
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Jde ‘
We will first calculate the mean of ?g,@ - We will consider four cases

Case 1

Leti=1,2,...,n, 2n+ 1, 2n +2,..., 3n. We then have (3,'13)

36('&) _ axn(t)
o0, T 3o,
1 1

The derivatives of x_are given by (3.14). Taking mathematical expecta-

tion and observing that x(t) = -z(t) if 8 = 90 we get
- - - - - -
5x!t+l ). r i (t)
aei 3 0 E 3 . (L
cgmﬁmug b+l = o 5 E! gg-‘w% L F 1o | )
2n+i Zn+i
E(t“}'l B 0 0 r s;;(t) ] &GJ
o -
o2(1)
38,
i
T
2n+i
| 2(1) i (5.15)

where x stands for the mathematical expectation of x. Notice that due to

(3.29) it is sufficient to $olve the equation for i = 1,

The equation (5.15) implies that

B B o
i 2n+i '

This is a consequence of the fact that all the components in the sub-space
%@ a %é‘;.u, of the dyiamical system (5.15) are not controllable from
i Zn+i

the input u(t). This is,of course, very natural,as the coefficients
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Gi - 62n+i = 0, do not reflect the transmission of the input u(t) to the

output y{t).

Case 2
d€ t axn(t)
Now consider i = nt+l, n+t2,...,2n. We have then S
i i

and the derivatives of x are given by (3.14). Specializing this equation,
we get
_%@lel = @-—%ﬁl + Tult) i=n+l, n+2,..., 2n

i i :

= 0

This equatibn does not contain any stochastic elements.

Case 3

Now consider i = 3n+1, 3n+2,..., 4n. We find by (3. 14) that
3€ t B axn(t)

e} ; B Sei

The derivatives of x are given by (3.14) i. e.

Ox(t+1) =% ox(t)

o8, 1)
i i

ax. (1)

N B = &

e ij

This equation does not containany stochastic elements.

Case 4

Now consider i = 4n+1 and i = 4n+2. We have (3.13)

TP 18.150
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_a_e.;_(.t,:m)_“ = »u(t)

30

4n+1l
oe(t)  _ aXn(t) -1
ae4]:n+2 ae4n+2

and the derivatives of xn(t) with respect to 64n+2 are given by
_gz.g,ﬁi_tl_l S %LE)__ A
4n+2 4n+2

ox(1) —

ae4n+2

These equations do not contain any stochastic elements.
Now we will compute the last term of the equation (5.14). It follows from
the previous analysis that only terms with i, j=1, 2,..., n, 2n+l,

2n+2, ..., 3n are nonvanishing.

Introduce

Eﬁ B
H
(]
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Now let R denote the covariance matrix of the solution of this equation i.e.
[~ -
X

00,
i

R=F .a__» [ =2

n+i i n+i

14

D

P

bon, s

we get the following equation for R

R(t+1) = = R(t) 5T+RO
R(1) = 0
where
r-@ 0 Eim MO 0 0 ]
B o= o & g R = 0 el(el)Tci c:oelDT
0 o v | K D(ei)Tco ppT |

Again we notice that it is only necessary to consider the solution for i = 1,

the solutions for other values of i are then obtained from (3. 30).

From now on, let R denote the solution associated with i = 1. Then

cov (L 25

38, , 38, = R ()
? de(t Q€ (t
cov (5 Ho s R, L0
1 2n+1l
oe(t) 3€(t)
cov ( )= R (t)
sl Pons 2n, 20

To obtain the results for other values of i and j we use (3.29) and obtain
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c‘ov (%%ﬁl gﬁﬂ)——) = {E‘:Ii‘jl R‘(t"i'j)}n,n

ie1 0 9%ontie

cov ( gg(t) o¢(t)

) = (819 Rrgeig)y

i+l ? ann+j+l » 20

cov (

) de i )
i et R -1 R(t-i-3)) 55, 20

i+l 2n+j+1 !
Thus having completed the computations, we will summarize and discuss
the results. The information matrix can be written as the sum of two

terms. One term has the components

N
S & oe(t) E oe(t)
o 06, o 06,
t=1 i i
which only depend on the input u(t). The other term has the components
N

> cov
t=1

o€(t) de(t)
(s, 8 )
i j

Neither term is positive definite. The properties of IN(G) as N tends to

infinity are of particular interest because we have

_ o 1 .N
Lo (95:85) = 1im §1()

where LGB is the matrix of Theorems 2 and 4.

In particular, we find that
N .
[Iij (8) ; i,j = 3n+l, 3n+2,...,4n)
is bounded. It then follows from Theorem 2 that the estimate of the
corresponding parameters i.e. the initial conditions are not consistent.

Similarly, we find that a sufficient condition for the estimates of

8,,...,8 and ©
1 n

2n+l’°
z(t+1) = F z(t) + He(t)

is controllable.
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For the other parameters we find that two types of conditions have to
be imposed if the estimates should be consistent. The difference
equations generating the partial derivatives must be controllable, and
the input u(t) must be such that the system is persistently excited

(Theorem 3). For example, a step input is not sufficient. In such a

. o€ d€ ‘
case, we find that §=-€7-(Q i=nl,...,2n and _a__(ﬂ____ will converge to con-
’ 1 T4nt2

stants. The matrix

{% II;IJ. (8), i,j=n+l, n+2,...,2n,4n+2)

the nconvergestoamatrix of rank 1 and this implies that only a linear

combination of the parameters 9 S ..., 0, and 64n can be

n+l’ n+2’ 2n +2
estimated (Theorem 2). This is very natural because the effect of a
step disturbance cannot be separated from an unknown DC level in the

output if N is large.
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NUMERICAL AL GORITHM

In sections 3 and 4 the identification problem was reduced to one of
minimizing the function V(8) (maximizing the likelihood function).

We will now discuss in detail how this can be done and some of the
difficulties that xﬁay occur. In this chapter, the formulas and notations
are adapted to the presentation in chapter 3, but the discussion is

valid more generally.

The algorithm developed in chapters 3 and 4 is essentially a method
of computing the functions Ve and VGG for an arbitrary argument 6.
The Newton-Raphson algorithm [27] [71] developed in section 3
essentially attempts to find a parameter value 6 such that Vg = 0.
When trying to find the maximum likelihood estimate using this

algorithm, two difficulties may arise.

e The function V(8) may have several stationary points.

¢ The algorithm may not converge.

An enlightening discussion of the difficulties associated with multiple
maxima of the likelihood function, for the case of independent samples
from a common distribution, is given by Huzurbazar (37]). In general
there is very little that can be done about this case except to find all
the local minima of V(8). In praétice, we let it suffice to choose a few
different starting values. For the case of independent samples
Huzurbazar has also proven that at least asymptotically there cannot

be two absclute minima with the same magnitude.

A class of algorithms (gradient routines) can be written as

By suitable choices of matrix A(8) we can obtain algorithms both for
finding local minima of V(0) and for finding its stationary points. A

general discussion of gradient routines is found in [82].
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Obviously, it is possible to substitute 0 by any differentiable function
of 6 that is unique in both directions, and define new derivatives with
respect to the new parameters. Since the structures in chapters 3
and 4 are slightly different (different parameters are chosen), the
convergence properties need not necessarily be the same. The
question, whether there is an "optimal' structure such that the con-
vergence properties are particularly advantageous, has not been

considered.

A few special cases of the function A(8) are well known:

Steepest descent: A(8) = kI

Newton-Raphson method: A(9) = ve‘fél(e)

Method of scoring: A(B) =1 1(8) (1(t) = information matrix)
. T Tq-1

Markov estimate: A(8) = [MVGGM +1-MM J7°'M

where M = {mij} and

0 i=1,...,n

m.. =
1)
6§, .i=n+l,...,4n+2

In the last case, the first n components (the noise parameters) are
not changed from the starting values. This corresponds to the best
estimate with a known noise spectrum. Specifically, if the noise
parameters are made equal to zero, the Kalman estimate of the re-
maining parameters is obtained. It should be noted that for Markov
and Kalman estimates, the procedure converges in one step from any
starting point, buf the noise components can never be estimated. A
discussion of the first three cases and a few others is given by Kale
(44], [451].

Some numerical experiments have been perforrhed in order to obtain
guidelines for the choice of suitable techniques. The method of steepest

descent always converges to a local minimum for k small enough.
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However, experiments have shown that the convergence is generally
intolerably slow, even if k is chosen optimal for each case. This
agrees with Kale’s experience. The Newton-Raphson procedure con-
verges very rapidly if the starting.point is chosen near the root,

otherwise generally not at all.

Between these two extremes a variety of modifications are feasible.

The following alternatives have been considered:

e An approximate second derivative matrix V§6(8) with the property of

being positive definite: A(B) = Vé‘”e (8).

This prevents the procedure from converging to any local saddle point

or local maximum.

A matrix with the desired properties is obtained from

2 N
Fy* € (t) et .
Ws tzil aei 5@% | 1,J = 1, ..,.,4:n+2 (6.,2)

e A factor G to reduce' the length of the steps when far from the root:

A(9) = avi (8)

® Steepest descent with computed local curvature.

Vg Vg
A®) = = 1
Vo VeV
® Various step control schemes, e.g. the step A(6) V4(8) halved if some

test on next approximation gives an improbable result.

The matrix of (6.2), referred to as ""approximative second derivative
{

matrix', is a good approximation to the actual Vgg at the true para-

meter value for large values of M, since it converges to Vee with

probability one. Furthermore, it is always at lesst non-negative definite,
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and it is obtained with less computation than the exact second derivatives.

The alternative is closely related to the method of "scoring"A(8) = I°1(8)

but the latter requires the additional computations involved in the cal-

culation of the information matrix I{8),

{(Compare section 5)

For the standard algorithm the following procedure is chosen:

1. Put the starting point 8° = 0 and

T

A0y = [MV (0% M* +1 - MM M

This yields a Kalman estimate for 0,

-1

i=ntl,...,4n+2

Put A{6) = V¥, (0), where V£ (0} ig the"approximate second derivative
6o * 60 Pi

matrix' and repeat the calculations

okl = gk | agely vo(0")

k=1,2,...

until the computed siep length is smaller than some preassigned value.

. Put A(6) = Vggj’ (0) and repeat calculations until the required accuracy

is reached.

Our experience has shown that this algorithm will generally converge for

systems of low order.

In certain cases, particularly if the matrix ¢ has

eigenvalues close to the unit circle, we have sometimes had difficulties

(see Section 7). In these cases we have almost always obtained convergence

by using some of the alternatives mentioned previcusly. This requires

however a ""man in the loop'.

This should not be a serious disadvantage

for off line identification. In on line identification, the problem should

also not be serious, since we have then got a good starting value. However,

since little experience is available, we drop the subject here. (Schrddinger
[72] p. 76)

The state vector x and its derivatives with respect to the parameters

8

19

0 S 0

n+l® "2n+l1’ "3n+l’ 64n+2 are obtained from the difference equations

TP 18.1590
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of the form &(t + 1) = ¢ &(t) + v

In the program the derivatives are represented by a matrix

o 32y, oy 22, 32 22,
86% ? ae1aeyn+1 ’ 361392n+1 ’ a913941&2 ' 891393n+1 ! 592n+1664n+2 !
Ox One B O Ox
, it ' ST ®
a91 ’ Beml ’ Eezml ’ agémz ’ 3n+l’

The derivatives of the n:th component of x are then taken together in

vectors in the following manner:
Fl (i) = rER
F2 (i) =
F3 (1) =
F4 (1) =

s1 (i)

[

s2 (i) =

s3 (i)

54 (i) =

Ur-
O
o~
[
S
s
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Loss function:

Vi=2 . V(0)

First order derivatives of loss function with respect to the parameters

are denoted by VZ(i}.
Second order partial derivatives of loss function are denoted by VZZ(J, 3).

The intermediate sums of squares of €{t) have the notations

£ -
b d
VAA() = SUMI (i) = - %;;m .7,5%
1 i i
Eode e
VAB(i) = SUM2(i) = I e %%m
i i n+i
VAC() = SUM4(i) = 5 %%m &
i H 2n+i
Lo 3
VAD(i) = SUM7(i) = T o
I 71 3ndi
t
Py B
1 i 4n+1
t .
1 1 4n+2
i : b g
VBA(i) = SUMI1{i) - D X
1 n+i i
i - £ e ae
VBB(i) = SUM3(i) - L& &
1 n+l mti
t N
VBC(i) = SUMS5(i) = ¥ %%m Lo
1 nt+l " Z2nti
o€ 3¢
VBD(i) = SUMS(i) = 2 2
1 O Yo
t
iy o€ [
vBE - -
i n+l T4ntl
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VBF

VCA(i)

VCB(i)

VCC(i)

VCD(i)

VCE

VCF

VDA()

VDB(i)

VDC(i)

VDD(1)

VDE

VDF

The terms L€

SM1(i)

64

~ ; 36 d¢_
l'aen+l ae4n+2
4
sUMI2(i) = I SZ gg
1 Cznel Y
b2 d€
SUMI3(i) = I =
1 2n+l n+i
t
SUMG6(i) = = gg gg
1 2n+1 2n+i
1
SUM9(3) = = 2% gg
1 2n+1 3n+i
. 3 ooe d¢
1 ae2n+1 ae4n+l
B ; o€ o€
1 %2041 Fanta
t
SUMIl4(i) = T gg gg
1 U341 74
b e o€
SUM15(i) = I 5
1 3n+1l n+i
t
SUMI6() = X gg gg
1 20+l “Z2n+i
‘ t
SUMLO(i) = I $% -
1 “V3n+l  ““3n+i
_ ; o€ o€
1 ae2n+l ae4n+l
_ % € o€
1 %01 4040

t 3%
5 €
1 ) eiael

o%¢
36 55~ if desired are summed up by the variables SM
i
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t aze
sMz(i) = e gy
1 i n+l
t aZG
SM3(i) = e S5S5
1 ei 2n+l
SM4(i) = e ST 56
1 ei e3n+1
t 2
o°¢€
SM5(i) = L€ e
1 aeiae4n+2
t 2
d7e
SMé(i) = ZLe
1 ann+iae4n+2

The matrix of second order derivatives VZZ can be formed from these

variables.
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STHMY

POOHOOEOOOOOADNEAC IO OOO AP OM

= ¢ %

601
602

800
602

66

T @0 e D

DONS AL B0

FORTRAMN STATEMENT

IDENTIFICATION OF LIMEAR SIMGLE INPUT SINGLE OUTPUT SYSTEY wiTH
FORCING MO SE AND MEASUREMENT ERROAS

IMPUT DATA
1 TWO TITLE CamDS
2 HURJER OF YVALUES OF THE INPUT SERIES

Ko FIR57 ORDER OF MODEL

KAAX HKAXINUM ORDER OF HMODEL

DELYA 370P VARIABLE FOR [TERATION OF IMITIAL STATE DERIVATIVES
CALFA CONVYERGATION FACTOR

LEASY = 1 IF BEGIN RUN WITH LEAST SQUARE ESTIMAY
3V HEASUREMENT

Y INPUT SERIES
B INITIAL ESTIMAY OF MODEL PARAWETERS

SHITCH

€ OM ERALCT SECOND ORDER DERIVATIVE HATRIX

O 0K MNEW CONVERGENCE FACTOR IS READ IN

G OK ITERAVION 15 INTERRUPTED AFTER COHPLETING LAST STEP

TAPE

3 IwpPuv 3

b OUTPUT FOR PLOTTER
S QuUTPuUT

DIMENSION Al2).B12),012) 0120 ,012:,02),F1129,F2(2),F312),68(2),
STI31,52030 5343050 13),SMTIL30,5H203),5M313),SMBI3)oSUMII2),8UNMD(2
JoaSUMBI2) o SURLIZ) ,5UMS{2] sSUMEI2),SUMTI2),SUNBI2),SUMD(2),5UMT0(2)
e SURTIIZ) s SUNT2(2) o SURIZIZ) «SUMIBI2) ,SUMTISI2),5JM1602),VEL 10D,
VIZLIB, 1) 62110303 VECID2):5502),5612),5M5(2),5M612)

EQUIVALENCE (G2.v21)

EQUIVALENCE (VECTU) oF 1D o tVBCIZ)oF2) o IVECISIoFII(VECIT) o FBY,
IVECIO) o SUMB) o LVECTTT) oSUMZ) o IVECET3)oSUMBIIVECTII5),SUMK),
(VEGCEITD oSUMS) o IVEC(19) ySUMB) o (VECI21),SUMT I, IVECI23),SUHB),
(VECH25) o SURD) 5 (VECE2T) o SUMIO) o IVECI29),SUMTTIo (VECI 31),SUMT2),
(VECE33)oSUMIZ) o IVECI35) oSUMIL Do LVECI3TI,SUMIS) IVECI39),5UN16),
(VECIBY)oS0) o IVEC(BB) 9520 o VECIBT ) ,S3)o(VECIS0) oSk ) (VECIS3),5M 1),
TVECI56) oSM2) o {VEC(59) oSH3) o (VEC(62) oSHB), (VECI{65),VZ)

o {VEC(TS) o VAED o (VEC(TH) ¢VBED o (VECITTIoVCE) o AVECITBIoVAF) o (VECITD),
VBF) o (VECIBO) o VCF) o IVECIBI) o VEE) o (VYECIB2)VEF ), (VECIB3)oYEF),
(VELCIBB) 9551 o (VEC(B6) 050} IVECIBB) ,SMSD o IVECID0),SHO) o (VECI92),KF)

IRPYUT

READ 60V, N Kb, KHAKX,DELTA ALFA,LEAST
FORMATY 1315,2B10:5,15)
FORMAT(SE16.8) ‘

PRINT InNPUTY
PRINT BOO
FORMATLIHG
FORUATIIXSE 16.8)

CHUDOSE K
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STHNT

200

218
220

230

FORTAAN STATEMENT

K & K§

Ky 8 K=}

K6 = Kol

K = Ko

KKY = KK=1

KEE = RESR
KUKE = KKKe 1
HHEE = KERKeR
HERKS & HUKKe]
HKEERT 2 KKKKe2
HEUKE = KKKKe3
ME M=K

READ INITIAL GUESS OF PARAHMEFERS
READ 602,(A11) o1 » V1,K)

READ 602,(BII)of = V,K)
READ 602,1C11),1 = 1,K)
READ 602,(D13) el = 9,K)
READ 602.B,.F
PRINT 800

PRINY 802,04¢1) 1
PRINT B8020(B(I),8
PRINT 802,4C(1),1
PRINT B802,(D(13,1
PRINT B02,E,F
WRITE TAPE 5,(A08) ol = 1,%)o(BUB)od @ VeKIoiCEEDel ® BokDeDINDs
§ 2 19K} BoF

led
ToR)
§olt)
10K}

ENITIATION
REWEND 3

00 220 1 = 1,K
DO 215 4 = 1,11
XﬂEoJ) 2 0.

L s Ké-1|
Klis12) = D(L)
%ﬁKpEH B ‘u

DO 230 1 = 1,92
VEC(L) = Q.
Fuil) = 1,

EAD TAPE 3,U,Y
Y ® V-F

$ =2 D{l)=Eeyey
¥l = Ses
VI{KKKG) = §
YI(KKKKO) = -SeU
VZI{KKKKT) = =§

VDE =3 -U
VDF = “‘]o
YVEE = Uely
VEF = U
YFF = 1o
KFI = 0§
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@
=

2
¢
¢
3
£
¢

FORTRAEN

£

IMTECGRA

S TATEMENT
SE SHITCH 2) 300,250

TION

DO ST0 LOOP a 2,N

330
2 AiK
(R

® HiH,9)eY

25
L 8 Ké-
Bide 103
214,12}

EXAMINE
(KE1)
3 B @@

DO 38% |

LONTINUE
AF = XIK,100-1,

STAVE EQUATION

f = f1,02
ekl
21000,31000,30%

310 J = 1,Kk4

® AlLol)=AlJ)e8
= «A(K)eS
3100,330,322

poc ey

(Ko V)=XBU{Ko7I=XKIReT)

AR T ) =X{Ro[¢6)
30
Kol )=X{Ko146)
5,330,330

321,330,330

a A{Jo10)=-CHL}
= A{Jo12)eBiL)oyeClLl) oY

LAST POMER OF FI
370,380,340

=

oK

i
§ = SeABSFIX(E,11))

&

KEL = -f

&

i
i
i
4
5

£ {3-DELTA ) 350,350,360
I = KFje21]
F IHFI=-K) 370,370,355

50 79 370

0312312o31853160316,317,318,319,820),1

TP 18.150




STHNT FORTRAN STATEMENT

360 KEL = O
€
C TRANSLATION OF PARTIAL DEREVATIVES OF §TATE
370 B {KB) 376,376,371
BT DO 375 1 = 1.Kb
4 8 K=1
J6 8 Jed

FliJe) = FILJ)
£20J6) = F2{J)
304060 » F31J}
18 (RFE) 375,374,376

378 Fuite) = FRLJ)
37% CONTINUE
376 FULID = KIK,T)
F2{1) = XIK,8)
F3011 = NIK,9)
EB(I) » XIK,T11)
€
BF §SENSE SWITCH 23 380,390
380 DO 385 1 = 2,KKB
J & KR={
J& = Jeol

14460 = ST
$2{J4561 = $20J)
£30J6) = §304)
I (KF1) 385,384,384
385 8Bl J6) = ShEJ)
385 CONTINUE
DO 388 1 = 1,Kb4
$ 8 K=1|
J6 = Jei
§54J48) = $5(04)
388 86(J6) = $6(J)
$9¢10) AR, 1)
$24 1) XiK,2)
$3(1) = XIK,3)
&1} KK 5D
$54 1) AlKob)
$649) NI ob)

c LOSS FUNCTION

390 READ TAPE 3,U,Y
¥Y.=a V=F
$ 8 Rikgl12)-EoUeY
vl a Vviese$

o FIRST ORDER PARTIAL OERIVATIVES OF LOSS

DO 820 1 = §,K

Jd 8 1ol

L = JeRK

M s JeRHK

VZE1) = vZ{iYeSeFi(l) _ ;
WZL4) = YZ(J)eSeF2(1)
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STHRT

815
520

B3a%

830

3%

Buo

550

b60

BT0

&80

B85S

90
bob
593

898

70

YBE = VAE-Fi1({1)ey

FORTRAN STATEMENT

YZILY = VZ(L)+SeB3{1)

iF (RFI) B20,B15%5,81%

YZIH) = VZIH)+SeBB(T)
CONTINUE “

YIIRRRKESG) = YZ(KKKKS)=Fel
VIIKRKET) = VZIRKKERTIeSeXF

SUKM PRODUCYT OF EPSILON AND SECOND ORDER PARTIAL DERIVATIVES
1F (SENSE SWITCH 2) 825,450

BO 835 | = 1,KKY

SMI(I) » SHI{E)eSe81(T

EM21T) = SM217)eSeS2(1)
$M30E) = SM311)e5283(1)

IF (HKFI) 535,830,530
SHB(I) = SHB(I)+Se8B{1)
CONTINUE

DO BRO § = J,K

SHS11) » SM511)e85e85(1)
SHMGLT) = SM6(T)e528601)
SUM PRODUCT OF FIRST ORDER DERIVAVIVES OF STATE
S = FI(Y)

T = 201

£ = F3{1}

77 = FB{1D

DO B7D 1 = B.K

SUXTEI) = SUMI(IDe8=RI(])
3UK2(1) » SUN2{I)eS%eR2(1)
SUMILT) = SUMBIE)eTeF2(3)
SUMBIL) = SUMB(T)>SoF3(0)
SUMSIE) = SUMS(T)eTeR3(1)
SURGLI) = SUMB(L)eSSeF3()

IR (RFI) 870,660,860

SUMTIL) = SUMT{I)eSeFu (i)
SUMBILY = SUMBILT)eTeFh(I)
SUAD(T) » SUKD(1)¢8Sefb(l)
SUMIOLT) » SUMIO(T)eTTeFR(]D
CONTINUE

IF (KB) b9 ,408 680
D0 B90 I = 2,K

SUMITIE) = SUMITITDeFT(T)eT
SUMI2(1) = SUMI2(E)+E1(1) eSS
SUMI3(I) = SUMI3(T)eF2(1)eS$
IE (KF1) 496,585,885 .
SUMIBIT) = SUMIB(E)eFI(E)eTT
SUMIS(I) = SUMISIT)eF2(8)efT
SUMIGLED = SUMIGIT)eF3(E)eTT
CONT I NUE )

IF (KET) 496,895,698

YDE = VDE-Fh{lley

YOF = VDEeFn(1)eXF
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STHNT . FORTRAN STA EMENT

VIZILZ,HKEBKT ~ YCF
YIZIL3 KRUUTY = VDF

560 iF {LO0P-N) ST0,8170,8110
8110 PRINT BO2,(VIIL) o1 =2 1oKREKT)
PRIMT 802,91
570 COMTINUE
¢
C 40D SUXM OF EPS AND SECOND ORDER DERIVATIVES OF STATE 7O VI
IF (SEMSE SHITCH 20 575,600
57% DO 595 1 s 1,K
DO 390 J = 1,K
Loa Jet=1
if (1=4) 580,580,585
560 VIZIEod) = YIZILoJ)eSHULL)
58% M oe JoK
VZZ1i,M) = YIZLT . M)eSM2LLD
M= JeKR
VZIELT <M} = YIZ{I . MIeSHI(LD
M o= JeHKEK
590 V21T o8} = YIZIT M)oSHBIL)
Jd = [ehK
YEZZUT JHRRKTY = VEIZIT (UKKKKTIeSMBI{T)
§9% YZZUJIHRURT) & YIZ1 I, BRKKT)IOSMAL(L)
€
€ SOLVE MEWTON RAPHSON EouATION
600 YIZLRERKS ;HKEKSG) v VEBE

YEZIKRRESG (KKKRTY = VEF
YEIZIRURET ;KRKRT) = VYFF
IF (SEMSE SWITCH 3) 6005,60%0

6005 BEAD 602,A4LFA
6010 § = ALFEA

IF (LEAST) 608,608,601
6071 DO 603 I s §,.K

16 s [}

DO 602 J = 16 HKKKY
602 VZZ{ledd = 0.

VZZ{E,8) = T,
603 vZil) = Q.

§ & 1,

LEASY = O
608 D0 610 [ = T,KEKKT

DO 605 4 = I KRKKY
605 VZZEJol) s YIZILod)
610 VIZIT KUKNUBY = YI{lVeS

DO 1855 1 ® 1 ,KKKRY
1855 PRINT B02,(VIZILoJd)od » 1 KRRKT)

HRITE TAPE ScALFA VI IVZ{Id ol = T HRRKT)
WRITE TARE 5,v2Z
ALFA » t.={l.~ALFAlee2

c

C JORDAN CALCULATION
DO 9150 | = 1,RKKKT
T2 1./62185,1)
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STHART FORTRAN S.ATEMENMT

DO 9120 § » B RKKKE
9120 6211o4) = G21(1,J)e7
[é » 1e1
DO 2150 J s 1 MKKKT
IF (J-8) 9130,9950,9130
T 8 6204,11)
6203510 = 0.
DO 9180 L = [6,KKKKE
621Jdel) = G249,LD=-TeB2(1 L)
COMTINUE

@
and
@
=

W B

)
-
oo

DO T20 1 = §,.K

AU10 B 2010 =Y220] ;BERKB}
4 B8 [eK

UL} = BUII=-VZ2(J.HNEKKB)
2 §oKK

ALY = CUIV=VZI1J,HRRES)
8 §eHKK
i
@

720 (1) 8 DUID-VZTZIJKEKKB)
E-YILIRKERS s KRRES)

F B F-VIZIKRKKT ;KKRKB)

0D e €9 G

PRINT B02,14801) .1
PRINT B802:,1811),1
PRINT BO2,1C11) 1
PRINY B0O2:,{DIE),1
PRINT BO2,E,B
HRITE TAPE 5.(A0) ol ® 1oRIo(BIL) ol = ToB)o(ClEdol 8 BoRIIDIL),

I 2 BoK),EoF !

ToKY
§ oD
ol
Bolt}

6 B o @

= &3

€ EXAMINE THE DIFFERENCE 1M PARAMETERS
IF [SENSE SWIVCH 6) 660,200
860 IF (K-KMAX) 100,39,

END
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NUMERICAL EXAMPLES

The identification scheme has been tested on a number of artificially
generated input/output records. In this section we give nine examples

of first ovder systems generated irom either of the equations

x{t + 1) = -ay x{t) + by ult) + d, elt) (7.1)

1vit) = =(t) + b, ult) + d, v(t) + k

y(t) +ay vt - 1) = 8_ult) + By uft - 1) + A Le(t) + v, elt = 1))+ (7.2)

The tenth example is a second order system with no input,taken from refer-

ence L5,

The numbers ult), e(t), and v(t) were generated as suitable scaled sums of
twelve rectangular (0, 1) pseudo-random numbers obtained from a modified
Fibonacci series. The estimated representation ie obtained on the form
(ex 1-9)

x{t + 1) = -a, x{t) + b, uft) + <y e(t)

‘y(t) s x(t) + b uft) + <, eft) + k (7.3)

The parameters a5, blg o b@v k, o corresponding to the generating re-
lation, are given in each case. The estimated information matrix is given
in order to check the correspondence with the actual estimation error. The

initial value is not estimated.

All disturbances are substituted by equivalent disturbances.in the output.
The power spectra of the equivalent disturbances have been computed. The

spectral density functions © {w) have been computed from the formula
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n .
1+% v @12?71@

k

2 k=1 2
o(emf) = 20 | = !
i27ks
1+ X a, e
k=1
In all cases the following standard procedure was used. The initial values
were chosen as zero and a Kalman estimate Was‘computed, The approxi-
mative second derivatives were then used in a few steps and the exact second
derivatives in the last iterations were used. If this procedure failed to

converge other methods were tried. This is discussed in detail in the examples.
Example 1
Generating equation

#(t) = 0.95 x(t - I) +u(t - 1)

y(t) = x(t) + v(t) t=1,...,300 (7.4)
Parametars
a; b1 <y bo k o

True -0,95 1 0 0 0 1

Estimated -0.948 1,034 0.012 0.081 -0.067 1.047

Estimated covariances

0. 000006 0.000051 0.000014 0. 000000 =-0,000078 0.000000

0.000051 0.000959 0.000120 0.000074 0.000043 0.000000

0.000014 0.000120 0.000431 =0,000027 =-0,000011 0.000021

0.000000 0.000074 -0.000027 0.003873 0.000313 0.000000
-0,.000078 0.000043 -0,000011 0.000313 0.007912 0.000000

0.000000 0.000000 0.000021 0.000000 0.000000 0.001828
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Logarithm of Ex. 1 (N= 300)

Spectral Density

Estirmated

Frequency

Figure 3

True and estimated power spectral densities of example 1.

The model (7.4) represents a very slow, first order system observed with inde-
pendent errors. The process could not be identified for N = 100, the reason
being that the equivalent parameter Yl in the representation (7.2) is close
to the boundary of the region R of the validity of consistency theorem 1 of
section 5. The parametér which minimizes the loss function, falls just
outside that region and the equations generating the likelihood function are
then unstable. That the absolute minimum is found in an unstable regionis hence
due to the relatively short sample. When the sample length was increased to

N = 300 no numerical difficulties occurred.
Example 2
Generating equation

x(t) = 0.95 =(t - 1) + et = 1)

y(t) = x(t) + v(t)
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Parameters

ay b1 €y b@ ' k <,

True -0, 95 0 0,9214 0 0 1.5964
Estimated -0, 866 0,269 0.892 0,290 0.397 1.563
Estimated covariances

0, 004929 =0,003054 0,001808 =0,001304 =-0,018401 0, 000000
=, 003054 0.039480 -0,000533 0.018488 0.074621 0.000000
0.001808 =0, 000533 0.027220 0.001768 -0,001911 0.006975
=0, 001304 0,.018488 0.001765 0.02927% 0.039690 0.000000
=, 018401 0.074621 -0,001911 0.039690 0.863380 0.000000
GQOOGQGO 0.000000 0.006975 0. 000000 0.000000 0.012215
Logarithm of Ex. 2 (K= loo)

Spectral Deasity
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Comment

The same systemn as in example 1, but where the input has not been observed,
so that the output has nothing to do with the input u. No numerical difficul-
ties occurred, since parameter Yy equals 0.372, which is well inside the

region R = (-1,1). The example is equivalent to a pure spectral analysis.

Generating equation

y(t) = 0.95 y(t - 1) + a(t = 1) + e(t) 0.5 et - 1) t=1,...,100

Parameters

ay bl c:l bo k <,
True -0.95 1 0.45 0 4] 1
Estimated -0.929 0,947 0.480 0,033 =0, 100 0.941

Estimated covariances

0.000664 -0,000109 0.000345 =0.000442 -0.020029 0. 000000
-0,000109 0.012591 -0.000941 0.006253 0.042707 0,000000
0.000354 -0.000941 " 0,008556 -0.001889 -0.015363 0.002258
-0.000442 0.006253 -0,001889 0.011125 0.034995 0.000000
-0.020029 0.042707 -0.015363 0.034995 1.335370 0.004426
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Logarithm of Ex. 3 (M= 160)

Z
SUN i 379~
e Batiiated
i |
0 7 7

[

i 0.8  Frequency
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e e

T A e wme

Comment

The system is equivalent to a slow (= high rate sampled) first order system
with white input noise and independent measurement errors. No numerical

difficulties (Yl =-0.5).,

Generating eguation

#(t) = 0.95 nu(t - 1) + eft - 1)
yit) = x{t) +ult) + 1 + v(t) t=1,..,,100
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Parameters

a, b, <y bo k <, | |
True -0,95 0 0.9214 1 1 1.5964
Estimated -0,873 0.267 0.897 1.289 0.536 1.564

Estimated covariances

0.004584 -0,003222
-0.003222 0.039964
0.001871  -0.000575
-0.001401 0,018795
-0,022835 0,082869
0.000000 0.000000

Logarithm of
Spectral Density

p=——= True

Estimated

0.001871
-0.0600575
G.027395
0.001679
-0,004083
0.007013

-0.001401
0.018795
0.001679
0.029409
0.043645
0.000000

Ex. 4 *(N = 100)

Figure 6

0.

Frequency

-0.022835
0.082869
-0.004083
0.043645
0.990694
0,000000

True and estimated power spectral densities of example 4.
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0.000000
0.000000
0.007013
0.000000
0.000000
0.012234
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Comment
The process can be regarded as an ordinary regression model with colored

disturbances. No numerical difficulties.

Generating eguation
yvi{t) = uft) -ult - 1) + e(t) -e{t - 1} + 1 t=1,...,100

Comment

The cutput is a difference of the function u{t) + e(t) + t, and constitutes a

case for which the consistency of the identification algorithm has not been

proven (Y, = -1), so that the parameter 9@ lies on the boundary of R. The
al troubles that occured were of the same kind as those found in

example 1. In this case the true power specirum is zero at the origin.

Generating equation

x{t) = 0.5 x{t - 1) 4 ult - 1)

ty{‘i’}”ﬁ%(‘ij)a&@{ﬁ“) t=1,...,100

Parameters

) bl = bo k 4
True 0.5 1 0 0 0 1
Estimated 0.624 0.868 0.010 0.023 -0, 059 0.982
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Estimated covariances

| 0.005275 =0.003612 0.002288 -0.001166 -0.001137

0. 000000

-0.003612 0.009763 -0.001613 0.000610 0.001705 0.000000

0.002288 -0.001613 0.009356 -0.000472 -0.000583 0.000051

-0.001166 0.000610 -0.000472 0.011608 0.002601 ' 0.000000

-0, 001137 0.001705 -0.000583 0.002601 0.010654 0.000000

G.000000 0.000000 0.000051 0.0600000 0.000000 §0.004823
Logarithm of Ex. 6 (M= 100)

Speciral Density

6.5 9
True @ 0
0 Z 7 7 - 5 = WM?“’&WJ
0.5 Frequeacy
Estimated
-0.5 <
Figure 7

True and estimated power spectral densities of example 6.
Comment

A first order oscillating system observed with independent measurement

errors. No numerical difficulties.

Generating equation
#w(t) = <0.5 x(t - 1) + eft - 1)

y(t) = x(t) + v(t) t=1,...,100
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Parameters

2, bl <y b@ k C@
True 0.5 0 -0.3878 0 0 1.4604
Estimated 0.663 -0.122 -0, 328 0.314 0.083 1.469

Estitnated covariances

0.02597] 0.003512 0.000381 0.001803 0.001120 0. 000000
0.003512 G.022655 0.001202 -0, 005540 0.001798 0.000000
0.000381 0.001202 0.016009 0.000494 0.000394 =-0.002410
G. 001803 ~0.005540 0. 000494 0.025453 0.004662 0.000000
0.0061120 0.001798 0.000394 0.004662 0,017474 0.000000
0.000000 G.000000 -0.002410 0.000000 0.0060000 6.010796
Logarithm of Ex. 7 (M : 100)
Spectral Density
1 -

Estimated ‘
0 7 L 7 7

[§] 0.% Frequeacy

Figure 8

True and estimated power spectral densities of example 7.

8z . ' TP 18. 150




Comment

The same system as in example 6 but the input u is not observed (spectral
analysis). Some numerical difficulties occurred. The estimates were
ogcillating. However, when switching to the complete second derivative
matrix VSG convergence was easily obtained. No simple explanation has
been found, just a reminder that convergence is not guaranteed under all

circumestances.
Example 8

Generating equation

y{t) = 0.5 y{t - 1) +uft - 1) + eft) -0.5e{t - 1) t=1,...,100
Parameters
ay bl <y bo k s

True 0.5 1 =1 0 0 1

Estimated 0.610 0.903 -0.904 0.047 -0.008 0.934

Estimated covarivanvces

0.005049 0.000630 -0,001166 0.000071 -0.000271 0.000000

0.000630 0.018352 0.001788 -0.009888 0.000236 0.000000
-0,001166 0.001788 0.013692 =0.002361 -0, 000272 =0, 004223

0.0600071 «0.009888 -0,002361 0.010864 0.001038 0.000000
-0, 000271 0.000236 -0, 000272 0.001038 0.001692 0. 000000

0. 00000 0. 000000 -0.004223 0. 000000 0.000000 0.004362
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Logarithm of Ex. 8
Speciral Density

(M = 100)

¥
0

Figure 9

P

5

Frequency -

True and estimated power spectral densities of example 8.

Comment

The process does not have a representation (7. 1) with independent measure-

ment errors since the equivalent parameters in this representation are then

complex. Phvsically, *he conclusion can be drawn that the measurement

errors are colored. No numerical difficulties.

Example 9
Generating equation

x(t) = -0.5 x(t - 1) + eft)

y(t) = =(t) + u(t) + 1 + v(t)

84
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Parameters

a8y bi 4 b@ k c@
Trus 0.5 ] -0. 3878 1 i 1.4604
Fatimated 0. 666 -0,126 -0,329 1,318 1.237 1,468

nated covariances

%

0.021056 0.002194 0. 000049 0.001803 0.000680 0. 000000
0.002194 0.022326 0.001164 -0, 005607 0.001698 0. 000000
04,000049 0.001164 0.015974 0. 000454 0.000353 -0. 002413
G. 001803 0. 005607 0.000454 | 0.025426 0.004630 0. 000000
G, 000680 0.001698 G.000353 0.004630 0.017398 0. 000000
0. 000000 0. 000000 -0.002413 0. 000000 0, 000000 0.010772
Logarithm of Ex. 9 (N= 100)
Spectral Density
-
a i T T 7

0 . 0.5 Frequency

Figure 10

True and estimated power spectral densities of example 9,
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Comment

A regression relation as in example 4, but with different "coloring' of the

residuals. No numerical difficulties.

Example 10 (two series)

Generating equation

y(£) =1.5y(t = 1) +0.7y(t - 2)=elt) -elt - 1) +0.2e(t-2) t=1,...,500

Parameters

4 a5 Ty Y2 A
True 1.5 0.7 -1 0.2 1
Estimated -1.524 0.689  -1.028 0.168 0,978
Estimated -1.537 0.763 -1.034 092%6 1.020
Logarithm of Ex. 13 (N = 500)

Spectral Densgity

)

e T FUE

=== Eatimated

........

.

0.5 Frequency

Figure 11

True and estimated spectral power densities of example 10.
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Comment

This is an example of the application to power spectral analysis, where the
spectrum 18 band pass., Two examples are given. No numerical difficulties.

An earlier version of the program listed has been used.

T, 3.150
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COMMENTS AND CONCLUSIONS

In this section we give sonde of the reasoning that has led us to the
chosen approach, briefly cover come alternative possibilities, and
compare our approach with the model reference technique. Finally,

we give some extensions and other applications of our technique.

Since random distrubances are a primary concern, the statistical
approach is more or less given. Having established this, an appro-
priate approach is given by Wald’s decision theory [52] [60]. However,

when specialized to the present case (non-sequential estimation) the
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quires the postulating of certain important properties.

The first problem then presenting itself is that of a structure or frame-
work for the model (Wald speaks about a parametric family of distributions).
We adopt here the philosophy that every structure that is possible to handle
and flexible enough to describe cbservations with the required accuracy is

a good or "true' structure. Hence, the linear structure is postulated.

Even within the linear structure there are several possible alternatives,
The structure of the system is equivalent to the desc ription of the input/
output relation to be used. Under controllability and observability
assumptions [47] the input/output relation'is conveniently described by
the impulse response (= weighing function) or the transfer function of the
system. Another description of the system which is frequently used, is

a differential or difference equation model with a certain structure. In
our approach we are also identifying the disturbances. Here again we
have several possibilities. The random disturbances can be characterized
by power spectra, covariance functions, or Karhunen Lodve representa-
tions, [34] to mention a few examples. As stated in the introduction, our
motivation for solving the identification problem is that we want to design
a control system using the powerful tool of linear, stochastic control
theory. This immediately leads us to a representation of the input/output
relation as a difference equation and a Karhunen Lobve representation of

the disturbance. Such a model is the starting point for the linear, stochastic

TP 18.150
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control theory. Apart from this, there are a few other points which are

worth noticing, namely, storage requirements and implementation.

If the system is represented by a weighting function, we need in principle
an infinite number of parameters, while a difference equation representa-
tion only requires the storing of a finite number of qgquantities. If the
weighting function of a dynamical system is known, there is still a con-
siderable problem in implementing a system having such a weighting
function; a representation by a difference equation can be implemented

immediately, using either digital or analog equipment.

Anyway, once a linear, single-output, difference-equation model is
postulated the problem of structure is essentially solved for there are

canonical structures for such systems.

Two structural problems still remain: the choice of order of the system
and the choice of representation for the random disturbances. The
problem of order has not been considered. The choice of representation
of the disturbance essentially boils down to choosing either of the models
(2.11) or (2.15). The model (2.11) was chosen in .preference to (2.15),
because for that model the equations could be solved explicitly for e(t).
This is of profound importance for the construction of the algorithm.
Using the equivalent model (2.15) we have two sources for the random

disturbances. The logarithm of the likelihood function becomes

1 N, 1 N
= L (y;8) = 3 Loe (t) + ~5- L v-(t) - N log do <,
ZCO t=1 Zdo t=1

In this case we cannot express e(t) and v(t) explicitly in y by solving the
equation (2.15) but we most keep (2. 15) as an implicit equation. Analysing
the details we find that it leads to a two point boundary value problem for

evaluating the function V(0) and its partial derivatives.
When the structure is given, the next problem is to define 2 loss function,

which is equivalent to stating the purpose of the identification, that is

what the model is to be used for. We get around this by choosing the
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maximum likelihood estimator which is invariant for reasonable changes
of parameters, One set of parameters may be substituted by another

set that is a function of the former set without affecting the output of

the resulting model. The maximum likelihood estimator is thus very
convenient since it generates a kind of general purpose model. The
choice is justifiéd by the fact that it generates estimates having desirable

large=-sample properties (sec{ion 5).

Alternative Approaches

Even if we have decided to identify the process as a linear, stochastic,
difference-equation by the methods of mathematical statistics, there are
still a number of alternatives to choose from. First we may choose

between working on the time-axis or in the frequency plane, and we may

adjust the model to sample covariances or to the sample itself. This

gives immmediately four alternatives.

® Fourier transforms and time samples: compute the Fouriertransforms
of input and outpuf, and adjug the model transfer function to the ratio.
This idea was discarded, since numerical Fourier transformation is
generally a cumbersome operation. It might however be worthwhile
to investigate it further, since simplifying approximations may be

feasible.

® Power and cross-spectrum identification: compute the sample corre-
lations and cross-correlations, and the corresponding spectra, and adjust
the model power and cross-spectra to the data. Again the Fourier
transformation gives rise to numerical difficulties (and to tedious
computations), because the sample autocorrelation function has to be
trunéated, in order not to obtain a number of multiplications which

increases quadratically with the amount of data.

® Autocorrelation and cross-correlation identification: compute the
sample correlation and cross-correlation functions and adjust the
model correlation function to the data. This method has the disadvantage

that the exact sample distribution is complicated and that the sample
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autocorrelation function has to be truncated. Furthermore, one has
to make sure that the adjustment procedure leads to a noise auto-
correlation which is indeed an autocorrelation function. This problem
must always arise, since a truncated autocorrelation function is
generally not an autocorrelation function (i. e. non-negative definite).
For large samples, the sample correlation distributions can be
approximated by normal ones, and then the approach may lead to an
efficient estimator L22]. If a least sguares loss function is used, ‘
the problem of deriving the distribution vanishes, but some loss of
efficiency should be expected [4]. If these difficulties can be over-
come, the approach may be feasible., It has been tried with some
success by Durbin [22] for the case of a stationary time series. With
2 known noise spectrum (usually white), the approach is equivalent to
the well known method of cross-correlation analysis L65], However,
it ig not irnmediately clear how Durbin’s method should be combined

with the cross=-correlation technique.

® Identification of time functions: adjust the solution of the difference
equation for the model to the observed cutput, according to the dis-
tribution of the observations. This approach requires no preliminary
treatment of the samples, and has the advantage that no approximations
have to be made to compute the sample distribution. It is used in (53]

and in this report.

Comparison with Model Reference Techniques

It is instructive to consider our solution to the identification problem in
the framework usually used when discussing process identification. The

identification problem is often characterized by three elements

® the class of input signals
@ the structure of the system

® the criterion
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The restriction we imposed on the input was that the input signal should

be persistently exciting. See definition of section 5. .

Such inputs might be obtained during normal operation of the process,
that is, if there are scheduled quality changes which are frequent enough
to permit a satisfactory identification (Theorem 3). Otherwise, they
must be introduced during an experimental phase. Notice, however,
that it is important that the inputs are generated externally and are not

the results of feedback within the system.

A possible alternative would be to introduce persistent disturbances
during normal operation that are small enough to be tolerable yet large

enough to yield a satisfactory on-line identification.

The choice of model structure and criterion have already been discussed.
The criterion is given implicitly when the problem is formulated as a
statistical parameter estimation problem and @e decide to use the method
of maximum likelihood. We recall that this leads to the minimization of
the "loss function' V(8). If we so desire, our procedure can also be
interpreted as follows: consider, for example, (3.1) as the model
structure to be identified, and let the function V(8) given by (3.5) be the
criterion for the identification. Looked upon in this way, the development
of section 3 can. be regarded as a model reference adaption method for
systbem (3.1). Equation (3.1) is actually an algorithm for a digital
computer, but it can be equally well implemented by analog means.

Consider in particular the case Y, = @., Y

1 p? = &n i.a., the

25 Ooseees ¥
only disturbance in the actual system is measurement errors. Equation
(3.1) is then identical to the actual system model (2. 11), apart from a
trivial change in sign of the state variable. Thus, our approach also
gives a probabilistic interpretation of the canventional model reference
technique. Such a representation is of interest since the results given
in section 5 can be used to obtain estimates of the accuracy of the para-
meter estimates in conventional model reference techniques. Notice,
however, that this is restricted to the situation where measurement

errors are the only disturbances.
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It is also of interest to compare the algorithm devéloped in sections 3

and 4 with the algorithms currently used in model reference techniques.
Blandhol [16] only evaluates the function V(6). Judging from our ex-
perience it is very difficult to get a reasonable convergence rate by
probing techniques using only the values of V(0). Blandhol alsc confirms
this. The gradient VS(G) is evaluated in some model reference techniques
that are implemented in adaptive systems e.g. [64] [69]. In these cases
the parameter adjustinent routine is chosen as

gkt _ ok @LV@(@}‘{}

Notice that a more effective algorithim is obtained with very little extra
computé;tional effort, using the approximate second partial derivatives.
We conclude then that it appears worthwhile to consider this modification
in model reference adaptive systems currently in use. By including this
feature we would also obtain an estimate of the information matrix and
thus alsoc of the accuracy of the estimated parameters.

T

Other Applications of the Technigue

The identification algorithm is primarily intended to generate stochastic
models of stationary industrial processes for automatic design of a
strategy yielding optimal control of the process [(3]. The problem as
stated in section 2 also includes that of time series analysis, a typical
application being the design of optimal filters for estimation and pre-
diction. The identification program can thus also be used for parametric

estimation of power spectra of given stationary time series. [5 section 6]

The method then has the advantage over zzr”ch@dox methods in that it avoids
the problem of choosing spectral or lag windows [15]. Also, the spectral
estimates will always be non-negative. Furthermore, the ever present
problem of prior trend removal is obviated. A process containing a
trend component is really not quite stationary and hence the ordinary
power spectrum, strictly speaking, does not exist for such processes.,

With out method, trends are estimated as such, and the spectrum of the
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remaining stationary part is interpreted as the spectrum of the time

series.

Possible Extensions

The problem can be extended to several inputs immediately. Both the

algorithm and the convergence proofs generalizes immediately.

The algorithm can also be extended directly to non-linear and/or time
variable systems with a single output and a known structure. Consider

for example, the following system:

x(t + 1) = glx(t), u(t), t)

where g (%, u, t) is a function which contains some unknown parameters.

Let u be the input(s) of the system and let the output y be given by
y(t) = x_(t) + 2z (t) + c_e(t)

where the vector z(t) is given by

z(t + 1) = Fz(t) + Ge(t)

The system described by these equations is an arbitrary non-linear
system with a single output, with a random disturbance in the output

that is stationaryand has spectrum of order 2m. The problem is to
identify the unknown parameters of the function g(x, u, t), the constants
S and ®, and the elements of the matrices F and G. This identification
problem can be solved immediately using the technique described in the
report. To obtain the likelihood function we first write e(t) as a function

of the inputs and the observations. We get

x(t + 1) = g(x (t), u(t), t)
z(t + 1) = Fz(t) +% Gly(t) - xn(t) -z”rn(t) ]

(1) = e elt) = y(t) - x_ (1) - 2_(1)
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and the logarithm of the likelihood function becomes

'L(-e— ! l;:qez ] N 2
- Ys)—"“mz (t)+Nlogc0+Zlog i
Zco t=1

We can now proceed in exactly the same way as was done in section 3

to obtain an algorithm to marimize L(y; 6).

Regarding the extension to multiple outputs, the crucial problem is to

find a suitable canonical form.

It is evident that if several outputs are to be controlled, we can repeat
the identification on each one of them. In some cases, the multiple
output character of the process is however essential. If some additional
quantity is measured besides the output, in order to obtain additional
information, it is not correct to regard this quantity as an input, unless
the measurement is perfect [58]. Neither is it always possible to re-
gard it as an output of a second single-output process, since the output
of this model need not necessarily have anything to do with the output

of the first model. The following situation will illustrate this case:

It originates in an attempt to increase the efficiency of the control of

x through u by measuring the disturbances e.
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The following modification of the linear identification problem is some-

times relevant. Consider a general linear process which is closed by

a feedback loop from the output to the input where we wish to identify

the process. It is evident that this is not possible without additional
information. However, if the characteristics of the regulator are known,
only minor modifications of the open loop algorithm are required to

identify the process, provided it is identifiable at all.

The results can also be generalized in a different direction. So far, we
have assumed that the estimate should be calculated from a complete
record of inputs and observations. Such a situation is referred to as
off-line estimation [61]. In certain applications, particularly in
connection with adaptive control, the problem is different because the
inputs and outputs are obtained recursively in time. This situation is
referred to as on-line identification. In our procedure, the derivatives
are computed sequentially and it is therefore very easy to also compute

the estimate recursively.
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NOTES AND REFERENCES

Literature on the identification problem is overwhelming. This problem and
related ones are treated in literature on control systems and in literature on
statistics. . The included list of references is a selection and by no means
complete. Out of the statistical literature, papers on general problems of
statistical inference, parametric estimation [18], [48], [63], [83], spectral
analysis (52] and time series analysis [9]9 [33], [70] are of interest for the
identification problem. When the latter is formulated as a parameter esti-
mation problem, Wald’s decision theory provides a suitable framework [52]
The application of decision theory to the identification problem is discussed

in (28], [29], (60].

Other papers from statistical literature that are of interest for the identifi-

cation problem fall into one of three classes.

® Estimation of the coefficients in linear function under various hypothesis

concerning the independent and dependent variables (171, [57], [s8]l.

® Estimation of parameters in Markov processes [14], [33]. Of more
general Markov processes the cases of a finite number of states and

discrete time [ZJ, (9] and continuous time [1] have been treated.

® Estimation of parameters in stochastic differential or difference equations.
Special cases of difference equation are the autoregressive (4], [21],

[87] and moving average series (20], [78] and combination thereof [22].

In control theory, the identification problem is of interest for its own sake,
that is, for describing the object to be controlled [88], [89] and also because
it is of fundamental interest for the design of adaptive systems [10], [65].

A recent survey of part of the control literature on the identification problem
is given in [23], In the book [65] there is a survey of the identification
problem with particular emphasis on applications in adaptive control systems.
In [61] there is also an annotated bibliography. Many additional papers are

found in the proceedings of recent congresses [40], [41]. Only the case of
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"normal operating-records' is considered i.e. the input is given, and no

special ''test signals' must be applied.

In control theory, the process is regarded as an input/output system and
a mathematical relation (model) is sought whose output approximates the
measured relation for the given inputs according to a chosen loss function.
Depending on the particular representation that is chosen, there are many

alternative identification schemes that have been investigated.

@ TFouries analysis [65], which is in effect a mathematical method of
" solving a linear integral equation for the transfer function of a linear

dete rjministic model.

e Cross correlation or cross spectrum analysis [25], (661, L80], [65],
(791, [36] which may be regarded as the statistical analog of the above

method.

®© Various model reference methods [8], [16], [73], [85], where a
parametric class of models, is postulated and the lqss function is
minimized by adjusting the parameters. This can be done either by
hill climbing methods [82] or manually on analog or-digital computers.

This is the conventional method used in mathematical model building.

® Parameter estimation in stochastic difference equations [28], [53],
[55], where statistical methods are applied to estimate the parameters

(Maximum likelihood or least squares).

¢ FEstimation of impulse response (53] [54], where model output is
supposed to be a moving average of the input plus random errors, and
the coefficients are determined by minimizing the risk ( = ensemble

average of loss) over the known distribution of random errors.

® Utilizing orthogonal functions (51), (303, [31], [49], [81] which is in
effect an efficient way of minimizing the loss function. The observed '

input and output are developed in series or orthogonal functions, whose¢
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coefficients are then non-interacting regarded as parameters in

the loss function.

® Development of the plant functional in a functional space (6], [7], [38],

£39].

The application of quasilinearization to model building is found in [11],

L12], [43], [67].
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APPENDIX A - PROOFS OF THEOREMS IN SECTION 5

In this appendix we have collected the proofs of the theorems of section 5.

To simplify the reading we have also restated the theorems themselves.
LEMMA 1

Let R be a region in 4n+3 dimensional Euclidian space defined by

S g

R={€ | x>0, and all zeros of the polynomials z" + a, . 0

and 2" + Yl Zn»1+. et Yn have magnitudes strictly less than one}.

Assume that the inputs u(t) and all cross-products u(t) u(t + V) are Cesaro

summable, 1.e.

p N 1 N
lim 5 £ u(t)and lim g £ u(t)u(t+v) @ v=0,1,2,
N = t=1 N-= " t=1
Then
lim fl—N LN(y;9)= lim "}‘NE LN(y;e)z L(e,08)
N—Qm N-—ow o o

with probability one if 8 € R and 90 €R.
Pioof
Before giving a formal proof we will make some observations.

A result similar to that of the lemma is also needed when proving the con-
sistency of the ML estimator for the case of independent samples. In that
case, the result is deduced from the strong law of large numbers. In this
case we have however dependent variables, and the strong law of large
numbers cannot be applied directly. The lemma is essentially an ergodic
theorem and it can be proven via Birkhoff’s individual ergodic theorem [197.
In the particular case, we can, however, obtain the desired result by less

powerful tools.
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We have

1.1 .IT

LN(y;e):-Nlog)\— 5 € ¢
2\

where 6il(t) are independent only for 6 = 90- However, it is possible to
‘make a linear transformation of the stochastic variables el(’t) ‘such that
LN(y ; 8) can be expressed as a sum of independent variables, not equally
distributed, for all € and Kolmogoroff’s form of the strong law of large

numbers, can be applied.

To simplify the calculations, we use the compact notations of section 4.
We have from (4.6), 4.7), and (4. 8)

LN(y;8) = -N log ) - ‘%V(e)
| A

-1
v(8) = % ect ¢leT

e=yal uBT -ikT -i yT

1 o
e =yAl-uBT-ikT-i vT =2 ecT (A1.1)
o o o o 1 oo o (]

where the zero subscripts denote the true parameter values. The con-
vergence of ‘Il(I LN(

A7 0). We have

y;9) is equivalent to the convergence of Il\IV(G) (since

1 1 T . T .. T
NV(9)= é"N(eG +u*) (Ge” +u” ")
where
-1 -1 -1
u”:u/AT ATCT u’CT
o o
u/ =uB +1KT+1 YT
170
u’ =uBl+iKl4+i Y7L
1) o o) 1 " oo
-1 =1
T _ T, T ", T.T
G —XQCOAO A°C (A1.2)
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But

N

1 T . T _ 1 T T _1 2 1
= = = A = = - S
5y eG Ge‘ NeMAM e N.Z(vi l)ki+NE7 )\i
i=1 i=1

where /A is the diagonal matrix of (non-negative) eigenvalues of GTG, and

M is orthogonal.

Since M is orthogonal, v = eM has uncorrelated components Vi and since
: . A . 2
e is normal, v, are independent (0,1). The vamables(vi - 1) )\i are then

independent, and

2 -
E(viml)Xiw 0

pD2(vi-1) 2, = 322
i i~ i

Then Kolmogoroff’s criterion of the strong law of large numbers [24, p243)
. . ; . 1 T, T
implies almost certain convergence of N eG ' Ge

Since the partial sums are non-decreasing, it is sufficient that they are
bounded.

if 2 )\iz/ 2 converges.

But

max Kf < const || GTG HZ < const || GT “2 [Ke! ”2

= const G II* < const [ e I* 1 ajt I* 1A I* et
where the maximum norm is chosen || {aij} Il = max & Iaijl
, i

(Notice that I GT Il = ” G || when G is Toeplitz. )

It is easily seen that “ Co “ and HA ”are always € constant and a sufficient
a H

criterion is thus that “A; [ and HCn l are bounded.
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The linear term

1 T ..T _ 1
NeGu = N

where
u/‘//: u//G

converges by the same criterion to its mean value (which is zero) if

> ﬂ;lm u"”z
.2 i
i=1 i

is bounded. But

N

= % u ;”Z S const Hu”’”z < const “G “2 ”u”

i=l 1

2 2

< const HA—IHZ IIC-]'HZHu‘W
o

(max norm).

After elementary calculations using (Al.2) we get

Fadl=lu 8] A;rnlAT BT cT“l + [(iKZ tip YD) A;rul AT

“GKT 4 i Y;r)] cT—liI

< const Hu H ( ”A;li' + const J f!C-I || + const L ”A;l “ + const ]”C-l H
which is bounded if HA;IH ) HC“1 H , and Hu H are all bounded (max. norm),

Now ¢~ 1 is left triangular and Toeplitz (C"l € T). Its first column is by

definition given by C_l iTl‘ » or by the arguments of section 4 as the solution

of the difference equation

n
o ox{t-k)y, =6 .
k=1 'k t-1
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If the vector Y generates a strictly stable difference equation, then the sum

b l x(t)|converges, so that Hle Il is bounded. The same argument applies

to [la”]]
o
Finally consider the constant term
1 u”u”Tz L HuDT+ iFT +1i HT HZ’ (Euclidian norm)
N N 1
where
T T, 7 1 T T}
D” =(B_ A A" -B7)C
o o
-1
FT - (KTAT T -KT) CT
o o
-1
HT - (YT ATAT -YT) CT
oo” o o

We have immediately, if u and C-l are bounded, that D, F, and H converge,

and
1im 1 Hu” !2 = lim 1 uDTDuT + 2 1lim 1 uDTFiT + constant.
N-—oco N N—ooo N—-co N

The quadratic term is

;. N ® ® lN-v'
lim ~ 2 u(i)d, .d, ,uk)= £ I d,d,. . limx T u(t)ult+ V)

N- 1 §,j,k=1 J=i7-k oo 220 LAY Naw Ny
and the limit exists if
1 N
lim L oult)u(t + V) a , v=0, +1, +2,..
N-e °° t=] )

The linear term

£d T f lim g T
i=0 ' j=0 J N-o= =]

u(t)
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exists if the average input

u = lim
N-%O'DN

lim = LN(y; 8) = lim
N——»co N—«a(l)

with probability one for all parameters 8 such that

i) the difference equation generated by Y is stable
and provided that

ii) the difference equation generated by a_ is stable
iii)  the input time averages

1 N 1 N-v :
lim £ u(t) and 1lim 5 L ouft)u(t + V)

N—e t=1 N—e® t=1

exist for all integers V.

But the difference equations are stable if the corresponding characteristic

equations
Ly 2 by =0
1 n_
zn + znml +. +0Q =0
lo no

have zeros of magnitudes strictly less than one. A forteriori the lemma
holds for 8 € R, 906 R.

Q.E.D.

In the following theorems and lemmas the regularity properties of lemma

1 on the input u(t) are supposed to be satisfied.

114 TP 18.150




LEMMA 2

The function L(6, 90) is an analytic function of 0 in a closed set R“" © R and
we have
I N, gy. O

(vi8) == lim & B LNyi0)= s L(8,8)

.1 2
A .
i i N—e 1

N—bm

with probability one. The above equation also holds for higher derivatives.
Proof

First assume that 6 is a scalar. The function LN(y ; 8) is infinitely differ-
entiable in R”. Hence, by analytic continuation we can define an analytic
function of a complex variable 8. As N increases the function LN(y; 0) is
monotone, but it does not increase faster than N. Hence, I-l\-I LN(y,; 0) are
all bounded and converges uniformly if 8 €R”. According to a well-known
theorem about analytic functions, Titchmarsch [74, pp 95-96], the limit is

then an analytic function, and the lemma holds.

Now if 8 is a vector the same discussion holds, the crucial step is the
theorem about convergence of analytic function. The proof of this theorem
utilizes only Cauchy’s integral theorem which holds also for function of

several complex variables, Goursat [32 pp 279-2811.

THEOREM 1

Let So be a set in 4n+3 dimensional Euclidian space defined by

s,=le]L(,e) =0r06,8))

A
Assume that for all sufficiently large N, GNER’, where R“R is a closed set.

Then

I8N _PEN -
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with probability one, where 8 is the projection of 6 and Son R = the
nearest point ESOHR’.

Proof

The proof is essentially that given by Wald [76] for the case of independent
samples. The possibility of the generalization has been pointed out by
Wald. We will essentially follow Kendall’s [48] exposition of Wald"s

proof. Let ﬂN(y; 8) denote the likelihood function and LN(y; 0) the logarithm
of iN(y ;8). The ML estimate gN is determined in such a way that

N

AN N
EPiy:87) =2 £7(y;8)

for every 0.

A
If there are several 9N that give the same maximum value, we choose
either one according to some arbitrary rule. Let eo be the true parameter

value.

Let 8 ¢ So' Lemma 1 then implies that

lim log #N(y;8) = L(8,8 ) # L(8_,8 )= lim log & (y;6 )
N —® (o] (o] (o] N—® (o]

with probability one.

Hence to every € > 0 there is an NQ(@?) such that

1 N
t; log 47 (y;8) -L(5, 90) | <e
for every N > NO(G)

1 N
| 5 log £7(y 38 ) -L(8,,8.) | <e
Put
1
e=L | (e, 0 )+ 1(e,0 ) |
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Then

N 1 N |
2 -4 Ny ) -
‘ jlog A7 (y s 6) - log £ (y58) -L(8,8 ) + L(6_,8 ) | |
1 N 1 N
< |5 log 4 (Y;?) -L(8,8 ) | + |5 1og £7(y, 8) -L(8_,8 )| <2¢€

= I L(eveo) "’L(e , 8 ) I

(o] Q

Hence
1 N N
| & log 4 (Y;e)°~'”"1-0g’Z (vi8 ) #0
or
ﬁN(y ;0) # JﬁN(y; 80) for every N > NO(E)

with probability one.

Introduce the symbol Eo for the operation of taking mathematical expecta-
tion with respect to the distribution of y when 6 = 95. Using the inequality

between the geometric and the arithmetic means we get

N N
e L (y 5 6%) 3 Ly 6%)
og  mTmmm——— log EO -——-——-——-N
27 (y 5 6°)

if 0% ¢ SO. We further have

N N
Ly 8%) L7y ; 8%)
N, o\ N '
° Nyse) MNiyse,) °
Hence
(y:8%)
E log < 0
© ﬂN(Y;e )
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end So is given by

2 22 v, 0.)
log =5 + — 2 — = 1 (Az.2)
}\Z )\2 G
0 o
2 2% v(e,0)
But the function log - m%- 2 mmzmgm has minimum with respect to A
A A A
o o
V(0,8 ) 2 V(6,0 )
=log2——2 + 1 = 1 for%zmm?%
A b A
o o )

Hence the equality (A2.2) can be satisfied only if

V(6,0 )
zmzo« = 1 and A= \
O

A
o

Because of the inequality (A2.1) this implies the following two conditions on

the parameters 0, @0,,

N
_% lirn %TI‘(GTG)Elim%‘J z gizm. = 1
VS N N-e =1 +7
[o]
lim & Ju? = o (A2.3)
N—secc
if €S .
o

But the first condition implies that 8. = Siaj , since g, = 1. and hence

1 1

Lcoclaalc -1
2 o} Te)

A
PN 1. .
Hence S = RIS NS” where S~ is given by
o o "o o

8ES! ® AC = A Cand =) (A2. 4)
8] [a) Q (o] :

Notice that Si is independent of the input u.
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The second condition 652 is from (Al.2) and (A2. 4)

-1 ‘ -1

.
lim = B +ikT +i, YL )T - (uBT +ikT +i, YY) C =0 |
N-*mN 0 e} 1 " oo o 170
But, since lim %’Iu”u”T = 0 then lim % wcTeu~T oo itc™tis
bounded, that is, if 6 € R.
Hence for SESO
lim = [(uBY +ikY +i v-)cT - (uBT +ikT +1,YHcT %= 0
N-°°°N e} o 1 " oo 1 o o
or GESZ &
O
lim = luDT +irT|%=0 (A2. 5)
N
N—em
where
pr =BTt . gTcT
O o

rlogkTcT o kT
(o] (o]

Since S(l) and Si are defined by (A2.4) and (A2.5) even for 8¢ R and are
obviously linear in A, C, and B, K, C respectively, we can conclude that
S = RMNS’ where S” = S1 N S2 is a2 linear set.

o) o o o o ‘ ,

Q.E.D.
LEMMA 4

Assume that the system (2.1) is completely controllable either from u(t)

or e(t) and that the matrix function of inputs
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F}u(o) r () . x,(2n), ]
ru(g) r“(()) . e ru(Znul)
R = -
@ 0000000000000
r (2n) r (2n-1) r (0) ]

is positive definite

where
p N-v .
r (V) =1lim & T Cu(t) -u ] (u(t + v) -u ]
u N
N—-@cﬁ tml

- 1 N
u = 1lim N L u(t)

= t=1

Then S | contains only the set {6 |A=A , B=B ,C=C , K=K }
o o o o o

Proof

We have from (A2.4) and A2.5) the characterization of SJ ¢

bes” e
o
AC =A C
o o

1 TeT  BTeTy i (kTeT .  TATy (2.
I%;ﬂNHu(B@c -BTC ) +i(K CT-K Cc )%=0

- Put
2n
d=1{d., i=0,...,2n} where D=B C-BC = £ d I
1 (o] [¢] r r
r=0
Us[u(j»iﬂ),ki:_z,...,zfx.j;l,...N} ut) =0, +<0

fziFilT where F= K G - KC
O [o]
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Then (A2.7) becomes

a¥1im £ uuTa+2d lim UiTE+f%=0 (A2.8)
N—a@ N—om

The matrix of this quadratic form is
lim = UU' lim % Ui’
N —o N =
lim L iUT 1
N—cm N

N -
r (0) + I (1) + 32 ru(Zn) + 52 u
-2 -2 -2

zu(l) +u ru(O) +u ru(chl) +u” u
r (2n) +u° r (2n-1) +u r (0) + a2 u
u u u

. u Ce u 1

But this is positive definite if, and only if Ru is positive definite because

of the well-known identity

T

= det R -det[Rl»R 5

=1
2R3 R

Then (A2.8) has the single solutiond = 0, f = 0 and Sc; is characterized by

the equations

AC =A C
(o] O
BC =B C
n n
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We will now investigate the implications of the equations (A2.9).

Let PA(z) be the generating function of the Toeplitz matrix A i.e.

P(z)=a z"+a,2° ' +... 10
o 1 n

In this particular case we have

The above equations can now be written as the following relations for the

generating functions.

P (z) PAQ(Z) = PCO(Z) PA(Z) (A2.10)

P (2) Py () = Py, (2) Ppylz) | (A2.11)
o] Q

Equation (A2.11) follows from the fact that we have assumed the order of

the model to be known. Now the polynomial PC (z) may have factors in
o

 common with P, (z) and Py (z) say P..(z) P (z) but that
: o

Co’ C/ﬂ'
o o o

Pe:(2) = Pg(e) P o Ae)

and

PAO(Z) = PCC; (z) PAC;,(Z)

PBo(z) = ch(z) PB(’) (z)

This means physically that every state of the system is controllable either
from the input u or from the disturbance e. If the condition is not satisfied,
there is at least one state of the system that is either not controllable from

the input or from the disturbance.

Consider the equation {A2.10). Dividing both members with the common

factor P (z) we get
o
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Pc(z) PA‘;,(Z) = Pcz,(z) PA(z)

Now let (z - A) Vbe a factor of PC,,,(z). The equation implies that this also
o .
is a factor of the polynomial of the right member. As it is not a factor of

PA;,(Z) it must be a factor of Pc(z).

Applying the same arguement to equation (A2.11) we find that P-. (z) is a
o

factor of Pc(z)a Combining this with the previous conclusion we find that

pCé (z) PCC; (z) = Pco(z) is a factor of Pc(z). But Pc(z) and Pco(z) are of

the same degree.

Hence

Pc(z) = P (z)
o

and it now follows from (A2.10) and A2.11) that
P,(z) = P, (2) and
o
Ppls) = Py (2)
o
The last equation of (A2.9) then also implies that » = Mo

Hence controllability implies A = Ao y B = Bo y C = Co » K=K

o
QOEOD.
LEMMA 5
Assume that
LN (y;0)~L,,(8,6) a 2)
N e\ 8o \°+ %, emma

uniformly in 0 €R” and with probability one, where Lee(B ) 90) is continuous
for BER”,
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Further assume that

H/Q\N - P I| - o (theorem 1)

with probability one, where P8 is the prqjection on SoﬂR’.
Then

Hl%\f; L:;@(Yéé\N) - LQQ(P@N: 60) H =0

with probability one.

Comment

The lernma obviates the necessity of computing the information matrix

A
(8N,
The assumptions follow from lemma 2 and theorem | respectively.
Proof

We have on a y-set A‘l with probability measure one, where

y—{y(t),t=l,2, }
that
i l N /\N’ /\N; )
“ﬁLee (yso )‘”Lee(@ ,80)H<€1 for every N, N <N1(e1’y)
i : . N AN’ .
Since the convergence is uniform, N is independent of © . Hence the in -

equality is also true if N”= N (since it holds for every 8€R”).

Furthermore in 2 set A’Z with probability measure one

AT AN ‘
”8N - P@NH <€, for everyN>N2(€Z v V)
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Because of the continuity of Lgg (6, 90) we have
N AN = .. IAN AN |

ILgg (8N, e ) - Lgg (PBN, 8_) il <6 s 18N - PEN I <e_(s5,y)

But the latter condition is satisfied if N > N, L e (8,y)uy 1.

Hence in the set, Al ﬁAZ

A .
P8,8 )li<e ++%

-Lae( 8y P+

if N> max (N (¢,y), N, (e, (6,y),y]]

Since €1 and & are arbitrary, the lemma holds with probability P {Alﬂ A2}=l

Q. E.D.

THEOREM 2

A
Let 6 be defined by (4. 3), let AN (y; bN) be the diagonal matrix of eigen-

A A
values of Il\I Lge (y: eN) and let PN(y; GN) be a matrix of corresponding

(orthogonal) eigenvectors. Then

T

N, A N
( (y;

il A /I\ /\ ’
im | AN (y; 8Ny P AN AN AN (e Ny PN (v 8Ny e (=0
N

with probability one.
Comment

The theorem is a kind of consistency theorem for certain linear transforma-
tions of le\N. Even if some or all components of /éN are inconsistent (which
is always the case if the initial state components are included in 8), the
theorem gives the linear combinations that are consistent. The fact that
those combinations vary with N is due to the fact that the consistency property

is expressed in terms which are observable (computable).
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Corrolary
. A
14 N Lr\ée(yﬁe ) converges to Lgg» say, then

with probability one, and the estimate is thus strongly consistent if LGB is

non-singular.
Comment

' A
The difficulties of proving the theorem arise from the fact that %Lel\g(y, eN)

AN AN

need not converge and hence not AN (y; €7 ) and pN (y;€ ). The quantity

A
fi-NLIe\Ie (y; GN) does converge in one of the following two cases:
A
i) oN converges to some point 6”7 € SO

A
ii) 8N does not converge, but LBG( 8-, eo) is independent of 8~ in S,

The last case is true if the only components varying in S0 are those corres-
ponding to the initial states of the process (2.1). This is the ordinary

non-degenerate case (for conditions on the process and inputs, see lemma 4
and theorem 4). However, in the general case counter-examples have been

constructed to show that ii) need not hold.

A
There remains the possibility that BN converges. However, in the absence
. N .
of a rule for choosing £ in case there are several absolute maxima of
1 N(

= L

N y; 6) this cannot be shown.

Proof
AN : . . .
Assume that 8" is not consister: (otherwise the theorem is obviously true).

A o
Since 8N converges into S, (theorem 1), there is at least one point

6°# @O such that 67 € S, < S.(; . Lenima 3 then implies that S; is a linear
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r-dimensional set, where r 2 1, Introduce the new set of coordinates ©®

by an orthogonal transformation

8= PO= (P1 P,,,?,)
®Z

where P2 is of rank r and parallel to Sé . Then P, is orthogonal to S(;

1
and any point 8 can be expressed in the new coordinates as

8=P 8 +P,8, = P (Pl 8)+P

T
1517 5272 1 (P, 8) (A2.12)

2
The second partial derivative matrix of L (P ®, 90) with respect to © is

T -
P Lee(PU, €, P

Let 8= PB"=P, B + P& €5
171 o]

2 2
Tﬁén B is const‘ant=PT6 and P PTG +P,®_ €8S for every ®
o 1P Constan 1 o 171 o 2 2 "o Y =2
Hence from theorem |
. A , A AN ¢
ler 8N - plo_Il=i1pl6N . pTPEN -9 (A2.13)

with probability one.

It has thus been shown that if 1:’1 is orthogonal to So then the projection will

converge.

It remains to show that these projections are determined by the sequence of

. 1 N N
matrices {1-\-] Loy (ys= )}

We have from the definition of So

T . Ny
L(P,P] 8 +P,0,,8 )=L{3_,6_)

1 2 2’
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and hence not dependent on ®Z - It follows that the second partial deriva-
tives with respect to the r components of Z all vanish in So and hence

PO L

T 1 786" 1

Hence PZ is a set of eigenvectors corresponding to the r eigenvalues = 0,

and
PlLaq(67, 8 )=0 forall8°€s (A2.14)
2 08 "o o ’
. . 1 N AN
Now consider the matrix ST (vy:8 ). We have for every N
1 N _N_ _N.,N
S LogP =P A (A2.15)

. : . . N .
where /\N is the diagonal matrix of eigenvalues and P a matrix of orthogonal

AN
eigenvectors. The arguments v and 8 have been dropped for convenience.

We have from (A2.14), (A2.15) and lemma 5

T_N,Nj_ y_T_N,N T AN N
”PZP A= )pzp N - Py Lgg (P, 0 )P I
_pTl, N ON T AN Ny
= !{PZNLeeP P, Lgg (P87, 8 )P Il -0

Finally we have fromn: (A2.12) and (A2.13)

T 1 T A
A A /
AN pN TGN 4 NpNT N pN PIP}9N+ANPNPZP59N
T T
-ANEN p pTe L aNph p pTg
171 o 22 o
A
AN PN e (PTEN L pTg Ly
1 1 1 o
Q.E.D
Introduce the following concepts.
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DEFINITION

A systemn is said to be completely identifiable if the estimates of the

parameters Qps Gooeees@ Yo You oo Yn’ 60’81""'611’ # and A

(i.e. all parameters except those corresponding to the initial condi-

tions) are consistent.

DEFINITION

An input signal u is said to be persistently exciting of order m if the

limits
- p N
u = lim %oou(t)
N—x t=1
1 N
v (t)= lim = £ u(t)ult+ 1), T=20,1,2,..
u ' N -1

exist, and if the matrix

[r (0) r (1) r_(m) ]
ru(l) ru(O) ru(m«l)

is positive definite. We then have

THEOREM 3

The system (2.1) is completely identifiable if the input u is persistently
exciting of order 2n and if the system (2.1) is completely controllable

either from u or from e,

r (m) r (m-1) r (0) |
|
\

TP 18.150 131




Proof
The theorem is merely a re-statement of lemma 4. The definition implies

that the conditions of lemma 4 are satisfied. But then the estimates of all

parameters except the initial values are consistent.

THEOREM 4

Let 6 denote the (3n+3) - dimensiondl vector of parameters where those

corresponding to the initial states have been deleted.

Assume that 5 contains only the point 90 (e.g. under the conditions of

AN .
lemma 4), so that € is consistent.

A
Then the stochastic variable L 90)\/ N (BN - 90) is asymptotically

86 (60,
normal (0,- Lee) .

L. L . . AN .
If in addition Lee(eo , BO) is non-singular, then 8 is asymptotically

1 . -1
normal (90, 5 Log ).

Proof

This theorem is very similar to one of the standard theorems for the
maximum likelihood estimator. See e.g. Wilks [83, p. 360]. The difference
is that in our case the samples are dependent. Again the proof is obtained

by an extension of the standard results. As @N - 90 with probability one

we can always to given € > 0 and & > 0 find No and a set AN in N~dimensional

Euclidian space defined by

AN :
ag=tyl 18N (y) -0 <5
such that
P{(y)GAN foreveryN>NO}>l=-€ (A4.1)
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In AN we have

N

N, AN
g (ri9 )= 1Lg(y;®

L )+L§e(y;9*)(ed~@-N) 4 (A4.2)

where

lo_-exli<lls, -8Nj

But

M=o (A4.3)

N, A
L@ (y;®@
The equatione (A4.1), (A4.2) and (A4.3) nowgive

1N 1 N 1 AN
P{’”” Le(yéeg):'ﬁLeg(Yée%)'” (9 - 9

) for everyN>No}> l1-€
N N

But this implies that the random variables

N

N

1

. Lglyig,) _ (A4.4)
and

1 Ife\le (y:8%) 'I'N (8, - 8N (A4.5)

converge together in probability. But

1

N .
5 Lge (v38%) = Lgg (8

66 o' o

with probability one. Hence it only remains to show that the vector (A4. 4)

is asymptotically normal. We have

. L Z[elt]
3oy ()
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But for 8 = 90 the €l(t) are independent, equally distributed, random
variables and the asymptotic normality of the last component of (A4.5)

follows directly from the central limit theorem.

The asymptotic normality of the remaining components is equivalent to

the asymptotic normality of 1 V at the point 6 = 90 . From (4.10) we
N

see that the various components can be written on the common form

e c¥ 1 ¢ Vel
o o r o
where
.. - = T
g"’ 'Ynuvlnllp or t.‘O )\eCo
put
§2§+ePT
g€
then
- T T,,T! T T 1!
y=(uB  +iK +i,Y ) A » P =AC A
o o 1 “oo o y "o’ o
{u=u,i =i, 11—11. Pu=Pi=Pil=0
€=0, p'g:)\cT‘
e o
now
1 T! -V 1 -V T 1 v T
--€QCO Irco € = -XeIrC 7 += el C "P,e
N N N R
= el (:’VET+--¢:Qe'r
N N
where
-V
2X [ eVpT T
Q=3 [1.c Pg Co 1]
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The first term is always normal and converges if the second moment

2 =V
A re T T ;2
N II : CO II’ “

A L

N ‘ . e\) )
E el ¢ VETECT ;T T,
o] r o] O 'y

converges (Euclidian norm).

But £ and hence ECE Ir are solutions of linear difference equations

driven by u, and hence are Ceshro summable (together with its cross-

products) under the assumption A, and provided the difference equations
are stable. It is immediately clear that the stability of those equations is

determined by the parameters [O'io} and {Yio}' But these parameters:

generate stahle difference equations ( |iAoI I, ”C;l Il bounded), since
g €ER.
o

The second term

1 eQeT =

1 T T
N N

eM/\.M e :-}-vi’\v = = L
N N i=1

!

|

where )\i are the eigenvalues of Q, and v, are indepemdent and normal (0, 1).

since C;l and P, € T, and r > 0 {or Py = 0).
=] ]

Then Liapounoff’s criterion for the central limit theorem ' 18, p 215] can
he applied, so that

| N

= 4 (v,-1)
N i=1

is asymptotically normal, provided that

lim % = 0
N-om‘
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“where

N N
o= 3/Z|>..3|E|v;2-1‘3 =const 3/ ¢ |1 |3
i—‘—l 1 (o] 1 1

i=1

is the absolute third moment, and

>»;2E (v;ol}z' = const
i 7ot

Q

it
\

Mz
—ro

-
i
—
o
1l

is the second moment.
But

E = const
a

(maximum norm) and we get after some calculation

=V
Tr(QZ): const Tr[PT, ct 1 CGVPF]
Z [e] by o ‘:

Consider separately the three cases, which cover all components of VEJ

1. 7= u,i, il : = Q=0 (no quadratic term)
-1
2. 7z -y, v1: P.=3A"'C
e o o
We have

-1
Tr(QZ) = const Tr. AL 17 Al i ~ const:N
o r r o

if the parameters {:‘io} generate a stable difference equation, and

- Gl
Q! < const 'I'!Ao " < const

under the same condition. Then
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1/3
lim £ < const lim N = 0
g N17z v

N-—voo N—em
3. E=z e, v=2: P :)CT
IS B 3 o
2 o7 -1
Tr(Q%) = cénst Tr [ C 1I"1._C ~ const « N
o r'r o

and Q1 < const | C;l I € const

if the parameters {Yio} generate a stable difference equation.

It has thus been shown that the random vector 1 LI; (Y;;eo) is asymptotically
N
normal for N-= if 80 €ER”.

The random vector (A4.4) has asymptotically zero mean and hence it only
remains to calculate the asymptotic covariance of the random vectors (A4. 4)
and (A4.5).

We have the identity [ 83, p 348 ]

1 N N T
E g Lglyi8) [Lg(yi0)) ] = -E

1 N
o N Los (Vi)

But the right member converges to

- Lgg (60, 60)

The random vectors (A4.4) and (A4.5) are thus asymptotically normal.
(0, - Log(6,,8_))

Making a linear transformation, we find that the vector

Lgg (60, &

is asymptotically normal (0, - Lag (60, 90 )
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APPENDIX B - SYMBOLS AND NOTATIONS

Some special mathematical symbols are used. They have the followi ng

meaning

A=B A implies B

A®B A is equivalent to B

weER Wis an element in R

R°CR R”is contained in R

AUB tbhe set of elements in one of A or B or both
ANB the set of elements in both A and B

{w | (conditions on w) }

the set of elements W such that the conditions

are satisfied

w Jd d exists
A= {aij] m x n matrix of elements a5 i = row index,
P L » M j = column index
= T
J =1 » D

(a,}= (a; i=1,...,m)

{u)} = (u@t),t=1,...,N])

{A‘]..

m x 1 matrix = column vector (if the index is

j» the matrix is a row vector)

sequence of u(t) (of length N)

" element (i, j) of the matrix A

1)
AT transpose of A
”A “ norm of A
Tr(A) trace of A = 12 a,
1 unit matrix
2 (o570
~ denotes '"asymptotically equal to', i.e.

a ~b ®lim an/bn = 1
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PO

TP 18.150

stability region = the 8 - region inside which

the likelihood function converges (see lemma 1)
closed region © R

{6

L35 80) = L (80, 90)] = equivalence class
of parameter values
projection of 8 on the set Soﬂ R; the nearest

point in SQﬂ R’ from 9

139




N(m, o) normal distribution, mean = m, variance

= 02
x = Ex , expectation = mean of x
2 2 2 : . .
D® x Ex” - (Ex)” = variance of x (if x is a scalar)
cov (x,y) ExyT - ExEyT = covariance matrix of x and y

y (if x and y are column vectors)

E expectation with respect to the distribution

defined by the '"true'' parameter values 90

Subscript o attached to a parameter or a function of para-
meters, this means that the parameters have
their "true' value i.e. the values that define

the distribution function of the observed sample

The attempt to define a set of notations with a unique meaning has not been
completely successful. A few notations have a dual meaning, and several
are not listed. Those occur, however, only locally and are defined, where
they are introduced. Functions are sometimes written with explicit argu-
ments, particularly when the dependence of the arguments is stressed. The
following set of notations consitutes a compromise between the demands of

common practice and non-ambiguity.

u(t) process input at time t
y(t) observed output at time t
e(t) independent random variables N(0, 1) generating

disturbances of the process

v(t) independent random variables N(0, 1) generating

measurement errors

u = {u(j),j=1, N} row vector of available inputs
y={y(ihj=1,...,N} row vector of available observed outputs
e={e(j)j=1, , N} row vector of unknown random variables
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order of model and process

length of input/output record

process parametets in the representation

(2.1) (qO: Yo = 1)

process parameters in the representation

(2.11)

process parameters in the representation

(2.15)
state vectors in state space representation

translation operator: zy(t) = y(t + 1)

pulse transfer functions

power spectrum of disturbances

initial conditions of representation (2.1)
defined by (4. 2)

parameter matrices defined by (3. 2)
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parameter matrices defined by (4. 4)

variables defined by (3.1) occuring in

sections 3 and 5

column vector of any 4n + 3 parameters de-
fining the model. Also used as notation for
the first 4n + 2 parameters remaining when

6

= = A i
4n+3 - o has been excluded, particularly
as the argument of the function V(8) (see below)

the "true' value of 6

maximum likelihood estimate of eo
th . . A
k' approximation when computing 8

likelihood function of 8 = probability density

function of y given €
log £N(y ; 8)

column vector of partial derivatives of L

matrix of second partial derivatives of L

lim % E LN(y;0)
N~ °

o N,

N o les (v:8)

function defined by (3.5) or (4. 8) = the loss

function of the problem

column vector of partial derivatives of V(8)

matrix of second partial derivatives of V(8)
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e = ecT-v, v=1,2,3

uv= uCT-\), v=1,2

y"zycT-v, v=1,2

1\)= 1CT-V, v=1,2
-V

I Q

lam)
P

TP 18.150

approximate second derivative matrix defined
by (6.2) .

Fisher’s information matrix
state vector of algorithm I for the computation
of V
state vectors for the computation of VG and VGG
auxiliary variables for the computation of VGG
by (3.32)

. T
{6}. -n+i-1} (column vectors)
{1, ji=1,.. .,N} = unit step input
{6j_1,j =1,... , N} = unit pulse input

the row vector of disturbances of the output in

sections 4 and appendix A

row vectors of auxiliary state variables of

algorithm II for the computation of V, Ve, Vee

auxiliary functions for the computation of V,

Vgs and V44 defined by (4.17)

system matrices in state space representation

{éi ik isj=1,...,N} = shift matrix
-i-k, ,

the class of left triangular and Toeplitz matrices

={Ala..=a. a.=0fori<o0}
ij i .

i-j,
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