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Popular Science Summary

Electronic systems have become inseparable parts of our lives. They are used
in home appliances, cars, medical equipments, credit cards, etc. An elec-
tronic system is typically composed of a circuit board (or a number of circuit
boards) where each board hosts some components such as integrated circuits
(also known as ICs or chips). An IC contains a number of transistors: com-
ponents that are basic building blocks of electronic circuits. Developments in
the manufacturing technology has enabled dramatic reduction in the size of
transistors and the interconnects between them, thereby making it possible to
produce complex ICs hosting up to a few billion transistors. Such complexity
has brought about many challenges for the designers of electronic systems:

• In the design phase, it is likely that errors, commonly known as bugs,
are introduced into the systems. The more the complexity becomes, the
more advanced the debugging techniques should be.

• The manufacturing process is not perfect, and therefore, each electronic
product should be tested for defects. To keep the test cost for complex
systems low, test techniques should be constantly enhanced.

• As transistors and interconnects have become much smaller, the correct
operation of modern electronic systems has become more sensitive to
environmental conditions (such as cosmic rays) and aging (which is the
unwanted gradual change in system behavior as time goes by). Such in-
creased sensitivity causes malfunctions and necessitates constant mon-
itoring of systems during their lifetime.

Designers of electronic systems found the solution to many of these issues
to be the embedding of the debugging, testing, and monitoring instruments
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into the IC itself: the so called on-chip instruments. As benefits of on-chip
instruments become increasingly evident, more advanced instruments and
higher number of them are embedded into the new generations of ICs. Ac-
cessing such abundance of instruments efficiently (with respect to time) re-
quires proper on-chip infrastructure, referred to as network.

In this thesis, we address the design of reconfigurable on-chip instrument
access networks that allow for efficient access to on-chip instruments. In par-
ticular, to speed up detection of malfunctions in systems at run-time, we pro-
pose special networks that are able to reconfigure themselves automatically
such that the monitoring instruments that have detected errors are quickly
accessed. Moreover, operation of on-chip networks requires automation tools
that translate human-readable commands to streams of data applicable to on-
chip networks. We, therefore, propose methods to help in performing the
translation such that transfer time of the generated data stream is minimized.
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Abstract

The constant need for higher performance and more advanced functionality
has made the design and manufacturing of modern electronic chips highly
demanding. Moreover, the use of smaller transistors in modern chips has
increased their sensitivity to aging and faults, hence the need to constantly
monitor the correct operation of these chips. To address the challenges and
requirements, it has become common to embed extra hardware modules in
the chips to assist in the design and manufacturing processes, as well as in
monitoring the correct operation of the chips. Such modules, commonly re-
ferred to as on-chip instruments, are used through the entire life cycle of the
chip, from the early prototyping phase to when the system incorporating that
chip becomes operational at the customer’s site.

The increasing trend in the number and complexity of the on-chip instru-
ments called for methodologies that allow for scalable, fast, and easy access
to these instruments. As an alternative to in-house methods, which although
effective might be expensive to maintain, two IEEE standards, namely, IEEE
Std 1687 and IEEE Std 1149.1-2013, have recently come into existence. These
standards provide a common base for describing reconfigurable on-chip in-
strument access networks, as well as for describing the operation of each em-
bedded instrument by using high-level description languages. Such common
base motivates the development of relevant design automation tools, and fa-
cilitates the integration of instruments developed by multiple vendors. These
standards, however, have left the arising optimization problems in the de-
sign and operation of such networks to be addressed by the electronic design
automation community.

In this thesis, we address some of these optimization problems whose ob-
jective is to minimize the instrument access time, i.e., the time it takes to
transport data to/from the instruments over reconfigurable on-chip instru-
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ment access networks. In particular, we present access time analysis that
helps to determine the contributing factors to the access time overhead. Us-
ing the analysis, we present methods for design of reconfigurable networks
that are optimized with respect to instrument access time. Moreover, to oper-
ate such on-chip networks, there is a need for automation tools that translate
(retarget) high-level descriptions of instrument access procedures specified at
instruments’ boundaries, into low-level description languages or bit vectors
applicable from the chip’s boundary. The reconfigurability of these networks,
makes it challenging to perform the retargeting such that the generated vec-
tors are optimized with respect to the time it takes to apply them to the chip.
In this thesis, we explore opportunities for optimization in retargeting. In
particular, we present a method to assist in optimal bit vector generation, by
reducing the solution space without removing the optimal vector from it. Fi-
nally, considering the application of on-chip networks in in-field monitoring
of the correct operation of chips, we propose a self-reconfiguring network that
upon detection of errors, automatically reconfigures itself to reduce the time
it takes to identify the faulty resources.
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1
Introduction

The advances in semiconductor technology have enabled manufacturing of in-
creasingly complex integrated circuits (also known as ICs or chips) composed
of up to a few billion transistors. Some of these ICs, referred to as system-
on-chips (SoCs), host a complete system consisting of a number of general-
purpose processors, digital signal processors, memories, accelerators, high-
speed communications links, etc. The complexity of such SoCs has brought
about tougher challenges for their designers in almost every stage in the life
cycle of these SoCs: from verification efforts happening early on in the design
flow, to the measures taken to ensure the correct in-field operation.

Firstly, no matter how carefully an SoC is designed, errors, commonly
known as bugs, might find their ways into its design. Therefore, it is im-
perative that validation (and when necessary) debugging are performed on
prototypes.

Moreover, the semiconductor manufacturing process is not perfect and
some of the produced devices might be defective, making it mandatory to
screen all products for such defects via manufacturing tests. Traditionally, au-
tomatic test equipments (ATEs) have been used to perform the manufacturing
tests. These machines are now having a hard time providing the means for
testing complex SoCs at reasonable prices [2, 3].

Additionally, as modern SoCs are manufactured using very small transis-
tors, the electronic systems incorporating these SoCs are more prone to in-
field malfunctioning, due to phenomena such as soft errors, intermittent faults,
and aging. Soft errors are unwanted changes in the computation results or the
state of a system as a result of external energy sources such as alpha particles
or cosmic rays [4]. Intermittent faults result from defects that manifest them-
selves only in specific operational conditions such as an increase or a decrease
in temperature and voltage [5]. Aging in electronic systems refers to gradual
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changes in system properties that can result in malfunctioning. For example,
a mechanism called electromigration can lead to open-circuit or short-circuit
failures in metal interconnects in ICs [6]. Addressing the above-mentioned
reliability issues has become crucial [7].

1.1. ON-CHIP INSTRUMENTS

The need for advanced debugging techniques has been addressed by embed-
ding dedicated hardware modules, such as shadow registers, trace buffers,
and hardware breakpoints, in the SoCs. These embedded debugging mod-
ules facilitate the process of finding hardware (as well as software) design er-
rors. Similarly, over the years, engineers found the key to increasing testability
(i.e., the quality of tests in detecting more defects) to be the use of embedded
design-for-test (DFT) features. For example, built-in self-test (BIST) engines
are now widely used for at-speed test of different blocks inside SoCs, such
as memory blocks, logic blocks, and high-speed interconnects. These BIST
engines are now equipped with configuration registers for choosing test algo-
rithms that fit the current design best. Likewise, to enhance the in-field op-
eration of electronic systems, they are equipped with many built-in monitors
such as sensors for temperature and voltage drop, as well as error detection
mechanisms.

The number, diversity, and complexity of these non-mission-mode modules
have been gradually increasing ever since they came into existence. Nowa-
days, such embedded modules—referred to as on-chip instruments—are used
to assist in tasks such as test, debug, configuration, and on-line monitoring.
Here, we present examples of such instruments:

• Test: Memory BIST (MBIST) and logic BIST (LBIST) are widely used
throughout prototype debugging and validation, manufacturing test,
printed circuit board (PCB) assembly test [8], and power-on self-test.
Core wrappers (e.g., those introduced by IEEE Std 1500 [9]) are used
for core isolation and for hierarchical tests.

• Debug and validation: as examples, trace buffers, memory access, ac-
cess to processor debug features, hardware breakpoints, shadow cap-
turing of registers, overwriting registers [10, 11], and programmable
random stimuli generators used to exercise the design-under-valida-
tion [12], can be mentioned.

• Configuration and calibration: programming fuse bits for disabling
functional units [10], characterization of high-speed I/O (e.g., SerDes
characterization [13]), and calibration of analog circuits [14] can be men-
tioned.
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• Monitoring: Memory error detection [15], in-field checkers for asser-
tions [16], temperature sensors, and reliability (aging and electromigra-
tion) monitors [17, 18] can be mentioned as examples.

1.2. MOTIVATION OF THE THESIS

As the number of on-chip instruments grew, it became clear that the tradi-
tional methods of accessing such instruments did not scale well with number
of instruments [19]. Neither did those methods lend themselves well to elec-
tronic design automation (EDA). To address these issues, two standards came
into existence: IEEE Std 1687 [20] and IEEE Std 1149.1-2013 [21]. These two
standards laid the basis for scalable and automatable on-chip instruments ac-
cess methods. More specifically, they propose

1. to use dynamically reconfigurable instrument access infrastructures—
hereinafter networks—so that at any point in time, only those instru-
ments that are needed become accessible, and

2. to describe instruments’ operational procedures at their terminals by
using a human readable language and let automation tools translate
those procedures into bit vectors that are applicable at the IC’s termi-
nals. This translation is referred to as retargeting.

Both standards leave out the following challenges to be taken up by the
EDA community:

• optimized design of instrument access network with respect to, e.g.,
area or access time (which is the time it takes to transport data to/from
the instruments over on-chip reconfigurable access networks), and

• optimized retargeting algorithms such that translation of instrument
operational procedures is done reasonably fast, and results in bit vec-
tors with low application time, i.e., the time it takes to perform the
procedures.

Regarding optimization of access time, it should be noted that in some
scenarios such as test, configuration, and calibration, which happen as part of
the manufacturing process, lowering the access time results in reduced costs,
and is therefore very important. In the following section, the contributions of
this thesis regarding the optimization problems in the area of reconfigurable
on-chip instrument access networks are presented.
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1.3. THESIS CONTRIBUTIONS

The contributions of this thesis can be summarized as follows:

• Time analysis: For solving an optimization problem, it is necessary to
determine which variables (and each to what degree) affect the objective
function. Optimizing the objective is then a matter of adjusting those
variables. In this thesis, our main objective in all optimization problems
is to minimize the instrument access time. Therefore, in order to deter-
mine the relevant variables, we provide time analyses and access time
calculation methods for a number of reconfigurable network types.

• Network design: The use of reconfigurable instrument access networks
opens up the opportunity for access time optimization. In this thesis, we
present optimization methods for a number of reconfigurable network
types.

• Operation: Optimal operation of reconfigurable access networks re-
quires advanced retargeting tools. In retargeting for reconfigurable
instrument access networks, finding bit vectors that are optimal with
respect to application time is a hard problem, as too many candidate
vectors exist. In this thesis, we improve the search by proposing (1)
a method to explore the instrument access time reduction by exploit-
ing the opportunities for concurrent access, and (2) a method to reduce
the number of candidate vectors without eliminating the optimal vector
from the solution space.

• Application: The use of reconfigurable networks to access on-chip in-
struments during in-field operation of electronic systems, for the pur-
pose of fault monitoring, has been proposed [1, 22, 23]. In this thesis,
we improve prior work w.r.t. fault localization time (i.e., the time it
takes to identify the faulty resource and extract error information).

1.4. THESIS ORGANIZATION

The rest of this thesis is organized as follows. First, in Chapter 2, we review
the basic concepts used throughout this thesis. In particular, reconfigurable
on-chip access networks and the common off-chip to on-chip interfaces will
be introduced.

In Part I, we detail three reconfigurable instrument access network types,
namely, SIB-based networks, Daisy-chained networks, and Remote networks,
and present access time calculation methods for each network type. We con-
clude Part I by presenting a parametric analysis, which helps us identify pos-
sibilities for access time reduction.



1.4. Thesis Organization 5

In Part II, based on the observations from the analysis in Part I, we present
methods for construction of reconfigurable instrument access networks opti-
mized with respect to access time.

In Part III, we focus on how reconfigurable instrument access networks can
be efficiently operated. Part III consists of Chapter 5 and Chapter 6. In Chap-
ter 5, we describe a basic retargeting flow and explore opportunities for opti-
mization in it. In Chapter 6 we focus on a specific step in the retargeting flow
and present a method to support the vector search for optimal retargeting.

In Part IV, we consider the application of reconfigurable networks in the
area of in-field monitoring and fault management, and present our proposed
self-reconfiguring networks that reduce fault localization time significantly
over prior work.

Chapter 8 presents concluding remarks, as well as directions for future
research in the area of this thesis work.





2
Background

In this chapter, the technical background needed to follow the discussion
throughout this thesis is laid out. In particular, interfaces to on-chip instru-
ments, reconfigurable networks for accessing on-chip instruments, and the
related standards are introduced. Moreover, some key concepts, such as re-
targeting, which will be discussed in more details in later chapters, are intro-
duced here.

2.1. INTERFACES TO ON-CHIP INSTRUMENTS

Given the widespread availability of IEEE Std 1149.1 (JTAG1) test access port
(TAP) on majority of devices for the purpose of boundary-scan testing [24],
this port has been traditionally used to access on-chip instruments, as well [10].
Other standard interfaces are also being used especially under stringent pin-
count limitations, most notably the inter-integrated circuit (I2C) bus [25]. For
example, I2C has been used to access [26], test [27], and calibrate [14] on-chip
sensors. There are also devices that provide the access to on-chip instruments
via multiple interfaces [28].

The TAP is ubiquitous and is the recommended (or the only) access port
in the standards [20, 21, 9] related to on-chip instrument access networks.
Therefore, in this thesis, it will be assumed that the TAP is the interface to
the on-chip instrument access networks. In the rest of this section, we explain
the TAP circuitry and operation as much as needed for the discussion in this
thesis.

Figure 2.1 shows a conceptual view of the IEEE 1149.1 (hereinafter 1149.1)
circuitry in a chip [29]. Two Test Data Registers (TDRs) are mandatory, namely,

1Joint Test Action Group
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Figure 2.1. A conceptual view of IEEE 1149.1 circuitry

Boundary Scan Register and the Bypass Register. It is also possible to include
a number of design-specific TDRs in the 1149.1 circuitry. 1149.1 uses a serial
protocol, and at any time either the Instruction Register (IR) or one of the
TDRs is accessible serially. Accessing the on-chip 1149.1 circuitry is done
through the TAP, which includes four mandatory signals, namely test data
input (TDI), test data output (TDO), test mode select (TMS), and test clock
(TCK). The TMS signal is decoded by a state diagram (see Figure 2.2) to gen-
erate the control signals required for the capture, shift and update operations on
IR and TDRs. The capture operation is defined as parallel loading a value into
the IR (or any of the TDRs), the update operation is defined as transferring
logic values from the shift-register stage of the IR (or any of the TDRs) to their
latched parallel outputs, and the shift operation is defined as shifting the data
serially into and out of the IR (or any of the TDRs) one bit per TCK.

In the following, it is explained how the above-mentioned control signals
are generated and used to transfer data to and from the IR and TDRs. The
state diagram in Figure 2.2 is implemented as a finite state machine in the
TAP controller (Figure 2.1). The TAP controller state machine has two similar
branches: the IR branch used for performing operations on the IR, and the
DR branch used for performing operations on the currently selected TDR. In
this thesis, the currently selected TDR will be referred to as the active TDR.
The select signal of each TDR comes from the IR decoder, which activates
the TDR corresponding to the instruction currently loaded into the IR. Since
1149.1 uses a serial protocol, input data for a TDR are transformed into a
number of scan vectors (hereinafter vectors). Input vectors are shifted into
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Figure 2.2. IEEE 1149.1 TAP Controller state diagram

the active TDR by shifting the data when the TAP controller is in the Shift-
DR state. By keeping TMS at logic ‘0’ it is possible to shift in as many bits
as required for a vector. Moving to the Update-DR state makes the shifted
vector appear at the parallel outputs of the TDR. Appendix B presents RTL
circuitry for a 1149.1-style TDR. The data that should be parallel loaded into
the TDR, i.e., the output vectors, are captured at the Capture-DR state and
are shifted out by moving to the Shift-DR state. It is possible to shift in the
next input vector while shifting out the output vector corresponding to the
previous input vector. For applying inputs and capturing outputs between
two shift operations, the Exit1-DR, Update-DR, Select-DR, and Capture-DR
states are traversed in the state machine, which takes four TCKs. In this
thesis, we refer to the process of shifting input vectors and going through
update and capture operations as vector application.

2.2. NON-RECONFIGURABLE INSTRUMENT ACCESS NETWORKS

Instrument access networks connect chip interfaces (such as 1149.1 and I2C)
to on-chip instruments. Interfaces such as 1149.1 and I2C use serial protocols,
whereas it might be needed to access the terminals of on-chip instruments
in parallel. It is, therefore, common to use shift-registers with parallel I/O
(similar to 1149.1-style TDRs) in order to access those terminals over serial
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Figure 2.4. Non-reconfigurable network (simpler illustration)

interfaces. A straightforward way to design an on-chip access network is to
serially connect instrument shift-registers between TDI and TDO terminals as
a design-specific TDR. In this thesis, we refer to such a network as a non-
reconfigurable network. As an example, Figure 2.3 shows such a network con-
necting three instruments (namely, a DFT instrument, a sensor, and a debug
feature) to the TAP. In this figure, only the TDI–TDO scan path2 is shown.
There are, however, other signals involved for operation of such a network,
such as clock, reset, and control (namely, capture, shift, and update) signals.
To keep the drawings simple, in this thesis, only the scan path will be shown
(except for when the focus is on the underlying circuitry). Further, an instru-
ment along with its interface shift-register will be represented by a box, as
shown in Figure 2.4.

In the network shown in Figure 2.4, the length of the TDI to TDO scan
path is fixed, as all instruments are always on the scan path. Therefore, when
only a subset of them is being accessed, dummy bits (i.e., meaningless data
or repetition of previous data to those instruments) should be shifted in for
those instruments that are not being accessed. Shifting dummy bits might
increase the access time significantly especially when only a small subset of
instruments is being frequently accessed. It will then be helpful to use recon-
figurable (a.k.a. variable-length or flexible) scan path, which allows bypassing
instruments that are not needed for the current access.

According to [30], the vector application time for a non-reconfigurable net-
work is calculated as

t = (p + 1) · l + p · Ta (2.1)

where p is the number of vectors, 1 denotes shifting out the output bits for
the last vector, +l is the sum of the length of shift-registers (in number of
flip-flops), and Ta is the time it takes to go through the update and capture
operations. In [30], Ta is equal to one.

2Scan path refers generally to the path over which non-functional serial data is trans-
mitted.
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2.3. RECONFIGURABLE INSTRUMENT ACCESS NETWORKS

The idea of reconfigurable scan path has been around for quite a while. The
authors in [31] proposed the use of reconfigurable scan-chains to reduce test
time for designs with partial scan (by grouping frequently used scan cells in
one chain and less frequently used scan cells into another one). Optimal de-
sign for a single reconfigurable scan-chain (based on the frequency of access)
was presented in [32]. The work in [30] presented analysis and optimized
design of scan-chains for core-based ICs, where two of the considered archi-
tectures were reconfigurable.

Adding reconfigurability to the scan path is done by placing multiplexers
(hereinafter muxes) on the scan path. The control signals for the muxes can
be provided from multiple sources, such as chip pins, 1149.1 IR decoder, other
TDRs, and controllers on the same scan path on which the mux is placed (the
so called in-line control). The choice of source of mux control signals directly
impacts the instrument access time, as well as the achievable flexibility. As-
sume that at design time we precisely know how many configurations of the
instrument access network are needed throughout the chip’s life-time, though
this might not be a quite realistic assumption, as we will discuss in Chapter 4.
For example, for a total of 256 configurations, we will need eight pins if we
choose to control the muxes directly from the chip boundary, which might
be simply too many for pin-constrained designs. Therefore, one should trade
number of configurations for number of control pins. If for this example,
we choose to control the muxes directly via 1149.1 circuity, we will need 256
additional 1149.1 instructions, which also means more complexity in the IR
decoder (Figure 2.1). In practice, 256 different configurations might be what is
needed for a very small network of only eight instruments. Clearly, the use of
chip pins or 1149.1 instructions does not scale well for large networks includ-
ing hundreds or even thousands of instruments. In the rest of this work, we
focus on large networks for which we assume full flexibility in the network in
order to achieve low instrument access time.

In the following, we will review three IEEE standards that facilitate au-
tomation for reconfigurable on-chip instrument access networks.

2.3.1. IEEE STD 1500

IEEE Std 1500 [9] targets testing of the embedded cores. Each core is equipped
with a wrapper circuitry, which allows testing that core individually or in
combination with other cores, as well as testing the user-defined logic between
the cores. The wrapper circuitry and test patterns for each core are described
in Core Test Language (CTL). EDA tools can automatically port the patterns
described in CTL to the boundary of the parent core (in case of hierarchical
designs that have cores nested inside other cores) or to the chip boundary.
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Figure 2.5. ScanMux control bit

CTL, however, cannot be used to fully describe the behavior of instruments
with complicated access procedures. For example, CTL lacks the flexibility of
a programming language, which is required to describe the dynamic access
procedures (that make decisions based on the status of the system). Further-
more, CTL cannot be used to describe the on-chip instrument access infras-
tructure.

2.3.2. IEEE STD 1687 (IJTAG)

IEEE Std 1687 [20], also known as internal JTAG (IJTAG), describes a method-
ology for accessing on-chip instruments via the TAP over dynamically re-
configurable networks. The dynamic reconfiguration in IEEE 1687 networks
(hereinafter 1687 networks) allows for reduction of instrument access time by
including only those instruments in the TDI to TDO scan path that are needed
for the current operation. In this thesis, we refer to the part of scan path that
is currently accessible from TDI-TDO terminals as the active scan path.

To enable dynamic reconfiguration in 1687 networks, multiplexers are used
on the scan path, which are referred to as scan multiplexers or ScanMuxes.
A two-input ScanMux is configured via a control bit, which is a shift-update
register that can be placed anywhere on the scan path to configure one or
more ScanMuxes. Larger ScanMuxes are configured by using multiple control
bits (i.e., a control register). As an example, Figure 2.5(a) shows two ScanMux
control bits used to configure a network of two instruments. To program the
control bits to any desired configuration, the right values should be placed
in their shift cells (denoted by S) during the Shift phase, and copied to their
parallel latch (denoted by U) during the Update phase. We will use the symbol
in Figure 2.5(b) to represent a ScanMux control bit in the rest of this thesis,
where si is the scan input terminal, so is the scan output terminal, and out is
the ScanMux control signal.
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Figure 2.6. An example IEEE 1687 network connecting three instru-
ments to the TAP

IEEE 1687 specifies the 1149.1 TAP as the primary interface between the
chip boundary and the on-chip network of instruments. Interfacing is per-
formed by connecting the IEEE 1687 network as a design-specific TDR to the
1149.1 circuitry. Since the TAP controller state machine is primarily used to
operate 1687 networks, configuring the control bits or applying input vec-
tors to instruments involves cycling through the capture, shift, and update
states in the TAP controller state machine, each cycle referred to as a CSU
operation [20] (hereinafter CSU). Performing each CSU consists of applying
a number of clock cycles (TCKs) for shifting instrument data, as well as ap-
plying some clock cycles to take the TAP controller state machine through the
update and capture phases back to the shift state.

In the following, with the help of Figure 2.6, it will be explained how a
1687 network is operated. Figure 2.6 illustrates a small 1687 network con-
sisting of three instruments, namely, a DFT instrument, a sensor, and a de-
bugging feature, as well as six ScanMux control bits. The instruments are
interfaced to the scan path through shift-registers with parallel I/O (similar
to 1149.1-style TDRs). To access the instruments, ScanMux control bits should
be programmed to include the required shift-registers into the scan path. For
example, to access only the DFT feature, C1 and C2 should be set to logic
value ‘1’, and C3 should be set to ‘0’ to bypass (via input 0 of mux M3) the
network segment containing the Sensor and Debug instruments, as well as
C4, C5, and C6 components.

Reconfiguring the network to the desired configuration might need several
CSUs. For example, assuming an initial configuration of C1 = . . . = C6 = 0
in Figure 2.6, accessing the Debug instrument needs two cycles of shift and
update. In the first cycle, only C1, C2, and C3 are accessible and by setting
C2 = 0 and C1 = C3 = 1, C4, C5, and C6 become accessible. It is in the second
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Figure 2.7. SIB: (a) simplified schematic, and (b) symbol

cycle when C4, C5, and C6 can be configured to the right values, i.e., C5 = 0
and C4 = C6 = 1, so that the Debug instrument becomes accessible.

In Figure 2.6, the select signals used to gate the capture, shift, and update
control signals are not shown. In this thesis, it is assumed that only the com-
ponents on the selected input of a mux get their select signal asserted.

The select signal for C1 is asserted from the 1149.1 circuitry when the
design-specific TDR corresponding to the 1687 network is active, meaning
that C1 is always accessible when working with this 1687 network.

2.3.2.1. SEGMENT INSERTION BIT (SIB)

By using ScanMuxes, it is possible to create reconfigurable networks with arbi-
trary architectures. A particular architecture, however, stands out throughout
the examples provided by IEEE Std 1687, in which ScanMuxes bypass instru-
ment shift-registers. To implement such architecture, a special combination of
a two-input ScanMux and a control bit can be used, which is referred to as
Segment Insertion Bit (SIB)3.

The use of SIBs makes it possible to construct reconfigurable networks with
low access time overhead (as is discussed in Chapter 3) for which retargeting
can be done efficiently. A similar concept is added to the latest revision of
1149.1, as well (Section 2.3.3).

Figure 2.7(a) shows a simplified schematic of a possible SIB implementa-
tion. The select and control signals (namely, capture, shift, and update) are not
shown for simplicity. The SIB has a shift (S) flip-flop, an update (U) flip-flop,
and a two-input ScanMux. SIBs in the network are programmed by shifting
a bit into their S flip-flop and latching that bit into the parallel U flip-flop. If
the latched bit is a ‘0’, the SIB is closed and the scan path is from the si (scan-
in) terminal, to the so (scan-out) terminal via the S flip-flop, bypassing the
segment between the tsi (to scan-in) and fso (from scan-out) terminals. If the
latched bit is a ‘1’, the SIB is opened and the scan path includes the segment
connected between tsi and fso terminals of the SIB—referred to as the host
port of a SIB in this thesis. In Appendix B, a detailed schematic of the SIB

3The idea for such a component first appeared in [33].
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Figure 2.8. A SIB-based IEEE 1687 network with three instruments

component is presented. The symbol shown in Figure 2.7(b) will be used in
the rest of this thesis to represent a SIB.

Figure 2.8 illustrates an example of a SIB-based IEEE 1687 network that con-
nects three instruments to the TAP. Similar to Figure 2.6, the instruments are
interfaced to the scan path through shift-registers with parallel I/O (similar
to 1149.1-style TDRs). Initially, the SIBs are closed and the scan path consists
of SIB1 and SIB2. To access the instruments, SIBs must be programmed to in-
clude corresponding shift-registers into the scan path. For example, to access
the Sensor instrument, in one CSU, SIB2 is opened and in the second CSU,
SIB3 is opened.

2.3.2.2. DESCRIPTION LANGUAGES AND RETARGETING

IEEE 1687 introduces two description languages, namely, Instrument Con-
nectivity Language (ICL) and Procedural Description Language (PDL). ICL is
used to describe the network, that is, how the instruments are connected to the
TAP. PDL is used to describe the operation of instruments at their terminals.
PDL commands allow to perform read/write operations on the instrument
shift-registers and configurable components, as well as to wait for an instru-
ment (such as a BIST engine) to finish its operation.

Given the PDL of each instrument, a retargeting tool generates scan vec-
tors to configure the network and transport the required data bits from the
TAP to/from the instruments’ shift-registers. A retargeting tool relieves the
designer from dealing with network configuration (i.e., writing the PDL to
configure ScanMux Control bits directly). For example, assuming that the
goal is to read the value from the sensor instrument in Figure 2.6, the PDL
developer might simply use a write command to activate the sensor, a wait
command to wait for the sensor to capture the value, and a read command to
read the captured value out. It is then the task of the retargeting tool to gen-
erate one scan vector to configure C1, C2, and C3, one vector to configure C4,
C5, and C6, one vector to write to the enable bit in the sensor’s shift-register, a
wait cycle of enough length, and finally one vector to scan the captured value
out.

PDL has a basic set of commands to specify how to operate an instrument
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by, for example, reading from/writing to its terminals/registers. These basic
commands are referred to as Level-0 PDL commands. To make it possible to
describe the operation of complex instruments (which might require the flex-
ibility of a programming language, such as looping, branching, and so), PDL
is designed to be used as an extension to TCL [34], which is a language well-
known to the users of EDA tools. PDL, when used as an extension to TCL, is
referred to Level-1 PDL. In this thesis, the focus will be on Level-0 PDL, which
is a flat and sequential language consisting of two types of commands: setup
commands and action commands. Setup commands (e.g., iRead, iWrite, and
iScan) are queued, as if acting on a model of the instrument in the retargeter’s
memory, and take effect upon running the first subsequent action command
(e.g., iApply). Another action command is iRunLoop which specifies a num-
ber of clock cycles to wait for an instrument to perform its operation (useful
for describing the operation of BIST instruments).

To clarify the setup and action commands, we pick iRead and iWrite (used
to read from and write to instrument terminals/registers) as setup commands,
and iApply as an action command. A typical scenario is that multiple iRead
and iWrite commands are queued and applied upon the first subsequent iAp-
ply command. A group of setup commands followed by an iApply command
is referred to as one iApply group. Assuming that the TAP is used to access the
1687 network, the process of applying one iApply group is as follows:

1. The data to be written to instruments, specified by the queued iWrite
commands, and the network configuration bits are formed into a scan
time frame to be shifted in from TDI as input vector

2. The data to be read from the instruments, specified by the queued iRead
commands, is captured into the shift registers (see Figure 2.6) when the
TAP controller state machine is in the Capture-DR state

3. When the TAP controller state machine is in the Shift-DR state, the
prepared scan frame is shifted in from TDI while the captured data
is shifted out from TDO and stored into the ATE’s memory4

4. When the TAP controller state machine is in the Update-DR state, the
shifted-in vector is copied to the (parallel latches of the shift registers
for the) instruments

Therefore, each iApply group is translated into a series of TAP operations to
capture the instrument data, shift out the captured data while shifting in the

4In general, to the memory of the system or component operating the IEEE 1687
network (see Chapter 7).
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prepared scan time frame, and apply the shifted-in scan time frame. It might
be that an instrument is not currently on the active scan path. To perform the
read/write operations on that instrument, the translation of an iApply group
should be such that the required TAP operations for putting that instrument
on the active scan path are also generated. A retargeting step will then be to
generate a number of scan vectors to (1) change the configuration of the net-
work (from its current state) to a configuration in which the specified registers
are accessible, and (2) to perform the read/write operation. Each of these vec-
tors is then applied to the network through a number of CSU operations. A
complete retargeting flow might involve many retargeting steps.

The retargeting tool can perform a retargeting step in many ways. It suf-
fices that the instruments to be accessed in the given iApply group become
part of the active scan path. However, it is also possible to have additional
instruments on the scan path, though not needed for the given iApply group.
Presence of such additional instruments on the scan path results in higher
access time, as the data should anyway be shifted through them. On the other
hand, removal of other instruments from the scan path might also contribute
to access time overhead (as it might require extra CSUs). Therefore, activat-
ing the required instruments such that the access time is minimized is an
optimization problem. As a PDL script is a sequence of iApply groups, the
optimization process should consider the complete PDL script when minimiz-
ing the access time, as reductions in access time in some step might counter
reductions in another step.

Finally, we should note that PDL allows for concurrent application of mul-
tiple action commands by the use of merge blocks [20]. A merge block gives
the retargeting tool the freedom to execute the stated actions in any arbitrary
order, which is an opportunity to decrease the access time. Merging will be
discussed in Chapter 5.

2.3.3. IEEE STD 1149.1-2013

The new revision of IEEE Std 1149.1 [21] has added support for reconfig-
urable on-chip instruments access networks. The reconfigurability is added
to an IEEE 1149.1-2013 TDR by defining segments of that TDR as selectable.
A selectable segment mux with a one-bit wide control, is similar to the SIB
component specified by IEEE 1687. Moreover, IEEE 1149.1-2013 also allows
for controlling a selectable segment mux from another part of the scan path
or from other TDRs. The selectable segments can be nested to create a hier-
archical network for accessing instruments, similar to what is achievable by
a hierarchical 1687 network. Finally, IEEE 1149.1-2013 and IEEE 1687 use a
similar Procedural Description Language (PDL) for describing the operation
of embedded instruments.
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2.4. CHAPTER CONCLUSIONS

The similarities between IEEE 1149.1-2013 and IEEE 1687 make much of the
discussions and conclusions in this thesis work applicable to both of them.
It should be noted that IEEE 1687 allows more flexibility when it comes
to designing the on-chip instrument access networks, and therefore, brings
up more opportunities and challenges in the design and optimization areas.
Therefore, in this work, the focus will be on 1687 networks.
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3
Access Time Analysis

Reconfigurability allows for construction of many different networks for the
same set of instruments. Some of these networks might be preferable to the
others with respect to the ease of design, ease of operation, having lower hard-
ware overhead, and allowing for faster access to instruments. To know if and
how much each network is better than the others, there is a need for compar-
ison metrics. In this chapter, we provide one such metric for comparison with
respect to access time: the overall access time (OAT).

Loosely defined, OAT is the time in terms of of clock cycles it takes to
transport data to/from all embedded instruments over an on-chip instrument
access network. The low OAT becomes particularly important when instru-
ments are being accessed in the course of production, as the access time might
affect the final product cost, or during in-field monitoring of a chip’s opera-
tion, as the access time can affect the reliability of the chip. In this chapter,
we present OAT analysis to identify contributing factors to OAT. Based on the
analysis, we present methods for calculation of OAT for 1687 networks. The
methods are used to assess how much each contributing factor affects OAT,
which helps us develop methods for designing 1687 networks optimized for
OAT (Chapter 4). There are, however, many ways to design a 1687 network.
In order to be able to draw conclusions, in this chapter, we focus on only
three network types which we refer to as SIB-based, Daisy-chained, and Remote
networks.

In this chapter, after covering the basic definitions and assumptions in Sec-
tion 3.1, we present OAT calculation methods for the aforementioned three
1687 networks types in Section 3.2, Section 3.3, and Section 3.4. Also in Sec-
tion 3.4, we will review prior work on time analysis for reconfigurable scan
path [35, 30]. The OAT calculation methods are used in a parametric analysis,
presented in Section 3.5, to identify opportunities for OAT reduction.
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3.1. PRELIMINARIES

In this section, we give definitions for the terms used in this chapter, such as
access, instrument data, OAT, and access time overhead (Section 3.1.1). In Sec-
tion 3.1.2, we define the access schedule, and describe the schedules considered
in this thesis.

3.1.1. ACCESS

In this thesis, access to an instrument is defined as:

1. shifting input bits into the instrument’s shift-register,

2. latching the contents of the shift-register to be applied to the internal
circuitry of the instrument,

3. capturing the output of the instrument into the shift-register, and

4. shifting the captured values out.

When performing multiple accesses, shifting out the instrument outputs
can overlap in time with shifting in the input bits for the next access. This,
however, requires that the outputs to the previously applied inputs are ready
to be captured and shifted out by the time the next inputs are being shifted
in. In this regards, considering the relatively slow clock applied to a 1687
network (i.e., TCK applied to the TAP) [13, 36], we assume the time it takes
an instrument to process the applied inputs and make the outputs ready to be
captured, is less than the time it takes to move from Update-DR to Capture-
DR in the TAP controller state machine.

It is important to note that not all instrument types are accessed as de-
scribed above. For example, a BIST engine might be selected (by opening its
corresponding SIB) and activated (by launching the BIST) and then be dese-
lected (by closing its SIB) while still active and running. Later in the access
schedule, the BIST can be selected again and its Done and Fail signals be
polled. Nevertheless, from the access time analysis point of view, the above-
mentioned BIST engine is accessed two times—once when launching the BIST
and once when checking the results—and the number of clock cycles it takes
to run the test is not part of the access time. Since the aim of our access time
analysis is to study the overhead incurred by the network when data is trans-
mitted through it, the amount of time an instrument spends running on its
own (without any new inputs) can be disregarded.

considering the above-mentioned assumption on time overlap in perform-
ing multiple accesses, it takes

Li × (Ai + 1) (3.1)
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clock cycles to perform Ai accesses to instrument i with the shift-register
length Li, where +1 denotes shifting out the outputs for the last access. When
there are N instruments in a network, the total number of clock cycles needed
to perform all accesses to all instruments is referred to as instrument data in
this thesis, and is calculated as:

Instrument data =
N

∑
i=1

Li × (Ai + 1) (3.2)

where N is the number of instruments, Li is the length of shift-register for
instrument i, and Ai is the number of accesses for instrument i.

Ideally, when performing all accesses to each of the N instruments, the OAT
should be the same as the instrument data. In practice, however, more clock
cycles should be spent, to operate the TAP controller state machine, program
reconfigurable components such as SIBs, and shift data through bypass flip-
flops. In this thesis, we refer to any clock cycle spent on an operation other
than shifting instrument data, as access time overhead. When the overhead
clock cycles are spent on shifting, we refer to them as shift overhead, and when
they are spent are any TAP operation other than shifting we refer to them as
TAP overhead.

3.1.2. ACCESS SCHEDULES

An access schedule is an abstract model detailing how many times, in which
order, and in what combinations the instruments are to be accessed. We refer
to performing accesses according to a given schedule as application of that
schedule. For accessing instruments according to any given schedule, it is
crucial that the network has the flexibility to allow switching instruments on
and off the scan path individually. The three reconfigurable network types
that we consider in this thesis are designed to have such flexibility.

In this thesis we assume that in a given schedule accesses to an instrument
can start at any point relative to other instruments, and that once started, all
accesses to each instrument are performed consecutively without interruption.
We refer to this schedule type as generic1 throughout this thesis. Two extreme
cases of generic schedules are of special interest, namely, the (fully) concur-
rent schedule and the sequential schedule, as they accentuate components of
access time that are important in access time optimization.

In the concurrent schedule, as we define and use in this thesis, accesses for
all instruments start as soon as possible. In this regard, recall from the dis-
cussion on Figure 2.6 in Section 2.3.2 that depending on the network design,

1Also referred to as non-preemptive session-less [37] or partitioned testing with run
to completion schedules [38] in SoC test scheduling terminology.
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Figure 3.1. Flat and hierarchical SIB-based 1687 networks

some instruments might becomes accessible earlier than the others. When an
instrument is no more active (i.e., there are no more inputs to be applied to
it), it is excluded from the scan path, by closing its corresponding SIB. This
makes the scan path shorter for accessing the rest of the instruments.

In the sequential schedule, the instruments are accessed one at a time, and
the assumed order of access is the order that the instruments appear on the
scan path when all SIBs are open. The order of access can affect OAT in hier-
archical networks, if it causes closing the already opened SIBs and reopening
them again to access instruments in segments connected to the host ports of
those SIBs. It is also assumed that the access for each instrument is completed
before accessing any other instrument.

In the following sections, we present OAT calculation methods for the three
network types mentioned earlier, namely, SIB-based, Daisy-chained, and Re-
mote networks. For each network type, we consider concurrent, sequential,
and generic schedules. We start our OAT analysis by considering the SIB-
based networks.

3.2. SIB-BASED NETWORKS

Figure 3.1 shows two SIB-based networks for the same three instruments I1, I2,
and I3. For each instrument, length of shift-register (denoted by L) and num-
ber of accesses to perform (denoted by A) are shown. The type of architecture
in Figure 3.1(a) is called a flat architecture in the remainder of this thesis. In
the flat architecture, no SIB is connected to the host port of another SIB. Fig-
ure 3.1(b) shows another network for the same three instruments. Here, there
are four SIBs and two of these SIBs are connected to the TAP through the host
port of SIB2. This type of architecture is called hierarchical architecture in the
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Table 3.1. OAT calculation steps for the concurrent schedule

Row Scan path
Shifted bits Capture &

update
Number
of CSUs

Sum for
scan pathSIBs I1 I2 I3

1 Figure 3.2(a) 2 0 0 0 4 1 (2 + 4)× 1
2 Figure 3.2(b) 4 3 0 0 4 1 (7 + 4)× 1
3 Figure 3.2(c) 4 3 5 4 4 5 (16 + 4)× 5
4 Figure 3.2(d) 4 0 0 4 4 6 (8 + 4)× 6

OAT ∑=189

remainder of this thesis. In this thesis, a SIB having only an instrument on
its host port is referred to as an instrument SIB and a SIB having one or more
SIBs on its host port is called a doorway SIB.

3.2.1. ANALYSIS FOR A SMALL EXAMPLE

As the flat architecture is a one-level hierarchical architecture, it suffices to
only discuss the hierarchical example. Therefore, we begin our analysis by
showing how OAT can be calculated for the hierarchical network in Fig-
ure 3.1(b) according to concurrent, sequential, and an example of generic
schedules. The analysis for this small network, explains the main idea be-
hind the proposed OAT calculation algorithms.

3.2.1.1. CONCURRENT SCHEDULE

In the following, we describe how to calculate the OAT for the hierarchi-
cal architecture shown in Figure 3.1(b) according to the concurrent schedule.
Figure 3.2 presents different scan path configurations for the network in Fig-
ure 3.1(b). In Figure 3.2, the gray boxes represent the S flip-flops inside the
correspondingly numbered SIBs (see Figure 2.7). Note that the mux is placed
after the host port, therefore, when a SIB is open, the segment connected to
its host port appears before the S register on the scan path.

We use Table 3.1 to describe the OAT calculation. As the scan path initially
consists only of SIB1 and SIB2 (Figure 3.2(a)), these SIBs should be opened
before accessing the instruments. To open the SIBs, two bits with logic value
of ’1’ are shifted in (one bit for each SIB) and subsequently applied. The two
bits each corresponds to the S cell of a closed SIB, and they are accounted
for on the row marked 1 in Table 3.1, column “SIBs”. Applying shifted bits
requires going through update and capture states in the TAP controller state
machine, which takes four clock cycles (TCKs) as indicated in the column
“Capture & update”. After applying the two shifted bits, instrument I1, as
well as SIB3 and SIB4 are included in the scan path, as shown in Figure 3.2(b).
At this point, input data can be applied to instrument I1, SIB1 and SIB2 should
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Figure 3.2. Different scan path configurations of the network shown
in Figure 3.1(b)

be programmed to stay opened, and SIB3 and SIB4 should be programmed to
be opened. The length of scan path in this configuration is 3 (for I1) + 4 (for
SIB1 to SIB4) = 7 bits. After applying the required vector to perform one access
to I1 and program SIB1 to SIB4, the scan path will be as shown in Figure 3.2(c).
At this point, the second access for I1 can be performed while performing the
first access for instruments I2 and I3 (while programming the SIBs to stay
open). In fact, in the current configuration, all remaining accesses for I1 and
I2 can be performed. Note that after finishing the accesses for I1 and I2, one
final access should be performed to shift the final set of outputs out, during
which, one more access is performed to I3. Therefore, in this configuration, a
total of five CSUs are performed. The last of the five should also close SIB1
and SIB3 to make the scan path shorter for performing the remaining accesses
to I3, which results in the scan path shown in Figure 3.2(d). At this point, the
remaining five accesses can be performed on I3, plus one last CSU to shift out
the final responses from I3.

Table 3.1 shows the number of bits of different types that are shifted in
for each CSU and the number of CSUs performed on each scan path config-
uration. The scan path configuration corresponding to each row is specified
under the column “Scan path”. The column “Sum for scan path” shows the
total number of bits that are shifted in for each scan path. The OAT is the



3.2. SIB-Based Networks 27

Table 3.2. OAT calculation steps for the sequential schedule

Row Scan path
Shifted bits Capture &

update
Number
of CSUs

Sum for
scan pathSIBs I1 I2 I3

1 Figure 3.2(a) 2 0 0 0 4 1 (2 + 4)× 1
2 Figure 3.2(e) 2 3 0 0 4 6 (5 + 4)× 6
3 Figure 3.2(f) 4 0 0 0 4 1 (4 + 4)× 1
4 Figure 3.2(g) 4 0 5 0 4 5 (9 + 4)× 5
5 Figure 3.2(d) 4 0 0 4 4 11 (8 + 4)× 11

OAT ∑=265

sum of the values in this last column, as shown on the last row, which for this
example is 189 clock cycles.

In Section 3.1.1, we mentioned that any clock cycle spent on an operation
other than shifting instrument data is considered overhead. In this example,
shifting the SIB control bits contributes to OAT by 2 × 1 + 4 × 1 + 4 × 5 +
4× 6 = 50 clock cycles, which we regard as SIB overhead. Furthermore, the
number of clock cycles spent on update and capture operations is 4× (1 +
1 + 5 + 6) = 52, which we consider as TAP overhead. The rest of clock cycles,
i.e., 189− (50 + 52) = 87, are spent on shifting instrument data, which can
also be calculated directly by using Eq. (3.2) as 3× (5 + 1) + 5× (4 + 1) + 4×
(10 + 1) = 87. It can be confirmed that OAT consists of three components,
namely, instrument data, shift overhead, and TAP overhead. In this case, the
total overhead is about 54 percent ((50 + 52)/189× 100) of the OAT.

3.2.1.2. SEQUENTIAL SCHEDULE

Similar to how Table 3.1 described the access for the concurrent schedule, Ta-
ble 3.2 details the steps of sequential access to the instruments in the network
shown in Figure 3.1(b).

For the sequential schedule, it is assumed that only those doorway SIBs
are open that are on the shortest scan path to the instrument being accessed.
Table 3.2 shows that for the sequential schedule, OAT is 265 clock cycles.
The reason for OAT increase in case of the sequential schedule is that more
scan vectors are applied each incurring shift overhead and TAP overhead.
Seen from another perspective, in case of the concurrent schedule, overhead
is shared by multiple concurrent accesses.

From Table 3.2, the TAP overhead as calculated as 4× (1+ 6+ 1+ 5+ 11) =
96, and the shift overhead is calculated as 1× 2 + 6× 2 + 1× 4 + 5× 4 + 11×
4 = 82. In this case, the total overhead is about 67 percent ((82 + 96)/265×
100) of the OAT.
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Figure 3.3. Example generic schedule

3.2.1.3. A GENERIC SCHEDULE

In practice, the instrument access schedule will be the output of the retar-
geting process, and can have partial concurrency (as opposed to the strictly
concurrent and sequential schedules discussed above). The aim of the study
in this section is not, however, to discuss the exact ordering a retargeting tool
considers for the access in a given PDL script, but merely to study OAT for
different networks under partially concurrent schedules. We take the exam-
ple of a generic schedule representation shown in Figure 3.3(a) to explain our
OAT calculation approach. In Figure 3.3(a), the horizontal axis represents the
number of accesses, and the vertical axis shows how many instruments are
accessed concurrently. Each rectangle represents one of the three instruments
in the network shown in Figure 3.1(b), where the width denotes the number
of accesses and the height is one unit. The given schedule can be interpreted
as accesses to instruments I1 and I3 start at the same time (i.e., concurrency of
two), and after accesses to instrument I1 are complete, I2 should be accessed
concurrently with I3.

The representation in Figure 3.3(a) is abstracted from the network configu-
ration steps that might be needed to apply that given schedule to a 1687 net-
work. The representation in Figure 3.3(b) shows how the given schedule will
look like when we take into account the reconfigurations required for appli-
cation of this given schedule to the network in Figure 3.1(b). In Figure 3.3(b),
the white boxes represent the reconfiguration(s) needed to place the corre-
spondingly numbered instrument on the scan path, the gray boxes represent
the accesses to perform on each instrument, and the blackened boxes repre-
sent shifting out the results of the final access. The configuration for including
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Table 3.3. OAT calculation steps for the generic schedule given in Figure 3.3(a)

Row Scan path
Shifted bits Capture &

update
Number
of CSUs

Sum for
scan pathSIBs I1 I2 I3

1 Figure 3.2(a) 2 0 0 0 4 1 (2 + 4)× 1
2 Figure 3.2(b) 4 3 0 0 4 1 (7 + 4)× 1
3 Figure 3.2(h) 4 3 0 4 4 5 (11 + 4)× 5
4 Figure 3.2(d) 4 0 0 4 4 1 (8 + 4)× 1
5 Figure 3.2(i) 4 0 5 4 4 5 (13 + 4)× 5

OAT ∑=189

instrument I2 could be done at the same time with closing SIB1 to exclude in-
strument I1. However, for simplicity, we assume that network reconfiguration
is not done prospectively with respect to the next set of instruments in the
given schedule.

Table 3.3 details the steps needed to apply the given schedule in Figure 3.3
to the network in Figure 3.1(b). The OAT for the given generic schedule is
the same as the OAT for the concurrent schedule. This can be explained by
noting that in both schedules instrument I3 becomes active from the third
vector (corresponding to Row 3 in Table 3.1 and Table 3.3) and remains active
until the end of both schedules due to its high number of accesses, thus both
schedules incur the same TAP overhead. Moreover, no matter what other
instruments are being accessed concurrently with I3, all the SIBs will be on
the scan path for both schedules, thus shift overhead will be the same.

From the table, the TAP overhead as calculated as 4× (1 + 1 + 5 + 1 + 5) =
52, and the shift overhead is calculated as 2× 1+ 4× 1+ 4× 5+ 4× 1+ 4× 5 =
50. In this case, the total overhead is about 54 percent ((50 + 52)/189× 100)
of the OAT.

3.2.2. ACCESS TIME CALCULATION ALGORITHMS

In this section, we will present OAT calculation algorithms for the SIB-based
networks, when concurrent, sequential, and generic schedules are applied.
The algorithms calculate OAT in the same way as presented in the analysis in
Section 3.2.1, that is, by performing accesses and summing up the number of
clock cycles.

For the algorithms, we model a 1687 network as a tree in which each in-
ternal node corresponds to a doorway SIB and each leaf node corresponds to
an instrument SIB. The root of the tree is the TAP. Each node in the tree is
associated with the following attributes:

• an accesses attribute that for a leaf node signifies how many accesses
are to be performed on the node’s corresponding instrument. For the
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Figure 3.4. Tree representation for the network in Figure 3.1(b)

concurrent schedule, this attribute is associated with internal nodes as
well, to signify how many accesses are to be performed in the subtree
of that node,

• a length attribute that signifies length of the instrument shift-register
associated with a leaf node,

• a state attribute that signifies whether a SIB is opened (state = 1) or
closed (state = 0), and

• a children attribute that is a set containing node’s child nodes. For a leaf
node, this set is empty.

As an example, the tree in Figure 3.4 represents the SIB-based network in
Figure 3.1(b). The values assigned to the attributes show their initial values.

3.2.2.1. CONCURRENT SCHEDULE

For the concurrent schedule, the OAT calculation steps are captured by Al-
gorithm 3.1. As input, the algorithm receives a tree that models a SIB-based
network (similar to Figure 3.4) and whose root node is denoted by root. In
this algorithm, each access to the instruments (Lines 2–4) comprises of

1. resetting the variable SL, which stores the number of clock cycles needed
to shift data through the scan path,

2. a call to TraverseConcSIB() (Line 3), which updates SL and returns the
number of remaining accesses, and

3. adding the counted number of cycles to OAT (Line 4), which involves
shifting SL bits followed by performing update and capture operations
(represented by TFSM

2).

2To signify that this overhead is caused by the TAP controller finite state machine.
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Algorithm 3.1: SIB-based network, concurrent schedule
Input: A tree T modeling the SIB-based network, whose root node is root
Output: OAT

1 while root.accesses > −1 do
2 SL := 0 // Scan path length for the current access
3 root.accesses := TraverseConcSIB(root)
4 OAT := OAT + SL + TFSM
5 end

The algorithm terminates when there are no more accesses to be performed
and the last responses are also shifted out (i.e., root.accesses ≤ −1).

Function TraverseConcSIB() receives a tree node as input, corresponding to
a doorway SIB, and by recursively calling itself

1. calculates the number of clock cycles needed to shift data for the current
access (stored in SL), and

2. calculates and updates the remaining number of accesses for each in-
strument/segment in the node’s subtree (stored in variable remaining,
which is initialized to −1 in Line 1).

The function iterates over child nodes in the subtree of node (Lines 2–22) and
updates the remaining number of accesses while calculating the length of scan
path (SL). Each child SIB increases the scan path length by one (Line 3), no
matter if it is opened or closed. If a child node has accesses to be performed
(Line 4) and it is closed (Line 5), it is opened (Line 6). If the SIB is opened and
there are accesses to perform, one of the following is applicable:

• If the child node corresponds to an instrument SIB, the number of ac-
cesses to its corresponding instrument is decremented and the number
of required clocks for shifting the data through that instrument’s shift-
register is added to SL (Lines 10–11).

• If the child node is a doorway SIB, the function calls itself recursively
with that child node as input parameter (Line 14).

When there are no more accesses for a child node, that node is closed (or kept
closed if it has already been closed) (Line 19). That is, if the child node is an
instrument SIB and there are no more accesses to perform to its corresponding
instrument, or if the child node is a doorway SIB and there are no more
accesses to perform to any instrument connected directly or indirectly to its
host port, that child node is closed. After analysis of each child node, the
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Function TraverseConcSIB(node)
1 remaining := −1 // number of remaining accesses in node’s subtree
2 foreach child ∈ node.children do
3 SL := SL + 1 // +1 for the SIB’s S cell
4 if child.accesses > −1 then
5 if node.state = 0 then
6 node.state := 1
7 end
8 else
9 if child.children = ∅ then

10 child.accesses = child.accesses− 1
11 SL = SL + child.length
12 end
13 else
14 child.accesses := TraverseConcSIB (child)
15 end
16 end
17 end
18 else
19 node.state := 0
20 end
21 remaining := max{remaining, child.accesses}
22 end
23 return remaining

remaining variable is set to the maximum number of accesses among the child
nodes analyzed so far (Line 21), and is returned after all child nodes are
considered (Line 23).

3.2.2.2. SEQUENTIAL SCHEDULE

This section describes function TraverseSeqSIB() for OAT calculation for the
sequential schedule. The basic idea behind the OAT calculation for the se-
quential schedule is that there are Ai + 1 accesses for each instrument i, for
which the number of shifted bits per access is constant. This can be seen in the
examples of Table 3.2. The number of shifted bits during the instrument ac-
cess, depends on the length of that instrument’s shift-register and the number
of SIBs on the scan path to that instrument.

To calculate OAT, TraverseSeqSIB() should be called with the TAP as pa-
rameter (TAP being the root node of the tree). Before the call to TraverseSe-
qSIB(), the global variables SIBs and OAT should be set to 0. Here, SIBs is a
variable that counts the number of SIBs on the scan path, and OAT is the vari-
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Function TraverseSeqSIB(node)

1 if node.children 6= ∅ then
2 SIBs := SIBs + |node.Children|
3 OAT := OAT + SIBs + TFSM
4 foreach child ∈ node.children do
5 TraverseSeqSIB (child)
6 end
7 SIBs := SIBs− |node.Children|
8 end
9 else

10 OAT := OAT + (node.length + SIBs + TFSM)× (node.accesses + 1)
11 end

able that will contain the OAT when TraverseSeqSIB() terminates. The number
of SIBs on the scan path will vary according to the location of the instrument
that is being accessed within the network. Therefore, TraverseSeqSIB() keeps
track of the SIBs that must be traversed to reach the level of hierarchy on
which the accessed instrument is located. Each level of hierarchy is marked
by a recursive call (line 5).

When TraverseSeqSIB() is called, it checks whether the current node (which
is a SIB) has any child SIBs (Line 1). If node has children, the SIBs variable
should be increased by the number of children (Line 2), and OAT should
be increased to represent the initial SIB programming required for the newly
opened level of hierarchy (Line 3). Similarly when the function is leaving this
level, SIBs is reduced to the previous value, corresponding to the previous
level of hierarchy (Line 7). TraverseSeqSIB() should be called recursively for
the children of the current node (Lines 4–6). If the current node has no child
(Line 9), OAT will be increased by the access time required for applying all the
instrument’s input vectors and the shift out of the last output vector (Line 10).

3.2.2.3. GENERIC SCHEDULES

We assume that a generic schedule is given as Figure 3.3(a), which does not
capture the application details such as network configuration. To perform
accesses according to such a generic schedule, we need to perform the net-
work configuration, which makes the actual applied schedule similar to Fig-
ure 3.3(b).

In this section, we present a strategy for OAT calculation according to a
given generic schedule. A given generic schedule is first broken into a number
of sessions. A session starts when accesses to an instrument (or a number of
instruments) begin, and finishes when a new session starts. We can think of
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Figure 3.5. Example given generic schedules

a session as a list of instruments and their associated number of accesses. As
we need to deviate from the given schedule to add the network configuration
steps, we consider that the main rule to follow from the given schedule is the
concurrency constraints. That is, if two instruments are not accessed at the
same time in the given schedule, they are considered to be in conflict, and
should not be accessed at the same time in the applied schedule.

Let us clarify the above with the help of an example. Assume the given
schedule is the one shown in Figure 3.5(a). Further, assume that accesses to
instrument 2 can start after one CSU spent on configuration while accesses
to instrument 1 start after more CSUs (because, e.g., this instrument is in a
deeper hierarchical level). In this situation, we consider that although the sec-
ond session can start immediately after accesses to instrument 2 are finished,
it should wait until accesses to instrument 1 are finished, as well. In con-
trast, if the given schedule is similar to the one shown in Figure 3.5(b), which
allows for concurrent access between instrument 1 and instrument 3, the sec-
ond session can start immediately after accesses to instrument 2 are complete.
We emphasize again that the aim of this OAT calculation is not to represent
the behavior of a retargeting tool, but to lay a common basis for comparison
between different network types and architectures.

The flowchart in Figure 3.6 shows how a generic schedule is interpreted
and applied. Initially, the accesses attribute (see Section 3.2.2) for all nodes is
set to −1. The application stops when there are no more accesses left in the
current session and no more sessions left in the schedule. After reading each
new session, it is checked if any instrument in the newly read session is in
conflict with any instrument in the session currently being applied:

• In case of no conflicts, the new session is activated. Activation of a new
session is performed by setting the accesses attribute of the instruments
listed in the session to the number of accesses specified in that session
for that instrument.

• In case of conflicts, application of currently active session continues
until accesses to an instrument are complete. Performing each access
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Figure 3.6. How a generic schedule is interpreted and applied.

can entail applying a number of CSUs for network configuration before
a final CSU for the actual read/write operation. In our implementation
of the presented flowchart we used the Function TraverseConcSIB() to
perform the CSU operation.

3.3. DAISY-CHAINED NETWORKS

What in this thesis is referred to as Daisy-chained was first presented in [39]
as “custom hierarchical architecture”, and later in [40] as “MUX-based archi-
tecture”. Figure 3.7 shows flat and hierarchical Daisy-chained networks for
the same set of instruments used earlier for the SIB-based network example,
i.e., I1, I2, and I3 in Figure 3.1. In our work, in order to be able to make
a fair comparison between network types w.r.t. OAT, we assume additional
flip-flops on bypass paths, represented by empty boxes in Figure 3.7. Such by-
pass flip-flops prevent long combinatorial paths, which can limit the clocking
speed. On the other hand, shifting data through bypass flip-flops adds to the
shift overhead. It should be noted that in SIB-based networks, the placement
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Figure 3.7. Flat and hierarchical Daisy-chained 1687 networks

of SIB’s S flip-flop after the mux (Figure 2.7(a)) prevents formation of long
combinatorial paths, without the need for extra bypass flip-flops.

In Daisy-chained networks, multiplexers are used to switch instrument
shift-registers on and off the scan path. These multiplexers are controlled
by ScanMux control bits (such as C2, C3, and C4 in Figure 3.7(a)) placed on a
separate branch of the scan path (the configuration path). To select between
the two branches, other ScanMux control bits (such as C1 in Figure 3.7(a)) are
used.

In Figure 3.7(b), instruments I2 and I3 are placed in a deeper hierarchical
level, which allows saving access time by removing their associated bypass
flip-flops and ScanMux control bits from the scan path when these instru-
ments are not being accessed. ScanMux control bits C1 in Figure 3.7(a), as
well as C1 and C4 in Figure 3.7(b), as well as their associated muxes can be
seen as doorways to another hierarchical level, and will therefore be referred
to as doorway ScanMux control bits henceforth.

The flat and hierarchical Daisy-chained networks shown in Figure 3.7 can
be seen analogous to their SIB-based counterparts in having corresponding
instruments placed in similar hierarchical levels. In Chapter 4, we will use
this analogy to construct Daisy-chained networks from their optimized SIB-
based counterparts.

In the following, OAT calculation algorithms are presented for the concur-
rent, sequential, and generic schedules. To use these algorithms, we model
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Figure 3.8. Tree representation for the network in Figure 3.7(b)

the given Daisy-chained network as a tree in which each internal node cor-
responds to a doorway ScanMux control bit, and each leaf node corresponds
to an instrument. We clarify this with the help of the example tree shown in
Figure 3.8 which models the network in Figure 3.7(b). Each node in the tree is
associated with a state attribute which when set to 0, signifies that the node’s
corresponding instrument/segment is bypassed, and when set to 1 signifies
that the corresponding instrument/segment is on the scan path. Each leaf
node has two other attribute/value pairs: accesses, marking the number of
accesses, and length, marking the length of the shift-register for the node’s
corresponding instrument. Each internal node, has also an accesses attribute
whose value is the maximum among the values for accesses found in that
node’s subtree.

3.3.1. CONCURRENT SCHEDULE

For the concurrent schedule, the OAT calculation steps are captured by Algo-
rithm 3.2. As input, the algorithm receives a tree representation of a Daisy-
chained network (similar to the tree in Figure 3.8) whose root node is root. In
the algorithm, each access to the instruments (Lines 2–4) comprises of

1. resetting the variable SL, which stores the number of clock cycles needed
to shift data through the scan path,

2. a call to TraverseConcDC() (Line 3), which updates SL and returns the
number of remaining accesses, and

3. adding the counted number of clock cycles to OAT (Line 4) which in-
volves shifting SL bits followed by performing update and capture op-
erations (represented by TFSM).
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Algorithm 3.2: Daisy-chained network, concurrent schedule
Input: A tree T modeling the Daisy-chained network, whose root node is root
Output: OAT

1 while root.accesses > −1 do
2 SL := 0 // Scan path length for the current access.
3 root.accesses := TraverseConcDC(root)
4 OAT := OAT + SL + TFSM
5 end

The algorithm terminates when there are no more accesses to be performed
and the last responses are also shifted out (i.e., root.accesses ≤ −1).

Function TraverseConcDC() receives a tree node (corresponding to a seg-
ment in the Daisy-chained network) as input, and by recursively calling itself

1. calculates the number of clock cycles needed to shift data for the current
access (stored in SL), and

2. calculates and updates the remaining number of accesses for each in-
strument/segment in the node’s subtree.

If the doorway ScanMux control bit for the segment represented by node con-
tains a logic zero (Line 3), the multiplexer control path (i.e., the ScanMux
control bits path) is selected and should be configured such that the instru-
ments/segments with remaining accesses are placed on the scan path while
the rest are bypassed. This reconfiguration involves shifting one bit per each
ScanMux control bit in the segment (Line 2 and Line 4), and updating the
node’s state to select the instrument path (Line 5). If, however, the instrument
path in the current segment is selected (Line 8), for every child node (instru-
ment/segment) on the path which has remaining accesses (Line 10), if the
child node corresponds to

• an instrument, the algorithm reduces the remaining number of accesses
by one and adds the number of required clock cycles for shifting the
data through the instrument’s shift-register to SL (Lines 11–13),

• a segment, the algorithm calls itself recursively (Line 16).

When there are no more accesses to be performed (Line 18) the corresponding
instrument/segment is bypassed (Line 19). After analysis of each child node,
the remaining variable is set to the maximum number of accesses among the
child nodes analyzed so far (Line 21), and is returned after all child nodes are
considered (Line 28).
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Function TraverseConcDC(node)
1 remaining := −1 // # of remaining accesses in node’s subtree
2 SL := SL + 1 // +1 for the doorway ScanMux control bit
3 if node.state = 0 then
4 SL := SL + |node.children|
5 node.state := 1
6 remaining := node.accesses
7 end
8 else
9 foreach child ∈ node.children do

10 if child.accesses > −1 then
11 if |child.children| = 0 then
12 child.accesses = child.accesses− 1
13 SL = SL + child.length
14 end
15 else
16 child.accesses := TraverseConcDC (child)
17 end
18 if child.accesses < 0 then
19 node.state := 0
20 end
21 remaining := max{remaining, child.accesses}
22 end
23 else
24 SL := SL + 1 // +1 for the bypass flip-flop
25 end
26 end
27 end
28 return remaining

3.3.2. SEQUENTIAL SCHEDULE

For the sequential schedule, the OAT calculation can be performed by travers-
ing the tree and calculating the required number of clock cycles needed for
network configuration and instrument access, at each of the leaf nodes. Such
tree traversal is shown in Function TraverseSeqDC(), which as input receives
an internal tree node and calculates the number of clock cycles required to se-
quentially access the instruments in the segment represented by that subtree.

Function TraverseSeqDC() is initially called with the TAP as parameter
(TAP being the root node of the tree). Before calling Function TraverseSe-
qDC(), the global variables SL and OAT should be set to zero. When an
instrument in a given segment is being accessed, the rest of the instruments
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Function TraverseSeqDC(node)

1 SL := SL + |node.children|
2 foreach child ∈ node.children do
3 OAT := OAT + SL + 1 + TFSM
4 if |child.children| > 0 then
5 TraverseSeqDC (child)
6 end
7 else
8 OAT := OAT + (child.length + SL + TFSM) · (child.accesses + 1)
9 end

10 end
11 SL := SL− |node.children|

(or subsegments) in that segment are bypassed which means that their corre-
sponding bypass flip-flops are on the scan path. Variable SL (Line 1) serves
two purposes:

• during the configuration step, it represents the number of ScanMux
control bits on the configuration path, which is equal to the number of
direct child nodes (i.e., |node.children|) in the subtree of node,

• when performing accesses, it represents the |node.children| − 1 bypass
flip-flops plus one for doorway ScanMux control bit on the scan path.

It can be seen that in both cases, SL should be increased by |node.children|.
For each child node (Line 2), a configuration step is considered (Line 3)

to put the node’s corresponding instrument/segment on the scan path and
put the other instruments/segments in bypass. In Line 2, SL represents the
number of ScanMux control bits that should be configured to switch the in-
struments on and off the scan path, +1 represents the doorway ScanMux
control bit, and TFSM is the number of clock cycles spent on update and cap-
ture operations. If the node is an internal node (Line 4) the function calls itself
recursively, otherwise the number of clock cycles needed to access the instru-
ment corresponding to this leaf node is added to OAT (Line 8). Before return,
SL is reset to its previous value (Line 11). In the OAT calculation (Line 8), it
is considered that each instrument i is accessed Ai + 1 times (+1 for shifting
out the last responses), and that for each access SL + Li bits should shifted
followed by performing update and capture operations (denoted by TFSM).

3.3.3. GENERIC SCHEDULES

The OAT calculation for a given generic schedule follows the same flowchart
presented in Section 3.2.2.3. The difference is that to perform a CSU, Func-
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tion TraverseConcDC() is called.

3.4. REMOTE NETWORKS

In this network type, there is one TDR for ScanMux control bits and one TDR
for instruments (Figure 3.9). When the scan path needs to be reconfigured, the
TDR with control bits is accessed (i.e., TDR-2). After the scan path is recon-
figured, the TDR with the instruments (i.e., TDR-1) is selected to access the
instruments. In this network type, since ScanMux control bits are not on the
same scan path as the instruments, it is possible to pipeline the instrument data
through the bypass flip-flops, and therefore effectively reduce the time wasted
in the bypass flip-flops. Here, pipelining refers to filling the bypass flip-flops
with instrument data for the next access instead of filling them with fill bits
or dummy bits. The overhead reduction can be understood by referring to
the work in [35] in which it is shown how pipelining of data through bypass
flip-flops in a daisy-chained scan path results in extremely low test time over-
head. This is in contrast to the work in [30], which shows that time is wasted
in passing the bypass flip-flops. The key difference between [30] and [35] in
their assumptions on bypass flip-flops is that in [35] it is assumed that bypass
flip-flops are dedicated to testing, whereas in [30] the bypasses are functional
flip-flops converted to scan registers. Since the contents of functional flip-
flops change during an execution step (application of stimuli), it is in general
not possible to pipeline the test patterns through them. Such wasted time in
passing the bypass flip-flops was also present in the Daisy-chained networks
discussed in Section 3.3, in spite of assuming dedicated bypass flip-flops. The
reason was that the doorway ScanMux control bits were on the same scan
path as the instruments, which required programming them with the correct
value for every access. This constraint is, however, not present in the network
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shown in Figure 3.9 since ScanMux control bits are placed on a separate TDR,
and therefore, it is possible to reduce the access time overhead by pipelining
the instrument data through the bypass flip-flops.

The OAT calculation for the networks such as the one in Figure 3.9 can
be done similar to the test application time calculation in [30] for concurrent
schedule, and to the test application time calculation in [35] for sequential
schedule. However, as mentioned above, the calculations in [30] for the con-
current schedule are done under the assumption that time is wasted while
shifting through the bypass flip-flops—which is not the case in the architec-
ture presented here. Moreover, for Remote networks, we additionally need
to take into account the switching between the two TDRs (needed to perform
the network reconfigurations). The above differences make the OAT calcula-
tion for Remote network different from the calculations in both [30] and [35].
Therefore, in the following, we present the complete OAT calculations for the
Remote networks.

Below we detail the OAT calculations for concurrent, sequential, and generic
schedules. In all cases, it is assumed that instrument data is pipelined through
the bypass flip-flops, and that initially TDR-1 is selected (Figure 3.9).

3.4.1. CONCURRENT SCHEDULE

We start by the concurrent schedule in which accesses to all instruments start
at the same time. When there are no more accesses to be performed to a
particular instrument, the scan path is configured such that this instrument is
bypassed. OAT consists of the time it takes to setup the network by config-
uring the ScanMux control bits (Tsetup), and the time it takes to perform the
required number of accesses (Taccess):

OAT = Tsetup + Taccess (3.3)

Next, we derive the formulas for Tsetup and Taccess. Assume that there are N
instruments, and Ai is the number of accesses to be performed on instrument
i (1 < i < N). Moreover, assume that the instruments are ordered on the scan
path such that A1 > A2 > · · · > AN . In the concurrent schedule, the network
is reconfigured each time the access to an instrument is completed. Hence,
there are N reconfigurations, and for each reconfiguration, we need to switch
to TDR-2, shift in the configuration data into the ScanMux control bits, and
switch back to TDR-1. The total required setup time for these reconfigurations
is captured in the following:

Tsetup = N · (Tswitch + N + Tswitch) (3.4)
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where the first N represents the required number of reconfigurations, Tswitch
represents the time to switch TDRs (taking the TAP controller state machine
from shifting data, to loading an instruction and back to the shifting data
state), and the second N represents bits that are shifted in through ScanMux
control bits. The reason that Tswitch is considered two times is that we need
to switch from TDR-1 to TDR-2 for reconfiguration, and back from TDR-2 to
TDR-1 for accessing the instruments.

We now derive Taccess. Initially all instruments are included in the scan path
and AN + 1 accesses are performed until the access to instrument N (which
has the least number of accesses) is complete and the last responses are shifted
out. The time it takes to perform AN + 1 accesses is calculated as follows:

TN = (
N

∑
i=1

Li + TFSM) · (AN + 1)− TFSM (3.5)

where Li is the length of the shift-register for instrument i, and TFSM repre-
sents the clock cycles needed to perform the update and capture operations.
The reason that one TFSM is reduced from the calculated time is that the up-
date and capture operations for the last access to instrument N are included
in the time Tswitch for the next network reconfiguration (i.e., in Eq. (3.4)).

At this point, instrument N should be bypassed, which requires one recon-
figuration (considered in Tsetup). Under the assumption of pipelining data in
the bypass flip-flop for instrument N, performing the remainder of accesses
for instrument N − 1 takes the following time:

TN−1 = 1 + (
N−1

∑
i=1

Li + TFSM) · (AN−1 − AN)− TFSM (3.6)

where 1 represents flushing the pipeline after the last access (i.e., one extra
clock cycle is needed to shift the captured responses out completely through
the bypass flip-flop for instrument N). In the same manner, we get the follow-
ing time for performing the remainder of accesses for instrument 1:

T1 = (N − 1) + (L1 + TFSM) · (A1 − A2)− TFSM (3.7)

where (N − 1) represents flushing the pipeline after the last access through
the bypass flip-flops for instruments 2 to N. Finally, by summing up the access
time for individual instruments, we can write Taccess as:

Taccess =
N

∑
j=1

Tj (3.8)
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where Tj is (by assuming AN+1 = −1):

Tj = (N − j) + (
j

∑
i=1

Li + TFSM) · (Aj − Aj+1)− TFSM (3.9)

The above OAT calculation is performed under the assumption that no
two instruments have the same number of accesses (i.e., A1 > A2 > · · · >
AN). When there are instruments with the same number of accesses, since
accessing them starts and ends at the same time, they share the same network
reconfiguration step, and also the flushing of the pipeline will be performed
once for all of them. Moreover, if instruments do not appear on the scan path
in the assumed order, it can happen that two instruments are active with some
bypass flip-flops in between them on the scan path. In this case, instrument
data cannot (in general) be pipelined through those bypass flip-flops. The
reason is that the captured responses from the instruments at the beginning of
the path might break the scan vectors which are pipelined for the instruments
further down the scan path. For these cases, to take the time wasted in the
bypass flip-flops—that appear between active (i.e., not bypassed) instruments
on the scan path—into account, Eq. (3.9) should be modified as:

Tj = Rb + Re + (
j

∑
i=1

Li + Rm + TFSM) · (Aj − Aj+1)− TFSM (3.10)

where Rb represents the number of bypass flip-flops on the scan path preced-
ing the first currently active instrument, Re represents the number of bypass
flip-flops on the scan path after the last currently active instrument, and Rm
represents the number of bypass flip-flops that appear between the currently
active instruments. Eq. (3.10) shows that the bypass flip-flops represented by
Rm contribute to the access time (as overhead) for every access, whereas those
represented by Rb and Re only increase the time once per reconfiguration (to
flush the pipelined data). To perform the parametric analysis (Section 3.5) and
experiments (Chapter 4), we implemented an algorithm based on the formu-
las presented in this section, that calculates Rb, Re, and Rm values based on the
placement of the currently active instruments on the scan path, and therefore
takes into account the time wasted passing through the bypass flip-flops.

3.4.2. SEQUENTIAL SCHEDULE

In the sequential schedule, instruments are accessed one at a time, and the
accesses for each instrument are completed before accessing any other instru-
ment. The order of performing accesses has no impact on OAT, which can be
written as:

OAT = Tsetup + Taccess (3.11)
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The total time needed for reconfigurations can be written as:

Tsetup = N · (Tswitch + N + Tswitch) (3.12)

where the first N represents the required number of reconfigurations, Tswitch
represents the time to switch TDRs (taking the TAP controller state machine
from shifting data, to loading an instruction and back to the shifting data
state), and the second N represents bits that are shifted in through ScanMux
control bits. The reason that Tswitch is considered two times is that we need
to switch from TDR-1 to TDR-2 for reconfiguration, and back from TDR-2 to
TDR-1 for accessing the instruments.

Assuming that Ti is the time it takes to complete Ai accesses for instrument
i, we have:

Taccess =
N

∑
i=1

Ti (3.13)

where

Ti = N − 1 + (Li + TFSM) · (Ai + 1)− TFSM (3.14)

In Eq. (3.14), N − 1 represents the bypass flip-flops that should be flushed
after the last access to instrument i, Li is the length of the shift-register for in-
strument i, Ai is the number of accesses for instrument i, and TFSM represents
the clock cycles needed to perform the update and capture operations. Similar
to Eq. (3.10), one TFSM is reduced from the Ti as it is included in Tswitch for
the next network reconfiguration.

3.4.3. GENERIC SCHEDULES

Applying generic schedules to the Remote network type is different from that
for SIB-based and Daisy-chained networks in the following ways:

• it is not possible to reconfigure the Remote network type while access-
ing instruments, and

• reconfiguration time is the same for all instruments, as all control bits
are placed in the same level in their associated TDR (namely, TDR-2 in
Figure 3.9).

These differences make application of generic schedules to Remote Networks
rather straightforward as the applied schedule is similar to the given schedule
extended with reconfiguration steps between the sessions (which always take
the same number of clock cycles for the same network).
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Therefore, to apply a given generic schedule to a Remote network, it suffices
to break the given schedule into sessions, and perform one reconfiguration
step between each session. The access time for each session is calculated
according to Eq. (3.10) for the instruments active in that session. The OAT is
the sum of access times for sessions plus the time for reconfiguration steps.

3.5. PARAMETRIC ANALYSIS

So far in this chapter, we have discussed and presented algorithms for OAT
calculation for three network types, namely, SIB-based, Daisy-chained, and
Remote networks. We showed that OAT has three components: instrument
data, shift overhead, and TAP overhead. In this section, we study how each
of these OAT components varies with parameters such as the number of in-
struments and (where applicable) number of hierarchical levels. For each of
the studied parameters, we consider the concurrent and sequential schedules.
Besides reporting the OAT components, we report the overhead percentage
calculated as:

Shift overhead + TAP overhead
Instrument data + Shift overhead + TAP overhead

× 100 (3.15)

The observations from this analysis will be used in Chapter 4 for designing
reconfigurable networks optimized w.r.t. OAT. To perform this study, we have
implemented the presented algorithms, and have additionally instrumented
them to report each of the OAT components separately. Throughout the thesis,
for OAT computation, it is assumed that TFSM is four TCKs and Tswitch is
19 TCKs. They are both reported as TAP overhead. Appendix A presents
complete results from this analysis, as well as additional charts for easier
comparison between the results for the concurrent and sequential schedules.

3.5.1. INCREASING THE NUMBER OF INSTRUMENTS

We begin our parametric analysis with observing how OAT components vary
with the number of instruments. For this purpose, we assume that initially we
have a network for two instruments, and increase the number of instruments
from two to 1024 in powers of two. We assumed that each instrument has a
shift-register of length 10 flip-flops and is accessed 10 times (L = 10, A = 10).

Figure 3.10 shows the result of OAT calculation for flat SIB-based networks,
for concurrent and sequential schedules. Each plot has two y-axes, where the
y-axis on the left is used for OAT and its components, and the y-axis on
the right is used for the total overhead percentage in OAT. The following
observations can be made for the flat SIB-based networks:
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Figure 3.10. The effect of increase in number of instruments on OAT
and its components, in SIB-based networks

• For the concurrent schedule, the overhead percentage decreases with an
increase in the number of instruments. The reason is that instrument
data and shift overhead increase linearly with the number of instru-
ments, whereas TAP overhead remains constant (due to the number of
accesses remaining constant and the access schedule being concurrent).
Consequently, overhead percentage decreases.

• For the sequential schedule, the overhead percentage increases with the
number of instruments. The reason is that the instrument data and
TAP overhead grow linearly with the number of instruments whereas
the shift overhead grows quadratically with the number of instruments
(as can be seen from the greater slope of the shift overhead plotted on
a logarithmic scale).

• For the same number of instruments, the sequential schedule results in
higher OAT. As the instrument data is the same for both schedules, the
lower OAT for the concurrent schedule is the result of lower overhead
(which is also reflected in the overhead ratio). The lower overhead for
the concurrent schedule is due to many accesses sharing the same SIB
programming data and TAP operations.

• For more than four instruments, the dominant overhead component for
both schedules is the shift overhead.

• For the same network, the TAP overhead varies considerably between
the concurrent and sequential schedules.
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Figure 3.11. The effect of increase in number of instruments on OAT
and its components, in Daisy-chained networks

Figure 3.11 shows the result of OAT calculation for flat Daisy-chained net-
works, for concurrent and sequential schedules. Similar to the SIB-based net-
works, here again the sequential schedule results in higher OAT compared to
the concurrent schedule, for a given number of instruments. Comparing the
SIB-based networks with Daisy-chained networks when the concurrent sched-
ule is applied shows a noticeably lower shift overhead for the Daisy-chained
networks. This lower shift overhead is due to that in the (flat) SIB-based
networks, the SIBs are always on the scan path and data should be shifted
through them for every access. In contrast, in the (flat) Daisy-chained net-
works, when all instruments are being accessed concurrently, only one door-
way Scan-mux control bit is on the scan path (such as C1 in Figure 3.7(a)) that
contributes to the shift overhead.

Figure 3.12 shows the result of OAT calculation for Remote networks, for
concurrent and sequential schedules. For concurrent schedule, the OAT is
very similar to the Daisy-chained network and again noticeably smaller than
OAT for SIB-based networks. However, for the sequential schedule, OAT
is considerably lower compared with SIB-based and Daisy-chained networks.
This lower OAT can be attributed to the pipelining of instrument data through
the bypass flip-flops, thus lowering the shift overhead. Although OAT is lower
for the case of sequential schedule, up to about 92 percent of OAT is still the
shift overhead (see Table A.3 in Appendix A for the details).

Finally, a general observation is that the TAP overhead does not change con-
siderably between different network types, but varies significantly between
different access schedules.
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Figure 3.12. The effect of increase in number of instruments on OAT
and its components, in Remote networks

3.5.2. INCREASING THE NUMBER OF HIERARCHICAL LEVELS

Another important parameter to consider is the use of hierarchy in the net-
work design. There are, however, many ways to create hierarchy for a given
set of instruments. To keep this parametric analysis manageable, only a very
small subset of all possible networks are considered. We start with a flat net-
work (i.e., only a single level of hierarchy) and observe how OAT changes
with increasing the number of hierarchical levels.

For the SIB-based networks, we show how we add a level of hierarchy by
using the example network in Figure 3.13(a). In the figure, SIBd is a doorway
SIB having eight instrument SIBs connected to its host port. To add a level
of hierarchy, we (1) divide the instrument SIBs into two groups, (2) connect
each group to the host port of an additional doorway SIB, and (3) connect
these two additional doorway SIBs to the host port of doorway SIBd. The
resulting network is shown in Figure 3.13(b). For this experiment, we start
with a flat network of 1024 instruments (L = 10 and A = 10), and increase
the hierarchical levels from one (i.e., the flat network itself) to 10 levels. At
the 10th level, each doorway SIB has two instrument SIBs connected to its
host port. For the initial flat network, as there is no doorway SIB, we simply
consider TAP to be SIBd.

The OAT calculation results are presented in Figure 3.14 for the concurrent
and sequential schedules. As expected and can be seen from the graphs in
Figure 3.14, the instrument data is independent from the access schedule and
number of hierarchical levels. From Figure 3.14(a) (for the concurrent access
schedule) it is seen that an increase in the number of hierarchical levels in-
creases OAT. The reason for the increase are the extra SIBs on the scan path.
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(a) A network segment comprising eight instruments
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... SIB5 SIB8
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SIB10
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... ...

(b) Adding a hierarchical level to the segment shown in Figure 3.13(a)

Figure 3.13. Adding hierarchy to a SIB-based network segment

This observation cannot be generalized, though, as in this case, all instru-
ments have the same number of accesses and therefore accessing them starts
and finishes at the same time. As a consequence, any extra SIB on the scan
path becomes just another contributor to overhead.

In contrast to the increasing trend in shift overhead for the concurrent
schedule, Figure 3.14(b) shows an opposite trend for the sequential access.
Here, the shift overhead is reduced approximately 50 times going from one
level to 10 hierarchical levels. The resulting impact on overhead ratio is a
reduction of about 25 percent. The reason for the reduction is that the use
of hierarchy allows for exclusion of inactive subsegments (comprising of both
SIBs and instruments) from the scan path. Removing SIBs from the scan path
obviates the need for shifting data through them, which results in the reduced
overhead.

Here, an important observation is that for both concurrent and sequential
schedules, the TAP overhead is not affected noticeably by increase in hier-
archical levels. Therefore, since instrument data is independent of network
architecture, for both schedules, the increase and decrease in OAT can be at-
tributed to the contribution of shift overhead.

Figure 3.15 shows how hierarchical levels are added to a network segment
that has a Daisy-chained type. Figure 3.16 presents the OAT calculation re-
sults. The same observations made for the SIB-based network can be made
here, as well.
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Figure 3.14. The effect of increase in hierarchical levels on OAT and
its components, in SIB-based networks

In this work, we have not considered the use of hierarchy for the Remote
networks.

3.5.3. VARYING THE INSTRUMENT PROPERTIES

So far in our parametric analysis, we have assumed that each instrument has
a shift-register of length 10 flip-flops and is accessed 10 times (i.e., L = 10 and
A = 10). In the final part of our analysis, we focus our attention to these two
properties.

An increase in the shift-register length increases instrument data, which
in turn increases OAT. However, the shift-register length has no impact on
any of the overhead types, which can be explained as follows: all network
types considered in this section were designed such that each instrument can
be switched on and off the scan path independently from other instruments.
Moreover, in the considered access schedules, each instrument was switched
on the scan path only when it was being accessed, otherwise, we had to use
dummy bits (fill bits) for instruments that were on the scan path but were
not accessed. As a result, the length of instrument shift-registers did not con-
tribute to the overhead. It can then be concluded that if we increase the length
of shift-registers, instrument data and OAT will increase but the overhead re-
mains constant, leading to a decrease in the overhead ratio.

An increase in the number of accesses, however, increases instrument data
and both overhead types. This can, for example, be seen from Line 10 in
Function TraverseSeqSIB(). In the same function, we can see that the overhead
due to opening levels of hierarchy is not affected by the number of accesses
(Line 3). However, for large number of accesses, the overhead contributed by
the accesses will be much larger than the overhead due to opening levels of
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Figure 3.15. Adding hierarchy to a Daisy-chained network segment

hierarchy. Therefore, it can be concluded that a large increase in number of
accesses, will result in (almost) similar increase in all OAT components (i.e.,
instrument data and overhead types). Consequently, the overhead ratio will
remain almost the same.

For the Remote network, an increase in number of accesses reveals an in-
teresting property of this network type. Eq. (3.14) shows that for each instru-
ment, it takes N − 1 clock cycles to flush the pipeline, N being the number
of instruments. Therefore, N × (N − 1) cycles will be wasted in total. For
large number of instruments, say 1024, and low number of accesses, say 10,
these wasted cycles constitute a large part of OAT. However, for large number
of accesses, the same number of wasted cycles is a significantly smaller part
of OAT. This can be seen from Figure 3.17, which repeats the experiment of
increasing the number of instruments presented earlier for Remote networks,
but this time with A = 1000 instead of A = 10. Comparison of plots in this
figure with those in Figure 3.12 shows that in case of the sequential schedule,
the overhead ratio drops from about 95 percent to about 40 percent. Note that
with increasing the number of accesses from 10 to 1000, instrument data and
TAP overhead have increased while the shift overhead has remained exactly
the same.
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Figure 3.16. The effect of increase in hierarchical levels on OAT and
its components, in Daisy-chained networks

0

20

40

60

80

100

Overhead

O
ve

rh
ea

d
(%

of
O

A
T)

21 23 25 27 29

101

103

105

107

Number of instruments

Te
st

cl
oc

k
cy

cl
es

(T
C

K
s)

OAT
Shift overhead
TAP overhead

Instrument data

(a) Concurrent schedule

0

20

40

60

80

100

Overhead

O
ve

rh
ea

d
(%

of
O

A
T)

21 23 25 27 29

101

102

103

104

105

106

107

108

Number of instruments

Te
st

cl
oc

k
cy

cl
es

(T
C

K
s)

OAT
Shift overhead
TAP overhead

Instrument data

(b) Sequential schedule

Figure 3.17. The effect of increase in number of instruments having
large number of accesses, on OAT and its components,
in Remote networks

3.6. CHAPTER CONCLUSIONS

In this chapter, overall access time (OAT) analysis and calculation methods
were presented for three 1687 network types, namely, SIB-based networks,
Daisy-chained networks, and Remote networks. The analysis identified three
components for OAT in the studied networks: instrument data, shift over-
head, and TAP overhead. Instrument data is independent from network type,
network architecture, and access schedule, and is a function of number of ac-
cesses to each instrument and the length of shift-registers. Therefore, in order
to reduce OAT, it is the overhead that should be reduced. The parametric
analysis presented in this chapter showed the following regarding the over-
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head. For the SIB-based and Daisy-chained networks that have large number
of instruments, the shift overhead is the dominant overhead type. Moreover,
it was observed that the shift overhead varies significantly with the network
type, network architecture, and access schedule. For the Remote networks, it
was observed that pipelining of instrument data lowers the shift overhead. A
general observation regarding the TAP overhead was that it does not change
considerably between different network types and architectures, but varies
significantly between different access schedules. In Chapter 4, we use these
observations to design reconfigurable networks that are optimized with re-
spect to OAT.
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4
Design of Optimized 1687 Networks

The parametric analysis presented in Chapter 3 showed that the network type
(e.g., SIB-based) and architecture (e.g., levels of hierarchy), as well as access
schedule, can have a significant impact on OAT. When the access schedule
is known, one can choose a network type and architecture such that OAT is
minimized for that schedule. However, in reality, it can happen that the access
schedule changes after the design is fixed, where a change might happen in
the number of accesses to each instrument or the in the way that instruments
are accessed together (i.e., concurrency in the schedule). More concretely, it
can happen that different schedules, each involving only a subset of instru-
ments, are applied to the network at different points throughout the chip’s life
cycle. The following example helps in clarifying this case of multiple access
schedules. An MBIST instrument might be accessed (1) during yield learning
for a new process to choose the most suitable algorithms, (2) during wafer
sort and package test to detect defective devices and perform repair, (3) in
the burn-in process to cause activity in the chip and to detect infant mortal-
ity [41, 42], (4) during PCB bring-up [8], (5) during PCB assembly manufac-
turing test [8], and (6) during power-on self-test and other in-field tests. Also,
the number of accesses to a given instrument typically varies throughout the
life cycle of a chip. For example, during yield learning, an embedded memory
might be tested several times by running multiple MBIST algorithms. Another
example is reading out the memory contents for diagnostic purposes [43]. In
both examples, many accesses might be needed. In contrast, during manu-
facturing tests, an embedded memory might be tested only by accessing the
associated MBIST engine a few times to setup the algorithm, start the MBIST,
check for its completion, and read the results.

In this chapter, we present methods for designing networks that are op-
timized with respect to OAT. We begin by considering the case where the

57
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network is designed only for one access schedule. Lately, there has been work
on optimized design of SIB-based networks [44], which we will discuss in
Section 4.1.1 and Section 4.1.3. Later, in Section 4.2, we present methods for
optimizing the network when it is subjected to different access schedules. Fi-
nally, in Section 4.3, we make an evaluation of the proposed design methods
in the context of late schedule changes or more generally, unknown schedules.

4.1. SINGLE ACCESS SCHEDULE

A general observation from the analysis in Section 3.5 was that TAP overhead
did not vary significantly with network type and architecture, but varied con-
siderably between different access schedules. As in this section, we assume
that the access schedule is given, to reduce OAT, we focus only on the reduc-
tion of shift overhead. In general, in any given schedule, some instruments
might be accessed more than other instruments. As each access contributes
to shift overhead, instruments with higher number of accesses might have a
larger contribution to shift overhead than those with smaller number of ac-
cesses. Therefore, where possible, design of 1687 networks should be such
that length of scan path is shorter for instruments with higher number of
accesses. This shortening of scan path length for frequently accessed instru-
ments might come at the cost of longer scan path for less frequently accessed
instruments.

We define the problem of network design for a given schedule as follows:
Given a set I of instruments, where for each instrument i (i ∈ I) the number
of accesses Ai is provided, and an access schedule, a 1687 network should be
designed such that shift overhead is minimized. For the access schedules, we
consider the concurrent, sequential and generic schedules.

4.1.1. THE CONCURRENT SCHEDULE

In this section, we present methods for designing 1687 networks that are opti-
mized w.r.t. OAT for the concurrent schedule. We consider SIB-based, Daisy-
chained, and Remote networks.

4.1.1.1. SIB-BASED NETWORKS

Figure 4.1(a) shows N instruments in a single-level (i.e., flat) SIB-based net-
work. Figure 4.1(b) shows the same instruments in a two-level design. The
instruments are ordered so that A1 ≥ . . . ≥ AK ≥ . . . ≥ AN . In both net-
works, by closing the instrument SIBs whose corresponding instruments are
not accessed anymore (say instruments K through N), the scan path becomes
shorter for the instruments that are still accessed (say instruments 1 through
K − 1). For the flat architecture, however, this leaves the closed instrument
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Figure 4.1. N instruments in single-level and two-level networks

SIBs themselves on the scan path, contributing to shift overhead for each sub-
sequent access. By using hierarchical designs, such as the two-level design
shown in Figure 4.1(b), it is possible to reduce the shift overhead due to the
instrument SIBs (for instruments K through N) by excluding these SIBs from
the scan path.

In the concurrent schedule, accesses to all instruments start as soon as pos-
sible. Before accessing instruments in the network shown in Figure 4.1(a), all
the SIBs should be opened. This is done by shifting N bits to program the
SIBs. As was mentioned in Chapter 3, these N bits are considered overhead
since they are not part of the instrument data. Furthermore, each of the N
SIBs that are on the active scan path must be programmed for every access.
Since A1 is the maximum number of accesses among the instruments, for the
concurrent schedule, a total of A1 accesses is performed and (A1 + 1) ·N clock
cycles are spent in total on shifting these SIB control bits. Therefore, the shift
overhead for the network shown in Figure 4.1(a) is calculated as:

O = N + (A1 + 1) · N (4.1)

To access the instruments in the network shown in Figure 4.1(b), K bits
should be shifted in to open the SIBs at the first level of hierarchy, namely,
SIB1 to SIBK-1 and SIBd. Subsequently, control bits are shifted in to open
SIBK through SIBN (as well as to keep SIB1 to SIBK-1 open), together with
the first input data for instruments corresponding to SIB1 through SIBK-1.
Therefore, N + 1 control bits are shifted in besides the instrument data. Now
that SIBs at the second level are open, AK more accesses are performed to
all instruments. Accessing the instruments AK times, requires shifting (AK +
1) · (N + 1) control bits. At this point, no more input data exists for the
instruments for SIBK through SIBN, and therefore, SIBd is closed to shorten the
scan path for the rest of instruments. Once SIBd is closed, the rest of input data
(i.e. those left from A1) are left to be applied. This requires (A1 − AK − 1) · K
more control bits to be shifted in. Therefore, the total shift overhead for the
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Algorithm 4.1: Method for the concurrent schedule

1 l := 1 // Initially the design has one level
2 I := {A1, A2, . . . , AN} // Initially I contains all the instruments
3 while |I| > 2 do
4 Starting from A2, find K that satisfies Eq. (4.3) for the instruments in I
5 if there is no such K then
6 break // No reduction is possible
7 end
8 Il := First K− 1 instruments // Current level gets the first K-1 instruments in I
9 I := I \ Il // The used instruments are removed from I

10 l := l + 1 // A new level is added for the rest of the instruments

11 end
12 Il := I // The last level contains the remainder of the instruments

design in Figure 4.1(b) is calculated as:

O = K + (N + 1) + (AK + 1) · (N + 1) + (A1 − AK − 1) · K (4.2)

Based on these calculations, it can be concluded that if Eq. (4.3) is satisfied
for the set of N instruments shown in Figure 4.1, the design in Figure 4.1(b)
will result in less shift overhead, at the cost of the additional SIBd.

K + (N + 1) + (AK + 1) · (N + 1) + (A1 − AK − 1) · K
< N + (A1 + 1) · N

(4.3)

Based on this observation, Algorithm 4.1 is presented for the construction of
SIB-based networks that are optimized w.r.t. OAT for the concurrent schedule.

In Algorithm 4.1, l is the hierarchical level number, which starts at one
(Line 1) and is incremented (Line 10) for each successful introduction of a new
hierarchical level. Initially, set I contains N instruments, represented by their
number of accesses. Instruments in I are arranged in descending order based
on their number of accesses (Line 2). If K can be found such that Eq. (4.3)
is satisfied for instruments in I (Line 4), the first K − 1 instruments should
remain on the hierarchy level specified by l. Therefore, these instruments are
stored in set Il for that level (Line 8), and are removed from set I (Line 9). The
rest of instruments are moved to the next level of hierarchy (they remain in I
for further processing). This continues until there are only two instruments in
I (Line 3), or no K can be found to satisfy Eq. (4.3) (Line 6). The outcome of
Algorithm 4.1 is a list of instrument sets, named I1, I2, . . . , Il , where I1 contains
the instruments on the first level, I2 contains the instruments for the second
level, and so on. It should be noted that when the observation regarding
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Figure 4.2. N instruments in single-level and two-level Daisy-chained
networks, analogous to the networks in Figure 4.1

Eq. (4.3) is applied on Line 4, A1 in Eq. (4.3) refers to the first element in the
current set of instruments stored in I. Furthermore, adding hierarchy levels is
done by adding a doorway SIB such as SIBd in Figure 4.1(b). There will be at
most one doorway SIB at each level of hierarchy in the constructed network.

Algorithm 4.1 is a greedy method, which we presented in [45]. Later, [44]
presented a construction method (for the concurrent schedule) for SIB-based
networks that results in minimal OAT. The experimental results in [44] showed
up to 12.7 percent reduction in shift overhead compared to the results achieved
by Algorithm 4.1.

4.1.1.2. DAISY-CHAINED NETWORKS

To construct Daisy-chained networks that are optimized w.r.t OAT for the
concurrent schedule, the same design method presented for the SIB-based net-
works is applicable. That is, one could derive a condition similar to Eq. (4.3)
for the Daisy-chained networks and use Algorithm 4.1. However, our early
experiments showed that a Daisy-chained network constructed using analogy
from the architecture of its optimized SIB-based counterpart, results in low
shift overhead. Figure 4.2 shows flat and hierarchical Daisy-chained networks
for the same N instruments used in the SIB-based networks in Figure 4.1,
where each of the flat and hierarchical Daisy-chained networks can be seen
analogous to the flat and hierarchical SIB-based networks, respectively. For
the experiments presented in this thesis, we use the analogy from optimized
SIB-based networks to construct Daisy-chained networks.
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4.1.1.3. REMOTE NETWORKS

For Remote networks, to minimize shift overhead for the concurrent schedule,
it suffices to order the instruments on the scan path based on the number
of accesses. Such ordering removes the Rm parameter from Eq. (3.10), thus
effectively reducing shift overhead.

4.1.2. THE SEQUENTIAL SCHEDULE

This section presents the design of 1687 networks with the objective of shift
overhead reduction for the sequential schedule. We consider SIB-based, Daisy-
chained, and Remote networks.

4.1.2.1. SIB-BASED NETWORKS

In sequential schedules, instruments are accessed one at a time. Therefore,
the total shift overhead will be the sum of the shift overheads due to accessing
each of instruments. As mentioned earlier in this chapter, the instrument with
the largest number of accesses can have the largest contribution to the shift
overhead. Such instruments should be placed on a short scan path. In a hier-
archical network, instruments with large number of accesses should be placed
on a level close to the TAP to avoid many SIBs on their scan paths. Also, in-
struments with smaller number of accesses should be placed on a level farther
from the TAP so that their instrument SIBs do not add to the length of scan
path to the instruments that are more frequently accessed. To develop an
algorithm for constructing a SIB-based network with such placement of in-
struments, we have taken inspiration from Huffman tree construction, which
is a method for constructing labeled trees of symbols, used in variable-length
coding [46]. The basic idea in Huffman tree construction is that symbols with
higher frequency of occurrence (weight) are assigned code words of shorter
length. To construct such a tree, symbols with larger weights are placed closer
to the root of the tree.

In the following, we explain Huffman tree construction by using the exam-
ple of seven symbols having weights of 1, 1, 1, 1, 5, 8, and 25. These sym-
bols are represented by their weights in Figure 4.3(a). Figure 4.3(g) presents
the Huffman tree constructed for binary encoding of these symbols. In Fig-
ure 4.3(g), the root of tree is the node marked with weight 42. The leaf nodes
are the seven symbols, and the internal nodes are marked with the combined
weight of the symbols in their subtrees, hence weight 42 for the root node.
Each edge is labeled with either ‘0’ or ‘1’. To encode a symbol, the tree is tra-
versed from the root node towards the leaf representing that symbol, and the
labels of edges on the path are recorded as the code word. It can be seen that
the symbol with weight 25 has received the shortest length binary code word
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Figure 4.3. Steps in Huffman tree construction

“1”, whereas a symbol with weight 1 has received the code word of “01000”.
In the following, construction of this tree will be explained with the help of
Figure 4.3. Initially, the symbols are sorted in the ascending order based on
their weights and the first two symbols are combined, as shown in Figure 4.3(b).
The combination can be viewed as a symbol having weight of 2. This com-
bined symbol must be placed such that the list is kept sorted, as shown by the
dashed arrow in Figure 4.3(b). Again, starting from the beginning of the list,
the first two symbols, which both have weight 1, are combined (Figure 4.3(c)).
The process of combining the first two symbols in the list and repositioning
will continue until only one symbol is left (the symbol with weight 42 in our
example), in which case the construction algorithm terminates.

In construction of a SIB-based network, analogy can be made between
weight of a symbol (in a Huffman tree) and the number of accesses for an
instrument. That is, instruments that are accessed more frequently, can be
placed in the network such that number of SIBs on their scan path (analo-
gous to the length of the code word for the symbol) becomes smaller than the
number of SIBs on the scan path to less frequently accessed instruments.

Figure 4.4(a) shows a network constructed by such analogy for a set I of
instruments with the following number of accesses: I = {1, 1, 1, 1, 5, 8, 25}.
As can be seen, each instrument’s number of accesses has determined the
hierarchical level at which that instrument is placed. For example, Instrument
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Figure 4.4. Example 1687 networks

7 with the highest number of accesses (i.e., A7=25) is placed such that it can
be accessed with only two SIBs on the scan path. In Figure 4.3 we saw how
symbols were grouped to create combined symbols. The same grouping idea
applies here by placing two instruments on the host port of a newly added
doorway SIB. For example, in Figure 4.4(a) Instrument 1 and Instrument 2 are
added to the host port of SIB8, which can be seen as a combined instrument
with two accesses (i.e., A8=2). The same grouping idea can be performed
on an instrument and a combined instrument. For example, Instrument 5 is
grouped with a combined instrument represented by SIB10. If the instruments
in Figure 4.4(a) were arranged in flat architecture, the shift overhead would be
350 clock cycles for the sequential schedule, while the shift overhead for the
design in Figure 4.4(a) is 244 cycles. Therefore, reduction of shift overhead is
achieved at the cost of five additional doorway SIBs (SIB8 through SIB12).

We will now present Algorithm 4.2, which uses the idea in Huffman tree
construction to construct a network out of a given set of instruments, such
that the shift overhead is minimized for the sequential schedule. As input,
the algorithm receives a set of instruments represented by their number of
accesses (Line 1). The assumption is that each instrument has a dedicated
instrument SIB. The algorithm performs the grouping of instruments itera-
tively until only two instruments are left in I. In each iteration (Lines 2–6),
two instruments with the lowest number of accesses are selected (Line 3) and
grouped to create a combined instrument (Line 4). The combined instrument
is represented by set X containing all instruments grouped together in it. This
combined instrument is then treated as an instrument having AX = ∑i∈X Ai
number of accesses. The instruments used to create X are then replaced by X
in I (Line 5).

Figure 4.4(a) is the output of Algorithm 4.2 run for I = {1, 1, 1, 1, 5, 8, 25}.
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Algorithm 4.2: Construction for sequential schedule

1 I := {A1, A2, . . . , AN}
2 while |I| > 2 do
3 Find Ai and Aj that are smaller than all other items in I
4 Combine the two instruments i and j to form X
5 Replace Ai and Aj with AX in I
6 end

Algorithm 4.3: Complete method for sequential schedule

1 Run Algorithm 4.2
2 for each SIBd do
3 Shi f tOverhead := shift overhead of the network
4 Remove SIBd
5 NewShi f tOverhead := shift overhead of the network
6 if NewShi f tOverhead > Shi f tOverhead then
7 Restore SIBd
8 end
9 end

It is possible to further reduce the shift overhead of 244 clock cycles in the
network in Figure 4.4(a) by removing SIB8, SIB9 and SIB11. For the resulting
network shown in Figure 4.4(b) the shift overhead for sequential schedule
is 215 clock cycles. The reason for this possibility of further reduction in
shift overhead is that in the analogy to Huffman tree construction, there is no
counterpart for the shift overhead coming from opening the SIBs before the
first access to a given instrument. Moreover, a Huffman tree is a binary tree
(in which each internal node has two child nodes) whereas we are not limited
to this constraint in constructing a SIB-based network. An optimization step
can therefore follow the network construction. The optimization step analyzes
a network and finds doorway SIBs that should be removed to further reduce
the shift overhead. The complete method for the sequential schedule is thus
as suggested in Algorithm 4.3.

The basic idea in Algorithm 4.3 is to construct an initial network, using
Algorithm 4.2, and examine the effect of removal of each of the doorway SIBs
in that network (Line 4) on the total shift overhead. Removal of a doorway
SIB is done by replacing the doorway SIB by the network segment on its
host port. To this end, Algorithm 4.3 compares the shift overhead before
(Line 3) and after (Line 5) removal of each of the doorway SIBs, and restores
the removed SIB (Line 7) should the shift overhead increase after removal of
the SIB (Line 6).
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4.1.2.2. DAISY-CHAINED NETWORKS

To construct Daisy-chained networks optimized for sequential schedule, we
again use the analogy from an optimized SIB-based network.

4.1.2.3. REMOTE NETWORK

For the Remote networks, not much can be done to lower the shift overhead
under the sequential schedule. Eq. (3.14) shows the only contributer to shift
overhead to be the flushing of N − 1 bypass flip-flops when access to one
instrument is complete. This number is not dependent on the order of the
instruments and therefore, reordering of instruments on the scan path is not
going to affect it. On the other hand, shift overhead can be negligible (as
was shown in the parametric analysis in Section 3.5.3) when the number of
accesses is relatively large.

4.1.3. GENERIC SCHEDULES

In this section, we describe heuristics for designing 1687 networks that are
optimized for a given generic schedule. Here again, we consider SIB-based,
Daisy-chained, and Remote networks.

4.1.3.1. SIB-BASED NETWORKS

In this section, we describe a heuristic method for optimized design of SIB-
based networks for a given generic schedule. Prior work [44] presented
heuristics for design of SIB-based networks that are optimized for hybrid ac-
cess schedules. Hybrid access schedules1 can be seen as a succession of con-
current schedules, in which a session ends when all accesses that have started
in that session are complete. This is in contrast to generic schedules in which
a new session begins as soon as accesses to any instrument is complete.

Our proposed heuristic method recursively decomposes the given schedule
into sequential and concurrent blocks and constructs network segments upon
each return from a (recursive) function call. We will explain this shortly with
the help of the example schedule in Figure 4.5 for eleven instruments, where
the number of accesses for each instrument is reported in Table 4.1. However,
before proceeding to explain the proposed method, we need to clarify some
of the used principles and assumptions.

First, to identify sequential and concurrent blocks in the schedule, we need
to determine the amount of concurrent accesses between different instruments
(as specified by the given schedule). To quantify such amount of concurrency
between an instrument i and an instrument j, we define a concurrency ratio

1Also referred to as session-based schedules in SoC test scheduling terminology [37].
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Figure 4.5. The given generic schedule for the set of instruments in Table 4.1

Table 4.1. Number of accesses for the set of instrument in Figure 4.5
Instrument 1 2 3 4 5 6 7 8 9 10 11
Accesses 50 30 20 5 5 5 10 35 60 15 15

as:

cri,j = Aij/Ai (4.4)

where Aij is the total number of accesses shared between instruments i and j
and Ai is the total number of accesses for instrument i. We consider accessing
instruments i and j concurrent if cri,j ≥ 0.5. Based on the concurrency ratio, a
concurrency matrix CR is created for all instruments whose elements are cri,j.
For example, the CR matrix for the schedule in Figure 4.5 is as follows:

CR =



1 0 0.4 0.1 0.1 0.1 0.2 0.1 1 0 0
0 1 0 0 0 0 0 1 0.3 0.5 0.2
1 0 1 0 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0 1 0 0
1 0 0 0 0 1 0 0 1 0 0
1 0 0 0 0 0 1 0 1 0 0

0.1 0.9 0 0 0 0 0 1 0.4 0.4 0.1
0.8 0.2 0.3 0.1 0.1 0.1 0.2 0.2 1 0 0
0 1 0 0 0 0 0 1 0 1 0
0 0.3 0 0 0 0 0 0.3 0 0 1


In the above matrix, the number in row i and column j is cri,j. Note that this
matrix is not symmetric.

In the following, we explain Function ConstructForGeneric(), which is the
main algorithm in the proposed method. Before the function is called, set
of instruments I should be initialized with a list of instruments sorted in
the descending order based on the number of accesses. For our example,
I = {9, 1, 8, 2, 3, 10, 11, 7, 4, 5, 6}. Moreover, the function uses a set C as a global
variable, to keep track of the instruments considered concurrently accessed. It
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should be noted that an instrument i is considered concurrent with all instru-
ments in the set C if ∀c ∈ C, cri,c ≥ 0.5. Set C is initially empty. By definition,
we consider an instrument to be concurrently accessed with an empty set C.

Next, to represent how in Function ConstructForGeneric() we construct the
network segments for the identified blocks, we use the two following func-
tions:

• SIB(S) receives a set S of network segments as input and adds those
segments in series to the host port of a newly added SIB.

• ConstructForSequential(S) receives a set S of segments as input
and uses Algorithm 4.3 to create an optimized network for sequential
access out of those segments. Algorithm 4.3 receives a set of instruments
as input whereas ConstructForSequential() receives a set of seg-
ments. To use Algorithm 4.3, ConstructForSequential() creates
virtual instruments as placeholders for each segment where the number
of accesses for each of those virtual instruments is the largest number
of accesses found among the instruments inside each segment.

Given the above assumptions, we now proceed to describe the operation of
Function ConstructForGeneric() with the help of our example schedule (Fig-
ure 4.1). When Function ConstructForGeneric() is called for this schedule,
the first instrument in set I is instrument 9. As C is initially empty, condi-
tion in Line 3 passes and instrument 9 is added to set C. When in Line 6
the function calls itself recursively for the first time, the next instrument in
set I passing the condition in Line 3 is instrument 1, which is also added to
C. When the function calls itself recursively for the second time, instrument
3 will pass the condition (since cr3,9 = 1 and cr3,1 = 1) and is added to C.
At this point, C = {9, 1, 3}. When the function calls itself recursively for the
third time, no other instrument passes the condition and the function returns
an empty netlist (Line 18). Upon returning from this third call, si is set to the
netlist segment shown in Figure 4.6(a) (Line 7). Subsequently, si is added to
S (Line 9) and instrument 3 is removed from C (Line 14), thus C = {9, 1}.
Now the function is back to the second call, and the next item in I, which is
instrument 4, is selected. For instrument 4, the same procedure as the one for
instrument 3 is repeated. The same goes for instruments 5, 6, and 7 as well.
As there are no more instruments to have concurrency with C = {9, 1}, the
function gets to Line 21 and returns an optimized network for the segments
in S (Figure 4.6(a)–Figure 4.6(e)), which is the segment in Figure 4.6(i). So far,
the function has detected that instruments 3, 4, 5, 6, and 7 are each accessed
concurrently with instruments 9 and 1, but accessed sequentially with each
other, and has constructed a network segment for them, accordingly.
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Function ConstructForGeneric()
1 S := ∅
2 foreach i ∈ I do
3 if ∀c ∈ C, cri,c ≥ 0.5 then
4 C := C ∪ {i}
5 I := I \ {i}
6 s := ConstructForGeneric ()
7 si := SIB({i})
8 if s is empty then
9 S := S ∪ si

10 end
11 else
12 S := S ∪ SIB({s, si})
13 end
14 C := C \ {i}
15 end
16 end
17 if S = ∅ then
18 return empty
19 end
20 else
21 return ConstructForSequential (S)
22 end

After this return from the second recursive call, the calling function gets
to Line 7 for instrument 1, and creates the segment in Figure 4.6(f). This
time, since the returned netlist is not empty, Line 12 is executed, generating
a new segment (Figure 4.6(j) minus SIB11) which after Line 21 is as shown in
Figure 4.6(j).

After returning from the first recursive call, similar to the procedure for
instrument 1, segment in Figure 4.6(k) is constructed after adding instrument
9. At this point, C = ∅ again, set S contains the segment in Figure 4.6(k), and
the next instrument selected is instrument 8. In the same manner explained
so far, segments shown in Figure 4.6(h), Figure 4.6(l), and Figure 4.6(m) are
constructed after three recursive calls.

At this point, again the algorithm is back from the first recursive call. Now,
C = ∅ again, and set S contains the segments in Figure 4.6(k) and Fig-
ure 4.6(m). The only remaining instrument in I is instrument 11 for which
a segment as shown in Figure 4.6(g) is constructed and added to S. At this
point, set S contains the segments shown in Figure 4.6(k), Figure 4.6(m), and
Figure 4.6(g). Through a final call to ConstructForSequential(), the net-
work shown in Figure 4.7(a) is constructed. This network is them optimized
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Figure 4.6. Segments generated through the operation of Func-
tion ConstructForGeneric() for the schedule in Figure 4.5

by removing redundant SIBs, resulting in the network shown in Figure 4.7(b).
The removal of redundant SIBs is performed similarly to how Algorithm 4.3
removed extra SIBs.

4.1.3.2. DAISY-CHAINED NETWORKS

As was the case for the concurrent and sequential access schedules, here
again we use analogy from optimized SIB-based networks to construct Daisy-
chained networks.
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Figure 4.7. Resulting network for the schedule in Figure 4.5

4.1.3.3. REMOTE NETWORKS

As was discussed earlier on network design for the concurrent schedule, the
ordering of instruments on the scan path can affect shift overhead through
reducing the Rm variable in Eq. (3.10). In this section, we present a greedy
heuristic for ordering of instruments on the scan path. The basic idea is that
the instruments that have the most number of concurrent accesses together are
placed immediately after each other on the scan path, so that Rm is minimized.
The algorithm starts by placing the instrument with the highest number of
accesses on the scan path. The next instrument is selected such that it has the
highest number of concurrent accesses with all previously placed instruments,
and so on.

4.1.4. EXPERIMENTS

To evaluate the effectiveness of the proposed design methods in reducing the
shift overhead, we implemented the corresponding algorithms and carried
out a number of experiments. To run the algorithms, sets of instruments
were needed, and since there were no benchmarks available for IEEE 16872,
we chose to create such sets based on the ITC’02 benchmark set [48]. The
ITC’02 set consists of 12 benchmark SoCs. For each SoC, list of modules (i.e.,
cores) are given, and for each module, number of I/O terminals and internal
scan-chains, as well as number of patterns to apply to those terminals and

2Recently, a set of benchmarks are presented for experimenting with 1687 net-
works [47].
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Table 4.2. Benchmarks used for the experiments with a single schedule
Benchmark

name
Instrument

data
Number of
instruments

Length of shift-registers Number of accesses
min ave. max min ave. max

a586710 838530522 26 34 1545 2626 2945 166573 1914433
d281 1496291 48 7 48 233 26 907 2048
d695 704057 157 1 52 320 12 89 234
f2126 5330439 34 20 447 1000 103 339 422
g1023 736216 63 9 81 377 15 133 1024
h953 1197178 44 9 125 348 9 169 341
p22810 7784963 254 1 117 400 1 352 12324
p34392 16403755 103 4 224 806 27 1620 12336
p93791 30083283 586 1 166 538 11 356 6127
q12710 31801946 21 413 1245 3784 852 1160 1314
t512505 165400967 126 2 607 1669 3 1035 3370
u226 252929 30 3 42 97 15 589 2666

scan-chains are specified. Appendix D details how we have extracted sets of
instruments based on the ITC’02 SoCs.

Table 4.2 lists some properties of the extracted instrument sets correspond-
ing to each of the SoCs. The first column presents the SoC name from the
ITC’02 set. The second column presents instrument data for each set cal-
culated by using Eq. (3.2). The third column lists the number of instru-
ments included in each set. Columns 4–6 present the minimum, average,
and maximum length found among instrument shift-registers in the set. Fi-
nally, columns 7–9 present the minimum, average, and maximum number of
accesses found among instruments in the set.

In the following, experimental results are presented for each network type
separately. To perform the experiments, we have used the OAT calculation
algorithms presented in Chapter 3. As the basic optimization idea (for low-
ering OAT) in all algorithms is to reduce the shift overhead, to avoid clutter
in presentation of the results, we only report the ratio of shift overhead to
instrument data. The complete data including all OAT components in TCKs
(as well as ratios) are presented in Appendix C. We note that the instrument
data is the amount of data that should be transported to instruments no mat-
ter what network type, network architecture, or schedule is used. Therefore,
the shift overhead to instrument data ratio shows how much overhead is in-
troduced, e.g., by the network design. Regarding the TAP overhead, it can
be seen in the results reported in Appendix C that the TAP overhead does
not vary noticeably between different networks, as was also observed in the
analysis presented in Section 3.5.

For all networks, four schedules are considered: sequential schedule, con-
current schedule, a generic schedule in which 10 percent of instruments are
accessed concurrently (denoted as G10 in the presentation of the experimen-
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tal results), and a generic schedule in which 25 percent of instruments are
accessed concurrently (denoted as G25 in the presentation of the experimen-
tal results).

4.1.4.1. SIB-BASED NETWORKS

For SIB-based networks, the following explains the design methods compared
against each other in the experiments:

• Networks represented by F in the results have flat architectures, and
are used as a baseline for measuring the reduction in shift overhead
achieved via other methods.

• Networks represented by H are constructed by Algorithm 4.2 (i.e., they
are optimized for the sequential schedule)3.

• Networks represented by HPO are constructed by Algorithm 4.3 (i.e.,
designed by Algorithm 4.2 with post optimization).

• Networks represented by OC are constructed by Algorithm 4.1 (i.e., they
are optimized for the concurrent schedule).

• Networks represented by OG10 are optimized by using Function Con-
structForGeneric() for the G10 schedule described earlier.

• Networks represented by OG25 are optimized by using Function Con-
structForGeneric() for the G25 schedule described earlier.

Table 4.3 presents the experimental results for the constructed SIB-based
networks. As was mentioned earlier, we use the ratio of shift overhead to
instrument data as the basis for comparison of the constructed networks for
each benchmark. In the table, for each benchmark, and for each schedule, the
lowest ratio is marked in bold face, signifying that the corresponding design
method performs better than the other methods for that schedule.

From the results for the sequential schedule, it can be seen that the HPO
network results in the lowest ratio for all benchmarks. The largest improve-
ment over the F network is seen for the p93791 benchmark and the small-
est belongs to the q12710 benchmark. Comparing these benchmarks (Ta-
ble 4.2) reveals that compared to q12710, the p93791 benchmark has many
instruments—thus many SIBs and much shift overhead—while having simi-
lar instrument data, leading to a smaller ratio. For these two benchmarks, if
we consider the overhead percentage (by using Eq. (3.15)), we observe that for
p93791, the F network shows 80 percent overhead whereas the HPO network

3Letter H was chosen as this algorithm is based on the Huffman method.
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shows 13 percent overhead. For the q12710 benchmark, the F network shows
1.9 percent overhead and the HPO network shows 0.9 percent overhead. It can
be concluded that a reduction in the ratio of shift overhead to instrument data
is a good indicator of how much the total overhead percentage is reduced.

Regarding the concurrent schedule, it is the OC network that outperforms
the others w.r.t. the ratio. The largest improvement over the F network is seen
for p22810 and the smallest (actually no improvement) is seen for q12710. The
large improvement for p22810 comes from the fact that there are few instru-
ments with many accesses in this benchmark and many instruments with few
accesses. In a flat network, all SIBs are always on the scan path and contribute
to overhead for all accesses performed only on those few instrument with
many accesses. Therefore, by placing some of the SIBs in another hierarchical
level, the shift overhead can be reduced significantly. In case of q12710, the
reason that the OC network does not reduce the shift overhead much com-
pared to the F network (or other networks), is that the shift overhead for the
flat network (F) constitutes only a very small fraction of the OAT. The over-
head numbers in clock cycles are reported in Appendix C. Here, we explain
how this overhead is calculated to better relate it to the properties of this
benchmark. For q12710, there are (21 instruments and thus) 21 instrument
SIBs in the F network constructed for this benchmark. Since the largest num-
ber of accesses is 1314, the shift overhead for the concurrent schedule amount
to 21setup +(1314+ 1)× 21 = 27636 clocks, which compared to the instrument
data is negligible. This low overhead leaves little room for improvement for
the OC (or any other) design method.

For the OG10 and OG25 networks, it can be seen that with the exception of
the a586710 benchmark, they result in the lowest ratios for their corresponding
schedule.

Table 4.3. Experimental results: shift overhead to instrument data ra-
tio in SIB-based benchmark networks

Benchmark
name

Instrument
data

Design
method

Ratio of shift overhead to instrument data

Sequential Concurrent G10 G25

a586710 838530522

F 0.134 0.059 0.071 0.060
H 0.019 0.010 0.014 0.011
HPO 0.018 0.008 0.011 0.008
OC 0.019 0.008 0.011 0.008
OG10 0.024 0.010 0.013 0.011
OG25 0.023 0.010 0.013 0.010

continues on next page
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Table 4.3. Experimental results: shift overhead to instrument data ra-
tio in SIB-based benchmark networks

Benchmark
name

Instrument
data

Design
method

Ratio of shift overhead to instrument data

Sequential Concurrent G10 G25

d281 1496291

F 1.399 0.066 0.371 0.140
H 0.278 0.059 0.187 0.110
HPO 0.268 0.050 0.171 0.094
OC 0.643 0.031 0.188 0.072
OG10 0.318 0.051 0.098 0.062
OG25 0.415 0.037 0.128 0.047

d695 704057

F 3.155 0.053 0.245 0.116
H 0.282 0.043 0.145 0.099
HPO 0.277 0.032 0.127 0.080
OC 1.319 0.022 0.195 0.083
OG10 0.357 0.033 0.048 0.039
OG25 0.538 0.028 0.070 0.036

f2126 5330439

F 0.074 0.003 0.025 0.011
H 0.022 0.004 0.015 0.011
HPO 0.021 0.004 0.014 0.010
OC 0.050 0.002 0.020 0.009
OG10 0.021 0.004 0.009 0.007
OG25 0.028 0.003 0.011 0.005

g1023 736216

F 0.723 0.088 0.174 0.114
H 0.119 0.030 0.073 0.052
HPO 0.117 0.026 0.068 0.046
OC 0.243 0.015 0.086 0.042
OG10 0.138 0.026 0.038 0.030
OG25 0.152 0.020 0.048 0.025

h953 1197178

F 0.276 0.013 0.073 0.030
H 0.064 0.014 0.044 0.030
HPO 0.062 0.011 0.039 0.025
OC 0.121 0.007 0.050 0.023
OG10 0.071 0.013 0.024 0.017
OG25 0.087 0.011 0.030 0.015

p22810 7784963

F 2.927 0.402 0.442 0.411
H 0.143 0.030 0.061 0.046
HPO 0.140 0.026 0.054 0.039
OC 0.609 0.015 0.079 0.035
OG10 0.197 0.020 0.026 0.021
OG25 0.254 0.018 0.034 0.021

p34392 16403755

F 1.048 0.077 0.143 0.092
H 0.110 0.026 0.054 0.037
HPO 0.107 0.023 0.050 0.033
OC 0.275 0.013 0.078 0.029
OG10 0.142 0.020 0.028 0.022
OG25 0.175 0.017 0.036 0.020

continues on next page
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Table 4.3. Experimental results: shift overhead to instrument data ra-
tio in SIB-based benchmark networks

Benchmark
name

Instrument
data

Design
method

Ratio of shift overhead to instrument data

Sequential Concurrent G10 G25

p93791 30083283

F 4.077 0.119 0.162 0.132
H 0.120 0.016 0.046 0.032
HPO 0.119 0.013 0.041 0.028
OC 1.435 0.008 0.066 0.028
OG10 0.234 0.010 0.013 0.011
OG25 0.395 0.009 0.022 0.011

q12710 31801946

F 0.016 0.001 0.008 0.003
H 0.007 0.002 0.005 0.004
HPO 0.007 0.001 0.005 0.003
OC 0.012 0.001 0.008 0.003
OG10 0.007 0.001 0.004 0.003
OG25 0.007 0.001 0.004 0.002

t512505 165400967

F 0.099 0.003 0.009 0.005
H 0.009 0.002 0.005 0.003
HPO 0.009 0.001 0.004 0.002
OC 0.030 0.001 0.005 0.003
OG10 0.013 0.001 0.002 0.002
OG25 0.018 0.001 0.003 0.001

u226 252929

F 2.103 0.316 0.718 0.367
H 0.464 0.140 0.275 0.184
HPO 0.440 0.117 0.234 0.157
OC 0.648 0.081 0.276 0.150
OG10 0.503 0.126 0.196 0.149
OG25 0.616 0.094 0.229 0.118

4.1.4.2. DAISY-CHAINED NETWORKS

The Daisy-chained networks used for the experiments are constructed by anal-
ogy from the SIB-based networks constructed for the same benchmarks and
the same schedules (see Section 4.1.4.1).

Table 4.4 presents the experimental results for Daisy-chained benchmark
networks. As was mentioned earlier, we use the ratio of shift overhead to
instrument data as the basis for comparison of the constructed networks for
each benchmark. In the table, for each benchmark, and for each schedule, the
lowest ratio is marked in bold face, signifying that the corresponding design
method performs better than the other methods for that schedule. The same
observations as those for SIB-based networks can be made here as well. There
some exceptions though. For example, the OG10 network does not yield the
lowest overhead ratio for the q12710 benchmark in case of the G10 schedule.
In this case, however, the resulting overhead of 112901 TCKs is very close
to that of the best among networks (namely, OG25) being 110621 TCKs (see
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Appendix C for the actual overhead numbers).

Table 4.4. Experimental results: shift overhead to instrument data ra-
tio in Daisy-chained benchmark networks

Benchmark
name

Instrument
data

Design
method

Ratio of shift overhead to instrument data

Sequential Concurrent G10 G25

a586710 838530522

F 0.134 0.056 0.069 0.057
H 0.019 0.007 0.011 0.008
HPO 0.018 0.005 0.008 0.005
OC 0.019 0.005 0.009 0.006
OG10 0.024 0.008 0.011 0.008
OG25 0.023 0.007 0.011 0.007

d281 1496291

F 1.400 0.038 0.350 0.115
H 0.278 0.031 0.166 0.084
HPO 0.268 0.022 0.150 0.068
OC 0.644 0.003 0.168 0.046
OG10 0.319 0.023 0.077 0.036
OG25 0.415 0.009 0.107 0.021

d695 704057

F 3.190 0.035 0.250 0.114
H 0.286 0.023 0.129 0.082
HPO 0.280 0.012 0.109 0.062
OC 1.341 0.002 0.188 0.068
OG10 0.361 0.014 0.032 0.021
OG25 0.545 0.009 0.055 0.019

f2126 5330439

F 0.074 0.001 0.024 0.009
H 0.022 0.002 0.014 0.009
HPO 0.021 0.002 0.013 0.008
OC 0.050 0.000 0.019 0.008
OG10 0.021 0.002 0.008 0.005
OG25 0.028 0.001 0.010 0.003

g1023 736216

F 0.728 0.079 0.169 0.108
H 0.120 0.020 0.065 0.042
HPO 0.118 0.017 0.060 0.037
OC 0.247 0.005 0.082 0.034
OG10 0.139 0.017 0.030 0.021
OG25 0.153 0.010 0.041 0.016

h953 1197178

F 0.278 0.007 0.069 0.025
H 0.065 0.008 0.039 0.024
HPO 0.063 0.005 0.035 0.020
OC 0.122 0.001 0.046 0.017
OG10 0.071 0.007 0.020 0.011
OG25 0.087 0.005 0.026 0.009

p22810 7784963

F 2.935 0.393 0.439 0.407
H 0.144 0.020 0.052 0.036
HPO 0.141 0.016 0.044 0.029
OC 0.614 0.005 0.072 0.027
OG10 0.198 0.010 0.016 0.012
OG25 0.255 0.009 0.025 0.011

continues on next page
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Table 4.4. Experimental results: shift overhead to instrument data ra-
tio in Daisy-chained benchmark networks

Benchmark
name

Instrument
data

Design
method

Ratio of shift overhead to instrument data

Sequential Concurrent G10 G25

p34392 16403755

F 1.049 0.068 0.135 0.084
H 0.110 0.016 0.045 0.028
HPO 0.107 0.013 0.041 0.024
OC 0.276 0.004 0.070 0.020
OG10 0.142 0.011 0.019 0.013
OG25 0.175 0.007 0.027 0.010

p93791 30083283

F 4.088 0.113 0.165 0.132
H 0.121 0.009 0.040 0.026
HPO 0.120 0.006 0.035 0.021
OC 1.442 0.001 0.062 0.023
OG10 0.235 0.003 0.007 0.005
OG25 0.397 0.002 0.016 0.005

q12710 31801946

F 0.016 0.000 0.008 0.003
H 0.007 0.001 0.005 0.003
HPO 0.007 0.001 0.005 0.003
OC 0.012 0.000 0.007 0.003
OG10 0.007 0.001 0.004 0.002
OG25 0.007 0.000 0.003 0.001

t512505 165400967

F 0.100 0.002 0.009 0.004
H 0.009 0.001 0.004 0.002
HPO 0.009 0.000 0.003 0.002
OC 0.030 0.000 0.005 0.002
OG10 0.013 0.001 0.001 0.001
OG25 0.018 0.000 0.002 0.001

u226 252929

F 2.106 0.257 0.674 0.310
H 0.465 0.081 0.231 0.127
HPO 0.441 0.058 0.189 0.100
OC 0.651 0.022 0.231 0.093
OG10 0.504 0.066 0.151 0.092
OG25 0.617 0.035 0.184 0.061

4.1.4.3. REMOTE NETWORKS

For Remote networks, the presented optimization methods were based on or-
dering the instruments on the scan path, based on their number of accesses.
However, the way that the instruments were extracted from the ITC’02 bench-
marks made many instruments with exactly the same number of accesses
appear next to each other in the set of instruments for each benchmark. This
initial ordering would give the impression that the ordering of instruments
has little (or no) effect on the shift overhead. Therefore, we used two different
randomizations of the set of input instruments for each benchmark to cre-
ate Remote networks used as the baseline for the comparison. The following
explains the design methods compared against each other in the experiments:



4.1. Single Access Schedule 79

• Networks represented by Random 1 and Random 2 in the results have
different random ordering of instruments on their scan path.

• Networks represented by OC have their instruments sorted on the num-
ber of accesses.

• Networks represented by OG10 and OG25, have their instruments or-
dered as explained in Section 4.1.3.3 for the G10 and G25 schedules,
respectively.

Table 4.5 presents the experimental results for the constructed Remote net-
works. The reported shift overhead ratio is used to compare these design
methods. In the table, for each benchmark, and for each schedule, the lowest
ratio is marked in bold face, signifying that the corresponding design method
performs better than the other methods for that schedule. Whenever, for a
schedule, more than one ratio is marked in boldface, all those boldfaced ra-
tios have been the same before rounding.

From the results, it can be seen that in case of sequential schedule, the
network design has no effect on the shift overhead. This observation is in line
with the discussion presented in Section 4.1.2.3 on the effect of pipelining of
instrument data on lowering shift overhead.

For the rest of schedules, generally the network optimized for each sched-
ule results in the lowest shift overhead. The following can be mentioned as
examples deviating from this general observation: OG25 performs worse than
OG10 for d695, g1023, h953, and t512505 benchmarks for the G25 schedule.

For every schedule, and for all benchmarks, the overhead for the optimized
network is lower than the overhead from the randomly placed instruments.

Table 4.5. Experimental results: shift overhead to instrument data ra-
tio in Remote benchmark networks

Benchmark
name

Instrument
data

Design
method

Ratio of shift overhead to instrument data

Sequential Concurrent G10 G25

a586710 838530522

Random 1 0.000 0.010 0.010 0.010
Random 2 0.000 0.018 0.018 0.018
OC 0.000 0.000 0.001 0.000
OG10 0.000 0.000 0.001 0.000
OG25 0.000 0.000 0.001 0.000

d281 1496291

Random 1 0.003 0.033 0.210 0.094
Random 2 0.003 0.034 0.176 0.103
OC 0.003 0.000 0.089 0.032
OG10 0.003 0.017 0.023 0.035
OG25 0.003 0.001 0.024 0.010

continues on next page



80 Design of Optimized 1687 Networks

Table 4.5. Experimental results: shift overhead to instrument data ra-
tio in Remote benchmark networks

Benchmark
name

Instrument
data

Design
method

Ratio of shift overhead to instrument data

Sequential Concurrent G10 G25

d695 704057

Random 1 0.070 0.029 0.223 0.114
Random 2 0.070 0.032 0.234 0.118
OC 0.070 0.003 0.194 0.092
OG10 0.070 0.018 0.126 0.074
OG25 0.070 0.009 0.155 0.078

f2126 5330439

Random 1 0.000 0.001 0.011 0.007
Random 2 0.000 0.000 0.011 0.006
OC 0.000 0.000 0.010 0.005
OG10 0.000 0.001 0.002 0.003
OG25 0.000 0.001 0.002 0.001

g1023 736216

Random 1 0.011 0.057 0.098 0.077
Random 2 0.011 0.047 0.095 0.068
OC 0.011 0.002 0.060 0.028
OG10 0.011 0.009 0.042 0.024
OG25 0.011 0.003 0.054 0.026

h953 1197178

Random 1 0.003 0.005 0.038 0.018
Random 2 0.003 0.006 0.038 0.021
OC 0.003 0.000 0.030 0.014
OG10 0.003 0.003 0.012 0.009
OG25 0.003 0.002 0.018 0.009

p22810 7784963

Random 1 0.017 0.368 0.379 0.377
Random 2 0.017 0.201 0.218 0.211
OC 0.017 0.001 0.072 0.030
OG10 0.017 0.003 0.068 0.029
OG25 0.017 0.002 0.068 0.029

p34392 16403755

Random 1 0.001 0.034 0.067 0.040
Random 2 0.001 0.043 0.075 0.052
OC 0.001 0.000 0.049 0.013
OG10 0.001 0.002 0.029 0.010
OG25 0.001 0.001 0.029 0.008

p93791 30083283

Random 1 0.023 0.080 0.131 0.100
Random 2 0.023 0.042 0.104 0.065
OC 0.023 0.001 0.073 0.031
OG10 0.023 0.010 0.056 0.028
OG25 0.023 0.003 0.062 0.027

q12710 31801946

Random 1 0.000 0.000 0.002 0.002
Random 2 0.000 0.000 0.003 0.002
OC 0.000 0.000 0.002 0.002
OG10 0.000 0.000 0.000 0.001
OG25 0.000 0.000 0.000 0.000

continues on next page
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Table 4.5. Experimental results: shift overhead to instrument data ra-
tio in Remote benchmark networks

Benchmark
name

Instrument
data

Design
method

Ratio of shift overhead to instrument data

Sequential Concurrent G10 G25

t512505 165400967

Random 1 0.000 0.002 0.007 0.003
Random 2 0.000 0.002 0.007 0.004
OC 0.000 0.000 0.004 0.001
OG10 0.000 0.000 0.003 0.001
OG25 0.000 0.000 0.003 0.001

u226 252929

Random 1 0.007 0.134 0.248 0.164
Random 2 0.007 0.216 0.373 0.235
OC 0.007 0.000 0.094 0.049
OG10 0.007 0.113 0.029 0.129
OG25 0.007 0.000 0.062 0.028

4.1.4.4. COMPARISON BETWEEN NETWORK TYPES

Comparing the results for SIB-based and Daisy-chained networks shows that
except for the sequential schedule, the Daisy-chained networks result in lower
hardware overhead. In many cases, the difference in OAT between these
network types is not significant, but in case of u226 benchmark, the Daisy-
chained networks result in noticeably lower ratio. The reason for the lower
overhead in Daisy-chained networks for access schedules with (some degree
of) concurrency can be explained as follows. In Daisy-chained networks, the
shift overhead is mostly contributed to by the bypass flip-flops, which are
used when their corresponding instrument is not being accessed. Therefore,
when there is concurrency in the schedule, these bypass flip-flops will be used
less, hence lower shift overhead. This is in contrast to SIB-based networks in
which a SIB contributes to overhead when its corresponding instrument is
being accessed.

Comparing the results for the Remote network type with the results for
the SIB-based and Daisy-chained network types shows the following. For the
sequential schedule (per benchmark), the Remote network type shows signif-
icantly lower shift overhead. The reason can be attributed to the pipelining
of instrument data in the bypass flip-flops, which can be utilized greatly for
the sequential schedule. For the concurrent schedule, again it is the Remote
network type that shows better or similar results. For the G10 and G25 sched-
ules, no conclusive remark can be made as to which network types performs
better.
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4.2. MULTIPLE ACCESS SCHEDULES

In Section 4.1, we proposed methods for designing 1687 networks optimized
for one given access schedule. In this section, we address the problem of de-
signing 1687 networks for multiple access schedules. We assume the following
are given:

• a set of access schedules, denoted by S, in which for each schedule s ∈ S,
a weight Ws is specified. The weight (Ws) is assigned by the designer
as a relative metric for the importance of access time reduction for that
schedule as compared with the other schedules, and

• a set I of instruments in which for each instrument i ∈ I the length of
its interface shift-register (Li) and the number of accesses (Ai,s) at each
schedule s are provided.

4.2.1. NETWORK DESIGN METHODS

In general, we consider two possibilities for addressing the problem of net-
work design for multiple access schedules. The first possibility, is to design a
single network such that its performance with respect to OAT is optimized by
considering all given schedules. It might happen that optimizing for one ac-
cess schedule counters optimizations done for another schedule. For example,
an instrument might have a high number of accesses in one schedule (relative
to the number of accesses for other instruments in that same schedule) and
low number of accesses in another schedule (again, relative to the number
of accesses for other instruments in that other schedule). Clearly, such cases
will lead to a trade-off between the OATs for each schedule. To make such
trade-off, we use the Huffman tree inspired network construction algorithm
(Algorithm 4.3). However, instead of using the number of accesses for each
instrument as the base for placement of instruments, we assign an attribute,
weighted number of accesses (Ai,w), to each instrument. This weighted number
of accesses (Ai,w) captures both the number of accesses for an instrument in
each access schedule (Ai,s) and the relative weight of the access schedules
(Ws), and is calculated as:

Ai,w = ∑
s∈S

(Ai,s ×Ws) (4.5)

The idea is to design a network which performs reasonably well for all the
given access schedules, by considering the relative weight assigned to each
schedule.

The second possibility is that a dedicated network is designed and opti-
mized for each access schedule. Each network is then connected to the TAP
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Figure 4.8. The sensor instrument is shared by two networks (TDRs)

through a dedicated TDR. The instruments whose interface shift-register is to
be accessed through multiple schedules (i.e., multiple TDRs) can be shared
among the corresponding networks by using, for example, a scheme similar
to the one shown in Figure 4.8. In the presented scheme, tristate buffers are
used to control to which network the shared instrument shift-register is con-
nected. The enable signals in this scheme (i.e., En1 and En2) are applied from
the TAP circuitry. That is, given that no two such TDRs are active at the same
time, the same enable signals that are applied to the TDRs are used to connect
the shared instrument shift-registers to the scan path which belongs to the
active TDR. The two networks in Figure 4.8 are designed for two schedules
where the Sensor instrument is used in both schedules, while the DFT and the
Debug instruments are each accessed only in one of the schedules (hence each
accessible only through one of the TDRs). Although the Sensor instrument is
shared by both networks, a SIB is dedicated to it in each network.

Based on the above-mentioned possibilities, we consider the following al-
ternatives for experimenting with optimizing networks for multiple access
schedules:

• N: A non-reconfigurable network (see Section 2.2)

• Fsib: A flat SIB-based network consisting of all instruments used in all
given access schedules

• Fdc: A flat Daisy-chained network consisting of all instruments used in
all given access schedules

• Hsib: A hierarchical SIB-based network constructed by using Algo-
rithm 4.3, where Ai,w is used as input (see Eq. (4.5))
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• Hdc: The Daisy-chained counterpart of Hsib

• Msib: Multiple SIB-based networks each optimized for a given schedule

• Mdc: The Daisy-chained counterpart of Msib

• R: A Remote network consisting of all instruments used in all given
access schedules, with no optimization.

4.2.2. EXPERIMENTS

In this section, we present the experiments we performed to compare the con-
sidered design methods for multiple access schedules (listed in Section 4.2.1).
The comparison is with respect to OAT and hardware overhead.

To perform the experiments, a set of instruments and access schedules were
needed. We considered a total of 100 instruments each having a shift-register
of length 20 flip-flops, as well as eight different access schedules. Table 4.6
lists the considered set of instruments and access schedules. In Table 4.6,
column 1 lists that there are five types of instruments, column 2 lists how
many of each type of instrument are considered, and columns 3–10 list the
number of accesses for each instrument type for each access schedule. In
Table 4.6, under the headers for columns 3–10, the access schedules as well
as the weights assigned to them (within parentheses), are presented. The
instruments in the benchmarks are listed randomly so that instruments with
similar number of accesses do not appear beside each other on the scan path.
This is particularly relevant to the R (i.e., the Remote) network.

For the experiments, we calculated OAT for each of the access schedules
listed in Table 4.6, by the use of the algorithms proposed in Chapter 3. For
the non-reconfigurable network, OAT is calculated using Eq. (2.1), where we
have considered (for N = 100 instruments each having L = 20):

l =
N

∑
i=1

Li =
100

∑
i=1

20 = 2000 (4.6)

and assumed Ta = 4, which is reported as TAP overhead. In Eq. (2.1), when
accessing instruments according to the concurrent schedule, we have:

p = max
1≤i≤N

{Ai} (4.7)

where N is the number of instruments and Ai is the number of accesses for
instrument i. In Eq. (2.1), when accessing instruments according to the se-
quential schedule, we have:

p =
N

∑
i=1

Ai (4.8)
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Table 4.6. Benchmarks used for the experiments with multiple schedules

Instruments Access schedules and their assigned weights (in parentheses)
Type Count S1 (1) S2 (100) S3 (1) S4 (1) S5 (100) S6 (1) S7 (10) S8 (10)

Seq. Conc. Conc. Seq. Conc. Seq. Conc. Conc.
1 20 100 10 10 10 10 10 10 10000
2 20 10000 0 0 0 0 0 0 10000
3 10 100 10 10 10 10 10 10 10000
4 40 100000 10 10 100000 100 10 10 10000
5 10 10 100 10 10 10 100000 100000 10000

Conc. denotes the concurrent schedule, and Seq. denotes the sequential schedule.

Table 4.7. OAT calculation results when the networks are optimized for S1–S8

Design
method

Scaled† weighted OAT (OATs ×Ws) Sum
S1 S2 S3 S4 S5 S6 S7 S8

N 8,423,014 20,240 22 8,016,804 20,240 2,005,405 2,004,020 200,420 20,690,166
Fsib 521,197 4,621 19 496,060 10,021 124,097 304,158 210,422 1,670,594
Fdc 521,207 4,463 18 496,070 9,593 124,107 295,151 200,521 1,651,132
Hsib 155,788 3,947 19 147,619 9,852 33,031 224,171 215,724 790,152
Hdc 155,790 3,786 19 147,621 9,423 33,033 215,164 205,825 770,659
Msib 147,054 3,798 19 138,621 9,468 30,834 215,165 210,422 755,381
Mdc 147,056 3,632 18 138,624 9,035 30,836 206,157 200,521 735,879
R 100,900 4,387 18 96,030 9,535 24,037 286,153 200,421 721,481
†Scaled by 1000.

where N is the number of instruments and Ai is the number of accesses for
instrument i.

4.2.2.1. COMPARISON WITH RESPECT TO OAT

In this section, we report and compare the design methods presented in Sec-
tion 4.2.1 w.r.t OAT. The networks (where applicable) are designed by taking
into account all schedules and their assigned weights. As the baseline for
comparison, we use the non-reconfigurable scan network (denoted by N).

Table 4.7 presents the results of the experiment in details. In the table,
the first column lists the examined design methods. Columns 2–9 list for
each access schedule the product of the OAT and the assigned weight for that
schedule. Column “Sum” presents sum of the values in columns 2–9, to be
used as the comparison metric.

From the “Sum” column of Table 4.7 it can be seen that for N, Fsib, and
Fdc, the sum is at least two times larger than the sum reported for the rest of
the networks. The R network shows the best sum among all, which makes it
specifically interesting given that it has a fixed architecture (which does not
change with the applied schedule). Msib and Mdc also show a low sum as
well as good results for the individual schedules, as they consist of a set of
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Table 4.8. Hardware overhead

Design
method

Cell
density

Setup
slack (ns)

Hold
slack (ns)

Area (µm2)
Area difference

with N
Area

increase
Equivalent
gate count

N 0.93 2.469 0.228 84208 0 0.0% 0
Fsib 0.92 2.455 0.221 89513 5305 6.3% 2551
Fdc 0.92 2.421 0.247 89782 5575 6.6% 2680
Hsib 0.92 2.136 0.246 92691 8484 10.1% 4079
Hdc 0.93 1.863 0.224 96174 11966 14.2% 5753
Msib 0.92 0.819 0.223 138750 54542 64.8% 26222
Mdc 0.92 0.282 0.22 148437 64229 76.3% 30879
R 0.92 2.654 0.223 89688 5480 6.5% 2635

Figure 4.9. An example inverter array used as an instrument for val-
idation of the network design implementation

networks each optimized for one of the access schedules. Hsib and Hdc also
show good results.

4.2.2.2. COMPARISON WITH RESPECT TO HARDWARE OVERHEAD

To give an idea of the hardware overhead associated with each of the consid-
ered network design methods, we implemented and synthesized a number of
designs using 65 nm technology, and performed place & route. Each design
included a 1687 network based on one of the considered design methods, the
1149.1 circuitry, and the instrument shift-registers. We considered each instru-
ment to be simply an array of inverters where each inverter was connected to
an I/O pair in the corresponding instrument shift-register (Figure 4.9).

To have a fair comparison regarding the required area, we instructed the
place & route tool to fit each of the designs in a square-shaped layout with
standard cell density of 0.85. The area of the generated layout is then used as
the basis for hardware overhead comparison. The achieved standard cell den-
sity is also reported to observe how close the achieved densities are. Ideally,
the achieved densities should be the same to ensure a fair comparison. Since
it is desired to calculate the part of overhead which is associated only with
the network components, we should remove the part of area associated with
the TAP circuitry (for one TDR) and instrument shift-registers, as this part of
overhead is the same for all networks. To calculate the 1687 network overhead,
we subtracted the area of the layout generated for the N network (which uses
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no network reconfiguration components) from area of layouts generated for
each of the other networks. Appendix B presents schematic and details our
implementation of the SIB component (Figure B.3).

To validate correctness of the implemented designs, we generated a number
of patterns in form of scan vectors to be applied through the TAP terminals
during post-layout simulation. Each pattern consisted of random stimuli for
instruments (i.e., inverter arrays) interleaved with configuration bits for the
ScanMux control bits, and the expected responses. Through these post-layout
simulations we established that the designs work as expected at the chosen
frequency of 100 MHz.

Table 4.8 presents the data obtained from the hardware implementation ex-
periment. The second column shows the cell density after the place & route.
Columns three and four present the setup slack and hold slack in nanosec-
onds, respectively. Column five reports the area in square micrometers. To
see how much area is consumed only by the 1687 network(s), we subtracted
the area for the N network (i.e., the non-reconfigurable network) from the area
for each of the designs, and reported the resulting area difference in column
six. For each design, the area percentage increase due to the 1687 network
components is reported in column seven. Lastly, to give an idea of the equiv-
alent overhead in other technologies, column eight reports the area difference
with N in number of two-input NAND gates.

The following should be noted from the results presented in Table 4.8:

• The setup times are positive indicating that the networks can be clocked
at 100 MHz. Moreover, except for Msib and Mdc, the rest of the designs
can be clocked at even higher frequencies as indicated by larger setup
time margins.

• The hold time slacks are positive for all of the designed layouts, which
indicates that hold violations are fixed by the tool. Fixing these viola-
tions is done by adding buffers, which slightly increase the hardware
overhead. Although such increase is not necessarily the same for all the
layouts, the comparison is still fair as such overhead can also be seen as
complexities associated with certain design methods.

• The hardware overhead for Msib and Mdc is relatively high. On the
other hand, Hsib, Hdc, and R show relatively lower overhead.

4.3. THE UNKNOWN SCHEDULES

In choosing a network design method, a determining factor is the amount of
overhead introduced into OAT by the designed network. The amount of over-
head is, however, available only for access schedules known at design time. It
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might happen that a network that has low time overhead for some known ac-
cess schedules, results in high overhead in the context of a new schedule. It is
therefore interesting to know how largely the time overhead might vary when
a network is used according to new (i.e., previously unknown) access sched-
ules. However, judging which network is better according to the amount of
variation in time overhead, might be misleading. For example, if variation in
time overhead has been due to change in number of accesses, there is a chance
that the overhead percentage has not varied much, due to similar change in
other OAT components. Therefore, we propose instead to observe the vari-
ability in the overhead percentage (Eq. (3.15)) as an indicator for predictability
of the network when new schedules are applied.

Based on the above, in order to evaluate how largely the overhead per-
centage might vary when new access schedules are applied to a network, we
decided to perform the following experiment.

We considered the same benchmark sets reported in Table 4.6, and assumed
that at design time we only know one access schedule sk (1 ≤ k ≤ 8) for
which we design networks using each of the design methods specified in Sec-
tion 4.2.1 (except for Msib and Mdc that are not applicable for a single sched-
ule). Next, for each of the networks, we computed the overhead percentage
for each of the access schedules si (1 ≤ i ≤ 8, i 6= k) by using Eq. (3.15). To
measure the variability in overhead percentage, we calculated the standard
deviation of the computed percentages. The smaller the standard deviation,
the more stable the overhead percentage for new access schedules.

Table 4.9 presents the results of this experiment. Where applicable, the
numbers in boldface are the largest standard deviation found for a given de-
sign method, and are used for the purpose of comparison. The R network
shows the least value, i.e., 0.10. In this case, no optimization was done (due to
that the given schedule was sequential, see Section 4.1.2.3) and therefore the
placement of instruments on the scan path was the random order provided
by the benchmark set. Consequently, the benefits of pipelining of instrument
data is only partially exploited (see Section 3.4.1). Based on this observation,
it can be expected that even for future schedules, an overhead percentage sim-
ilar to the overhead percentages for currently known schedules is observed.
In this regard, the average overhead percentages for the R and Hsib networks
that have shown the smallest variabilities are 14 percent and 26 percent, re-
spectively.

To evaluate this proposed predictability metric, we present another exper-
iment, in which we apply new schedules to these two networks and study
the changes in the overhead percentage. In this experiment, the instruments
originally described in the schedule S1 are accessed according to partially
concurrent schedules in groups of 5, 10, 20, 50, and 100 concurrently accessed
instruments.
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Table 4.9. Variability of overhead percentage in different design methods

Design method Schedule optimized for Standard deviation
Fsib

† 0.36
Fdc

† 0.38

Hsib

S1 0.22
S2 0.19
S3 0.17
S4 0.19
S5 0.19
S6 0.21
S7 0.21
S8 0.17

Hdc

S1 0.23
S2 0.21
S3 0.19
S4 0.21
S5 0.21
S6 0.23
S7 0.23
S8 0.19

R

S1‡ 0.10
S2 0.10
S3 0.09
S4‡ 0.09
S5 0.10
S6‡ 0.09
S7 0.07
S8 0.09

†The Fsib and Fdc networks have fixed architectures.
‡No optimization done for the sequential schedule (Section 4.1.2.3).

The result of overhead computation for this experiment is presented in the
chart in Figure 4.10. From the results, it can be seen that the overhead per-
centage for the R network varies between 6 to 17 percent, and for the Hsib
network between 7 and 43 percent. These results show that the overhead per-
centage varies less for the R network (in comparison to the Hsib network) for
these new schedules. This observation is in line with the expectation of less
variability in overhead percentage from the R network.
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Figure 4.10. Change in overhead percentage as concurrency increases

4.4. CHAPTER CONCLUSIONS

In this chapter, we presented design methods for constructing 1687 networks
optimized with respect to OAT. We considered two optimization problems:
when the objective is to optimize only for one given access schedule, and
when the objective is to optimize for multiple access schedules. Moreover,
we considered the case that instruments in a network might be accessed ac-
cording to a schedule not known at design time. As a predictor of how much
overhead percentage might vary for a new schedule, we used the standard
deviation of the overhead percentages for already known access schedules.
The smaller the standard deviation, the more stable the overhead percentage.

We presented experimental results for each of the considered optimization
problems, as well as to evaluate the stability of the overhead percentage for
new access schedules. The experimental results showed that the Remote net-
work type performs reasonably well when considering OAT, hardware over-
head, and stability of overhead percentage. It must be emphasized that the
good performance of the Remote networks is achieved under the assumption
that the instrument data can be pipelined in the bypass flip-flops, which (at
least) requires support from the retargeting tools. To avoid such dependency
on pipelining, the hierarchical SIB-based and Daisy-chained networks can be
used, considering that they showed relatively low hardware overhead, as well
as low OAT in the experimental results.
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In Part II, we presented methods for designing 1687 networks such that
they were optimized with respect to OAT, when access schedules were given.
In this part, we present methods for reducing OAT when the network is given,
by focusing on the retargeting process. More specifically:

• In Chapter 5, OAT reduction in the complete retargeting flow (from
PDL to bit vectors) will be regarded as a scheduling problem, for which
we discuss opportunities for optimization.

• In Chapter 6, we focus on a key step in the retargeting flow, the retar-
geting step (Section 2.3.2.2), which is the generation of scan vectors to
carry out a given iApply group. For a retargeting step, we present a
method for reducing the solution space without removing the optimal
(w.r.t. application time) set of vectors.





5
The Retargeting Flow

So far in this thesis, the assumption has been that the access schedule is given
as an abstract model of how many times and in what combinations the instru-
ments are to be accessed. As our focus was on the access time minimization,
we did not model the wait cycles in our access schedules. In this chapter,
however, we focus on how the complete schedule (including instrument ac-
cesses, wait cycles, and concurrency) can be inferred from the given PDL code
during the retargeting process, and will point out possibilities for reduction
in schedule application time. In this chapter, we use the term schedule appli-
cation time (as contrasted to OAT), since the complete schedule contains wait
cycles, in addition to the (read/write) accesses to instruments.

We start the discussion in this chapter by presenting a retargeting flow
(Section 5.1) that performs the basic tasks such as dealing with procedure
calls and merge blocks (see Section 2.3.2.2). In Section 5.2, we discuss the
shortcomings of the related work [49, 50] on scheduling for 1687 networks.
Moreover, we point out opportunities in the basic flow that can be exploited
for optimized retargeting with respect to application time. Prior work on re-
targeting [13, 39, 40, 51, 52, 53, 54] has not considered the PDL-level schedul-
ing with the aim of reducing the application time. We discuss these works in
Chapter 6.

5.1. BASIC RETARGETING FLOW

In this section, we begin by explaining how concurrency can be captured in
a PDL script (Section 5.1.1), and continue by presenting the three tasks that
should be done in a basic retargeting flow, namely, flattening (Section 5.1.2),
merging (Section 5.1.3), and translation (Section 5.1.4).

95
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5.1.1. PDL AND CONCURRENCY

As was mentioned in Section 2.3.2.2, in a given PDL, instrument accesses are
specified via iRead, iWrite, and iScan commands, which are setup commands.
The setup commands take effect at the first subsequent iApply command, and
together are referred to as an iApply group. From the iApply groups in a
given PDL, it can be inferred how many times each instrument is accessed.
The accesses are not necessarily sequential as the PDL developers can add
concurrency to the schedule by

• placing multiple setup commands (for different instruments) under the
same iApply group, and

• placing multiple procedure calls inside a merge block (to instruct the
retargeting tool to execute them in parallel)1. IEEE 1687 has mecha-
nisms for further control over concurrency inside a merge block, such
as describing a resource as exclusively accessible.

In the retargeting process, through which PDL is translated into low-level
TAP operations or bit-vectors, the schedule is inferred. It should be noted
that the resulting schedule is not unique and depends on the optimizations
performed by the retargeting tools. What matters is that the sequence of
carried out action commands (such as iApply) should be as specified in the
PDL script.

Figure 5.1 shows a basic PDL retargeting flow by illustrating a retargeting
scenario for two PDL procedures called from within a merge block:

iProc ParentProc {
iMerge -begin

iCall Proc1();
iCall Proc2();

iMerge -end
}

In Figure 5.1, the frames labeled as Proc1() and Proc2() represent procedure
bodies, the frame labeled ParentProc() is a higher (e.g., chip-level) procedure
in which Proc1() and Proc2() are called from within a merge block, the boxes
labeled as s represent setup commands such as iRead and iWrite, and the
dashed boxes represent critical sections that cannot be run together due to
resource conflicts. In PDL, critical sections begin by an iTake command spec-
ifying a resource to be taken exclusively, and end by an iRelease command

1The standard does not put any requirement on the tools to perform merging. That
is, the tool might simply execute all procedures sequentially.
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Figure 5.1. Example showing the basic PDL retargeting flow

MyProc(){
iWrite Reg1 0; iApply;
}

iWrite Inst1.Reg1 0; 
iApply;

iCall Inst1.MyProc();

Figure 5.2. An example, showing the basic idea of flattening

specifying that the taken resource is no more exclusively required. In the fol-
lowing, and with the help of Figure 5.1, each step in this basic flow will be
elaborated on.

5.1.2. FLATTENING THE PDLS

Flattening is replacing a call to a procedure with the body of that procedure,
and adding the name of the instrument on which the procedure is called,
to the names of terminals/registers inside the called procedure by using a
dot notation. Flattening is similar to the inline expansion in languages such
as C/C++, in which the call to a function is replaced with the body of the
called function. Figure 5.2 shows the basic idea of flattening, where the call
iCall Inst1.MyProc() is replaced by the body of MyProc, and the name of the
register Reg1 is changed to Inst1.Reg1. Flattening is illustrated in Figure 5.1
by changing the color of commands inside Proc2, and removing the frames
presenting the procedure bodies.
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5.1.3. MERGING THE RESULTING FLATTENED PDL

Merging is the selection of setup commands inside different procedures that
are called from within merge blocks, and grouping them under the same
iApply group. Figure 5.1 shows a possible merging of the Proc1() and Proc2().
In this case, merging also involves replacing multiple iRunLoop commands
with one iRunLoop whose parameter is the maximum value found among
the parameters for each of those iRunLoops. As can be seen in Figure 5.1, the
iApply commands inside the critical sections are not merged.

5.1.4. TRANSLATION OF THE MERGED PDL INTO CHIP-LEVEL VECTORS

In the translation stage, a number of retargeting steps are performed (see Sec-
tion 2.3.2.2). That is, the iRead/iWrite commands inside iApply groups are
translated into chip-level scan vectors to be applied from the TAP. Each vector
consists of bits to be shifted in serially (taken from iWrite commands) and ex-
pected responses (taken from iRead commands) to be compared against the
bits shifted out. Alternatively, the result of translation can be other descrip-
tion languages, such as Serial Vector Format (SVF) used for describing TAP
operations [55], as shown in Figure 5.1.

5.2. ENHANCING THE BASIC FLOW

The merging step in the basic retargeting flow discussed above can be seen
as test scheduling with resource constraints. Power constraints can also be
taken into account during the PDL merging. In its current state, however,
PDL does not support specification of power consumption (or in general any
such parameters). In case such constraints are needed to be taken into ac-
count during retargeting (e.g., due to power budget limitation when running
BISTs), one can annotate the PDL code with specially formatted comments to
be extracted and considered by the retargeting tools.

The problem of finding the schedule with the shortest application time, dur-
ing PDL retargeting can be seen as the SoC test scheduling with precedence
relationship and resource and power constraints, which is formulated in [56]
and is shown to be NP-complete. Prior work has considered test scheduling
with resource and power constraints for IEEE 1687 [49, 50]. However, none
of the heuristics suggested in [49, 56, 50] are applicable in a PDL retarget-
ing scenario involving both scan vectors and wait cycles, since their proposed
heuristics require the length of all tests to be known (in the same unit, i.e.,
either in time [56] or in number of accesses [49, 50]) prior to scheduling. This
prior knowledge is not available in PDL retargeting, since the length of a
wait cycle is specified in number of clock cycles, whereas the actual length of
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an iApply group (in clock cycles) is not known before the translation is per-
formed [49]. Therefore, on the one hand, for ensuring that the resource and
power constraints are met during the PDL merging, the start and finishing
time of all tests/accesses should be known, while on the other hand, during
merging, the length (in clock cycles) of iApply groups are not known, and
therefore, cannot be safely merged with those PDL codes that have iRunLoop
commands.

In the basic flow, this problem can be circumvented, e.g., by separating
iRunLoop and iApply commands into (a number of) separate blocks and per-
forming the scheduling on each block separately. This way, however, not all
the potential concurrency is exploited, as demonstrated by the motivational
example presented in Section 5.2.2. Considering the above, in the following,
the considerations for running the iRunLoop and iApply commands concur-
rently are detailed.

5.2.1. RUNNING IAPPLY AND IRUNLOOP COMMANDS CONCURRENTLY

In the simple merging scenario described in Section 5.1, the two iRunLoop
commands (i.e., iRunLoop C1 and iRunLoop C2) were merged into one com-
mand with the largest number of clock cycles found among them. This way,
shifting out the result of BIST from one instrument should unnecessarily wait
until the other instrument completes its test. These wasted cycles could have
been used to apply other tests, to increase concurrency.

To perform iApply commands concurrently with iRunLoop commands,
there are two requirements: (1) being able to de-select an instrument while
it is still running, and (2) knowing how many clock cycles it takes to perform
a (flattened and merged) iApply group. In the following we will explain the
reasons for each of these requirements.

Considering the first requirement as a network design guideline, the 1687
network should be designed such that it is possible to keep an instrument
active but de-selected (e.g., by connecting each instrument to the network
through a SIB). The reason for this is that, for example, when a BIST instru-
ment whose control inputs are directly on the scan path is running, its op-
eration might be interfered with if scan vectors are shifted in and applied to
other instruments over the same scan path. However, if the BIST instrument is
kept active but off the scan path, the clocks that are applied to perform other
tests, can be applied to this BIST instrument, as well.

As for the second requirement, one way to obtain the information regarding
the actual number of clock cycles is to integrate the merging and translation
steps in the PDL retargeting flow, such that for every command that is be-
ing merged, the translation is performed to provide the number of required
clocks. Knowing the number of spent clock cycles, the merging algorithm can
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Table 5.1. Scheduling results for the u226 benchmark

Power
budget

The resulting schedule length in TCKs Reduction (%) in
application timeThe basic flow The modified flow

∞ 490709 354313 27.7
9 493673 357277 27.6
3 720662 577829 19.8

decide if enough clock cycles have passed for the previously issued iRunLoop
command.

5.2.2. THE U226 BENCHMARK EXAMPLE

In this section, with the help of an example, we demonstrate the benefits of
running the BISTs concurrently with the iApply groups.

Among the ITC’02 benchmark SoCs introduced in Section 4.1.4, u226 and
d281 have BISTs (see Appendix D for details). The u226 SoC is particularly
suitable for this example as it has relatively long BIST runs. For this example,
we assumed that the network is SIB-based and has a flat architecture (see
Figure 3.1(a)). Moreover, we assumed that the BIST is running on a system
clock 10 times faster than TCK. Additionally, we assumed that each of the 34
instruments has a power consumption of one unit, and considered the given
power budget to be infinity (ideally allowing for fully concurrent schedule),
nine units (ideally allowing for about 25 percent concurrency) and three units
(ideally allowing for about 10 percent concurrency). For each of the given
power budgets, we considered two cases: (1) when the wait cycles cannot be
merged with scan vector applications (referred to as the basic flow), and (2)
when the wait cycles can be merged with scan vector applications (referred to
as the modified flow). In the latter case, BISTs are started as soon as resources
are available, without interrupting the operation of other BISTs.

We assumed that the accesses for each instrument is specified in a proce-
dure, and that all procedures are called within a merge block. To perform
the scheduling, we developed a simple algorithm that selected the procedures
(corresponding to the instruments) from a given ordered list. As the order
that the scheduler selects the procedures affects the results, we used genetic
algorithms [57] to guide the scheduler. We skip the details on the scheduler
in this thesis.

Table 5.1 presents the result of scheduling for this example. For the basic
flow, the scheduler was not allowed to run BISTs at the same time as perform-
ing the accesses to instruments. In contrast, for the modified flow, which used
integrated merging and translation, the scheduler could freely choose access
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procedures to run concurrently with BISTs, as long as the power constraint
was not violated. From the table, it can be seen that the modified flow has
resulted in up to 28 percent reduction in the schedule application time.

For this relatively small example, the run-time for the scheduler guided by
genetic algorithm was up to eight hours for the cases reported in Table 5.1.
The reason for the long run-time is that the translation step is performed
for every access (i.e., iApply group) every time the scheduler runs and the
scheduler is called many times by the genetic algorithm. Clearly, for real life
problems, this method of optimization is not practical and there is, therefore,
a need for more efficient approaches.

5.3. CHAPTER CONCLUSIONS

In this chapter, we detailed a basic PDL retargeting flow consisting of a num-
ber of steps, namely flattening, merging, and translation, and showed that the
merging step can be seen as power- and resource-aware scheduling, which is a
known NP-complete problem. We noted that lengths of some PDL commands
are specified in time units and are thus known during merging, whereas
length (in time units) of some other commands will not be known until trans-
lation step is completed. Therefore, the scheduling approaches in prior work
are not applicable to this problem. With the help of an example, we showed
the benefits of a modified retargeting flow in which the merging and transla-
tion steps are integrated. The modified flow managed to reduce the schedule
application time (in TCKs) by up to 28 percent, via increasing concurrency
in the schedule while satisfying constraints. The long run-time for the mod-
ified flow reveals the need for more efficient approaches for the problem of
optimized PDL retargeting.

In Chapter 6, we present a method for performing the retargeting step opti-
mally. It is important to note that optimal retargeting steps (w.r.t. vector appli-
cation times for each step) do not necessarily result in the optimum schedule
application time for the completely retargeted PDL. The reason is that each
retargeting step is affected by the condition that the previous retargeting step
has left the network in. In explanation, we can draw parallels to a greedy
method that chooses what seems best at the moment without considering the
big picture. Therefore, to perform retargeting such that the schedule appli-
cation time is minimal, the scheduler should also guide the retargeting step
with enforcing constraints on particular control bits in the network. Needless
to say, this further complicates the retargeting process.
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Optimal Retargeting Step

As was discussed in Chapter 5, one of the main tasks in retargeting is the
translation of given PDL scripts into bit vectors (Section 5.1.4). The transla-
tion involves a number of retargeting steps, each translating an iApply group
into bit vectors. As we discussed in Chapter 5, the retargeting step might be
performed as part of the solution space exploration as well. Therefore, it is
important to increase the run-time efficiency of the retargeting step. More-
over, it is important to generate the vectors such that the application time is
minimized (effectiveness).

There have been a number of works addressing retargeting for 1687 net-
works [13, 39, 40, 51, 52, 53, 54]. The work in [13] was an early work to
motivate the benefits of describing instrument operations in a high-level lan-
guage and having it automatically translated to bit vectors. The work in [52]
presents a study on the use of retargeting tools for the specific case of 3D
stacked ICs. The works in [51, 53, 54] present retargeting for Level-1 PDL.
Among the aforementioned works, the only works that have so far addressed
minimization of application time for the generated scan vectors are [39, 40],
which are discussed in Section 6.1.

In this chapter, we improve upon the prior work [39, 40] by presenting a
method for reducing the solution space in the process of searching for the
optimal vector in a retargeting step. In this chapter, we use the term optimal
(solution) for a set of scan vectors that result in the shortest possible applica-
tion time in terms of clock cycles. Briefly, the proposed method analyzes the
given network, and computes the largest number of CSU operations required
to take the network from any configuration to any configuration. In this the-
sis, we refer to the computed number as upper-bound. The upper-bound can
then be used by any of the approaches presented in [39, 40] for the scan vector
generation, to guarantee the optimality of the results. It should be noted that
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in computation of the upper-bound, the assumption is that the instruments
that are requested to be accessed in the given retargeting step (i.e., iApply
group) are not mutually inaccessible (e.g., are not on different inputs to a
multiplexer). If that is the case, the retargeting tool should issue a warning to
the user and break that iApply group into smaller iApply groups.

The rest of this chapter is organized as follows. In Section 6.1, we review
the related work and discuss how the proposed method can improve both ef-
ficiency and effectiveness of the retargeting step as presented by those works.
In Section 6.2, we use an example to, among other things, show that minimum
number of CSUs does not necessarily result in the minimum application time
in clock cycles. Section 6.3 presents the core technique in computation of the
upper-bound. As the core technique is not directly applicable to large net-
works, in Section 6.4 we present a number of reduction techniques that break
the network into a number of smaller segments so that the core technique
can be applied to each segment separately. To compute the upper-bound for
the original network, the upper-bounds computed by the core technique for
smaller segments are then combined together in the appropriate way. Sec-
tion 6.5 presents some experimental results for a number of benchmarks.

6.1. PRIOR WORK

Verification and pattern generation (retargeting) for reconfigurable scan net-
works were presented in [39]. The work in [39] models general reconfigurable
scan networks using a structural SAT1 model in which each control bit in the
network is represented by a Boolean variable. The model can therefore cap-
ture any arbitrary configuration of the network. In a typical retargeting step,
several configuration cycles should be performed to take the network from an
initial configuration to a target configuration (in which the shift-registers of
the required instruments become part of the active TDI to TDO scan path).
Therefore, to capture all the configuration cycles, the SAT model is unrolled
over a number of time frames. Each of the time frames corresponds to a CSU,
which is considered an atomic operation in [39]. That is, each individual clock
cycle spent on shifting input data (or performing capture and update opera-
tions) is not considered to be a separate configuration step, rather the whole
cycle of capturing, shifting, and updating is seen as one step. The state of each
bit in each time frame is then used to form a scan vector that should be shifted
in and applied (by going through the update phase) for the transition from a
frame to the next one. A sequence of such scan vectors is what a retargeting
tool computes for taking the circuit from its current configuration to a target
configuration.

1Boolean Satisfiability Problem
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Using the above-mentioned scheme requires the algorithm to receive as
input the number of times it should unroll the model (i.e., the number of
allowed CSUs). The choice of the number of CSUs has a crucial impact on
the resulting solution (i.e., the generated scan vectors). If the allowed number
of CSUs is too small, the target configuration might be unreachable from the
current configuration (i.e., no feasible solution). Moreover, given that some
solutions might be better than the others w.r.t. clock cycles, a too small value
for the number of CSUs might exclude those better solutions from the solution
space. Therefore, finding the upper-bound on the number of CSUs is essential
for effective retargeting (i.e., generating scan vectors which are optimal w.r.t.
access time). On the other hand, if the number of allowed CSUs is too large,
the generated model becomes unnecessarily large resulting in decreased run-
time efficiency, yet with no guarantee on optimality.

The work in [39] does not present an upper-bound derivation method for
the number of required time frames and assumes that the user specifies a
maximum allowable number of frames. Moreover, the generated scan vectors
are not optimal regarding instrument access time. To address these issues, [40]
presents an upper-bound for the number of time frames. The calculation of
upper-bound on the number of frames, as presented in [40] can be explained
as follows. The total access time is formulated as:

t = 2n +
n

∑
i=1

Li (6.1)

where n is the number of frames, 2 represents the TAP overhead for each
frame, and Li represents the length of the scan path for frame i. The upper-
bound for n, denoted by nbound, is presented as:

nbound < dCyclesn/2e (6.2)

where Cyclesn is the minimum access time achievable with n frames. Accord-
ing to [40], finding the global minimum is an iterative process in which after
finding an initial solution, the bound is calculated and iteratively lowered as
we find solutions with smaller access times (i.e., smaller than Cyclesn which
was originally found).

Given that in real-life circuits, the access time might be in the order of thou-
sands of clock cycles, the bound calculated using Eq. (6.2) will not be helpful
in practice. The reason is that, as discussed in [40], finding the optimal solu-
tion is NP-hard, hence requiring heavy computations to search the solution
space, which is limited by the upper-bound on the number of frames. If this
upper-bound is very high (that is, hundreds or even thousands of frames),
the time that it takes to find the optimal solution will be extremely long.
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Figure 6.1. A 1687 network used in the discussion in Section 6.2

Therefore, the authors of [40] propose a heuristic for retargeting, which ini-
tially searches for the minimum number of CSUs required to get a solution,
and from that point continues the search for a better solution by allowing a
limited number of extra CSUs. There are two drawbacks with the heuristic
proposed in [40], both negatively impacting the run-time efficiency. Firstly,
searching for the minimum number of required frames (i.e., CSUs) involves
multiple calls to the SAT solver, each with an incremented number of allowed
CSUs. Secondly, allowing extra CSUs after an initial solution found (hoping
to reach a local minimum) might be unnecessary if the solution already found
is the globally minimum solution.

In this thesis, we detail an upper-bound computation method which is ap-
plicable to arbitrarily designed 1687 networks, and results in a bound low
enough for real-life retargeting applications. By using the proposed upper-
bound, the model can be initially unrolled as many times as the upper-bound,
for which the SAT solver is called only once (in contrast to the heuristic
method described above). Therefore, the run-time efficiency of the retargeting
tool increases while guaranteeing optimality of the generated vectors.

6.2. MOTIVATIONAL EXAMPLE

In this section, with the help of an example, we show that a solution with
minimum number of CSUs is not necessarily the optimal solution w.r.t. the
number of clock cycles. We also show that the bound calculated by using
Eq. (6.2) can be large even for a very small example network. Moreover, by
varying the length of instrument shift-registers, we show that the computed
upper-bound is a function of length of instrument shift-registers as well.

Figure 6.1 shows a network of six instruments. Lengths of instrument shift-
registers in this network are shown in Table 6.1 for three instances A, B, and
C. The difference between instances is only in the length of shift-registers, as
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Table 6.1. Shift-registers’ length for the instruments in Figure 6.1

Length of instrument shift-registers
I0 I1 I2 I3 I4 I5

Instance A 20 50 100 20 20 5
Instance B 20 50 70 20 20 5
Instance C 50 50 100 20 20 5

Numbers in boldface denote where the instances differ.

marked in boldface in the table. Assume that initially all control bits are set
to zero, and that we aim to access instrument I4. Accessing I4 can be done
by setting C0 to “01”. This, however, will not necessarily lead to minimum
access time for I4 since instruments I2 and I3 are then on the scan path to I4.
Therefore, it might be better to first switch I2 and I3 off the scan path before
setting C0 to “01”. The reason for saying “might be” is that in this example,
I0 is always on the scan path and for each access to the network, dummy bits
should be shifted through it. If length of I0 is comparable to the length of the
shift-registers for I2 and I3, its contribution to overhead cancels out the benefit
from switching I2 and I3 off the scan path. To see how the length of shift-
registers affect the search for the optimal way to access I4, in the following,
we will examine the three instances more closely. In this chapter, similar
to [40], we assume it takes two clock cycles to perform update and capture.

6.2.1. INSTANCE A

The length of shift-registers for this instance are reported in the corresponding
row in Table 6.1. Assuming that initially all control bits are set to zero and
the goal is to perform a read/write operation on I4, we calculate the access
time for different configuration alternatives of the network. First, we consider
the case where the only configuration performed is setting C0 to “01”. Here,
two CSUs are needed and access time is calculated as the sum of number of
clock cycles needed to (1) configure C0 in the first CSU and (2) perform one
read/write on I4 in the second CSU. The number of clock cycles for the first
CSU is 1 (for C3) + 2 (for C0 which is a two-bit register) + 20 (for I0) + 2 (to
perform the update and capture operations). The number of clock cycles for
the second CSU is 160 (for instruments I2, I3, I4, and I0) + 2 (for C0) + 2 (for the
update and capture operations). In total, it takes 189 clock cycles to perform
these two CSUs (marked on the plot shown in Figure 6.2). Alternatively, since
C3 is initially on the scan path, it can also be set to ‘1’ in the first CSU. In this
case, I3 will not be on the scan path in the second CSU and it thus takes 169
clock cycles in total to perform the two CSUs (also marked in Figure 6.2).
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Figure 6.2. Access time vs number of allowed CSUs for Instance A

The two alternatives discussed above used two CSUs to access I4. That is,
if we limit the retargeting tool to unroll the model twice, the pseudo-Boolean
optimization explores the above solutions and picks the one with the lowest
access time, i.e., the one with 169 clock cycles. In the following, we explore
alternative configurations with more than two CSUs.

If instead of switching C0 to “01”, we set it first to “10”, we gain access
to C2 and can switch I2 off the scan path before performing the read/write
operation on I4. In this case, we use three CSUs and the access time is calcu-
lated as 149 clock cycles in total. If we allow the retargeting algorithm to use
three CSUs, all the solutions marked with two and three CSUs on the plot are
explored and the minimum which is 149 will be chosen.

If we switch I1 off the scan path before configuring C2, access time might
be further reduced. In this case, four CSUs are required in total and the access
time is calculated as 124 clock cycles. The plot in Figure 6.2 shows access time
for other solutions obtainable by using four CSUs, as well.

For this example, allowing further increase in CSUs will not yield lower
access time, but will result in growingly complex models that lower the ef-
ficiency of the retargeting algorithm. In this regard, for this instance of the
problem, the bound calculation in [40] (see Eq. (6.2)) calculates the bound
on the number of CSUs as d169/2e = 85. Since there are five control bits,
unrolling the model 85 times would result in a model with 5× 85 decision
variables, which should be compared to 5× 4 variables when the model is
unrolled only four times.
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Figure 6.3. Access time vs number of allowed CSUs for Instance B

6.2.2. INSTANCE B

Figure 6.3 shows how the solution space would look like if the length of shift-
register for I2 was 70 instead of 100. It is interesting to see that access time
does not decrease when three CSUs are allowed but decreases when four
CSUs are allowed. This entails that a heuristic searching the solution space by
incrementing the bound on CSUs gets stuck at a local minimum. If, however,
the search algorithm is aware of a bound on the number of CSUs, it can do
enough unrollings of the model and let the pseudo-Boolean optimization find
the minimal access time (as well as the right number of CSUs).

6.2.3. INSTANCE C

Figure 6.4 shows how the solution space would look like if the length of shift-
register for I0 was 50 instead of 20. In this case, the overhead caused by
shifting dummy bits through the shift-register for I0, cancels out any potential
benefit from using more CSUs used for removing I2 and I3 from the scan path
to I4.

It is important to note that in this example, if the aim was to access I2
instead of I4, the optimal solution would be obtained by using a different
number of CSUs. The same can be said for other starting configurations (i.e.,
other than all control bits set to zero). In this work, however, our aim is to find
an upper-bound on the number of CSUs that enables reaching the optimal so-
lution for any retargeting step, regardless of the starting configuration and



110 Optimal Retargeting Step

0 1 2 3 4 5
0

100

200

300

400

249
229

359
339

239

414
394

294

244

CSU cycles

A
cc

es
s

ti
m

e
(i

n
cl

oc
k

cy
cl

es
)

Figure 6.4. Access time vs number of allowed CSUs for Instance C

the set of instruments to be accessed. As was mentioned earlier, the proposed
method is applicable when no pair of instruments in the given set are mu-
tually inaccessible. Therefore, in the following section, we propose a method
which computes the upper-bound on the number of CSUs as the maximum
number of CSUs needed to take the network from any initial configuration to
any target configuration. Note that the retargeting algorithm should unroll
the model one extra time to account for the actual read/write operation.

6.3. UPPER-BOUND COMPUTATION CORE (UCC)

As was mentioned earlier, we aim to provide a method for computation of an
upper-bound on the number of CSUs for a given network. In this section, we
explain our generalized Upper-bound Computation Core (UCC) and discuss
how its output can be used for optimal retargeting.

6.3.1. THE CORE: UCC

UCC consists of two steps: (1) modeling the network with a finite state ma-
chine (FSM), and (2) computation of the upper-bound. In the following sec-
tions, each of these steps is detailed. We will use the example network in Fig-
ure 6.5 to describe UCC.



6.3. Upper-Bound Computation Core (UCC) 111

TDO

C1 0

10

1

C0

C2
0

1

TDI

M0

M1

M2

I1

I2

I3

Figure 6.5. Example network used to describe UCC (Section 6.3)

6.3.1.1. MODELING WITH AN FSM

The network in Figure 6.5 has three one-bit mux controllers C0, C1, and C2
and thus has eight possible configurations. The FSM in Figure 6.6 models the
network in Figure 6.5, where each state (encoded as the bit sequence C2C1C0)
represents one of the eight configurations, and each edge models a transition
between two states. Transitions which are from a state to itself are not con-
sidered in the model. The labels li beside transition arrowheads represent the
number of clock cycles needed to perform the transition. The required num-
ber of clock cycles is calculated as the sum of length (in number of flip-flops)
of components on the active scan path (namely, shift-registers and control bits)
plus the number of clock cycles needed to perform capture and update oper-
ations. Table 6.2 lists the components that are active in each of the states, as
well as length of scan path (in number of flip-flops) for each state. In the table,
Li represents the length of shift-register for instrument Ii. As an example, l0,
which corresponds to state 000, is calculated as length of the scan path for
state 000 plus two clock cycles (following the assumption in [40]) for capture
and update operations. It is worth noting that not all transitions are bidirec-
tional, and that length of a transition is not necessarily equal to the length of
the transition in the opposite direction.

6.3.1.2. COMPUTING THE UPPER-BOUND

The FSM in Figure 6.6 can be used to calculate the number of CSUs needed
to transition from each of the states to any other state. The number of CSUs
is equal to the number of transitions between two states. There might be
multiple paths for transitioning between a pair of states. For example, both
paths marked with P1 and P2 on the FSM in Figure 6.6 can be taken to change
the state from 000 to 011, where P1 takes l0 clock cycles and P2 takes l0+l2
clock cycles. We are, however, only interested in the number of transitions for
the path that uses fewer clock cycles (which is not necessarily the path with
fewer number of transitions, as we noted in Section 6.2). Therefore, if we find
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Figure 6.6. FSM showing the transitions for the network in Figure 6.5.
Labels beside each arrowhead represent the number of
clock cycles needed to perform each transition.

Table 6.2. Paths corresponding to each state

State Active components Length of scan path
000 I1, C1, C0 2 + L1
001 C0 1
010 I1, C1, C0 2 + L1
011 I2, C2, C0 2 + L2
100 I1, C1, C0 2 + L1
101 C0 1
110 I1, C1, C0 2 + L1
111 I3, C2, C0 2 + L3

the shortest path between any two states s1 and s2, and compute the number
of transitions (a.k.a. number of hops) needed to achieve that shortest path,
we will know how many CSUs are needed for the transition from s1 to s2 to
achieve the optimal scan vectors. The upper-bound, i.e., the number of CSUs
which allows to take the network from any state to any state with the smallest
number of clock cycles, can then be computed as the maximum among the
number of hops corresponding to each pairwise shortest path.

Assuming a length of 20 flip-flops for instrument shift-registers I1–I3, Ta-
ble 6.3 presents the pairwise shortest path computed between the pairs of
states. The first column lists the source states and the first row lists the tar-
get states. Table 6.4 presents the number of transitions corresponding to the
shortest path between each pair of states in the FSM (Figure 6.6). Based on
Table 6.4, the upper-bound on the number of CSUs is found to be four.
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Table 6.3. Pairwise shortest paths among the states in Figure 6.6 (Li = 20)
State 000 001 010 011 100 101 110 111
000 0 24 24 24 72 72 48 48
001 3 0 27 27 75 75 51 51
010 24 24 0 24 72 72 48 48
011 48 48 24 0 48 48 24 24
100 72 72 48 48 0 24 24 24
101 75 75 51 51 3 0 27 27
110 72 72 48 48 24 24 0 24
111 48 48 24 24 48 48 24 0

Table 6.4. Number of transitions (hops) corresponding to the pair-
wise shortest paths among the states in Figure 6.6

State 000 001 010 011 100 101 110 111
000 0 1 1 1 3 3 2 2
001 1 0 2 2 4 4 3 3
010 1 1 0 1 3 3 2 2
011 2 2 1 0 2 2 1 1
100 3 3 2 2 0 1 1 1
101 4 4 3 3 1 0 2 2
110 3 3 2 2 1 1 0 1
111 2 2 1 1 2 2 1 0

6.3.1.3. OPTIMAL RETARGETING FOR SMALL NETWORKS

The pairwise shortest paths information, obtained as described in previous
section, can be used to directly generate the optimal scan vectors needed for
retargeting. That is, instead of using the upper-bound to unroll a SAT model,
and solving the resulting pseudo-Boolean optimization, one can use the short-
est paths information to find what configuration steps should be taken for
taking a network from its current configuration to a target configuration op-
timally. Since in many target configurations a superset of the desired instru-
ments might be accessible, an approach merely based on the shortest paths
information should choose the smallest among the shortest paths from cur-
rent configuration to all those target configurations. Moreover, the length of
the scan path for those configurations should also be taken into account. The
reason, as was discussed in Section 6.2, is that the actual goal in retargeting is
performing read/write operations on the instruments. Therefore, for optimal
retargeting, not only the transition time between states should be taken into
account, but the time it takes to perform (at least) one read/write should also
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Figure 6.7. A network consisting of N isolated segments.

be considered.
This method of retargeting is, however, only applicable to small networks

for which the pairwise shortest paths can be computed efficiently. For large
networks, the computation time and memory requirements makes the use of
this method inefficient.

6.3.1.4. PESSIMISM IN THE UCC RESULTS

There are two types of transitions that might increase the upper-bound un-
necessarily. The first type are transitions that do not change the set of active
components, such as transition from state 001 to state 101. The second type
are transitions that do change the set of active components, but the new set
is achievable via other transitions with smaller number of CSUs and less than
or equal number of clock cycles. For example, states 000 and 100 activate
the same set of components, but it takes fewer clock cycles to go from 001
to 000 than from 001 to 100. These two transition types make the computed
upper-bound slightly pessimistic. In Section 6.5, we present the computed
upper-bound both before and after the removal of such pessimism from the
results.

6.4. HANDLING LARGE NETWORKS

The method we described in Section 6.3 is not directly applicable to large net-
works as the number of states in the FSM model grows exponentially w.r.t. the
number of control bits. In this section, we describe three techniques (referred
to as reduction here) that can help in handling large networks. Due to the lack
of space, we only detail the implementation of the decomposition technique.
We conclude this section by explaining how these reduction techniques are
used in a complete upper-bound computation flow.

6.4.1. REDUCTION THROUGH DECOMPOSITION

Figure 6.7 shows a network consisting of N segments S1–SN. Each of these seg-
ments is connected to the rest of the network exclusively via a scan-in/scan-
out pair. In this work, any such segment is referred to as an isolated segment.
In the network in Figure 6.7, a CSU applied to any of these N segments is also
applied to the other N−1 segments at the same time. The reason is that the
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serial data goes through all the segments and the control signals are applied
to (the currently active path) in each of them at the same time. Therefore, the
segment requiring maximum number of CSUs determines the upper-bound.
That is, the technique described in Section 6.3 can be applied to each seg-
ment Si individually to compute the upper-bound for that segment (denoted
as ub,i), and the upper-bound for the whole network, denoted by U, can be
calculated as:

U =
N

max
i=1

ub,i (6.3)

Through decomposition, the worst-case complexity of upper-bound com-
putation for the original network is reduced to the complexity of upper-bound
computation for the segment containing the highest number of control bits.

6.4.1.1. IMPACT OF DECOMPOSITION ON UPPER-BOUND

The upper-bound computed via decomposition might be slightly higher than
what would be computed if UCC was directly applied to the original network
(and therefore, higher than what is actually needed for optimal retargeting).
The reason can be explained by referring to the motivational example network
in Figure 6.1, which can be seen as combination of two isolated segments:
s1 containing instrument I0, and s2 containing the rest of components. We
observed for Instance C of that example that an increase in the length of I0
(from 20 to 50) caused a decrease in the number of CSUs needed for optimal
access to I4 (from 4 to 2). Seen the other way around, going from Instance
C to Instance A, which decreases the length of I0, causes an increase in the
number of CSUs needed for optimal retargeting. The same effect is present
in decomposition as it removes other segments from each other’s scan path.
This increased number of required CSUs calculated for each isolated segment,
might make the upper-bound computed by the use of decomposition slightly
pessimistic.

6.4.1.2. PERFORMING DECOMPOSITION

We will now use the example network in Figure 6.8(a) to explain how to dis-
tinguish isolated segments. In this figure, the network components belonging
to different isolated segments are marked with colored areas. For more clar-
ity, each of the three isolated segments is also marked with Roman numerals.
Compared to the conceptual illustration of isolated segments presented in Fig-
ure 6.7, in which it is clear where on the scan path an isolated segment begins
and ends, it is less straightforward to identify all isolated segments in the
network in Figure 6.8(a). Given the exponential complexity of the presented
UCC technique w.r.t. number of control bits, it is crucial to identify more (and
consequently smaller) isolated segments in a given network.
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Figure 6.8. Decomposition example

In the following, a two-step procedure for identification of isolated seg-
ments is presented. In the first step, we identify network segments connected
to each other in series on the scan path (hereinafter candidate segments). In
the second step, based on the control dependencies between these candidate
segments, we group them to form isolated segments.

STEP 1 The graph in Figure 6.8(b) models the network in Figure 6.8(a),
where the control signals are represented by dashed lines. In identification
of candidate segments, we use the concept of graph dominators. In a directed
graph, vertex v1 dominates vertex v2 if all the paths going through v2 pass first
through v1. For example, in Figure 6.8(b), vertex SI dominates all vertices in
the network. However, SI is only immediate dominator (called idom) to I5 and
M7. There are efficient algorithms to find idoms for vertices in a graph [58].

Dominators help to identify where on the scan path a candidate segment
starts and ends. For example, C7 marks where isolated segment I finishes
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and isolated segment II begins on the scan path. If, however, we apply the
concept of dominators directly to the complete network graph in Figure 6.8(b),
we fail to identify segment III as an isolated segment. Therefore, we instead
apply the graph dominators algorithm to a scan path-only copy of the graph
(in which control signals are removed) shown in Figure 6.8(c). Based on the
results, we create a chain of idoms for the scan path-only graph by going
from the scan-out (SO) towards the scan-in (SI). The chain will be as SI⇒ M7
⇒ C7 ⇒ M5 ⇒ C5 ⇒ M4 ⇒ C4 ⇒ M3 ⇒ M1 ⇒ C1 ⇒ SO, which reads as
SO is immediately dominated by C1, which is in turn immediately dominated
by M1, and so on. The vertices on this chain mark entry and exit points of
candidate segments.

STEP 2 The key to grouping candidate segments into isolated segments is
detecting control dependencies between those candidate segments. That is, if
there is a control signal connecting two candidate segments, those segments
should be grouped and analyzed as one isolated segment. To detect such de-
pendencies, we use a copy of the network graph in which the output edges
of all vertices on the chain of idoms are removed, as shown in Figure 6.8(d).
To calrify this, we note that the chain of idoms was obtained from the scan
path-only graph. Therefore, if after removing the output edges of all ver-
tices on the chain of idoms, two candidate segments are still connected, they
are connected via a control signal. Moreover, this graph is converted into an
undirected graph, as the aim is to find control dependencies irrespective of
the order that candidate segments appear on the scan path. To identify which
of the candidate segments should be grouped together, we use the concept
of connected components in graph theory. A connected component in an undi-
rected graph is a set of vertices in which any two vertices are connected (either
directly or indirectly). It should be noted that a “component” in graph the-
ory is a set of vertices, and in our problem maps to an isolated segment, and
not to a network component. After applying the connected components algo-
rithm, the isolated segments are identified as marked with the colored areas
in Figure 6.8(d). The algorithm also identifies SI and SO as isolated segments,
which we ignore. It can be seen that via these two steps, we successfully
identified isolated segments in the network in Figure 6.8(a).

In this example, there were no instruments in the chain of dominators, as
there was no instrument directly on the scan path between scan-in vertex SI
and scan-out vertex SO. When there are instruments on the chain, they can be
ignored, because if we form separate isolated segments for them, the upper-
bound for that segment is zero (simply because there are no control bits in
such an isolated segment).
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Figure 6.9. Example structures for the “lookup” technique

6.4.2. REDUCTION THROUGH “LOOKUP”

Another technique for handling upper-bound computation for large networks
is to recognize structures for which we know how to calculate the upper-
bound. In this thesis, we present two such structures shown in Figure 6.9:

• Type I structure (Figure 6.9(a)): In this structure, the each of the seg-
ments S1–SN is isolated (in the sense defined in Section 6.4.1). As in any
retargeting step, only one of the inputs to mux M can be active, only
one of the segments S1–SN is required to be configured. Therefore, in
computation of the upper-bound for the complete structure, it suffices
to consider only the segment that requires the largest number of CSUs.
For the Type I structure, the upper-bound (for the whole structure) can
be computed as:

1 +
N

max
i=1

ub,i (6.4)

where ub,i is the upper-bound computed for segment Si, and 1 repre-
sents the CSU needed to configure mux M itself.

• Type II structure (Figure 6.9(b)): For this structure, irrespective of the
current configuration of the network, it takes maximum two CSUs to
program C1 and C2 such that segment S becomes accessible. There-
fore, the upper-bound for the whole structure is the upper-bound for
segment S plus two.

6.4.3. REDUCTION THROUGH REWRITING

The idea in rewriting is to create a network which is equivalent to the original
network w.r.t. the upper-bound on the number of CSUs, but can be handled
by the other reduction techniques (such as decomposition and lookup men-
tioned above). An example of rewriting is presented in Figure 6.10 where the
network to the left is rewritten by duplicating control bit C0 along with its
associated mux. The resulting network (to the right) can then be reduced by
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Figure 6.10. An example rewriting technique

using the technique in Section 6.4.1, as each of the segments marked by S1 and
S2 are isolated. Note that although the functionality of the rewritten network
is different from the original network, the upper-bounds of both networks are
equal.

6.4.4. THE COMPLETE UPPER-BOUND COMPUTATION FLOW

In the following, we describe our complete upper-bound computation flow,
which is based on the use of UCC (described in Section 6.3) and the reduction
techniques described earlier in this section. Initially, the rewriting method is
used to create a new network that has the same upper-bound as the original
network. The computation of upper-bound starts by applying decomposition,
which identifies one or more isolated segments. The lookup technique is
then applied to each of these segments. If the lookup does not recognize any
known structures, UCC is performed on the segment. However, if the lookup
recognizes a structure, it calls the decomposition technique on the isolated
segments existing within the recognized structure.

In other words, after performing the initial rewriting, the upper-bound
computation consists of a number of calls between the decomposition and
lookup methods. When an isolated segment is not recognized by the lookup
function, UCC is applied to it. The upper-bound computed for each segment
is then used to compute the upper-bound for the whole network by using the
formulas described for each of the reduction techniques.

6.5. EXPERIMENTS

We implemented the proposed upper-bound computation method and ap-
plied it to a number of benchmark circuits. The considered benchmarks are
divided into three groups. The first and second groups are introduced in [39]
and reused in [40]. The instruments used to construct these networks are ex-
tracted from ITC’02 [48] benchmark set as explained in Appendix D.1. The
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networks in the first group are SIB-based and those in the second group are
Daisy-chained (referred to as MUX-based in [40]). Appendix D.2 provides
details on the architecture of these networks. Our initial experiments showed
that the networks in the first and second group were completely reducible
by the proposed reduction techniques. Therefore, there was a need to new
benchmark networks that exercise the UCC technique, as well. That is why
we constructed a third group of benchmarks, consisting of the following net-
works:

• a group of networks, referred to as N1–N5, that are not reducible by
the reduction techniques presented in this thesis, and therefore, UCC
should be applied to the complete network. Figure 6.11 shows the
smallest (w.r.t. the number of control bits) in this group. See Ap-
pendix D.2.2 for the rest of the networks in this group.

• the C1–C2 networks (Figure 6.12), which are constructed by combining
the N1–N5 networks such that the combination network exercises the
reduction techniques, as well as the UCC technique.

For all benchmarks, the length of instrument shift-registers is assumed to
be 20 flip-flops. Moreover, following the assumption in [40], the number of
clock cycles needed for performing capture and update operations is assumed
to be two clock cycles.

The results obtained by evaluating the techniques proposed in this chapter
are summarized in Table 6.5. The first two columns of the table list the names
and the total number of control bits for each benchmark network. The third
column reports the maximum number of control bits required to model irre-
ducible sections within the network. This information is important since the
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Figure 6.12. Two networks constructed by combining N1–N5 networks

number of control bits significantly impacts the run-time of UCC. It can be ob-
served that for those benchmarks constructed to be irreducible, namely, N1–
N5, the proposed reduction techniques do not succeed to reduce the number
of control bits. On the other hand, if the reductions are successfully applied,
such as for the set of SIB-based and Daisy-chained (MUX-based) benchmarks,
the generation of an FSM and the application of UCC can be completely omit-
ted. The reason is that for networks in the first and the second groups, the
reduction techniques reduce the networks into a number of isolated segments
each containing only one instrument shift-register. As was mentioned in Sec-
tion 6.4.1, the upper-bound for an isolated segment containing only instru-
ment shift-registers is zero—hence no need for applying UCC.

The computed upper-bounds are listed in columns four and five, before and
after pessimism removal, respectively. The computed upper-bound denotes
the maximum number of CSUs needed to reconfigure the network by using
the minimum number of clock cycles. Pessimism removal is only used in the
UCC technique and therefore has no effect on the results for the first and
second groups of networks. Comparing the results in columns four and five
for the third group of benchmarks shows that the pessimism removal can have
a significant effect on the efficiency of retargeting. For example, for network
C1, the upper-bound is reduced from 12 to eight, which translates into 51× 4
less variables for the retargeting tool to deal with. In order to perform the
actual read/write operation an additional CSU is required (see Section 6.2).

The described reduction techniques, such as rewriting, decomposition, and
lookup, are evaluated in the columns six to eight. The reported run-times
are the total sum over all the application cases of each of these techniques
for each of the benchmarks. Applying the reduction techniques to the largest
among SIB-based and Daisy-chained (MUX-based) benchmarks (i.e., p93791)
requires up to more than a total of six minutes of run-time. For the third
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group of benchmarks the run-time of the reduction techniques is negligible.
The run-time for generating the FSM after reduction is listed in column

nine. As was explained in Section 6.3.1.2, to compute the upper-bound from
the generated FSM, the shortest path between each pair of states should be
computed. To do so, we evaluated two well-known shortest path computa-
tion algorithms, namely, Dijkstra and Floyd-Warshall. The Dijkstra algorithm
finds the shortest path between a given source state and all target states, and
is therefore run once for each state in the FSM. The run-time reported for Dijk-
stra algorithm in column 10, is the sum of the run-times for each source state.
The Floyd-Warshall algorithm is, on the other hand, an all-pairs shortest-paths
algorithm and finds the shortest path between all pairs of states in the FSM in
one run. The run-time for the Floyd-Warshall algorithm is reported in column
11. The observation from our experiments is that the Dijkstra algorithm per-
formed especially well on large FSMs (namely, for benchmarks N3–N5 and
consequently C1–C2), whereas the alternative Floyd-Warshall algorithm re-
quired slightly less runtime on small FSMs. In general, the Floyd-Warshall
algorithm has higher complexity (compared to running Dijkstra once for each
source state) when the FSM is a sparse graph. Both algorithms delivered the
same results. The last column in the table reports the time it took to perform
the pessimism removal in the UCC technique. Finally, as was mentioned ear-
lier in this section, there is no UCC run-time required for the benchmarks in
the second and third groups.

6.6. CHAPTER CONCLUSIONS

For the problem of optimal retargeting for 1687 networks, the shrinking of the
solution space is highly important in order to ensure efficient generation of the
optimal scan vectors. This can be done by providing bounds on how many
CSU operations have to be considered in the retargeting step. To provide
such bounds, in this chapter, we proposed a method for the computation of
upper-bound on the number of CSUs. The proposed method uses a number
of techniques that make it applicable to a range of complex and large 1687
networks. By applying the approach to a set of benchmarks, it is shown that
the method is able to efficiently provide tight bounds for complex and large
benchmark networks.
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IEEE 1687 Networks for

Fault Monitoring

As was mentioned in Chapter 1, due to phenomena such as soft errors, inter-
mittent faults, and aging, there is a need for in-field monitoring of the opera-
tion of SoCs. In-field monitoring can be done by embedding instruments into
the SoCs for detecting errors1 or measuring health related parameters, such as
voltage droop, current, temperature, etc. Such instruments can be connected
to a fault manager that makes decisions based on the collected error statuses.
The fault manager can be implemented in an on-chip or off-chip processor. In
either case, there should exist a network for connecting the fault manager to
the on-chip monitoring instruments. It is important that the latency in a fault
monitoring network is kept low, as the earlier the fault manager gets aware
of errors in the system, the faster it launches recovery actions. Moreover, the
latency should be deterministic to let designers of a system assess its relia-
bility. In this thesis, we consider two types of latency in the fault monitoring
network:

• fault detection time: the time interval between detection of an error by
a monitoring instrument and when the fault manager gets aware of
presence of an error in the system, and

• fault localization time: the time it takes between detection of a fault by
the fault manager and when the fault manager identifies the faulty re-
source and extracts the error code reported by the respective monitoring
instrument.

A fault monitoring network can be stand-alone, or part of an existing func-
tional infrastructure such as network-on-chip or system bus. There are advan-

1In this thesis, we use the terms fault and error interchangeably even though in
practice these two concepts are different, i.e., an error is a manifestation of a fault.
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tages and drawbacks with using an existing infrastructure for the additional
purpose of fault monitoring. The advantage is that no extra hardware cost is
incurred. One drawback is that adding traffic of fault monitoring information
may impact the performance of the system, as it might be difficult at design
time to estimate the timing and the amount of traffic information that is to be
generated from occurrence of errors. Another drawback is that the predictabil-
ity of the fault monitoring system is reduced, as the traffic on the functional
network might also affect the latency of the fault monitoring information. To
be on the safe side, the network might be over-designed to ensure that perfor-
mance is kept high, which is however costly. With a stand-alone network, the
advantage is twofold: it does not impact the performance of the system, and
simplifies achieving a deterministic fault detection and localization time. The
downside of using a stand-alone network is adding extra hardware cost, if it
is added only for the purpose of fault management. However, many ICs are
already equipped with stand-alone networks that are, e.g., accessed via the
TAP, to enable test, diagnosis, configuration, etc. This makes the reuse of such
networks for fault monitoring and error handling during operation attractive.

There have been a number of works on networks for transporting moni-
toring data (for transient faults, timing errors, power estimation, etc.) using
a dedicated infrastructure [59, 60, 1, 22, 23]. The works in [1, 22, 23] stand
out as they rely on reusing the existing 1687 network for monitoring pur-
poses. The assumption in these works is that the IC is to be equipped with
embedded monitoring instruments that can detect errors and raise error flags,
and that these on-chip monitoring instruments are to be interfaced to a 1687
network. In this thesis, we follow these assumptions and additionally as-
sume that the monitoring instruments produce error codes according to the
type of the detected errors. We propose a scheme where the 1687 network is
self-reconfigured (while maintaining standard compliance) to automatically
include the instrument registers containing error codes in its scan path. The
proposed scheme enables very fast error detection, and achieves significantly
faster fault localization compared with [1, 22, 23].

We begin the discussion in this chapter by reviewing the related work (Sec-
tion 7.1). We describe the hardware structure of our proposed self-reconfigur-
ing networks in Section 7.2 along with an example illustrating how the fault
localization is done. In Section 7.3, we present fault detection and localization
time analysis for two cases: when a single fault occurs, and when multiple
faults occur concurrently. Section 7.4 presents a method for optimal design of
self-reconfiguring networks, and Section 7.5 focuses on the fault manager and
details a hardware module that greatly facilitates the extraction of error data
from the network during the localization process. In Section 7.6, we compare
the fault detection and localization times of the proposed self-reconfiguring
scheme against previous IEEE 1687-based fault management schemes. Finally,
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Figure 7.1. A simplified representation of the basic idea in [1]

in Section 7.7, we discuss practical issues regarding the implementation of the
proposed self-reconfiguring networks.

7.1. PRIOR WORK

In this section, prior work on fault management using 1687 networks as the
fault monitoring infrastructure is discussed.

Hierarchical 1687 networks have been used in fault management schemes
to connect instruments to a fault manager [1, 22, 23]. In [1], methods for
optimized design and calculation of error localization time are presented for
their proposed fault management scheme. The work in [22] extends [1] by
elaborating on how the fault manager can react faster to new faults while
the instrument access network is in use for other purposes and how multiple
faults can be addressed, but presents no time analysis method or experimental
results for such cases. In [23], a simulation-based platform for experimenting
with fault injection and fault management is elaborated, but no time analysis
or network optimization method is presented.

Along with the 1687 network, [1, 22, 23] use a fully combinational error flag
propagation network which propagates error flags to the highest hierarchical
level of the 1687 network. A simplified representation of the hierarchical net-
works used in [1] is shown in Figure 7.1 where the error flag propagation
network is marked by the dashed lines. The advantage is that by reading the
ErrorFlag register in the highest level the fault manager gets informed of any
error in the system without checking each and every instrument. To guide
fault localization, [1, 22, 23] added ErrorFlags at every level, resulting in dra-
matic increase in fault localization time. Also, fault localization in [1, 22, 23]
involves a number of CSUs to open hierarchical levels, each CSU performed
over a scan path longer than the scan path for the previous CSU, increasing
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Figure 7.2. (a) Symbol for the modified SIB, and (b) An example self-
reconfiguring network (the dashed line represents the er-
ror flag propagation network)

the fault localization time. In this regard, recall from the time analysis for the
example network in Figure 3.1(b) how for accessing the instruments in the
second hierarchical level, the SIBs in the first level had to be programmed for
every CSU (see Section 3.2.1.2).

In this thesis, to address the fault localization time, we consider a fault man-
agement scheme similar to those in [1, 22, 23] and propose self-reconfiguration.
We show that by adding self-reconfiguration it is possible to reduce the fault
localization time significantly while keeping conformity to the IEEE 1687
rules.

7.2. SELF-RECONFIGURING NETWORK

In this section, we describe the hardware structure of the self-reconfiguring
networks (Section 7.2.1), as well as how to detect and localize errors in the
proposed structure (Section 7.2.2).

The basic idea in self-reconfiguration is that when a fault is detected by a
fault monitor, the corresponding error code register is automatically included
in the active scan path so that its contents can be readily shifted out and
analyzed. Such scheme, improves the speed of fault localization via (1) avoid-
ing to open levels of hierarchy one level at a time, and (2) using only one
single-bit ErrorFlag register instead of placing multiple such registers at each
hierarchical level.
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7.2.1. HARDWARE STRUCTURE

In this work, we assume a hierarchical 1687 network interfacing all embedded
instruments (test, debug, fault monitors, etc.) in a system to a Fault Manager,
which has the purpose of detecting and localizing errors that may occur in
different components of the system over time, such that it can initiate neces-
sary fault handling actions. The novelty of this work relies on the fact that
part of the hierarchical 1687 network has the feature of self-reconfiguration.

Figure 7.2(b) shows an example of a self-reconfiguring network. Among all
the instruments, we assume that there is a set of fault monitoring instruments.
In the top level of the hierarchical network, the fault monitoring instruments
are connected through a dedicated SIB, denoted with SIB0, while all the other
instruments (test, debug, etc.) are connected through another SIB, denoted
with SIBins. The top level also includes a one bit shift-register (ErrorFlag) to
indicate if any errors are detected by any of the fault monitoring instruments.

We assume that a fault monitoring instrument has a fault flag output termi-
nal that is set to logic ‘1’ in case a fault is detected. The fault flag stays active
until it is acknowledged via a clear flag input terminal. The fault flag signal
will be used as an input to reconfigure the network, such that an access to
the fault monitoring instrument is enabled. Furthermore, the fault flag sig-
nal is propagated across the hierarchical levels and is finally captured by the
ErrorFlag register in the top level of the hierarchical network.

Additionally, we assume that a fault monitoring instrument produces an
error-code which is parallel-loaded during the capture phase into an error-
code/mask register (EMR) interfacing the instrument to the 1687 network.
An EMR is assumed to have capture and update features (similar to standard
1149.1 TDRs) and it contains an error-code field (written by the fault monitor)
and a mask field (written by the Fault Manager). Error masking is used to
stop a permanent fault from constantly raising the fault flag. To be compliant
with the IEEE 1687 standard, error masking should be enabled by default
at reset to disable self-reconfiguration of the network. When the EMR of a
fault monitoring instrument is selected and data is shifted through it, the
clear flag is asserted to indicate that the fault from the fault monitor has been
acknowledged. In Figure 7.2(b), the 3-bit registers, namely EMR1 and EMR2,
are the EMRs associated to Monitor 1 and Monitor 2, respectively.

To enable self-reconfiguration, we propose a modified SIB, which is the core
component in a self-reconfiguring network. A modified SIB, while being IEEE
1687 compliant, can additionally be opened asynchronously via a dedicated
terminal. The symbol shown in Figure 7.2(a) will be used in this thesis to
represent a modified SIB. In Section 7.7, we detail the circuitry of the proposed
modified SIB.

All fault monitoring instruments in the network are connected to the top-
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level SIB0 through a network of modified SIBs. The main difference between a
regular SIB and a modified SIB is the pair of terminals “open” and “toOpen”.
The “open” terminal of a modified SIB is connected either to (1) the fault flag
of the monitoring instrument—see SIB1 and SIB2 in Figure 7.2(b)—or (2) the
ORed output of the “toOpen” terminals of all modified SIBs attached to it
(placed one hierarchical level below). When the “open” terminal is asserted
(pulled high), it changes the state of the SIB to opened only if the SIB is not
already part of an active scan path. The signal from the “open” terminal is
gated internally using (an inverted copy of) the select signal to make sure
that the state of the SIB does not change (from closed to opened) when it is
part of an active scan path (see Figure 7.9 for details on the modified SIB). The
“toOpen” terminal propagates the internally gated signal (from the “open”
terminal) via an OR gate either to (1) the modified SIB in the hierarchical level
above, or (2) the ErrorFlag register in the top level—see Figure 7.2(b). Note
that when the fault flag has managed to propagate to the ErrorFlag register,
all the modified SIBs on the path from the fault monitor raising the flag to the
top level SIB0 are properly configured, i.e. the network has self-reconfigured.

A requirement for a modified SIB (as well as for SIB0 and SIBins) is to have its
shift (S) flip-flop placed after the hierarchical mux (similar to what is shown in
Figure 2.7(a)). Such placement, while being fully standard compliant, ensures
that during shifting, the state of the SIB is always shifted out first. This is re-
quired by the fault-localization method to determine the current configuration
of the network.

7.2.2. FAULT DETECTION AND LOCALIZATION METHOD

In this section, we explain the fault detection and localization method with
the help of the example network shown in Figure 7.2(b) and the timelines
shown in Figure 7.3. The following scenarios are considered: (1) no error has
occurred, (2) an error occurs when the Fault Manager is not localizing another
error, (3) an error occurs when the Fault Manager is localizing another error,
and (4) two errors occur in a short span of time when the Fault Manager is
not localizing another error.

For the first scenario, when no error occurs, the Fault Manager constantly
checks the status of the system by polling the value captured by the ErrorFlag
register. The Fault Manager does the polling via looping constantly through
the Capture, Shift, Exit1, Update, and Select states in the DR branch of the TAP
controller state machine. Since SIB0 is closed when no errors are being local-
ized, the polling takes seven test clock cycles (TCK)—the interval between t0
and t3 in Figure 7.3(a)—as three shifts are required: for SIBins, SIB0, and Error-
Flag. The value of the fault flag raised by monitoring instruments is captured
at t1 into ErrorFlag register and can be observed at t2 (see Figure 7.3(a)). The
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Figure 7.3. The detection and localization method: (a) constant
polling to detect a fault, (b) an error is detected and lo-
calized, (c) another error happens when the previous one
is being localized, and (d) when two faults are detected
together.

polling continues as long as the shifted out bit corresponding to the ErrorFlag
register is a ‘0’. During polling, zeros are shifted in to keep SIB0 and SIBins
closed.

For the second scenario (see Figure 7.3(b)), consider that a fault happens at
the interval between t0 and t1 and is reported by Monitor 1. The reason we
chose this interval is that no matter when in this interval a fault occurs, it will
not be captured until t1 and will therefore not be detected until shifted out
at t2. We refer to the interval between t0 and t2 (which is eight TCKs long)
as the worst-case fault detection time (when no other error is being localized)
and denote it by dworst. When the value shifted out at t2 (which belongs to
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the ErrorFlag) is a ‘1’, the localization procedure is launched by shifting a ‘1’
into SIB0 at t3 which takes effect at the following Update phase (t4). Once
SIB0 is open, as the rest of the network is already self-reconfigured, the Fault
Manager starts shifting out data from the network (while shifting in zeros to
close the SIBs and reset EMRs on the active scan path) to localize the fault:
The first two bits shifted out are the contents of ErrorFlag and SIB0. The third
bit is the contents of SIB2 for which a value of zero indicates that SIB2 is closed
and the fault is not reported from the network segment connected to the host
port of SIB2. The next bit is the contents of SIB1 which is ‘1’ meaning that
SIB1 is open and the fault is reported from the segment connected to it, i.e.,
Monitor 1 in this example. The next three bits are the contents of the 3-bit
EMR1 which interfaces Monitor 1 to the 1687 network. At this point, i.e., at
t5, the error is localized and the error information is retrieved. In this work,
however, we include in the localization time (denoted by tloc) the next four
TCKs needed to shift-in one more zero for SIBins and take the TAP controller
state machine back to the capture phase. The worst-case error detection and
localization time can then be written as:

tworst = dworst + tloc (7.1)

where dworst is the worst-case fault detection time (when no other error is
being localized), and tloc is the fault localization time.

In practice, for the above scenario, dworst should be extended to include the
time that it takes a fault flag signal to propagate from the fault monitoring
instrument to the ErrorFlag. We denote this propagation delay by δ and note
that if the fault monitor signals the error later than t0-δ, it is not captured at
t0. Therefore, dworst should be written as t2-t0+δ which is equal to 8/ fTCK + δ
where fTCK is the maximum frequency that the TAP can be operated at.

For the third scenario, when an error happens while the Fault Manager
is localizing a previous error, consider Figure 7.3(c) as continuation of the
timeline in Figure 7.3(b). As discussed for the second scenario, at t4 SIB0
is opened which puts SIB1 and SIB2 on the active scan path. SIB0 is closed
at t6 meaning that between t4 and t6 SIB2 is selected (though closed) and,
therefore, cannot be opened by a fault flag signal from Monitor 2. That is,
any fault reported by Monitor 2 after t4, is captured at t7 and detected at
t8. Since SIB2 is closed, the fault flag from Monitor 2 is not acknowledged
and therefore remains active until SIB2 is opened and the error code from
Monitor 2 is captured into EMR2.

For the last scenario, consider the timeline in Figure 7.3(d), where both
monitors detect faults in the interval between t0 and t1. In this case, both
faults are detected at t2. In comparison to the scenario for one fault (see
Figure 7.3(b)), the localization procedure takes a longer time as this time SIB2
is also opened and EMR2 is also included in the scan path.
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Figure 7.4. A balanced tree hierarchical network

As a final note in this section, we observe from Figure 7.3(b) and Fig-
ure 7.3(d) that the shaded states are traversed no matter how many faults
are being detected and localized. We denote this constant overhead of 18
TCKs by JOH, and write Eq. (7.1) as:

tworst = JOH + ts (7.2)

where ts denotes the number of shift cycles in tloc and varies with the number
of faults being localized.

7.3. TIME ANALYSIS

In this section, we present analyses for the worst-case error detection and
localization time (tworst) in a self-reconfiguring network, for two cases: when
a single fault occurs (Section 7.3.1), and when multiple faults occur such that
they are all detected by the Fault Manager at the same time (Section 7.3.2).

As shown in Eq. (7.2), tworst has a constant part JOH and a variable part ts.
For the analyses we focus on calculating ts.

We present time analyses for balanced tree networks. Figure 7.4 illustrates
a network connecting N = kh instruments that resembles a k-ary tree whose
root is SIB0. In this network, each doorway SIB has k SIBs directly connected
to its host port, and there are h+ 1 levels, where the instruments are interfaced
through the SIBs in the lowest level.



136 IEEE 1687 Networks for Fault Monitoring

7.3.1. SINGLE FAULT

Given the network in Figure 7.4, assume that only one monitor has raised a
fault flag causing all SIBs on its hierarchy to change state to opened, and that
SIB0 is also opened by the fault manager. In this case, the number of SIBs on
the scan path is calculated as follows. There are h opened doorway SIBs at
each of the hierarchical levels 0 to h − 1, and one opened instrument SIB at
level h, which is connected to the EMR of the monitor. Each of the h opened
doorway SIBs has k SIBs on its host port. Therefore, including SIB0 and SIBins,
there are s = 2 + k× h SIBs on the path to each monitoring instrument. The
total shift time ts is therefore the sum of s and the length of the EMR (denoted
by L) plus one for ErrorFlag:

ts = 2 + k× h + L + 1 = 3 + k× logk N + L (7.3)

7.3.2. MULTIPLE FAULTS

Assume that F faults (F ≤ N) are to be localized at the same time (see the
discussion on Figure 7.3(d)). To calculate ts, we consider monitors detecting
these faults to be spread in the network such they cause maximum possible
number of SIBs to be opened (maximizing the length of the active scan path,
thus leading to the longest localization time). As an example, when F = k
faults happen in the system monitored via the network in Figure 7.4, the lo-
calization time is maximized when each of these k faults happen in the subtree
of each of the k SIBs in level 1. Another observation is that for localization
of F ≥ 1 faults, the SIB at level 0 is opened, for F ≥ k, all SIBs in level 1 are
opened, for F ≥ k2, all SIBs in level 2 are opened, and so on. The number of
these SIBs, which are on the scan path to all F monitors (i.e., shared by all of
them), is captured by:

r

∑
i=0

ki (7.4)

where r is the number of upper levels in which all the SIBs are open:

r = dlogk Fe (7.5)

Next, to calculate the number of SIBs exclusively on the path to each of the
F monitors, we note that h− r remaining lower levels are open exclusively for
each fault, each having k SIBs. Therefore, the total number of SIBs exclusively
opened for the F monitors is:

F× k× (h− r) (7.6)

To sum up, the total number of SIBs on the scan path for the F faults is:

s = 1 +
r

∑
i=0

ki + F× k× (h− r) (7.7)
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where 1 is for SIBins. To calculate ts, we need to add to this number of SIBs,
the total length of EMRs on the scan path (i.e., F × L) as well as one for the
ErrorFlag, as follows:

ts = 1 +
r

∑
i=0

ki + F× k× (h− r) + F× L + 1 (7.8)

7.4. NETWORK DESIGN

In this section, we describe a method for designing a self-reconfiguring net-
work for N instruments, such that tworst for a single fault is minimized. As
tworst has a constant part JOH and a variable part ts (see Eq. (7.2)), minimizing
tworst reduces to minimizing ts.

Given an arbitrary number of instruments N, it might not be possible to
construct a balanced k-ary tree for k 6= N. In such cases, a straightforward way
to construct the network is to create a balanced tree for kdlogk Ne instruments.
Following from Eq. (7.3), the total shift time for such a tree can be written as:

ts = 3 + k× dlogk Ne+ L (7.9)

As ts in Eq. (7.9) is not continuous, to minimize ts, we assume it to be a
continuous function, thus transforming Eq. (7.9) to Eq. (7.3). To find k that
minimizes ts, we set the first derivative of ts w.r.t. k to zero:

ts = 3 + ln N × k
ln k

+ L ⇒ t′s = ln N
ln k− 1
(ln k)2 (7.10)

t′s = 0 ⇒ ln k = 1 ⇒ k = e (7.11)

Given that e u 2.72, we can choose either k = 2 or k = 3. However, solving
the relaxation of an optimization problem does not necessarily result in the
optimal solution for the original problem. Therefore, based on the results of
the relaxation, we describe a straightforward method (Section 7.4.1), as well
as a heuristic (Section 7.4.2) that use k = 2 and k = 3 for minimization of ts.

7.4.1. PRUNED TREES

Generally, given an arbitrary number of instruments N where N is not a
power of two or three, it is not possible to construct a balanced tree. In such
cases, a straightforward way to construct the network is to create a balanced
tree for kdlogk Ne instruments, where k = 2 results in a binary tree and k = 3
results in a ternary tree, and prune the tree (after placing the N instruments
at the leaf nodes). Pruning can be done by removing the internal nodes to
which one or no instrument is connected. After pruning, one can compare
the results from the pruned binary and ternary trees and pick the better one.
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Figure 7.5. Alternative representation of networks, where filled cir-
cles represent the SIBs which are not directly connected to
instruments, empty circles represent SIBs connected to in-
struments, and edges represent the hierarchical relations:
(a) representation of network in Figure 7.2(b), (b) and (c)
networks for four instruments

7.4.2. HEURISTICS

In the following, we present a network construction method that by mixing
binary and ternary subtrees yields similar or better results compared with
each of the pruned binary and ternary tree alternatives.

Let us now switch to a simpler network representation which is more suit-
able for the discussion in this section. The tree in Figure 7.5(a) captures the
hierarchical relation (and not the data connections) between the SIB compo-
nents in the network shown in Figure 7.2(b). The instruments are not shown
(as the length of instruments’ shift-registers has no effect on SIB shifting over-
head) and those SIBs directly connected to instruments are represented by
empty circles. In Figure 7.5(a), node SIB0 is parent to sibling leaf nodes SIB1
and SIB2. When a parent SIB is opened, its children are on the scan path no
matter if they are opened or closed. In other words, when a node is on the
scan path, all its siblings are also on the scan path.

As the proposed network construction method is based on bundling in-
struments in groups of three, we would first like to make an observation for
when the remaining number of instruments is one, i.e., when N mod 3 = 1.
Figure 7.5(b) and Figure 7.5(c) show two networks constructed for four instru-
ments. When in the network in Figure 7.5(b) a fault is detected at instrument
connected to the SIB at node 3, that SIB (node 3) as well as the SIB at node 1 are
opened. This means that in total five SIBs are on the path (namely, nodes 0–4)
and it therefore takes five clock cycles to read their status. In this case, as all
instruments have the same number of SIBs on their scan path, the average-
case and the worst-case fault localization time is the same for all of them.
This, however, is not the case for the network represented in Figure 7.5(c) in
which for the instrument connected to node 2 three shift clocks are needed
while for those connected to nodes 3–5 six shift clocks are needed—averaging
to (3× 6 + 1× 3)/4 = 5.25 clock cycles. It can be seen from this example that
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Figure 7.6. Representation of a self-reconfiguring network con-
structed for 11 instruments

the network represented by Figure 7.5(b) results in both better average-case
and worst-case shifting time.

Based on the above observation, we propose the following construction al-
gorithm. For given N instruments, we bundle the instruments into clusters of
three instruments each. When N is a multiple of three, we will have c = N/3
clusters. If N is not a multiple of three, one or two instruments will remain.
Following the observation made for Figure 7.5(b), when the number of re-
maining instruments is one, we make c = bN/3c − 1 three-instrument clus-
ters plus two two-instrument clusters. If, however, the number of remaining
instruments is two, we make c = bN/3c three-instrument clusters plus one
two-instrument cluster. Assuming each cluster to be an instrument, the same
procedure described above can be applied to the created clusters, creating
clusters of clusters until the network is complete. Figure 7.6 shows this pro-
cedure for 11 instruments. In the first step, as N = 11, we make b11/3c = 3
three-instrument clusters plus one two-instrument cluster. In the second step,
as N = 3 + 1 = 4, we make b4/3c − 1 = 0 three-instrument clusters plus
two two-instrument clusters. Finally, in the third step, as N = 2, we make
b2/3c = 0 three-instrument clusters plus one two-instrument cluster.

7.5. FAULT MANAGER

In this section, we elaborate on the tasks of the Fault Manager unit and pro-
pose one possible implementation.

To operate the on-chip monitoring instruments and take necessary actions
upon detection of a fault, the Fault Manager unit should perform the follow-
ing tasks:

1. activation of the monitoring instruments (after reset) by clearing their
mask bits,

2. polling ErrorFlag and launching the localization process in case faults
are reported in the monitored system,

3. analysis of the bit sequence shifted out from TDO during localization,
to determine which monitoring instrument has raised the error flag and
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Figure 7.7. Detecting the current network configuration based on the
values being shifted out can be done by an FSM.

to store the reported error code,

4. taking necessary actions based on the error code reported by the moni-
toring instrument that has raised the flag, and

5. disabling a fault monitor that keeps raising the fault flag (either due
to a permanent fault or due to that the monitor itself is defective) by
setting its mask bit.

Except for the first item in the above list, the way each of these tasks is
carried out affects the fault detection and localization time. This effect is par-
ticularly more dramatic for the third item above as that task might involve
processing long sequences of hundreds of bits. If the analysis of the shifted
out bit sequence (during localization) is done after the shifting is complete,
the analysis time is added to the fault localization time, which can increase
the localization time significantly. Moreover, for such post processing, the bit
sequence should be stored first, which requires allocation of buffers of ade-
quate length. If, on the other hand, the processing is done at the same time
as the bit sequence is shifted out, the need for the buffer is obviated and the
analysis can overlap in time with the shift-out. This, however, enforces certain
constraints on the amount of time that processing of each bit can take max-
imum, otherwise shifted out data might be lost. Let us take a closer look at
how this analysis can be done by taking the example network in Figure 7.2(b),
presented again in Figure 7.7(a).

Assume that a fault is detected by a monitoring instrument, the network
has performed self-reconfiguration accordingly, the Fault Manager has de-
tected the fault by reading the ErrorFlag, and has subsequently opened SIB0
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Table 7.1. Storing the FSM in Figure 7.7(b) in memory as a state tran-
sition table

Next state
Current state TDO = 0 TDO = 1

0→ 1 1
1→ 10 2
2→ 6 3
3→ 4 4

...

to start the localization process. The numbered circles next to the components
in Figure 7.7(a) denote the order that those bits appear at TDO during the
shift out (under the assumption that all components are part of the active
scan path). The FSM in Figure 7.7(b) shows how by looking at the values
shifted out, the Fault Manager can discover the current configuration of the
network, identify the faulty resources, and collect the error codes. Values read
at TDO, when corresponding to SIBs, are used to determine to which com-
ponent the next bit in the sequence belongs. These values are therefore used
to label the transitions in the FSM for the SIBs, that is, where more than one
output transition from a given state exists. By using such an FSM, the Fault
Manager can be guided during the localization process to detect the current
configuration of the network and to collect the bits corresponding to each er-
ror code. For example, assuming that Monitor 2 has detected the fault, SIB2 is
automatically opened and the bits corresponding to EMR2 are included in the
scan path. In this case, upon reading a value of ‘1’ for bit number 2 at TDO,
the Fault Manager enters state 3 in the FSM. From this point, Fault Manager
should start collecting bits 3–5 as the error code and store the collected code
upon leaving state 5.

The FSM shown in Figure 7.7(b) is not complete as it does not capture the
actions that should be taken for each fault that is localized. We will shortly
elaborate on this issue. For the moment, we should note that a standard way
of implementing an FSM in software is by using a state transition table. For
the simple FSM in Figure 7.7(b), one such table looks like what is shown in
Table 7.1. For such a table, the current state is just a pointer to a row (i.e.,
it is not stored in the table), and each row contains pointers to the next state
based on the value observed at TDO. This way, the next state can be computed
instantly for each observed bit at TDO.

In order for the Fault Manager to process the localization bit sequence, it
should either be running on a faster clock (compared to TCK) so that it does
not fall behind in case it needs to perform other tasks while performing the
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Figure 7.8. The interfaced between the proposed Monitors Manager,
Fault Manager, and the network

localization, or allocate buffers for temporary storage of the shifted-out bit
sequence. To avoid these two limitations, namely, the faster clock and buffer
allocation, as well as to avoid storing a table such as Table 7.1, we propose and
detail a hardware module that runs on same clock as the network (i.e., TCK)
and performs all tasks related to the monitoring instruments. More specifi-
cally, the proposed module performs tasks 1,2,3, and 5 mentioned in the be-
ginning of this section, and therefore, relieves the Fault Manager from having
anything to do with the monitoring network, which is the self-reconfigurable
network connected to SIB0. We will refer to this hardware module as Moni-
tors Manager and will show that its area in hardware is lower than the area of
memory that a software based solution would require.

7.5.1. MONITORS MANAGER’S INTERFACE

Figure 7.8 shows how the proposed Monitors Manager is interfaced to the
1687 Network and the Fault Manager. The assumption is that the Fault Man-
ager is implemented as software running on an on-chip microprocessor (or a
micro-controller).

When the mode signal is set to 0, the Monitors Manager is connected to
the TAP controller in the network. After the reset, the Monitors Manager
module waits (while keeping the network’s TAP controller state machine in
the Test-Logic-Reset state) until it receives the unmask signal from the Fault
Manager. It then starts opening the SIBs in the network level by level until
the EMRs are part of the scan path. It will then clear all mask bits while
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closing all the SIBs. This is rather straightforward as the proposed network
construction method in Section 7.4 places all the EMRs at the same level,
making it relatively easy to embed this unmasking feature into the Monitors
Manager module. Monitors Manager signals the completion of the unmasking
through asserting the unmasked signal.

After the initial unmasking, if the goto-rti signal is active, Monitors Man-
ager keeps the network’s TAP controller state machine in the Run-test/Idle
state, otherwise it starts the fault detection and localization process. The pur-
pose of goto-rti is to signal Monitors Manager to stop the fault detection and
localization process and take the network’s TAP controller state machine back
to the Run-test/Idle state. This way, Fault Manager can take over (by switching
the mode to 1) and access the other instruments in the network (i.e., those
connected to SIBins, in order to take actions based on the detected errors).

When a fault is detected and localized by Monitors Manager, the instrument
ID and the error code (i.e., contents of the corresponding EMR except for the
mask bit) is pushed into the FIFO. Fault Manager is notified of existence of
errors in the system by polling the Empty-flag of the FIFO. Alternatively, the
Empty-flag can be interfaced as an interrupt signal. The Full-flag of the FIFO
is used to freeze the operation of Monitors Manager in case Fault Manager has
fallen behind in reading the error information from the FIFO. The freezing
halts the clock to both Monitors Manager and the network, preventing the
loss of the error information that is to be reported by Monitors Manager. This
way, the errors that are detected and whose code is being shifted out stay in
the scan path waiting to be shifted out, and new error flags will propagate
and be detected in the next round of localization.

When a monitoring instrument keeps raising the error flag—either due to a
permanent fault or due to that the monitoring circuitry itself is defective—the
Fault Manager can mask that instrument by placing its ID number on instID
and asserting the mask signal. As will be detailed shortly, this masking is
only possible when the requested instrument keeps raising the error flag and
is thus part of the active scan path after self-reconfiguration. Once Moni-
tors Manager has set the mask bit in the EMR corresponding to the specified
instrument, the masked signal is asserted.

Finally, the Monitors Manager module asserts the loc-in-prog signal when-
ever it detects a fault and starts the localization process. This signal can help
Fault Manager in certain cases. For example, if a masking request is not
acknowledged and localization is not in progress either, it means that the in-
strument that Fault Manager is trying to mask has cleared its error flag before
being masked (i.e., the detected error has not been permanent).
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7.5.2. INTERNAL OPERATION OF MONITORS MANAGER

Internally, the Monitors Manager module is a state machine. In our exper-
iments, we constructed this module automatically based on the description
of the self-reconfigurable part of the network. In this section, we explain
how such a state machine performs the fault localization as well as the mask-
ing/unmasking tasks.

7.5.2.1. PERFORMING THE INITIAL UNMASKING

As was mentioned earlier, the network design method in Section 7.4 con-
structs the network such that all instruments are placed in the same depth
(hierarchical level) in the tree. Based on this, the following is done to perform
the unmasking:

• one CSU is applied to open each hierarchical level. For each CSU, a
counter is loaded with the number of SIBs currently on the scan path
(i.e., total number of SIBs on all currently opened hierarchical levels)
plus one for the ErrorFlag. This counter is decremented with every
clock cycles while a ‘1’ is shifted in from tdi, until the counter reaches
zero. Then a ‘0’ is shifted in for the SIBins to keep it closed, followed by
an update.

• once all hierarchical levels are opened in the previous step, one final
CSU is needed for clearing the mask bits and closing the SIBs. This
time, the counter is loaded with the total length of the scan path and
is decremented with every clock cycles while a ‘0’ is shifted in from
tdi, until the counter reaches zero. After this, an update is performed
and the network’s TAP controller state machine is taken back to the
Run-Test/Idle state.

Implementing the above steps as a state machine is pretty straightforward and
we skip detailing it further.

7.5.2.2. PERFORMING THE LOCALIZATION AND FAULT MASKING

Before delving into the details in this section, we should mention that for the
sake of simplicity in presentation, we disregard the mandatory half-cycle tri-
state delay element that is present at TDO [29]. In our implementation, we
have taken that delay into account.

The Monitors Manager starts the localization process after detecting that
the ErrorFlag is set to one. If it is detected that the bit corresponding to
ErrorFlag is ‘1’, in the same CSU, a ‘1’ is shifted in to open SIB0. As it is rather
straightforward, we skip detailing the detection part of the FSM in Monitors
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Table 7.2. The localization state transition table for the network
in Figure 7.7(a)

Current
state

Next state Output signal assignments
Other actions

tdo==0 tdo==1 mask==0 mask==1 && instID==1 mask==1 && instID==2
0→ 1 1 tdi=0; tms=0; masked=0;
1→ 10 2
2→ 6 3
3→ 4 4 EMR=tdo;
4→ 5 5 EMR=(EMR<<1)|tdo;

5→ 6 6
errInfo=(2<<2)|EMR;
we=1;

errInfo=(2<<2)|EMR;
we=1;

tdi=1; masked=1;

6→ 10 7 tdi=0; we=0;
7→ 8 8 EMR=tdo;
8→ 9 9 EMR=(EMR<<1)|tdo;

9→ 10 10
errInfo=(1<<2)|EMR;
we=1;

tdi=1; masked=1;
errInfo=(1<<2)|EMR;
we=1;

Manager. We, however, detail how our proposed hardware implementation
performs localization, while carrying out the instrument masking requests.

One important assumption behind our implementation is that if a moni-
toring instrument is requested to be masked, it should be already part of the
self-reconfigured active scan path. That is, it should have raised the error flag.
This assumption is justified by noting that if an instrument has raised the er-
ror flag before but not in the current localization round, the corresponding
fault has not been a permanent one in the first place.

We use the state transition table presented as Table 7.2 to explain how the
FSM in Monitors Manager performs the localization and masking for the ex-
ample network in Figure 7.7(a). In practice, we have not used such a table in
our implementation and have directly implemented the FSM in a hardware
description language. The table, however, makes it easier to explain the lo-
calization process, and helps in getting a more realistic view of the memory
usage for a software implementation of the Monitors Manager module. In
the table, we have used the C language expressions to explain the low-level
hardware operations.

In Table 7.2, the current state of the FSM is a pointer to a row in the state
transition table. The next state is determined solely by the value observed at
the tdo terminal. For example, in state 1, if tdo value is zero, the next state
will be 10 otherwise 2. The output signals, on the other hand, are determined
by the values present at the mask and instID input terminals. Once an output
signal is assigned it will retain its value until next time it is assigned a new
value. That is, empty cells in Table 7.2 are in fact repetitions of the closest non-
empty cell above them, and are left empty to reduce clutter. At the beginning
of the localization process (namely, state 0) the tdi, tms, and masked outputs
are all set to zero.

As an example, assume that both instruments in the network in Figure 7.7(a)
have raised the error flag, but Fault Manager has requested Monitor 2 to be
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fault masked. That is, mask==1 and instID==2. In this case, once the FSM
is in state 3, it starts buffering the bits corresponding to the EMR for Mon-
itor 2—regardless of the mask and instID inputs—and it is only in state 5
when masking conditions are tested. If the monitoring instrument is not to be
masked, its ID and error code are concatenated to form the error information
and are pushed into the FIFO via the FIFO input terminal errInfo and by as-
serting the write-enable (we) signal. Regarding the concatenation expression
errInfo=(2<<2)|EMR;, the first 2 is the instrument ID for the current instrument
and the second 2 is a two-bit left shift. The reason for the two-bit left shift
is that in our example, the EMR has three bits, one of which is the mask bit,
which is not needed to be included in the error information. If, on the other
hand, the instrument is to be masked, a ‘1’ is placed on the tdi output (which
is connected to the tdi input of the network) to be shifted in for the mask bit,
and the masked output is set to ‘1’. In state 6, the tdi and we outputs are
set back to ‘0’. As Monitor 1 has also raised the error flag, the tdo input will
have the value of ‘1’ and the next state is set to 7. In state 7, similar to state
3 discussed above, the Monitors Manager starts to buffer the error code and
finally in state 9, the collected error code is pushed into the FIFO.

7.6. COMPARISON WITH SIMILAR APPROACHES

We have compared our proposed self-reconfiguring 1687 network with the
work presented in [1] (which uses a regular 1687 network for monitoring) with
regards to tworst (see Eq. (7.1)). In this section, we present the results of the
comparison for two cases: when one fault occurs (discussed in Section 7.3.1),
and when multiple faults are detected by the Fault Manager at the same time
(discussed in Section 7.3.2).

7.6.1. FOR A SINGLE FAULT

For the construction of the proposed self-reconfiguring network, we compared
four alternatives: (1) using the network construction method presented in
Section 4.1.2, which was for regular (i.e., non-self-reconfiguring) SIB-based
1687 networks optimized for sequential access schedules (denoted by HPO),
(2) a binary tree with pruning, (3) a ternary tree with pruning, and (4) the
construction method proposed in Section 7.4. To calculate the number of SIBs
on the scan path for the self-reconfiguring networks, pre-order tree traversal
is employed. A fixed number of JOH + 2 = 18 + 2 TCKs is added to the
calculated shift time to account for the constant overhead (see Section 7.2.2),
ErrorFlag, and SIBins. Moreover, another three TCKs are added to account for
the length of the fault monitor’s EMR (i.e., L = 3). We have chosen L = 3 for
a fair comparison with the work in [1].
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Table 7.3. tworst for a single fault (in TCKs)
Number of
instruments

[1]
Self-reconfigurable networks

HPO binary tree ternary tree proposed method
25 90 35 34 33 33
50 118 37 36 35 35
100 158 39 38 38 37
200 206 42 40 39 39
500 266 52 42 42 42
1000 326 53 44 44 44

Table 7.3 shows the results of comparison with the approach proposed
in [1]. From the results, it can be seen that by using the proposed self-re-
configuration scheme (regardless of the considered network tree construction
method), at least 2.6x reduction in localization time is achieved compared
to [1]. The reason for this improvement can be attributed to opening many
hierarchical levels in a single CSU and having only one single-bit ErrorFlag
register directly on the scan path.

Among the construction methods examined for the self-reconfiguring net-
work, the one described in Section 7.4 performs up to 17% better than the
method in Section 4.1.2, and results in better or equal tworst compared to bi-
nary and ternary trees.

7.6.2. FOR MULTIPLE FAULTS

The work in [1] has not presented analysis and results on multiple faults. On
the other hand, our calculations for multiple faults (see Section 7.3.2) are for
balanced k-ary trees, and cannot be directly used for the network structures
presented in [1]. Therefore, to perform the comparison, we used constraint
programming (by using the constraints formulation in [1]) to get the optimal
network architecture for the number of instruments suitable for our analy-
sis (see below), and developed time analysis for multiple faults for the net-
works presented in [1] based on their time analysis for a single fault and our
analysis for multiple faults. In developing the time analysis, whenever the
optimal architecture, computed for N instruments by the constraint program-
ming solver, allowed for more monitoring instruments than those actually
requested, say N′ > N, we assume that the network has N′ instruments.

For the number of instruments, we chose numbers which are powers of
three resulting in networks resembling balanced ternary trees, as the pre-
sented time analysis applies to banalced trees only. For each of these net-
works, we calculated tworst for one to 10 faults. For each pair of network and
number of faults, we calculated tworst using Eq. (7.2) where JOH = 18 and ts
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Table 7.4. tworst for multiple faults (in TCKs)

# instruments
Number of faults

1 2 3 4 5 6 7 8 9 10

27
33 42 51 57 63 69 75 81 87 90
90 126 162 162 162 162 162 162 162 162

81
36 48 60 69 78 87 96 105 114 120
146 202 258 314 370 426 426 426 426 426

243
39 54 69 81 93 105 117 129 141 150
218 346 474 542 610 678 746 814 882 950

729
42 60 78 93 108 123 138 153 168 180
298 486 674 862 954 1046 1138 1230 1322 1414

2187
45 66 87 105 123 141 159 177 195 210
394 662 930 1118 1306 1494 1682 1870 2058 2246

Average ratio 5.6 6.3 6.7 6.8 6.7 6.6 6.4 6.2 6.1 6.0

The shaded numbers are calculated based on the approach in [1].

is calculated using Eq. (7.8). The results are presented in Table 7.4 where the
shaded rows present the numbers obtained for the network structure type pro-
posed in [1]. The last row, presents the average improvement ratio achieved
over [1] in case of multiple concurrent faults which ranges between 5.6 to 6.8
times improvement. As was the case for single faults, the reason for this im-
provement can be attributed to opening many hierarchical levels at once and
having only one ErrorFlag register directly on the scan path.

7.7. PRACTICAL ISSUES

To validate our proposed self-reconfiguring networks and also give an idea
of the hardware overhead associated with the Monitors Manager, we imple-
mented such networks for the number of instruments presented in Table 7.4,
and performed synthesis and place & route (optimized for a 100MHz TCK)
using 65nm technology. The target cell density was chosen as 70 percent,
which was achieved for the target 100MHz clock frequency. Through im-
plementation and post-layout simulations we established the practicality of
the proposed self-reconfigurable networks and the Monitors Manager. In this
section, we discuss the implementation of the modified SIB, report and discuss
the hardware overhead associated with the Monitors Manager module, and
report the measured delay for the error flag propagation network.
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Figure 7.9. Schematic of the proposed modified SIB

7.7.1. MODIFIED SIB

Figure 7.9 shows our implementation of the proposed modified SIB. Before
discussing Figure 7.9, we should mention that depending on the available
standard cell library, simpler designs with the same functionality might be
possible, and that our implementation is affected by our ASIC vendor’s li-
brary.

In Figure 7.9, the clock signal is not shown to avoid clutter. The Reset
signal is the synchronous active-low reset from Test-Logic-Reset state in the
TAP controller state machine. The self-reconfigurability revolves around the
U′ flip-flop, which is D-type with asynchronous active-high set. The set input
of U′ is connected to a gated copy of the Open signal of the SIB. The Open
signal is gated via the Select signal so that the self-reconfiguration only hap-
pens when the SIB is not selected (i.e., not part of the active scan path). The Q
output of U′ is used to open the SIB—i.e., to include the segment connected
between TSI and FSO terminals in the scan path. As is required by the local-
ization method described in Section 7.2.2, the output of U′ is captured into the
S flip-flop when the TAP controller state machine goes through the capture
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phase. U′ is cleared when the TAP controller state machine goes through the
Update phase or through the Test-Logic-Reset state during initialization.

The area increase due to the extra components in the modified SIB as com-
pared with a regular SIB with and without the diagnostics mux (i.e., mux D
in Figure B.3) is 49 percent and 75 percent, respectively.

7.7.2. MONITORS MANAGER

In the post-layout simulations, we performed the following:

• Instructed the Monitors Manager to perform the initial unmasking,

• inserted faults into the system by raising fault flags associated with
some of the monitors, and observed that the Monitors Manager cor-
rectly identifies the IDs of the associated instruments and inserts the
right ID and error code into the FIFO, and

• inserted a permanent fault into the system by constantly raising a fault
flag, and instructed the Monitors Manager to mask the corresponding
monitor.

To justify the hardware overhead associated with the Monitors Manager
and its associated circuitry such as FIFO, clock gating logic, etc., we report
the standard cell area occupied by these modules, and make a rough com-
parison with the SRAM area required for a “partial” software implementation
of the Monitors Manager module. The partial implementation only performs
the state transitions in the FSM for the localization task, without perform-
ing any actions (such as writing the error code in another memory location
or performing specific tasks depending on the observed error code). Even by
comparing against a partial software implementation, we demonstrate that for
larger networks, the area taken by a hardware implementation of the Moni-
tors Manager module, is lower than the area taken by the SRAM bit cells that
are required to implement this module in software.

Table 7.5 presents the hardware area, as well as SRAM area estimation for
a software implementation of Monitors Manager, for the same networks used
in Section 7.6.2 (Table 7.4). In Table 7.5, the second and the third columns
present the standard cell area taken by the 1687 network and the Monitors
Manager, respectively, in square micrometers. Columns four to eight present
how we have estimated the equivalent SRAM area required for a “partial”
software implementation of the Monitors Manager. This estimation is based
on assuming a state transition table similar to the one presented in Table 7.1.
Column four shows the number of states in the localization state machine.
Column five shows the number of memory locations required for the stor-
age of the state machine (two locations per state). Column six presents the
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Table 7.5. Hardware area and estimates for SRAM area that would
be used by the software-based approach

Number of
instruments

Hardware area in µm2 SRAM memory required for software-based localization
1687

network
Monitors
Manager

number
of states

memory
locations

Bits per
location

Total
bits

Total
area

27 8779 4511 123 246 8 1968 982
81 26639 6691 366 732 16 11712 5844

243 77390 12646 1095 2190 16 35040 17485
729 231541 29793 3282 6564 16 105024 52407

2187 703424 81175 9843 19686 16 314976 157173

number of bits required per memory location. When the number of memory
locations are less than 256, we considered that eight-bit memory cells can be
used, otherwise 16-bit cells. Column seven shows the total number of bits,
and column eight presents the total area, assuming 0.499 µm2 per cell [61]. In
this computation of the total area, we have only considered the area taken by
the 6T SRAM bit-cells required for the localization process, and have disre-
garded the impact of these additional cells on the area taken by the decoding
circuitry, sense amplifiers, etc. Comparison of the area reported in the third
and the eighth columns shows that the area taken by a hardware implemen-
tation of the Monitors Manager is less than the partial software implementa-
tion for 243 and higher number of instruments, and very close to the partial
implementation for 81 instruments. It is only for the case of 27 monitoring in-
struments that a hardware implementation shows higher overhead compared
to its partially implemented software counterpart. It should be noted that
a full software implementation of all tasks performed by Monitors Manager
will result in higher SRAM area.

7.7.3. PROPAGATION DELAYS

In Section 7.2.2, we noted that the delay in the error flag propagation network
(denoted by δ) should in practice be considered in dworst. To give an idea
about how large that delay might be, we report it for the largest design with
2187 instruments. The delay between each of the 2187 instrument fault flags
and the parallel input of the ErrorFlag register (i.e., through all seven hier-
archical levels) is reported by the place & route tool to be at least 1.73ns, on
average 2.1ns, and at most 2.62ns, thus shorter than one TCK period, which
is 10ns for the 100MHz target.

As an example, assuming an on-chip Monitors Manager that can operate
the network at 100MHz, the worst-case localization time (in seconds) for the
case of one fault happening in a network with 2187 instruments (see Table 7.4)
is calculated as 45× 1

100×106 + 2.62× 10−9 which is 452.62ns.
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7.8. CHAPTER CONCLUSIONS

In this chapter, we showed how fault localization time can be reduced by us-
ing a segment insertion bit (SIB) that enables self-reconfiguration of 1687 net-
works. We presented timing analysis for single and multiple concurrent faults,
as well as a construction method for the proposed self-reconfiguring network.
Moreover, we detailed a hardware module for performing the localization,
which discovers the configuration of the network after self-reconfiguration
and extracts the error information in real time. We validated the idea of self-
reconfiguring networks through post-layout simulations of a number of such
networks. We compared the proposed scheme with a previous similar work
and observed at least 2.6 times reduction in localization time for a single fault
and 5.6 times reduction in case of multiple faults.
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Conclusions and Future Work

In this chapter, we present a summary for each of the contributions of the
work, as well as future research directions.

8.1. THESIS CONCLUSIONS

In this section, for each of the four parts in this thesis, we recapitulate the
main contributions and observations.

8.1.1. ANALYSIS

In this thesis, we presented time analysis and overall access time (OAT) cal-
culation algorithms for three 1687 network types, which we referred to as
SIB-based, Daisy-chained, and Remote networks. The algorithms covered
concurrent, sequential, and generic instrument access schedules. The anal-
ysis showed that OAT has three main components: instrument data, shift
overhead, and TAP overhead. Using the OAT calculation algorithms, we pre-
sented a parametric analysis to identify possibilities for reduction of OAT. An
important observation was that the use of hierarchical architectures and the
concurrency in the access schedule have no influence on the instrument data,
but can vary the overhead components. More specifically, For the SIB-based
and Daisy-chained network types, it was observed that the TAP overhead was
affected significantly by the change in the concurrency in the access schedule,
but not considerably with the network architecture. On the other hand, the
shift overhead was affected significantly with both access schedule and the
network architecture. For the Remote networks, the use of pipelining of in-
strument data was shown to help reduce the overhead significantly. In case
of sequential schedule, pipelining showed to be very effective in reducing the
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shift overhead. For the concurrent and generic schedules, the reductions in
shift overhead were dependent on the order of instruments on the scan path.
The observations from the time analysis were used to devise network opti-
mization methods.

8.1.2. DESIGN

Based on the observations from the time analysis, we proposed methods for
designing 1687 networks that are optimized with respect to overall access
time both for one given access schedule, and multiple given access schedules.
Here again, the considered network types were SIB-based, Daisy-chained, and
Remote networks. The basic idea behind optimization for the SIB-based and
Daisy-chained networks was the use of hierarchy to reduce the shift overhead.
For the Remote networks, however, the idea was to reorder the instruments
on the scan path, such that less time is wasted in the bypass flip-flops. The
experimental results showed the optimization methods to be highly effective
in reducing the OAT. A comparison between different network types showed
that when there is the possibility of pipelining instrument data (for example,
when the retargeting tools support it) the Remote network type seems the best
choice given its low hardware overhead, the relatively low OAT observed for
it in the experiments, as well as its predictability w.r.t. changes in overhead
percentage when subjected to new schedules. The hierarchical SIB-based and
Daisy-chained networks also showed relatively low hardware overhead, as
well as reasonable performance regarding OAT.

8.1.3. OPERATION

Operating the 1687 networks requires sophisticated design automation tools.
One of the most essential tasks for such tools is to perform the retargeting:
translation of human-readable access procedures described at instrument ter-
minals into bit vectors (or other description languages) applicable at the chip
terminals. In this thesis, we outlined the steps in the retargeting process,
namely, flattening, merging, and translation, and discussed optimization po-
tentials. As a key operation in the translation is a retargeting step, we pre-
sented a method for reducing the solution space to help in performing the
retargeting step optimally.

8.1.4. APPLICATION

The 1687 networks find application in testing, debugging, monitoring, and so.
In this thesis, we focused on the fault monitoring application and proposed
to add self-reconfiguration to 1687 networks in order to reduce the fault lo-
calization time. For self-reconfiguring networks, we presented time analysis
for single and multiple concurrent faults, as well as a method for constructing
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these networks, given an arbitrary number of instruments, such that the lo-
calization time is minimized. Comparison with fault monitoring approaches
based on 1687 networks showed that self-reconfiguring networks can achieve
significantly lower fault localization time. Finally, we detailed the practical
issues in implementation and operation of these networks.

8.2. FUTURE WORK

At the time of writing of this thesis, there is ongoing work to use interfaces
other than TAP to connect to the on-chip instrument access networks. A new
interface might bring new challenges for which there would be a need to
revisit the problems addressed in this thesis.

Regarding the specific topics covered in this thesis, the following could be
directions for future work.

8.2.1. ANALYSIS AND DESIGN

In the work presented in this thesis, it was either assumed that the network is
given with the objective being optimized retargeting, or that the schedule is
given with the objective being optimized network design. As future work, a
co-optimization problem can be considered such that for a given set of instru-
ments, where for each instrument the PDL procedures are given, a network
is designed and retargeting performed such that application time of the retar-
geted PDL is minimized.

Also, in our work on optimized network design, we did not investigate
possible combinations of the considered network types (namely, SIB-based,
Daisy-chained, and Remote networks).

Moreover, in our work, we did not consider the use of hierarchy in Remote
networks. Given the relatively good performance of this network type w.r.t.
OAT and hardware overhead, it could be beneficial to consider the use of
hierarchy in this network type, as well. This requires development of OAT
calculation method for this new architecture.

8.2.2. OPERATION

As was mentioned in Section 6.4.1.1, there might be cases where the com-
puted upper-bound is pessimistic. That is, the computed value is higher than
what is actually needed for optimal retargeting. These cases should be inves-
tigated and addressed in our proposed upper-bound computation method.
Additionally, the proposed upper-bound computation method can be further
developed to recognize more structures for lookup and rewriting. Finally, in
computing the upper-bound in this work, we made no assumptions on the
initial and the target configurations. The benefit of this relaxation is that the
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upper-bound computation needs to be done only once at the beginning of
the retargeting process. The resulting upper-bound can then be used for all
retargeting steps in that retargeting process. On the other hand, if the initial
and target configurations are considered in the computation of the upper-
bound, the computation should be performed once for each retargeting step.
In this case, the result will be a tighter bound tailored to that step, which in-
creases the retargeting efficiency. Therefore, the trade-off between (1) saving
time by running the upper-bound computation once at the beginning of the
retargeting process, and (2) saving time by faster retargeting steps should be
investigated.

Finally, as both IEEE Std 1687 and IEEE Std 1149.1-2013 support the use of
broadcast, it is necessary to consider this feature in the process of retargeting.

8.2.3. APPLICATION

For the self-reconfiguring networks presented in Chapter 7, further work
could be done to enable faster interruption of an ongoing localization pro-
cess, in order to take necessary action in case there are errors that should be
addressed urgently by the Fault Manager unit.
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AAppendix
Additional Graphs from the

Parametric Analysis

The results for the parametric analysis, presented in Section 3.5, were plot-
ted as separate charts for the sequential and concurrent schedules. In this
appendix, we provide the results as separate tables per analysis, where each
table details the OAT and its components, namely, instrument data, TAP over-
head, and shift overhead, for the sequential and concurrent schedules.

Moreover, to facilitate side by side comparison of OAT components between
the sequential and concurrent schedules, in this appendix, we present new
plots in which the results are presented as stacked bars. Each stacked bar
presents OAT as a sum of its three components on a logarithmic y-axis.
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A.1. INCREASING THE NUMBER OF INSTRUMENTS
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Figure A.1. The effect of increase in number of instruments on OAT
and its components, in SIB-based networks

Table A.1. The effect of increase in number of instruments on OAT
and its components, in SIB-based networks

Number of
instruments

Instrument
data

Sequential schedule Concurrent schedule
TAP overhead Shift overhead OAT TAP overhead Shift overhead OAT

2 220 92 46 358 48 24 292
4 440 180 180 800 48 48 536
8 880 356 712 1948 48 96 1024
16 1760 708 2832 5300 48 192 2000
32 3520 1412 11296 16228 48 384 3952
64 7040 2820 45120 54980 48 768 7856
128 14080 5636 180352 200068 48 1536 15664
256 28160 11268 721152 760580 48 3072 31280
512 56320 22532 2884096 2962948 48 6144 62512
1024 112640 45060 11535360 11693060 48 12288 124976
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Figure A.2. The effect of increase in number of instruments on OAT
and its components, in Daisy-chained networks

Table A.2. The effect of increase in number of instruments on OAT
and its components, in Daisy-chained networks

Number of
instruments

Instrument
data

Sequential schedule Concurrent schedule
TAP overhead Shift overhead OAT TAP overhead Shift overhead OAT

2 220 96 50 366 48 14 282
4 440 192 196 828 48 16 504
8 880 384 776 2040 48 20 948
16 1760 768 3088 5616 48 28 1836
32 3520 1536 12320 17376 48 44 3612
64 7040 3072 49216 59328 48 76 7164
128 14080 6144 196736 216960 48 140 14268
256 28160 12288 786688 827136 48 268 28476
512 56320 24576 3146240 3227136 48 524 56892
1024 112640 49152 12583936 12745728 48 1036 113724
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Figure A.3. The effect of increase in number of instruments on OAT
and its components, in Remote networks

Table A.3. The effect of increase in number of instruments on OAT
and its components, in Remote networks

Number of
instruments

Instrument
data

Sequential schedule Concurrent schedule
TAP overhead Shift overhead OAT TAP overhead Shift overhead OAT

2 220 156 6 382 78 2 300
4 440 312 28 780 78 4 522
8 880 624 120 1624 78 8 966
16 1760 1248 496 3504 78 16 1854
32 3520 2496 2016 8032 78 32 3630
64 7040 4992 8128 20160 78 64 7182
128 14080 9984 32640 56704 78 128 14286
256 28160 19968 130816 178944 78 256 28494
512 56320 39936 523776 620032 78 512 56910
1024 112640 79872 2096128 2288640 78 1024 113742
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A.2. INCREASING THE NUMBER OF HIERARCHICAL LEVELS
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Figure A.4. The effect of increase in hierarchical levels on OAT and
its components, in SIB-based networks

Table A.4. The effect of increase in hierarchical levels on OAT and its
components, in SIB-based networks

Hierarchical
Levels

Instrument
data

Sequential schedule Concurrent schedule
TAP overhead Shift overhead OAT TAP overhead Shift overhead OAT

1 112640 45060 11535360 11693060 48 12288 124976
2 112640 45068 5790726 5948434 52 12314 125006
3 112640 45084 2929690 3087414 56 12368 125064
4 112640 45116 1510482 1668238 60 12478 125178
5 112640 45180 812258 970078 64 12700 125404
6 112640 45308 474690 632638 68 13146 125854
7 112640 45564 317826 476030 72 14040 126752
8 112640 46076 252162 410878 76 15830 128546
9 112640 47100 233986 393726 80 19412 132132
10 112640 49148 243714 405502 84 26578 139302
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Figure A.5. The effect of increase in hierarchical levels on OAT and
its components, in Daisy-chained networks

Table A.5. The effect of increase in hierarchical levels on OAT and its
components, in Daisy-chained networks

Hierarchical
Levels

Instrument
data

Sequential schedule Concurrent schedule
TAP overhead Shift overhead OAT TAP overhead Shift overhead OAT

1 112640 49152 12583936 12745728 48 1036 113724
2 112640 49160 6317062 6478862 52 1063 113755
3 112640 49176 3195930 3357746 56 1118 113814
4 112640 49208 1647698 1809546 60 1229 113929
5 112640 49272 885986 1047898 64 1452 114156
6 112640 49400 517698 679738 68 1899 114607
7 112640 49656 346498 508794 72 2794 115506
8 112640 50168 274690 437498 76 4585 117301
9 112640 51192 254466 418298 80 8168 120888
10 112640 53240 264194 430074 84 15335 128059
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A.3. VARYING THE INSTRUMENT PROPERTIES
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Figure A.6. The effect of increase in number of instruments having
large number of accesses, on OAT and its components,
in Remote networks

Table A.6. The effect of increase in number of instruments having
large number of accesses, on OAT and its components, in
Remote networks

Number of
instruments

Instrument
data

Sequential schedule Concurrent schedule
TAP overhead Shift overhead OAT TAP overhead Shift overhead OAT

2 20020 8076 6 28102 4038 2 24060
4 40040 16152 28 56220 4038 4 44082
8 80080 32304 120 112504 4038 8 84126
16 160160 64608 496 225264 4038 16 164214
32 320320 129216 2016 451552 4038 32 324390
64 640640 258432 8128 907200 4038 64 644742
128 1281280 516864 32640 1830784 4038 128 1285446
256 2562560 1033728 130816 3727104 4038 256 2566854
512 5125120 2067456 523776 7716352 4038 512 5129670
1024 10250240 4134912 2096128 16481280 4038 1024 10255302





BAppendix
Detailed Circuit Schematics

In this appendix, the RTL circuitry for a number of components discussed
throughout this thesis is presented.

B.1. 1149.1-STYLE TDR

Figure B.1 shows the circuitry for a typical TDR cell. In shift mode, i.e., when
the ShiftEn is set to logic ‘1’, serial data is shifted in on the rising edge of the
TCK clock, through the SI terminal, passes through mux K1, mux C, and the
S/C flip-flop, and finally is shifted out from the SO terminal. In the parallel
load mode, the CaptureEn signal is set to ‘1’ and the data present at the PI
terminal is captured into the S/C flip-flop on the rising edge of TCK. To latch
the contents of the cell to appear at the PO terminal, the UpdateEn is set to ‘1’
and on the falling edge of the clock, the value shifted into the S/C flip-flop is
copied into the U flip-flop.

Figure B.2 shows how two of these TDR cells are used to form a two-bit
TDR. The globally routed ShiftEn, CaptureEn, and UpdateEn signals are gated
via the Select signal. The scan path is formed via connecting the TDR cells
SO to SI, and the parallel (i.e., the PI and PO) terminals are formed by con-
necting each bit of these signals directly to the PI and PO terminals of the
corresponding TDR cell.

B.2. SIB

Figure B.3 shows a possible implementation of a SIB, which matches the sim-
plified schematic presented in Figure 2.7(a).

The control signals (namely, ShiftEn, CaptureEn, and UpdateEn) are gated
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UpdateEn

Reset

C
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0
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D Q

CLR
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D Q

CLR
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0

1

K2
0

1

PO

PI

TCK

Figure B.1. TDR cell

by the Select signal. The S flip-flop operates at the rising edge of the SCK
clock. When not in the shift mode (i.e., when the ShiftEn is set to ‘0’), it
retains its currently stored value via feedback through the keeper mux K1. In
the shift mode (i.e., when the ShiftEn is set to ‘1’), new values are shifted in
the S flip-flop through the K1 and D muxes. Mux D is not required for the
operation of the SIB and is only used for diagnostic purposes, as it captures
the current status of the SIB (i.e., the value stored in the U flop) to be shifted
out. The U flip-flop operates at the falling edge of the SCK clock. When not in
the update mode (i.e., when the UpdateEn is set to ‘0’), it retains its currently
stored value via feedback through the keeper mux K2. In the update mode
(i.e., when the UpdateEn is set to ‘1’), the U flip-flop gets the value currently
stored at the S flip-flop. When the U flip-flop stores a ‘0’, input 0 of the
host port mux H is selected and, therefore, in the shift mode, serial data goes
directly from the input terminal SI through the SIB, excluding the network
segment connected to the host port terminals, namely, TSI and FSO terminals.
When the U flip-flop stores a ‘1’, input 1 of the host port mux H is selected,
the network segment is selected via the ToSel terminal, and serial data goes
through the segment connected between the TSI and TSO terminals.
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Figure B.2. A two-bit TDR
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CAppendix
Detailed Experimental Results for

Chapter 3

In Section 4.1.4, experimental results were presented for network optimization
for single access schedules. In the results, only the ratio of the shift overhead
to instrument data were presented. In this appendix, the complete experi-
mental results is presented, including the overhead numbers in TCKs and as
ratios to instrument data.

Table C.1 and Table C.2 present the results for the experiments on designing
optimized SIB-based networks. Table C.3 and Table C.4 present the results for
the experiments on designing optimized Daisy-chained networks. Table C.5
and Table C.6 present the results for the experiments on designing optimized
Remote networks.
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DAppendix
Benchmarks

In this appendix, we present details on the benchmarks used throughout the
thesis. Section D.1 provides information on how we have extracted instrument
sets from the ITC’02 benchmarks used in Chapter 4, Chapter 5, and Chapter 6.
Section D.2 provides information on how we have constructed circuits from
ITC’02 benchmarks for the purpose of upper-bound computation in Chap-
ter 6, as well as larger illustrations of the N and C benchmarks introduced in
Chapter 6.

D.1. ITC’02 BENCHMARKS

In this section, we detail how we have extracted instruments from the ITC’02
benchmark set [48]. The extracted instrument sets are used in the experiments
presented in Chapter 4, Chapter 5, and Chapter 6.

The ITC’02 set consists of 12 benchmark SoCs. For each SoC, list of modules
(i.e., cores) are given, and for each module, number of I/O terminals and
internal scan-chains, as well as number of patterns to apply to those terminals
and scan-chains are specified. Moreover, for two of the SoCs, namely, d281,
u226, tests are specified for which TAM USE and SCAN USE properties are
set to zero. We interpreted these tests to be of BIST type, and the test length
property to be in number of system clock cycles.

We created a set of instruments for each of the available SoCs, based on [39],
as explained below:

• We considered the set of input terminals for each module (including
bidirectional terminals) as an instrument with a shift-register length (L)
equal to the number of input terminals, and number of accesses (A)
equal to the number of patterns specified for the input terminals.
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Table D.1. Properties of instrument sets extracted from ITC’02
benchmark set

Benchmark
name

Instrument
data

Number of
instruments

Length of shift-registers Number of accesses
min ave. max min ave. max

a586710 838530522 26 34 1545 2626 2945 166573 1914433
d281 1496291 48 7 48 233 26 907 2048
d695 704057 157 1 52 320 12 89 234
f2126 5330439 34 20 447 1000 103 339 422
g1023 736216 63 9 81 377 15 133 1024
h953 1197178 44 9 125 348 9 169 341
p22810 7784963 254 1 117 400 1 352 12324
p34392 16403755 103 4 224 806 27 1620 12336
p93791 30083283 586 1 166 538 11 356 6127
q12710 31801946 21 413 1245 3784 852 1160 1314
t512505 165400967 126 2 607 1669 3 1035 3370
u226 252929 30 3 42 97 15 589 2666

• We considered the set of output terminals for each module (including
bidirectional terminals) as an instrument with a shift-register length (L)
equal to the number of output terminals, and number of accesses (A)
equal to the number of patterns specified for the output terminals.

• We considered each internal scan-chain as an instrument with a shift-
register length (L) equal to the length of that scan-chain, and number
of accesses (A) equal to the number of patterns specified for that scan-
chain.

Table D.1 lists some properties of the extracted instrument sets correspond-
ing to each of the SoCs. The first column presents the SoC name from the
ITC’02 set. The second column presents instrument data for each set cal-
culated by using Eq. (3.2). The third column lists the number of instru-
ments included in each set. Columns 4–6 present the minimum, average,
and maximum length found among instrument shift-registers in the set. Fi-
nally, columns 7–9 present the minimum, average, and maximum number of
accesses found among instruments in the set.

In the experiment presented in Chapter 5, there was a need to a set of
instruments to experiment with concurrent access to instruments while ex-
ecuting wait cycles. The u226 benchmark was particularly suitable for this
purpose as it contained information on BIST instruments. Table D.2 details
the list of instruments extracted from the u226 benchmark SoC. Note that the
length of instrument shift-register for the BIST instruments is considered to be
zero, as the presented experiment disregard the few accesses required to start
the BIST instruments and to check the results when the instrument is done.
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Table D.2. Test specifications of the network assumed for U226

Instrument BIST/Access
Shift-register

Length
Test length

Number of
accesses

1 Access 3 2666
2 Access 17 2666
3 Access 3 2666
4 Access 17 2666
5 Access 3 2666
6 Access 17 2666
7 Access 52 76
8 Access 52 76
9 Access 52 76
10 Access 52 76
11 Access 52 76
12 Access 52 76
13 Access 52 76
14 Access 52 76
15 Access 52 76
16 Access 52 76
17 Access 52 76
18 Access 52 76
19 Access 52 76
20 Access 52 76
21 Access 52 76
22 Access 52 76
23 Access 52 76
24 Access 52 76
25 Access 52 76
26 Access 52 76
27 Access 97 76
28 Access 64 76
29 Access 17 15
30 Access 10 15
31 BIST 1363968
32 BIST 1363968
33 BIST 1363968
34 BIST 1048576
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D.2. BENCHMARK CIRCUITS

In this section, details will be provided on the benchmark networks used in
Chapter 6. The networks presented in Section D.2.1 are taken from literature,
and the ones presented in Section D.2.2 are introduced by us for experiment-
ing with our upper-bound computation method.

D.2.1. BENCHMARKS FROM LITERATURE

This section presents some details on the benchmark networks taken from
[39, 40]. The instruments used to construct these networks are extracted from
the ITC’02 benchmark set in the same way as explained in Section D.1. The
networks are constructed such that there is a one-to-one correspondence be-
tween the hierarchical levels in the networks and the hierarchy in the original
SoC from the benchmark. As an example, Figure D.1 outlines the hierarchical
relation between modules (cores) in the p34392 SoC, and Figure D.2 shows
(partially) SIB-based and Daisy-chained networks constructed from the in-
struments extracted from the p34392 SoC. In case of p34392, Module 1 has
only one internal scan-chain specified in its description. That is why, only
one instrument is labeled as scan-chain. For modules that have multiple scan-
chains, a separate instrument is considered for each scan-chain.

0

1810

p34392

2
13 4

6 7 8 9

11 12 13 14
15 16 17

19

5

Figure D.1. Overview of hierarchical modules in the p34392 SoC
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Module 0
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TDI TDO
Inputs

Module 2

...
...Outputs

Inputs Outputs
Scan-
chain

(a) SIB-based (here, the internals of a SIB module are shown)

Module 0
Module 1

TDI
TDO

Inputs Outputs

Inputs Outputs
Scan-
chain

Module 2

...

...

...

(b) Daisy-chained (referred to as MUX-based in [40])

Figure D.2. The two variants of p34392 benchmark
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D.2.2. N1–N5

The N1–N5 networks are constructed in such a way that the reduction tech-
niques introduced in this thesis cannot reduce them into smaller segments.
For the experiments presented in this thesis, the length of all instrument shift-
registers are considered to be 20 flip-flops.
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