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Abstract 

 

 Activation of the complement system by tumor cells was long believed to act only 

for benefit of the host. Overexpression of complement inhibitors by many tumor cell 

types and results obtained in several experimental animal models were all in agreement 

with this hypothesis. However, recent reports imply that the situation is more complex 

than initially believed and that under certain circumstances tumor cells may use 

complement to their own advantage, e.g. by recruitment of suppressor T cells or 

promoting local angiogenesis. Such a dual role of complement may also be apparent 

when considering the effect of therapeutic monoclonal antibodies (mAb) used to 

successfully treat B cell malignancies, such as CD20 mAbs. Some argue that besides 

direct tumor cell killing by mAbs, two main immune effector mechanisms, complement 

dependent cytotoxicity (CDC) and antibody dependent cellular cytotoxicity (ADCC), 

may be competing with each other. Experiments aiming at answering the question 

whether complement is our friend or foe in mAb therapy ended up with seemingly 

contradictory conclusions. Herein, we revisit the existing knowledge on this pivotal issue 

based on rituximab and other anti-CD20 mAb as a model of therapeutic agents. 

 

Keywords: CD20, antibodies, immunotherapy, lymphoma, CLL
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Brief introduction to the complement system 

 

 Nowadays there are three generally acknowledged complement pathways: 

classical, alternative and lectin, which differ in initiating mechanisms and molecules 

participating in the early stages of cascade activation. Additionally, there are two more 

mechanisms distinguished recently, i.e. direct processing of the C3 molecule by 

proteases, and the properdin-driven pathway 
1
. The formation of the C3 and C5 

convertase enzyme complexes are key events in complement activation, and also the 

stage at which all pathways converge. These convertases activate C3 and C5, causing the 

release of chemoattractants (C5a and C3a), opsonization of surfaces with C3b, and cell 

lysis due to assembly of the membrane-attack complex (MAC) 
1
 built on the platform of 

cell-associated C5b molecule. This system may be efficient enough to remove all the 

complement-activating cells, unless membrane bound or soluble complement inhibitors 

interfere with the process.  

 

Tumor cells activate the complement system 

 

 Transformation from normal to malignant phenotype is often reflected in cell 

membrane composition due to accompanying metabolic changes. There are reports 

showing that altered glycosylation patterns 
2
, changed proportions of phospholipids

3
, 

lipid peroxidation
4
 or exposure of novel tumor epitopes 

5
 distinguish cancer cells from 

their normal counterparts and make them visible to the immune system, including 

complement. Indeed, complement activation via the classical, lectin and alternative 

pathways by tumors of different origin was described already 30 years ago 
6,7,8,9,10

. 

However, spontaneous complement activation by tumor cells has usually little or no 

therapeutic importance, since tumor cells often overexpress complement inhibitors and 

tumor-specific antibodies are present at low titer or have low affinity 
11

. Nevertheless, the 

fact that tumor cells usually overexpress one or more membrane-bound complement 

inhibitors 
12

 
13

, produce substantial amounts of soluble complement inhibitors 
14,15

 or 

develop strategies to counterattack complement activation 
11,16,17

 suggest that controlling 

complement activation is pivotal for tumorigenesis. More to this end, an oncogenic virus 
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Kaposi’s sacroma herpesvirus (KSHV/HHV8), which is an etiologic factor responsible 

for Kaposi’s sarcoma and certain lymphoproliferative malignancies, encodes its own 

complement inhibitor - KCP 
18,19

. On the other hand, there are reports showing that tumor 

cells may benefit from triggering complement activation, by mechanisms such as the 

C5a-dependent recruitment of myeloid-derived suppressor cells 
20

 or induction of 

proangiogenic factors 
21

. Also, under hypoxia some tumor cells seem to purposely give 

up their mechanisms of protection from complement 
22

, which is in sharp contrast to 

endothelial cells, which increase the expression of complement inhibitors under hypoxia 

23
. Interest in complement as a significant effector mechanism of the immune response 

has been greatly renewed since mAb therapeutics were introduced, and the vulnerability 

of tumor cells to CDC was classified as one of the predictors of efficacy of mAb-based 

cancer therapy 
24,25

. Also, a promising outlook for the experimental application of 

bispecific antibodies interacting with both tumor antigens and complement inhibitors on 

tumor cell surfaces has also turned attention to complement in the context of cancer 
26

.  

 

CD20 and CD20 mAb 

 

 CD20 is a suitable target for immunotherapy due to its presence in high numbers 

on most (but not all) individual tumor B cells, limited internalization and long persistence 

on the surface after being bound by antibodies 
27,28

. Also, it is expressed at the majority of 

B cell developmental stages 
29

. So far there is no ligand for CD20 identified and CD20 

knockout mice appear to have no discernible B cell defects 
30,31

 but display changes in 

calcium signaling upon activation and reduced IgM expression on the surface 
30

.  

Nonetheless, the role of CD20 in proliferation, activation and survival of B cell has been 

suggested based on the effects of specific antibodies 
29,32

 as well as the role in proper 

generation of B cell responses based on a case report of a patient lacking surface CD20 

expression 
33

. Binding of CD20 by mAb can result in different effector mechanisms such 

as CDC, which stems from direct lysis due to MAC formation, antibody dependent 

cellular cytotoxicity (ADCC) employing immune cells bearing Fc-receptors, or direct 

induction of apoptosis. The outcome depends partially, besides the class of antibody 

used, on the epitope recognized by a given antibody and its proximity to the cell 
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membrane 
34

, but also on the ability to relocalize and cluster CD20 molecules into lipid 

rafts 
27,35

. Generally, anti-CD20 antibodies are classified into two types: type I, which 

clusters CD20 into lipid microdomains and potently activate complement but do not 

directly induce apoptosis, and type II, which does not relocate CD20 and are therefore 

weak CDC activators, but are strong inducers of apoptosis (or caspase-independent cell 

death, as described for tositumomab 
36

 and reactive oxygen species –dependent cell death 

described for obinutuzumab 
37

). Importantly, both classes retain the ability to activate 

ADCC 
29

. The possible downstream effects of anti-CD20 antibodies bound to the surface 

of B cells are described in Fig. 1. An important question emerging at this point is which 

of the given mechanisms is the most important for the in vivo therapeutic effect. 

Rituximab is a class I antibody and since approval as a treatment for patients with CD20+ 

B cell lymphomas, it has contributed to a 50% reduction of mortality of patients with 

diffuse large B cell lymphomas, which is the biggest success in lymphoma treatment in 

the last half century 
38

. This, along with the beneficial effects of rituximab in low-grade 

NHL and CLL (if combined with chemotherapy), is why there is much interest in 

elucidating the main effector mechanisms of anti-CD20 reagents, as well as other anti-

cancer mAbs, due to the potentials for increasing eficacy by improvement of effector 

mechanisms through antibody selection or engineering, 

 

Are CDC and ADCC direct competitors? 

 

 In spite of the fact that CDC and ADCC lead to the same end point, i.e. cell lysis 

and death, they do not always seem to work in a synergistic manner. In fact CDC and 

ADCC may compete with each other, most probably due to steric hindrance caused by 

early complement component deposition on the surface of target cells 
39

. Addition of 

serum but not heat -inactivated serum to rituximab-coated cells inhibited activation of 

NK cells and this effect was dependent on the presence of C1q and C3 in serum, but not 

C5. The same phenomenon was found when authors replaced serum with transudative 

pleural fluid or nonmalignant ascites in order to establish a model for extravascular 

fluids, where most B cell lymphoma cells appear to reside (e.g. in lymph nodes) 
40

. The 

occurrence of CDC and ADCC depends on a certain threshold of CD20 molecules 
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present on the surface of target cells. However, CDC requires a much higher expression 

of specific antigen and the correlation between cell-surface CD20 and CDC is described 

by a sigmoidal curve 
41

. Interestingly, maximal ADCC (analyzed at a 1:10 target / 

effector cell ratio) was achieved at an absolute number of CD20 molecules lower than 

that necessary for saturation of CDC (measured using 50% serum). The authors 

concluded that ADCC and CDC act in a cooperative manner since cells resistant to one 

killing mechanism were sensitive to the other and vice versa. However, there are several 

potential reasons for the resistance of individual cells to killing, and the observed results 

do not exclude the previous hypothesis of direct competition between CDC and ADCC 

upon rituximab treatment. Recently this hypothesis was further confirmed by a study 

using immortalized NK cells as effectors for ADCC 
42

. Such a model, which allows 

reproducible cytotoxic activity omits the problem of variation of ADCC efficiency 

between different patients and even the same patient examined at different time points. 

However, the hypothesis of antagonism between CDC and ADCC was not tested for 

CD20 antibodies other than rituximab, and as related to steric hindrance, may not hold for 

different monoclonal reagents such as ofatumumab, which bind to alternative epitopes on 

CD20. 

 

Concluding ¨per analogiam¨ is not possible 

 

 Currently there are more than ten agents targeting CD20, which are clinically 

approved or in clinical testing (originally reviewed in 
43,44,29,35,45

 and listed here in Table 

1, which is compiled from these references, updated and modified). Accordantly, there 

are a number of published studies aiming to identify the molecular basis of the exerted 

clinical effects. However, the main translational problem is that in spite of non-

contradictory results (e.g. these obtained for ofatumumab in CLL 
46,47,48

) these antibodies 

recognize different epitopes of CD20, localized at various distances from the cell 

membrane. This variable appears to be of major importance for efficacy, as described in 

terms of T cell mediated lysis 
49

 or in terms of complement activation and CDC 
50,34,51

. 

Moreover, different antibodies may induce differing mobility and further segregation of 

Ab-Ag complexes into membrane rafts, with potential importance for complement 
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activation, as shown for the panel of mAbs recognizing CD20 antigen 
52

. Ofatumumab 

serves as good example of a similar immunotherapeutic, whose mechanism of action 

should not be translated directly to e.g. rituximab. Although both are class I anti-CD20 

antibodies, ofatumumab binds an epitope located more proximal to the cell surface, 

which is more conducive to triggering CDC and significantly lowers the threshold of 

surface-exposed CD20 molecules necessary to allow cell lysis 
34,47,48,53

. Recently, 

ofatumumab was shown to exert clinical responses in rituximab –refractory NHL patients 

patients 
54

 as well as in fludarabine / alemtuzumab –refratory CLL 
55

. Similarly, some of 

the clinically tested anti-CD20 mAbs were engineered to enhance ADCC 
56,57

 but these 

modifications and their effects could not distinguish either CDC or ADCC as a crucial 

effector mechanism for the parental compound. An important lesson comes from 

veltuzumab, a humanized anti-CD20 IgG1 mAb containing the same complementarity 

determining regions (CDRs) as rituximab, but with a single aa substitution in the CDR3 

region (Asp101 to Asn), and with a Fc domain derived from another immunotherapeutic, 

epratuzumab 
58

. Although epratuzumab does not exhibit any CDC activity, veltuzumab 

triggers CDC even more efficiently than rituximab when tested on Daudi cells 
58,59

. 

Therefore, results and conclusions obtained for different anti-CD20 antibodies cannot be 

directly extrapolated to each other, as overall efficacy is determined by multiple factors 

of the antibody structure and the experimental setting. Another problem in assessing 

antibody suitability is associated with differences in human and murine complement, 

since many studies are performed in mouse models. In addition to the presence of unique 

inhibitors (Crry 
60

) or altered functionality of other common inhibitors (C4b-binding 

protein, C4BP 
61

), serum from most laboratory mouse strains shows considerably weaker 

lytic activity comparing to other species including humans, as reported by Ong and 

Mattes 
62

. Further, it was demonstrated that the classical complement pathway in mice 

exists mainly at an initiation level because of critical changes in C4 structure, which 

disable further classical C5 convertase activity 
63

.  

 

Are the data from animal models really contradictory? 
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 Knowing the above limitations regarding interspecies and inter-antibody 

extrapolation, one can consider the seemingly contradictory results obtained from 

different animal studies and ex vivo assays. Controversies over the most important 

effector mechanism mainly concern rituximab, whereas for other CD20 antibodies 

existing results give unanimous conclusions. For example, the in vivo therapeutic effect 

of tositumomab is not affected by decomplementation by cobra venom factor (CVF) 
64

. 

Ofatumumab appeared more effective in controlling lymphoma xenograft growth than 

rituximab and this feature correlated with superior CDC capabilities in vitro 
65

. However, 

one mouse model showed that ADCC may play an important role in ofatumumab’s 

therapeutic effect 
66

. Nonetheless, this model did not judge the relative contributions of 

CDC and ADCC. Depletion of NK cells and neutrophils totally abrogates veltuzumab-

mediated prolonged survival of SCID mice injected with Raji cells and thus underlines 

the importance of ADCC for this antibody 
58

. Returning to controversies, a 38C13 murine 

lymphoma model and MS11G6 anti-lymphoma mAbs were used to mimic the human 

model of leukemia treatment by rituximab. In such a system, depletion of C3 from mouse 

serum prolonged survival and increased NK-dependent ADCC compared to mAb alone 

40
. Uchida et al. studied depletion of B cells in mice upon injection of different mouse 

anti-mouse CD20 antibodies and concluded that elimination was dependent on FcR 

receptors and was performed mainly by monocytes/macrophages and was not facilitated 

by complement, as demonstrated in C3 and C4 deficient animals 
67

. In contrast to these 

studies, Di Gaetano et al. showed, using the mouse lymphoma cell line EL4 stably 

expressing human CD20 (EL4-CD20), that rituximab's therapeutic effect is not dependent 

on NK cells and neutrophils, and is also possible in athymic mice. In addition, C1q-

deficient mice were not protected from tumor burden by rituximab, showing that 

complement plays a role in rituximab’s effect 
68

. Having differing studies, where first one 

seems to dismiss the role of complement in therapeutic effects whereas the latter 

underlines the importance of complement, one may ask which of these two models 

properly reflects the action of this mAb in B cell malignancies. To make the question 

even more complex, another study performed on the same EL4-CD20 model concluded 

that ADCC and CDC have different impacts on rituximab's therapeutic effect depending 

on the local tumor burden 
69

. Authors inoculated wild type or FcR receptor deficient 



 9 

mouse intraperitoneally with labeled tumor cells followed by rituximab, ofatumumab or 

PBS injection 16 hours later and finally assessed the number of tumor cells washed out 

from peritoneal cavity after another 24 hours. When inoculated with a low initial number 

of EL4-CD20 cells, fewer cells were recovered from wild-type and FcR
-/-

 animals 

treated with rituximab or ofatumumab compared to PBS –treated mice. However, 

application of anti-CD20 mAb was ineffective in FcR – deficient mice when ten times 

more tumor cells were applied. Notably, to combat such high numbers of tumor cells both 

functional complement and FcR receptors were necessary. Imai and colleagues used 

EL4 cells but a different target (gangliozyde GD2) and showed that complement may be 

irrelevant or has supplementary role in therapeutic effect depending on the concentration 

of sensitizing antibody 
70

. Taken together, different lymphoma cells and their number 

together with different mouse strains and different anti-CD20 antibodies may generate 

too many variables making a unanimous conclusion impossible to draw. Instead, the 

picture from animal studies seems to be model-dependent and thus conclusions are 

resistant to generalization.   

 

Conclusions from observations in man. 

 

 In spite of translational problems described above, animal studies may give us a 

hint of what can happen when CD20 mAbs are used in humans. However, in vitro and ex 

vivo studies performed on cells isolated from patients and their subsequent correlation 

with clinical parameters seem to be more adherent to the real, clinical situation. 

Nonetheless, these approaches have their own limitations. Some methods used to 

measure the activity of immune cells or to indicate cell death may generate artefacts and 

these problems were recently described in review by Golay and Introna 
71

. Also, the 

multifactorial nature of immune system-mediated killing mechanisms requires 

consideration of every single parameter as a variable influencing the total readout, before 

one merges data from different studies. Otherwise, as with the use of differing animal 

models, one may conclude that obtained results are contradictory. For example, 

effectiveness of CDC, ADCC and complement dependent cellular cytotoxicity (CDCC) 

in in vitro killing of two human non-Hodgkin lymphoma (NHL) cell lines Raji and HF-
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1.3.4 were compared after incubation with rituximab 
72

. CDC at 25% serum 

concentration killed 50% and 20% of HF-1.3.4 and Raji cells, respectively and this effect 

could be increased to 80% by simultaneous neutralization of membrane bound 

complement inhibitors, whereas ADCC and CDCC (at a 1:10 target to effector ratio) 

eliminated only 10 or 15% of cells. Addition of N-formylmethionylleucylphenylalanine 

or PMA increased the efficiency of these mechanisms to only 25%. Susceptibility of 

primary cultures from patients suffering from follicular lymphoma, mantle cell 

lymphoma, diffuse large B cell lymphomas and small lymphocytic lymphomas to CDC, 

ADCC, antibody mediated phagocytosis and induced apoptosis 
25

 have also been studied. 

All cell types were equally sensitive to all killing mechanisms except for CDC, which 

was dependent on the combination of expression levels of CD20 and membrane bound 

complement inhibitors. Follicular lymphomas exhibited the most efficient lysis due to 

CDC while small lymphocytic lymphomas were the most resistant type, which followed 

the clinical data describing the response to rituximab 
24,73

. However, another study 

showed that lymphocytes isolated from lymph nodes of patients subsequently treated 

with rituximab did not significantly differ in expression of complement inhibitors or CDC 

susceptibility when patients were classified into responder, partial responder and non-

responder groups 
74

. Authors also eliminated CD20 as a single parameter influencing the 

outcome, since there were no significant differences in its expression between the groups, 

but data were not related to the absolute number of CD20 per cell and one can speculate 

whether the expression was not already in the range of saturation of the sigmoidal curve 

described by van Meerten et al in their in vitro studies 
41

. Trying to reconcile these 

results, it was suggested that supracellular factors (including tumor burden, which would 

be in agreement with mouse model experiments 
69

) are responsible for the overall effect 

and CDC could still play an important role as a part of the whole machinery, which fuels 

the other components 
25

. Such a scenario appears reasonable if one considers the 

existence of a delayed response to mAb therapy in some patients 
75

, which cannot 

originate from CDC due to its rapid kinetics. Initiation of the complement cascade leads 

to both CDC and CDCC and the latter may have been lost or underappreciated in all the 

experiments with relatively short time frame like minutes or a few hours 
76

. For example, 

the beneficial effects of fresh-frozen plasma therapy administrated simultaneously to 
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rituximab in CLL patients were proposed 
77

 and reported 
78,79

. Importantly, fresh-frozen 

plasma may serve as a source of all the components of complement, and thereafter they 

may be used in CDC or CDCC, and since none of the patients were deficient in certain 

type of immune cells or had any other kind of diagnosed immunodeficiency, one cannot 

exclude any of these two effector mechanisms. Nonetheless, CLL is characterized by a 

much lower level of CD20 expression compared to NHL 
80

, and therefore any 

compensation or modulation of complement activity would certainly cause different 

outcomes. There are reports showing that some CLL patients either deficient or had 

altered expression of one or more complement components 
81

.  Moreover, symptoms of 

acquired C1 inhibitor deficiency are found in an appreciable percentage of CLL patients 

and as such may interfere with the effectiveness of CDC 
9
. Another possibility for the 

underestimation of CDC’s role in short-time experiments lies in sublytic MAC deposition 

on the cell surface. Direct lysis will only be achieved when sufficient number of MAC 

complexes is inserted into the target membrane 
82

 but cells bearing the number of MAC 

under this threshold experience a variety of responses including both further resistance 

due to intracellular signaling and kinase activity, or sensitization (reviewed in 
83

). 

Sublytic MAC insertion results in DNA fragmentation dependent on serum DNAse I in a 

number of malignant B cell derived cell lines 
84

.   

Outwardly contradictory results are also presented regarding CLL and obinutuzumab, 

which is class II humanized IgG1 antibody, engineered in Fc portion 
85

. Patz et al. 

showed, that CDC is not involved in killing of isolated CLL cells 
86

 whereas Bologna et 

al. postulated moderate effect of CDC in obinutuzumab cytocidal effect, since full blood 

killing by this mAb was reduced c.a. 60% by C5 –blocking Ab eculizumab 
87

. However, 

experiments were performed at different CD20 mAb concnetrations, 10 g/ml and 100 

g/ml, respectively and also different cell number (4x 10
5
 and 1x 10

6
 cells/ml, 

respectively) thus making a direct comparison difficult. Another problem is the usage of 

DNA-binding dye 7-AAD as a marker of CDC in flow cytometry. Since it cannot pass 

intact cell membrane, negative result would mean no CDC but any positive result will 

inherit a risk of false positive readout due to e.g. secondary necrosis caused by dirext 

effect of mAb 
88

. Interestingly, importance of tumor cell number in ADCC assays was 

confirmed by the fact that blocking of CD16 on NK cells significantly reduced 
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obinutuzumab –mediated depletion of B cells in full blood from healthy individuals but 

not from CLL patients 
86

. This phenomenon could be explained by different ratio of 

target to effector cells. 

 There is some evidence that individual polymorphisms in Fc receptors may be 

associated with clinical responses to rituximab as a single marker and these data favor 

ADCC as an important mechanism of therapeutic effect 
89,90

. However, when tumor cells 

taken before therapy from responders and non-responders from the same study were 

examined for in vitro sensitivity to ADCC, no significant differences were found between 

the groups.  Thus, similarly to CDC, some important aspects may be underestimated in 

relatively rapid in vitro assays for ADCC. Fresh, purified lymphocytes were taken from 

biopsies of patients with follicular lymphomas and diffuse large B cell lymphomas and 

tested for CDC sensitivity in vitro. Imaging propidium iodide uptake by such cells treated 

with 20% serum for 10 minutes a revealed strong correlation between positive response 

and cell damage by complement 
91

. Comparing this study with that by Weng and Levy 
74

, 

who obtained opposing results, several differences in methodological and technical 

aspects must be pointed out. Most importantly Mishima et al. studied patients receiving 

rituximab not as a single agent but with chemotherapy. Then, other important 

inconsistencies include cryopreservation of the cells after biopsy and purification of 

CD19 expressing cells in order to eliminate potential effector cells (e.g. T lymphocytes, 

NK cells or leukocytes).  

 Work by Beurskens et al. 
92

 extends the hypothesis of tumor burden as a critical 

parameter for the effectiveness of killing mechanisms from mouse models 
69

 to human 

systems, while addressing ofatumumab, but also underlines the importance of optimal 

dosing of therapeutic antibody. Interestingly, increasing the dose of ofatumumab resulted 

in higher C3b deposition on CLL cells but did not increase CDC. Instead, complement 

became exhausted, and when the first wave of cells was treated with antibody 

concentrations exceeding the CDC saturation level, subsequently introduced CLL cells 

with ofatumumab could not be killed. Since elimination of CD20-positive cells from the 

bloodstream promotes the re-equilibration of these cells from other compartments, such 

experiments correspond to the in vivo situation, and reveal that tumor cell load, antibody 
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concentrations and schedule of administration are important variables which should be 

taken into account when comparing experimental data. 

 

 

Concluding remarks 

 

 There is still no conclusive evidence for the pivotal role of CDC, ADCC, 

apoptosis or non-apoptotic mechanisms as the predominant therapeutic effectors of 

various types of CD20 mAbs. Existing limitations concerning the translation of in vivo 

mouse experiments, together with technical issues of ex vivo assays, lead to as yet 

inconclusive answers. Heterogeneity among patients, tumor burden and treatment 

regimens add further to this problem. In spite of probable direct competition on the 

surface of single cell, the variuos mechanisms may cooperate in terms of whole 

populations of tumor cells. Identification of strong, single factors predicting the outcome 

of therapy would be valuable, but they must be assessed individually for the different 

narrowly classified lymphomas, as they differ in composition of membrane proteins or 

kinase activity, which influence vulnerability to mAb therapy and sensitivity to 

complement and the other effector functions. It seems that in most cases such a single 

predicting parameter has been extremely hard to identify because of too many variables 

crucial for therapy, or due to the generation of possible artefacts by assay methods. For 

that reason, one way to proceed is to identify tests, which will better discriminate 

between particular effector mechanisms, such as CDC and CDCC or CDC and direct  

apoptotic / non-apoptotic killing of tumor cells. Having a clear picture of which effector 

mechanism is crucial for a given lymphoma type and tumor cells with given parameters, 

one could attempt to further modulate the existing anti-CD20 immunotherapeutics in 

order to maximize the favorable killing system at the possible expense of others which 

may be less important. Following the clinical approval of rituximab and ofatumumab, 

next generation CD20 mAbs have been introduced in clinical trials, and there are also 

attempts to introduce additional modifications resulting in multifunctional activities 
93,94

. 

Understanding the relative contribution of particular effector mechanisms are very likely 

to contribute to further clinical improvement of these therapeutics.  
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Antibody  Clinical 

status 
Format Type Properties comparing to rituximab 

rituximab Approved  chimeric IgG1 I - 

tositumomab # Approved 

(US only) 

murine IgG2a II decreased CDC, effective apoptosis inducer 

ibritumomab § Approved murine IgG1 I n.s. 

ofatumumab Approved human IgG1 I Increased CDC at low CD20 expression, 

slower off-rate 

ocrelizumab Phase 3 humanized IgG1 

with modified Fc 

I Decreased CDC, increased ADCC  

retuxira Phase 3 chimeric n.s. n.s. 

veltuzumab Phase 2 humanized IgG1 I Increased CDC, slower off-rate  

obinutuzumab 

(GA101) 

Phase 3 glycoengineered, 

humanized IgG1 

 

II Decreased CDC, increased ADCC and 

apoptosis, also non-apoptotic reactive oxygen 

species killing pathway 

PRO131921 Phase 2 humanized IgG1 

with modified Fc 

I Increased ADCC 

LY2469298 
(AME-133) 

Phase 2 humanized IgG1 I Increased ADCC 

TRU-015 Phase 2 single chain Fv -

based compound 

- Decreased ADCC at low concentrations, 

decreased CDC, probably better tumor 

penetration due to lower affinity/avidity 

FBTA05 Phase 1/2 Bispecific 

murine IgG2a 

/rat IgG2b anti -

CD20/CD3,  

- Direct recruitment and activation of 

CD4+/CD8+ T cells to CD20+ cells 

LFB-R603 Phase 1 chimeric IgG1 I Increased ADCC 

 

Table 1. Anti-CD20 antibodies in clinical trials and clinically approved. 

Data were compiled from references 
43,44,29,35,45

 and updated from www.clinicaltrials.gov  

# - bound to I
131

, § - bound to Y
90

, n.s. – not specified 
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Figure legend 

 

Fig. 1 Possible actions of anti-CD20 mAbs. 

 

Binding of anti-CD20 mAbs to B cells can exert different effects: CDC (1), ADCC (2) or 

direct effects (3) all resulting in subsequent cell death. CDC (1) takes place when a 

certain threshold of CD20 molecules is available for mAbs and C1q crosslinks several Fc 

domains bound in close vicinity. C1r/C1s proteases then cleave serum components C2 

and C4 to C2a / C2b and C4a / C4b, respectively. C4b2a acts as classical C3 convertase – 

an enzymatic complex capable of cleaving C3 to C3a and C3b. C3b binds to C4b2a thus 

switching its specificity to the C5 component (C4b2aC3b is the classical C5 convertase). 

Alternatively, C3b binds to the cell surface, where it forms a novel platform for 

alternative C3/C5 convertases (C3bBb or C3bBbC3b) acting as an amplification loop of 

the classical complement pathway. The cleavage product of C5, C5b, is inserted into the 

cell membrane and initiates the assembly of MAC together with C6, C7, C8 and several 

C9 molecules, leading to osmotic cell lysis. ADCC (2) needs a moderate, number of 

CD20-mAb complexes compared to CDC, but seems to act in a competitive manner with 

CDC. The first step is the recognition of the antibody Fc portion by Fc receptors on 

effector cells  (mainly NK cells but also neutrophils or eosinophils). Then, effector cells 

release the content of specific granules containing pore-forming and cytotoxic 

compounds, which target the B cell and lead to its programmed or spontaneous cell death. 

Direct effects (3) cause cell death without additional effector cells or serum proteins but 

by binding of CD20 by mAbs alone. Aggregation of B cells by anti-CD20 Abs may 

precede caspase –independent cell death, as described for tositumomab 36
, reactive 

oxygen species –dependent cell death (described recently for obinutuzumab 
37

) or 

apoptotic cell death 
95,96

.   




