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INTRODUCTION 

Urinary tract infections (UTIs) provide an excellent model to study how the host 

recognises and deals with mucosal pathogens [1-3]. The infecting strain encounters a 

microbially naïve mucosal environment where the pathogenic strains may cause 

acute, potentially life-threatening infections. Chronic sequels are prevalent, and there 

is a link between acute infection and chronicity [4,5]. The mechanisms underlying 

commensalism may also be studied in the urinary tract, as asymptomatic bateriuria 

(ABU) occurs in at least 1% of the population and the patients may carry >105 cfu/ml 

of Escherichia coli in the urine for months or years with no or few symptoms [6,7]. 

Studies in the UTI model have identified molecular mechanisms that initiate tissue 

attack by mucosal pathogens and that trigger the innate host response [8]. Based on 

these mechanisms the genetics of disease susceptibility are beginning to be 

understood [9,10]. 

 

Virulence or symbiosis 

The severity of UTI reflects the virulence of the infecting strain. In the 1940s, 

hemolysin was identified as a characteristic of E. coli causing extra-intestinal 

infections [11]. Uropathogenic E. coli (UPEC) strains were later shown to belong to a 

restricted set of serotypes or ‘’clones’’ [12], and acute pyelonephritis and ABU strains 

were found to differ in surface antigen repertoire [7]. In the 1970s this information 

was extended to involve attachment to the urinary tract mucosa [13]. High tissue 

attachment was shown to characterise the most virulent strains but not the 

asymptomatic carrier strains. Attachment was therefore proposed as the first step in 

the pathogenesis of UTI, and the epithelial cell was recognised as the first sensor of 

tissue attack [14-16]. The molecular basis of virulence has since then been extensively 

studied and a number of essential virulence factors have been identified [17]. The 

virulence genes are encoded on pathogenicity islands, and their expression, 

regulation and evolution have been elegantly characterised [18-20]. Recent studies 

have suggested that ABU strains may be attenuated pathogens, carrying deletions in 

the virulence genes involved in attachment and the tissue attack [21]. 

 



The virulence factors enable UPEC to trigger epithelial cell responses leading to 

inflammation, cell detachment and apoptosis, or invasion causing bacteremia 

[14,15,22-28]. The tissue response is lethal for the organism, however, and is unlikely 

that invasion offers an advantage that would drive the evolution of the virulent 

phenotype. The adaptation of uro-pathogenic clones occurs mainly in the large 

intestine, and it is more likely that virulence is “co-incidental” [29]. For example, the 

mucosal receptor for P fimbriated uro-pathogens are expressed both in the intestine 

and urinary tract, but ligand binding has different consequences at the two sites [30]. 

ABU, on the other hand, may represent a successful adaptation, as the bacteria can 

persist without competition in a niche with a rich nutrient source, often for several 

years. In this case, the host response may be advantageous by providing signals that 

attenuate bacterial virulence. 

 

Responders or non-responders 

The susceptibility to UTI varies greatly in the population, as does the severity of 

disease in susceptible individuals [31]. Studies in pyelonephritis prone children have 

identified ‘’high responders’’ with abnormalities that exaggerate the damaging rather 

than protective aspects of innate immunity [3,32] and experimental infections in 

different mutant mice have identified a single gene defect, which causes the ‘’high 

responder’’ phenotype [5]. Neutrophils are critical effectors of the host defence in the 

urinary tract and neutrophil dysfunctions, due to defective IL-8 receptor expression, 

cause acute pyelonephritis and renal scarring [10]. In ‘’low responders,’’ on the other 

hand, bacteruria establishes without evoking a response, showing that suppression of 

inflammatory signals may be protective even though the infection remains. Also in 

this case, studies in mice have identified genetic control mechanisms that decide if the 

host will remain asymptomatic or develop disease. Mice carrying a mutation in the 

signalling domain of Toll like receptor 4 (Tlr4) were shown to develop an 

asymptomatic carrier state resembling human ABU [33-35]. 

 

This review focuses on these two steps in disease pathogenesis and their 

consequences for human disease. 



Step 1: Mechanism of pathogen recognition and host response induction  

Pathogen recognition by the mucosa is guided by molecular specificity. Attachment is 

an essential first step, which promotes bacterial persistence and activates the host 

defence signalling pathways (Figure 1; Step 1) [13,14,36]. The commensals mostly lack 

the virulence associated adhesive ligands and fail to bind to signalling receptors in 

the mucosa. The situation may be different in the gut, where pathogens have been 

proposed to actively inhibit the epithelial response by disrupting NF-κB dependent 

transcription mechanisms [37,38]. 

 

UPEC use P fimbriae for epithelial cell adherence and P fimbriae are expressed by up 

to 80% of the strains causing acute pyelonephritis compared to <20% of ABU strains 

[39,40]. The host cell receptors for P fimbriae are glycosphingolipids, and the PapG 

tip adhesin binds to Galα1→4Galβ oligosaccharide receptor epitopes, which are 

abundantly expressed in the human urinary tract mucosa [41-43]. The 

glycosphingolipid receptors also play a central role in host response induction 

[27,36,44-46]. Infection studies in animal models and human patients have shown that 

P fimbrial expression is essential for the uropathogenic E. coli strains to trigger the 

innate host response in vivo. P fimbriae thus fulfil the molecular Koch postulates as 

an independent virulence factor in the human urinary tract [36].  

 

The mucosal response to P fimbriated E. coli is controlled by TLR4 both in vitro and in 

vivo [28,47,48]. The extra-cellular, leucine-rich repeat domains of the TLRs recognize 

conserved microbial patterns such as LPS, but need co-receptors to function optimally 

[49]. TLR4 dimerisation by LPS in myeloid cells involves co-receptors CD14 and MD2 

and leading to recruitment of IL-1R associated serine kinase 4 (IRAK-4) via the 

adaptors MyD88 and TIRAP [50,51]. As a consequence, LPS responses are severely 

decreased in Myd88, Irak and Tirap knock-out mice [51-53]. The uro-epithelial cells 

lack CD14, and respond poorly to LPS [28,45,54]. This inertia to LPS is probably 

essential to allow asymptomatic carrier state, but raises the question how TLR4 

signalling may be triggered specifically by the pathogenic strains. We propose that 



fimbrial lectins and their recognition receptors selectively activate mucosal TLR4 

responses [48].  

 

In view of the CD14 independence of the epithelial response to P fimbriated E. coli, 

we speculated that TLR4 signalling might involve different adaptor proteins. This 

hypothesis was supported by in vivo studies, in the murine UTI model [48]. The 

epithelial response to P fimbriated E. coli was controlled by the Trif/Tram adaptors 

and Trif -/- and Tram -/- mice showed no significant response to infection. Myd88 -/- 

and the Tirap -/- mice were fully responsive. The results suggested that fimbriae and 

glycoconjugate receptors offer a mechanism of ‘’pathogen recognition’’ that allows 

TLR4 to respond selectively to pathogens at mucosal surfaces. Recognition receptors 

for other bacterial ligands may work in a similar manner. This mechanism offers a 

solution to the paradox specificity with the convergence on a limited number of 

mucosal TLRs. 

 

The mechanism of human TLR4 recruitment by the glycolipid receptors is not fully 

understood, but our studies have identified ceramide as a possible signalling 

intermediate. Ceramide is the membrane anchor of the receptors, and early studies 

showed an increase in free ceramide after P fimbrial binding. Sphingomyelinase, 

which releases ceramide by cleaving sphingomyelin was shown to stimulate a TLR4 

dependent chemokine response and exogenous C2 and C6 ceramide triggered a TLR4 

dependent cytokine response in CD14 and MD-2 negative HEK cells [55]. By confocal 

microscopy, the levels of membrane associated ceramide and TLR4 were shown to 

increase after stimulation with P fimbriated E. coli, and significant co-localization was 

observed in lipid rafts [47]. The results show that TLR4 signalling can be activated in 

the absence of CD14 and MD-2, by agonists that modify membrane glycolipids. 

Receptor cleavage may also be a useful defence strategy, as it would serve to release 

the ligand and to activate a host response. 

 

Step 2: Neutrophil defects and genetics of disease susceptibility   



 

The anti-bacterial defence of the urinary tract relies almost entirely on innate 

immunity. Following intra-vesical inoculation, bacteriuria is cleared within hours or 

days and neutrophils are the crucial effector cells. The infected uro-epithelial cells 

secrete chemotactic substances including chemokines [15,16,56]. A chemotactic 

gradient is created, and in response to the gradient, neutrophils leave the 

bloodstream, migrate through the tissues and cross the epithelial barrier into the 

lumen. These molecular and cellular interactions explain the emergence of leucocytes 

in urine, known as ‘’pyuria’’, which is a classical sign of UTI. IL-8 is one of the main 

driving forces for neutrophils to cross the human urinary tact epithelium, and MIP-2 

plays a similar role in the murine urinary tract [56-58]. It should be noticed, that 

several different neutrophil chemoattractants are secreted by epithelial cells and that 

additional studies are needed to understand their function in the response to UTI (See 

Figure 1; Step 2) [59,60]. IL-8 and other neutrophil activating CXC chemokines exert 

their effects by binding to G protein coupled cell surface receptors [61-63]. Infection 

stimulates CXCR1 and CXCR2 expression by epithelial cells, and CXCR1 is essential 

for the increased neutrophil migration across infected cell layers in vitro [64].  

 

The syndrome of acute pyelonephritis and renal scarring is precipitated by a single 

gene defect. We have used the murine UTI model to define the in vivo importance of 

chemokines and chemokine receptor and to study how neutrophil defects influence 

disease susceptibility [9,35,65]. A deletion of the murine IL-8 receptor was shown to 

precipitate the syndrome of acute pyelonephritis and renal scarring, by perturbing 

neutrophil exit across the epithelial barrier and the innate host defence. In control 

mice, neutrophils appeared in the kidneys within a few hours after infection, and 

were seen crossing the epithelial barrier into the lumen. In the process, infection was 

cleared with no evidence of tissue damage. The mIL-8Rh-/- mice showed neutrophil 

accumulation under the epithelial barrier until abscesses were formed throughout the 

kidney parenchyma. In parallel, there was an increase in bacterial tissue counts and 

the mice developed bacteremia. In surviving mice, the kidneys shrunk in size, and 



histology revealed tissue damage with fibrosis and other signs of renal scarring 

[5,10,64]. 

 

Genetics of human disease susceptibility  

The results described above suggest at least three ways in which genetic variation 

may influence human disease susceptibility. 

 

a) Recognition receptors for bacterial fimbriae. Glycolipid receptor expression varies with 

the P blood group. The results predict that an individual lacking receptors would be 

resistant to P fimbriaed E. coli, but there are too few receptor negative individuals to 

investigate this hypothesis. Patients prone to UTI show a higher density of epithelial 

cell receptors, however, and individuals of blood-group P1 run an increased risk of 

developing recurrent pyelonephritis [66]. Furthermore, the receptor repertoire 

influences which fimbrial type can cause infection. Individuals of blood group A1P1 

express the globoA structure on their epithelial cells and strains expressing the prs 

type of P fimbriae preferentially infect these individuals [67].  

 

Glycolipid receptors expression may be modified by pharmacological inhibitors. The 

glucose analogue N-butyldeoxynojirimycin (NB-DNJ) blocks the ceramide specific 

glycosyl transferase involved in epithelial receptor expression [68]. Receptor 

inhibition was shown to be protective against colonisation and inflammation in the 

murine UTI model, confirming that the primary receptor is one essential component 

in the host response [46]. This approach should be pursued also in man. 

 

b) TLR4 expression and signalling. The Tlr4 signalling deficiency in C3H/HeJ or Tlr4 -/- 

mice disrupts the inflammatory response. The unresponsiveness has two main 

consequences. The mice are unable to clear the infection, but develop a carrier state 

resembling ABU. The human TLR4 gene has been mapped to chromosome 9 (9q32-

q33) [69,70]. The extra-cellular domain combines with microbial ligands, while the 

cytoplasmic Toll/IL-1 receptor (TIR)-domain controls signalling through interaction 

with the adaptor proteins. Based on the analogy to the C3H/HeJ mouse [71], we 



obtained DNA sequences from children with ABU and healthy controls. No sequence 

variation was detected in the TIR domain. Further clinical studies of TLR4 and 

adaptor proteins in patients with ABU and acute pyelonephritis are currently being 

performed [72]. 

 

c) Low surface expression of CXCR1 in UTI-prone children and associated genetic 

polymorphisms. The progression from acute disease to renal scarring in the mIL-8Rh 

KO mice suggested that a CXC chemokine receptor deficiency might underlie the 

susceptibility to UTI also in man. In a prospective clinical study, CXCR1 expression 

was found to be significantly lower in pyelonephritis prone children than in age-

matched controls [10]. The low CXCR1 surface expression was also reflected in lower 

mRNA levels [10]. DNA sequencing revealed five single nucleotide polymorphisms, 

SNPs, unique to the UTI-prone children. Two of the SNPs were found at a low 

frequency in adult controls, but three were unique to the UTI prone children [73].  
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Figure 1. Differences between virulent uropathogenic E. 
coli (UPEC) strains and asymptomatic bacteriuria 
(ABU) strains
A. Fully virulent UPEC possess a wide arsenal of virulence 
factors that include adherence factors (fimbriae) and toxins 
(LPS, hemolysin) and cause severe infections such as 
pyelonephritis and bacteraemia.
B. Attenuated ABU strains acquire mutations in fimbrial 
genes, pathogenicity islands (PAIs).
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Figure 2 Host response induction by adhering bacteria
Step 1: P-fimbriated E. coli adhere to the Galα1-4Galβ receptor epitope in the globoseries of glycosphingolipids (GSLs) on the uroepithelium and 
activate epithelial cells through TLR4 and the adaptor proteins, TRIF/TRAM. If Tlr4 signalling is abrogated, mice develop an asymptomatic carrier 
state. These findings predict that ABU patients may have modified TLR4 function.
Step 2: Activated epithelial cells respond by secretion of CXCL8 and by expression of CXCR1. Neutrophils are recruited to the mucosa and
eliminate the bacteria after migrating across the epithelial barrier. If CXCR1 (mIL-8Rh) is absent, mice develop acute septic pyelonephritis and 
renal scarring. Patients prone to pyelonephritis have reduced level of CXCR1 and new polymorphisms in the CXCR1 gene.


