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Summary 
The purpose of this study was to develop a method based on artificial neural 

networks for interpretation of captopril renography tests for the detection of 

renovascular hypertension caused by renal artery stenosis and to assess the value of 

different measurements from the test.  

A total of 250 99mTc-MAG3 captopril renography tests were used in the study. 

The material was collected from two different patient groups. One group consisted of 

101 patients who also had undergone a renal angiography. The angiographies, which 

were used as gold standard, showed a significant renal artery stenosis in 53 of the 101 

cases. The second group consisted of 149 patients, who’s captopril renography tests all 

were interpreted as not compatible with significant renal artery stenosis by an 

experienced nuclear medicine physician. Artificial neural networks were trained for the 

diagnosis of renal artery stenosis using eight measures from each renogram. The neural 

network was then evaluated in separate test groups using an 8-fold cross validation 

procedure. 

The performance of the neural networks, measured as the area under the receiver 

operating characteristic curve, was 0.93. The sensitivity was 91% at a specificity of 

90%. The lowest performance was found for the network trained without use of a 

parenchymal transit measure, indicating the importance of this feature.  

Artificial neural networks can be trained to interpret captopril renography tests for 

detection of renovascular hypertension caused by renal artery stenosis. The result 

almost equals that of human experts shown in previous studies. 

 



5 

Keywords. Radionuclide imaging, computer-assisted diagnosis, captopril 

renography, hypertension, renovascular; renal artery obstruction; radioisotope 

renography



6 

Introduction 

Renal angiography is the gold standard for diagnosing renovascular disease. It is an 

invasive method and not suitable for screening. The most accurate non-invasive method 

to diagnose significant renal artery stenosis causing renovascular hypertension (RVH) is 

the captopril renography test (CRT) (Helin et al., 1998, Pedersen et al., 1996, Fommei 

et al., 1993, Elliott et al., 1993), which is a well-established technique since almost two 

decades. A consensus report (Taylor et. al., 1996) and procedure guidelines (Taylor et 

al., 1998) have been presented to assist nuclear medicine physicians in performing and 

interpreting the outcome of the test. These guidelines for interpretation of the CRT are 

based on the possibility to compare the captopril study to a baseline study in case of an 

abnormal CRT. No consensus, however, has yet been reached for interpretation of the 

individual output features from the CRT. It is often possible to perform only the 

captopril study and there are no definite guidelines to determine when a baseline study 

is necessary. According to one report (Ramsay et al., 1997) clinicians sometimes rely on 

other factors than the CRT when determining who has a possible symptomatic stenosis 

and may benefit from intervention, despite the fact that CRT is both sensitive and 

specific for RVH. It is also possible that some clinics use their own diagnostic criteria 

that are not statistically evaluated. Krijnen and co-workers (Krijnen et al., 2002) 

investigated the interobserver agreement on CRT and they concluded that differences in 

the performance of CRT found between studies could be explained by this variability. 

The assessment of cortical retention and pelvic retention by visual inspection of the 

images showed the largest variability.  

Artificial neural networks have been used for the purpose of diagnosis in nuclear 

medicine, for example ischemic heart disease, pulmonary embolism and Alzheimer´s 
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disease (Holst et al., 2001, Lindahl et al., 1999, Page et al., 1996). The networks have 

proved to be well suited to solve pattern recognition tasks and it has been shown that 

even an experienced expert benefit from the advice of artificial neural networks 

(Lindahl et al., 1999).  

The purpose of this study was to develop a method based on artificial neural 

networks for interpretation of CRTs for the detection of renovascular hypertension 

caused by renal artery stenosis and to assess the value of different measurements from 

the test.  

Methods 

Patient selection 

This study is based on technetium-99m-mercaptoacetyltriglycine (99m-Tc-MAG3) 

CRTs performed on patients suspected to suffer from renovascular hypertension. The 

material was collected from two different patient groups. One was part of the Swedish 

Society of Nuclear Medicine’s Captopril Renography Project. It comprised 105 tests 

performed 1995-1999 at a number of hospitals in Sweden according to guidelines 

proposed by the Swedish Society and very similar to the procedure guideline published 

by Society of Nuclear Medicine US (Taylor et al., 1998). Each patient in this group has 

also undergone a renal angiography. Three tests were excluded because the evaluations 

of the renographies were not complete and one due to a non-conclusive angiography 

report. The criteria used for a positive angiography was a narrowing of the lumen 

diameter of more than 70% or signs of fibro muscular dysplasia on one or both of the 

renal arteries. A positive angiography was found in 53 of the 101 tests (Figure 1).  
Fig 1. 
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The second group comprised all patients who performed a CRT during a twelve-

month period 1998 at Linköping University Hospital. One experienced nuclear 

medicine physician interpreted all tests and included in our material was the 149 cases 

where he ruled out significant renal artery stenosis. There was a wide range of renal 

function in this group of patients, ranging from 20 to 570 ml/min.1,73 sqm BSA as 

calculated as camera based MAG3 clearance (Granerus et al., 1991). These patients did 

not undergo renal angiography and the interpretation of the expert was used as the gold 

standard. At a follow-up five years after the CRTs none of the 149 patients had 

undergone renal angiography.  

The total material comprised 250 CRTs, 53 positive and 197 negative for renal 

artery stenosis. All of the patients had two native kidneys at the time.  

The captopril renography test 

Although the CRTs were performed at different hospitals a common protocol was 

recommended and the following minimal requirements were agreed on. The patients 

should be hydrated with 7 ml/kg of body weight and 25 mg of captopril administered 

orally 60 minutes prior to the study. 99m-Tc-MAG3, 50-100 MBq, should be injected 

with the patient lying in the supine position on the gamma camera detector. The 

acquisition ought to be 20 minutes and ten-second frames acquired at least in the first 

part of the study. Experienced operators should process the images. The following 

measurements from the CRT were used: 

• relative function 

• time to highest activity (Tmax)  

• activity after 20 minutes to highest activity (Min20/max)  

• Pelvic appearance time (PAT)  
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A general purpose collimator was used and acquisition was made in 128x128 

matrix. PAT was assessed by one experienced nuclear medicine physician who 

determined in which one-minute image the isotope first was visible in the renal pelvis. 

Four measurements were used for each of the right and left kidney, i.e. in total eight 

measurements. The artificial neural networks does not make use of normal limits for the 

measurements and such limits were therefore not defined.  

Artificial neural networks 

Artificial neural networks were used as classifiers for the detection of RVH. The 

analysis was done per patient, i.e. the classifiers computed the probability of RVH for 

each patient, thereby including left, right and bilateral stenosis. Each classifier consisted 

of an ensemble of single artificial neural networks. The individual members of the 

ensemble were standard multi-layer perceptrons (Rumelhart et al., 1986) with one 

hidden layer consisting of 4 nodes and one output node that was used to encode the 

presence of RVH or not. Each multi-layer perceptron was trained using gradient descent 

applied to a cross-entropy error function. The gradient descent method was augmented 

with a traditional momentum term and a Langevin extension (Rögnvaldson, 1994). To 

avoid over-training a weight elimination (Hanson et al., 1989) regularization term was 

utilized. The output of the neural network ensemble was computed as the mean of the 

output of the individual members in the ensemble. In this study an ensemble size of 100 

multi-layer perceptrons was used.  

In order to assess the relative importance of the different measurements from each 

CRT, four networks were trained and evaluated using the same material but different 

inputs. For each of these networks, one of the four types of CRT measurements were 

omitted, for example the Tmax measurements for the right and left kidney. The 
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performance of the neural network classifiers was measured as the area under the 

receiver operating characteristic (ROC) curve. All figures are based on 8-fold cross-

validation which was used as the technique to estimate the generalization performance. 

To find statistical significant differences between ROC areas, p-values were computed 

using a bootstrap method (Wehrens et al., 2000).  

Results 

The performance of the neural network fed with all measurements from each CRT 

had an area under the ROC curve of 0.93 (Figure 2). The sensitivity was 91% at a 

specificity of 90%. The networks trained without relative function, Tmax, and 

Min20/max showed areas under the ROC curves of 0.94, 0.94, and 0.92, respectively. 

The lowest area under the ROC curve, 0.89, was found for the network trained without 

the PAT measurements. This network was significantly worse than the network trained 

without Tmax measurements (p=0.02). The other differences between the networks 

were not statistically significant.  

Discussion 

Main Findings 

This study shows that it is possible to use an artificial neural network to interpret 

CRTs in the detection of RVH. The accuracy is about as high as for human experts 

shown in other studies (Fommei et al. 1993, Mann et al., 1991, Gijsbert et al., 1991, 

Setaro et al., 1991, Roccatello et al., 1992), i.e. sensitivities and specificities in the 

region of 90 % respectively. It has been shown before by Hamilton et al., 1996, that it 

could be done for transplant kidneys. This is to our knowledge the first time it has been 

Fig 2. 
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shown to diagnose RVH in patients with native kidneys. Furthermore it is shown that 

the performance is high without the use of a baseline study.  

One of the goals was to assess the value of different measurements from the CRT. 

The simple PAT showed to be the most important measurement and this finding 

indicates the importance of the parenchymal transit measurements. This feature was 

manually determined by an experienced nuclear medicine physician, however, it could 

be more objectively determined by deconvolution of cortical renograms and calculation 

of the parenchymal transit time (PTT). The three other types of measurements were 

standard features determined from the renograms. This suggests the mandatory use of 

some measurements of parenchymal transit could improve the performance of CRT, 

whether interpreted by computers or human experts. From a methodological point of 

view it is a great advantage for this purpose to use a tubular secreted tracer like MAG3 

instead of a filtered tracer such as DTPA because of more rapid excretion and higher 

concentration in the pelvic urine. The higher counting statistics makes parameters like 

PAT or PTT more easily determined. 

Study Limitation 

The performance of artificial neural networks depends heavily on the size and 

composition of the training database. The ideal situation would be to have a large 

number of CRTs from patients who all have undergone renal angiography. Because of 

the already high accuracy of CRT, renal angiography is a seldom-used investigation, 

especially for patients with a negative outcome of the CRT. Therefore, our second 

patient group used CRT interpreted by a human expert as gold standard rather than 

angiography. We used this database to increase the number of training examples. The 

CRT has, however, in many studies proved to be highly specific for a negative test 
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(Fommei et al. 1993, Mann et al., 1991, Gijsbert et al., 1991, Setaro et al., 1991, 

Roccatello et al., 1992) and indeed the negative five-year follow-up indicate that the 

expert interpretations were correct.  

An more accurate gold standard than renal angiography would be the outcome of 

intervention to determine if a functional stenosis is present. This will give us the 

possibility to predict if a patient would gain from angioplasty. That information, 

however, was not available to us, but many captopril studies show that the CRT is a 

good predictor of the outcome (Gijsbert et al., 1991, Setaro et al., 1991, Harward el al., 

1995).  

Conclusion 

This study shows that it is possible to use artificial neural networks for 

interpretation of CRTs in a wide range of renal function. The results are similar to those 

of human experts shown in earlier studies (Fommei et al.m 1993, Mann et al., 1991, 

Gijsbert et al., 1991, Setaro et al., 1991, Roccatello et al., 1992), i.e. sensitivity and 

specificity in the region of 90 % respectively.  
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Figure Legends 

Figure 1 Severity of renal artery stenosis in the 101 patients who had undergone renal 

angiography. Black bars indicate the group of 53 patients with significant 

stenosis.  

Figure 2 ROC curve presenting the performance of the neural networks interpreting 

CRTs based on eight measurements from each test. 






