LUND UNIVERSITY

The Control Server Model for Co-Design of Real-Time Control Systems

Cervin, Anton; Eker, Johan

Published in:
ARTES -- A network for Real-Time research and graduate Education in Sweden 1997--2006

2006

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Cervin, A., & Eker, J. (2006). The Control Server Model for Co-Design of Real-Time Control Systems. In H.
Hansson (Ed.), ARTES -- A network for Real-Time research and graduate Education in Sweden 1997--2006
Uppsala University: Department of Information Technology.

Total number of authors:
2

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/38cde1a0-e06d-4f87-a04d-79ada7532474

The Control Server Model for Codesign of
Real-Time Control Systems

Anton Cervirr and Johan Ekér

Abstract

The paper presents the control server, a real-time scimgdomiechanism tai-
lored to control and signal processing applications. Aserver creates the ab-
straction of a control task with a specified period and a fixguaii-output latency
shorter than the period. Individual tasks can be combintdnitore complex com-
ponents without loss of their individual guaranteed fixathcy properties. 1/O
occurs at fixed predefined points in time, at which inputs @ael ior controller out-
puts become visible. The control server model is especsaiited for codesign of
real-time control systems. The single parameter linkirgsttheduling design and
the controller design is the task utilization factor. Thegmsed server is an exten-
sion of the constant bandwidth server, which is based onaHeest-deadline-first
scheduling algorithm. The server has been implemented éalaime kernel and
has also been validated in control experiments on a ball aathtprocess.

1 Introduction

The design of a real-time control system is essentially asiggh problem. Decisions
made in the real-time design affect the control design, éelwersa. For instance, the
choice of scheduling policy influences the latency distidns in the control loops,
and, ideally, this should be taken into account in the cduliesign. At the same time,
the performance requirements of the individual contropplace demands on the
real-time system with regard to sampling periods, late)@ad jitter.

Traditional scheduling models give poor support for cogiesf multi-threaded
real-time control systems. One difficulty lies in the noekmity in scheduling mecha-
nisms such as rate-monotonic (RM) or earliest-deadlirs{fDF) scheduling: a small
change in a task parameter—e.g., period, execution timeglite, or priority—may
give rise to unpredictable results in terms of input-outptency and jitter. This is cru-
cial, since the performance of a controller depends not onligs sampling period, but
also on the latency and the jitter. In the control desigrs #traight-forward to account
for a constant latency, while it is difficult to address vagybr unknown delays.

*A. Cervin is with the Department of Automatic Control, Lunttitute of Technology, SE-221 00 Lund,
Sweden, email: anton@control.lth.se

tJ. Eker is with Ericsson Mobile Platforms, SE-221 83 Lund, eSen, email: jo-
han.eker@emp.ericsson.se

In the seminal Liu and Layland paper [1], it is assumed thati$/ performed pe-
riodically by hardware functions, introducing a one-saengiélay in all control loops
closed over the computer. This scheme does provide a quiteseparation between
the scheduling design and the control design. From a scimgch#rspective, the con-
troller can be described by a periodic task with a pefigé computation time¢”, and
a deadlineD = T. From a control perspective, the controller will have a stmgp
period of T and a constant latency = T'. This allows the control design and the
real-time design to be carried out in relative isolation.

However, the one-sample latency degrades the control ppesfoce and is ulti-
mately a waste of resources. A common alternative impleatient is therefore to
perform the 1/O requests within the task loop and output th@rol signal as soon as
possible in each period (e.g., [2, 3]). At this point, howetke design problem be-
comes very complicated. The I/O jitter and latency of a adtgr are now affected by
variations in its own execution time as well as interferefioen higher-priority tasks
(which in turn depend on the variations in the task executions, the phasing of the
periodic tasks, the arrival pattern of sporadic tasks).eta.the best case, it may be
possible to derive formulas for the worst-case and bes&sponse times of the tasks
(e.g., [4, B]), but this information is still not sufficierd aiccurately predict the perfor-
mance of the controllers. Furthermore, as argued in [6}) witndard RM and EDF
scheduling it can be difficult to map task importance intapties and/or deadlines.
These algorithms also perform poorly if tasks deviate frogirtassumed behavior or
if the CPU should become overloaded.

1.1 Model Overview

This paper presents a novel computational model for cotdsils, called the control
server. The primary goal of the model is to facilitate simgbelesign of flexible real-
time control systems. In particular, the model should pevi

(R1) isolation between unrelated tasks,

(R2) short input-output latencies,

(R3) minimal sampling jitter and input-output jitter,

(R4) a simple interface between the control design and tetirae design,

(R5) predictable control and real-time behavior, also e¢hse of overruns, and

(R6) the possibility to combine several tasks (componénts)a new task (compo-
nent) with predictable control and real-time behavior.

Requirement (R1) is fulfilled by the use of constant bandwsdtrvers (CBSs) [7]. The
servers make each task appear as if it was running on a dedi€&U with a given

fraction of the original CPU speed. To facilitate short faties (requirement (R2)), a
task may be divided into a number ségmentswhich are scheduled individually. A
task may only read inputs (from the environment or from othsks) at the beginning
of a segment and write outputs (to the environment or to dteks) at the end of a

segment. All communication is handled by the kernel and iBaot prone to jitter
(requirement (R3)).

Requirements (R4)—(R6) are addressed by the combinatibaradwidth servers
and statically scheduled communication points. For pésitasks with constant exe-
cution times, the model creates the illusion of a perfedsdin of the CPU, equivalent
to the Generalized Processor Sharing (GPS) algorithm [83 Model makes it possi-
ble to analyze each task in isolation, from both schedulimdy@ntrol points of view.
Like ordinary EDF, schedulability of the task set is simpltermined by the total
CPU utilization (ignoring context switches and the 1/0O gems performed by the
kernel). The performance of a controller can also be vievgeal fanction of its alloted
CPU share. These properties make the model very suitableddback scheduling
applications.

Furthermore, the model makes it possible to combine twowers¢ communicat-
ing tasks into a new task. The new task will consume a fractfdthe CPU equal to the
sum of the utilization of the constituting tasks. The nevktadl have a predictable
I/O pattern, and, hence, also predictable control perfocaaControl tasks may thus
be treated areal-time componentsvhich can be combined into new components.

1.2 Related Work

The constant bandwidth server (CBS) [7] was originally msgd as a means to bound
the utilization of soft or aperiodic real-time A CBS creaties abstraction of a virtual
CPU with a given capacity (dyvandwidth U,. Tasks executing within the CBS cannot
consume more than the reserved capacity. Hence, from thieleuthe CBS will appear
as an ordinary EDF task with a maximum utilizationlaf. The time granularity of the
virtual CPU abstraction is determined by therver periodl’s.

In [9], a variant of the CBS server, calléBS"!, is used to schedule control tasks
with varying execution times. In the case of an executionmowe the current period is
extended and the CBS budget is recharged in small increraatitshe task finishes.

Minimizing jitter using high-priority tasks or interruptindlers has been suggested
in various settings, e.g., [10, 2, 11]. Disadvantages ofaggroach include a more
complex implementation and more run-time overhead. Alsducing jitter means in-
creasing the average input-output latency. In [12], a sepigcedure that minimizes
input-output jitter using high-priority input and outpwtsks is presented. Task at-
tribute assignment under both FP and EDF scheduling is deresi. Another option
to reduce input-output jitter is to use non-preemptive dafing. Given that the con-
trol algorithm has a constant execution time, this will maike input-output latency
constant. The drawback is that the scheduling design besomees complicated.

Giotto [13] is an abstract programming model for the implatagon of embedded
control systems. Similar to our model, I/O and communica#ice time-triggered and
assumed to take zero time, while the computations inbetaseassumed to be sched-
uled in real-time. A serious drawback with the model is thatiaimum of one sample
input-output latency is introduced in all control loops.s8J Giotto does not address
the scheduling problem.

Within the Ptolemy project, e.g., [14], a computational demcalled Timed Multi-
tasking (TM) has been developed [15]. In the model, taskagtmrsin the terminology

of Ptolemy) may be triggered by both periodic and aperiodénés. Inputs are read
when the task is triggered and outputs are written at theifgpeétask deadline. The
computations inbetween are assumed to be scheduled by gifixegiy dispatcher. In
the case of a deadline overrun, an overrun handler may hegic#ain, the scheduling
problem is not explicitly addressed by the model.

2 The Model

The control server model assumes an underlying real-tineeatipg system with an
EDF scheduler. To guarantee isolation, all tasks in theegyshust belong to either
one of two categories:

e Control server tasks, suitable for control loops and otleeioglic activities with
high demands for input/output timing accuracy.

e Tasks served by ordinary CBS servers, including apericditt, and non-real-
time tasks.

2.1 Control Server Tasks

A control server task; is described by
e a CPU sharé/,,
e a period7;,
e arelease offset;,

e a set ofn;, > 1 segmentsS}, SZ,..., S of lengthsl},i?,...,1!" such that

e a set of inputd; (associated with physical inputs or shared variables), and

e a set of output®); (associated with physical outputs or shared variables).
Associated with each segme#it are

e asubset of the task inputg, € I,

« acode functiory?, and

e a subset of the task outpu@{ € 0,

The segments can be thought of as a static cyclic scheduledfoeading of inputs, the
writing of outputs, and the release of jobs. At the beginmihg segmens?, i.e., when
t=¢; + Z{c;ll I¥ (modT;), the inputslf are read and a job executilfg is released.
At the end of the segment, i.e., wher= ¢; + Zi:l I¥ (modT;), the output@{ are
written.

The jobs produced by a control server taskre served on a first-come, first-served
basis by a dedicated, slightly modified CBS with the follogvattributes:

| (0] | (@]

Segments | S 52 Sl S2 |

exé]gutiion | 12 | ‘fli f? | l/ -

2
CBS
budget
0 -

0 2 4 6 8 10 12

y

Figure 1: Example of a control server task executing alonge Op arrows indicate
job releases and the down arrows indicate deadlines. Theunvett = 7 causes the
deadline to be postponed to the end of the next segment.

¢ a server bandwidth equal to the CPU shidye

a dynamic deadliné;,

a server budget;, and
e asegment counten;.

The server is initialized witke; = m; = 0 andd; = ¢;. The rules for updating the
server are as follows:

1. During the execution of a job, the budgets decreased at unit rate.
2. If ¢; = 0, or, if a new job arrives at time andd; = r, then

— the segment counter is updated, := modm;,n;) + 1,
— the deadline is moved, := d; + [, and
— the budget is rechargedt9 := U, [;"".

The rules are somewhat simplified compared to the origing @Bes [7] due to the
predictable pattern of release times and deadlines. Thereal difference from an
ordinary CBS is that here a “dynamic server period”, equah® current segment
length,l;™, is used.

Fig. 1 shows an example of a control server task with two segsnexecuting
alone. This is a typical model of a control algorithm, whidistheen split into two
parts, Calculate Output and Update State. The lengths ode¢bgments are 2 and 4
units respectively, and the task CPU sharé&is= 0.5. At the beginning of the first
segment, an input is read, and at the end of the first segnreatitput is written. The
two first jobs consume less than their budgets (which are 12amtits respectively),
while the third job has an overrun attime 7. This causes thdlite to be moved to the
end of the next segment and the budget to be recharged to2(haiice “borrowing”
budget from the fourth job). In this example, the latencyasstant and equal to 2 units
(the length of the first segment) despite the variation ifdbeexecution times.

2.2 Aborted Computations

The default behavior of the control server is to allow budgetharging across the
task period. In the case of constant overruns, this will eahe task deadline to be
postponed repeatedly and eventually reach infinity. Foresapplications, a better
choice may be to abort the task when the total budget in thegbas been exhausted.
The choice of whether to abort the task in case of a period dfudigerrun may be

specified separately for each control server task.

2.3 Communication and Synchronization

The communication between tasks and the environment eysime amount of buffer-
ing. When an input is read at the beginning of a segment, thie i&stored in a buffer.
The value in the buffer is then read from user code using atireal primitive. The
read operation is non-blocking and non-consuming, i.eal@ewill always be present
in the buffer and the same value can be read several timedaBymanother real-time
primitive is used to write a new output value. The value isexian a buffer and is
written to the output at the end of the relevant segment.

Communication between tasks is handled via shared vasialtlean input is as-
sociated with a shared variable, the value of the variabt®pged to the input buffer
at the beginning of the relevant segment. Similarly, if atpatiis associated with a
shared variable, the value in the output buffer is copietiecshared variable at the end
of the relevant segment. Interrupts are assumed to be dibaliien accessing buffers
and shared data.

If two tasks should write to the same physical output or shaegiable at the same
time, the actual write order is undefined. More importarifiygne task writes to a
shared variable and another task reads from the same \@gtlthe same timehe
write operation takes place firsfThe offsets can hence be used to line up tasks such
that the output from one task is immediately read by anotmsd¢, tminimizing the end-
to-end latency.

The use of buffers and non-blocking read and write operatadlow tasks with
different periods to communicate. The periods of two comitating tasks need not
be harmonic, even if this makes most sense in typical agite. However, for the
kernel to be able to accurately determine if a read and wpggation really occurs si-
multaneously, the offsets, periods, and segment lengthsetf of communicating tasks
need to be integer multiples of a common tick size. For thippse, communicating
tasks are gathered intask groups This is described further in the implementation
section.

2.4 Scheduling Properties

From a schedulability point of view, a control server taskimthe CPU sharé/; is
equivalent to a CBS server with the bandwidth In [16], it is shown that a CBS can
never demand more than its reserved bandwidth. By postgéhédeadline when the
budget is exhausted, the loading factor of the jobs serveddBS can never exceed
U;. The same argument holds for the modified CBS used in theaa@#rver model.

A set of CBS and control server tasks is thus schedulabledibaty if

Z Ui <1 1)
If the segment lengths of a control server taskre chosen such that
I =0c/u,)

whereCf denotes the worst-case execution time (WCET) of the codetifum ff ,
overruns will never occur (i.e., the budget will never be ax$ted before the end of
the segment), and all latencies will be constant. For tasitslarge variation in their
execution time, it can sometimes be advantageous to assignest lengths that are
shorter than those given by (2). This means that some deadhill be postponed and
that the task may not always produce a new output in timeydw®jahe output one or
more periods. An example of when this can actually give betatrol performance
(for a given value ol;) is given later.

3 Control and Scheduling Codesign

As stated in the introductory chapter of the thesis, therobahd scheduling codesign
problem can be formulated as follows: Given a set of procetssbe controlled and a
computer with limited resources, a set of controllers stidnél designed and scheduled
as real-time tasks such that the overall control perforra@optimized. With dynamic
scheduling algorithms such as EDF and RM, the general desapiem is extremely
difficult due to the complex interaction between task paranse control parameters,
schedulability, and control performance.

3.1 Control Performance

With our model, the link between the scheduling design aedctintrol design is the
CPU shareU. Schedulability of a task set is simply determined by thalt@PU
utilization. The performance (aros) J of a controller executing in a real-time sys-
tem can—roughly speaking—be expressed as a function oftheltg period!’, the
input-output latency.;,, the sampling jittet/,, and the input-output jittey;,:

J = J(Ta Lio; Js; Jio)- (3)

Assuming that the first segment contains the Calculate @ptot of the control algo-
rithm, and that the segment lengths are chosen accordir),texXecution under the

Control Server implies
T=>Y k=) c*U,
Li,=1'=C"U,
Js = 07
Jio = 0.

(4)

The only independent variable in the expressions abob/e Bhe control performance
can thus be expressed as a functiob/adnly:

J=J(U). (5)

Assuming a linear controller, a linear plant, and a quadmaist function, the perfor-
mance of the controller for different values bf can easily be computed using the
Matlab toolbox Jitterbug [17].

The elimination of the jitter has several advantages. Firss easy to design a
controller that compensates for a constant delay. Secbagdrformance degradation
associated with the jitter is removed. Third, it becomessjiids to accurately pre-
dict the performance of the controller. These propertieseaploited in the codesign
examples below.

3.2 Codesign Example 1: Importance of Reducing Latency

Consider optimal control of the integrator process

da(t)
dt

= u(t) + ve(t). (6)

Here,z is the state (which should be controlled to zero)s the control signal, and
v, IS a continuous-time white noise disturbance with zero naahunit variance. A
discrete-time controller is designed to minimize the ammnius-time cost function

J= lim 2 2% (s) ds. (7
t—oo 0
Dividing the control computations into two segments andoding the segment lengths
in proportion to WCET of the parts, the control server moddllgenerate equidistant
sampling with the intervdl’ and a constant latendy. The cost for the optimal, delay-
compensating controller can be shown to be

3+V3

J(T, L) = "

T+ L (~0.79T + L). (®)

(For details, see Appendix A.) It can be noted that, in thigec#he cost grows linearly
with both the sampling interval and the latency. Furthemmfor a fixed value of (i.e.,

a specified level of performancd),is determined by.. This implies that a controller
with a short latency will be less CPU-demanding than a cdietrwith a long latency.
In Table 1, the relative CPU demand of the integrator colarblas been computed for
different values of the relative latendy/T. The case./T = 1 corresponds to a Liu
and Layland implementation with a one sample delay. As ttenty is reduced (by,
e.g., a suitable division of the control algorithm into a ctd@te Output segment and
an Update State segment), the CPU demand of the controlidyecdecreased.

Table 1: Relative CPU demand of the integrator controlledifferent relative laten-
cies.

L/T CPU demand

1 1.00
0.5 0.72
0.25 0.58
0.1 0.50

3.3 Codesign Example 2: Optimal Period Selection

In this example we study the problem of optimal sampling geselection for a set
of control loops. This type of codesign problem first appdang18]. In those cases,
however, the scheduling-induced latency and jitter wasrigd.

Suppose for instance that we want to control three identitedjrator processes,

da(t)
dt

wherez is the statey is the control signal, and. is a continuous-time white noise
process with zero mean and unit variance. A discrete-tinrmralber is designed to
minimize the continuous-time cost function

= u(t) + 'Uc(t)v (9)

1 T
J = lim —/ 22 (t) dt. (10)
T Jo

T—o00

assuming the sampling periddand a constant input-output latenEy The cost of the
optimal controller is given by

J(h, L) =2 +6\/§h YL (11)

(see Appendix I). The assumed design goal is to select sagp8riodshy, ho, hs
such that a weighted sum of the cost functions,

Jiot = w1 J(h1, L1) + wa J(he, La) + w3 J(hs, Ls), (12)

is minimized subject to the utilization constraint

Here, C is the (constant) total execution time of the control algon. Assigning
segment lengths proportional to the parts of the algorittia,control server model
implies the same relative latenay= L/h for all controllers. Using (11) the objective
function (12) can be written

3+3
Jtot(6

+ (1> (w1h1 + w2h2 + U)ghg).

9

Probability Density
N w £ [8)] (o)) ~

=
T

0 0.2 0.4 0.6 0.8 1
Execution Time

Figure 2: Assumed execution time probability distributadrthe integrator controller.

The solution to the optimization problem is

hi=b/y/wi, ho=0b/\/ws, hs=">b/\/ws,

whereb = C'(/w1++/wz+/ws). (For more general problems numerical optimization
must be performed.) Contrary to [18] (where RM or EDF schiedpis assumed), our
model allows for the latency and the (non-existent) jiteeibe accounted for in the
optimization.

3.4 Codesign Example 3: Overrun Handling

For controllers with large variations in their executiomé, it can sometimes be pes-
simistic to select task periods (and segment lengths) dowpto the WCETs. The
intuition is that, given a task CPU share, it may be betteatoe often and occasion-
ally miss an output, than to sample seldom and always prodncaitput. With our
model, it becomes easy to predict the worst-case effeets éissuming that the rest of
the CPU is fully utilized) of such task overruns.

Again consider the integrator controller. For simplicityis assumed that the con-
troller is implemented as a single segment, i.e., we Haye= T if no overrun occurs,
and that the assigned CPU sharé/is= 1. The controller is designed for a constant
latency ofL;, = T'. Now assume that the execution time of the controller ismglve
the probability distribution in Fig. 2.

Two cases are compared. First, budget recharging acrogsetia is allowed.
If an overrun occurs, the computation continues in the nexiod, where an output
is eventually produced. In the second case, it is the taskadsted in the case of an
overrun. This means that no new output is produced, and a omputation is started
in the next period The control performance in the differeages has been computed
using Jitterbug [17]. In Fig. 3, the cost (7) has been compiaedifferent values of the
task period. When period overruns are allowed, the optirosl is lower,J = 1.55,
and occurs whefI" = 0.5. If task abortions are used, the optimal cdst= 1.67
occurs forl" = 0.76. In this example, the default control server behavior witlddpet
recharging across the task period yields the best contrédmeance.

10

0.4 0.5 0.6 0.7 0.8 0.9 1
Task period T

Figure 3: Cost as a function of the task period for the integreontroller, in the case
of budget recharging across the period (full) and abortedprdations (dashed). In
both cases, assigning a task period shorter than the wasstexecution time can give
better control performance.

4 Control Server Tasks as Real-Time Components

As argued in the previous section, given a control algoritfith known execution time
C' (divided into one or several segments), the sampling périaiie latencyL,,, and
the control performancéd can be expressed as functions of the CPU sibareThe
predictable control and scheduling properties allows drobeerver task to be viewed
as a scalable real-time component.

Consider for instance the PID (proportional-integralieiive) controller compo-
nentin Fig. 4. The controller has two inputs: the refererateer and the measurement
signaly, and one output: the control signal TheU knob determines the CPU share.
An ordinary software component (see, e.g., [19]) would aplgcify the functional be-
havior, i.e., the PID algorithm. The specification for owalréme componentincludes
the resource usage and the timely behavior. Assuming areimgitation where the
execution time of the Calculate Output parti$ = 3.3 ms and the execution time of
the Update State part 52 = 10.0 ms, the specification of the PID component could
look something like this:

e Parameterst/ (CPU share)K, T;, T4 (PID parameters)

e ExecutiontimeC = 13.3 ms

.U
@
y
PID

Figure 4: A PID controller component. THé knob determines both the scheduling
and the control properties of the component.

11

Computer Process

Y
Y2 PID1

>T_r6{%u[>_r2U/3 ”
- © o

CascPID

Figure 6: A cascaded PID controller component.

e Task periodT = C/U
e Latency:L,, = C'/U =T/4

e Algorithm: u:K((r—y)+f Tii(r—y)dtJer*d—?), discretized using backward
difference with intervall’

Note that our model guarantees that the controller will hitnee specified behavior,
regardless of other tasks in the system.

Next, consider the composition of two PID controllers in @asded controller
structure, see Fig. 5. In this very common structure, therigontroller is responsible
for controlling the (typically) fast process dynami€s, while the outer controller
handles the slower dynamicg . A cascaded controller component can be built from
two PID components as shown in Fig. 6. In this case, it is assuthat the inner
controller should have twice the sampling frequency of thieocontroller (reflecting
the speed of the processes). This is achieved by assigrerghtired//3 to PID1 and
2U/3 to PID2,U being the CPU share of the composite controller. The erehtb-
latency in the controller can be minimized by a suitable segrtayout, see Fig. 7.

The schedulability and performance of the cascaded cdetrwill, again, only
depend on the total assigned CPU shidre The resulting controller is a multi-rate
controller and its performance can be computed using Bittef17]. As an example,
in Fig. 8, the cosY/ as a function of the CPU shakehas been computed for a cascaded
PID controlling a ball and beam process.

Note that such composition is not possible with ordinarg#us, i.e., two com-
municating threads cannot be treated as one, neither frbedstability nor control
perspectives.

12

[] [] [] []
n| st 52 st 52 -
I O I O | (0] I O
[] [] [] [] [] [] [] []
N CIERCIERCIERE
0 ¢2 ~

Figure 7: Segment layout in the cascaded PID controllerk Tass given an offset
¢2 = 11 such that the value written by; is immediately read by..

100

90

801

701

60

Cost J

50

a0t

301

20
0 0.1 0.2 0.3 0.4 0.5

CPU share U

Figure 8: Control performance as a function of the CPU shareafcascaded PID
controller.

13

Figure 9: Pseudo code for the modified real-kernel.

voi d schedule() { // Called by interrupt handl er
now = Power PC. Get TB() ; /| Read hardware cl ock
exectime = now - |astTine;
if (task is associated with a CBS) {
Decr ease CBS budget by execti ne;
if (budget <= 0) {
Updat e budget and deadl i ne;
}
}
for (each timer in the timer queue) {
if (now >= expiry) {
Run handl er;
}
}
for (each task in the time queue) {
if (now >= rel ease) {
Move task to ready queue;
if (task is associated with a CBS) {
Updat e budget and deadl i ne;
}

}

Make the first ready task the running task;
if (task is associated with a CBS) {
Set up CBS tiner;
}
Det er mi ne next wake-up tine;
Set up new tiner interrupt;
| ast Ti me = Power PC. Get TB() ;
Record context switch in log; // For traces
Transfer control to the running task;

5 Implementation

As a proof of concept, the computational model has been imgfeed in the public-
domain real-time kernel STORK [20], developed at the Deparit of Automatic Con-
trol, Lund Institute of Technology. The original kernel istandard priority-preemptive
real-time kernel written in Modula-2, running on multipl&afforms. For this project,
the Motorola PowerPC was chosen because of its high clookutésn (40 ns on a 100
MHz processor).

The kernel was modified to use EDF as the basic schedulingyp@nd high-
resolution timers (hardware clock interrupts that triggeer-defined handlers) were
introduced. For tracing purposes, the kernel measureswiion-time of each task.
An outline of the kernel code is shown in Fig. 9.

A number of data structures for CBS servers, control seaskst, segments, inputs,
and outputs, etc., were introduced, see the UML diagramdnH. The tasks in the
ready queue are sorted according to their absolute deadlliasks that are associated

14

EDFTask
release: Time 1.%
Timer deadline: Time
expiry: Time process: (*)(void)
handler: (*)(void) 1
1
0.1
TaskGroup | CSTask | CBS

-

ticksize: Duration 1..* | offset: int bandwidth: double
codeFcn: (*)(int, void*) deadline: Time
currentSegment: int budget: Duration

period: Duration

l 1.* 0.* l 0.*

Segment Input Output
length: int
inputs: int[]
outputs: int[]
AnalogIn SharedVarln AnalogOut SharedVarOut
channel: int data: void* channel: int data: void*
value: double size: int value: double size: int

Figure 10: The various data structures in the implementatio

with a CBS inherit the deadline of the CBS. Note that seversits may be served by
the same CBS.

Each CBS is implemented using a timer. When a served tadk staexecute, the
expiry time of the timer is set to the time when the budget {seexed to be exhausted.
When the CBS is preempted or idle, the timer is disabled. A @i is associated
with a control server task uses the segment information teroéne how much the
budget should be recharged and how much the deadline sheplddtponed.

5.1 Task Group Timing

For synchronization reasons, communicating control séasks must share a common
timebase and are gathered in task groups. Each task gros@uiseer to trigger the
reading of inputs, writing of outputs, and release of segmeftasks within the group.
The structure of the task group timer interrupt handler anshin Fig. 11.

Associated with each control server task is a semaphorésthiged to handle the
release of the segment jobs. Internally, every controlesetask is implemented as a
simple loop, see Fig. 12.

5.2 API

The kernel provides a number of primitives for defining tastugs, EDF tasks, CBS
servers, control server tasks, inputs and outputs, etc. cbde of a control server
task is written according to a special format, here illustawith a PID controller
(written in Modula-2), see Fig. 13. In the code, the kernahgiivesRead| nput and

W it eCut put are used to access the inputs and outputs associated wibgheent.

15

Figure 11: Pseudo code for the task group timing.

for (each task in the task group) {
if (current segnent is finished) {
Wite outputs; // (if any)
I ncrease segnment counter;
}
}
for (each task in the task group) {
if (a new segnment shoul d begin) {
Read inputs; // (if any)
Rel ease segnment job; // signal semaphore

}
}
Det ermi ne next interrupt tine;
Set up tinmer;

Figure 12: Pseudo code for the internal implementation afrdarol server task.

while (true) {
I ncrease segnent counter;
Wit on semaphore;
Cal | codeFcn(segnent, data);

16

Figure 13: Code function in Modula-2 representing a cordenVer task.

PROCEDURE PI DTask(seg: CARDI NAL; data: Pl DData);
VAR r, vy, u: LONGREAL,

BEG N
CASE seg OF
1: r := Readlnput(1);

y = Readl nput (2);
u := PID Cal cul ateCQut put(data, r, y);
WiteQutput (1, u);
|
2: PID. UpdateSt at e(dat a);
END;
END PI DTask;

Figure 14: The ball and beam process used in the control iexeets.

To prevent shared data from being corrupted, interruptsimabled in the read and

write primitives.

6 Control Experiments

The implementation of the control server was validated inalper of real-time control

experiments on the ball and beam process, see Fig. 14. Taetiobjof the control is

to move the ball to a given position on the beam. The inputégifocess is the beam

motor voltage, and the outputs are voltages representangdm angle and the ball
position.

The process is controlled by a multirate cascaded PID clbatravhere the inner

controller executes at twice the frequency of the outerrodlet (see Figs. 5-7). The

17

composite controller is assigned the CPU share- 0.5. The execution time of the
PID control algorithm is”' = 13.3 ms, divided into a Calculate Output segment with
C'! = 3.3 ms and an Update State segment With= 10 ms. (To generate a high CPU
load on the Power PC, busy cycles were inserted into the tdte.resulting sampling
periods arél; = 80 ms for the outer PID controller aril, = 40 ms for the inner PID
controller.

Also executing in the system is a sporadic task wittagsumeaninimum interar-
rival time of Ts,,, = 20 ms, and a worst-case execution time(gf,» = 10 ms. The
actual execution time of the task is random and uniformlyritisted between 2 and
10 ms. In the time interval O to 20, the actual interarrivialdiof the task is uniformly
distributed between 20 and 40 ms. The average utilizatidghegporadic task in this
interval is0.21. After ¢ = 20 s, the interarrival time of the task suddenly decreases
(hence violating the design assumptions) and is from thamiformly distributed be-
tween 5 and 10 ms. The new average utilization of the spotadicis 0.83, causing
the CPU to be overloaded.

The behavior of the system under rate-monotonic scheddantjest-deadline-first
scheduling, and control server scheduling was studied.eUall policies, PID2 was
released with an offset of 20 ms compared to PID1. The santorarsequence of
execution times for the sporadic task were used in all erpents. For each run, the
execution trace (i.e, the task schedule) was logged, tegetith measurements of the
ball position and the control signal.

6.1 Rate-Monotonic Scheduling

Under rate-monotonic scheduling, the sporadic task hashitwest assumed minimum
interarrival time and is assigned the highest priority,l&/RID1 and PID2 are assigned
low and medium priorities respectively. The task set is dakable according to rate-
monotonic theory.

The control performance under rate-monotonic scheduknghbwn in Fig. 15,
and a close-up of the execution trace is shown in Fig. 16. A®ebed, the control
performance is good up to= 20. When the sporadic task starts to misbehave, PID1
becomes completely blocked and the controller stops to wdte result is that the
ball rolls off the beam.

6.2 Earliest-Deadline-First Scheduling

Under earliest-deadline-first scheduling, the tasks dredided according to their ab-
solute deadlines. The PID tasks are assigned relativeideadiqual to their periods,
while the sporadic task is assigned a relative deadlineldquis assumed minimum
interarrival time.

The control performance under earlist-deadline-firstdalieg is shown in Fig. 17,
and a close-up of the execution trace is shown in Fig. 18. ®ghie control perfor-
mance is good up to = 20. After that, the step responses are slower and more oscil-
latory, but the control system is still stable. The CPU aved caused by the sporadic
task causes the sampling periods of the controller to bealedc This property of
control tasks under overloaded EDF scheduling was firstaéxgd in [21].

18

Position

Control

0 5 10 15 20 25 30 35 40

Time

Figure 15: Control performance under rate-monotonic saliegl The controller stops
to work aftert = 20.

. . .
195 196 197 198 199 20 20.1 202 203 204 205
Time

Figure 16: Execution trace under rate-monotonic schedulihe sporadic task blocks
the controller aftet = 20.

Position

Control
o

I I I I I I I
0 5 10 15 20 25 30 35 40

Time

Figure 17: Control performance under earliest-deadlirst-gcheduling.

19

20

19.5 19.6 19.7 19.8 19.9
Time

201 202 203 204 205

Figure 18: Execution trace under earliest-deadline-faiseduling.

Position

Control

I I I I I I I
0 5 10 15 20 25 30 35 40

Time

Figure 19: Control performance under control server sclirgluThe performance is
identical before and aftér= 20.

6.3 Control Server Scheduling

Under control server scheduling, the cascade controllassggned 50% of the pro-
cessor, while the utilization of the sporadic task is bouhtte50% using a constant
bandwidth server. The resulting control performance isvshim Fig. 19, and a close-
up of the execution trace is shown in Fig. 20. Since the cdlatrig no longer disturbed
by the sporadic task, control performance is good througlamd identical before and
aftert = 20. The schedule trace shows that the controller is no longsturdied by
the misbehaving sporadic task. Not shown in the trace isabgthat there is also no
longer any I/O jitter.

7 Conclusion and Discussion of Future Work

This paper has presented the control server model, suifabldne implementation
of feedback control tasks in embedded systems. Featurég ofiddel include small

20

2

I I
195 196 197 198 199 20 20.1 202 203 204 0.5

Time

Figure 20: Execution trace under control server scheduling

latency and jitter, something that is valuable from a cdmissspective. Based on the
constant bandwidth server, the control server also prevgtgation between unrelated
tasks. A nice property of the control server is that both dakebility and control
performance of a control task can be expressed throughdk€fRU share. The control
server has been implemented and tested in a real contratafph with good results.

The current work can be extended in many directions. One tbpit needs further
investigation is that of overrun handling. In Section 34 eaample was given where
budget recharging across the periods was shown to give bett&ol performance than
aborted computations. It is also possible to find examplesr&vthe opposite is true.
Can any general conclusions can be drawn? The problem afumveandling becomes
especially intricate when the control algorithm has beetiddd into segments. For
instance, should the Update State part be executed evea €dlculate Output part
was aborted (or did not finish in time)? Are some controllatizations more sensitive
to aborted computations than others? Can controllers higrassto be robust against
period overruns?

To provide better performance, the constant bandwidthessmsed could be mod-
ified to use a slack stealing algorithm. When the system ieuntllized, tasks would
then be able to exceed their budgets without unnecessadlimegostponements.
Interesting possibilities for slack stealing include thASH algorithm [22] and the
GRUB algorithm [23].

The analysis in the paper builds on the simplified assumpgtiaball communi-
cation (including interrupt handlers and 1/O) takes zenoeti Possibilities for more
detailed analysis of interrupt times under EDF schedulirgfaund in [1] (“mixed
scheduling”) and in [24]. It would also be interesting to di®p a variant of the con-
trol server for distributed systems. Components of the seonéroller could then be
located at different nodes in a network. The communicaiioes$ would now have to
be taken into account, and a suitable network schedulirgypebuld have to be used.

The proposed server is based on EDF scheduling. Unfortynaegy few com-
mercial real-time kernels support EDF scheduling today.lfa@kwards compatibility
and industrial acceptance, it would be useful to developrsiae of the control server

21

which is based on priority-based scheduling. In fact, aqakcitask scheduling servers
were originally developed for fixed-priority systems, [2&8hd a wealth of other algo-
rithms have been developed since. Since EDF is an optimadisiing policy, it cannot
be expected that all results carry over to a fixed-priorittirsg.

Finally, automatic tuning of the control server paramestrisuld be studied. It is
often very hard to obtain a good estimates of the worst-caseution times of tasks.
Using an on-line feedback mechanism, the segment lengtlid be automatically ad-
justed such that overruns occur optimally often. Also, tvéstn of the CPU among
several competing control tasks could be performed by abfeeldscheduler, as pro-
posed in [21].

A Cost Calculation in Codesign Example 1

The delayed integrator process can be written

dz_y) —u(t—L)+uv.(t), O0<L<T, (13)

whereL is the input-output latency, arid is the sampling interval. The cost function
to be minimized can be written

J:%E{/OTxQ(t)dt}. (14)

Inserting the process description (13) into (14) gives

1 L ot 2
J = T E {/0 <x(kT) +tu(kT —T) + /0 ve(s) ds) dt
+ /T (:c(k:T) + Lu(kT = T) + (t — L)u(kT)
+ /Ot ve(8) ds)th} (15)
2(kT) 1" 2(kT)
1 Q1 Q2
=_—E(|uklT-T) u(kT —T)
T { u(kT)] o] { u(kT)]
+ Jsamp7

22

where

i T g (T-L)L
Ql L2)
|5 +(T'-L)L 3 + (T*L)L2
[(T—L)? (T Ly?
QIQ 2) QQ = —)
(r-1)*, 3

L 2
1 T t
Toamp = —/ / 1 ds dt = T/2.
T 0 0

Sampling the process (13) with the interiZagives

(7 o]

v=lp o =[]

(16)
where

1
andv is a discrete-time white noise process with covariance

T 0
!
Introduce the positive definite matri The controller that minimizes the cost satisfies

the algebraic Riccati equation (e.g. [3])
S =078 +Q,

~(rsrsau)(srea) sesen).
with the solution
e)
T [eprovar) BT

3 6
The optimal control law is

wkT) = —K Lt z(kT)] ,

(kT —T)
where

(18)
-1
K = (Q2 + FTSF) (FTScb + Qsz)
_ P V3+3 L VB+ 3}
T2+v3 T2++3]
and the optimal cost is given by
1
J = SR+ Ty = 3 +6‘/§T YL (19)

23

References

[1] C. L. Liu and J. W. Layland, “Scheduling algorithms for Hiprogramming in a
hard-real-time environmentjournal of the ACMvol. 20, no. 1, pp. 40-61, 1973.

[2] M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. Gonzal¢irbourA Prac-
titioner’'s Handbook for Real-Time Analysis: Guide to Raterdtonic Analysis
for Real-Time Systems Kluwer Academic Publisher, 1993.

[3] K. J. Astrém and B. Wittenmark;omputer-Controlled SystemsPrentice Hall,
1997.

[4] N. Audsley, K. Tindell, and A. Burns, “The end of the linerfstatic cyclic
scheduling,” inProc. 5th Euromicro Workshop on Real-Time Systetr93.

[5] O. Redell and M. Sanfridson, “Exact best-case respoinse analysis of fixed
priority scheduled tasks,” iRroc. 14th Euromicro Conference on Real-Time Sys-
tems Vienna, Austria, June 2002.

[6] K. Jeffay and S. Goddard, “Rate-based resource allogatiodels for embedded
systems,” inProc. First International Workshop on Embedded Softwa®1.

[7] L. Abeniand G. Buttazzo, “Integrating multimedia apgltions in hard real-time
systems,” inProc. 19th IEEE Real-Time Systems SymposiMadrid, Spain,
1998.

[8] A. Parekh and R. Gallager, “A generalized processorisgagpproach to flow
control in integrated services networks: the single node ¢EEEE/ACM Trans-
actions on Networkingvol. 1, no. 3, pp. 344-357, 1993.

[9] M. Caccamo, G. Buttazzo, and L. Sha, “Elastic feedbaakmd,” in Proc. 12th
Euromicro Conference on Real-Time SysteBteckholm, Sweden, June 2000,
pp.121-128.

[10] C. D. Locke, “Software architecture for hard real-timgplications: Cyclic vs.
fixed priority executives,Real-Time Systemeol. 4, pp. 37-53, 1992.

[11] W. Halang, “Achieving jitter-free and predictable kizne control by accurately
timed computer peripheralsControl Engineering Practicevol. 1, no. 6, pp.
979-987, 1993.

[12] P. Balbastre, I. Ripoll, and A. Crespo, “Control taskayereduction under static
and dynamic scheduling policies,” Rroc. 7th International Conference on Real-
Time Computing Systems and Applicatid200.

[13] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giottd time-triggered lan-
guage for embedded programming,” Rroc. First International Workshop on
Embedded Softwar@001.

24

[14] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, ®ulndorffer, S. Sachs,
and Y. Xiong, “Taming heterogeneity—the Ptolemy apprda&tipceedings of
the IEEE vol. 91, no. 1, pp. 127-144, 2003.

[15] J. Liu and E. Lee, “Timed multitasking for real-time eetduled software JEEE
Control Systems Magazineol. 23, no. 1, Feb. 2003.

[16] L. Abeni, “Server mechanisms for multimedia applicat,” Scuola Superiore S.
Anna, Pisa, Italy, Tech. Rep. RETIS TR98-01, 1998.

[17] B. Lincoln and A. Cervin, “Jitterbug: A tool for analysof real-time control per-
formance,” inProceedings of the 41st IEEE Conference on Decision andr@lont
Las Vegas, NV, Dec. 2002.

[18] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin, “On tasgiesalability in real-
time control systems,” iProc. 17th IEEE Real-Time Systems Symposivash-
ington, DC, 1996, pp. 13-21.

[19] I. Crnkovic and M. Larsson, EdsBuilding Relable Component-Based Software
Systems Artech House Publishers, 2002.

[20] L. Andersson and A. Blomdell, “A real-time programmiegvironment and a
real-time kernel,” inNational Swedish Symposium on Real-Time Systeers
Technical Report No 30 1991-06-21, L. Asplund, Ed. Uppsaileeden: Dept.
of Computer Systems, Uppsala University, 1991.

[21] A. Cervin, J. Eker, B. Bernhardsson, and K.-E. ArzéneéBback-feedforward
scheduling of control tasksReal-Time Systemgol. 23, no. 1, July 2002.

[22] M. Caccamo, G. Buttazzo, and L. Sha, “Capacity sharamgf/errun control,” in
Proc. IEEE Real-Time Systems SymposiOnando, Florida, 2000.

[23] G. Lipari and S. Baruah, “Greedy reclamation of unusaddwidth in constant-
bandwidth servers,” iRroc. Euromicro Conference on Real-Time Systeteck-
holm, Sweden, 2000.

[24] K. Jeffay and D. L. Stone, “Accounting for interrupt hdlimg costs in dynamic
priority systems,” inProc. 14th IEEE Real-Time Systems Symposiig83.

[25] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task stileng for hard real-time
systems,Real-Time Systemeol. 1, no. 1, 1989.

25

