
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

The Control Server Model for Co-Design of Real-Time Control Systems

Cervin, Anton; Eker, Johan

Published in:
ARTES -- A network for Real-Time research and graduate Education in Sweden 1997--2006

2006

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Cervin, A., & Eker, J. (2006). The Control Server Model for Co-Design of Real-Time Control Systems. In H.
Hansson (Ed.), ARTES -- A network for Real-Time research and graduate Education in Sweden 1997--2006
Uppsala University: Department of Information Technology.

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/38cde1a0-e06d-4f87-a04d-79ada7532474


The Control Server Model for Codesign of
Real-Time Control Systems

Anton Cervin∗and Johan Eker†

Abstract

The paper presents the control server, a real-time scheduling mechanism tai-
lored to control and signal processing applications. A control server creates the ab-
straction of a control task with a specified period and a fixed input-output latency
shorter than the period. Individual tasks can be combined into more complex com-
ponents without loss of their individual guaranteed fixed-latency properties. I/O
occurs at fixed predefined points in time, at which inputs are read or controller out-
puts become visible. The control server model is especiallysuited for codesign of
real-time control systems. The single parameter linking the scheduling design and
the controller design is the task utilization factor. The proposed server is an exten-
sion of the constant bandwidth server, which is based on the earliest-deadline-first
scheduling algorithm. The server has been implemented in a real-time kernel and
has also been validated in control experiments on a ball and beam process.

1 Introduction

The design of a real-time control system is essentially a codesign problem. Decisions
made in the real-time design affect the control design, and vice versa. For instance, the
choice of scheduling policy influences the latency distributions in the control loops,
and, ideally, this should be taken into account in the control design. At the same time,
the performance requirements of the individual control loops place demands on the
real-time system with regard to sampling periods, latencies, and jitter.

Traditional scheduling models give poor support for codesign of multi-threaded
real-time control systems. One difficulty lies in the nonlinearity in scheduling mecha-
nisms such as rate-monotonic (RM) or earliest-deadline-first (EDF) scheduling: a small
change in a task parameter—e.g., period, execution time, deadline, or priority—may
give rise to unpredictable results in terms of input-outputlatency and jitter. This is cru-
cial, since the performance of a controller depends not onlyon its sampling period, but
also on the latency and the jitter. In the control design, it is straight-forward to account
for a constant latency, while it is difficult to address varying or unknown delays.

∗A. Cervin is with the Department of Automatic Control, Lund Institute of Technology, SE-221 00 Lund,
Sweden, email: anton@control.lth.se

†J. Eker is with Ericsson Mobile Platforms, SE-221 83 Lund, Sweden, email: jo-
han.eker@emp.ericsson.se

1



In the seminal Liu and Layland paper [1], it is assumed that I/O is performed pe-
riodically by hardware functions, introducing a one-sample delay in all control loops
closed over the computer. This scheme does provide a quite nice separation between
the scheduling design and the control design. From a scheduling perspective, the con-
troller can be described by a periodic task with a periodT , a computation timeC, and
a deadlineD = T . From a control perspective, the controller will have a sampling
period ofT and a constant latencyL = T . This allows the control design and the
real-time design to be carried out in relative isolation.

However, the one-sample latency degrades the control performance and is ulti-
mately a waste of resources. A common alternative implementation is therefore to
perform the I/O requests within the task loop and output the control signal as soon as
possible in each period (e.g., [2, 3]). At this point, however, the design problem be-
comes very complicated. The I/O jitter and latency of a controller are now affected by
variations in its own execution time as well as interferencefrom higher-priority tasks
(which in turn depend on the variations in the task executiontimes, the phasing of the
periodic tasks, the arrival pattern of sporadic tasks, etc.). In the best case, it may be
possible to derive formulas for the worst-case and best-case response times of the tasks
(e.g., [4, 5]), but this information is still not sufficient to accurately predict the perfor-
mance of the controllers. Furthermore, as argued in [6], with standard RM and EDF
scheduling it can be difficult to map task importance into priorities and/or deadlines.
These algorithms also perform poorly if tasks deviate from their assumed behavior or
if the CPU should become overloaded.

1.1 Model Overview

This paper presents a novel computational model for controltasks, called the control
server. The primary goal of the model is to facilitate simplecodesign of flexible real-
time control systems. In particular, the model should provide

(R1) isolation between unrelated tasks,

(R2) short input-output latencies,

(R3) minimal sampling jitter and input-output jitter,

(R4) a simple interface between the control design and the real-time design,

(R5) predictable control and real-time behavior, also in the case of overruns, and

(R6) the possibility to combine several tasks (components)into a new task (compo-
nent) with predictable control and real-time behavior.

Requirement (R1) is fulfilled by the use of constant bandwidth servers (CBSs) [7]. The
servers make each task appear as if it was running on a dedicated CPU with a given
fraction of the original CPU speed. To facilitate short latencies (requirement (R2)), a
task may be divided into a number ofsegments, which are scheduled individually. A
task may only read inputs (from the environment or from othertasks) at the beginning
of a segment and write outputs (to the environment or to othertasks) at the end of a

2



segment. All communication is handled by the kernel and is hence not prone to jitter
(requirement (R3)).

Requirements (R4)–(R6) are addressed by the combination ofbandwidth servers
and statically scheduled communication points. For periodic tasks with constant exe-
cution times, the model creates the illusion of a perfect division of the CPU, equivalent
to the Generalized Processor Sharing (GPS) algorithm [8]. The model makes it possi-
ble to analyze each task in isolation, from both scheduling and control points of view.
Like ordinary EDF, schedulability of the task set is simply determined by the total
CPU utilization (ignoring context switches and the I/O operations performed by the
kernel). The performance of a controller can also be viewed as a function of its alloted
CPU share. These properties make the model very suitable forfeedback scheduling
applications.

Furthermore, the model makes it possible to combine two or several communicat-
ing tasks into a new task. The new task will consume a fractionof the CPU equal to the
sum of the utilization of the constituting tasks. The new task will have a predictable
I/O pattern, and, hence, also predictable control performance. Control tasks may thus
be treated asreal-time components, which can be combined into new components.

1.2 Related Work

The constant bandwidth server (CBS) [7] was originally proposed as a means to bound
the utilization of soft or aperiodic real-time A CBS createsthe abstraction of a virtual
CPU with a given capacity (orbandwidth) Us. Tasks executing within the CBS cannot
consume more than the reserved capacity. Hence, from the outside, the CBS will appear
as an ordinary EDF task with a maximum utilization ofUs. The time granularity of the
virtual CPU abstraction is determined by theserver periodTs.

In [9], a variant of the CBS server, calledCBShd, is used to schedule control tasks
with varying execution times. In the case of an execution overrun, the current period is
extended and the CBS budget is recharged in small incrementsuntil the task finishes.

Minimizing jitter using high-priority tasks or interrupt handlers has been suggested
in various settings, e.g., [10, 2, 11]. Disadvantages of theapproach include a more
complex implementation and more run-time overhead. Also, reducing jitter means in-
creasing the average input-output latency. In [12], a design procedure that minimizes
input-output jitter using high-priority input and output tasks is presented. Task at-
tribute assignment under both FP and EDF scheduling is considered. Another option
to reduce input-output jitter is to use non-preemptive scheduling. Given that the con-
trol algorithm has a constant execution time, this will makethe input-output latency
constant. The drawback is that the scheduling design becomes more complicated.

Giotto [13] is an abstract programming model for the implementation of embedded
control systems. Similar to our model, I/O and communication are time-triggered and
assumed to take zero time, while the computations inbetweenare assumed to be sched-
uled in real-time. A serious drawback with the model is that aminimum of one sample
input-output latency is introduced in all control loops. Also, Giotto does not address
the scheduling problem.

Within the Ptolemy project, e.g., [14], a computational domain called Timed Multi-
tasking (TM) has been developed [15]. In the model, tasks (oractorsin the terminology

3



of Ptolemy) may be triggered by both periodic and aperiodic events. Inputs are read
when the task is triggered and outputs are written at the specified task deadline. The
computations inbetween are assumed to be scheduled by a fixed-priority dispatcher. In
the case of a deadline overrun, an overrun handler may be called. Again, the scheduling
problem is not explicitly addressed by the model.

2 The Model

The control server model assumes an underlying real-time operating system with an
EDF scheduler. To guarantee isolation, all tasks in the system must belong to either
one of two categories:

• Control server tasks, suitable for control loops and other periodic activities with
high demands for input/output timing accuracy.

• Tasks served by ordinary CBS servers, including aperiodic,soft and non-real-
time tasks.

2.1 Control Server Tasks

A control server taskτi is described by

• a CPU shareUi,

• a periodTi,

• a release offsetφi,

• a set ofni ≥ 1 segmentsS1

i , S2

i , . . . , Sni

i of lengthsl1i , l
2

i , . . . , l
ni

i such that
∑ni

j=1
lji = Ti,

• a set of inputsIi (associated with physical inputs or shared variables), and

• a set of outputsOi (associated with physical outputs or shared variables).

Associated with each segmentSj
i are

• a subset of the task inputs,Ij
i ∈ Ii,

• a code functionf j
i , and

• a subset of the task outputs,Oj
i ∈ Oi,

The segments can be thought of as a static cyclic schedule forthe reading of inputs, the
writing of outputs, and the release of jobs. At the beginningof a segmentSj

i , i.e., when
t = φi +

∑j−1

k=1
lki (modTi), the inputsIj

i are read and a job executingf j
i is released.

At the end of the segment, i.e., whent = φi +
∑j

k=1
lki (modTi), the outputsOj

i are
written.

The jobs produced by a control server taskτi are served on a first-come, first-served
basis by a dedicated, slightly modified CBS with the following attributes:

4



2

0
0 2 4 6 8 10 12

t

t

t
Segments

Job
execution

CBS
budget

S1 S1 S2S2

f1f1 f2 f2

II OO

Figure 1: Example of a control server task executing alone. The up arrows indicate
job releases and the down arrows indicate deadlines. The overrun att = 7 causes the
deadline to be postponed to the end of the next segment.

• a server bandwidth equal to the CPU shareUi,

• a dynamic deadlinedi,

• a server budgetci, and

• a segment countermi.

The server is initialized withci = mi = 0 anddi = φi. The rules for updating the
server are as follows:

1. During the execution of a job, the budgetci is decreased at unit rate.

2. If ci = 0, or, if a new job arrives at timer anddi = r, then

– the segment counter is updated,mi := mod(mi, ni) + 1,

– the deadline is moved,di := di + lmi

i , and

– the budget is recharged toci := Ui lmi

i .

The rules are somewhat simplified compared to the original CBS rules [7] due to the
predictable pattern of release times and deadlines. The only real difference from an
ordinary CBS is that here a “dynamic server period”, equal tothe current segment
length,lmi

i , is used.
Fig. 1 shows an example of a control server task with two segments executing

alone. This is a typical model of a control algorithm, which has been split into two
parts, Calculate Output and Update State. The lengths of thesegments are 2 and 4
units respectively, and the task CPU share isU = 0.5. At the beginning of the first
segment, an input is read, and at the end of the first segment, an output is written. The
two first jobs consume less than their budgets (which are 1 and2 units respectively),
while the third job has an overrun at time 7. This causes the deadline to be moved to the
end of the next segment and the budget to be recharged to 2 units (hence “borrowing”
budget from the fourth job). In this example, the latency is constant and equal to 2 units
(the length of the first segment) despite the variation in thejob execution times.

5



2.2 Aborted Computations

The default behavior of the control server is to allow budgetrecharging across the
task period. In the case of constant overruns, this will cause the task deadline to be
postponed repeatedly and eventually reach infinity. For some applications, a better
choice may be to abort the task when the total budget in the period has been exhausted.
The choice of whether to abort the task in case of a period budget overrun may be
specified separately for each control server task.

2.3 Communication and Synchronization

The communication between tasks and the environment requires some amount of buffer-
ing. When an input is read at the beginning of a segment, the value is stored in a buffer.
The value in the buffer is then read from user code using a real-time primitive. The
read operation is non-blocking and non-consuming, i.e., a value will always be present
in the buffer and the same value can be read several times. Similarly, another real-time
primitive is used to write a new output value. The value is stored in a buffer and is
written to the output at the end of the relevant segment.

Communication between tasks is handled via shared variables. If an input is as-
sociated with a shared variable, the value of the variable iscopied to the input buffer
at the beginning of the relevant segment. Similarly, if an output is associated with a
shared variable, the value in the output buffer is copied to the shared variable at the end
of the relevant segment. Interrupts are assumed to be disabled when accessing buffers
and shared data.

If two tasks should write to the same physical output or shared variable at the same
time, the actual write order is undefined. More importantly,if one task writes to a
shared variable and another task reads from the same variable at the same time,the
write operation takes place first. The offsets can hence be used to line up tasks such
that the output from one task is immediately read by another task, minimizing the end-
to-end latency.

The use of buffers and non-blocking read and write operations allow tasks with
different periods to communicate. The periods of two communicating tasks need not
be harmonic, even if this makes most sense in typical applications. However, for the
kernel to be able to accurately determine if a read and write operation really occurs si-
multaneously, the offsets, periods, and segment lengths ofa set of communicating tasks
need to be integer multiples of a common tick size. For this purpose, communicating
tasks are gathered intotask groups. This is described further in the implementation
section.

2.4 Scheduling Properties

From a schedulability point of view, a control server task with the CPU shareUi is
equivalent to a CBS server with the bandwidthUi. In [16], it is shown that a CBS can
never demand more than its reserved bandwidth. By postponing the deadline when the
budget is exhausted, the loading factor of the jobs served bythe CBS can never exceed
Ui. The same argument holds for the modified CBS used in the control server model.

6



A set of CBS and control server tasks is thus schedulable if and only if

∑

Ui ≤ 1. (1)

If the segment lengths of a control server taskτi are chosen such that

lji = Cj
i /Ui, (2)

whereCj
i denotes the worst-case execution time (WCET) of the code function f j

i ,
overruns will never occur (i.e., the budget will never be exhausted before the end of
the segment), and all latencies will be constant. For tasks with large variation in their
execution time, it can sometimes be advantageous to assign segment lengths that are
shorter than those given by (2). This means that some deadlines will be postponed and
that the task may not always produce a new output in time, delaying the output one or
more periods. An example of when this can actually give better control performance
(for a given value ofUi) is given later.

3 Control and Scheduling Codesign

As stated in the introductory chapter of the thesis, the control and scheduling codesign
problem can be formulated as follows: Given a set of processes to be controlled and a
computer with limited resources, a set of controllers should be designed and scheduled
as real-time tasks such that the overall control performance is optimized. With dynamic
scheduling algorithms such as EDF and RM, the general designproblem is extremely
difficult due to the complex interaction between task parameters, control parameters,
schedulability, and control performance.

3.1 Control Performance

With our model, the link between the scheduling design and the control design is the
CPU shareU . Schedulability of a task set is simply determined by the total CPU
utilization. The performance (orcost) J of a controller executing in a real-time sys-
tem can—roughly speaking—be expressed as a function of the sampling periodT , the
input-output latencyLio, the sampling jitterJs, and the input-output jitterJio:

J = J(T, Lio, Js, Jio). (3)

Assuming that the first segment contains the Calculate Output part of the control algo-
rithm, and that the segment lengths are chosen according to (2), execution under the
Control Server implies

T =
∑

lk =
∑

Ck/U,

Lio = l1 = C1/U,

Js = 0,

Jio = 0.

(4)

7



The only independent variable in the expressions above isU . The control performance
can thus be expressed as a function ofU only:

J = J(U). (5)

Assuming a linear controller, a linear plant, and a quadratic cost function, the perfor-
mance of the controller for different values ofU can easily be computed using the
Matlab toolbox Jitterbug [17].

The elimination of the jitter has several advantages. First, it is easy to design a
controller that compensates for a constant delay. Second, the performance degradation
associated with the jitter is removed. Third, it becomes possible to accurately pre-
dict the performance of the controller. These properties are exploited in the codesign
examples below.

3.2 Codesign Example 1: Importance of Reducing Latency

Consider optimal control of the integrator process

dx(t)

dt
= u(t) + vc(t). (6)

Here,x is the state (which should be controlled to zero),u is the control signal, and
vc is a continuous-time white noise disturbance with zero meanand unit variance. A
discrete-time controller is designed to minimize the continuous-time cost function

J = lim
t→∞

1

t

∫ t

0

x2(s) ds. (7)

Dividing the control computations into two segments and choosing the segment lengths
in proportion to WCET of the parts, the control server model will generate equidistant
sampling with the intervalT and a constant latencyL. The cost for the optimal, delay-
compensating controller can be shown to be

J(T, L) =
3 +

√
3

6
T + L (≈ 0.79T + L). (8)

(For details, see Appendix A.) It can be noted that, in this case, the cost grows linearly
with both the sampling interval and the latency. Furthermore, for a fixed value ofJ (i.e.,
a specified level of performance),T is determined byL. This implies that a controller
with a short latency will be less CPU-demanding than a controller with a long latency.
In Table 1, the relative CPU demand of the integrator controller has been computed for
different values of the relative latencyL/T . The caseL/T = 1 corresponds to a Liu
and Layland implementation with a one sample delay. As the latency is reduced (by,
e.g., a suitable division of the control algorithm into a Calculate Output segment and
an Update State segment), the CPU demand of the controller can be decreased.

8



Table 1: Relative CPU demand of the integrator controller for different relative laten-
cies.

L/T CPU demand

1 1.00

0.5 0.72

0.25 0.58

0.1 0.50

3.3 Codesign Example 2: Optimal Period Selection

In this example we study the problem of optimal sampling period selection for a set
of control loops. This type of codesign problem first appeared in [18]. In those cases,
however, the scheduling-induced latency and jitter was ignored.

Suppose for instance that we want to control three identicalintegrator processes,

dx(t)

dt
= u(t) + vc(t), (9)

wherex is the state,u is the control signal, andvc is a continuous-time white noise
process with zero mean and unit variance. A discrete-time controller is designed to
minimize the continuous-time cost function

J = lim
T→∞

1

T

∫ T

0

x2(t) dt. (10)

assuming the sampling periodh and a constant input-output latencyL. The cost of the
optimal controller is given by

J(h, L) =
3 +

√
3

6
h + L (11)

(see Appendix I). The assumed design goal is to select sampling periodsh1, h2, h3

such that a weighted sum of the cost functions,

Jtot = w1 J(h1, L1) + w2 J(h2, L2) + w3 J(h3, L3), (12)

is minimized subject to the utilization constraint

U =
C

h1

+
C

h2

+
C

h3

≤ 1.

Here, C is the (constant) total execution time of the control algorithm. Assigning
segment lengths proportional to the parts of the algorithm,the control server model
implies the same relative latencya = L/h for all controllers. Using (11) the objective
function (12) can be written

Jtot =

(

3 +
√

3

6
+ a

)

(w1h1 + w2h2 + w3h3).

9



0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

Execution Time

P
ro

ba
bi

lit
y 

D
en

si
ty

Figure 2: Assumed execution time probability distributionof the integrator controller.

The solution to the optimization problem is

h1 = b/
√

w1, h2 = b/
√

w2, h3 = b/
√

w3,

whereb = C(
√

w1+
√

w2+
√

w3). (For more general problems numerical optimization
must be performed.) Contrary to [18] (where RM or EDF scheduling is assumed), our
model allows for the latency and the (non-existent) jitter to be accounted for in the
optimization.

3.4 Codesign Example 3: Overrun Handling

For controllers with large variations in their execution time, it can sometimes be pes-
simistic to select task periods (and segment lengths) according to the WCETs. The
intuition is that, given a task CPU share, it may be better to sample often and occasion-
ally miss an output, than to sample seldom and always producean output. With our
model, it becomes easy to predict the worst-case effects (i.e., assuming that the rest of
the CPU is fully utilized) of such task overruns.

Again consider the integrator controller. For simplicity,it is assumed that the con-
troller is implemented as a single segment, i.e., we haveLio = T if no overrun occurs,
and that the assigned CPU share isU = 1. The controller is designed for a constant
latency ofLio = T . Now assume that the execution time of the controller is given by
the probability distribution in Fig. 2.

Two cases are compared. First, budget recharging across theperiod is allowed.
If an overrun occurs, the computation continues in the next period, where an output
is eventually produced. In the second case, it is the task is aborted in the case of an
overrun. This means that no new output is produced, and a new computation is started
in the next period The control performance in the different cases has been computed
using Jitterbug [17]. In Fig. 3, the cost (7) has been computed for different values of the
task period. When period overruns are allowed, the optimal cost is lower,J = 1.55,
and occurs whenT = 0.5. If task abortions are used, the optimal costJ = 1.67
occurs forT = 0.76. In this example, the default control server behavior with budget
recharging across the task period yields the best control performance.

10



0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5

4

4.5

5

Task period T

C
os

t J

Figure 3: Cost as a function of the task period for the integrator controller, in the case
of budget recharging across the period (full) and aborted computations (dashed). In
both cases, assigning a task period shorter than the worst-case execution time can give
better control performance.

4 Control Server Tasks as Real-Time Components

As argued in the previous section, given a control algorithmwith known execution time
C (divided into one or several segments), the sampling periodT , the latencyLio, and
the control performanceJ can be expressed as functions of the CPU shareU . The
predictable control and scheduling properties allows a control server task to be viewed
as a scalable real-time component.

Consider for instance the PID (proportional-integral-derivative) controller compo-
nent in Fig. 4. The controller has two inputs: the reference valuer and the measurement
signaly, and one output: the control signalu. TheU knob determines the CPU share.
An ordinary software component (see, e.g., [19]) would onlyspecify the functional be-
havior, i.e., the PID algorithm. The specification for our real-time component includes
the resource usage and the timely behavior. Assuming an implementation where the
execution time of the Calculate Output part isC1 = 3.3 ms and the execution time of
the Update State part isC2 = 10.0 ms, the specification of the PID component could
look something like this:

• Parameters:U (CPU share),K, Ti, Td (PID parameters)

• Execution time:C = 13.3 ms

r

y
u

U

PID

Figure 4: A PID controller component. TheU knob determines both the scheduling
and the control properties of the component.

11



Ctrl 1 Ctrl 2 G2 G1

Computer Process

Figure 5: Cascaded controller structure.

r

r
r

y
y

y1

y2

u

uu

U

U/3

2U/3

PID1
PID2

CascPID

m

Figure 6: A cascaded PID controller component.

• Task period:T = C/U

• Latency:Lio = C1/U = T/4

• Algorithm: u=K
(

(r−y)+
∫

1

Ti

(r−y)dt+Td
−dy

dt

)

, discretized using backward

difference with intervalT

Note that our model guarantees that the controller will havethe specified behavior,
regardless of other tasks in the system.

Next, consider the composition of two PID controllers in a cascaded controller
structure, see Fig. 5. In this very common structure, the inner controller is responsible
for controlling the (typically) fast process dynamicsG2, while the outer controller
handles the slower dynamicsG1. A cascaded controller component can be built from
two PID components as shown in Fig. 6. In this case, it is assumed that the inner
controller should have twice the sampling frequency of the outer controller (reflecting
the speed of the processes). This is achieved by assigning the sharesU/3 to PID1 and
2U/3 to PID2, U being the CPU share of the composite controller. The end-to-end
latency in the controller can be minimized by a suitable segment layout, see Fig. 7.

The schedulability and performance of the cascaded controller will, again, only
depend on the total assigned CPU shareU . The resulting controller is a multi-rate
controller and its performance can be computed using Jitterbug [17]. As an example,
in Fig. 8, the costJ as a function of the CPU shareU has been computed for a cascaded
PID controlling a ball and beam process.

Note that such composition is not possible with ordinary threads, i.e., two com-
municating threads cannot be treated as one, neither from schedulability nor control
perspectives.

12



0

τ1

τ2

S1

1
S1

1
S2

1
S2

1

S1

2
S1

2
S1

2
S1

2
S2

2
S2

2
S2

2

I

IIII

I

OOOO

OO

φ2

Figure 7: Segment layout in the cascaded PID controller. Task τ2 is given an offset
φ2 = l1

1
such that the value written byS1

1
is immediately read byS1

2
.

0 0.1 0.2 0.3 0.4 0.5
20

30

40

50

60

70

80

90

100

CPU share  U

C
os

t  
J

Figure 8: Control performance as a function of the CPU share for a cascaded PID
controller.

13



Figure 9: Pseudo code for the modified real-kernel.

void schedule() { // Called by interrupt handler
now = PowerPC.GetTB(); // Read hardware clock
exectime = now - lastTime;
if (task is associated with a CBS) {

Decrease CBS budget by exectime;
if (budget <= 0) {

Update budget and deadline;
}

}
for (each timer in the timer queue) {

if (now >= expiry) {
Run handler;

}
}
for (each task in the time queue) {

if (now >= release) {
Move task to ready queue;
if (task is associated with a CBS) {
Update budget and deadline;

}
}

}
Make the first ready task the running task;
if (task is associated with a CBS) {

Set up CBS timer;
}
Determine next wake-up time;
Set up new timer interrupt;
lastTime = PowerPC.GetTB();
Record context switch in log; // For traces
Transfer control to the running task;

}

5 Implementation

As a proof of concept, the computational model has been implemented in the public-
domain real-time kernel STORK [20], developed at the Department of Automatic Con-
trol, Lund Institute of Technology. The original kernel is astandard priority-preemptive
real-time kernel written in Modula-2, running on multiple platforms. For this project,
the Motorola PowerPC was chosen because of its high clock resolution (40 ns on a 100
MHz processor).

The kernel was modified to use EDF as the basic scheduling policy, and high-
resolution timers (hardware clock interrupts that triggeruser-defined handlers) were
introduced. For tracing purposes, the kernel measures the execution-time of each task.
An outline of the kernel code is shown in Fig. 9.

A number of data structures for CBS servers, control server tasks, segments, inputs,
and outputs, etc., were introduced, see the UML diagram in Fig. 10. The tasks in the
ready queue are sorted according to their absolute deadlines. Tasks that are associated

14



data: void*
size: int

SharedVarIn
channel: int
value: double

AnalogOut
data: void*
size: int

SharedVarOut

CBSTaskGroup

Segment Input Output

CSTask

Timer

EDFTask
release: Time
deadline: Time
process: (*)(void)expiry: Time

handler: (*)(void)

ticksize: Duration offset: int

currentSegment: int

bandwidth: double
deadline: Time
budget: Duration
period: Duration

length: int
inputs: int[]
outputs: int[]

1

1

0..1

1..*

1..* 1

0..* 0..*

1..*

channel: int
value: double

AnalogIn

codeFcn: (*)(int, void*)

Figure 10: The various data structures in the implementation.

with a CBS inherit the deadline of the CBS. Note that several tasks may be served by
the same CBS.

Each CBS is implemented using a timer. When a served task starts to execute, the
expiry time of the timer is set to the time when the budget is expected to be exhausted.
When the CBS is preempted or idle, the timer is disabled. A CBSthat is associated
with a control server task uses the segment information to determine how much the
budget should be recharged and how much the deadline should be postponed.

5.1 Task Group Timing

For synchronization reasons, communicating control server tasks must share a common
timebase and are gathered in task groups. Each task group uses a timer to trigger the
reading of inputs, writing of outputs, and release of segments of tasks within the group.
The structure of the task group timer interrupt handler is shown in Fig. 11.

Associated with each control server task is a semaphore thatis used to handle the
release of the segment jobs. Internally, every control server task is implemented as a
simple loop, see Fig. 12.

5.2 API

The kernel provides a number of primitives for defining task groups, EDF tasks, CBS
servers, control server tasks, inputs and outputs, etc. Thecode of a control server
task is written according to a special format, here illustrated with a PID controller
(written in Modula-2), see Fig. 13. In the code, the kernel primitivesReadInput and
WriteOutput are used to access the inputs and outputs associated with thesegment.

15



Figure 11: Pseudo code for the task group timing.

for (each task in the task group) {
if (current segment is finished) {

Write outputs; // (if any)
Increase segment counter;

}
}
for (each task in the task group) {

if (a new segment should begin) {
Read inputs; // (if any)
Release segment job; // signal semaphore

}
}
Determine next interrupt time;
Set up timer;

Figure 12: Pseudo code for the internal implementation of a control server task.

while (true) {
Increase segment counter;
Wait on semaphore;
Call codeFcn(segment,data);

}

16



Figure 13: Code function in Modula-2 representing a controlserver task.

PROCEDURE PIDTask(seg: CARDINAL; data: PIDData);
VAR r, y, u: LONGREAL;
BEGIN

CASE seg OF
1: r := ReadInput(1);

y := ReadInput(2);
u := PID.CalculateOutput(data, r, y);
WriteOutput(1, u);
|

2: PID.UpdateState(data);
END;

END PIDTask;

Figure 14: The ball and beam process used in the control experiments.

To prevent shared data from being corrupted, interrupts aredisabled in the read and
write primitives.

6 Control Experiments

The implementation of the control server was validated in a number of real-time control
experiments on the ball and beam process, see Fig. 14. The objective of the control is
to move the ball to a given position on the beam. The input to the process is the beam
motor voltage, and the outputs are voltages representing the beam angle and the ball
position.

The process is controlled by a multirate cascaded PID controller, where the inner
controller executes at twice the frequency of the outer controller (see Figs. 5–7). The

17



composite controller is assigned the CPU shareU = 0.5. The execution time of the
PID control algorithm isC = 13.3 ms, divided into a Calculate Output segment with
C1 = 3.3 ms and an Update State segment withC2 = 10 ms. (To generate a high CPU
load on the Power PC, busy cycles were inserted into the code.) The resulting sampling
periods areT1 = 80 ms for the outer PID controller andT2 = 40 ms for the inner PID
controller.

Also executing in the system is a sporadic task with anassumedminimum interar-
rival time of Tspor = 20 ms, and a worst-case execution time ofCspor = 10 ms. The
actual execution time of the task is random and uniformly distributed between 2 and
10 ms. In the time interval 0 to 20, the actual interarrival time of the task is uniformly
distributed between 20 and 40 ms. The average utilization ofthe sporadic task in this
interval is0.21. After t = 20 s, the interarrival time of the task suddenly decreases
(hence violating the design assumptions) and is from then onuniformly distributed be-
tween 5 and 10 ms. The new average utilization of the sporadictask is 0.83, causing
the CPU to be overloaded.

The behavior of the system under rate-monotonic scheduling, earliest-deadline-first
scheduling, and control server scheduling was studied. Under all policies, PID2 was
released with an offset of 20 ms compared to PID1. The same random sequence of
execution times for the sporadic task were used in all experiments. For each run, the
execution trace (i.e, the task schedule) was logged, together with measurements of the
ball position and the control signal.

6.1 Rate-Monotonic Scheduling

Under rate-monotonic scheduling, the sporadic task has theshortest assumed minimum
interarrival time and is assigned the highest priority, while PID1 and PID2 are assigned
low and medium priorities respectively. The task set is schedulable according to rate-
monotonic theory.

The control performance under rate-monotonic scheduling is shown in Fig. 15,
and a close-up of the execution trace is shown in Fig. 16. As expected, the control
performance is good up tot = 20. When the sporadic task starts to misbehave, PID1
becomes completely blocked and the controller stops to work. The result is that the
ball rolls off the beam.

6.2 Earliest-Deadline-First Scheduling

Under earliest-deadline-first scheduling, the tasks are scheduled according to their ab-
solute deadlines. The PID tasks are assigned relative deadlines equal to their periods,
while the sporadic task is assigned a relative deadline equal to its assumed minimum
interarrival time.

The control performance under earlist-deadline-first scheduling is shown in Fig. 17,
and a close-up of the execution trace is shown in Fig. 18. Again, the control perfor-
mance is good up tot = 20. After that, the step responses are slower and more oscil-
latory, but the control system is still stable. The CPU overload caused by the sporadic
task causes the sampling periods of the controller to be rescaled. This property of
control tasks under overloaded EDF scheduling was first explained in [21].

18



0 5 10 15 20 25 30 35 40

−0.2

0

0.2

P
os

iti
on

0 5 10 15 20 25 30 35 40

−0.2

0

0.2

C
on

tr
ol

Time

Figure 15: Control performance under rate-monotonic scheduling. The controller stops
to work aftert = 20.

19.5 19.6 19.7 19.8 19.9 20 20.1 20.2 20.3 20.4 20.5

PID1  

PID2  

Spor. 

Time

Figure 16: Execution trace under rate-monotonic scheduling. The sporadic task blocks
the controller aftert = 20.

0 5 10 15 20 25 30 35 40

−0.2

0

0.2

P
os

iti
on

0 5 10 15 20 25 30 35 40

−0.2

0

0.2

C
on

tr
ol

Time

Figure 17: Control performance under earliest-deadline-first scheduling.

19



19.5 19.6 19.7 19.8 19.9 20 20.1 20.2 20.3 20.4 20.5

PID1  

PID2  

Spor. 

Time

Figure 18: Execution trace under earliest-deadline-first scheduling.

0 5 10 15 20 25 30 35 40

−0.2

0

0.2

P
os

iti
on

0 5 10 15 20 25 30 35 40

−0.2

0

0.2

C
on

tr
ol

Time

Figure 19: Control performance under control server scheduling. The performance is
identical before and aftert = 20.

6.3 Control Server Scheduling

Under control server scheduling, the cascade controller isassigned 50% of the pro-
cessor, while the utilization of the sporadic task is bounded to 50% using a constant
bandwidth server. The resulting control performance is shown in Fig. 19, and a close-
up of the execution trace is shown in Fig. 20. Since the controller is no longer disturbed
by the sporadic task, control performance is good throughout, and identical before and
after t = 20. The schedule trace shows that the controller is no longer disturbed by
the misbehaving sporadic task. Not shown in the trace is the fact that there is also no
longer any I/O jitter.

7 Conclusion and Discussion of Future Work

This paper has presented the control server model, suitablefor the implementation
of feedback control tasks in embedded systems. Features of the model include small

20



19.5 19.6 19.7 19.8 19.9 20 20.1 20.2 20.3 20.4 20.5

PID1  

PID2  

Spor. 

Time

Figure 20: Execution trace under control server scheduling.

latency and jitter, something that is valuable from a control perspective. Based on the
constant bandwidth server, the control server also provides isolation between unrelated
tasks. A nice property of the control server is that both schedulability and control
performance of a control task can be expressed through the task CPU share. The control
server has been implemented and tested in a real control application with good results.

The current work can be extended in many directions. One topic that needs further
investigation is that of overrun handling. In Section 3.4, an example was given where
budget recharging across the periods was shown to give better control performance than
aborted computations. It is also possible to find examples where the opposite is true.
Can any general conclusions can be drawn? The problem of overrun handling becomes
especially intricate when the control algorithm has been divided into segments. For
instance, should the Update State part be executed even if the Calculate Output part
was aborted (or did not finish in time)? Are some controller realizations more sensitive
to aborted computations than others? Can controllers be designed to be robust against
period overruns?

To provide better performance, the constant bandwidth servers used could be mod-
ified to use a slack stealing algorithm. When the system is under-utilized, tasks would
then be able to exceed their budgets without unnecessary deadline postponements.
Interesting possibilities for slack stealing include the CASH algorithm [22] and the
GRUB algorithm [23].

The analysis in the paper builds on the simplified assumptionthat all communi-
cation (including interrupt handlers and I/O) takes zero time. Possibilities for more
detailed analysis of interrupt times under EDF scheduling are found in [1] (“mixed
scheduling”) and in [24]. It would also be interesting to develop a variant of the con-
trol server for distributed systems. Components of the samecontroller could then be
located at different nodes in a network. The communication times would now have to
be taken into account, and a suitable network scheduling policy would have to be used.

The proposed server is based on EDF scheduling. Unfortunately, very few com-
mercial real-time kernels support EDF scheduling today. For backwards compatibility
and industrial acceptance, it would be useful to develop a version of the control server

21



which is based on priority-based scheduling. In fact, aperiodic task scheduling servers
were originally developed for fixed-priority systems, [25], and a wealth of other algo-
rithms have been developed since. Since EDF is an optimal scheduling policy, it cannot
be expected that all results carry over to a fixed-priority setting.

Finally, automatic tuning of the control server parametersshould be studied. It is
often very hard to obtain a good estimates of the worst-case execution times of tasks.
Using an on-line feedback mechanism, the segment lengths could be automatically ad-
justed such that overruns occur optimally often. Also, the division of the CPU among
several competing control tasks could be performed by a feedback scheduler, as pro-
posed in [21].

A Cost Calculation in Codesign Example 1

The delayed integrator process can be written

dx(t)

dt
= u(t − L) + vc(t), 0 ≤ L ≤ T, (13)

whereL is the input-output latency, andT is the sampling interval. The cost function
to be minimized can be written

J =
1

T
E

{
∫ T

0

x2(t) dt

}

. (14)

Inserting the process description (13) into (14) gives

J =
1

T
E

{

∫ L

0

(

x(kT ) + tu(kT − T ) +

∫ t

0

vc(s) ds

)2

dt

+

∫ T

L

(

x(kT ) + Lu(kT − T ) + (t − L)u(kT )

+

∫ t

0

vc(s) ds

)2

dt

}

=
1

T
E















x(kT )
u(kT − T )

u(kT )





T
[

Q1 Q12

QT
12 Q2

]





x(kT )
u(kT − T )

u(kT )















+ Jsamp ,

(15)

22



where

Q1 =







T
L2

2
+ (T−L)L

L2

2
+ (T−L)L

L3

3
+ (T−L)L2






,

Q12 =







(T−L)2

2
(T−L)2

2
L






, Q2 =

(T−L)3

3
,

Jsamp =
1

T

∫ T

0

∫ t

0

1 ds dt = T/2.

Sampling the process (13) with the intervalT gives
[

x(kT + T )
u(kT )

]

= Φ

[

x(kT )
u(kT − T )

]

+ Γu(kT ) + v(kT ), (16)

where

Φ =

[

1 L
0 0

]

, Γ =

[

T − L
1

]

,

andv is a discrete-time white noise process with covariance

R =

[

T 0
0 0

]

.

Introduce the positive definite matrixS. The controller that minimizes the cost satisfies
the algebraic Riccati equation (e.g. [3])

S = ΦT SΦ + Q1

−
(

ΦT SΓ + Q12

)(

ΓT SΓ + Q2

)

−1(

ΓT SΦ + QT
12

)

,
(17)

with the solution

S =







L +

√
3 T

6

L

6

(

3L −
√

3T
)

L

6

(

3L −
√

3T
) L3

3
−

√
3L2T

6






.

The optimal control law is

u(kT ) = −K

[

x(kT )
u(kT − T )

]

, (18)

where

K =
(

Q2 + ΓT SΓ
)

−1(

ΓT SΦ + QT
12

)

=

[

1

T

√
3 + 3

2 +
√

3

L

T

√
3 + 3

2 +
√

3

]

,

and the optimal cost is given by

J =
1

T
tr SR + Jsamp =

3 +
√

3

6
T + L. (19)

23



References

[1] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a
hard-real-time environment,”Journal of the ACM, vol. 20, no. 1, pp. 40–61, 1973.

[2] M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. Gonzalez Härbour,A Prac-
titioner’s Handbook for Real-Time Analysis: Guide to Rate Monotonic Analysis
for Real-Time Systems. Kluwer Academic Publisher, 1993.

[3] K. J. Åström and B. Wittenmark,Computer-Controlled Systems. Prentice Hall,
1997.

[4] N. Audsley, K. Tindell, and A. Burns, “The end of the line for static cyclic
scheduling,” inProc. 5th Euromicro Workshop on Real-Time Systems, 1993.

[5] O. Redell and M. Sanfridson, “Exact best-case response time analysis of fixed
priority scheduled tasks,” inProc. 14th Euromicro Conference on Real-Time Sys-
tems, Vienna, Austria, June 2002.

[6] K. Jeffay and S. Goddard, “Rate-based resource allocation models for embedded
systems,” inProc. First International Workshop on Embedded Software, 2001.

[7] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard real-time
systems,” inProc. 19th IEEE Real-Time Systems Symposium, Madrid, Spain,
1998.

[8] A. Parekh and R. Gallager, “A generalized processor sharing approach to flow
control in integrated services networks: the single node case,” IEEE/ACM Trans-
actions on Networking, vol. 1, no. 3, pp. 344–357, 1993.

[9] M. Caccamo, G. Buttazzo, and L. Sha, “Elastic feedback control,” in Proc. 12th
Euromicro Conference on Real-Time Systems, Stockholm, Sweden, June 2000,
pp. 121–128.

[10] C. D. Locke, “Software architecture for hard real-timeapplications: Cyclic vs.
fixed priority executives,”Real-Time Systems, vol. 4, pp. 37–53, 1992.

[11] W. Halang, “Achieving jitter-free and predictable real-time control by accurately
timed computer peripherals,”Control Engineering Practice, vol. 1, no. 6, pp.
979–987, 1993.

[12] P. Balbastre, I. Ripoll, and A. Crespo, “Control task delay reduction under static
and dynamic scheduling policies,” inProc. 7th International Conference on Real-
Time Computing Systems and Applications, 2000.

[13] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto:A time-triggered lan-
guage for embedded programming,” inProc. First International Workshop on
Embedded Software, 2001.

24



[14] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs,
and Y. Xiong, “Taming heterogeneity—the Ptolemy approach,” Proceedings of
the IEEE, vol. 91, no. 1, pp. 127–144, 2003.

[15] J. Liu and E. Lee, “Timed multitasking for real-time embedded software,”IEEE
Control Systems Magazine, vol. 23, no. 1, Feb. 2003.

[16] L. Abeni, “Server mechanisms for multimedia applications,” Scuola Superiore S.
Anna, Pisa, Italy, Tech. Rep. RETIS TR98-01, 1998.

[17] B. Lincoln and A. Cervin, “Jitterbug: A tool for analysis of real-time control per-
formance,” inProceedings of the 41st IEEE Conference on Decision and Control,
Las Vegas, NV, Dec. 2002.

[18] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin, “On task schedulability in real-
time control systems,” inProc. 17th IEEE Real-Time Systems Symposium, Wash-
ington, DC, 1996, pp. 13–21.

[19] I. Crnkovic and M. Larsson, Eds.,Building Relable Component-Based Software
Systems. Artech House Publishers, 2002.

[20] L. Andersson and A. Blomdell, “A real-time programmingenvironment and a
real-time kernel,” inNational Swedish Symposium on Real-Time Systems, ser.
Technical Report No 30 1991-06-21, L. Asplund, Ed. Uppsala,Sweden: Dept.
of Computer Systems, Uppsala University, 1991.

[21] A. Cervin, J. Eker, B. Bernhardsson, and K.-E. Årzén, “Feedback-feedforward
scheduling of control tasks,”Real-Time Systems, vol. 23, no. 1, July 2002.

[22] M. Caccamo, G. Buttazzo, and L. Sha, “Capacity sharing for overrun control,” in
Proc. IEEE Real-Time Systems Symposium, Orlando, Florida, 2000.

[23] G. Lipari and S. Baruah, “Greedy reclamation of unused bandwidth in constant-
bandwidth servers,” inProc. Euromicro Conference on Real-Time Systems, Stock-
holm, Sweden, 2000.

[24] K. Jeffay and D. L. Stone, “Accounting for interrupt handling costs in dynamic
priority systems,” inProc. 14th IEEE Real-Time Systems Symposium, 1993.

[25] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling for hard real-time
systems,”Real-Time Systems, vol. 1, no. 1, 1989.

25


