LUND UNIVERSITY

Binary Morphology With Spatially Variant Structuring Elements: Algorithm and

Architecture

Hedberg, Hugo; Dokladal, Petr; Owall, Viktor

Published in:
IEEE Transactions on Image Processing

DOI:
10.1109/TIP.2008.2010108

2009

Link to publication

Citation for published version (APA):

Hedberg, H., Dokladal, P., & Owall, V. (2009). Binary Morphology With Spatially Variant Structuring Elements:

Algorithm and Architecture. IEEE Transactions on Image Processing, 18(3), 562-572.
https://doi.org/10.1109/TI1P.2008.2010108

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://doi.org/10.1109/TIP.2008.2010108
https://portal.research.lu.se/en/publications/67ac0b0c-6c9c-4bdd-bf38-88d16ee63f54
https://doi.org/10.1109/TIP.2008.2010108

562

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 3, MARCH 2009

Binary Morphology With Spatially Variant
Structuring Elements: Algorithm and Architecture

Hugo Hedberg, Petr Dokladal, and Viktor Owall, Member, IEEE

Abstract—Mathematical morphology with spatially variant
structuring elements outperforms translation-invariant struc-
turing elements in various applications and has been studied in the
literature over the years. However, supporting a variable struc-
turing element shape imposes an overwhelming computational
complexity, dramatically increasing with the size of the structuring
element. Limiting the supported class of structuring elements to
rectangles has allowed for a fast algorithm to be developed, which
is efficient in terms of number of operations per pixel, has a low
memory requirement, and a low latency. These properties make
this algorithm useful in both software and hardware implementa-
tions, not only for spatially variant, but also translation-invariant
morphology. This paper also presents a dedicated hardware archi-
tecture intended to be used as an accelerator in embedded system
applications, with corresponding implementation results when
targeted for both field programmable gate arrays and application
specific integrated circuits.

Index Terms—Hardware implementation, mathematical mor-
phology, spatially variant structuring elements.

I. INTRODUCTION

ATHEMATICAL morphology is a nonlinear image pro-
M cessing framework used to manipulate or analyze the
shape of functions or objects, originally developed by Matheron
and Serra in the late 1960s [1]. Mathematical morphology is set
theory-based methods of image analysis and plays an impor-
tant role in many digital image processing algorithms and ap-
plications, e.g., noise filtering, object extraction, analysis or pat-
tern recognition. The methods, originally developed for binary
images, were soon extended and now apply to many different
image representations, e.g., grayscale, color or vector images,
and more recently to matrices and tensor fields.

Real-time image processing systems have constraints on
speed or hardware resources. In addition, in embedded or mo-
bile applications, these systems require low power consumption
and low memory requirements. An example of such a system

Manuscript received December 10, 2007; revised October 06, 2008. Current
version published February 11, 2009. This work was supported in part by the
Competence Center for Circuit Design at Lund University and in part by the
Center of Mathematical Morphology at Mines Paris PARITECH. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Prof. Philippe Salembier.

H. Hedberg was with the Department of Electrical and Information Tech-
nology, Lund University, SE-22100 Lund, Sweden He is now with Prevas,
Stockholm, Sweden (e-mail: hugo.hedberg @prevas.se).

P. Dokladal is with the Center of Mathematical Morphology (CMM), Mines
Paris Paritech, 35, 77305 Fontainebleau Cedex, France (e-mail: petr.dok-
ladal @mines-paritech.fr).

V. Owall is with the Department of Electrical and Information Technology,
Lund University, SE-22100 Lund, Sweden (e-mail: viktor.owall @eit.1th.se).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2008.2010108

may be found in [2], in which a real-time automated digital
surveillance system with tracking capability is presented. The
system is intended to be included in a self-contained network
camera and the characteristics of the surveillance scene to-
gether with camera placement have a direct impact on system
performance. By letting a locally adaptive morphological filter
process the binary segmentation result, thereby exploring the
depth information in the scene, a more accurate tracking may be
observed. Therefore, due to the constraints and the performance
increase in such applications, the need for efficient hardware
(HW) architectures in terms of computational complexity and
memory requirement with low power characteristics for this
image representation becomes evident.

This paper is organized as follows: The remainder of this sec-
tion addresses the motivation of using locally adaptive, spatially
variant structuring elements (SV SEs), discusses the applica-
tion context, and puts it into perspective by comparing to previ-
ously published work. Section II discusses basic morphological
concepts and properties together with SV SEs in general and
inferred restrictions. Section III details the algorithm and Sec-
tion IV proposes a corresponding HW architecture. Section V
presents implementation results of the architecture when tar-
geted for both FPGA and ASIC. Section VI concludes the paper.

A. Application Context

Although translation-invariant structuring elements (TI SE)
are sufficient in many image processing applications, SV SEs
outperform them by their ability to adapt to local features. SE
functions are studied and several examples are given by Serra [3,
Ch. 2.2 and Ch. 4], and an early evaluation of the performance
of SV SEs versus TI SEs can be found in Chen et al. [4].

Generally, there are two strategies to control the shape and
size of the SE:

1) image-exogenous information, usually used to correct or to

adapt to an image anamorphism;

2) content dependent processing, e.g., contour preserving fil-

ters, and image restoration.

1) Image Exogenous Information: Processing images de-
formed by anamorphism (such as perspective or wide-angle de-
formations) can be done in two ways: i) apply usual TI oper-
ations after a previous distortion correction or ii) as proposed
here, use SV operators that adapt to the distortion. An example
of an application that will benefit from anamorphism-aware pro-
cessing is the road-traffic surveillance scene shown in Fig. 1(a),
where the images are deformed by the perspective, see, e.g.,
Beucher [5]. Extracting individual vehicles from the motion
mask, Fig. 1(b), may be done by an alternate morphological
filter [6], starting with an opening to eliminate noise, followed

1057-7149/$25.00 © 2009 IEEE

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:12:08 EDT from IEEE Xplore. Restrictions apply.

HEDBERG et al.: BINARY MORPHOLOGY WITH SPATIALLY VARIANT STRUCTURING ELEMENTS 563

(b)

(© (d)

Fig. 1. (a) Typical road surveillance application input image, (b) binary motion
mask, (c) and filtered motion mask using a TI SE. (d) Filtered motion mask using
a SV SE, increasing in size from top to bottom.

by a closing to close holes and smooth the contours of the ve-
hicle masks. One needs to use a SE sufficiently large to filter the
noise, but small enough to preserve the individual vehicles. Due
to perspective deformation, a TI SE will not produce a satisfac-
tory result in all regions of the image, Fig. 1(c). However, using a
SV SE, increasing in size from top to bottom of the image, elimi-
nates noise and correctly extracts all vehicles, Fig. 1(d). Another
application where a SV SE is useful is licence plate detection.
Provided the resolution suffices, the SV SE may be used to com-
pensate for the change of the apparent size of the licence plate.
Furthermore, wide-angle-camera compensation may be used to
correct anamorphism. This is used by Roerdink and Heijmans
to measure forest density [7], where a progressively changing
SE is used, different in the center and on the periphery of the
image, to compensate for the distortion.

For ordinary cameras, the SE size may be set manually, pro-
portional to the apparent size of the objects (as used here). In-
troducing other imaging techniques, such as range imagery, may
give access to distance-to-camera information. Since this infor-
mation relates to the apparent size of the objects, it allows direct
control of the size of the SV SE [8].

2) Content Dependent Processing: In the second use case,
the SE size is controlled by the content of the image. Note that
there is no alternative approach to restore the image distortion
and apply a TI operator as in the case of correction of anamor-
phism. There are several examples of such content dependent
filtering, e.g., the reversible image coding and its restoration
from skeleton [9], and also [1] and [10]-[13]. An example of
a binary object is shown in Fig. 2(a), which is represented by
its skeleton in 2(b). The skeleton is obtained by connecting the
centers of maximal balls contained in the object in 2(a). One can
associate weights to points on the skeleton which are equal to
the Euclidean distance to the complement, i.e., the radius of the
balls, and reconstruct the object by dilating the skeleton with the
corresponding ball (radius equal to the distance to complement).
During the restoration, the skeleton is dilated by large SV SEs,
Fig. 2(c).

(b)

Fig. 2. Object reconstruction from skeleton. (a) Binary object “tools” (b) its
skeleton, weighted by distance to the complement, (c) reconstruction from the
skeleton.

Filters with adaptable pixel neighborhoods have been thor-
oughly investigated over the years. Illustrations may be found
in the Nagao filter in Natsuyama [14], later in Wu and Maitre
[15], or more recently in Lerallut [16]. Such SV filters together
with their pyramids and derived segmentation aspects are also
studied by Debayle and Pinoli in [17] and [18]. They illus-
trate applications of image denoising, enhancement, filtering,
and segmentation with SV SEs, which are compared with re-
sults obtained with TI SEs. The idea behind these filters is to
define a SV SE that fits inside the objects to prevent blurring
when the SE stretches across the boundaries of the objects. At
the same time, the SE increases in size towards flat zones to ob-
tain a stronger filtering effect.

SV morphology has also been investigated by Charif-
Chefchaouni and Schonfeld [19], and more recently by
Bouyanaya et al. in [20] and [21] for set-wise SV morphology
and SV morphology on functions.

All these references propose application examples or theo-
retical advances but no efficient implementations. Therefore,
the following sections will present an algorithm with a corre-
sponding architecture that is suitable for such applications as
discussed above.

B. Previous Optimization Efforts

In naive implementations of mathematical morphology oper-
ations, outputting one pixel requires the examination of its entire
neighborhood defined by the SE at this position. Consequently,
using large neighborhoods become particularly computationally
intensive and efforts have been made to make these operations
efficient.

Although considerable advances have been achieved in con-
ception of fast algorithms and HW accelerators for TI mor-
phology, little has been done for optimization of SV SE. Ex-
isting efforts group into different frameworks.

1) Fast Recursive Algorithms for Translation Invariant Struc-
turing Elements: The implementations by Van Herk [22] and
by Lemonier and Klein [23] support large linear SEs but need
three and two scans, respectively, to complete each operation,
requiring intermediate storage. The HW complexity is of O(1)
per pixel and memory requirement is of O(n?), where n is the
width of a quadratic image. In addition, their extension to SV
SEs in not possible.

Van Droogenbroeck and Talbot [24] propose an algorithm
based on histograms. The histogram is updated as the SE slides
over the image. The respective value for the needed rank filter
(dilation, erosion, or median) is taken from the histogram. This

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:12:08 EDT from IEEE Xplore. Restrictions apply.

564

algorithm naturally extends to SV SEs. However, computing the
histogram requires additional resources, and becomes cumber-
some for finely quantized data and impossible for R.

2) FFT-Based Algorithms for Translation Invariant Struc-
turing Elements: There are also methods for fast computation
of morphological operations with large structuring elements
by thresholding convolutions computed as a product of Fourier
transforms, see [25]. However, SV structuring elements cannot
be written as a product of FFTs. Furthermore, even if there is
no increase in computational complexity for large structuring
elements, the computational complexity, and memory require-
ments of FFTs exceed the ones for recursive algorithms (item
a), or the one in this work.

3) Efficient Hardware Implementations: Concerning ef-
ficient HW implementations, Klein and Peyrard [26] have
designed a neighborhood processor for binary mathematical
morphology, executing dilations/erosions, thinnings/thicken-
ings, and geodesic operations (reconstructions).

Fejes and Vajda [27] and Velten and Kummert [28] both pro-
pose delay-line implementations. This classical approach sup-
ports arbitrary shaped SEs, but the computational complexity
is of O(n?), where n is the width of a quadratic SE, and the
memory requirements is of O(n?), where n is the width of
a quadratic image. Therefore, this type of implementation be-
comes unsuitable for large SEs and high resolution applications.
This is due to that each element in the SE increases the fan-in
of the computations as well as the required amount of memory
to delay the rows to extract the pixel neighborhood. In [29], an
architecture is proposed based on the observation that many cal-
culations between two adjacent pixels are redundant and can
be reused, giving the architecture its name: partial-result-reuse
(PRR). By this procedure, the computational complexity can be
reduced to O(2[logy(n)]), where n is the width of a quadratic
SE ([.] is the ceiling function). However, it uses the same type
of delay-lines as in [27] and [28], thus resulting in the same
memory requirement.

Hedberg et al. [30] propose a low-complexity (LC) and low
memory requirement architecture. The complexity is reduced to
O(1) and memory requirement to O(n), where n is the width
of the input image, at the cost that the class of supported SEs is
limited to flat rectangles of arbitrary size. Erosions and dilations
are accomplished with only two summations and two compar-
isons independent of the structuring element size and resolution.

4) Spatially Variant Morphology: Recently, Cuisenaire [31]
proposes a fast algorithm for binary spatially variant mor-
phology based on thresholding the distance transform, widely
used for efficient implementation of dilations and erosions
[32], [33]. The class of allowed shapes is restricted to balls
of various norms. Various algorithms exist for computing the
distance map. They are either i) image scan operations [34], or
ii) equidistant propagations from the sources, (see surveys [35]
and [36] for overview and other citations). The former have
high memory requirements since they use a large intermediate
storage for partial results between the scans. The distance is
computed on the entire image, penalizing the performance
when small SEs are used. The latter, based on equidistant
propagation from the sources do not necessarily compute the
distance on the entire image and are more efficient. However,

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 3, MARCH 2009

they use ordered structures and random memory accesses,
penalizing performance on large data sets and are difficult to
implement in HW, see Dejnozkova [37] for discussion.

C. Main Contribution

This work fits into the framework of binary Mathematical
Morphology and represents the first step towards arbitrary
shaped SV SE in efficient HW and SW implementations. The
main contribution of this paper is twofold.

1) A new algorithm supporting a rectangular SV SE for bi-
nary mathematical morphology with very low computa-
tional complexity and memory requirements. An extension
to a richer class of structuring elements is possible.

2) A corresponding HW architecture, suitable for embedded
or mobile applications. The architecture has several im-
portant properties from a HW perspective, i.e., sequential
pixel processing, low-computational complexity, and low
memory requirement. Implementation results of the pro-
posed architecture are presented in terms of resource uti-
lization when targeted for both FPGA and ASIC.

The architecture proposed in this paper is a development from
the one published in [30]. The new architecture allows changing
the size of the rectangle within an image from pixel to pixel, and
can thereby locally adapt its size. Although having mainly the
same memory requirement, the SE flexibility comes at the cost
of increased computational complexity from O(1) to O(n), n
being the SE width.

II. ALGORITHMIC ISSUES

Let I be an inputimage I: D — V, with D = supp{/} C 7>
being the domain and V the set of values. In this paper, we place
ourselves in the context of binary images I : D — {0, 1}, where
objects are represented by 1, i.e., the object X contained in a
binary image [is X = {«|I(z) = 1}.

All morphological operations are based on logical or arith-
metic calculations (for binary or valued images, respectively) on
alocal neighborhood of a pixel. The neighborhood is a subset of
pixels defined by the shape of the structuring element B C D,
which has a corresponding origin € B, that determines the
position of the calculated value in the output image. The trans-
lation of B by some = € D is often denoted by B(z).

When using a SV SE, the fixed set B C D is replaced by a
flexible set given by B : D — P(D) with P denoting the set
of subsets. This means that instead of a fixed B C D one uses
B : D — C, where for every point 2z € D, the mapping B(x)
is not a translation but chosen as an element from the class C of
allowed shapes, used locally at x.

Spatially variant binary erosion and dilation are defined by
means of Minkowski addition and subtraction (see Serra [3, pp.
41 and 42]) according to

esX = () [B@)] (1
reXe
and
55X = | J B(a). 2)
zeX

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:12:08 EDT from IEEE Xplore. Restrictions apply.

HEDBERG et al.: BINARY MORPHOLOGY WITH SPATIALLY VARIANT STRUCTURING ELEMENTS 565

Alternatively, SV binary erosion and dilation may be defined
based on set intersection and inclusion as

e3X = {y|B(y) c X} ©)
and
05X ={y|B(y) N X # 0})

where B denotes the transposition of B, which may be defined
as the set of ancestors of B according to

B(z) = {ylz € B(y)} Q)

with y € D. This definition is non local, and cumbersome since
the computation is done by exhaustive search. Notice the differ-
ence from the case of a TI SE where the transposition is a mere
set reflection, i.e., B = {z|—z € B}.

Adding arithmetic, (1)—(4) can be used to perform other oper-
ations and algorithms, e.g., morphological gradient g = § —e or
morphological Laplacian £(I) = 61—2I+e&I. To form morpho-
logic filters, e.g., opening 7 = eg o b3, closing o = dpoey,
or more complex filters, one generally has two options: i) com-
bine adjoined definitions (1) and (4), or (2) and (3), or ii) use (5)
to transpose B [3], [20].

The SE transposition (5), as well as the set inclusion/intersec-
tion versions of erosion/dilation, i.e., (3) and (4), are non local.
This means that to compute the result at some point x, one needs
to examine the input at unknown points y. Therefore, the result
cannot be generated directly by the presented algorithm. To ob-
tain adjunction and form filters, one needs to use the Minkowski
addition/subtraction-based definitions in (1) and (2), together
with precomputing the transposed SE according to (5).

A. Supported Structuring Elements

The structuring element B defines which pixel values in the
input image I to include in the calculation of the output value.
Whereas the geometric shape of a TI SE is constant throughout
the input image, the shape of a SV SE may change from pixel
to pixel in the generalized form. Restricting the set of allowed
shapes C and the size distribution allows design of more efficient
algorithms.

Shape: The algorithm is based on computation of distance
function to object edges. Decomposing the computation of B
into columns brings restriction to £;. Hence, in the HW real-
ization presented below, the allowed SE shapes are restricted to
rectangles (including £ -balls, squares). Note that Section V-A
discusses an extension to a richer class of shapes.

Scan Order: Other restrictions are required if the algorithm
is to be implemented in low complexity and low memory archi-
tectures with no intermediate storage. Usually, pixels arrive in
a stream in raster scan order and output pixels are produced in
a stream. Therefore, the output at location (z, j) cannot be pro-
duced until the entire neighborhood has been processed. Con-
sequently, there is a latency L between the input and the output
stream. For some pixel (4, j), the latency is given by

L(i,§) = Nu(i,§) - Iy + Ny (i,) ©)

where [, is the width of the image I, N; and N,. are the coor-
dinates of the origin offset from the bottom-right corner (d =
down and r = right), illustrated in Fig. 3.

origin | (1,2) | --- TNu(i;f)- (1,2)
I\\B] Nr @) .
N | '
5 Ng(i.) ;

22 | --- - 120

Fig. 3. Example of a5 x 4 (width X height) rectangular SE with B(i, j) =
(No.NiUNauN,) = (1,2,2,2).

When using a TI SE for the entire image, i.e., B(i,j) =
B, Vi, j, the latency is constant and the raster scan order is
maintained. However, if the structuring element changes from
pixel to pixel, the latency varies. For unconstrained SE sizes,
the output pixels will be produced in a different order with the
necessity to store them in intermediate memory to retain raster
scan order.

Under constraints, the intermediate storage may be dropped.
From (6), AL/AN, = 1and AL/AN, = AL/AN, = 0 may
be derived, which means that increasing/decreasing the size of
the SE by one pixel to the right will increase/decrease the latency
by one. Adding above and to the left has no impact on latency
since these pixels have already been read.

Unitary changes of L from pixel to pixel, i.e., [AL/A4, j| =
1 can be handled with no additional memory, by stalling the
input or output. Indeed, if N, increases/decreases, the latency
L increases/decreases, and the output/input is stalled. Stalling
the output means that two input pixels are read before the next
output value is calculated, whereas stalling the input means that
two pixels are output before the next input pixel is read.

In order to avoid additional intermediate storage, for the rest
of the paper, a restriction is placed on the class C of allowed
shapes to be rectangles, not necessarily symmetric around the
origin.! Therefore, B(i, j) becomes a function B : Z+2? — 74,
i.e., for every pair of coordinates (i,7). The function B(,j)
yields a quadruple (N,,, N;, N4, N,.) defining the position of the
origin with respect to the edges of the rectangle. These parame-
ters are tied to the width and height of B by B, = N;+ N, +1
and B, = N, + Ng + 1. The maximum width and height
found in the collection of B(%,), Vi, j, are denoted max(B,,)
and max(By,), respectively. Fig. 3 shows an example of a struc-
turing element B(4,j) = (1,2,2,2), being a 5 by 4 (width x
height) rectangle with the origin offset by 2 rows and 2 columns
from the lower-right corner.

From (6), AL/AN,; = I,, means that increasing the size of
the SE by adding one bottom row, will increase the latency L
by the entire width I, of the image. This substantial change of
latency can not be handled without using an additional buffer.
This means that from pixel to pixel, the rectangle can grow/di-
minish by one at all sides, except of adding/deleting one bottom
row, authorized only between two image row

A]\]-u,l,r ANd
Az, Ay Ay

Nd
x

<1

— 7

<1and

=0. (0

I An asymmetric origin is useful for even widths or when approximating ec-
centric amoebas by rectangles.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:12:08 EDT from IEEE Xplore. Restrictions apply.

566

I 1 1 B B Hm
I 1T 1 1 EME
[T 1T I R HNE
1T 1T 1T HHE
input output
(a) (b)

Fig. 4. (a) Synthetic test image containing black dots on a grid, corresponding
to the foreground. (b) Dilation (2) obtained with similar SE as in Fig. 1, i.e., a
rectangle increasing in size from the top left corner of the image downwards to
the right.

l ! j N

1

B(k,1) 1

(@

(b)
Fig. 5. (a) Synthetic input image when processing a pixel at location (k,1)
with B(k,). (b) Zoom in of when processing the same pixel using B(k,1) =
(2,2, 3,5) as structuring element. The numbers in bottom row of B(k, [) show
the current distance values, which saturates at the value 8.

An example of synthetic test data (640 x 480 pixels) is illus-
trated in Fig. 4(a). The image contains a set of black spots (on
a uniform grid of 60 pixels). Applying a dilation to this input
image will enlarge the black spots. Fig. 4(b) illustrates a dilation
obtained with a rectangular SE progressively increasing in size
from the top-left towards the bottom right corner of the image:
B(i,j) = (Nu, Ni, Na, Ny) = (i/20,3/20,1/20,3/20).

Note that these restrictions are not valid in applications where
the SE size depends on the content of the image, e.g., contour fil-
tering, object restoration (Fig. 2). However, as discussed previ-
ously, the constraints in (7) only concern the stream implemen-
tation capability, and can be relaxed if an intermediate storage
is available, see Section V-A.

III. ALGORITHM DESCRIPTION

The algorithm reads the input image I and writes the output
image O sequentially in raster scan order. Let (7, j) denote the
current reading and (k,[) current writing position. Fig. 5(a)
gives a synthetic example image I(M, N) containing one ob-
ject—a car. The object constitutes of pixels equal to 1, and

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 3, MARCH 2009

the background constitutes of pixels equal to 0. Obviously, by
causality, the reading position (, j) precedes the writing posi-
tion (k,). The latency L between reading and writing the data
depends on the size and location of the origin of the currently
used structuring element B(k,[), defined in (6). Since B(k,!)
varies for different coordinates, the latency L will also vary.

The SE shape function B is a parameter of the morphological
operation and is also read in the raster scan order at the same rate
and position as the output image O.

The reading (4, j) and writing (k, () positions are bound by

i = max (1, min (k + N4(k,1), M)) and
j = max (1, min (I + N,.(k,1),N)). 8)

Suppose the currently processed pixel be (k,) and that the cor-
responding structuring element B(k, l)—placed by its origin at
(k,l)—has just been read. Recall the size of B(k,!) is coded
by (Nu, Ni, N4, N;.), e.g., equal to (2, 2, 3, 5) in the example
shown in Fig. 5. The input data need to be read to the bottom
right position of B(k,!), indicated as (i,).

The algorithm proceeds by decomposing the erosion into
columns. In each column 1,..., N of the input image I, the
algorithm keeps track of the distance d(1,...,N) from the
currently processed line to the closest upward zero (back-
ground). For each column j, the distance d(j) is updated as [
is sequentially being scanned according to

. 0 if I(z,7) =0
d(j) = {d(j)_|_1 (4,5)

ifI(i,5) = 1.
If I(z,5) = 1, i.e., belongs to the object, the distance d(j) is
incremented, otherwise the pixel belongs to the background, and
d(j) is reset to zero.

In Fig. 5(a), currently known distances are indicated by
x. Notice that for the currently processed pixel O(k,l),
the distances are calculated on a different row ¢. The cor-
responding distance values for this particular example are
shown in Fig. 5(b). These distances are then compared,
column-by-column, to the height of the currently used struc-
turing element B(k, 1), given by N,, + N4 + 1. This evaluation,
at position O(k,) in the output image, can be formalized as

©)

if the comparison d(j) > N, + Ny + 1 (10)

yields TRUE, for all j € [max(1,!—N;), min(l4+ N, N)], then
at position O(k, 1) write 1, else write 0. The whole algorithm can
be written as follows.

Algorithm:

for k=1...M

for 1=1...N
read B(k,1)
read I up to (i,j) (8)
update d up to j (9)

O(k,1) = AND((j) > No + Ny + 1)
write O(k,1)

(10)

end

end

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:12:08 EDT from IEEE Xplore. Restrictions apply.

HEDBERG et al.: BINARY MORPHOLOGY WITH SPATIALLY VARIANT STRUCTURING ELEMENTS 567

l J
rrrrrr = |
L1
k[i,
 p P
_Ll_r‘!*‘____/
TTTTTTTTTTT |II(1'ISta'rlces
update stage FF-chai
input (¢,) P & chain
16D I — d(j—max(By)+1)

B. .
v controller M (k1)

compare stage

Fig. 6. Block diagram of the proposed algorithm.

AND means 1 if comparisons for all j such that j € [max(1,{ —
N;),min(l + N,., N)], yield TRUE, else O [see (10)]. For ex-
ample, since the distances in the example shown in Fig. 5, i.e.,
d(l —2) = 4and d(l — 1) = 5, are smaller than the height
N, + N4 + 1 = 6 for the pixel located (k,[), the output at
O(k,l1) is 0.

The distance calculation is an independent process of the
morphological operation being performed, resulting in that the
memory content is unrelated to the dimensions and origin of
B(i, 7). This means that no information about a former B prop-
agates in the algorithm. It is this algorithmic property that allows
an adaptable SE, different for each individual pixel.

A. Block Diagram

A block diagram of the proposed algorithm is illustrated in
Fig. 6. A controller is needed to stall the input and output de-
pending on how parameters for the structuring element change.
Based on these control signals, the distances to the closest up-
ward zero, stored in the update stage, are updated. The output
value from the update stage is always equal to the last calcu-
lated distance for the column of the current pixel according to
(9). This distance is used as input to the compare stage and to
the serially connected Flip-Flops (FF-chain), in order to let the
distances propagate to be used in multiple calculations. The dis-
tances stored in the FF-chain (for the previous columns) are all
used as inputs to the compare stage and the controller selects for
each pixel which of these distances to include in the calculation,
i.e., which distances that are to be used in (10). The selected dis-
tances are then compared to the height given by the current 5.
If all are greater or equal to this height, output 1 else O at the
current location of the origin.

B. Software Implementation

Due to algorithmic properties such as the stream-like pro-
cessing and in-place execution, the algorithm is applicable for
software applications. As an example, if coded in C, the al-
gorithm uses a small amount of memory (one image line) and
runs very fast even for large images. Experiments on an Intel
Centrino 2-GHz PC running Linux show that when eroding an
image with a resolution of 1,000 x 1,000 using a SV rectan-
gular SE of up to 100 x 100 pixels (similar to the one used in

Fig. 4), takes ~81 ms. Eroding an even larger image with a reso-
lution of 10,000 x 1,000 image using the same SE takes 760 ms.
The execution time scales linearly with the image size even for
extremely large images, mainly coming from the stream-like
memory access pattern.

IV. ARCHITECTURE

A HW architecture for the proposed algorithm is illustrated
in Fig. 7. The architecture is divided into three stages: update,
FF-chain, and compare (refer to Fig. 6). In the update stage, a
row memory (mem,.y) stores the distances for each column
in the input image and for each incoming pixel: if a 0 is en-
countered, the sum is reset to 0, else increased by 1. This is im-
plemented as an incrementer and a multiplexer (placed in the
middle of this stage in the figure). The input from the FIFO
(First In First Out) is the control signal to the multiplexer, which
outputs the reset or the increased sum for further processing.
If the distance is equal to the maximum supported SE height
max(By,), the sum saturates at this value, which also is the ini-
tial value in order to leave the result unaffected at the image
borders.

The FF-chain contains delay elements that stall the distances
d(j — max(B,,) + 1) to d(j), which may be used in the current
calculation, i.e., may be evaluated against the columns in the
current B(%, 7). The FF-chain has individual access to the en-
tries (distances), and is implemented as a series of FFs that en-
ables each distance to propagate as long as they are to be reused
in a calculation. The block also includes multiplexers for initial-
ization on a new row in the input image.

The compare stage compares stored distances to the height of
the SE. The number of comparators equals the maximum sup-
ported SE width, max(B,,). The results from the comparators
serve as input to the logic AND-operation. Notice that the fan-in
to this unit increases linearly with max(B,,) and, thus, affects
the critical path and is the major bottleneck of the architecture.
Hence, for large SEs or high speed applications, a pipeline may
be inferred. Using pipelining, one or several additional delays
are required to synchronize the output with the data valid signal.

The CTR block in Fig. 7 manages all control signals in
the architecture based on B(i,j): the enable signal to decide
the number of active comparators (enable), which operation
to perform (£/6), and also border handling. By default, the
architecture performs a logic AND-operation (minimum) on
the selected distances, i.e., a subset of d(j — max(B,) + 1)
to d(7), which in mathematical morphology corresponds to an
erosion. To perform a dilation, simply calculate the distances to
the closest upward one for each column and perform a logical
OR-operation (maximum). This is due to the duality nature,
ie.,epl = (6pI’)’, where ’ is the bit inverse. Therefore, the
other way to obtain a dilation and still use the default operation
is to simply invert the input and the output, accomplished in
HW by placing a multiplexer and an inverter at the input and
the output of the architecture, shown in Fig. 7.

A. Handling the Borders

Sliding the structuring element over the input image, some
output values are based on evaluating neighborhoods that re-
quire pixels located outside the image borders. These pixels, or

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:12:08 EDT from IEEE Xplore. Restrictions apply.

568

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 3, MARCH 2009

input

—{ (||| --------- MeMy ey ==-==-===-=-

max(By,)
L] —
’3 0’ E = I
mux [<— €/é § @ 5

FIFO o

top-padd L Ii ght-padd

bottom-padd f update stage
A
FF-chain left-padd max(By,) i
=]]
max(By,) | FF §
do - JAN
B(1, 7) | controller FF i
A left-padd Js s
\’ f 1 bit
> P > =
compare stage l ---------- *
enable
* Logic operation (&) 5 [output
&
elé J valid

Fig. 7. Overview of the implemented architecture. Note that the data valid signal is generated by the CTR block.

3/3/3/3/4/4|5

(@) (b)

Fig. 8. (a) Illustration of when the structuring element stretches outside the
image (b) and when the distances outside the image are assumed infinite; they
will not affect the erosion.

in our algorithm distances, are referred to as padding. An ex-
ample of a SE requiring left padding is shown in Fig. 8(a). The
current architecture manages the padding pixels in one of two
ways: precalculated initial values (top, right, and left padding) or
pixels inserted into the data stream (bottom padding). The result
is a less complex controller but with the drawbacks of requiring
two clock domains and an input FIFO. The padding control is
included in CTR in Fig. 7 with corresponding control signals,
i.e., left-, top-, right, and bottom-padd.

Assume a rectangular SE, e.g., B; ; = 1, 3, 1, 3, calculating
the second output pixels of a new row is an example requiring
left padding [Fig. 8(a)]. When starting at a new row, the dis-
tances to the left of the first column are assumed to be infinite, as

illustrated in Fig. 8(b). This assumption is implemented as ini-
tial values equal to max (B,), which are inserted simultaneously
by using the multiplexers in the FF-chain stage in Fig. 7. This
procedure causes the distances located beyond the image bor-
ders not to affect the calculation. When reaching and extending
the structuring element beyond the right image border, the same
initial value is inserted into the data stream and sent to the com-
pare stage through the rightmost multiplexer in the update stage.

Using the same assumption as above when processing the first
row in an image, the distances to the closest upward zero for the
preceding row is assumed infinite. Again, this is implemented as
initial values equal to max(By},) (inserted into the adder through
the leftmost multiplexer in the update stage in Fig. 7). The initial
values are updated with the pixel value in the input image and
the result is sent to both the compare stage and written back into
the row memory.

Reaching the bottom segment of the input image, the struc-
turing element can stretch outside the bottom border. Depending
on the actual height of B; ;, additional “1”’s are inserted in the
pixel stream (at most [max(By,)/2]) through the lower multi-
plexer in the update stage. This insertion is necessary to handle
the different latency that will occur in a video stream if different
sizes of the structuring element are used at the end of one image
to the beginning of the next. During the insertion of these extra
pixels, the input data stream is stalled (requiring the FIFO on
the input). Once the last pixel has been processed, the erosion
operation is complete and starts over with the next frame.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:12:08 EDT from IEEE Xplore. Restrictions apply.

HEDBERG et al.: BINARY MORPHOLOGY WITH SPATIALLY VARIANT STRUCTURING ELEMENTS 569

B. Coding the Structuring Element Size

The structuring element size is controlled by the function
B(i, j) through the parameters N,,, N;, N4, N,., defined in Sec-
tion II-A. The parameters are generated outside the architecture
and are sent as input in parallel with the input pixel stream to the
controller in Fig. 7. Formally, B(i, j) becomes B(i, j,t) with
I(t) for video sequences and it is the user’s responsibility to
design the application-dependent B(i, j, t) generation process,
which must fulfill the conditions in (7).

In order to reduce the bandwidth of B(%, j), one can use ef-
ficient coding. For example, the simplest coding scheme con-
sist of coding the difference AN, ; 4, between two adjacent
pixels on a line, instead of coding the size N, ; 4. (i, j) directly.
Limiting the difference to |AN,,;,/(A%)] < 1, the coding
can be represented by using two bits, i.e., increase, decrease,
no-change, reset, corresponding to a simple A-code. The reset
value can be used to restore B to an initial setting at the begin-
ning of each line. Thus, coding B(z, j, t) will require 3 X 2 = 6
bits between two adjacent pixels on a line (since V4 is not al-
lowed to change in the middle of a line), and two more bits in
between two consecutive lines to represent N4, ending up with
a total number of 8 bits to code B(%, j, t).

Virtually any appropriate coding system can be used, e.g., a
run-length coding applied separately to each N,,, N;, N and
N, will be useful if the size remains at least partially constant
in some zones. Using an efficient coding will be profitable es-
pecially if more complex shapes are used (see Section V-A),
since describing arbitrary shapes requires by far more informa-
tion, especially for large SEs.

C. Memory Requirements

The row memory located in the update stage stores the dis-
tances for each column and is the largest single internal com-
ponent in the architecture (excluding the input FIFO). The re-
quirement is linearly proportional to the resolution according to

mem, oy = [log, (max(Bp))] - I, bits (11)

where max(By,) is the maximum supported SE height which
determines the number of bits per stored value according to
k = [logy(max(By))]. Additional registers in the FF-chain are
needed to delay the stored distances (mem,y, content) serving
as input to the comparators, Fig. 7. The number of registers is
proportional to the maximum allowed SE width. Since their con-
tent should be compared to the maximum SE height, the number
of bits in these registers is

FFchain = k - max(B,,) bits. (12)

Combining (11) and (12), the total memory requirement for the
algorithm is equal to

meMyot = MeM,ow + FFehain = &k (I, + max(B,,)) bits.
(13)

D. Memory Organization

Concerning the implementation of mem,.y, in the update
stage, ideally, a value should be read, updated, and written back
to this memory in a single cycle. This require simultaneous read

input

controller

Fig. 9. Row memory implemented with one double-width single-port memory,
which performs a read and write operation every other clock cycle. Note that the
width of each bus is expressed in k.

and write operations that are normally implemented using a
dual-port memory. However, this type of memory introduces an
area overhead mainly due to the dual address decoders. Another
observation is that the memory access pattern is the same as in
a FIFO, resulting in that the address generation becomes trivial
and can be implemented as a simple modulo-counter. Based
on these facts, mem,., can be advantageously implemented
using a single-port memory of double width and half length,
two registers, a multiplexer and a controller, running on the
same clock domain as the input data. As an example, consider
using a resolution of 640 x 480 (width x height), supporting
a maximum structuring element of size 63 x 63. Normally, a
memory of size k x I, = 6 x 640 bits with dual-port func-
tionality is required (11). Here, instead of using a dedicated
dual-port memory, a double-width, half-length single-port
memory with a size of 2k x ([,,/2) = 12 x 320 can be used
that reads and writes two samples every other clock cycle. The
memory architecture is illustrated in Fig. 9 together with a
simple controller that manages the FFs and the multiplexer.

The functionality of the k-bit flip-flop FF| is to delay an input
value in order to concatenate it with the following one. By this
procedure, a bus is formed (of doubled width) constituting of
two values that are written into the memory. The 2k-bit flip-flop
FF; is used when reading from the memory. The multiplexer
gives access to one of these two values stored on each position
in the memory.

E. FIFO

In streaming data application environments, supporting a T1I
SE, the padding pixels (discussed in Section IV-A) may be ad-
dressed on a controller level by simply omitting them from the
calculation without the need to stall the input data stream. How-
ever, supporting a SV SE requires the possibility to stall the
input data stream since the latency can vary from one side of
the image to the other (6). This requires two separate clock do-
mains, separated by an asynchronous FIFO located at the input.

The size of this FIFO is a trade-off between operating fre-
quency and memory resources. The size depends on many pa-
rameters, e.g., the relation between input data speed f;,, and op-
erating speed f,,, image size, and maximum supported struc-
turing element size. It can optimized with respect to two objec-
tives: i) low memory requirement, or ii) low power.

The total time it takes to stream a complete frame may be
written as ti, = (1/ fin) (InTw), where I, T, is the image height
x width. Furthermore, the total time ¢, required by the archi-
tecture to process a complete frame is determined by four fac-
tors: fop, the image size, the size of the structuring element, and

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:12:08 EDT from IEEE Xplore. Restrictions apply.

570

the location of the origin. Assuming a centered origin, the total
time for the architecture to process a complete frame (including
padding) is equal to tor = (1/ fop)(Ln + [max(By)/2])(Lw +
|max(B,,)/2]), since half of the values can be inserted as ini-
tial values in the FF-chain, recall Section IV-A (|.] is the floor
function). The overall timing constraint for the architecture may
be written as t;, > tiot, Or expressed in operating frequency as

(Ih n LmaXQ(Bh)J) (Iw n [max§B1u)J) —
I, -1,

f op Z f in
(14)
Assuming that the maximum supported structuring element is
small compared to the resolution, i.e., |max(By)/2| < I,
and |max(B,)/2] < I, then fo, ~ fi, according to (14).
Using this approximation, the architecture must at most stall
|max(By)/2| (I, + |max(B.,,)/2]) pixels during padding at
the lower boundary of the image. A resolution of 640 x 480 at a
frame rate of 25 fps, and supporting a maximum structuring ele-
ment of 63 X 63, results in input data speed of f;;, = 7.68 MHz.
Setting f,, to 10 MHz, the required FIFO capacity becomes
21 kb (dimensioned for the padding at the lower boundary).
With this FIFO size and using (13), the total amount of memory
for the complete architecture is =~ 25 kb. When increasing fop
to 100 MHz, the architecture requires a FIFO with a capacity of
~2 kb, reducing the total amount of memory to =~ 6 kb.

The FIFO size has impact on the both the dynamic power
consumption according to Pg,, o< fop [38], and the static
power dissipation (area dependent). In practice, if minimizing
the dynamic power is of high priority, this means operating
at the lowest possible speed (for a given supply voltage), i.e.,
minimizing f,p, resulting in a large FIFO. To summarize, the
memory requirement is dependent on the operating speed fop
and memory resources can be traded for low power properties.

V. IMPLEMENTATION RESULTS AND PERFORMANCE

Application: The algorithm runs optimally whenever the
structuring element conforms to (7). This is verified in appli-
cations where B(i,j) is generated by a continuous function
such as in application Fig. 1, where B conforms to the image
anamorphism given by the perspective.

The result in Fig. 1(d) has been obtained by applying both
opening and closing operations on the motion mask in Fig. 1(b).
If implemented by definition, i.e., eodoe, using (1-4), it requires
three image scans, storage of two intermediate images, random
memory accesses, and a latency of three frames.

The sequential memory access of our algorithm allows
composing cascade filters without intermediate storage. Hence,
using our algorithm, the result in Fig. 1(d) can be obtained
from 1(b) in one image scan, with very low computational
complexity, low intermediate storage (three image lines), and
low latency (several image lines).

Architecture: The architecture has been implemented in
VHDL using a resolution of 640 x 480 and supporting a
flexible structuring element up to 63 x 63. Indeed, in order to
correctly filter the largest objects found in the image, we have
chosen the largest B to be approximately 1/10 of the image
width. In general, there are no algorithmic restrictions on the

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 3, MARCH 2009

TABLE I
RESOURCE UTILIZATION IN A XILINX VIRTEX II-PRO FPGA AND IN UMC
0.13 pm CMOS PROCESS. IMAGE 640 X 480 AND SV RECTANGULAR
SE UP TO 63 X 63

FPGA H used | available || ASIC | used
Slices 807 13696 || Area [mm?| 0.31
Block RAM 3 136 Memy;o¢ [kb] 24.6
LUTs 1365 | 27392 Gate count [k| | 60
Speed [MHz] 80 — Speed [MHz| 260

largest supported structuring element size, but k£ in (13) will
increase accordingly.

The implementation has been targeted for both FPGA and
ASIC: a Xilinx Virtex-II PRO FPGA (XC2VP30-7FF896) and
the UMC 0.13 zm CMOS process, respectively. The most im-
portant implementation results and properties for both technolo-
gies are compiled in Table I, where the area is reported con-
taining all memory blocks. This includes an asynchronous input
FIFO of 21 kb, as discussed in Section IV-C (replaced by a
dual-port memory of the same size in the ASIC implementation
in order to support the simultaneous read and write function-
ality), resulting in that memory constitutes 86% of the total area
in this particular implementation. The gate count is based on a
2-input NAND-gate (5.12 ym?).

As mentioned in Section IV, the combinatorial critical path
passes through the logical operation performed in the compare
stage. Pipelining this operation will not necessarily increase
the speed figures found in Table I since the bandwidth to the
memory is the limiting factor.

In order to compare this work to the PRR and LC architec-
tures discussed in Section I-B, important properties are com-
piled in Table II as a function of the resolution and the max-
imum supported SE. SE support refers to the class of supported
structuring elements and SE flexibility to the ability to change
the structuring element between two adjacent pixels. Naturally,
this should be distinguished from the ability to change the struc-
turing element in between frames which is supported by most
architectures. The complexity refers to the number of opera-
tions per pixel, e.g., in the case of PRR, number of compara-
tors; and in the case of LC, two summations and two additions.
The memory requirement is basically the same as for the LC ar-
chitecture but for the additional = delay elements found in the
FF-chain. Ty, is reported in number of clock cycles (CC) to
process a complete frame but does not include the latency, which
is present in all architectures. Table II indicates that while still
maintaining low memory requirements, the ability to support
SV SEs comes at the cost of the complexity increase from 4 to
n, found in the compare stage as an increased number of com-
parators, and multiplexers, making n proportional to the max-
imum supported SE width max(B,,).

A. Extensions

The present algorithm situates at the extreme end of opti-
mization, imposing restrictions on the SE shape. For more de-
manding applications, there are two possible extensions that in-
crease the applicability of the algorithm.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:12:08 EDT from IEEE Xplore. Restrictions apply.

HEDBERG et al.: BINARY MORPHOLOGY WITH SPATIALLY VARIANT STRUCTURING ELEMENTS 571

TABLE II
IMPORTANT PROPERTIES OF VARIOUS ARCHITECTURES, WHERE [, AND B,
ARE THE SIDE IN PIXELS OF A SQUARE INPUT IMAGE AND STRUCTURING
ELEMENT (k = [log,(B:)])

Design | PRR[29] | LC[30] | This work
SE support Arbitrary Rectangular | Rectangular
SE SV No No Yes
Complexity 2k 4 B
mem [bits] (Bs—1)Is | k(Is+1) k(Is + Bs)
Teze [CC] 12 I24 Byl | 12+ By I,

Extension to Richer Shapes: The currently supported class of
shapes, noncentered rectangles, includes L;-balls squares. The
benefit of this restriction is a considerable reduction of the com-
plexity (memory requirement, number of operations per pixel,
and latency), far below other algorithms supporting SV SE. This
shape restriction may be relaxed to include a richer class of
shapes. Indeed, convex shapes may be supported by splitting
them into two parts: above and below the origin, and applying
these two halves sequentially in direct and reverse raster scan.
For example, L, balls, disks can be implemented in two scans
using two half disks, see Fig. 10.

Supporting richer shapes is paid by some increase in com-
plexity. The number of operations per pixel becomes 2B com-
parisons, instead of By previously. The memory consumption
becomes N = [, x I, since a complete frame needs to be
stored, instead of previously one line I, only. Applying two
scans sequentially also increases the latency to more than one
frame, roughly I}, + Bj, image lines.

Concerning the HW implementation aspects, a richer shape
will require feeding the FF-chain stage of the architecture (see
Fig. 7) with a different value for each column. This will require a
more complex controller to manage all comparator inputs. Sec-
ondly, one will need a richer coding of the structuring element
B. Having a richer shape will need additional resources just for
reading—at every new pixel ¢, j of the input image—the exact
shape B(i, 7). A better encoding, and possibly compression, of
B will become very useful to reduce the memory bandwidth
which can rapidly exceed the bandwidth of the input image.

Relaxing the Size Variability Constraints: As explained in
Section V, this algorithm runs optimally when B is a contin-
uous function and its most advantageous use case is anamor-
phism-aware filtering, allowing to obtain results in one raster
scan. Besides that, it can also be used in other applications as
discussed in the introduction. For example, image coding and
restoration from skeletons in Fig. 2 belong to applications where
the SE size depends on the image content, i.e., circular SV SEs.
Since the radius of the circles are determined by the image con-
tent, such restriction as in (7) may not be maintained.

The restrictions in (7) concern only the streaming implemen-
tation of the algorithm and can be relaxed. Indeed, the only con-
sequence of violating (7) is that the output pixels do not arrive
in the raster scan order, and that the algorithm needs a memory
to store the output image.

Hence, the result in Fig. 2(c) has been obtained in two scans
by dilating the skeleton in Fig. 2(b) by two half circles (upper

direct raster scan reverse raster scan

Fig. 10. Implementation of richer SE shape classes. Example: dilation by a
disk, decomposed as sup of dilations by half-disks implemented in direct and
reverse raster scans.

and lower halves) with memory requirements equal to one
image size.

VI. CONCLUSION

This paper presents a novel algorithm for binary e and é sup-
porting spatially variant, rectangular structuring elements. The
memory data is decoupled from the structuring element size,
which is the property that enables the structuring element flex-
ibility. The complexity is far below other existing algorithms
supporting a SV SE, which makes it compete with algorithms
supporting only TI SEs. The sequential memory access pattern
allows composing cascaded filters with low latency, and without
intermediate storage. For more demanding applications there is
an extension to support richer SE shapes (balls, diamonds) in
two raster scans. Also, extending from binary to functional mor-
phology is possible and is currently under investigation. The
presented algorithm is interesting for various use cases: cas-
caded morphological filters running on systems under heavy
time and space constraints such as embedded or communica-
tion systems or possibly also low-end user terminals.

A corresponding HW architecture of the algorithm is also
presented, intended to be used as an accelerator in embedded
systems. The memory requirement of the architecture is mainly
proportional to the image width while the computational com-
plexity is proportional to the maximum supported SE width. The
image data is processed in raster scan order without storing the
image in memory, which allows processing high resolution im-
ages on low memory systems. The architecture has been suc-
cessfully verified on a Xilinx Virtex-II PRO FPGA and imple-
mented as an ASIC in the UMC 0.13 ;zm CMOS process using
a resolution of 640 x 480 and supporting maximum SE of 63 x
63 at 25 fps.

REFERENCES

[1] J. Serra, Image Analysis and Mathematical Morpohology.
Academic, 1982.

[2] F. Kristensen, H. Hedberg, H. Jiang, P. Nilsson, and V. Owall, “An
embedded real-time surveillance system: Implementation and evalua-
tion,” J. Signal Process. Syst., vol. 52, no. 1, July 2008.

[3] J. Serra, “Structuring functions,” in Image Analysis and Mathematical
Morphology. New York: Academic, 1988, ch. 2.2, pp. 40-46.

[4] C.-S. Chen, J.-L. Wu, and Y.-P. Hung, “Statistical analysis of space-

varying morphological openings withflat structuring elements,” IEEE

Trans. Signal Process., vol. 44, no. 4, pp. 1010-1014, Apr. 1996.

S. Beucher, J. Blosseville, and F. Lenoir, “Traffic spatial measurements

using video image processing,” presented at the SPIE Advances in In-

telligent Robotics Systems, Cambridge Symp. Optical and Optoelec-

tronic Engineering, Cambridge, MA, Nov. 1987.

S. R. Sternberg, “Grayscale morphology,” Comput. Vis., Graph., Image

Process., vol. 35, pp. 333-355, 1986.

[7] J. B. T. M. Roerdink and H. J. A. M. Heijmans, “Mathematical mor-
phology for structures without translation symmetry,” Signal Process.,
vol. 15, no. 3, pp. 271-277, 1988.

New York:

[5

[t}

[6

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:12:08 EDT from IEEE Xplore. Restrictions apply.

[8] J. G. Verly and R. L. Delanoy, “Adaptive mathematical morphology for
range imagery,” IEEE Trans. Image Process., vol. 2,no. 2, pp. 272-275,
Feb. 1993.

[9] N. Bouaynaya, M. Charif-Chefchaouni, and D. Schonfeld, “Spatially-
variant morphological restoration and skeleton representation,” IEEE
Trans. Image Process., vol. 15, pp. 3579-3591, 2006.

[10] E. R. Dougherty and R. A. Lotufo, Hands-on Morphological Image
Processing,. Bellingham, WA: SPIE, 2003.

[11] P. Maragos and R. Schafer, “Morphological skeleton representation
and coding of binary images,” IEEE Trans. Acoust., Speech, Signal
Process., vol. ASSP-34, no. 5, pp. 1228-1244, Oct. 1986.

[12] D. Schonfeld and J. Goutsias, “Morphological representation of dis-
crete and binary images,” IEEE Trans. Signal Process., vol. 39, no. 6,
pp. 1369-1379, Jun. 1991.

[13] R. Kresch and D. Malah, “Morphological reduction of skeleton redun-
dancy,” Signal Process., vol. 38, pp. 143—151, 1994.

[14] M. N. T. Natsuyama, “Edge preserving smoothing,” Comput. Graph.
Image Process., vol. 9, pp. 394-407, 1979.

[15] Y. Wu and H. Maitre, “Smoothing speckled synthetic aperture radar
images by using maximum homogeneous region filters,” Opt. Eng., vol.
31, no. 8, pp. 1785-1792, 1992.

[16] R. Lerallut, E. Decenciere, and F. Meyer, “Image filtering using mor-
phological amoebas,” Image Vis. Comput., vol. 25, no. 4, pp. 395-404,
2007.

[17] J.Debayle and J. C. Pinoli, “General adaptive neighborhood image pro-
cessing—Part I: Introduction and theoretical aspects,” J. Math. Imag.
Vis., vol. 25, no. 2, pp. 245-266, 2006.

[18] J. Debayle and J. C. Pinoli, “General adaptive neighborhood image
processing—Part II: Practical application examples,” J. Math. Imag.
Vis., vol. 25, no. 2, pp. 267-284, 2006.

[19] M. Charif-Chefchaouni and D. Schonfeld, “Spatially-variant math-
ematical morphology,” in Proc. IEEE Int. Conf. Image Processing,
Austin, TX, Nov. 1994, pp. 13-16.

[20] N. Bouaynaya, M. Charif-Chefchaouni, and D. Schonfeld, “Theoret-
ical foundations of spatially-variant mathematical morphology—Part
I: Binary images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no.
5, pp. 823-836, May 2008.

[21] N. Bouaynaya, M. Charif-Chefchaouni, and D. Schonfeld, “Theoret-
ical foundations of spatially-variant mathematical morphology—Part
II: Gray-level images,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
30, no. 5, pp. 837-850, May 2008.

[22] M. van Herk, “A fast algorithm for local minimum and maximum filters
on rectangular and octagonal kernels,” Pattern Recognit. Lett., vol. 13,
no. 7, pp. 517-521, 1992.

[23] F. Lemonnier and J. Klein, “Fast dilation by large 1D structuring
elements,” in Proc. Int. Workshop Nonlinear Signal and Image Pro-
cessing, Halkidiki, Greece, Jun. 1995, pp. 479-482.

[24] M. V. Droogenbroeck and H. Talbot, “Fast computation of morpholog-
ical operations with arbitrary structuring elements,” Pattern Recognit.
Lett., vol. 17, no. 14, pp. 1451-1460, 1996.

[25] B. Kisacanin and D. Schonfeld, “A fast thresholded linear convolu-
tion representation of morphological operations,” IEEE Trans. Image
Process., vol. 3, no. 4, pp. 455-457, Apr. 1994.

[26] J.C.Klein and R. Peyrard, “ Pimm!, an image processing ASIC based
on mathematical morphology,” in Proc. 2nd Annu. IEEE ASIC Seminar
and Exhibit, Rochester, NY, Sep. 25-28, 1989, pp. P7 1.1-P7 1.4.

[27] S. Fejes and F. Vajda, “A data-driven algorithm and systolic architec-
ture for image morphology,” in Proc. IEEE Int. Conf. Image Process.,
Austin, TX, Nov. 13-16, 1994, vol. 2, pp. 550-554.

[28] J. Velten and A. Kummert, “FPGA-based implementation of variable
sized structuring elements for 2D binary morphological operations,”
in Proc. IEEE Ist Int. Workshop Electronic Design, Test, and Applica-
tions, Jan. 29-31, 2002, pp. 309-312.

[29] S.Y. Chien, S. Y. Ma, and L. G. Chen, “Partial-result-reuse architec-
ture and its design technique for morphological operations with flat
structuring element,” IEEE Trans. Circuits Syst. Video Technol., vol.
15, no. 9, pp. 344-371, Sep. 2005.

[30] H. Hedberg, F. Kristensen, and V. Owall, “Low-complexity binary
morphology architectures with flat rectangular structuring elements,”
IEEE Trans. Circuits Syst. I, vol. 55, pp. 2216-2225, 2008.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 3, MARCH 2009

[31] O. Cuisenaire, “Locally adaptable mathematical morphology using dis-
tance transformations,” Pattern Recognit., J. Pattern Recognit. Soc.,
vol. 39, no. 3, pp. 405-416, 2006.

[32] Mathematical Morphology in Image Processing, E. R. Dougherty,
Ed. New York: Marcel Dekker, 1992, ch. 8.

[33] 1. Ragnelmam, “Fast erosion and dilation by contour processing and
thresholding of distance map,” Pattern Recognit. Lett., vol. 13, pp.
161-166, 1992.

[34] P. E. Danielsson, “Euclidean distance mapping,” Comput. Graph.
Image Process., vol. 14, pp. 227-248, 1980.

[35] G. Borgefors, “Distance transformations in digital images,” Comput.
Vis., Graph., Image Process., vol. 34, no. 3, pp. 344-371, 1986.

[36] R.Fabbri, L. D. F. Costa, J. C. Torelli, and O. M. Bruno, ‘2D euclidean
distance transform algorithms: A comparative survey,” ACM Comput.
Surv., vol. 40, no. 1, Feb. 2008.

[37] E.Dejnozkova, “Architecture dédiée au traitement d’image basé sur les
équations aux dérivées partielles,” Ph.D. dissertation, School of Mines,
Mines, France, 2004.

[38] J. M. Rabaey, A. Chandrakasan, and B. Nikoli¢, Digital Integrated Cir-
cuit, 2nd ed. Upper Saddle River, NJ: Prentice-Hall, 2003.

Hugo Hedberg received the M.S.E.E. and Ph.D. de-
grees in electrical engineering from Lund University,
Lund, Sweden, in 2001 and 2008, respectively. His
doctoral thesis addressed hardware accelerators for
automated digital surveillance systems.

His main research area is hardware implemen-
tations of image processing algorithms targeted
for real-time embedded systems with a special
interest in developing low-complexity architectures
for morphological operations. He is currently with
Prevas, Stockholm, Sweden.

Petr Dokladal graduated from the Technical Univer-
sity, Brno, Czech Republic, in 1994, as a telecommu-
nication engineer and received the Ph.D. degree in
2000 from the University of Marne la Vallée, France,
in general computer sciences, specialized in image
processing.

He is a research engineer at the Centre of Mathe-
matical Morphology, School of Mines, Paris, France.
His research interests include medical imaging,
image segmentation, object tracking, and pattern
recognition.

Viktor Owall, (M’90) received the M.Sc. and Ph.D.
degrees in electrical engineering from Lund Univer-
sity, Lund, Sweden, in 1988 and 1994, respectively.

During 1995 to 1996, he joined the Electrical En-
gineering Department, University of California, Los
Angeles, as a Postdoctorate, where he mainly worked
in the field of multimedia simulations. Since 1996,
he has been with the Department of Electrical and
Information Technology, Lund University. His main
research interest is in the field of digital hardware im-
plementation, especially algorithms and architectures
for wireless communication, image processing, and biomedical applications.
Current research projects include combining theoretical research with hardware
implementation aspects in the areas of pacemakers, channel coding, video pro-
cessing, and digital holography.

Dr. Owall was an Associate Editor of the IEEE TRANSACTIONS ON
CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING from
2000-2002 and is currently an Associate Editor of the TRANSACTIONS ON
CIRCUITS AND SYSTEMS—I: REGULAR PAPERS.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:12:08 EDT from IEEE Xplore. Restrictions apply.

