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Ali Naji,1 Matej Kanduč,2, 3 Jan Forsman,4 and Rudolf Podgornik3, 5, 6

1School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
2Department of Physics, Free University Berlin, D-14195 Berlin, Germany

3Department of Theoretical Physics, J. Stefan Institute, SI-1000 Ljubljana, Slovenia
4Theoretical Chemistry, Chemical Center P.O.Box 124 S-221 00 Lund, Sweden

5Department of Physics, Faculty of Mathematics and Physics,
University of Ljubljana, SI-1000 Ljubljana, Slovenia

6Department of Physics, University of Massachusetts, Amherst, MA 01003, USA

We present a personal view on the current state of statistical mechanics of Coulomb fluids with
special emphasis on the interactions between macromolecular surfaces, concentrating on the weak
and the strong coupling limits. Both are introduced for a counterion-only system in the presence
of macroscopic, uniformly charged boundaries, where they can be derived systematically. Later we
show how this formalism can be generalized to the cases with additional characteristic length scales
and thus new coupling parameters into the problem. These cases most notably include asymmetric
ionic mixtures with mono- and multivalent ions that couple differently to charged surfaces, ions
with internal charge (multipolar) structure and finite static polarizability, where weak and strong
coupling limits can be constructed by analogy with a counterion-only case and lead to important
new insights into their properties that can not be derived by any other means.

I. INTRODUCTION

A Coulomb fluid refers specifically to any mobile
(thermalized) collection of charges, which interact via
Coulomb interactions. These charges may be small ions
(such as Na+ and Ca2+ with sizes around 0.1 nm), ions
with internal structure (such as the rod-like spermine and
spermidine ions with sizes around a nanometer) as well
as charged nano-particles and macromolecules (such as
proteins, colloids, polymers and membranes), which are
typically immersed in an aqueous solvent, as is the case
in soft- and bio-matter context [1–7]. Macromolecular
surfaces get charged mainly due to the dissociation of
their surface chemical groups in the solvent; this process
releases small ions (referred to as co- and counterions
depending on the sign of their charge w.r.t that of the
surface) into the solution. The type, magnitude, and the
particular distribution of surface charges and those of the
resulting mobile ions depend also on the specific chem-
istry of the surface as well as a number of other key fac-
tors including, among other things, the pH, temperature,
dielectric properties or, in general, the specific molecular
properties of the solvent. Once dissolved, these mobile
charges mediate the interactions between macromolecu-
lar surfaces.

The presence of Coulomb fluids can significantly al-
ter electrostatic interactions of charged (bounding) sur-
faces and modify the behaviour of charged macromolec-
ular dispersions [1–5]. The role of Coulomb fluids can
be so drastic that, as evidenced by numerous experimen-
tal and theoretical investigates over the last several years
[8–112], it can challenge our understanding of electro-
static effects as evidenced by non-conventional phenom-
ena such as electrostatic attraction between like-charged
surfaces, especially when multivalent ions (or counteri-
ons) are present in the system. Like-charge attraction
is manifested in many experimental examples; a few no-

table cases include formation of large aggregates of like-
charged polymers such as microtubules [104] and F-actin
[17, 20] as well as formation of large condensates of DNA
in the bulk [11, 105–107] and in the DNA packaging in-
side viral shells that are observed in the presence of mul-
tivalent cations [108–112]. Similarly, numerous numeri-
cal simulations have already demonstrated the emergence
of like-charge attraction and investigated its underlying
mechanism in many examples including charged mem-
branes, colloids and polymers [22–60].

All major theoretical proposals that aim to explain
the phenomenon of like-charge attraction go beyond the
standard mean-field or Poisson-Boltzmann (PB) theo-
ries, which have been studied since the early years of
the last century [1–3], by including the effects of elec-
trostatic fluctuations and correlations that are neglected
in the description of Coulomb fluids on the mean-field
level. These proposals include integral-equation meth-
ods (see, e.g., Refs. [28, 61, 62]), perturbative improve-
ment of the mean-field theory including loop expan-
sions and other Gaussian-fluctuations approximations
(see, e.g., Refs. [63–77]), and local density functional
theory (see, e.g., Refs. [79, 80]). These approaches turn
out to be applicable mostly at large separations between
charged surfaces or, generally, for relatively small cou-
pling (and/or electrostatic correlation) strengths. This
regime is known as the weak-coupling (WC) or “high-
temperature” regime. A complementary strong-coupling
(SC) or “low-temperature” approach was pioneered by
Rouzina and Bloomfield [81] based on the observation
that counterions tend to form two-dimensional strongly-
correlated layers at oppositely charged bounding sur-
faces when the coupling parameter is large. Such struc-
tural correlations can lead to dominant attractive forces
of mainly energetic origin between like-charged surfaces
that have been studied by means of several different the-
oretical approaches in recent years (see, e.g., Refs.[44–
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51, 57–59, 83–94]).
For a Coulomb fluid consisting of only a single charge

species next to oppositely charged boundaries (the so-
called “counterion-only” model), the WC and SC cou-
pling theories were shown to follow systematically as two
limiting laws of a single unified formalism [89], a view
that was completely corroborated by extensive numeri-
cal simulations (see, e.g., Refs. [41–58]) or available exact
solutions [113, 114].

In what follows, we shall provide a guided personalized
tour of recent advances in the theory Coulomb fluids by
reviewing various aspects of the WC-SC paradigm within
a primitive counterion-only model, and then discuss how
this framework can be generalized to derive powerful lim-
iting laws for more complicate, but also more realistic
models of Coulomb fluids with additional characteristic
length scales (coupling parameters) than envisioned in
the original framework of the WC-SC dichotomy; most
notably, asymmetric ionic mixtures with mono- and mul-
tivalent ions, ions with internal multipolar structure and
finite static polarizability next to charged bounding sur-
faces (see Fig. 1).

II. COULOMB FLUIDS: GENERAL
CONSIDERATIONS

A. The primitive model

The stated features of Coulomb fluids make a full
understanding of the equilibrium properties of charged
macromolecular systems quite difficult and many aspects
of real systems have been either neglected (depending on
the particular case or the application under investigation)
or heavily approximated, often though with reasonable
justification. Perhaps the most simple and yet efficient
idealization is the so-called primitive model where solvent
is treated as a featureless continuum of a fixed dielectric
constant ε stemming from the degrees of freedom asso-
ciated with the solvent molecules; small mobile ions are
taken to be featureless and characterized only by their
charge, without any internal structure and/or polariz-
ability. Forthermore, macromolecules or other macro-
scopic surfaces are often treated as objects with a fixed
uniform charge distribution (see Fig. 1).

A great deal of theoretical effort has been devoted re-
cently to improve upon these simplifying assumptions, in
particular regarding the solvent structure (see, e.g., Refs.
[1, 5, 115–119] and references therein) and the polariz-
ability and internal structure of mobile ions as conceived
by Debye [120] (see, e.g., Refs. [121–126] and references
therein), etc. Unfortunately many of these interesting
developments such as ionic liquids [127–129], surface ion-
adsorption effects [130, 131], the discreteness and/or het-
erogeneity of the surface charge distribution (see, e.g.,
Refs. [132–145] and reference therein), pH-controlled
charge regulation [146–150], or Bjerrum pair formation
[151–153] must remain outside the domain of this re-

FIG. 1: Schematic representation of some of possible gener-
alizations of the primitive “counterion-only” model as con-
sidered in this paper. It shows a system of large (mobile)
multivalent ions (shown by red spheres), which may possess
an internal structure (e.g., with a rod-like shape or a static
polarizability) and may be dispersed in a bathing solution of
monovalent anions and cations in the background (shown by
blue and orange spheres, respectively).

view. Even on the level of the above simplified model
assumptions, the underlying physics of the Coulomb flu-
ids exhibits conceptual challenges and intriguing results,
which have only recently been corroborated by computer
simulations and, less often, experimental evidence.

B. Physical scales and parameters

Of the plethora of possible length scales (associated
with electric charges, van der Waals (vdW) or chemi-
cal bonding energies, ion sizes, solvent molecular size, or
spacing between discrete surface charges, etc., see Ref.
[6]), one can argue that within the primitive model dis-
cussed above only a few will be important.

The thermal energy kBT = β−1 can be compared with
inter-ionic Coulomb interactions for ions, giving rise to
the Bjerrum length `B = e20/(4πεε0kBT ), with gas-like
behavior for small and liquid- or solid-like behavior for
large `B. For an ionic fluid consisting of ions (coun-
terions) of charge valency q at a charged interface of
uniform surface charge density σe0, the Gouy-Chapman
length determines the strengths of the thermal energy
w.r.t the electrostatic interaction (attraction) with the
surface, µ = 1/(2πq`B|σ|) (we assume that q > 0 and
σ < 0 with no loss of generality). The neutralizing coun-
terions next to a charged surface are thus expected to
form a diffuse gas-like phase when the electrostatic cou-
pling parameter, defined as the ratio

Ξ = q2`B/µ = 2πq3`2B|σ|, (1)

is small, i.e., Ξ� 1. In the opposite situation with large
Ξ� 1, one observes a very different behavior [43–45, 49–
51, 85–90, 94], see Fig. 2, where the ionic cloud is re-
duced from a three-dimensional (3D) layer to a quasi-two-
dimensional (2D) sheet. For Ξ� 1, the mean separation
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FIG. 2: An extended 3D counterion layer in the WC regime, Ξ� 1, reduces to a quasi-2D layer in the SC regime, Ξ� 1, upon
increasing the coupling parameter (from left to right). In the limit of Ξ → ∞, a single particle description becomes relevant
because of a large correlation hole, a⊥ →∞, forming around individual counterions.

between counterions, which follows from the local elec-
troneutrality condition as a⊥ ∼

√
q/|σ| ∼ µ

√
Ξ, is much

bigger than the thickness of the surface (counterion) layer
given by µ. Conjointly with the surface-counterion inter-
action, the inter-counterion repulsions, q2`B/a⊥ ∼

√
Ξ,

also dominate the thermal energy. Therefore, increas-
ing Ξ engenders a strongly-correlated liquid, or even a
crystalline phase of counterions, in the limit Ξ→∞.

This picture follows from extensive Monte-Carlo (MC)
simulations [43–46, 49, 50], which show that the crossover
from the weak-coupling (WC) regime (Ξ � 1) to the
strong-coupling (SC) regime (Ξ � 1) is associated with
a hump in the heat capacity of the system and devel-
opment of short-range correlations between counterions
in the range 10 < Ξ < 100. The crystallization to a
Wigner crystalline phase [7] (with a diverging heat ca-
pacity) then occurs at a very large value of the coupling
parameter around Ξ ' 3× 104 [43–45].

The WC-SC paradigm was derived from a functional-
integral (field-theoretic) representation of the partition
function directly and systematically only in the case of a
counterion-only system [89]. The presence of additional
mobile charge components, surface charge heterogeneity
or mobile ion multipolar structure and/or polarizability
introduces new length scales and thus new coupling pa-
rameters into the problem. Nevertheless one can always
identify a principal coupling parameter, in analogy to the
counterion-only case, that implies a SC-like fixed point.
The thusly defined SC fixed point then displays a fine

structure and can bifurcate into other strongly coupled
states governed by these additional length scales and the
ensuing coupling parameters. In what follows, we will
discuss a few illuminating examples (see Fig. 1) display-
ing the salient features of this approach and its main
results.

III. FIELD THEORY AND THE WC-SC
PARADIGM IN THE COUNTERION-ONLY

MODEL

The preceding observations suggest that the WC and
the SC regimes should follow as complementary descrip-
tions from a single, unified formalism. This clearly tran-
spires from the field-theoretic approach to Coulomb fluids
[65, 66, 77, 89, 154], wherein the WC and the SC limits
can indeed be derived as asymptotic theories from a single
ansatz for Ξ→ 0 and Ξ→∞, respectively [89].

In general, the Hubbard-Stratonovich transformation
allows the partition function of the primitive model to be
mapped exactly to a functional integral over a fluctuating
(electrostatic) potential, φ(r) [65, 66, 77, 89, 154], as

Z =

∫
Dφ e−βS[φ], (2)

where the effective “field-action” can be written (up to
a “self-energy” prefactor, which we ignore here, see, e.g.,
[52–54, 65, 66, 89]) as

S[φ] =
1

2

∫∫
drdr′φ(r)u−1(r, r′)φ(r′) + i

∫
dr ρ0(r)φ(r)−

∫
dr U(φ(r)) = S0[φ(r)]−

∫
dr U(φ(r)), (3)

where the Coulomb interaction is u(r, r′) = 1/(4π εε0|r−
r′|) and its kernel (operator inverse) u−1(r, r′) = −ε0∇ ·
ε(r)∇δ(r − r′). The external fixed (macromolecular)
charge distributions are described by ρ0(r) and are as-

sumed, for further specification, to be distributed on pla-
nar surfaces with either one plate (placed at z = 0) or
two plane-parallel surfaces (placed at z = −a and z = +a
along the z axis), with a uniform surface charge density
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of σe0. In addition, the system can exhibit a nontriv-
ial spatial dielectric constant profile ε(r). The model
of the Coulomb fluid is embodied in the generally non-
linear “field self-interaction” term U(φ(r)). The presence
of these non-linear field self-interactions renders an ex-
act evaluation of the partition function difficult except
in a few special cases (for such exact solutions, see, e.g.,
Refs. [113, 114] and references therein). Nonetheless,
remarkable analytical progress has been made in ana-
lyzing the behavior of such systems, especially in the
cases that go beyond the usual WC-SC framework [52–
54, 89, 122, 123].

In the counterion-only model, one assumes that only
counterions of charge valency q are present in the sys-
tem and exactly neutralize the fixed charges. Although
this model may be inapplicable in most real situations, it
has nevertheless served as a useful paradigm, elucidating
fundamental aspects of the WC-SC dichotomy. In this
context the field self-interaction is obtained as [65, 66, 89]

U(φ(r)) = λΩ(r)e−iβqe0φ ≡ λ Ũ(φ(r)). (4)

Here λ is the fugacity of counterions and the “blip” func-
tion Ω(r) defines the region of space allowed to the mo-
bile counterions (i.e., it is equal to one in the region where
counterions are allowed to be present and zero elsewhere).
The functional integral can be cast in a dimensionless
form that depends on only one parameter, i.e., Ξ [89].
The WC-SC limits then follow directly from appropriate
evaluations of the partition function [89].

A. WC theory: Mean-field theory and weak
fluctuations

The WC limit, Ξ → 0, for this model is obtained by
solving the saddle-point equation of the field-action [65,
66, 89],

δS[φ]

δφ

∣∣∣∣
iφ=ψPB

= 0, (5)

which governs the mean (real-valued) electrostatic poten-
tial ψPB(r) = i〈φ(r)〉 and leads to the standard Poisson-
Boltzmann (PB) equation

− ε0∇ · [ε(r)∇ψPB(r)] = ρ0(r) + qe0λΩ(r) e−βqe0ψPB(r),
(6)

with Neumann boundary conditions at the charged in-
terfaces. For one or two planar surfaces, the dielec-
tric discontinuity at the bounding surfaces plays no role
and the above equation leads to the standard Gouy-
Chapman theory of electrical double layers [1–5] with
ψPB(r) = ψPB(z). The corresponding expressions for the
counterion density profile nPB(z) and the disjoining pres-
sure PPB imparted by the counterions on the bounding
surfaces are well known [4], with the latter obtained from
the contact-value theorem [155–157] through the counte-
rion density at the mid-plane z = 0. This leads to the

following asymptotic form for large D = 2a,

PPB(D) = kBTnPB(z;D)

∣∣∣∣
z=0

' kBT

q2`BD2

∣∣∣∣
D→∞

, (7)

clearly showing that the PB pressure at large separations
is independent of σ, has an entropic origin and is thus
repulsive. Quite generally, it can be proven that the dis-
joining pressure within the PB theory is always repulsive
regardless of the shape of the charged surfaces as long as
the boundary conditions are symmetric [158–160].

The PB equation is exact in the strict limit of Ξ →
0 and has been applied successfully to study weakly
charged systems [1–4]. When Ξ is finite but small,
one expects subdominant Gaussian fluctuations to occur
around ψ = ψPB + φ described by the field-action

S[φ] ' S[ψPB] + (8)

+
1

2

∫
dr dr′

δ2S[ψPB]

δψPB(r)δψPB(r′)
φ(r)φ(r′) +O(φ3),

leading to small deviations from the PB pressure. The
total WC pressure can then be written as

PWC(D) = PPB(D) + ΞP1(D) +O(Ξ2), (9)

where P1 is the Gaussian (one-loop) correction around
the mean-field solution, analogous to vdW-type interac-
tions [65, 66, 89, 161] and is thus attractive, P1 < 0. For
two like-charged surfaces,

ΞP1(D) ∼ −kBT
lnD

D3

∣∣∣∣
D→∞

. (10)

which has a similar algebraic dependence on D as in the
case of the classical vdW force between neutral dielec-
tric, generated by the thermal fluctuations of the zero-
frequency Matsubara modes of the electromagnetic field
[161]; in the present case, however, the attractive cor-
rection is caused by the Gaussian fluctuations around
a nonuniform background defined by the PB solution
that produces also a logarithmic D-dependent correc-
tion. It should be noted that in the WC regime the
fluctuation-induced attraction can not overcome the re-
pulsive leading-order PB pressure, the total pressure thus
remaining repulsive.

In certain models, which assume surface condensation
or adsorption of counterions on fixed charged boundaries
[69–76], the repulsive mean-field effects are strongly sup-
pressed and the total pressure can eventually turn out
to be attractive. Such condensation behavior can not
occur within the primitive model with purely Coulombic
interactions and may occur only if one takes into account
non-electrostatic surface effects going beyond the models
considered here.

B. SC theory

As shown by Netz [89], a systematic description for the
SC limit follows from the same field-theoretic formalism
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that yields the PB equation in the limit Ξ→ 0, provided
that one takes the limit of Ξ→∞. In this case, one can
perform a fugacity (virial) expansion combined with a
1/Ξ expansion, the leading order of which was shown to
be finite and given by single-particle contributions only.
Physically, since in this limit the counterions are strongly
attracted to the surface and are isolated in large correla-
tion holes (of size ∼ a⊥) surrounding them, the partition
function of the system is expected, on the leading order,
to be dominated by single-particle contributions from the
interaction between counterions and charged surfaces. To
the lowest order, one finds

ZSC = Z(0)
SC + λZ(1)

SC +O(λ2), (11)

where the first term involves only S0[φ(r)] of (3) due to
external charges, while

Z(1)
SC/Z

(0)
SC =

∫
drΩ(r) e−βe0q

∫
dr′ u(r,r′)ρ0(r

′), (12)

is the single-ion partition function in the field of external
charges (note the grand-canonical formalism, which can
be transformed back to a canonical description involving
N particles by a Legendre transform [89]). As discussed
in Sec. II B, counterion-counterion interactions are also
very strong in the limit Ξ→∞, but appear as subleading
if compared with counterion-surface contributions.

In the SC limit for two like-charged bounding surfaces,
the disjoining pressure can be expressed to the leading-
order as [89]

PSC(D) = − σ2

2εε0
+

(
2|σ|
q

)
kBT

D
. (13)

It is easy to see that the first term follows from the elec-
trostatic energy of individual counterions sandwiched be-
tween two equally charged surfaces, leading to an attrac-
tive pressure, while the repulsive second term is clearly
nothing but the ideal-gas entropy of the counterions con-
fined to the slit between the surfaces. In fact, as noted
above, in the SC limit, the counterions are isolated in
correlations holes of area a⊥ so that 2|σ|a⊥ = q [49, 50],
and hence the energetic repulsion between the two like-
charged surfaces is overcompensated by the attraction
between them and the individual counterion in between,
in such a way that it changes the sign of the pressure!

The above result holds for small separations D <
√
a⊥

or equivalently, D/µ <
√

Ξ. Within the regime of valid-
ity of the SC limit, one recovers both the repulsive regime
for D < D∗ and the attractive regime for D > D∗, where
D∗ = 2µ is the separation at which the total force acting
on the surfaces vanishes, as confirmed by MC simula-
tions [43–45] (this argument needs to be amended in the
case where dielectric inhomogeneities are present in the
system, see, e.g., Refs. [43–45, 53, 54] and references
therein).

C. Crossover from WC to SC limit

At large separations, or smaller coupling parameters,
one needs to account for the higher-order terms in the
SC expansion. Even though the single-particle SC limit
appears to work very well for coupling parameters down
to Ξ ∼ 100 (corresponding, e.g., to DNA with trivalent
counterions), the perturbative expansion turns out to be
very inefficient and can hardly be extended into the so-
called crossover regime, i.e. 10 < Ξ < 100, of experimen-
tal interest [49, 50]. This regime remains accessible fully
only through simulations. Despite the challenging nature
of correlations in this regime, Santangelo [92], Weeks et
al. [57, 58] and others [59, 93] have shown that approxi-
mations based on the decomposition method used within
the liquid-state theories, can be applied with reasonable
success. Also a test-charge theory developed by Burak
et al. [91] seems to capture the onset of correlations and
provide very useful insights into the crossover behavior
of the counterion-only system.

Another approach to study counterion-only systems in
the limit of large couplings has been proposed by con-
sidering the ground-state structure of the system in the
limit T → 0 [81, 86]. It should be noted that this lat-
ter limit does not in general coincide with the SC limit
which is based on a combined virial and 1/Ξ expansion.
The virial approach leads to finite entropic (temperature)
corrections at the leading order (e.g., the second term
in Eq. (13)) and deviations have been reported for the
subleading corrections calculated from ground-state con-
siderations and those obtained from the virial approach
[94].

IV. GENERALIZATIONS OF THE WC-SC
PARADIGM

In the original form [45, 49, 50, 89], the WC and SC
dichotomy applies only to a counterion-only system con-
fined by uniformly charged surfaces, a situation of pro-
found theoretical significance but seldom encountered in
the real world. While the WC limit, through its corre-
spondence with the saddle-point equation, can be defined
for any field-action, the existence of additional length
scales, besides the Bjerrum and the Gouy-Chapman
ones, precludes a direct introduction of a unique electro-
static coupling parameter and consequently a systematic
derivation of the SC limit with its virial expansion.

In this case, however, one can generalize not the SC
theory itself, but the single-particle aspect of the SC
limit, which can be then applied to any system that con-
tains highly charged species, irrespective of the number
of governing length scales (see, e.g., Refs. [41, 42, 47, 48,
52, 53, 97, 122, 123, 138]). The approach is reasonable
because the highly charged ions are usually present only
in small concentrations and thus a virial expansion, of
which the single-particle limit is the lowest order, makes
sense. In addition, the single-particle SC limit has been
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FIG. 3: (a) A mixture of multivalent ions (red spheres) in a bathing solution of monovalent salt ions (blue and orange spheres);
the former are strongly and the latter are weakly coupled to external (surface) charges. The monovalent ions can be integrated
out from an explicit microscopic model (left) in the case of a highly asymmetric mixture (with highly charge multivalent ions),
giving rise to an effective dressed multivalent-ion model (right). (b) The rescaled inter-surface pressure, p̃ = βPSC/2π`Bσ

2,
as predicted by the dressed multivalent-ion theory, Eq. (18), is shown as a fucntion of the rescaled half-distance between
the surfaces, ã = a/µ. It bridges between the pure osmotic regime of multivalent ions (large κ) where the electrostatic
interactions are screened out and the SC theory for a counterion-only system (small κ) and exhibits attractive interaction
between the like-charged surfaces for a wide range of parameters (here shown for η = 1, i.e., when the total charge due to
counterions exactly compensates the surface charges). (c) In the canonical dressed multivalent-ion ensemble, there appears
a non-monotonic behavior for the inter-surface interaction pressure showing vdW-like loops, suggesting a coexistence regime
between two different phases. The phase coexistence region actually ends with a critical point (pc, ac). Adapted from Ref. [52].

tested against detailed simulations and its regime of ap-
plicability is determined for any particular case.

In quite general context, for any field-action, one could
thus derive a saddle-point theory as a substitute for the
WC limit and a single-particle theory as a substitute for
the SC limit (where both these theory should reproduce
the standard WC and SC theories when the appropri-
ate limit in the parameter space is taken). This is a
powerful consequence of the field-theoretic approach and
can be applied even to the cases where other approaches
(such as those based on the ground-state methods [94])
are not necessarily applicable (e.g., ionic mixtures con-
taining large amounts of monovalent salt). This is what
we will illustrate for a few interesting cases detailed be-
low.

A. Asymmetric ionic mixtures: Dressed
multivalent-ion approach

A particularly relevant case is that of a mixture of
multivalent ions in a bathing solution of monovalent ions
(Fig. 3a and Fig. 4). This is a typical situation in the
formation of liquid crystalline mesophases of semiflexible
biopolymers [20, 162, 163], multivalent ion-driven con-
densation of DNA in the bulk [11, 105–109], or in viruses,
where multivalent ions are believed to play a key role in
the stability of the viral capsid and/or packaging of its
genome [110–112].

For an ionic mixture consisting of a single species
of multivalent ions (c) in a neutralizing background of

monovalent anions (−) and cations (+), we have

U(φ(r)) = Ω(r)
(
λce
−iβqe0φ + λ+e−iβe0φ + λ−eiβe0φ

)
,

(14)
which follows directly from the Hubbard-Stratonovich
transformation of the microscopic (Coulomb) Hamilto-
nian of the system [52, 65, 66, 89]. Here λc and λ± are
the respective ionic fugacities, and the “blip” function
Ω(r) is assumed to be the same for all mobile species.

Obviously, in an asymmetric mixture, multivalent and
monovalent ions are coupled to macromolecular charges
quite differently: multivalents strongly, while monova-
lents only weakly, as evident from their respective electro-
static coupling parameters. This presents a challenging
problem as no single limit, neither WC nor SC, will apply
to all of the components of the system [52]. The saving
grace in this situation is the fact that usually multivalent
ions are present at very small concentrations, e.g., around
just a few mM (see, e.g., Refs. [105, 108, 109, 162, 163]),
and thus their behavior is expected to fit naturally within
the virial scheme based on an expansion in terms of their
fugacity (bulk concentration).

Additionally, in highly asymmetric solutions with q �
1 (e.g., with tri- and tetravalent ions), the problem can be
furthermore greatly simplified by employing the following
approximation [52],

U(φ(r)) ' λc e−iβqe0φ + n0(βe0φ)2 +O(φ3) (15)

(in the region where the ions are present Ω(r) = 1), where
λ+ = λ− = n0 is the bulk concentration of the 1:1 salt.
From this form it is clear that the degrees of freedom due
to monovalent ions can be integrated out, resulting in an
effective formalism including only screened interactions
between the remaining “dressed” multivalent ions and
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FIG. 4: Snapshot of an explicit MC simulation of a single
(negatively) charged surface with a dielectric discontinuity
(corresponding to that of the water/hydrocarbon interface)
showing (positive) tetravalent ions (red spheres) and monova-
lent salt anions and cations (green and orange spheres); while
the former are strongly attracted toward the surface, the lat-
ter form an extended DH-like atmosphere. (For the sake of
illustration, sphere radii are enlarged by a factor of 2.5 than
the actual hard-sphere radii used in the simulations).

fixed macromolecular charges [52–54]. This follows from
the first term of the field-action S0[φ(r)], Eq. (3), and the
quadratic term in the above expansion. In other words,
the effective field-action of the system is given by

S[φ] ' SDH[φ] + λc

∫
drΩ(r) e−iβqe0φ, (16)

where SDH[φ] has the same form as S0[φ] except that
u−1(r, r′) is replaced the screened Debye-Hückel (DH)
form u−1DH(r, r′) = −ε0[∇ · ε(r)∇ − ε(r)κ2]δ(r − r′), and
the inverse Debye length is introduced as κ2 = 4π`Bnb,
where nb = 2n0 + qc0, and c0 is the bulk concentration
of multivalent ions, assumed to come from an additional
q:1 salt. Obviously, the multivalent ion concentration c0
introduces a new parameter and new physics that goes
beyond the simple DH screening picture. In the case
when q and/or c0 are large enough, the multivalent ion
effects can be codified by a new length scale analogous to
the Debye length in the case of monovalent salt, defined
as χ2 = 8πq2`Bc0 [52–54].

We refer to the theory defined based on the field-action
(16) as the dressed multivalent-ion theory. The key point
here is thus that the above approach can be applied only
to highly asymmetric ionic mixture with q � 1 [52]. The
regime of validity of this approach can be checked against
explicit-ion MC simulations, where all ions, including the
monovalent ones, are explicitly simulated (see Fig. 4),
which show that this approach can indeed give quantita-
tively accurate results in a wide range of realistic param-
eter values [53, 54]. This may not seem obvious at first

since the above approach treats the monovalent ions on
the implicit DH level and one might thus expect strong
deviations to occur when multivalent ions are present in
the solution due, e.g., to nonlinear charge renormaliza-
tion and/or Bjerrum pairing effects [151–153]; these ef-
fects however turn out to be absent or negligible in the
regime of parameters that is of concern to our discussion
[52–54].

On the saddle-point level of the dressed multivalent-ion
field-action, the PB equation, Eq. (5), reads

−ε0
[
∇ · ε(r)∇− ε(r)κ2

]
ψPB = ρ0+qe0λc Ω(r) e−βqe0ψPB .

(17)
The corresponding disjoining pressure, is again consis-
tently repulsive for symmetric boundary conditions. The
underlying assumption here that electrostatic correla-
tions are zero and thus all ions remain weakly coupled
to each other and the external fixed charges.

When c0 < n0/q
2, one can furthermore develop a

simple theory based a virial expansion, which can cap-
ture the behavior of such asymmetric solutions in the
limit corresponding to a generalized SC limit, where mul-
tivalent ions are coupled strongly (to each other and
the external charges), while monovalent ions still re-
main weakly coupled to other charge species. By in-
spection of the field-action (16), the single-particle limit
has exactly the same form as Eq. (11), except that the
screened DH potential replaces the Coulomb interaction,
i.e. u(r, r′) → uDH(r, r′). For a single charged surface,
the dressed multivalent-ion approach can successfully
predict the density profile of ions next to the surface as
well as the charge inversion induced by multivalent coun-
terions [53]. For two apposed like-charged planar surfaces
[52], the interaction pressure behaves very differently if
the dressed multivalent ions are treated on the canonical
(they are not in chemical equilibrium with a bulk reser-
voir) or grand-canonical level (in chemical equilibrium
with the bulk) [52]. The corresponding interaction pres-
sure (within the canonical description for dressed multi-
valent ions) is then transformed from Eq. (13) to

PSC(D) =
(e0σ)2

2εε0

[
e−κD + 2µη I ′(D)/I(D)

]
, (18)

where η = (Nq)/2|σ|S is the amount of multiva-
lent counterions in the slit between the surfaces rel-
ative to the total surface charge and I(D = 2a) =∫ a
−a exp

(
(2/κµ) e−κa cosh κz

)
dz. The case η = 0 rep-

resents a system with salt only and the DH theory is re-
covered, and η = 1 is the case when the total charge due
to counterions exactly compensates the surface charges;
the counterion-only SC theory discussed above can be re-
covered within this latter case by letting κ→ 0, see Fig.
3b. This again illustrates that the dressed multivalent-
ion theory can bridge between the standard WC and SC
limits. For multivalent dressed ions within the canoni-
cal description, the interaction pressure can even become
non-monotonic, displaying repulsive branches at small
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and large inter-surface separations [53], see Fig. 3b and
c. In fact, for certain values of the parameters, the inter-
action pressure shows vdW-like loops, which could sug-
gest a coexistence regime between two different phases,
see Fig. 3c. The binodal or the coexistence curve ac-
tually ends with a critical point corresponding to the
largest amount of salt in the system that still leads to a
non-monotonic dependence of the pressure on the inter-
surface separation.

The dressed multivalent-ion approach can also give in-
sight into image-induced depletion forces between two
dielectric walls [54]. The latter arises as a result of polar-
ization depletion [164, 165] of multivalent ions from the
slit between two walls with dielectric constants smaller
than that of water in the slit, as is typically the case. Di-
electric images of individual ions thus have the same sign
as the ions themselves and so are repelled from one an-
other, pushing the mobile ions from the slit region back
to the bulk solution. For multivalent ions in the slit,

this effect is quite strong and leads to attractive forces
even between neutral surfaces, which are comparable or
stronger that the usual vdW forces and agree well with
explicit-ion simulations [54].

B. Ions with internal charge structure

Multivalent mobile ions are not always describable by
simple point-like monopolar charge structure [122]. Some
structured counterions can be described with a dipolar
[166, 167] or quadrupolar [168, 169] charge distribution,
which introduce additional features in electrostatic in-
teractions that are quite distinct from the standard PB
framework. A rigid internal structure of ions can be de-
scribed by a charge distribution ρ̂(r;R,ω) that is then
expanded in a standard multipolar series

ρ̂(r;R,ω) = e0qδ(r−R)− p0(n ·∇)δ(r−R) + t0(n ·∇)2δ(r−R) + · · · , (19)

where the counterion is located at R, with ω being
the orientational variables specifying the angular depen-
dence of the counterion charge density. Here, e0q is the
monopolar moment of each counterion, p = p0 n is its
dipolar moment and Q = t0 n⊗n its uniaxial quadrupo-
lar moment with director unit vector n, describing, e.g.,
a charged particle of rod-like structure such as spermine
or spermidine. One possible example where only the
monopolar and quadrupolar moments are non-zero is a
uniformly charged rod with total charge e0q and length l
for which t0 = e0ql

2/24. Another possible case is a rod-
like configuration with a negative charge (−e2) in the
center and two positive charges (+e1) located at both
ends of the rod, giving e0q = 2e1 − e2 and t0 = e1l

2,
respectively (see Fig. 5, top).

Assuming for simplicity that this system is again com-
posed of counterions only, with counterions having a com-
plicated internal structure described by Eq. (19), the field
self-interaction (see Eq. (3)) in the partition function is
then derived as [122]

U(φ(r)) = λ

∫
dω Ω(r) exp

(
iβ

∫
dr′ρ̂(r′; r,ω)φ(r′)

)
,

(20)
where λ is the fugacity of counterions and ρ̂(r′; r,ω)
is given as Eq. (19). The WC limit is obtained from
the saddle point and the SC limit by the lowest-order
virial expansion corresponding to a single-particle limit.
Though in this case the field-action contains more length
scales than one, corresponding to the complicated inter-
nal structure of the counterions with in general e0, p0,
and t0 all having distinct values, one can identify a princi-

FIG. 5: Counterions can have an internal structure, such as
a rod-like quadrupolar charge distribution (top). For rod-
like counterions with non-zero monopolar and quadrupolar
moments, the orientational order parameter in the WC limit
(bottom, right) indicates preferred orientation perpendicular
to the bounding surfaces, whereas in the SC limit (bottom,
left) the counterions are preferably aligned parallel to the
bounding surfaces.
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pal coupling parameter, in analogy to the counterion-only
case, that implies a SC-like fixed point with a fine struc-
ture as a consequence of these additional length scales.

The WC limit for a system bounded by two charged
plane-parallel surfaces is then given by a generalization
of the PB equation that can be written in dimensionless
form as [122]

ψ′′ = −1

2

∫ +1

−1
dx Ω(x, z)

(
u(z)− pxu′(z) + tx2u′′(z)

)
,

(21)
where ψ is the dimensionless potential (i.e., actual poten-
tial in units of βe0q), u(z) = C exp

(
−ψ − pxψ′ − tx2ψ′′

)
and dimensionless multipolar moments p = p0/e0qµ and
t = t0/e0qµ

2. Here, u(z) is proportional to the local
orientationally-dependent number density of the counte-
rions. Since we are not interested in steric effects, we can
set the characteristic function to Ω(x, z) = 1 everywhere
inside the slit between the two surfaces. The orienta-
tional variable x = cos θ, where θ is the angle between
the z-axis and the normal to the bounding surfaces, and
the integral over this variable gives the orientational av-
erage. The constant C is set by the boundary conditions
on the two bounding surfaces.

Numerical solutions of Eq. (21) show that increase
of the quadrupolar moment leads to a higher concen-
tration of counterions at the surfaces [122]. This can
be explained by invoking the potential energy of every
quadrupolar particle in electrostatic potential, propor-
tional to the second derivative of the mean-field potential,
which in the symmetric case is a concave function of the
coordinate z. Thus the quadrupolar force acts away from
the center toward both surfaces. Furthermore, the orien-
tational order parameter, S2 = 1

2

(
3〈x2〉 − 1

)
, increases

with increasing quadrupolar strength and is larger at
both surfaces than at the center, indicating that counte-
rion axes are preferentially aligned parallel to the z-axis
and thus perpendicular to the bounding surfaces (see Fig.
5, bottom, right).

The SC limit is then obtained by a virial expansion up
to the term linear in λ, corresponding to a single-particle

partition function [122]. One can show that Z(0)
SC is again

given by the first term in Eq. (11) involving only elec-
trostatic interactions between both surface charges, so
that the multipolar nature of the mobile ions is not im-
portant for this lowest-order term. It becomes, however,
important at the next order, linear in λ, which equals to

Z(1)
SC/Z

(0)
SC =

∫∫
dRdω Ω(r) exp

[
−β
∫∫

drdr′ρ̂(r;R,ω)u(r, r′)ρ0(r′)− 1
2β

∫∫
drdr′ρ̂(r;R,ω)u(r, r′)ρ̂(r′;R,ω)

]
. (22)

The interaction potential in this part of the partition
function is in general composed of the direct and im-
age electrostatic interactions, i.e. u(r, r′) = u0(r, r′) +
uim(r, r′), if the bounding surfaces have a different dielec-
tric permittivity from the solvent. The second term in
the exponent of Eq. (22) gives the image self-interactions
among monopolar, dipolar and quadrupolar moments (9
terms), whose explicit forms have been calculated in Ref.
[122]. Note that in general the self-energy contributions
can not be simply renormalized away into the rescaled
fugacity [170, 171].

In the case of two charged plane-parallel surfaces with
uniform surface charge density, the electrostatic potential
does not depend on the z coordinate, is thus spatially ho-
mogeneous and given by σe0a/(εε0). Since all the terms
in the density operator (19), except the first one, depend
on spatial gradients (derivatives), the counterion energy
in a homogenous external electrostatic potential depends
only on the monopolar (first) term. The corresponding
energy of a counterion in this electrostatic potential, i.e.,
the first term in the exponent of (22) is then given by
−βqσe20a/(εε0). As for the self-energy term (second term
in the exponent of (22)), it only picks up constributions
from the z-dependent parts of the image self-interaction,
uim. Note that if there is no dielectric discontinuity, so

that uim(r, r′) = 0, this term is identically equal to zero!

It then turns out in the SC free energy, that can be cal-
culated from βFSC = −lnZSC, the parts that depend on
multipolar moments (beyond monopoles) are contained
only in self-image interactions (see Ref. [122]). There-
fore if there is no dielectric discontinuity, the multipolar
effects in this limit vanish! Note that we have again as-
sumed that the characteristic function Ω does not depend
on the coordinate z, thus disregarding the possible en-
tropic effects due to the finite size and anisotropy in the
shape of counterions [168, 169], which would be relevant
only for small inter-surface separation on the order of
the counterion size, where other competing interactions,
besides electrostatic, come into play as well [117, 172].

As for the inter-surface interaction pressure in the SC
limit, the quadrupolar contribution can become negative
due to dielectric image attractions. On increase of the
quadrupolar moment, the interaction becomes smaller
and is eventually overwhelmed by repulsive contribu-
tions. The orientational order parameter in the SC limit
indicates that the counterions are preferably aligned per-
pendicular to the z-axis, parallel to the surfaces (see Fig.
5, bottom, left), which is contrary to the WC case. This
is caused by strong quadrupole-quadrupole image repul-
sion if the dielectric discontinuity at the surfaces exists;
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FIG. 6: (a) Counterion polarizability, α, introduces effective interactions between the counterions and the bounding surfaces.
For negative excess polarizability these additional interactions seem to be strongly repulsive and long ranged. (b) The WC
counterions density profile (in units of 2π`Bσ

2) as a function of the rescaled position, z̃ = z/µ, in the slit is shown next to
the left surface for rescaled inter-surface half-distance ã = a/µ = 2.5 and different polarizability values α as indicated on the
graph; here the contribution from fluctuations around the mean-field solution are taken into account as well. (c) Same as (b)
but here we show the SC density profile for different α. A clear effective repulsion is seen. Adapted from Ref. [123].

otherwise, quadrupolar effects are nil as discussed above.
Therefore, in the plane-parallel geometry, higher order
multipoles in the internal structure of mobile ions can
play an important role but only for a dielectrically in-
homogeneous system, i.e., when the bounding surfaces
and the slit region possess different dielectric constants.
Although, we should also emphasize that multipolar ef-
fects can be present if the charged surfaces are curved
(and thus generate spatially varying external potentials)
even without dielectric discontinuities, but these effects
remain largely unexplored.

C. Polarizable ions—a two-parameter model

Apart from possible multipolar moments in addition to
the monopolar charge, we have been up to now dealing
with a one-parameter model of the mobile (counter-)ions,
as by assumption they differ only in the amount of charge
they bear. Equally charged ions, such as Na+ and Li+,
or Ca2+ and Mn2+, are thus indistinguishable and have
no chemical identity. One possible generalization of this
model is then to additionally characterize the ion with
its excess static ionic polarizability [116, 117, 173, 174]
(see Fig. 6a), proportional to the volume of the cavity
created by the ion in the solvent. Static excess ionic po-
larizability is then a second parameter that differentiates
between different, but equally charged ionic species, and
thus obviously introduces ionic specificity into the theory.
Excess ionic polarizability studies go all the way back to
the classical work by Debye on polar molecules [120].

For a system composed of polarizable monopolar coun-
terions, the field self-interaction can be derived [123] in
the form of Eq. (3) but with

U(φ(r)) = λΩ(r) exp
[
−βα

2
(∇φ(r))2 + iβqe0φ(r)

]
,

(23)
where α is the excess polarizability of the counterions,

while other details of the model are the same as for a stan-
dard counterion-only system. The excess polarizability is
defined precisely as the difference between the aqueous
solvent polarizability and the proper ionic polarizability,
and may thus be negative [117, 120].

One should note here that the partition function de-
pends on two parameters: the coupling constant Ξ as well
as the polarizability α, i.e., it is a two-parameter function.
These two parameters can be introduced in the following
way: we first rewrite the electrostatic coupling constant
(Eq. (1)) in the form Ξ = q2`B/µ = 2πq3`2B|σ| ≡ q3Ξ0,
where we specifically decomposed the coupling param-
eter into its q and σ dependence. Then we introduce
a rescaled polarizability that represents an additional
independent parameter of the theory and is defined as
α̃ = α

(
β/(βqe0µ)2

)
. Also, instead of using the excess

polarizability, we can use the dielectric decrement β̃ in
units of inverse mole per liter (denoted by M−1) [116],

i.e., α = ε0β̃. The dielectric decrement for various salts
is typically negative and on the order of 10 M−1 in mag-
nitude.

Again, we introduce the corresponding WC-SC proxies
as the saddle-point and the single-particle theory, based
on the lowest-order virial expansion. Contrary to the
cases described before, there exist at present no pertinent
simulations that could help in assessing the accuracy of
these approximations (however, see Ref. [175]).

The saddle-point level, corresponding to the WC limit,
can be derived in the form of a generalized PB equation
governing the mean (real-valued) potential ψMF = iφ as
[117, 173]

−ε0∇·[(ε+ αnMF(r))∇ψMF(r)] = ρ0(r)+nMF(r), (24)

where the mean-field counterion density is given by

nMF(r) = λ exp
[
β
α

2
(∇ψMF(r))2 − βqe0ψMF(r)

]
. (25)

Comparing this equation with Eq. (6), it is clear that
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the dielectric response function has a term proportional
to the concentration of the ions, stemming from their
dielectric decrement. This was in fact first noted by Bik-
erman in 1942 [95, 121]. The solutions of this equation
have been investigated in great detail in Refs. [117, 173]
and in general depend on the magnitude and sign of the
excess polarizability.

From numerical solutions of the above PB equation,
it appears that the counterion polarizability introduces
effective interactions between the ions and the bounding
surfaces. For negative excess polarizability these addi-
tional interactions seem to be strongly repulsive and long
ranged. They again lead to a depletion of the ions in the
vicinity of the surface [164], see Fig. 6b. In the opposite
case, the interactions are also repulsive, but weak, and
the perturbations introduced by polarization are negligi-

ble. This yields a good measure for ion specificity, as the
ions can be differentiated according to the sign of their
polarizability.

On the single-particle level corresponding to the SC

limit, Z(0)
SC is again given by the first term in Eq. (11), in-

volving only electrostatic interactions between fixed sur-
face charges. The polarizability of the mobile ions ap-
pears in the first-virial-order partition function, which is
again formally of a single-particle type and can be cast
into the form [123]

Z(1)
SC =

∫
dr0 z

(1)
SC(r0), (26)

where we introduced

z
(1)
SC(r0)/Z(0)

SC = det
(
1 + α∇i∇′ju(r0, r0)

)−1/2 × exp

(
1

2
∇iC ′(r0)T

(
1

α
+∇i∇′ju(r0, r0)

)−1
∇iC ′(r0)− C ′(r0)

2

)
,

(27)

with C ′(r0) = u(r0, r0) −
∫
ρ0(r)u(r0, r)dr. Here, u(r, r′)

is again just the Coulomb interaction potential and ∇ as
well as ∇′ denote the gradients with respect to the first
and the second variable.

Though the above form of the single-particle partition
function appears to be quite complicated, it can be seen
straightforwardly that the first term in Eq. (27) describes
the thermal Casimir or zero-frequency vdW interaction
between a single polarizable particle and the dielectric
interfaces in the system. It can be written as

1
2Tr ln

(
1 + α∇i∇′ju(r0, r0)

)
' 1

2α Tr
[
∇i∇′ju(r0, r0)

]
.

(28)
For large |r0|, we obtain the scaling form |r0|−3, which
corresponds to the zero-frequency vdW interaction be-
tween the polarizable particle and a single dielectric dis-
continuity [161, 176].

The corresponding single-particle level counter ion
density profile, Fig. 6c, exhibits strong image repulsive
interactions that deplete the vicinal space next to the
bounding surface to an extent much larger then in the
case of the saddle-point limit, Fig. 6b [164]. Further-
more, on the single-particle level the effective permittiv-
ity around the ion may turn overall negative, leading to
a field instability that shows up in the partition function.
Other non-linear solvation-related effects [172] that have
not been taken into account would then take over and
stabilize the system.

In summary, for polarizable ions, the validity of the SC
vs. WC description no longer depends on a single cou-
pling parameter, but actually on two parameters. The
parameter space is thus quite complicated and the valid-
ity of the WC-SC dichotomy difficult to assess in general.

The general conclusion would be that the contribution of
polarizable counterions to the total partition function is
highly non-additive at the weak coupling level, whereas
it can sometimes be reduced to an additive contribution
in the free energy at the strong coupling level, but only if
the polarizability is large enough. Simply adding a vdW
ion-polarizability-dependent contribution to the electro-
static potential of mean force is questionable [176, 177].

V. CONCLUSIONS

We have provided a guided personalized tour of recent
advances in Coulomb fluids based on the functional inte-
gral representation of the partition function via a field-
action, as pioneered in the fundamental work of Edwards
and Lenard [154]. This representation was taken later as
a point of departure for the introduction of the WC-SC
dichotomy in the description of a counterion-only system
bounded by two charged surfaces. The WC limit was
shown to stem from the saddle-point description of the
field-action, while the SC description was based on the
lowest-order virial expansion. In the case of a counterion-
only system the two limits can be derived directly and
systematically. For more complicated, but also more re-
alistic cases that imply a multiplicity of different length
scales, one can identify the principal coupling parameter
and introduce the pertaining saddle-point and the single-
particle virial description as the proxies for the proper
WC and SC limits. The saddle-point and the single-
particle virial form of the partition function can then be
invoked for any system, irrespective of the number of pa-
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rameters or coupling constants describing it, and thus
present a convenient point of departure to derive power-
ful limiting laws even for much more complicated systems
than envisioned in the original framework of the WC-SC
dichotomy. We tried to make a clear case that this philos-
ophy can provide a solid foundation and a fairly accurate
guide for an approximate and sometimes even analytical
treatment of Coulomb systems that formally do not eas-
ily yield themselves to a simple single-coupling-constant

description.
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[96] M. Kanduč, J. Dobnikar, R. Podgornik, Soft Matter 5,

868 (2009).
[97] M. Kanduc, A. Naji, R. Podgornik, J. Chem. Phys. 132,

224703 (2010).
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