Game-Theoretic Network Bandwidth Distribution for Self-Adaptive Cameras

Nayak Seetanadi, Gautham; Maggio, Martina; Árzén, Karl-Erik; Almeida, Luis; Oliveira, Luis

2017

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Game-Theoretic Network Bandwidth Distribution for Self-Adaptive Cameras

Gautham Nayak Seetanadi
Department of Automatic Control,
Lund University, Sweden
gautham@control.lth.se

Luis Oliveira
Department of Computer Science,
University of Pittsburgh, USA
loliveira@pitt.edu

Luis Almeida
Instituto de Telecomunicações,
Universidade do Porto, Portugal
lda@fe.up.pt

Karl-Erik Arzén
Department of Automatic Control,
Lund University, Sweden
karlerik@control.lth.se

Martina Maggio
Department of Automatic Control,
Lund University, Sweden
martina@control.lth.se

ABSTRACT

Devices sharing a network compete for bandwidth, being able to transmit only a limited amount of data. This is for example the case with a network of cameras, that should record and transmit video streams to a monitor node for video surveillance. Adaptive cameras can reduce the quality of their video, thereby increasing the frame compression, to limit network congestion. In this paper, we exploit our experience with computing capacity allocation to design and implement a network bandwidth allocation strategy based on game theory, that accommodates multiple adaptive streams with convergence guarantees. We conduct some experiments with our implementation and discuss the results, together with some conclusions and future challenges.

1 INTRODUCTION

Nowadays, networked devices became commonplace, from surveillance cameras to industrial sensors and actuators, or even team of mobile robots. If these devices access the network in an on-demand fashion, sharing bandwidth may result in problems due to network congestion. On the contrary, when the number of devices is unchanged during execution and the communication pattern is very streamlined, network dimensioning should be enough to handle all the simultaneous transmissions in a timely manner.

Unfortunately, there are circumstances in which a proper dimensioning of the network capacity is either impossible, or too expensive. This can for example be the case with a network of cameras. Suppose we have a surveillance camera network, where a certain number of cameras are monitoring a given area. In general, if the designer allocates to each camera the maximum bandwidth they may require, there will be a significant bandwidth over-provisioning. A more efficient approach would be to allocate an average bandwidth so that the cameras can transmit their video streams with an average quality. However, if something is happening in one area – for example a lot of movements are detected by one camera – the bandwidth of the corresponding video stream may be increased, granting it better quality. At the same time, another area may be empty and therefore the corresponding bandwidth can be decreased to accommodate the higher quality stream. The camera network becomes therefore adaptive and is able to adjust to the characteristics of the execution environment.

Problem Statement. We consider a system composed of a set of cameras that send video streams to a monitoring node through a shared Ethernet network that supports virtual channels with bandwidth reservations. The cameras must respect their assigned bandwidth, therefore, they run some basic computation on the captured frames to determine the compression level that they should apply. The bandwidth in the network needs to be dynamically allocated at runtime by a monitoring node to accommodate the transient needs of the different cameras. The monitoring node needs to quickly redistribute the available bandwidth introducing as little additional overhead as possible, in particular concerning the transmission of additional information.

Contribution. We propose to achieve the mentioned low-overhead adaptation by decoupling the action of the resource manager, in charge of the network bandwidth distribution, and the cameras. Recently, the same strategy has been adopted for CPU allocation [11], where the decoupling of adaptation at the application level and of the adjustment of the scheduling parameters has proven successful. The consequences of allocating CPU can be disruptive for the system but the action itself of allocating CPU itself is a fairly “safe” operation – with respect to the amount of overhead introduced for the scheduling parameter change – on the contrary changing the channel size has a non-negligible additional overhead in terms of messages exchange, and some associated risks. In fact, if the amount of bandwidth is not enough to stream the frames, every other frame transmission is dropped and a significant reduction in effective video frame rate takes place, with strong negative impact on quality. This paper presents the implementation of a resource manager, allocating network bandwidth to a network of self-adaptive cameras, preserving some guarantees on the transmission of the streams.

Related Work. The topic of self-adaptive cameras has already been investigated for a long time, particularly in the scope of video transmission over the Internet or in local area networks [6, 16, 18]. Research has mainly focused on two complementary issues, video
transmission and image compression. The former led to standard protocols such as Real-Time Transport Protocol (RTP), Real-Time Streaming Protocol (RTSP), Session Initiation Protocol (SIP) and their improvements, which measure key network parameters, such as bandwidth usage, packet loss rate, and round-trip delays, to cope with network load conditions, controlling the load submitted to the network [19] or using traffic prioritization with allocation of network resources in the nodes [4].

On the other hand, image and video compression led to standards such as MJPEG, JPEG2000, MPEG-4, H.264 and more recently MPEG-H and H.265 that work by exploring redundant information within each image frame and in sequences of frames. However, these techniques frequently impose strong delays and thus a careful selection must be done for different application domains. While streaming of stored video can tolerate longer delays other domains impose more stringent limitations such as live streaming with augmented reality [15], surveillance [9], industrial supervised multimedia control [16], multimedia embedded systems [14], automated inspection [10] and vehicle navigation [7].

In these cases, image compression is frequently preferred to video compression for the lower latency incurred and lower memory and computing resource requirements. Nevertheless, any compression also incurs variability in transmission frame sizes that further complicates the matching with the instantaneous network conditions and has motivated substantial research into adaptive techniques [14, 16]. However, these works have essentially focused on adapting (single) streams to what the network provides, without protection against mutual interference. This protection can be achieved using network reservations (channels), as with Resource Reservation Protocol (RSVP) or lower layer real-time protocols. However, this has not been common due to high potential for poor network bandwidth efficiency. The work in [17] addressed this problem using adaptive network channels provided by a global network manager that tracks the actual use that each camera is doing of its allocated bandwidth. In this paper we follow this line of work by improving over [17] in the way cameras adapt to their allocated bandwidth, namely using a PI feedback controller, and in the way the manager allocates bandwidth, using a game theoretic approach [11].

2 MODEL

The system is composed of a central node receiving video streams from a set of cameras, $C = \{c_1, \ldots, c_n\}$, with cardinality n, $|C| = n$. The central node also runs a resource manager M, in charge of distributing the available network bandwidth H. Figure 1 shows a system with a node that is in charge of being the network manager and the monitor for the cameras, a switch where bandwidth can be allocated and two cameras sharing the bandwidth.

2.1 The camera

This subsection describes the behavior of a camera c_p with $p \in \{1, \ldots, n\}$. The camera records a stream of frames. Each of these frames is encoded in an image, that is then sent to the central node via the network. The stream of images can be denoted with $I_p = \{i_{p_1}, \ldots, i_{p_m}\}$, where p is the camera identifier and m is the cardinality of the set of images (the longer the system runs, the more images each camera produces). Each element $i_{p,w}$ in the set, $w \in \{1, \ldots, m\}$, has the following characteristics.

The value of $q_{p,w}$ represents the quality used for the frame encoding. The quality is an integer number between 1 and 100, initialized using a parameter $q_p, 0$, and loosely represents the percentage of information preserved in the encoding. The value of $s_{p,w}$ indicates the size of the encoded image. For each of the cameras, depending on the resolution used for the recording and on actual manufacturer parameters, the image size has a maximum and a minimum value, respectively denoted with $s_{p, \text{max}}$ and $s_{p, \text{min}}$, which we assume to be known. Finally, each camera transmits T_p frames per second, a parameter in our implementation.

The relationship between the quality used for the encoding $q_{p,w}$, which can be changed by the camera, and the size of the resulting frame $s_{p,w}$ is, in principle, rather complex (see [12, 17] for an early exponential model). It depends on many factors, including the complexity of the scene to encode, the sensor used by the camera manufacturer, the amount of light that reaches the sensor. In this work we approximate this relationship using the following affine model

$$s_{p,w}^* = 0.01 q_{p,w} \cdot s_{p,\text{max}} + \delta s_{p,w},$$

where $\delta s_{p,w}$ represents a stochastic disturbance on the frame size which can be both positive and negative to capture more difficult or easier scenes to encode. This model is only a coarse-grained approximation of the camera behavior, the idea behind it being that, for control-purposes, the model needs to only capture the trend in the size behavior – increasing quality will more or less linearly increase the frame size, while decreasing quality will more or less linearly decrease the frame size. Linearity is also assumed in the model but not necessarily needed for the controller derivation, as the regulation adapts to the current operating conditions in an adaptive way using a normalized error as seen below. Assuming that a frame size has constraints, we then saturate the result to ensure that the actual size is between the minimum and the maximum size:

$$s_{p,w} = \max\{s_{p,\text{min}}, \min\{s_{p,\text{max}}, s_{p,w}^*\}\}.$$

The camera adapts its behavior, meaning that it automatically changes the quality $q_{p,w}$ to match the amount of network bandwidth that it can use. We denote with $B_{p,w}$ the amount of bandwidth that the p-th camera has available for the transmission of the w-th image at a given frame rate (the channel allows the transmission of a certain number of bytes per frame indicated with $B_{p,w}$). The camera then adjusts its quality parameter using an Adaptive
where the index \(t \) which the network manager is invoked, values which are 15 and 85 respectively, following one.

The network manager is periodically triggered with period \(p \), with respect to the others, the resource manager is “prioritizing” \((P1a-c)\) and \((P3a-b)\). If one assumes the disturbance \(\epsilon \) value for \(p \)-th camera, the importance of this value lies in the relative difference between the values assigned to all the cameras. If all the cameras have an equal \(\lambda_{p,t} \), the resource manager is not going to favor any of them. If one of the cameras has a higher value with respect to the others, the resource manager is “prioritizing” the needs of that camera over the others, and the changes will favor that specific camera. In the following, we will assume \(\lambda_{p,t} \) to not change during execution, and use \(\lambda_{p} \) instead. A change in the value of \(\lambda_{p} \) has no impact in our analysis, and can be used to change the resource manager preference during runtime. \(f_{p,t} \) is a function that we call the matching function, and expresses to what extent the amount of network bandwidth given to the \(p \)-th camera at time \(t \) is a good fit for the current quality. Denoting with \(w \) the index of the last transmitted frame at time \(t \), and with \(t_{w} \) the time of transmission of the \(w \)-th frame, \(f_{p,t_{w}} \) determines a match between the quality \(q_{p,w} \) and the bandwidth \(b_{p,t_{w}} \) available for the camera when the transmission of the \(w \)-th frame happens. For the analysis in [11] to hold (therefore obtaining proof for the properties discussed in Section 2.3), the matching function should satisfy the following properties:

\begin{equation}
\begin{aligned}
(P1a) & \quad & f_{p,t_{w}} > 0 & \text{if } B_{p,t_{w}} > s_{p,w}, \\
(P1b) & \quad & f_{p,t_{w}} < 0 & \text{if } B_{p,t_{w}} < s_{p,w}, \\
(P1c) & \quad & f_{p,t_{w}} = 0 & \text{if } B_{p,t_{w}} = s_{p,w}, \\
(P2a) & \quad & f_{p,t_{w}} \geq f_{p,t_{w-1}} & \text{if } d_{p,w} \leq q_{p,w-1}, \\
(P2b) & \quad & f_{p,t_{w}} \leq f_{p,t_{w-1}} & \text{if } d_{p,w} \geq q_{p,w-1}, \\
(P3a) & \quad & f_{p,t_{w}} \geq f_{p,t_{w-1}} & \text{if } B_{p,t_{w}} \geq B_{p,t_{w-1}}, \\
(P3b) & \quad & f_{p,t_{w}} \leq f_{p,t_{w-1}} & \text{if } B_{p,t_{w}} \leq B_{p,t_{w-1}}.
\end{aligned}
\end{equation}

This basically means that the matching function should be positive if the bandwidth given is abundant, negative if it is insufficient and zero if the match is perfect (P1); that the matching function should increase when the quality is decreased and decrease with increased quality (P2); and, finally, that the matching function increases when more bandwidth is assigned and decreases when bandwidth is removed (P3).

In our implementation we select the matching function to be a normalized version of the mismatch between the bandwidth allocated to the camera and the size of the frame produced by the camera, \(e_{p,w} \) in Equation (3):

\begin{equation}
\begin{aligned}
f_{p,t_{w}} = \frac{B_{p,t_{w}} - s_{p,w}}{B_{p,w}}.
\end{aligned}
\end{equation}

The so defined matching function automatically satisfies properties \((P1a-c)\) and \((P3a-b)\). If one assumes the disturbance \(\delta s_{p,w} \) to be

\begin{equation}
\begin{aligned}
\end{aligned}
\end{equation}
If the value of the matching function over time and 2.3 System’s behavior
sponds to a unique fair resource distribution (a distribution in which
and the streams’ quality converge to a stationary point which corre-
Convergence. In the case, it is guaranteed that no camera can monopolize the available
∀ or equal to zero guarantee that all the cameras have a matching function greater
Starvation avoidance. A positive amount of resource is guaranteed
∈\mathbb{R}_+^n \right), ∀i, f_{p,t} ≤ 0, even when ∀p, q_{p,\min}.
so that

Frella Seetanadi et. al.

3 IMPLEMENTATION AND SETUP
This section describes the underlying protocol which is used to transmit data, together with the acquisition and encoding of images. As shown in Figure 1, the implemented system consists of a network manager and monitor node, together with cameras connected over a Switched Ethernet local area network. The network manager oversees all activity on the network and implements the bandwidth allocation strategy described in Section 2.2. Since it acts as a monitor, it also receives the images transmitted by the connected cameras. It continually monitors the bandwidth consumption and apply bandwidth changes.

OpenCV Each camera p captures an image w and encodes it using the given quality \(q_p, w \) computed according to Equation (4) in Section 2.1. The camera than transmits the image to the monitor node. We use OpenCV for image capture and modification, due to its pre-built open source libraries that implement different image processing functionality [3]. Specifically, our implementation uses the imencode function, which takes an input image and encodes it using the jpeg format and a given compression ratio \(c_p, w \), that we compute as

FTT-SE. To dynamically change the amount of bandwidth allocated, we need an underlying architecture that support bandwidth adaptation. For this, we use the Flexible Time Triggered (FTT) scheduling [13], which enforces adaptive hard reservations. In our implementation we use the Switched Ethernet (SE) implementation FTT-SE [12]. We use the asynchronous communication scheme for the FTT-SE setup and select a frame transmission period of 30ms, as done in prior work. FTT-SE uses trigger messages from the master (the network manager) to the slaves (the cameras) to change the allocated bandwidth, providing guarantees on minimum bandwidth allocation [2].

Physical Setup. The following section describes experimental results obtained with our implementation. The three physical units used for the experiments form a multiple source single sink architecture. Each unit runs Fedora 21. The first unit has a Intel Core i7-4790, 8 core CPU with 32 GB RAM. It runs the network manager and monitor nodes, implemented as independent processes on the system. The other two units are two cameras, which for use the commercial off-the-shelf cameras Logitech C270. The first camera was positioned to capture a scene with a lot of artifacts, like fast moving objects. The second camera captures a mostly static scene. We differentiate the scenes to simulate a scenario where cameras√

2.3 System’s behavior
From a theoretical perspective, the resource allocation and camera adaptation scheme is not different from the CPU allocation and service level adjustment proposed in [5, 11]. In both cases, there is one entity determining the resource allocation and other entities that can change their resource demands while being cooperative in trying to reach an agreeable resource distribution without unfairly favoring one entity. The behavior of the resource manager has therefore been analyzed and some properties have been proven [5]. Here we only give a brief summary of these properties.

Starvation avoidance. A positive amount of resource is guaranteed for all cameras that have a non-zero weight, ∀p such that \(\lambda_p > 0, \forall t, b_{p,t} > 0 \).

Balance. The balance property holds in case of overload conditions. The network is overload when the capacity \(\mathcal{H} \) is not enough to guarantee that all the cameras have a matching function greater or equal to zero ∀p, \(\exists i, f_{p,t} \leq 0 \), even when ∀p, q_{p,\min}. In this case, it is guaranteed that no camera can monopolize the available bandwidth at the expense of the others.

Convergence. The amount of bandwidth allocated to each camera and the streams’ quality converge to a stationary point which corresponds to a unique fair resource distribution (a distribution in which

the matching function is zero for all the cameras) whenever possible (in non-overload conditions) both in case of synchronous [5, Theorem 4.1] and asynchronous [5, Theorem 4.2] update.

Scalability. The average measured overhead for the computation of the bandwidth distribution in the resource manager is 2µs, for a network of two cameras. Despite this number being small, this is not the reason why we claim this approach has low overhead. One of the reasons why this resource allocation strategy is low-overhead is its linear time complexity. The bandwidth to be allocated can be computed in linear time with respect to the number of cameras, according to Equation (6). This makes the system able to scale to a high number of cameras with limited impact.
We conducted experiments to compare different allocation methods. For the entire infrastructure the implementation parameters are the execution period π_M, the total available network bandwidth \mathcal{H} and the value of ϵ. For all of the experiments described in Section 4, π_M was set to 300 ms and ϵ was set to 0.15. In our setup, the available network bandwidth \mathcal{H} is 4 Mbps. We deliberately set a low total bandwidth to stress the system and make sure that adaptation is needed. When two cameras are active, the amount of bandwidth is not enough to transmit the frames, unless the used compression is really high.

Assessment Criteria. We use three different criteria to assess the obtained solutions. The first criterion is the difference between the bandwidth allocated by the resource manager (AllocBW) and the one used by the cameras (InstBW). The second criterion is called Structural Similarity (SSIM) Index [20]. The SSIM is a metric that represents the information loss from an original image to a transformed one. We use the SSIM to compare the original and encoded image, computing it offline to avoid runtime overhead. Finally, the third assessment criterion is the amount of frames dropped because the allocated bandwidth was not enough to transmit them. The camera captures an image and stores it in the buffer. During transmission if the camera is unable to transmit the whole frame in the allocated bandwidth, it is dropped. Notice that the system does not have enough bandwidth to transmit the full set of frames it records, therefore the optimal percentage of transmitted frames is not 100 (but varies depending on what the network bandwidth allows to achieve).

4 EXPERIMENTAL VALIDATION

We conducted experiments to compare different allocation methodologies (ours and the state-of-the-art solution) and camera adaptation techniques. We recall that there are two adaptation levels: (a) the network manager decides how to distribute bandwidth to the connected cameras, (b) the cameras adapt the encoding process to the available bandwidth.

Experiment 1: need to adjust. In this first experiment, the network manager distributes the bandwidth equally. The cameras do not apply any adaptation mechanism. We use this experiment as a baseline to test the system’s operation. Figure 3 shows the experiment results. For the first 20 seconds, there is only one camera in the network, which receives all the bandwidth. A second camera joins the network around 20 seconds after the start and is turned then off when the time is equal to 40 seconds. The manager reacts reducing the amount of bandwidth allocated to first camera and equally distributing network resources to the two cameras. The images produced by the cameras are too big and, in absence of any kind of adaptation, they are often not able to send the data – as reported in the first lines of Tables 1 and 2, only roughly 19% of the frames produced by Camera 1 and 12% of the frames produced by Camera 2 are transmitted.

Experiment 2: comparison with [17]. The next experiment compares two alternatives for the camera adaptation strategies, using the same equal bandwidth allocation described for Experiment 1. As done for Experiment 1, Camera 1 joins the network immediately, while the second one enters at around 40 seconds from the start of the experiment. In both cases, the cameras attempt to match the size of the encoded images to the available bandwidth. Around 85 seconds from the experiment start, Camera 2 is shut down and releases its bandwidth, which is given to Camera 1. In one case (the left plot in Figure 4), we use the model and adaptation strategy in [17], which fits the Variable Bit Rate (VBR) in the cameras to the given Constant Bit Rate (CBR) channel [8]. In the second case (the right plot in Figure 4), the camera uses the adaptive PI controller described in Section 2 with k_p is set to 10 and k_i is set to 1. We have tuned these parameters for the camera controller empirically according to standard control practice [1]. Compared to the model in [17], our camera is more efficient at using the bandwidth allocated by the network manager. Figure 5 shows the differences in the SSIM per frame. Both the cameras have a SSIM higher than 0. This indicates that quality of images captured in both the cameras is higher with the PI controller compared to the model in [17], making the PI controller a better choice. The amount of frames dropped is similar in both the runs, with the PI model allowing the cameras to transmit slightly more frames (another point in favor) – see Tables 1 and 2.

Experiment 3: the full system. The last experiment incorporates the complete adaptation strategy. The network manager uses the game-theoretic approach to allocate bandwidth to the connected cameras and the cameras use the PI controller to ensure to fully take advantage of the given bandwidth. As a result, the frame that has a lot of artifacts (like Camera 1) and a very time-varying scene is given more network bandwidth. The resulting system is efficient in both allocation and utilization of the allocated bandwidth.

Figure 6 shows the allocation of bandwidth to the two cameras. The network bandwidth starts off by allocating most of the bandwidth available to Camera 1. Around 25 seconds, Camera 2 is
introduced. This causes the manager to reconfigure the network and allocate the bandwidth equally. Soon, the manager realizes that Camera 2 does not require as much bandwidth as Camera 1. Thus, the manager adjusts the allocation. Once Camera 2 leaves the network at around 62 seconds, Camera 1 receives the needed additional bandwidth. The figure also shows the remaining properties of the experiment: the normalized bandwidth $b_{p,t}$ of the camera p at time t that the manager uses to calculate the amount of bandwidth to be allocated, the matching function $f_{p,t}$ and the quality $q_{p,t}$ set by both cameras.

A negative value of $f_{p,t}$ indicates that the camera is starved and a positive value indicates that the camera has an abundance of bandwidth allocated. The optimal value of $f_{p,t}$ is zero. At every change in the network both the cameras react by changing their qualities and the resource manager by changing the allocation.

5 CONCLUSION

In this paper we have applied a CPU allocation strategy [11] to the problem of network bandwidth allocation with a set of cameras competing for bandwidth. In this paper, we have shown that a resource manager acting periodically in the system is able to achieve some guarantees on convergence, scalability and the general behavior of the system itself.

REFERENCES