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A seventh order accurate and stable algorithm for the
computation of stress inside cracked rectangular domains *

Johan Helsing | Anders Jonsson *

Abstract

A seventh order accurate and extremely stable algorithm for the rapid computation
of stress fields inside cracked rectangular domains is presented. The algorithm is seventh
order accurate since it incorporates basis functions taking the asymptotic shape of the
stress fields close to crack tips and corners into account at least up to order six. The
algorithm is stable since it is based on a Fredholm integral equation of the second
kind. The particular form of the integral equation represents the the solution as the
limit of a function which is analytic inside the domain. This allows for an efficient
implementation. In an example, involving 112 discretization points on an elastic square
with a center crack, values of normalized stress intensity factors and T-stress with a
relative error of 10~ are computed in seconds on a workstation. More points reduce
the relative error down to 10715, where it saturates in double precision arithmetic. A
large-scale setup with up to 1024 cracks in an elastic square is also studied, using up
to 740,000 discretization points. The algorithm is intended as a basic building-block in
general purpose solvers for fracture mechanics. It can also be used as a substitute for
benchmark tables.
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integral equation of Fredholm type.
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1 INTRODUCTION

The accurate computation of stress fields inside polygonal domains, possibly containing
inclusions and cracks, has traditionally been associated with substantial computing costs
and stability problems. A large obstacle, irrespective of the numerical method used, is the
difficulty of resolving the stress fields in the domain corners.

There are various ways to deal with corners. The easiest approach, which we refer to
as 'brute force’, is to represent the field in terms of polynomial basis functions and use a
standard finite element or boundary element adaptive solver. This process is costly. Par-
ticularly so if high accuracy is required. Furthermore, as discretization points accumulate
in the corners, the convergence may stop prematurely. Another approach is to use special
basis functions which take the asymptotic (non-polynomial) form of the stress field in the
corners into account. While special basis functions are economical in terms of discretization
points, their inclusion into an algorithm easily add ill-conditioning to the problem.

Implementations of algorithms for the computation of stress fields inside polygonal do-
mains are often of low order and aim at moderate accuracy. As we shall see, the results of
different authors seldom agree to more than two or three digits, not even for simple setups.
The purpose of this paper is to show that higher order accurate and stable schemes can and
should be implemented. The conclusion is that with a careful choice of basis functions, with
a careful implementation, and with a good formulation of the mathematical problem, one
can construct schemes which are substantially more efficient than ’brute force’. Adaptivity
may not even be necessary since for many problems, a few hundred discretization points
give a solution whose quality is more than sufficient for engineering use.

Numerical results for an elastic rectangle with one or more cracks are presented. We
construct a scheme which is approximately seventh order accurate both in theory and in
practice. The scheme is extremely stable. With just a few hundred discretization points
we compute stress intensity factors for an elastic rectangle with one crack with a relative
error of only 10~7. With two thousand points, or more, we decrease the relative error to
less than 2 - 1071%. A large-scale setup, involving up to 1024 slanted cracks in a uniaxially
loaded square, is also studied using up to 740,000 discretization points. This demonstrates
the capability of the scheme to handle large-scale problems.

2 PROBLEM STATEMENT AND POTENTIAL REPRE-
SENTATION

A finite, linearly elastic, specimen occupies a domain D. The outer boundary of the speci-
men is denoted I’y and is given positive (counter-clockwise) orientation. Inside the domain
there are N, cracks denoted I'y, ,k = 1,2,..., N.. The domain D is therefore multiply con-
nected. Crack k starts at crack tip s and ends at crack tip yze. The union of all cracks
is I'.. The union of I'y and I'. is . The left and right sides of I are distinguished with
superscripts (+) and (—). The exterior domain, outside [y, is D'. Traction (t;,t})) is
prescribed at I‘(T . The cracks are traction-free. We would like to compute the stress field
in the entire plane.

Let U(x,y) denote the Airy stress function. Since U(z,y) satisfies the biharmonic equa-



tion everywhere, except for at I', it can be represented as

Ulz,y) = Re {Z(z) + x(2)} , (1)

where the potentials ¢(z) and x(z) are possibly multi-valued analytic functions of the com-
plex variable z = = 4 iy. In the elasticity problem, requiring that the displacements be
single-valued, see (11,12) below, and with certain conditions imposed on the applied external
forces, see (19) below, ¢(z) and x'(2) are single-valued, see paragraph 40 of Mikhlin (1957).
For a thorough discussion of the complex variable approach to elasticity problems, see
Muskhelishvili (1953a), Sokolnikoff (1956), Mikhlin (1957), and Parton and Perlin (1982).
The following relation links the complex potentials to the traction t(z) = t;(2) + ity(2)
along the tangent of a curve ~y

t(z) =n®(z) + n®(z) — nzd®'(2) —n¥(z), (2)

where ®(z) = ¢'(2), ¥(z) = x"(z), and n = n, + iny is the outward unit normal vector on

7.
The potentials ®(z) and ¥(z) can be represented in the form of Cauchy-type integrals

@(z):%/r‘(ffi)j;, »eDUD, (3)
U(z2) = ! M, zeDUD', (4)

T omi Jp (1 —2)

where V(1) and W (1) are unknown layer densities on I'. The representations for ®(z) and
U(z) of (3) and (4) guarantee that the equations of elasticity are satisfied everywhere in
DUD'. Tt remains only to find V(7) and W (1), that is, to solve the boundary value problem

t(z) P, zeTy, (5)
t(z) = 0, zely, (6)
t(z) = 0, zel7, (7)
t(z) = 0, zel;, 8)

where tP* = t5" + it} is the applied external traction.

3 TOWARDS AN EXTENDED MUSKHELISHVILI EQUA-
TION

In this section we shall derive an integral equation for the stress problem stated in Section 2.
The classic choice of integral equation for stress problems is the Sherman—Lauricella equa-
tion, see paragraph 56 of Mikhlin (1957). An alternative equation is presented in paragraph
98 of Muskhelishvili (1953a). The fundamental difference between the two equations is the
choice of representation for the potential 1(z), related to ¥(z) via ¥(z) = ¢'(z2).

The “Muskhelishvili equation” is often not recommended. Reasons are that the Sherman—
Lauricella equation is considered simpler and more suitable for the purpose of general in-
vestigations (p. 398 of Muskhelishvili (1953a), 314 of Sokolnikoff (1956), and p. 255 of



Mikhlin (1957)), that the actual implementation of solutions to the Muskhelishvili equation
for multiply connected domains is considered difficult because of the necessity of first solving
auxiliary problems for some particular types of loading (p. 158 of Parton and Perlin (1982),
and that the analysis of the Muskhelishvili equation for multiply connected domains is con-
siderably more complicated (p. 249 of Mikhlin (1957)). Still, we observe, that for stress
problems involving cracks, equations based on Muskhelishvili’s choice of representation for
Y(z) are often used, see paragraph 23 of Parton and Perlin (1982) and Section 6 of Chapter
V in Parton and Perlin (1984).

We find it hard to determine which equation is the more difficult to analyze. Both the
Sherman-Lauricella equation and the Muskhelishvili equation are difficult to deal with when
it comes to proving uniqueness for multiply connected domains involving cracks. Especially
so if the cracks are not straight. However, we find the Muskhelishvili equation so much
more efficient than the Sherman—Lauricella equation, from a numerical point of view, that
we shall use an extension of the Muskhelishvili equation in this paper. The problem of
rigorously proving uniqueness will be left open.

We start with a useful lemma given in paragraph 36 of Muskhelishvili (1953a)

Lemma 3.1 The solution to the plane problem of the theory of elasticity for 2’ in the
external domain D' and with t(z') =0 on T’y and displacements and stresses single-valued
and bounded at infinity has the general solution ®(2') = ia, where o is a real constant.
When ®(2') is represented as in (3), the solution is ®(2') = 0.

According to Lemma 3.1, we shall seek ®(z) as a function analytic inside D and zero in
D'. To this end, we rewrite (3) as

d(z2) =

_i' <I>(T)d7'+i‘/ A<I>(T)d7', LeD. )
2mi Jp, (1—2)  2mi Jp,

(r=2)

where ®(7) is the limit of ®(z) on T, and A®(7) is the jump in ®(z) over I'. (the limit on
[} minus the limit on I']’). For z on Iy equation (9) becomes

1 ®(r)dr 1/ Ad(r)dr Ty, (10)
T

q)(z):_ (T—Z) ’

i Jp, (T—2) mi
To ensure that the displacements are single-valued we add the conditions

Qo@ :07 (11)
QuA® =0, k=1,2,...,N,, (12)

where where @); is a mapping from I'; to C, defined by
1
Qif=— [ f(r)dr. (13)
e 1'*],

We now demand that the traction ¢(z) of (2) jumps a quantity equal to the applied
external traction as I'g is crossed (conditions (5,6)), and that the traction #(z) is continuous
as I'; is crossed (conditions (7,8)). This, together with the representation (10), enable us to



express the density W(7) of (4) in terms of ®(7) and A®(7). The potential ¥(z) assumes

the form
1 d(r)dr 1 7®(r)dr 1 ntPT dr
\II(Z):_—, ——/(72—2—/7
Ty ™ Jry

2mi Jp, (T—2) 2w T —2) (r—2)
1 Ad T 1 TAD
S ﬂ__’ ﬂ, e DUD. (14)
2mi Jp, (T—2) 2mi Jp, (1 —2)?

The representation (14) for ¥(z) is the derivative of Muskhelishvili’s representation for (z).

For brevity and simplicity, we assume that N, = 1 in the following of this sections. The
derivations can easily be generalized to the case when N, > 1. The requirements (6,7) lead,
via (2), to the following system of singular integral equations

(Ml("“) - M?EOO)) B(z) + (Ml(‘”) - M§°1)) AB(2) (15)

2)at(z), =z €Ty,

n n

(Ml(“’) - M?E“’)) B(2) + (Ml(ll) - M?E“)) AD(2) (16)

50 %ﬁtpr(z), zely,
where the operator Ml(j k), acting on a function f(z), is given by
(k) 1 f(r)dr
M7V f(z) = — , z€l;, 17
1 ( ) r, (7_ —Z) J ( )
the operator E(jk) is the conjugate of Ml(j k), and the compact operator M?Ej k) is given by
ik 1 f(r)dr n f(r)ydr
Mg = o | [ A0S 2 [ (19)
mi [Jr, (T—2) nJr, (T—2)
T de B
T e Ry R e
Ty (7 —2) n Jr, ( z)?
Equations (11,12,15,16) are not solvable unless the solvability conditions
Pyt =0, (19)
Qont™" =0, (20)
hold, where Py is a mapping from T';, to R, defined by
P.f = —ﬂ%e{ . f(z)zdz} , (21)

where A is the area of the domain D. Neither do (11,12,15,16) have a unique solution. The
constant ®¢(z) = ia, where « is real, is a homogeneous solution. We add the uniqueness
condition

Py®=0. (22)



Since
Pyi=1, (23)

equation (22) does not allow for the arbitrary addition of a homogeneous solution ®4(z) = i
to @(2).

4 A FREDHOLM EQUATION OF THE SECOND KIND

Equations (15,16) are singular Fredholm integral equations of the first kind. Upon dis-
cretization such equations lead to systems of linear equations whose condition numbers grow
with increased resolution. Implementing the conditions (11,12,22) may also pose problems.
These equations are therefore not good for numerics. In this section we shall reformulate
the five equations (11,12,15,16,22) and arrive at a system of two second kind Fredholm
integral equations that is well suited for computations. We assume that N, = 1 for reasons
of simplicity and brevity. All derivations are easy to modify for cases when N, > 1.

First we shall combine (15) and (22) into a single equation. The following lemma is
useful

Lemma 4.1 Changing the order of integration, and using partial integration, one can show

Py [(M{"O) - M§°°)) B(2) + (Ml(‘”) - M§°1)) A(I)(z)} Q=0, (24)
PO% (I - ZE“"”%) AtPT = PyitP", (25)

whatever the applied traction tP* is.

N _
— _ ) 7#4PT
_2(1 M _)nt (z), zely, (26)

To show that (26) is equivalent to (15,22), assuming that (19) holds, we apply Py from the
left in (26). This gives (22) with the help of Lemma 4.1 and (19,23). A linear combination
of (22) and (26) gives back (15).

Next we make use of (10) and rewrite (26) as a second kind equation

(I — M 4 z’Po) 8(z) — MV AS(2) (27)
— 1 _ ﬁ—(oo)g = 4PT
_2(1 M ﬁ)nt (z), zely.

To show that (27) is equivalent to (26) we must prove that (27) does not allow for a
homogeneous solution whose analytic extension to the plane is non-zero in D’. We therefore
investigate solutions to the homogeneous equation

(I oM™ 4 z'Pg) Bo(z) — MPVABY(2) =0, zeTy. (28)



Using the new analytic functions in D’

PO(I’O 1 q)g(T) dr 1 / A@O(T) dr
@* ! _ _ Y- v _ - A S i S ! DI 2
() 2 277/110 (r—2") 27 Jp, (1 —=2') 2 EU (29)

and
. 1 Dy(r)d7 1 T®o(7)dr
\If (ZI) — % 7( — —/ 7_ "o
ro (1—2') 21 Jp, (T —2")
1 Ady(r)dT N 1 TA®y(7)dr CJeD,
2r Jr, (1 —2") 2r Jr, (7 —2')?

and taking limits, one can show

lim n®*(z') + n®*(2') — nz'®*'(2) — A¥*(2') (31)

, _
2'—=T

= in (I — M 4 iPo) Bo(2) — inMVABy(2), z=limz — T .

Now the equation

lim n®*(2') + n®*(2') — nz®*'(2') — A¥*(z') =0, (32)

, _
2'=T

has, according to Lemma 3.1, only the solution ®*(2’') = ¢a. The form of the representa-
tion (29) implies that ®*(z') = 0 for 2’ € D', and therefore ®(z) on T has to be the limit
of a function analytic in D and zero in D'.

For the transformation of the entire system (11,12,16,27) into second kind equations we
need to introduce a weight p(z) which for z € Ty, is given by

1, k=0,
lz) = { ((Z_'Yksxz_'yke))_%’ k=1,2,...,Ne. *

To be precise, the weight p(z) is the limit from the right (relative to the orientation of crack
k) of the branch given by a branch cut along 'y and

lim zp(z) = 1. (34)

Z2—00

We also introduce the new, smooth, unknown function Q(z) via the substitution

p(2)Q(z) = ®(2), z€Ty, (35)
p(2)Q(z) = Ad®(z), z€T,. (36)

The system of equations (11,12,16,27) now reads

1 A
(I — M0 MO 4 iPO) Q) = 3 (I - % Ml(oo)%) At (z), z€To.  (37)
(20 = M + m{p — m Vo) (z) (38)



1 n——(10)

= —EEMl %'ﬁtpr(Z), zZ € Fl y
Qop2 =0, (39)
Q2 =0, k=0,2,...,N,. (40)

It was shown in Helsing and Peters (1999) that the following relations involving Q,
p(z), and MM hold

Lemma 4.2

QipMMp7lf(z) = o0, (41)
MM tMMpf(z2) = f(2) - Qupf, z€Ty, (42)
M{"pM{"p7lf(z) = f(z), ze€Ty, (43)

where f(z) is a square integrable function. See also p. 155 of Estrada and Kanwal (2000).

It is now easy to show that the system (37-40) is equivalent to the following two integral
equations of Fredholm’s second kind

(I — ™ — MY + z’Pl) O(z) = % (I - %E(OO)%) AtT(z), zeTo.  (44)
(14 M7 (0 = M — m{"Vp) ) 0(2) (45)
= —M1(22)pfllgm(m)gﬁtpr(z), zel,.
2n n

Application of Ml(ll),o_1 from the left in (38) and the use of (40) and the relation (42)
give (45). In the other way we apply Qip to the left in (45). The relation (41) gives

back (40). Application of Ml(u)p to the left in (45) and the relation (43) give back (38).
Application of @ to the left in (44) and use of (20,40) give back (39).

Equations (44,45) will be used for computations in Section 10. We end this section with
a listing of some particular advantages with these equations and their solution Q(z).

e Equations (44,45) are of Fredholm’s second kind with compact operators. This allows
for stable convergence as the system is discretized and solved on an increasingly re-
fined mesh. See Helsing and Peters(1999) for proof that the composition of integral
operators in (45) are compact.

e The density Q(z) on I’y is the limit of ®(z) in D. This simplifies the construction
of an asymptotically correct basis for €(2) in the corners. The action of the integral
operators can be implemented in an efficient way. See Sections 6 and 8.

e The density €(z) is simply related to ®(z) and ¥(z) and therefore also to the stress in
D, see Section 5. The solutions to the original Muskhelishvili- and Sherman-Lauricella
equations are related to the potentials ¢(z) and v(z). The stress has to be computed
via differentiation, which is an ill-conditioned operation. See also p. 92 in Section 6
of Chapter V of Parton and Perlin (1984) for a discussion of these matters.



e Equation (44) contains the operator P; which removes an indeterminacy in ®(z).
The original Muskhelishvili- and Sherman-Lauricella equations contains other oper-
ators which remove a larger indeterminacy in ¢(z) and involve an arbitrarily placed
point. An unfortunate placement of this point could degrade numerical performance.
Generally, the operator Py seem to lead to more stable schemes, see Helsing (2000).

e A recent trend in the development of integral equations for planar elasticity is to work
with Green’s functions for stresses and displacements. This is referred to as “standard
BEM?”, see Becker (1992). Disadvantages with the BEM equations are that they solve
for displacement fields, that they involve logarithmic kernels, and that they seem less
economical for crack and inclusion problems.

5 EXTRACTION OF STRESS AND STRESS INTENSITY
FACTORS

Once (44,45) are solved for Q(z), the potentials ®(z) and ¥(z) can be computed everywhere
in D via (9,14,35,36). This enables the rapid extraction of many quantities of physical
interest. Here we list a few.

The components of the stress tensor in the material are always of interest. They can be
computed via

Ora + 0y = 4Re(2(2)} (46)

Oyy — Ogz — 2004y = 2(2®'(2) + ¥(2)). (47)

A function of the stresses, which is used to predict the occurrence of yielding in a material
where the stress state is multiaxial, is the von Mises effective stress o.. For plane strain
conditions, it can be expressed as

j|1/2 , (48)

ge = |(1 = v(1 = 1)) (0gz + 0yy)* — 3 (0220yy — Uiy)
where v is the Poisson’s ratio.

Linear elastic fracture mechanics is widely used to predict the fracture resistance of
cracked structures. Linear theory has been successful even though non-linear material
behavior occurs in regions close to crack tips. The reason for this is the small scale yielding
assumption, which states that the fracture process is governed by so-called stress intensity
factors whenever the plastic zone is small compared to other specimen dimensions. The
assumption is assumed to hold if [ > 2.5(Kr./oy)?, where [ is the smallest characteristic
length of the specimen, K7, is the fracture toughness of the material and oy is the tensile
yield strength of the material (ATSM (1998)). The stress intensity factors can then be
used to estimate the extent of the plastic zone. The complex valued stress intensity factor
K = Kj +iKjs at the crack tips vz and vz can be defined as

K(ys) = eli%l+ \V2me [ay/y/ (Vs — t€ns) + 1041y (Vs — iens)] , (49)
K(yke) = egrgl+ v 2me [a'y/y/ (Yre + i€ne) + 1041y (ke + iene)] , (50)



Figure 1: Local coordinate systems aligned with the tangent to the crack at the crack tips.

where € is a real number, ng = n(ygs), ne = n(yke), and z', y' refer to local coordinate
systems parallel to the tangent of the crack at the crack tips, see Figure 1. A normalized
stress intensity factor F' = Fy + iFyy is introduced as

K
F=— 51
tgf\/ﬁ Y ( )
where ¢} is the applied external load and a is half the length of an internal crack or the
entire length of an edge crack. The normalized stress intensity factor can be computed as

iv2

Fow) = g i OGpEVGG), 2T 52
Fow) =~ g lim AondpGIVEE, 2 €T, (53)

where §s(z) is arclength measured from the closest crack tip.

Larsson and Carlsson (1973) studied four common test specimen geometries and showed
that stress intensity factors alone are not sufficient to determine the extent of the plastic
zones around the crack tips. They suggested that the first non-singular, constant, term
in the series expansion of the normal stress parallel to the crack-plane, at the crack tips,
should also be considered. This term is referred to as T-stress. Betegén and Hancock (1991)
went further and concluded that the crack tip field will be dominated by the stress intensity
factors K if T is positive. The K-dominance is lost for negative T'. This implies that if T’
is negative, it should be included as a parameter in fracture resistance estimation. If T is
positive, it can be neglected and the small scale yielding assumption is valid. In order to
correctly predict the fracture toughness of a structure, the same level of negative T-stress
should therefore be used in tests as is present in a real situation. Today, including effects of
the T-stress in tests is a relatively well established procedure, at least in mode I fracture,
see Hallback (1996). The real valued T-stress at crack tips ygs and e can be defined as

T(yis) = Eli%1+ Ozt (Yhs — 1€Ns) — Oyryr (Vs — te€ns) (54)

10



T(Yre) = Eli%L Ozt (Vke + 1€ne) — Oyry (Vke + t€Ne) (55)

In terms of complex potentials these expression assume the form

T'(vkj) = 2Re { L (ijq"(vkj) + ‘I’(ij))} , J=se. (56)

n

For straight cracks, the expression (56) can be evaluated as

N,
- m la—wo)yn _ o )
T(w:me{ZMé’“ pQ2y) = 5 ML St (wk,»}, j=se.  (57)

m=0

The biaxiality parameter B is introduced by normalizing the T-stress. For uniaxial applied
traction in the y-direction the normalization reads

B=— L (58)

ty \/F + FZ
We shall now devote the four following sections to the implementation of a seventh order
accurate algorithm for the solution of (44,45).

6 SMOOTH AND NON-SMOOTH FUNCTIONS

The accuracy of a particular implementation of an integral operator will depend on the
continuity properties of the function on which the operator is acting. This section discusses
the smoothness of the function (z) and ¢P" appearing in (44,45).

The density Q(z) is a smooth function (C*) on I'.. This is so thanks to the introduction
of the weight p(z) of (33). The applied traction ¢P* is also smooth, but discontinuous in the
corners. The density ©(z) on 'y, on the other hand, is not smooth. In the corners, (2)
can be decomposed into a symmetric part and an antisymmetric part containing terms of
the form )

Qsymm (2) = cs2™ 1+ G2 M1 (59)

and
Qamtisymm(z) = Camsz'u_1 - Eamszu_1 ’ (60>

where ¢ and cys are complex coefficients and where A and p are a mix of positive integer
exponents and widely spaced non-integer exponents given by the Williams solution, see
Williams (1952). The special case of real A and p renders cg real and c,s purely imaginary.
See Helsing and Jonsson (2001) for details. In this paper we shall use integer values of \
and p ranging from one to six, together with the first non-integer values in the Williams
series for A and p. The first omitted term in the Williams series for A has a real part of
approximately 6.845. The first omitted term in the Williams series for 4 has a real part of
approximately 8.87.

11
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Figure 2: Left, a regular quadrature panel. Right, corner quadrature panels with two legs. The
dots on the regular panel and on the leftmost corner panel symbolize points where the solution
Q has support. The other two corner panels show points where intermediate quantities are
computed.

Figure 3: Quadrature panels on a modified uniform mesh for a square with a centered crack.
Most panels have the same length. Panels neighboring to corner panels and panels neighboring
to panels containing crac-tips are shorter.

7 DISCRETIZATION AND BASIC QUADRATURE

We intend to solve (44,45) using a Nystrom scheme with composite eight-point Gauss-
Legendre quadrature as our basic quadrature rule. On panels containing crack tips we
use eight-point Gauss-Jacobi quadrature. To this end we divide I'y and I'. into quadrature
panels. First we let all panels have approximately the same length. This construction we call
a standard uniform mesh. We arrange the panels so that all four corners are symmetrically
included in panels referred to as corner panels, see Figure 2. Panels which do not contain
corners are referred to as regular panels. We now perform a modification of the standard
uniform mesh. If a regular panel is neighboring to a panel containing a crack tip, it is
subdivided once into two smaller regular panels. If a regular panel is neighboring to a
corner panel, it is subdivided twice into three smaller regular panels with the two smallest
panels closest to the corner panel. We call the resulting mesh a modified uniform mesh.
See Figure 3.

12



There are two reasons for using the modified uniform mesh rather than the standard
uniform mesh. The first reason has to do with that the solution Q(z) on regular panels
close to a corner varies faster than further away from the corner. Although Q(z) is smooth
on panels neighboring to corners, a certain singular-like behavior can be discerned. Should
a standard uniform mesh be refined, the solution Q(z) on regular panels neighboring to
corners will vary even faster and the its quality would not necessarily be improved. A
similar effect is present for €(z) on panels close to crack tips. The density 2(z) is smooth
on the entire crack T', thanks to the weight p(z). Unfortunately, p(z) cannot be used as a
quadrature weight in the composite quadrature scheme. We implement the quadrature on
the panels of I'. using the following reformulation, where f is a smooth function,

b b o1 T
[ emsmrar= [T E ) n ar (61)

In (61) ¢ is a parameterization and h(t) is a real valued weight incorporated into the quadra-
ture. If a = s we choose h(t) = 1/\/t —t,. If b = e we choose h(t) = 1//tp, — t. If
neither a nor b are crack tips we choose h(t) = 1. In this way we get high precision on
panels containing crack tips and panels not neighboring to crack tips. On panels that do
neighbor to crack tips the factor p(7)/h(t) will grow as a standard uniform mesh is refined.
Full double precision accuracy for the quadratures cannot be achieved.

The second reason for using the modified uniform mesh rather than the standard uniform
mesh has to do with the interaction between neighboring panels on opposite sides of corners.
When a standard uniform mesh is refined, neighboring panels on opposite sides of a corner
are moving closer to each other and are simultaneously shrinking. The net effect may be
that the integral kernels describing these interactions is never well resolved. Numerical
experiments indicate that refinement of a modified uniform mesh will allow us to reach
double precision accurate answers.

As for the placement of discretization points we do as follows: on all regular panels we
place eight Gauss-Legendre nodes for the support of (z). On panels containing crack tips
we place eight Gauss-Jacobi nodes for the support of (z). On each leg of the corner panels
we place one set of four Gauss-Legendre for the support of Q(z). Also, on each leg of the
corner panels we place one set of eight Gauss-Legendre nodes and one set of sixteen Gauss-
Legendre nodes. See Figure 2. On these extra sets of nodes, intermediate quantities will
have support. We shall thus use three sets of nodes on corner panels for different purposes
in our implementation of the operators appearing in (44,45). The overall ambition is that
all quadratures shall be implemented with at least seventh order accuracy.

8 IMPLEMENTATION OF INTEGRAL OPERATORS

8.1 Review of previous implementations

The implementation of several of the operators appearing in (44,45) have been discussed in
previous work. The implementation of other operators can be done in similar ways. Here
follows a brief review. Once again, for brevity, details will only be given for the case N, = 1.
Extensions are analogous.

11),0, and Ml(u)/f1 for action on smooth

1)p and

The implementation of the operators Mém)p, M. 35

functions are discussed in Helsing and Peters (1999). The implementation of Méo
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Méu)p will be 16th order accurate with eight Gauss-Legendre or Gauss-Jacobi nodes as

source points. The implementation of Ml(u)/f1 will be eighth order accurate. With nth
order accuracy we mean that a polynomial of order n — 1 can be integrated exactly.
The implementation of M?Eoo) for action on the non-smooth function (z) is rather
involved. It is discussed in detail in Helsing and Jonsson (2001). In short, the operator
M?Eoo) is decomposed into three parts. One part of M?Eoo) describes the action on Q(z)
for source points on regular panels. Here 16th order Gauss-Legendre quadrature is used.
Another part of M:,EOO) describes the action on Q(z) for source points on corner panels and
target points close to the source points. Here a change of basis for (z), from pointwise
representation to a representation in terms of the basis functions of (59,60), is used. The
values of the different entries of the matrix representing this part of Méoo) are precomputed
to high precision using adaptive quadrature. The accuracy of the scheme is of order 6.845.
The third part of M:,EOO) describes the action on (z) for source points on corner panels and
target points far away from the source points. Here, too, a change of basis is employed,
followed by interpolation and 32nd order accurate quadrature. The intermediate set of 16
quadrature points on each corner leg is used in this procedure whose accuracy is estimated
to, again, 6.845. The decision of whether a target point should be considered being close
to or far away from a corner panel will of course affect the achievable accuracy of the
implementation of M?EOO). Numerical experiments indicate that, with our modified uniform
mesh and for double precision accuracy, it is generally sufficient to consider points on the
six closest panels neighboring to a corner leg as being close to the corner panel.

The implementation of M. 1(10) and M. 3510) for action on Q(z) resembles the implementation

of Méoo). The only difference is that the second part in the decomposition, for the action on
source points on corner panels and target points close to the source points, is not needed.

8.2 Implementation of Ml(oo) and Ml(w)
(00)

We now discuss an eighth order accurate implementation of the operator M; "’ whose
conjugate acts on the applied traction in (44). The traction will be evaluated at all nodes
on regular panels and on the intermediate sets of eight nodes on the legs of corner panels.
The operator M 1(00) is singular. The part of M 1(00) that describes action on source points
on one quadrature panel when target points are on another panels is, however, compact.
We use 16th order Gauss-Legendre quadrature for this action whenever the source points
are on a regular panel and the target points are on a panel far away from that panel. Three
panel lengths can be considered “far away” for double precision accuracy.
The implementation of MI(OO) for action on a function f(z) when source points are on
a regular panel and when target points are close to or on that panel is evaluated using
the following relation. Let f(z) be smooth and let a and b be the starting point and the

endpoint of a regular quadrature panel. Then

%bf_z‘ /f {T—z>}

S e R = R




The first integral on the right hand side of (62) has a smooth kernel. The second integral
has a smooth integrand. The third term is easy to evaluate.

The implementation of Ml(oo) for action on a function f(z) when source points are
on a corner panel and when target points are close to or on that panel is dealt with as
follows: It is assumed that f(z) is available on eight Legendre nodes on each corner leg.
A Legendre transform of f(z) is computed. Legendre transforms are very stable. Then
terms are recombined in the Legendre expansion as to get the coefficients in a monomial
basis for f(z). Finally the action of MI(OO) on each term in the monomial basis is evaluated

analytically. This procedure is eighth order accurate. The parts of MI(OO) that describe the
action on f(z) on a leg of a corner panel when target points are far away from that leg are
computed with eighth order accurate quadrature based on the values of f(z) at the set of
four nodes on each leg.

The operator Ml(lo) is compact but its implementation is complicated by the fact that
it is acting both on (z), which is non-smooth, and on the prescribed traction, which is
smooth. For the smooth action, we discretize using Gauss-Legendre quadrature in all points
where Q(z) has support. This procedure is ninth order accurate. For the non-smooth action,

we implement Ml(m) like M?Em) and the accuracy is the same.

[ N B

2a 2n

I N N A

y

Figure 4: An elastic rectangle of height 2h and width 2w with a centered crack of length 2a.
The crack is slanted with an angle 6. A uniform external traction )" of unit strength is applied
to two opposite sides of the rectangle. The other two sides of the rectangle are traction-free.

9 THE ALGORITHM

We discretize (44,45) with N points as outlined in the previous sections. Our geometry is
a rectangle of height 2h and width 2w. Inside the rectangle there is either one or more
straight crack of length 2a, see Figure 4 and Figure 5, or a circular arc-shaped crack of
radius R. A few things can be noted.
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Figure 5: Two setups with multiple cracks. The square plate has side lengths 2w and contains
4m? straight slanted cracks with angle 7/4 and length 2a = 0.6w/m. The cracks are placed
on a square grid with a distance w/m between grid points. Distances between crack mid-points
are w/(2m).The left plate has m = 1 and the right has m = 16.

(11)

For a straight crack, M3 ' vanishes and (45) simplifies.

The implementation of Ml(lo) is dependent on whether the operator is acting on a
smooth function or not. Only parts which describe action on corner panels are com-
puted and stored twice.

The GMRES solver (Saad and Schultz (1986)) is used for the system of linear equa-
tions. The iterations are terminated when the relative norm of the residual is as
small as it can get. This often means 107'®. The number of iterations needed for
convergence, given a geometry and a load, is almost independent of the number of
discretization points. This is typical for discretized Fredholm integral equations of the
second kind.

Great care is devoted to avoiding roundoff error throughout the code. Matrix-vector
multiplications and inner products are evaluated with compensated summation, se
Higham (1996) and Kahan (1965), for the small-scale examples. The fast multipole
method, see Helsing and Greengard (1998), and Greengard and Rokhlin (1987), is
used for large-scale computations.

The operators of (44,45) are implemented with order of accuracies ranging from 6.845
to 16. We expect the asymptotic convergence rate to be of order 6.845, which is
indistinguishable from seven in double precision accuracy.

The complexity and storage requirement of our implementation grows as N? for the
small-scale examples. By use of the fast multipole method for the large-scale examples,
the complexity and the storage requirement is proportional to N.
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10 NUMERICAL EXAMPLES

The purpose of this section is to demonstrate the extreme stability of our scheme. Three
small-scale examples are studied for this purpose. In a fourht example, we demonstrate the
capability of our scheme to handle large-scale computations.

» Convergence under increased uniform resolution

10 . ———————— . ——————
: % Normalized stress intentsity factor F,
o Biaxiality parameter B

10° | &

and B
=
o

Relative error in F

Number of discretization points N

Figure 6: Convergence of normalized stress intensity factor F7 of (52) and biaxiality param-
eter B of (58) at the tips of a a centered crack of length 2a = 0.5 in a unit square under
unit uniform uniaxial load. A modified uniform mesh is used where all regular quadrature pan-
els are given as equal lengths as possible. The mesh is uniformly refined. The number of
discretization points is N. The straight line indicates seventh order convergence. Double pre-
cision arithmetic is used. The reference values are taken as F1 = 1.3337121602578887279 and
B = —1.03855893471432307225. See Figure 7 for a quadruple precision convergence plot of
F1. The relative errors for values that coincide with the reference values, up to double precision
accuracy, are displayed as 1.11 - 10716,

10.1 A center cracked square

First we consider a square (a rectangle with height to width ratio h/w = 1) with a centered
crack of relative length a/w = 0.5 and # = 0. We use a uniform external traction of
unit strength applied to the upper and lower sides of the square. The left and right sides
of the square are traction-free, see Figure 4. Figure 6 illustrates the convergence of the
normalized stress intensity factor Fi of (52) and the biaxiality parameter B of (58) under
increased uniform resolution. The asymptotic convergence rate is approximately seven. The
number of GMRES iterations needed for full convergence never exceeds 26. This problem
is very well conditioned and in an ideal algorithm the relative error would converge to a
number close to machine epsilon, which is 1.11 - 10716 in double precision accuracy. We
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Convergence in quadruple precision

* Normalized stress intentsity factor F, |
o Biaxiality parameter B

and B

Relative error in F
=
o

10 10
Number of discretization points N

Figure 7: Quadruple precision calculations. Convergence of Stress intensity factor F} of (52)
and biaxiality parameter B of (58) for a centered crack of length 2a = 0.5 in a unit square under
unit uniform uniaxial load. The straight line indicates 6.845th order convergence. The reference
values are taken as F1 = 1.3337121602578887279 and B = —1.03855893471432307225. A
modified uniform mesh is used, where all regular quadrature panels are given as equal lengths
as possible. The mesh is uniformly refined.

note that our algorithm is almost ideal. Figure 7 depicts convergence in quadruple precision
arithmetic.

10.2 A rectangle with a slanted central crack

We now proceed to an elastic rectangle with height to width ratio h/w = 2 and relative
crack-length a/w = 0.6. The crack is slanted with an angle § = w/4. Figure 8 illustrates
the convergence of the normalized stress intensity factor F' and T-stress under increased
uniform resolution. This problem is just about as well conditioned as the setup with the
square. The number of GMRES iterations needed for full convergence never exceeds 35. We
note that, compared with the square, more discretization points are needed on the modified
uniform mesh to achieve a given accuracy and the achievable accuracy is slightly lower.

10.3 A square with an arc-shaped central crack
In a third example we let the crack assume the shape of a circular arc parameterized by
2(t) =0.25e",  w/6 <t <51/6. (63)

The height to width ratio of the specimen is h/w = 1 and uniform external traction of
unit strength is applied. This problem, too, is well conditioned. The number of GMRES
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» Convergence under increased uniform resolution
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Figure 8: Convergence of normalized stress intensity factor F' of (52) and a parameter given
by T\/ma/Ki. The geometry is a rectangle with height to width ratio h/w = 2 and relative
crack-length a/w = 0.6. The crack is slanted with an angle § = 7/4, see Figure 4. The
straight line indicates seventh order convergence. Double precision arithmetic is used. The
reference values are taken as F; = 0.66119932929855292, Fi; = 0.56738161111966136 , and
T+/ma/K1 = —0.23643470029373758.

iterations needed for full convergence never exceeds 33. In Figure 9 we plot the von Mises
effective stress of (48) for the case of plane strain. A Poisson’s ratio of ¥ = 0.3 is used.

Table 1: Results for the largest biaxiality parameter B and largest normalized stress intensity
factors Fy and Fip in the setup of Figure. 5. The number of cracks is 4m?.

m FI FH B

1 | 0.665322716297 | 0.597261470638 | -0.2482174128
2 |1 0.687185586910 | 0.591012369474 | 0.338769557
4 | 0.68740298100 | 0.59085705430 0.348567181
8 | 0.68735002898 | 0.59087320420 0.348482597
16 | 0.68734381100 | 0.59087534562 0.348590174

10.4 A square with multiple slanted cracks

Finally, a large-scale problem is studied, using the fast multipole method for evaluating
matrix-vector products. We choose a setup that is easy to reproduce. A square elastic plate
with side length 2w with 4m? cracks is studied. The size of the setup is determined by
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Figure 9: Distribution of von Mises effective stress of (48) in an elastic unit square containing
a circular arc-shaped crack parameterized according to (63). Plane strain is assumed with
Poisson’s ration v = 0.3. A grid with 152,100 interior points was used for the plot.

the parameter m. The crack length is 2a = 0.6w/m and the cracks are slanted +m/4, see
Figure 5. The cracks are placed in a square grid with a distance w/m between closest grid
points. Due to the symmetry of geometry and load, there is a fourfold equivalence between
the cracks. That is, each crack has three equivalent companions. We study the convergence
of the maximum absolute values of the stress intensity factors F1r and Fir and the biaxiality
parameter B, as a function of m and the number of discretization points N. In Table 1 we
show how these quantities converge with the parameter m. The maximum absolute values
of F1 and Fiy occur at the cracks closest to the corners of the square plate for all values of
m. The maximum values of Fi occur at the crack-tips closest to the sides where the load
is applied, while the maximum absolute values of Fi; occur at the crack-tips closest to the
sides which are traction-free. The minimum values of B, which are negative, occur at the
cracks closest to the corners for all m, at the crack-tips closest to the sides where the load is
applied. The maximum B, which is positive, occurs at the second and last-but-one cracks
in the second and last-but-one rows of cracks, counting from the boundaries for m > 2.
Since for m = 1 only the cracks closest to the corners are present, B of Table 1 is negative
for m = 1 and positive for m > 2. The results for m = 1 are quite similar to the results for
one slanted crack of Section 10.2. From Table 1 it can be noted that B converges slower
with m than Fi and Fyp, indicating that B is more sensitive to the geometry than the stress
intensity factors are. Since B is negative at the crack-tips where F1 attains its maxima,
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Figure 10: Convergence of the maximal normalized stress intensity factors F1 and Fi; and the
maximal biaxiality parameter B. The geometry is a square with 1024 slanted cracks, se the right
image of Figure 5. Double precision arithmetic is used. Up to 740,000 discretization points are
placed on the boundary. The fast multipole method is used for matrix-vector multiplication.
The reference values are taken as F1 = 0.687343811003354, Fir = 0.590875345620499 , and
B =0.348590174271453 About 50 GMRES iterations are needed for full convergence.

a fracture criterion accounting for T-stress effects would be needed for failure prediction
in this case, as discussed in Section 5. The largest setup studied contains 1024 cracks,
corresponding to m = 16. For this setup we also show the convergence of Fi, Fi1 and the
biaxiality parameter B, as a function of the number of discretization points, see Figure 10.
While F; and Fip converge to a relative precision better than 10~!', B only converges down
to about 10~°. There might be several reasons for this. While the stress intensity factors
corresponds to the first terms in the series expansion of the stress field, B corresponds to
the second, constant, term in the expansion for .. The first terms might in some sense
be easier to compute than higher order terms.

11 DISCUSSION

We have constructed and implemented a seventh order accurate solver for the computation
of stress fields inside cracked rectangular domains. We have demonstrated the extreme
stability of the solver and we have extracted useful quantities from the solution. Our
algorithm is efficient. In Section 10.1, with only 112 discretization points and less than
10 seconds of computing time on a workstation, we computed normalized stress intensity
factors and biaxiality parameters for a simple setup as accurately as an engineer could
possibly require. A number of 112 discretization points corresponds to the coarsest mesh
we can construct without substantially violating the rules for the placement of quadrature
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Table 2: Numerical results for the biaxiality parameter B and the normalized stress intensity
factor Fy of a centrally cracked specimen with 6§ = 0, and with different ratios h/w and a/w,
see Figure 4. Three stars indicate that no value was presented. The symbols (t), (g), and
(i) indicates tabulated, graphical, and interpolated data. (1) Leevers and Radon (1982) claim
four digit agreement with Isida (1971). (2) The specimen in (Mukhopadhyay et al. (1998)) is
intended as infinite, but a ratio h/w = 5 was used for the numerical results (Mukhopadhyay,
private communication).

h/w | a/w | B F ref

1 (03 |#xx 1.123 Tsida (1971) (t)
1 0.3 | —1.03 1.123(M Leevers, Radon (1982) (i)
1 0.3 | —1.032 * % % Cardew et al. (1984) (t)
1 |03 |-102 1.12 Kfouri (1986) (g)
1 |03 |-103 1.12 Fett (1998) (t)
1 0.3 | *x% 1.1214 Kabele et al. (1999) (t)
1 |03 | -1.0286 1.1232 Chen et al. (2001) (t)
1 0.3 | —1.02864238631710 1.12319110266148 new

1 (05 |#xx 1.3337 Tsida (1971) )
1 0.5 | —1.04 * % % Larsson, Carlsson (1973) (t)
1 0.5 | —1.04 1.334(1) Leevers, Radon (1982) (i)
1 0.5 | —1.039 * k% Cardew et al. (1984) (t)
1 0.5 | *xx* 1.331 Banks-Sills, Sherman (1986) | (t)
1 |05 |-1.02 1.31 Kfouri (1986) (g)
1 0.5 | *x* 1.331 Banks-Sills, Sherman (1992) | (t)
1 0.5 | *xx* 1.3341 Chan, Mear (1995) (t)
1 0.5 | * % 1.3296 Zhu, Smith (1995) (t)
1 |05 | —1.04 1.33 Fett (1998) (t)
1 0.5 | *xx* 1.3317 Kabele et al. (1999) (t)
1 0.5 | * % 1.332 Guinea et al. (2000) (t)
1 0.5 | —1.0385589347143231 | 1.3337121602578887 | new

00 0.6 | %% 1.3033 Isida (1973) (i)
3 0.6 | %% 1.32548 Gu (1993) (t)
3 0.6 | —1.11408542438965 1.30332730119436 new

00 0.8 | *xx 1.8160 Isida (1973) (1)
52 108 [ xxx 1.7577 Mukhopadhyay et al. (1999) | (t)
5 0.8 | —1.41111943705804 1.8159948204573 new

panels, presented in Section 7. Incorporating the fast multipole method into the solver
makes it possible to treat large-scale problems. In Section 10.4, stress intensity factors and
biaxiality parameters for a setup containing up to 1024 cracks are computed with a relative
precision better than 1078.

One may argue that fast and stable solvers for linear fracture mechanics problems are not
needed. After all, most computational problems of engineering importance are non-linear.
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Table 3: Results for the parameter T'y/ma/ K1 and the normalized stress intensity factors F} and
Fi1 of a centrally cracked specimen with h/w = 2 and a/w = 0.6. The crack is slanted with
an angle @ = w/4. Three stars indicate that no values were presented. (1) Different values are
presented. Mean value of best calculations is quoted.

T\/E/KI FI FH ref

* %k 0.6611 0.5674 Kitagawa, Yuuki (1977)

* % * 0.659 0.568 Murakami (1978)

* % % 0.666 0.569 Portela et al. (1992)

. 0.669(1) 0.562(1) Séez (1995)

* ok % 0.6636 0.5706 Mukhopadhyay et al. (1998)
—0.2248 0.654 0.567 Yang B, Ravi-Chandar (1999)
* % * 0.6609 0.5660 Kebir et al. (1999)

* % K 0.665(1) 0.581(1) Murthy, Mukhopadhyay (2001)
—0.23643470029374 | 0.66119932929855 | 0.56738161111966 | new

High accuracy is seldom required. Fast algorithms are unnecessary since the computers
themselves become faster all the time. Our answer to such criticism now follows:

First, highly accurate values of stress intensity factors and biaxiality parameters for
a vast number of topologies can now be computed in seconds. This paper treats interior
cracks in finite domains. In previous work we have presented equally stable algorithms
for the computation of stress intensity factors for cracks in infinite and periodic domains
(see Helsing and Peters(1999)), for interface cracks (see Helsing (1999)) in infinite domains,
and for notches in finite domains (see Helsing and Jonsson (2001)). This means that we
approach a situation where one can replace the use of tables, in the laboratory or in a design
process, with the use of software. The use of reliable software will enable the engineer to
check a wider range of geometric parameters than a table could ever cover.

Second, fast computers alone are not sufficient to produce better solutions for solid
mechanics problems. One needs more efficient algorithms too. This is illustrated in Table 2
and in Table 3 where our new results are placed in a historic setting. A fact, which can be
observed in these tables, is that the oldest numerical results for F', those of Isida (1971) and
Kitagawa and Yuuki (1977), have higher quality in terms of accuracy than many of the newer
results. For slender specimens, a thirty year old interpolation formula, see Isida (1973), gives
the most reliable results. This is remarkable, considering the enormous progress that has
been made in the area of scientific computing during the last decades.

Third, fast and stable linear solvers are needed as fundamental building blocks in more
complex solvers which, for example, can simulate micro-crack evolution in composite mate-
rials on their way from crack initiation to macroscopic failure, or treat problems involving
plasticity. High accuracy may not be required in the final answer, but stability is a crucial
property — especially when dealing with non-linear equations and complex geometries where
cracks may lie close to each other and to the boundary of the specimen. Realistic setups
are not as simple as the one depicted in Figure 4 which is the most studied geometry in the
literature. When we refine the mesh we must be absolutely confident that the error becomes
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smaller. Otherwise predicted crack-patterns will become mesh-dependent and the numeri-
cal procedure is useless as a design tool. Demonstrated ability to achieve high accuracy for
non-trivial examples serves as a numerical proof of that an algorithm is stable.
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