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A seventh order a

urate and stable algorithm for the
omputation of stress inside 
ra
ked re
tangular domains �Johan Helsing y Anders Jonsson zAbstra
tA seventh order a

urate and extremely stable algorithm for the rapid 
omputationof stress �elds inside 
ra
ked re
tangular domains is presented. The algorithm is seventhorder a

urate sin
e it in
orporates basis fun
tions taking the asymptoti
 shape of thestress �elds 
lose to 
ra
k tips and 
orners into a

ount at least up to order six. Thealgorithm is stable sin
e it is based on a Fredholm integral equation of the se
ondkind. The parti
ular form of the integral equation represents the the solution as thelimit of a fun
tion whi
h is analyti
 inside the domain. This allows for an eÆ
ientimplementation. In an example, involving 112 dis
retization points on an elasti
 squarewith a 
enter 
ra
k, values of normalized stress intensity fa
tors and T -stress with arelative error of 10�6 are 
omputed in se
onds on a workstation. More points redu
ethe relative error down to 10�15, where it saturates in double pre
ision arithmeti
. Alarge-s
ale setup with up to 1024 
ra
ks in an elasti
 square is also studied, using upto 740,000 dis
retization points. The algorithm is intended as a basi
 building-blo
k ingeneral purpose solvers for fra
ture me
hani
s. It 
an also be used as a substitute forben
hmark tables.Key words: Stress analysis, polygonal domain, stress intensity fa
tor, T-stress, 
ra
ks,integral equation of Fredholm type.
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1 INTRODUCTIONThe a

urate 
omputation of stress �elds inside polygonal domains, possibly 
ontainingin
lusions and 
ra
ks, has traditionally been asso
iated with substantial 
omputing 
ostsand stability problems. A large obsta
le, irrespe
tive of the numeri
al method used, is thediÆ
ulty of resolving the stress �elds in the domain 
orners.There are various ways to deal with 
orners. The easiest approa
h, whi
h we refer toas 'brute for
e', is to represent the �eld in terms of polynomial basis fun
tions and use astandard �nite element or boundary element adaptive solver. This pro
ess is 
ostly. Par-ti
ularly so if high a

ura
y is required. Furthermore, as dis
retization points a

umulatein the 
orners, the 
onvergen
e may stop prematurely. Another approa
h is to use spe
ialbasis fun
tions whi
h take the asymptoti
 (non-polynomial) form of the stress �eld in the
orners into a

ount. While spe
ial basis fun
tions are e
onomi
al in terms of dis
retizationpoints, their in
lusion into an algorithm easily add ill-
onditioning to the problem.Implementations of algorithms for the 
omputation of stress �elds inside polygonal do-mains are often of low order and aim at moderate a

ura
y. As we shall see, the results ofdi�erent authors seldom agree to more than two or three digits, not even for simple setups.The purpose of this paper is to show that higher order a

urate and stable s
hemes 
an andshould be implemented. The 
on
lusion is that with a 
areful 
hoi
e of basis fun
tions, witha 
areful implementation, and with a good formulation of the mathemati
al problem, one
an 
onstru
t s
hemes whi
h are substantially more eÆ
ient than 'brute for
e'. Adaptivitymay not even be ne
essary sin
e for many problems, a few hundred dis
retization pointsgive a solution whose quality is more than suÆ
ient for engineering use.Numeri
al results for an elasti
 re
tangle with one or more 
ra
ks are presented. We
onstru
t a s
heme whi
h is approximately seventh order a

urate both in theory and inpra
ti
e. The s
heme is extremely stable. With just a few hundred dis
retization pointswe 
ompute stress intensity fa
tors for an elasti
 re
tangle with one 
ra
k with a relativeerror of only 10�7. With two thousand points, or more, we de
rease the relative error toless than 2 � 10�15. A large-s
ale setup, involving up to 1024 slanted 
ra
ks in a uniaxiallyloaded square, is also studied using up to 740,000 dis
retization points. This demonstratesthe 
apability of the s
heme to handle large-s
ale problems.2 PROBLEM STATEMENT AND POTENTIAL REPRE-SENTATIONA �nite, linearly elasti
, spe
imen o

upies a domain D. The outer boundary of the spe
i-men is denoted �0 and is given positive (
ounter-
lo
kwise) orientation. Inside the domainthere are N
 
ra
ks denoted �k ; k = 1; 2; : : : ; N
. The domain D is therefore multiply 
on-ne
ted. Cra
k k starts at 
ra
k tip 
ks and ends at 
ra
k tip 
ke. The union of all 
ra
ksis �
. The union of �0 and �
 is �. The left and right sides of � are distinguished withsupers
ripts (+) and (�). The exterior domain, outside �0, is D0. Tra
tion (tprx ; tpry ) ispres
ribed at �+0 . The 
ra
ks are tra
tion-free. We would like to 
ompute the stress �eldin the entire plane.Let U(x; y) denote the Airy stress fun
tion. Sin
e U(x; y) satis�es the biharmoni
 equa-2



tion everywhere, ex
ept for at �, it 
an be represented asU(x; y) = <e f�z�(z) + �(z)g ; (1)where the potentials �(z) and �(z) are possibly multi-valued analyti
 fun
tions of the 
om-plex variable z = x + iy. In the elasti
ity problem, requiring that the displa
ements besingle-valued, see (11,12) below, and with 
ertain 
onditions imposed on the applied externalfor
es, see (19) below, �(z) and �0(z) are single-valued, see paragraph 40 of Mikhlin (1957).For a thorough dis
ussion of the 
omplex variable approa
h to elasti
ity problems, seeMuskhelishvili (1953a), Sokolniko� (1956), Mikhlin (1957), and Parton and Perlin (1982).The following relation links the 
omplex potentials to the tra
tion t(z) = tx(z) + ity(z)along the tangent of a 
urve 
t(z) = n�(z) + n�(z)� �nz�0(z) � �n	(z) ; (2)where �(z) = �0(z), 	(z) = �00(z), and n = nx + iny is the outward unit normal ve
tor on
. The potentials �(z) and 	(z) 
an be represented in the form of Cau
hy-type integrals�(z) = 12�i Z� V (�) d�(� � z) ; z 2 D [D0 ; (3)	(z) = 12�i Z� W (�) d�(� � z) ; z 2 D [D0 ; (4)where V (�) and W (�) are unknown layer densities on �. The representations for �(z) and	(z) of (3) and (4) guarantee that the equations of elasti
ity are satis�ed everywhere inD[D0. It remains only to �nd V (�) andW (�), that is, to solve the boundary value problemt(z) = tpr ; z 2 �+0 ; (5)t(z) = 0 ; z 2 ��0 ; (6)t(z) = 0 ; z 2 �+
 ; (7)t(z) = 0 ; z 2 ��
 ; (8)where tpr = tprx + itpry is the applied external tra
tion.3 TOWARDS AN EXTENDEDMUSKHELISHVILI EQUA-TIONIn this se
tion we shall derive an integral equation for the stress problem stated in Se
tion 2.The 
lassi
 
hoi
e of integral equation for stress problems is the Sherman{Lauri
ella equa-tion, see paragraph 56 of Mikhlin (1957). An alternative equation is presented in paragraph98 of Muskhelishvili (1953a). The fundamental di�eren
e between the two equations is the
hoi
e of representation for the potential  (z), related to 	(z) via 	(z) =  0(z).The \Muskhelishvili equation" is often not re
ommended. Reasons are that the Sherman{Lauri
ella equation is 
onsidered simpler and more suitable for the purpose of general in-vestigations (p. 398 of Muskhelishvili (1953a), 314 of Sokolniko� (1956), and p. 255 of3



Mikhlin (1957)), that the a
tual implementation of solutions to the Muskhelishvili equationfor multiply 
onne
ted domains is 
onsidered diÆ
ult be
ause of the ne
essity of �rst solvingauxiliary problems for some parti
ular types of loading (p. 158 of Parton and Perlin (1982),and that the analysis of the Muskhelishvili equation for multiply 
onne
ted domains is 
on-siderably more 
ompli
ated (p. 249 of Mikhlin (1957)). Still, we observe, that for stressproblems involving 
ra
ks, equations based on Muskhelishvili's 
hoi
e of representation for (z) are often used, see paragraph 23 of Parton and Perlin (1982) and Se
tion 6 of ChapterV in Parton and Perlin (1984).We �nd it hard to determine whi
h equation is the more diÆ
ult to analyze. Both theSherman{Lauri
ella equation and the Muskhelishvili equation are diÆ
ult to deal with whenit 
omes to proving uniqueness for multiply 
onne
ted domains involving 
ra
ks. Espe
iallyso if the 
ra
ks are not straight. However, we �nd the Muskhelishvili equation so mu
hmore eÆ
ient than the Sherman{Lauri
ella equation, from a numeri
al point of view, thatwe shall use an extension of the Muskhelishvili equation in this paper. The problem ofrigorously proving uniqueness will be left open.We start with a useful lemma given in paragraph 36 of Muskhelishvili (1953a)Lemma 3.1 The solution to the plane problem of the theory of elasti
ity for z0 in theexternal domain D0 and with t(z0) = 0 on ��0 and displa
ements and stresses single-valuedand bounded at in�nity has the general solution �(z0) = i�, where � is a real 
onstant.When �(z0) is represented as in (3), the solution is �(z0) = 0.A

ording to Lemma 3.1, we shall seek �(z) as a fun
tion analyti
 inside D and zero inD0. To this end, we rewrite (3) as�(z) = 12�i Z�0 �(�) d�(� � z) + 12�i Z�
 ��(�) d�(� � z) ; z 2 D : (9)where �(�) is the limit of �(z) on �+0 , and ��(�) is the jump in �(z) over �
 (the limit on�+
 minus the limit on ��
 ). For z on �0 equation (9) be
omes�(z) = 1�i Z�0 �(�) d�(� � z) + 1�i Z�
 ��(�) d�(� � z) ; z 2 �0 : (10)To ensure that the displa
ements are single-valued we add the 
onditionsQ0� =0 ; (11)Qk�� =0 ; k = 1; 2; : : : ; N
 ; (12)where where Qj is a mapping from �j to C , de�ned byQjf = 1�i Z�j f(�) d� : (13)We now demand that the tra
tion t(z) of (2) jumps a quantity equal to the appliedexternal tra
tion as �0 is 
rossed (
onditions (5,6)), and that the tra
tion t(z) is 
ontinuousas �
 is 
rossed (
onditions (7,8)). This, together with the representation (10), enable us to4



express the density W (�) of (4) in terms of �(�) and ��(�). The potential 	(z) assumesthe form 	(z) =� 12�i Z�0 �(�) d��(� � z) � 12�i Z�0 ���(�) d�(� � z)2 � 12�i Z�0 �ntpr d�(� � z)� 12�i Z�
 ��(�) d��(� � z) � 12�i Z�
 ����(�) d�(� � z)2 ; z 2 D [D0 : (14)The representation (14) for 	(z) is the derivative of Muskhelishvili's representation for  (z).For brevity and simpli
ity, we assume that N
 = 1 in the following of this se
tions. Thederivations 
an easily be generalized to the 
ase when N
 > 1. The requirements (6,7) lead,via (2), to the following system of singular integral equations�M (00)1 �M (00)3 ��(z) + �M (01)1 �M (01)3 ���(z) (15)= 12 �I � �nnM1(00)n�n� �ntpr(z) ; z 2 �0 ;�M (10)1 �M (10)3 ��(z) + �M (11)1 �M (11)3 ���(z) (16)= �12 �nnM1(10)n�n �ntpr(z) ; z 2 �1 ;where the operator M (jk)1 , a
ting on a fun
tion f(z), is given byM (jk)1 f(z) = 1�i Z�k f(�) d�(� � z) ; z 2 �j ; (17)the operator M1(jk) is the 
onjugate of M (jk)1 , and the 
ompa
t operator M (jk)3 is given byM (jk)3 f(z) = 12�i �Z�k f(�) d�(� � z) + �nn Z�k f(�) d�(�� � �z) (18)+Z�k f(�) d��(�� � �z) + �nn Z�k (� � z)f(�) d��(�� � �z)2 # ; z 2 �j :Equations (11,12,15,16) are not solvable unless the solvability 
onditionsP0�ntpr = 0 ; (19)Q0�ntpr = 0 ; (20)hold, where Pk is a mapping from �k to R, de�ned byPkf = � 12A<e�Z�k f(z)�z dz� ; (21)where A is the area of the domain D. Neither do (11,12,15,16) have a unique solution. The
onstant �0(z) = i�, where � is real, is a homogeneous solution. We add the uniqueness
ondition P0� = 0 : (22)5



Sin
e P0i = 1 ; (23)equation (22) does not allow for the arbitrary addition of a homogeneous solution �0(z) = i�to �(z).4 A FREDHOLM EQUATION OF THE SECOND KINDEquations (15,16) are singular Fredholm integral equations of the �rst kind. Upon dis-
retization su
h equations lead to systems of linear equations whose 
ondition numbers growwith in
reased resolution. Implementing the 
onditions (11,12,22) may also pose problems.These equations are therefore not good for numeri
s. In this se
tion we shall reformulatethe �ve equations (11,12,15,16,22) and arrive at a system of two se
ond kind Fredholmintegral equations that is well suited for 
omputations. We assume that N
 = 1 for reasonsof simpli
ity and brevity. All derivations are easy to modify for 
ases when N
 > 1.First we shall 
ombine (15) and (22) into a single equation. The following lemma isusefulLemma 4.1 Changing the order of integration, and using partial integration, one 
an showP0 h�M (00)1 �M (00)3 ��(z) + �M (01)1 �M (01)3 ���(z)i
 = 0 ; (24)P0 12 �I � �nnM1(00)n�n� �ntpr = P0�ntpr; (25)whatever the applied tra
tion tpr is.Now a linear 
ombination of (15) and (22) gives�M (00)1 �M (00)3 + iP0��(z) + �M (01)1 �M (01)3 ���(z)= 12 �I � �nnM1(00)n�n� �ntpr(z) ; z 2 �0 ; (26)To show that (26) is equivalent to (15,22), assuming that (19) holds, we apply P0 from theleft in (26). This gives (22) with the help of Lemma 4.1 and (19,23). A linear 
ombinationof (22) and (26) gives ba
k (15).Next we make use of (10) and rewrite (26) as a se
ond kind equation�I �M (00)3 + iP0��(z)�M (01)3 ��(z) (27)= 12 �I � �nnM1(00)n�n� �ntpr(z) ; z 2 �0 :To show that (27) is equivalent to (26) we must prove that (27) does not allow for ahomogeneous solution whose analyti
 extension to the plane is non-zero in D0. We thereforeinvestigate solutions to the homogeneous equation�I �M (00)3 + iP0��0(z)�M (01)3 ��0(z) = 0 ; z 2 �0 : (28)6



Using the new analyti
 fun
tions in D0��(z0) = �P0�02 � 12� Z�0 �0(�) d�(� � z0) � 12� Z�
 ��0(�) d�(� � z0) ; z0 2 D0 ; (29)and 	�(z0) = 12� Z�0 �0(�) d��(� � z0) + 12� Z�0 ���0(�) d�(� � z0)2 (30)+ 12� Z�
 ��0(�) d��(� � z0) + 12� Z�
 ����0(�) d�(� � z0)2 ; z0 2 D0 ;and taking limits, one 
an showlimz0!��0 n��(z0) + n��(z0)� �nz0��0(z0)� �n	�(z0) (31)= in�I �M (00)3 + iP0��0(z)� inM (01)3 ��0(z) ; z = lim z0 ! ��0 :Now the equation limz0!��0 n��(z0) + n��(z0)� �nz��0(z0)� �n	�(z0) = 0 ; (32)has, a

ording to Lemma 3.1, only the solution ��(z0) = i�. The form of the representa-tion (29) implies that ��(z0) = 0 for z0 2 D0, and therefore �0(z) on � has to be the limitof a fun
tion analyti
 in D and zero in D0.For the transformation of the entire system (11,12,16,27) into se
ond kind equations weneed to introdu
e a weight �(z) whi
h for z 2 �k is given by�(z) = � 1; k = 0;((z � 
ks)(z � 
ke))� 12 ; k = 1; 2; : : : ; N
 : (33)To be pre
ise, the weight �(z) is the limit from the right (relative to the orientation of 
ra
kk) of the bran
h given by a bran
h 
ut along �k andlimz!1 z�(z) = 1: (34)We also introdu
e the new, smooth, unknown fun
tion 
(z) via the substitution�(z)
(z) = �(z) ; z 2 �0 ; (35)�(z)
(z) = ��(z) ; z 2 �
 : (36)The system of equations (11,12,16,27) now reads�I �M (00)3 �M (01)3 �+ iP0�
(z) = 12 �I � �nnM1(00)n�n� �ntpr(z) ; z 2 �0 : (37)�M (10)1 �M (10)3 +M (11)1 ��M (11)3 ��
(z) (38)7



= �12 �nnM1(10)n�n �ntpr(z) ; z 2 �1 ;Q0�
 = 0 ; (39)Qk�
 = 0 ; k = 0; 2; : : : ; N
 : (40)It was shown in Helsing and Peters (1999) that the following relations involving Q1,�(z), and M (11)1 holdLemma 4.2 Q1�M (11)1 ��1f(z) = 0 ; (41)M (11)1 ��1M (11)1 �f(z) = f(z)�Q1�f ; z 2 �1 ; (42)M (11)1 �M (11)1 ��1f(z) = f(z) ; z 2 �1 ; (43)where f(z) is a square integrable fun
tion. See also p. 155 of Estrada and Kanwal (2000).It is now easy to show that the system (37-40) is equivalent to the following two integralequations of Fredholm's se
ond kind�I �M (00)3 �M (01)3 �+ iP1�
(z) = 12 �I � �nnM1(00)n�n� �ntpr(z) ; z 2 �0 : (44)�I +M (11)1 ��1 �M (10)1 �M (10)3 �M (11)3 ���
(z) (45)= �M (22)1 ��1 12 �nnM1(10)n�n �ntpr(z) ; z 2 �
 :Appli
ation of M (11)1 ��1 from the left in (38) and the use of (40) and the relation (42)give (45). In the other way we apply Q1� to the left in (45). The relation (41) givesba
k (40). Appli
ation of M (11)1 � to the left in (45) and the relation (43) give ba
k (38).Appli
ation of Q0 to the left in (44) and use of (20,40) give ba
k (39).Equations (44,45) will be used for 
omputations in Se
tion 10. We end this se
tion witha listing of some parti
ular advantages with these equations and their solution 
(z).� Equations (44,45) are of Fredholm's se
ond kind with 
ompa
t operators. This allowsfor stable 
onvergen
e as the system is dis
retized and solved on an in
reasingly re-�ned mesh. See Helsing and Peters(1999) for proof that the 
omposition of integraloperators in (45) are 
ompa
t.� The density 
(z) on �0 is the limit of �(z) in D. This simpli�es the 
onstru
tionof an asymptoti
ally 
orre
t basis for 
(z) in the 
orners. The a
tion of the integraloperators 
an be implemented in an eÆ
ient way. See Se
tions 6 and 8.� The density 
(z) is simply related to �(z) and 	(z) and therefore also to the stress inD, see Se
tion 5. The solutions to the original Muskhelishvili- and Sherman{Lauri
ellaequations are related to the potentials �(z) and  (z). The stress has to be 
omputedvia di�erentiation, whi
h is an ill-
onditioned operation. See also p. 92 in Se
tion 6of Chapter V of Parton and Perlin (1984) for a dis
ussion of these matters.8



� Equation (44) 
ontains the operator P1 whi
h removes an indetermina
y in �(z).The original Muskhelishvili- and Sherman{Lauri
ella equations 
ontains other oper-ators whi
h remove a larger indetermina
y in �(z) and involve an arbitrarily pla
edpoint. An unfortunate pla
ement of this point 
ould degrade numeri
al performan
e.Generally, the operator P0 seem to lead to more stable s
hemes, see Helsing (2000).� A re
ent trend in the development of integral equations for planar elasti
ity is to workwith Green's fun
tions for stresses and displa
ements. This is referred to as \standardBEM", see Be
ker (1992). Disadvantages with the BEM equations are that they solvefor displa
ement �elds, that they involve logarithmi
 kernels, and that they seem lesse
onomi
al for 
ra
k and in
lusion problems.5 EXTRACTION OF STRESS AND STRESS INTENSITYFACTORSOn
e (44,45) are solved for 
(z), the potentials �(z) and 	(z) 
an be 
omputed everywherein D via (9,14,35,36). This enables the rapid extra
tion of many quantities of physi
alinterest. Here we list a few.The 
omponents of the stress tensor in the material are always of interest. They 
an be
omputed via �xx + �yy = 4<ef�(z)g ; (46)�yy � �xx � 2i�xy = 2(z�0(z) + 	(z)) : (47)A fun
tion of the stresses, whi
h is used to predi
t the o

urren
e of yielding in a materialwhere the stress state is multiaxial, is the von Mises e�e
tive stress �e. For plane strain
onditions, it 
an be expressed as�e = h(1� �(1� �)) (�xx + �yy)2 � 3 ��xx�yy � �2xy�i1=2 ; (48)where � is the Poisson's ratio.Linear elasti
 fra
ture me
hani
s is widely used to predi
t the fra
ture resistan
e of
ra
ked stru
tures. Linear theory has been su

essful even though non-linear materialbehavior o

urs in regions 
lose to 
ra
k tips. The reason for this is the small s
ale yieldingassumption, whi
h states that the fra
ture pro
ess is governed by so-
alled stress intensityfa
tors whenever the plasti
 zone is small 
ompared to other spe
imen dimensions. Theassumption is assumed to hold if l > 2:5(KI
=�Y )2, where l is the smallest 
hara
teristi
length of the spe
imen, KI
 is the fra
ture toughness of the material and �Y is the tensileyield strength of the material (ATSM (1998)). The stress intensity fa
tors 
an then beused to estimate the extent of the plasti
 zone. The 
omplex valued stress intensity fa
torK = KI + iKII at the 
ra
k tips 
ks and 
ke 
an be de�ned asK(
ks) = lim�!0+p2�� ��y0y0(
ks � i�ns) + i�x0y0(
ks � i�ns)� ; (49)K(
ke) = lim�!0+p2�� ��y0y0(
ke + i�ne) + i�x0y0(
ke + i�ne)� ; (50)9
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Figure 1: Lo
al 
oordinate systems aligned with the tangent to the 
ra
k at the 
ra
k tips.where � is a real number, ns = n(
ks), ne = n(
ke), and x0, y0 refer to lo
al 
oordinatesystems parallel to the tangent of the 
ra
k at the 
ra
k tips, see Figure 1. A normalizedstress intensity fa
tor F = FI + iFII is introdu
ed asF = Ktpry p�a ; (51)where tpry is the applied external load and a is half the length of an internal 
ra
k or theentire length of an edge 
ra
k. The normalized stress intensity fa
tor 
an be 
omputed asF (
ks) = ip2tpry pa limz!
ks
(
ks)�(z)pÆs(z) ; z 2 �k ; (52)F (
ke) = � ip2tpry pa limz!
ke
(
ke)�(z)pÆs(z) ; z 2 �k ; (53)where Æs(z) is ar
length measured from the 
losest 
ra
k tip.Larsson and Carlsson (1973) studied four 
ommon test spe
imen geometries and showedthat stress intensity fa
tors alone are not suÆ
ient to determine the extent of the plasti
zones around the 
ra
k tips. They suggested that the �rst non-singular, 
onstant, termin the series expansion of the normal stress parallel to the 
ra
k-plane, at the 
ra
k tips,should also be 
onsidered. This term is referred to as T -stress. Beteg�on and Han
o
k (1991)went further and 
on
luded that the 
ra
k tip �eld will be dominated by the stress intensityfa
tors K if T is positive. The K-dominan
e is lost for negative T . This implies that if Tis negative, it should be in
luded as a parameter in fra
ture resistan
e estimation. If T ispositive, it 
an be negle
ted and the small s
ale yielding assumption is valid. In order to
orre
tly predi
t the fra
ture toughness of a stru
ture, the same level of negative T -stressshould therefore be used in tests as is present in a real situation. Today, in
luding e�e
ts ofthe T -stress in tests is a relatively well established pro
edure, at least in mode I fra
ture,see Hallb�a
k (1996). The real valued T -stress at 
ra
k tips 
ks and 
ke 
an be de�ned asT (
ks) = lim�!0+ �x0x0(
ks � i�ns)� �y0y0(
ks � i�ns) ; (54)10



T (
ke) = lim�!0+ �x0x0(
ke + i�ne)� �y0y0(
ke + i�ne) ; (55)In terms of 
omplex potentials these expression assume the formT (
kj) = 2<en �nn �
kj�0(
kj) + 	(
kj)�o ; j = s; e : (56)For straight 
ra
ks, the expression (56) 
an be evaluated asT (
kj) = 2<e( N
Xm=0M (km)3 �
(
kj)� 12 �nnM1(k0)n�n �ntpr(
kj)) ; j = s; e : (57)The biaxiality parameter B is introdu
ed by normalizing the T -stress. For uniaxial appliedtra
tion in the y-dire
tion the normalization readsB = Ttpry qF 2I + F 2II : (58)We shall now devote the four following se
tions to the implementation of a seventh ordera

urate algorithm for the solution of (44,45).6 SMOOTH AND NON-SMOOTH FUNCTIONSThe a

ura
y of a parti
ular implementation of an integral operator will depend on the
ontinuity properties of the fun
tion on whi
h the operator is a
ting. This se
tion dis
ussesthe smoothness of the fun
tion 
(z) and tpr appearing in (44,45).The density 
(z) is a smooth fun
tion (C1) on �
. This is so thanks to the introdu
tionof the weight �(z) of (33). The applied tra
tion tpr is also smooth, but dis
ontinuous in the
orners. The density 
(z) on �0, on the other hand, is not smooth. In the 
orners, 
(z)
an be de
omposed into a symmetri
 part and an antisymmetri
 part 
ontaining terms ofthe form 
symm(z) = 
sz��1 + �
sz���1 ; (59)and 
antisymm(z) = 
asz��1 � �
asz���1 ; (60)where 
s and 
as are 
omplex 
oeÆ
ients and where � and � are a mix of positive integerexponents and widely spa
ed non-integer exponents given by the Williams solution, seeWilliams (1952). The spe
ial 
ase of real � and � renders 
s real and 
as purely imaginary.See Helsing and Jonsson (2001) for details. In this paper we shall use integer values of �and � ranging from one to six, together with the �rst non-integer values in the Williamsseries for � and �. The �rst omitted term in the Williams series for � has a real part ofapproximately 6:845. The �rst omitted term in the Williams series for � has a real part ofapproximately 8:87.
11



Figure 2: Left, a regular quadrature panel. Right, 
orner quadrature panels with two legs. Thedots on the regular panel and on the leftmost 
orner panel symbolize points where the solution
 has support. The other two 
orner panels show points where intermediate quantities are
omputed.

Figure 3: Quadrature panels on a modi�ed uniform mesh for a square with a 
entered 
ra
k.Most panels have the same length. Panels neighboring to 
orner panels and panels neighboringto panels 
ontaining 
ra
-tips are shorter.7 DISCRETIZATION AND BASIC QUADRATUREWe intend to solve (44,45) using a Nystr�om s
heme with 
omposite eight-point Gauss-Legendre quadrature as our basi
 quadrature rule. On panels 
ontaining 
ra
k tips weuse eight-point Gauss-Ja
obi quadrature. To this end we divide �0 and �
 into quadraturepanels. First we let all panels have approximately the same length. This 
onstru
tion we 
alla standard uniform mesh. We arrange the panels so that all four 
orners are symmetri
allyin
luded in panels referred to as 
orner panels, see Figure 2. Panels whi
h do not 
ontain
orners are referred to as regular panels. We now perform a modi�
ation of the standarduniform mesh. If a regular panel is neighboring to a panel 
ontaining a 
ra
k tip, it issubdivided on
e into two smaller regular panels. If a regular panel is neighboring to a
orner panel, it is subdivided twi
e into three smaller regular panels with the two smallestpanels 
losest to the 
orner panel. We 
all the resulting mesh a modi�ed uniform mesh.See Figure 3. 12



There are two reasons for using the modi�ed uniform mesh rather than the standarduniform mesh. The �rst reason has to do with that the solution 
(z) on regular panels
lose to a 
orner varies faster than further away from the 
orner. Although 
(z) is smoothon panels neighboring to 
orners, a 
ertain singular-like behavior 
an be dis
erned. Shoulda standard uniform mesh be re�ned, the solution 
(z) on regular panels neighboring to
orners will vary even faster and the its quality would not ne
essarily be improved. Asimilar e�e
t is present for 
(z) on panels 
lose to 
ra
k tips. The density 
(z) is smoothon the entire 
ra
k �
 thanks to the weight �(z). Unfortunately, �(z) 
annot be used as aquadrature weight in the 
omposite quadrature s
heme. We implement the quadrature onthe panels of �
 using the following reformulation, where f is a smooth fun
tion,Z ba �(�)f(�) d� = Z tbta �(�)h(t) f(�) d�dt h(t) dt : (61)In (61) t is a parameterization and h(t) is a real valued weight in
orporated into the quadra-ture. If a = 
ks we 
hoose h(t) = 1=pt� ta. If b = 
ke we 
hoose h(t) = 1=ptb � t. Ifneither a nor b are 
ra
k tips we 
hoose h(t) = 1. In this way we get high pre
ision onpanels 
ontaining 
ra
k tips and panels not neighboring to 
ra
k tips. On panels that doneighbor to 
ra
k tips the fa
tor �(�)=h(t) will grow as a standard uniform mesh is re�ned.Full double pre
ision a

ura
y for the quadratures 
annot be a
hieved.The se
ond reason for using the modi�ed uniform mesh rather than the standard uniformmesh has to do with the intera
tion between neighboring panels on opposite sides of 
orners.When a standard uniform mesh is re�ned, neighboring panels on opposite sides of a 
ornerare moving 
loser to ea
h other and are simultaneously shrinking. The net e�e
t may bethat the integral kernels des
ribing these intera
tions is never well resolved. Numeri
alexperiments indi
ate that re�nement of a modi�ed uniform mesh will allow us to rea
hdouble pre
ision a

urate answers.As for the pla
ement of dis
retization points we do as follows: on all regular panels wepla
e eight Gauss-Legendre nodes for the support of 
(z). On panels 
ontaining 
ra
k tipswe pla
e eight Gauss-Ja
obi nodes for the support of 
(z). On ea
h leg of the 
orner panelswe pla
e one set of four Gauss-Legendre for the support of 
(z). Also, on ea
h leg of the
orner panels we pla
e one set of eight Gauss-Legendre nodes and one set of sixteen Gauss-Legendre nodes. See Figure 2. On these extra sets of nodes, intermediate quantities willhave support. We shall thus use three sets of nodes on 
orner panels for di�erent purposesin our implementation of the operators appearing in (44,45). The overall ambition is thatall quadratures shall be implemented with at least seventh order a

ura
y.8 IMPLEMENTATION OF INTEGRAL OPERATORS8.1 Review of previous implementationsThe implementation of several of the operators appearing in (44,45) have been dis
ussed inprevious work. The implementation of other operators 
an be done in similar ways. Herefollows a brief review. On
e again, for brevity, details will only be given for the 
ase N
 = 1.Extensions are analogous.The implementation of the operatorsM (01)3 �, M (11)3 �, andM (11)1 ��1 for a
tion on smoothfun
tions are dis
ussed in Helsing and Peters (1999). The implementation of M (01)3 � and13



M (11)3 � will be 16th order a

urate with eight Gauss-Legendre or Gauss-Ja
obi nodes assour
e points. The implementation of M (11)1 ��1 will be eighth order a

urate. With nthorder a

ura
y we mean that a polynomial of order n� 1 
an be integrated exa
tly.The implementation of M (00)3 for a
tion on the non-smooth fun
tion 
(z) is ratherinvolved. It is dis
ussed in detail in Helsing and Jonsson (2001). In short, the operatorM (00)3 is de
omposed into three parts. One part of M (00)3 des
ribes the a
tion on 
(z)for sour
e points on regular panels. Here 16th order Gauss-Legendre quadrature is used.Another part of M (00)3 des
ribes the a
tion on 
(z) for sour
e points on 
orner panels andtarget points 
lose to the sour
e points. Here a 
hange of basis for 
(z), from pointwiserepresentation to a representation in terms of the basis fun
tions of (59,60), is used. Thevalues of the di�erent entries of the matrix representing this part ofM (00)3 are pre
omputedto high pre
ision using adaptive quadrature. The a

ura
y of the s
heme is of order 6:845.The third part of M (00)3 des
ribes the a
tion on 
(z) for sour
e points on 
orner panels andtarget points far away from the sour
e points. Here, too, a 
hange of basis is employed,followed by interpolation and 32nd order a

urate quadrature. The intermediate set of 16quadrature points on ea
h 
orner leg is used in this pro
edure whose a

ura
y is estimatedto, again, 6:845. The de
ision of whether a target point should be 
onsidered being 
loseto or far away from a 
orner panel will of 
ourse a�e
t the a
hievable a

ura
y of theimplementation of M (00)3 . Numeri
al experiments indi
ate that, with our modi�ed uniformmesh and for double pre
ision a

ura
y, it is generally suÆ
ient to 
onsider points on thesix 
losest panels neighboring to a 
orner leg as being 
lose to the 
orner panel.The implementation ofM (10)1 andM (10)3 for a
tion on 
(z) resembles the implementationofM (00)3 . The only di�eren
e is that the se
ond part in the de
omposition, for the a
tion onsour
e points on 
orner panels and target points 
lose to the sour
e points, is not needed.8.2 Implementation of M (00)1 and M (10)1We now dis
uss an eighth order a

urate implementation of the operator M (00)1 whose
onjugate a
ts on the applied tra
tion in (44). The tra
tion will be evaluated at all nodeson regular panels and on the intermediate sets of eight nodes on the legs of 
orner panels.The operatorM (00)1 is singular. The part ofM (00)1 that des
ribes a
tion on sour
e pointson one quadrature panel when target points are on another panels is, however, 
ompa
t.We use 16th order Gauss-Legendre quadrature for this a
tion whenever the sour
e pointsare on a regular panel and the target points are on a panel far away from that panel. Threepanel lengths 
an be 
onsidered \far away" for double pre
ision a

ura
y.The implementation of M (00)1 for a
tion on a fun
tion f(z) when sour
e points are ona regular panel and when target points are 
lose to or on that panel is evaluated usingthe following relation. Let f(z) be smooth and let a and b be the starting point and theendpoint of a regular quadrature panel. Then1�i Z ba f(�) d�(� � z) = 1� Z ba f(�)<e� d�i(� � z)�+ i� Z ba (f(�)� f(z))=m� d�i(� � z)�+ f(z)�i <e�ln�a� zb� z �� : (62)14



The �rst integral on the right hand side of (62) has a smooth kernel. The se
ond integralhas a smooth integrand. The third term is easy to evaluate.The implementation of M (00)1 for a
tion on a fun
tion f(z) when sour
e points areon a 
orner panel and when target points are 
lose to or on that panel is dealt with asfollows: It is assumed that f(z) is available on eight Legendre nodes on ea
h 
orner leg.A Legendre transform of f(z) is 
omputed. Legendre transforms are very stable. Thenterms are re
ombined in the Legendre expansion as to get the 
oeÆ
ients in a monomialbasis for f(z). Finally the a
tion of M (00)1 on ea
h term in the monomial basis is evaluatedanalyti
ally. This pro
edure is eighth order a

urate. The parts of M (00)1 that des
ribe thea
tion on f(z) on a leg of a 
orner panel when target points are far away from that leg are
omputed with eighth order a

urate quadrature based on the values of f(z) at the set offour nodes on ea
h leg.The operator M (10)1 is 
ompa
t but its implementation is 
ompli
ated by the fa
t thatit is a
ting both on 
(z), whi
h is non-smooth, and on the pres
ribed tra
tion, whi
h issmooth. For the smooth a
tion, we dis
retize using Gauss-Legendre quadrature in all pointswhere 
(z) has support. This pro
edure is ninth order a

urate. For the non-smooth a
tion,we implement M (10)1 like M (10)3 and the a

ura
y is the same.
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Figure 4: An elasti
 re
tangle of height 2h and width 2w with a 
entered 
ra
k of length 2a.The 
ra
k is slanted with an angle �. A uniform external tra
tion tpry of unit strength is appliedto two opposite sides of the re
tangle. The other two sides of the re
tangle are tra
tion-free.9 THE ALGORITHMWe dis
retize (44,45) with N points as outlined in the previous se
tions. Our geometry isa re
tangle of height 2h and width 2w. Inside the re
tangle there is either one or morestraight 
ra
k of length 2a, see Figure 4 and Figure 5, or a 
ir
ular ar
-shaped 
ra
k ofradius R. A few things 
an be noted. 15
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Figure 5: Two setups with multiple 
ra
ks. The square plate has side lengths 2w and 
ontains4m2 straight slanted 
ra
ks with angle �=4 and length 2a = 0:6w=m. The 
ra
ks are pla
edon a square grid with a distan
e w=m between grid points. Distan
es between 
ra
k mid-pointsare w=(2m).The left plate has m = 1 and the right has m = 16.� For a straight 
ra
k, M (11)3 vanishes and (45) simpli�es.� The implementation of M (10)1 is dependent on whether the operator is a
ting on asmooth fun
tion or not. Only parts whi
h des
ribe a
tion on 
orner panels are 
om-puted and stored twi
e.� The GMRES solver (Saad and S
hultz (1986)) is used for the system of linear equa-tions. The iterations are terminated when the relative norm of the residual is assmall as it 
an get. This often means 10�16. The number of iterations needed for
onvergen
e, given a geometry and a load, is almost independent of the number ofdis
retization points. This is typi
al for dis
retized Fredholm integral equations of these
ond kind.� Great 
are is devoted to avoiding roundo� error throughout the 
ode. Matrix-ve
tormultipli
ations and inner produ
ts are evaluated with 
ompensated summation, seHigham (1996) and Kahan (1965), for the small-s
ale examples. The fast multipolemethod, see Helsing and Greengard (1998), and Greengard and Rokhlin (1987), isused for large-s
ale 
omputations.� The operators of (44,45) are implemented with order of a

ura
ies ranging from 6:845to 16. We expe
t the asymptoti
 
onvergen
e rate to be of order 6:845, whi
h isindistinguishable from seven in double pre
ision a

ura
y.� The 
omplexity and storage requirement of our implementation grows as N2 for thesmall-s
ale examples. By use of the fast multipole method for the large-s
ale examples,the 
omplexity and the storage requirement is proportional to N .16



10 NUMERICAL EXAMPLESThe purpose of this se
tion is to demonstrate the extreme stability of our s
heme. Threesmall-s
ale examples are studied for this purpose. In a fourht example, we demonstrate the
apability of our s
heme to handle large-s
ale 
omputations.
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Figure 6: Convergen
e of normalized stress intensity fa
tor FI of (52) and biaxiality param-eter B of (58) at the tips of a a 
entered 
ra
k of length 2a = 0:5 in a unit square underunit uniform uniaxial load. A modi�ed uniform mesh is used where all regular quadrature pan-els are given as equal lengths as possible. The mesh is uniformly re�ned. The number ofdis
retization points is N . The straight line indi
ates seventh order 
onvergen
e. Double pre-
ision arithmeti
 is used. The referen
e values are taken as FI = 1:3337121602578887279 andB = �1:03855893471432307225. See Figure 7 for a quadruple pre
ision 
onvergen
e plot ofFI. The relative errors for values that 
oin
ide with the referen
e values, up to double pre
isiona

ura
y, are displayed as 1:11 � 10�16.10.1 A 
enter 
ra
ked squareFirst we 
onsider a square (a re
tangle with height to width ratio h=w = 1) with a 
entered
ra
k of relative length a=w = 0:5 and � = 0. We use a uniform external tra
tion ofunit strength applied to the upper and lower sides of the square. The left and right sidesof the square are tra
tion-free, see Figure 4. Figure 6 illustrates the 
onvergen
e of thenormalized stress intensity fa
tor FI of (52) and the biaxiality parameter B of (58) underin
reased uniform resolution. The asymptoti
 
onvergen
e rate is approximately seven. Thenumber of GMRES iterations needed for full 
onvergen
e never ex
eeds 26. This problemis very well 
onditioned and in an ideal algorithm the relative error would 
onverge to anumber 
lose to ma
hine epsilon, whi
h is 1:11 � 10�16 in double pre
ision a

ura
y. We17
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Figure 7: Quadruple pre
ision 
al
ulations. Convergen
e of Stress intensity fa
tor FI of (52)and biaxiality parameter B of (58) for a 
entered 
ra
k of length 2a = 0:5 in a unit square underunit uniform uniaxial load. The straight line indi
ates 6:845th order 
onvergen
e. The referen
evalues are taken as FI = 1:3337121602578887279 and B = �1:03855893471432307225. Amodi�ed uniform mesh is used, where all regular quadrature panels are given as equal lengthsas possible. The mesh is uniformly re�ned.note that our algorithm is almost ideal. Figure 7 depi
ts 
onvergen
e in quadruple pre
isionarithmeti
.10.2 A re
tangle with a slanted 
entral 
ra
kWe now pro
eed to an elasti
 re
tangle with height to width ratio h=w = 2 and relative
ra
k-length a=w = 0:6. The 
ra
k is slanted with an angle � = �=4. Figure 8 illustratesthe 
onvergen
e of the normalized stress intensity fa
tor F and T -stress under in
reaseduniform resolution. This problem is just about as well 
onditioned as the setup with thesquare. The number of GMRES iterations needed for full 
onvergen
e never ex
eeds 35. Wenote that, 
ompared with the square, more dis
retization points are needed on the modi�eduniform mesh to a
hieve a given a

ura
y and the a
hievable a

ura
y is slightly lower.10.3 A square with an ar
-shaped 
entral 
ra
kIn a third example we let the 
ra
k assume the shape of a 
ir
ular ar
 parameterized byz(t) = 0:25eit ; �=6 � t � 5�=6 : (63)The height to width ratio of the spe
imen is h=w = 1 and uniform external tra
tion ofunit strength is applied. This problem, too, is well 
onditioned. The number of GMRES18
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Figure 8: Convergen
e of normalized stress intensity fa
tor F of (52) and a parameter givenby Tp�a=KI. The geometry is a re
tangle with height to width ratio h=w = 2 and relative
ra
k-length a=w = 0:6. The 
ra
k is slanted with an angle � = �=4, see Figure 4. Thestraight line indi
ates seventh order 
onvergen
e. Double pre
ision arithmeti
 is used. Thereferen
e values are taken as FI = 0:66119932929855292, FII = 0:56738161111966136 , andTp�a=KI = �0:23643470029373758.iterations needed for full 
onvergen
e never ex
eeds 33. In Figure 9 we plot the von Misese�e
tive stress of (48) for the 
ase of plane strain. A Poisson's ratio of � = 0:3 is used.Table 1: Results for the largest biaxiality parameter B and largest normalized stress intensityfa
tors FI and FII in the setup of Figure. 5. The number of 
ra
ks is 4m2.m FI FII B1 0.665322716297 0.597261470638 -0.24821741282 0.687185586910 0.591012369474 0.3387695574 0.68740298100 0.59085705430 0.3485671818 0.68735002898 0.59087320420 0.34848259716 0.68734381100 0.59087534562 0.34859017410.4 A square with multiple slanted 
ra
ksFinally, a large-s
ale problem is studied, using the fast multipole method for evaluatingmatrix-ve
tor produ
ts. We 
hoose a setup that is easy to reprodu
e. A square elasti
 platewith side length 2w with 4m2 
ra
ks is studied. The size of the setup is determined by19
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Figure 9: Distribution of von Mises e�e
tive stress of (48) in an elasti
 unit square 
ontaininga 
ir
ular ar
-shaped 
ra
k parameterized a

ording to (63). Plane strain is assumed withPoisson's ration � = 0:3. A grid with 152,100 interior points was used for the plot.the parameter m. The 
ra
k length is 2a = 0:6w=m and the 
ra
ks are slanted ��=4, seeFigure 5. The 
ra
ks are pla
ed in a square grid with a distan
e w=m between 
losest gridpoints. Due to the symmetry of geometry and load, there is a fourfold equivalen
e betweenthe 
ra
ks. That is, ea
h 
ra
k has three equivalent 
ompanions. We study the 
onvergen
eof the maximum absolute values of the stress intensity fa
tors FI and FII and the biaxialityparameter B, as a fun
tion of m and the number of dis
retization points N . In Table 1 weshow how these quantities 
onverge with the parameter m. The maximum absolute valuesof FI and FII o

ur at the 
ra
ks 
losest to the 
orners of the square plate for all values ofm. The maximum values of FI o

ur at the 
ra
k-tips 
losest to the sides where the loadis applied, while the maximum absolute values of FII o

ur at the 
ra
k-tips 
losest to thesides whi
h are tra
tion-free. The minimum values of B, whi
h are negative, o

ur at the
ra
ks 
losest to the 
orners for all m, at the 
ra
k-tips 
losest to the sides where the load isapplied. The maximum B, whi
h is positive, o

urs at the se
ond and last-but-one 
ra
ksin the se
ond and last-but-one rows of 
ra
ks, 
ounting from the boundaries for m � 2.Sin
e for m = 1 only the 
ra
ks 
losest to the 
orners are present, B of Table 1 is negativefor m = 1 and positive for m � 2. The results for m = 1 are quite similar to the results forone slanted 
ra
k of Se
tion 10.2. From Table 1 it 
an be noted that B 
onverges slowerwith m than FI and FII, indi
ating that B is more sensitive to the geometry than the stressintensity fa
tors are. Sin
e B is negative at the 
ra
k-tips where FI attains its maxima,20
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IIFigure 10: Convergen
e of the maximal normalized stress intensity fa
tors FI and FII and themaximal biaxiality parameter B. The geometry is a square with 1024 slanted 
ra
ks, se the rightimage of Figure 5. Double pre
ision arithmeti
 is used. Up to 740,000 dis
retization points arepla
ed on the boundary. The fast multipole method is used for matrix-ve
tor multipli
ation.The referen
e values are taken as FI = 0:687343811003354, FII = 0:590875345620499 , andB = 0:348590174271453 About 50 GMRES iterations are needed for full 
onvergen
e.a fra
ture 
riterion a

ounting for T -stress e�e
ts would be needed for failure predi
tionin this 
ase, as dis
ussed in Se
tion 5. The largest setup studied 
ontains 1024 
ra
ks,
orresponding to m = 16. For this setup we also show the 
onvergen
e of FI, FII and thebiaxiality parameter B, as a fun
tion of the number of dis
retization points, see Figure 10.While FI and FII 
onverge to a relative pre
ision better than 10�11, B only 
onverges downto about 10�9. There might be several reasons for this. While the stress intensity fa
tors
orresponds to the �rst terms in the series expansion of the stress �eld, B 
orresponds tothe se
ond, 
onstant, term in the expansion for �xx. The �rst terms might in some sensebe easier to 
ompute than higher order terms.11 DISCUSSIONWe have 
onstru
ted and implemented a seventh order a

urate solver for the 
omputationof stress �elds inside 
ra
ked re
tangular domains. We have demonstrated the extremestability of the solver and we have extra
ted useful quantities from the solution. Ouralgorithm is eÆ
ient. In Se
tion 10.1, with only 112 dis
retization points and less than10 se
onds of 
omputing time on a workstation, we 
omputed normalized stress intensityfa
tors and biaxiality parameters for a simple setup as a

urately as an engineer 
ouldpossibly require. A number of 112 dis
retization points 
orresponds to the 
oarsest meshwe 
an 
onstru
t without substantially violating the rules for the pla
ement of quadrature21



Table 2: Numeri
al results for the biaxiality parameter B and the normalized stress intensityfa
tor FI of a 
entrally 
ra
ked spe
imen with � = 0, and with di�erent ratios h=w and a=w,see Figure 4. Three stars indi
ate that no value was presented. The symbols (t), (g), and(i) indi
ates tabulated, graphi
al, and interpolated data. (1) Leevers and Radon (1982) 
laimfour digit agreement with Isida (1971). (2) The spe
imen in (Mukhopadhyay et al. (1998)) isintended as in�nite, but a ratio h=w = 5 was used for the numeri
al results (Mukhopadhyay,private 
ommuni
ation).h=w a=w B FI ref1 0.3 � � � 1:123 Isida (1971) (t)1 0.3 �1:03 1:123(1) Leevers, Radon (1982) (i)1 0.3 �1:032 � � � Cardew et al. (1984) (t)1 0.3 �1:02 1:12 Kfouri (1986) (g)1 0.3 �1:03 1:12 Fett (1998) (t)1 0.3 � � � 1:1214 Kabele et al. (1999) (t)1 0.3 �1:0286 1:1232 Chen et al. (2001) (t)1 0.3 �1:02864238631710 1:12319110266148 new1 0.5 � � � 1:3337 Isida (1971) (t)1 0.5 �1:04 � � � Larsson, Carlsson (1973) (t)1 0.5 �1:04 1:334(1) Leevers, Radon (1982) (i)1 0.5 �1:039 � � � Cardew et al. (1984) (t)1 0.5 � � � 1:331 Banks-Sills, Sherman (1986) (t)1 0.5 �1:02 1:31 Kfouri (1986) (g)1 0.5 � � � 1:331 Banks-Sills, Sherman (1992) (t)1 0.5 � � � 1:3341 Chan, Mear (1995) (t)1 0.5 � � � 1:3296 Zhu, Smith (1995) (t)1 0.5 �1:04 1:33 Fett (1998) (t)1 0.5 � � � 1:3317 Kabele et al. (1999) (t)1 0.5 � � � 1:332 Guinea et al. (2000) (t)1 0.5 �1:0385589347143231 1:3337121602578887 new1 0.6 � � � 1:3033 Isida (1973) (i)3 0.6 � � � 1:32548 Gu (1993) (t)3 0.6 �1:11408542438965 1:30332730119436 new1 0.8 � � � 1:8160 Isida (1973) (i)5(2) 0.8 � � � 1:7577 Mukhopadhyay et al. (1999) (t)5 0.8 �1:41111943705804 1:8159948204573 newpanels, presented in Se
tion 7. In
orporating the fast multipole method into the solvermakes it possible to treat large-s
ale problems. In Se
tion 10.4, stress intensity fa
tors andbiaxiality parameters for a setup 
ontaining up to 1024 
ra
ks are 
omputed with a relativepre
ision better than 10�8.One may argue that fast and stable solvers for linear fra
ture me
hani
s problems are notneeded. After all, most 
omputational problems of engineering importan
e are non-linear.22



Table 3: Results for the parameter Tp�a=KI and the normalized stress intensity fa
tors FI andFII of a 
entrally 
ra
ked spe
imen with h=w = 2 and a=w = 0:6. The 
ra
k is slanted withan angle � = �=4. Three stars indi
ate that no values were presented. (1) Di�erent values arepresented. Mean value of best 
al
ulations is quoted.Tp�a=KI FI FII ref� � � 0:6611 0:5674 Kitagawa, Yuuki (1977)� � � 0:659 0:568 Murakami (1978)� � � 0:666 0:569 Portela et al. (1992)� � � 0:669(1) 0:562(1) S�aez (1995)� � � 0:6636 0:5706 Mukhopadhyay et al. (1998)�0:2248 0:654 0:567 Yang B, Ravi-Chandar (1999)� � � 0:6609 0:5660 Kebir et al. (1999)� � � 0:665(1) 0:581(1) Murthy, Mukhopadhyay (2001)�0:23643470029374 0:66119932929855 0:56738161111966 newHigh a

ura
y is seldom required. Fast algorithms are unne
essary sin
e the 
omputersthemselves be
ome faster all the time. Our answer to su
h 
riti
ism now follows:First, highly a

urate values of stress intensity fa
tors and biaxiality parameters fora vast number of topologies 
an now be 
omputed in se
onds. This paper treats interior
ra
ks in �nite domains. In previous work we have presented equally stable algorithmsfor the 
omputation of stress intensity fa
tors for 
ra
ks in in�nite and periodi
 domains(see Helsing and Peters(1999)), for interfa
e 
ra
ks (see Helsing (1999)) in in�nite domains,and for not
hes in �nite domains (see Helsing and Jonsson (2001)). This means that weapproa
h a situation where one 
an repla
e the use of tables, in the laboratory or in a designpro
ess, with the use of software. The use of reliable software will enable the engineer to
he
k a wider range of geometri
 parameters than a table 
ould ever 
over.Se
ond, fast 
omputers alone are not suÆ
ient to produ
e better solutions for solidme
hani
s problems. One needs more eÆ
ient algorithms too. This is illustrated in Table 2and in Table 3 where our new results are pla
ed in a histori
 setting. A fa
t, whi
h 
an beobserved in these tables, is that the oldest numeri
al results for F , those of Isida (1971) andKitagawa and Yuuki (1977), have higher quality in terms of a

ura
y than many of the newerresults. For slender spe
imens, a thirty year old interpolation formula, see Isida (1973), givesthe most reliable results. This is remarkable, 
onsidering the enormous progress that hasbeen made in the area of s
ienti�
 
omputing during the last de
ades.Third, fast and stable linear solvers are needed as fundamental building blo
ks in more
omplex solvers whi
h, for example, 
an simulate mi
ro-
ra
k evolution in 
omposite mate-rials on their way from 
ra
k initiation to ma
ros
opi
 failure, or treat problems involvingplasti
ity. High a

ura
y may not be required in the �nal answer, but stability is a 
ru
ialproperty { espe
ially when dealing with non-linear equations and 
omplex geometries where
ra
ks may lie 
lose to ea
h other and to the boundary of the spe
imen. Realisti
 setupsare not as simple as the one depi
ted in Figure 4 whi
h is the most studied geometry in theliterature. When we re�ne the mesh we must be absolutely 
on�dent that the error be
omes23



smaller. Otherwise predi
ted 
ra
k-patterns will be
ome mesh-dependent and the numeri-
al pro
edure is useless as a design tool. Demonstrated ability to a
hieve high a

ura
y fornon-trivial examples serves as a numeri
al proof of that an algorithm is stable.Referen
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