
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Automated Control of Multiple Software Goals using Multiple Actuators

Maggio, Martina; Papadopoulos, Alessandro Vittorio; Filieri, Antonio; Hoffmann, Henry

Published in:
ESEC/FSE 2017 Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering

DOI:
10.1145/3106237.3106247

2017

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):
Maggio, M., Papadopoulos, A. V., Filieri, A., & Hoffmann, H. (2017). Automated Control of Multiple Software
Goals using Multiple Actuators. In ESEC/FSE 2017 Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering (pp. 373-384). Association for Computing Machinery (ACM).
https://doi.org/10.1145/3106237.3106247

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1145/3106237.3106247
https://portal.research.lu.se/en/publications/ebf5e974-11cf-4820-b308-1875a261a4c8
https://doi.org/10.1145/3106237.3106247

Automated Control of Multiple So�ware Goals
using Multiple Actuators

Martina Maggio
Lund University, Sweden
martina@control.lth.se

Alessandro Vi�orio Papadopoulos
Mälardalen University, Sweden

alessandro.papadopoulos@mdh.se

Antonio Filieri
Imperial College London, UK

a.�lieri@imperial.ac.uk

Henry Ho�mann
University of Chicago, US

hankho�mann@cs.uchicago.edu

ABSTRACT
Modern so�ware should satisfy multiple goals simultaneously: it
should provide predictable performance, be robust to failures, han-
dle peak loads and deal seamlessly with unexpected conditions and
changes in the execution environment. For this to happen, so�-
ware designs should account for the possibility of runtime changes
and provide formal guarantees of the so�ware’s behavior. Control
theory is one of the possible design drivers for runtime adaptation,
but adopting control theoretic principles o�en requires additional,
specialized knowledge. To overcome this limitation, automated
methodologies have been proposed to extract the necessary infor-
mation from experimental data and design a control system for
runtime adaptation. �ese proposals, however, only process one
goal at a time, creating a chain of controllers. In this paper, we
propose and evaluate the �rst automated strategy that takes into
account multiple goals without separating them into multiple con-
trol strategies. Avoiding the separation allows us to tackle a larger
class of problems and provide stronger guarantees. We test our
methodology’s generality with three case studies that demonstrate
its broad applicability in meeting performance, reliability, quality,
security, and energy goals despite environmental or requirements
changes.

CCS CONCEPTS
•Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; •Networks→ Network reliability;

KEYWORDS
Adaptive So�ware, Control �eory, Dynamic Systems, Non-Functional
Requirements.
ACM Reference format:
Martina Maggio, Alessandro Vi�orio Papadopoulos, Antonio Filieri, and Henry
Ho�mann. 2017. Automated Control of Multiple So�ware Goals
using Multiple Actuators. In Proceedings of 2017 11th Joint Meeting of the
European So�ware Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of So�ware Engineering, Paderborn, Germany, September
4–8, 2017 (ESEC/FSE’17), 12 pages.
DOI: 10.1145/3106237.3106247

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, Paderborn, Germany
© 2017 ACM. 978-1-4503-5105-8/17/09. . .$15.00
DOI: 10.1145/3106237.3106247

1 INTRODUCTION
�e growing complexity and dynamic unpredictability of computer
systems has motivated the design and implementation of a new
class of self-adaptive so�ware systems [49]. Such so�ware auto-
matically reacts to changes in both the operating environment and
application behavior to ensure that certain high-level goals are met.
�e development of self-adaptive so�ware creates, however, a huge
challenge: designing so�ware systems that are robust in the face
of dynamic behaviors we are not aware of at design-time. To face
the challenge, so�ware systems are o�en highly con�gurable [58],
and can o�en modify their behavior during runtime.

Control theory provides a vast array of tools for designing ro-
bust adaptive systems that operate with formal guarantees [3, 5].
�is combination of robustness and formal grounding has led to
increased interest in developing self-adaptive so�ware based on
control theoretic techniques [46]. While several ad hoc approaches
to control design have arisen, recent work proposes a general,
automated methodology for creating formally robust so�ware con-
trol [15]. However, this �rst approach can handle only a single,
measurable goal (e.g., performance or reliability, but not both).

Modern so�ware, however, must meet multiple, o�en con�icting,
goals. For example, so�ware for cyber-physical systems must meet
performance, energy, and security requirements simultaneously.
Very li�le research has addressed automating the design of self-
adaptive so�ware that meets multiple goals. A �rst step proposes
a hierarchy of single-goal controllers [16, 24]. In this approach,
goals are ordered. Higher priority goals are met �rst using one
set of actuators (or tunable so�ware parameters), and then those
actuators are removed from consideration for the controllers that
manage lower priority goals. Priorities can be set based on user
preference. �e actuators are partitioned into disjoint sets, with
fewer actuators available to meet lower priority goals.

Despite being one of the �rst solutions to o�er multidimen-
sional control, this hierarchical approach has two limitations. First,
due to the partitioning of actuators, the controller may not reach
low-priority goals even when they are feasible. A combined ap-
proach that considers the e�ects of concurrent actuation, however,
should reach any set of feasible goals. Second, the hierarchical
approach only provides formal guarantees for the highest priority
goal, others are not guaranteed. �us, there is a need for a formally
veri�able methodology to automate the design of self-adaptive so�-
ware that meets multiple goals using multiple actuators. Finally,
the approach in [16, 24] requires actuators to assume only a �nite
number of values. While continuous actuators can be automatically
discretized [16], the complexity of control may grow exponentially,

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany M. Maggio, A.V. Papadopoulos, A. Filieri, H. Ho�mann

limiting its applicability when timely decisions are required or
when the available computational capacity is limited (e.g., IoT).

We therefore propose a novel automated strategy—based on mul-
tivariable control—that simultaneously uses all available actuators
to meet all goals. Unlike prior work, our approach allows users to:
• Reach sets of goals that are unreachable with the prior hierar-

chical approach, and in fact, to reach any set of feasible goals.
• Identify the largest subset of goals that are reachable with the

available actuators. Additionally, users can express desires like
controlling the largest subset of goals that contains speci�c non-
deniable objectives; e.g., �nding the largest set of reachable goals
where request latency is below 0.1 seconds.

• Shape the so�ware’s dynamic behavior by specifying a cost
function to be optimized, while prioritizing the goals based on
their relevance. For example, users may prefer upgrading an
existing virtual machine instead of starting up a new one.

• Provide faster convergence to goals a�er system perturbation.
�e cascaded approach determines an actuator se�ing for each
goal, waits for that goal to be reached, and then addresses
the next goal. In contrast, the multivariable controller sets all
actuators simultaneously, o�ering much faster convergence to
the goals and response to environmental �uctuation.

• Model and exploit the mutual dependencies that exist among
the actuators and goals. Instead of considering partitions of
actuators one-by-one, we model all the combined e�ects and
exploit them to obtain more precise and e�cient control.

• Limit the identi�cation time needed for the system design. In-
stead of testing all possible values for di�erent actuators during
the learning phase, we only need to test random switches from
the minimum to maximum value for each actuator. �e length
of the initial model identi�cation phase is then greatly reduced,
becoming proportional to the number of actuators and not to
the number of permutations of all the possible actuator values.

• Tune the tradeo� between control overhead and optimality of
the actuator se�ings with respect to the cost function. �is
tunability allows users to construct solutions with acceptable
overhead, whereas no prior control synthesis approach sup-
ports user adjustable overhead.

We demonstrate the advantages of the proposed approach through
three case studies developing self-adaptive so�ware including: a
video encoder, a secure radar system, and a dynamic service binder.
We use case studies from prior work to highlight the additional
capabilities proposed in this paper. �e remainder of this paper is
organized as follows. Section 2 compares the approach presented in
this paper to other automated methodologies for automated multi-
concern control. Section 3 presents the technical details of the
proposed approach and the Section 4 discusses the formal guaran-
tees that can be given using the proposed strategy. Section 5 shows
experimental evidence of how the proposed strategy works and
Section 6 concludes the paper.

To foster future research and enable comparison with our ap-
proach, we published the source code for our experiments and to
generate the control strategies used in the remaining of this paper1.

1h�p://www.martinamaggio.com/papers/fse17/

2 RELATEDWORK
Modern so�ware systems must be robust to frequent, unpredictable
changes to their execution environment, users, and requirements.
Self-adaptive so�ware adjusts its behavior at runtime, withstand-
ing external changes as they are detected, or even proactively
avoiding critical situations [5, 9, 33, 51]. One great challenge
of self-adaptation is ensuring its e�ectiveness and dependabil-
ity [13, 19, 57]. Control theory has de�ned a variety of techniques
for controlling the behavior of physical plants, and its formal frame-
work serves as a basis for a variety of so�ware adaptation mecha-
nisms [8, 12, 17, 18, 23].
Control of so�ware systems. Recent surveys capture the cur-
rent state-of-the-art applying control-theory to so�ware applica-
tions [17, 46, 59]—from controlling web server delays [38], to data
service management [10], resource allocation [2, 26, 27, 35, 47], op-
erating systems tuning [30, 40, 45], and energy management [25, 41].
Some of these systems use automata-based formalisms to abstract
so�ware’s behavior and temporal logic to specify some of its re-
quirements [9, 51], while we focus here on discrete-time control,
where equation-based models are used to satisfy quantitative so�-
ware properties.

Most discrete-time control approaches satisfy quantitative, non-
functional requirements: controlling tunable actuators identi�ed
either by the designer or automatically [22] and whose value af-
fects the so�ware behavior. �e majority of so�ware controllers
belong to the family of Proportional-Integral-Derivative (PID) con-
trollers [36]. PIDs are computationally inexpensive and support
formal analysis of their dynamics. �ey are, however, limited to
linear (or linearized) system models and mostly control a single goal
(e.g., the response time) using a single actuator (e.g., the number of
VMs). �is approach is known as single-input, single-output (SISO).
In contrast, multiple-input, multiple-output (MIMO) controllers are
more complex, managing con�icting goals and contending actua-
tors.
Model predictive control (MPC). MPC is an e�ective, �exible
solution for MIMO problems [39]. MPC design incorporates the
di�erent actuators’ higher-order dynamics; i.e., it captures how each
actuator a�ects each goal and interferes with the other actuators.

MPC controllers decide the control signals for the next time
step by optimizing a utility function that accounts for both the
current operating point and all possible trajectories up to a given
horizon [20, 34]. Reasoning based on predictions of future behavior
has proven e�ective in other self-adaptation approaches [12, 44, 61],
though with reasoning techniques mostly ad-hoc and tailored to
user-de�ned models. In contrast, MPC provides a more general
analysis framework and the ability to re�ne and compensate for
model inaccuracies by exploiting a feedback loop. MPC-based adap-
tation mechanisms have been used to de�ne controllers for a class
of goal models [1] and resource provisioning in cloud environments
under uncertainty [54]. �ese MPC solutions, however, requires
the developer to explicitly provide a system model and are tied
to speci�c problems; in turn, they require the developer to mas-
ter modeling techniques and do not generalize beyond the models
manually de�ned by the developer.
Automated controller synthesis. Automated controller synthe-
sis eases the integration of control-theoretical adaptation into so�-
ware systems. Abstracting speci�c views of the so�ware system

Automated Control of Multiple So�ware Goals using Multiple Actuators ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

into equation-based models and de�ning adequate control strate-
gies are open problems for current development processes [17, 18].

�e �rst automated modeling and controller synthesis approach
has been proposed in [15]. It builds a locally linearized model of a
SISO system collecting input-output measurements during system
execution. �en, a tunable controller is continuously adjusted
around the current operation point to provide computationally
e�cient and robust adaptation decisions, under mild assumptions
on the smoothness of the – possibly non-linear – system behavior.
�is approach cannot deal with general MIMO systems, however.

Recent work automatically synthesizes MIMO controllers for
discrete systems by chaining multiple SISO controllers (one for
each goal) together in a hierarchy [16]. �e hierarchy re�ects goal
prioritization, and each controller produces a continuous refer-
ence signal that is converted into a mixture of the discrete input
con�gurations using Pulse Width Modulation [36]. �e two main
limitations of this solution are the use of disjoint sets of actuators
along the hierarchy of SISO controllers and the need for actuators
to assume values from a �nite domain. Actuators that are used to
reach a higher priority goal cannot be changed to meet the lower
priority ones, limiting the controller’s ability to achieve all goals
optimally at the same time (see also the experimental comparison in
Section 5.3). �e need for �nite domains for the actuators requires
the discretization of continuous control inputs; while this can be
done automatically, as in [16], the complexity of the control law
may grow exponentially, limiting the practical applicability of the
approach when timely decisions are required or the controller has
to run on low-power devices, like embedded systems. �e approach
in [50] extends [16], formulating the conversion of the continuous
references into discrete se�ings as a linear optimization problem.
�is approach avoids partitioning actuators into disjoint sets and
allows actuation to minimize a cost function (e.g., considering the
priority of di�erent actuators), but it does not provide an explicit
means for handling con�icting goals when the satisfaction of one
makes others infeasible.
�is paper’s contribution. �is paper proposes automated model
construction and controller synthesis for MIMO controllers. Unlike
prior work [16, 50], it does not require the input space to be �nite,
requires less observation to build a comprehensive equation-based
model of the system, and produces optimal control decisions con-
sidering not only the current situation but also future predicted
system evolutions.

3 METHODOLOGY
A MIMO system has multiple actuators that in�uence multiple goals.
Our methodology makes two assumptions: 1) the user knows all
available actuators and their limits; i.e., the maximum and minimum
values they can assume; and 2) design-time tests can be performed
that measure the e�ects actuator changes have on goals. �e pro-
posed methodology minimizes the number of tests to be performed
– a big improvement with respect to prior work [15, 16, 50] – but
some experimental data collection is required to build a model and
synthesize the controller.

�e methodology has �ve steps, illustrated in Figure 1. It re-
quires several inputs from the user, but is otherwise completely
automated, requiring no control expertise. �e ��h step outputs
code implementing the controller. �e framework collects user
inputs (Step 1) and then collects data by running experiments (Step

2). �is data is used to estimate a model relating actuator changes
to changes in system behavior (Step 3). A controllability test is then
performed to ensure the provided actuators can reach the speci�ed
goals (Step 4). If the system is controllable, the methodology syn-
thesizes a controller and generates the resulting code (Step 5). �e
user then selects the desired values for the goals and complements
the generated code with calls to the sensors (to obtain the current
values of the goals), and to the actuators (to e�ectively perform
the action chosen by the controller). �ese user-de�ned functions
for sensing and actuating are system-dependent and represent the
interfaces to the rest of the so�ware.
Step 1: user input. �e user speci�es a sampling time ∆t , a set of
v actuators A = {a1,a2, . . . av }, and a set of p goals. For example,
a1 might be the clock speed of the execution environment, while a2
might be the probability of using one service provider over another.
�e values assumed by the set A at time k are denoted with the
vectora(k). �e user provides the values ofai,min andai,max, which
are the minimum and maximum values for the i-th actuator.

�e set of goals is G = {д1,д2, . . .дp }. For example, д1 might
be the 95-th percentile response latency, and д2 might be power
consumption. �e goals’ values at time k are denoted with the
vector д(k). д(k) is a function of time as goals may change while
the so�ware is running. �e user should also provide a way to
measure the current value of the goals. We denote with the set
Gm = {дm1,дm2, . . .дmp } the measured values corresponding to
the goals — in the example дm1 is the current 95-th percentile of
the response time and дm2 the current power consumed by the
embedded device. Again, the vector дm (k) is the measurements
at time k . We assume that p ≤ v , i.e. there cannot be more goals
than actuators, an inherent limitation of any control approach.
For each goal дj , the user speci�es a weight w j , resulting in a set
W = {w1,w2, . . .wp }. Goal weighting speci�es a proportional
disparity between goals’ importance when goals aren’t simulta-
neously satis�able. Equally weighted goals imply their errors are
treated equally and the controller balances between them. Op-
tionally, the user can specify additional weights for the actuators,
D = {d1,d2, . . .dp }, where a lower weight indicates changing the
corresponding actuator is preferred to a higher weight actuator. �e
controller tries to minimize the sum of the products of actuators
and weights. Because of this, a lower weight would favor the use
of the corresponding actuator, while a higher weight would make
the controller try to avoid the use of the corresponding actuator
unless it is really necessary. As seen in Figure 1a, the results of this
phase are the input quantities that the controller synthesis needs.
Step 2: data collection. For 100 · v uniformly spaced time inter-
vals (each ∆t apart) our methodology selects values for the vector
a(k) and records дm (k). For each ai ∈ A, we choose either the
minimum value ai,min or the maximum value ai,max. As seen in
Figure 1b, this phase is the �rst step towards closing the feedback
loop. Considering that k belongs to the interval [1, 100 · v], this
data collection lasts for 100 ·v ·∆t time, which is O (v), a strong im-
provement over previous methods that sweep the entire parameter
space [15, 16]. Compared to prior work, the resulting models have
less �delity, but the synthesized MPC is robust to these modeling
inaccuracies. As in prior work [15], we update the model at runtime
to capture variations.
Step 3: model identi�cation. We use subspace identi�cation [52,
53] to build a linear model based on the data. We build the lowest

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany M. Maggio, A.V. Papadopoulos, A. Filieri, H. Ho�mann

Controller
(∆t ,W)

So�ware
System

AG Gm

(a) End result of step 1 (user input)

Controller
(∆t ,W)

So�ware
System

AG Gm

(b) End result of step 2 (data collection)

Controller
(∆t ,W) S (Model)AG Gm

(c) End result of step 3 (model identi�cation)

Controller
(∆t ,W) S (Model)AG Gm

(d) End result of step 4 (controllability test)

Controller
(∆t ,W) S (Model)AG Gm

(e) End result of step 5 (MIMO controller synthesis)
Figure 1: Controller synthesis phases. Dashed elements are not yet introduced or exploited at the corresponding stage. For
example, the measurement of Gm are used in Step 2 for the model building phase (Step 3). At the end of Step 3, the So�ware
System is replaced with its corresponding model S. In Step 4, the methodology veri�es that the controller can be built and
Step 5 produces the end result and allow the so�ware engineer to close the loop.

possible order model that �ts the data. Selecting a higher order
increases the model’s accuracy but also increases the chance of
over��ing. On the contrary, a lower order model is less accurate,
but also increases the probability that the resulting models capture
fundamental behavior rather than noise. �is noise derives, for
example, from the presence of the operating system routines and
from other applications running at the same time on the hardware.

At this point we have a model of order n. In such a model, the
dynamic system has n states and a state vector x = [x1,x2, . . . xn].
Notice that x is not a measurable quantity, and not even some
quantity that has a meaningful interpretation for the user, but an
abstract variable that links the inputs to the outputs, and thus,
describes the system’s dynamics in a compact form. �e values of
x may not correspond to anything measurable in the system.

�e subspace identi�cation procedure returns a model S in the
di�erence equation form

S :



x (k + 1) = A · x (k) + B · a(k)
дm (k) = C · x (k) , (1)

using ∆t as sampling interval (the distance in time between two
subsequent measurements). �e time is represented with the le�er
k , that denotes the sampling instants and assumes values in the set
of integers where a number k is the instant t = ∆t · k in time. �e
following steps use S as a model of the system we want to control.
Figure 1c shows that from here on, in the controller synthesis
procedure, the real so�ware is substituted with its model. �e
identi�cation procedure is completely automatic and no input is
required from the user, if not for the collected data.
Step 4: controllability test. From control theory [21], a system
is controllable if the n × (p · n) matrix

Co =
[
B A · B · · · An−1 · B

]
(2)

has rank n, which means thatCo has n independent columns among
then ·p total columns2. If this condition holds, a controller can drive
2Recall that n is the number of model states and p the number of goals.

all states to any feasible value, in the absence of actuator saturations.
Recall that the output values are linked to the state values by the
second equation in (Eq. 1). �us, if the states can assume any
desired value, then the output can assume any desired value in the
feasible region. In practical terms, if the goal values in G can be
reached, a controller can be constructed that will set the actuators
in A to reach them. In the presence of saturations, the goals may
not be reached, but the controller will drive the measurements
as close as possible to the goal. For example, if the user speci�es
a maximum number of virtual machines that can be spawned to
improve the response time of a cloud application, and more than
the maximum number would be necessary to serve all the requests,
the goal is not reached despite the system being controllable, but the
controller will decrease the response time as much as possible with
the given resources. If the system is controllable, the controller we
synthesize in Step 5 will reach all the goals whenever possible [32].
If the system is not controllable, we are able to detect it and warn
the user. To solve this problem, one may add other actuators or
reduce the set of goals and re-run the previous steps.
Step 5: MIMO controller synthesis. Based on the model from
Step 3 and on the controllability test from Step 4, we automatically
synthesize a Model Predictive Controller (MPC) [4, 32, 39]. �is
controller is complemented with a Kalman Filter (KF) [37] to up-
date the system model as the controller runs. MPC is a control
technique that formulates an optimization problem to use the setA
of actuators to achieve the set G of goals. At every control instant
k , the problem becomes the minimization of a loss function `k ,
subject to given constraints. A common approach to guarantee
the removal of the steady state error is to introduce integral action
into the controller [32]. �is can be done simply by rewriting the
identi�ed model (Eq. 1) in the augmented velocity form. Le�ing
∆x (k) := x (k) − x (k − 1), ξ (k) :=

[
∆x (k)> дm (k − 1)>

]>, and

A :=
[
A 0n×p
C Ip×p

]
, B :=

[
B

0p×v

]
, C :=

[
C Ip×p

]
,

Automated Control of Multiple So�ware Goals using Multiple Actuators ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

the augmented velocity form is expressed as:

Sa :



ξ (k + 1) = Aξ (k) + B∆a(k)

дm (k) = Cξ (k)
(3)

�e augmented velocity form is typically used for the formula-
tion of the MPC, since it allows integral action in the loop; i.e., in
practical terms, it guarantees that the controlled system reaches all
the goals when kept constant over time. �e system output дm (k)
is unchanged but now expressed with respect to the state variations
∆x (k) and not with respect to the state values x (k). �e new model
(Eq. 3) predicts future state values with a time horizon of L steps;
i.e., L discrete time steps from now. �e MPC then minimizes the
following cost function

`k =

L∑
i=1

p∑
j=1

qj
(
дm, j,k+i − дj,k+i

)2
+

m∑
j=1

r j
(
∆aj,k+i−1

)2
, (4)

where qj and r j are positive weights, that respectively represent the
importance of the distance between the j-th goal and the current
value, and the inertia to changing the j-th actuator. �e values of
the weights can be chosen asW given by the user in Step 1. When
one or more goal is infeasible (for example because one con�icts
with the other), the controller favors the goals with the higher
weights. �e values r j indicate preferences on actuators, and is
chosen either as one or the elements of D.

�e resulting MPC optimization problem can wri�en as follows.

minimize∆ak+i−1 `k (5)
subject to amin ≤ ak+i−1 ≤ amax

∆amin ≤ ∆ak+i−1 ≤ ∆amax
дm,min ≤ дm,k+i−1 ≤ дm,max

ξk+i = Aξk+i−1 + B∆ak+i−1

дm,k+i−1 = Cξk+i−1
i = 1, . . . ,L.

�is formulation is equivalent to a convex �adratic Programming
(QP) problem [32]. �e solution of the QP problem has time com-
plexity of O (L3v3) [55]. �e solution is an optimal plan for the
future ∆a?k+i−1, i = 1, . . . ,L, but typically a receding horizon ap-
proach is adopted, and only the �rst action of the plan, i.e. ∆a?k , is
applied. �e new control signal is then obtained as

a(k) = a(k − 1) + ∆a?k . (6)

�e receding horizon principle is particularly important, since the
model (Eq. 1) will never capture all environmental phenomena.
�erefore, the plan needs to be recomputed every time new infor-
mation is available. In case of real-time constraints on �nding a
solution, it is possible to store the past planned control trajectory
that would have been disregarded, and use it if the solver does not
converge in time.

�e MPC strategy assumes that the process state is measurable,
but in many cases this is not possible — recall that the system
state has a non-trivial interpretation. Indeed, it is impossible to
measure x (k) directly and so it must be estimated based on дm (k).
To accomplish this, we use a KF that computes an estimate x̂ (k + 1)

Controller

MPC
(Eq. 5) (Eq. 6) So�ware

System
д (k) ∆a? (k) a (k) дm (k)

KF
(Eqs. 7–12)x̂ (k)

Figure 2: Control scheme.

of the state x (k + 1), as

M (k) = P (k)C>
(
CP (k)C> + Rn

)−1 (7)
e (k) = дm (k) −Cx̂ (k) (8)
x (k) = x̂ (k) +M (k)e (k) (9)

P (k) = (I −M (k)C) P (k) (10)
x̂ (k + 1) = Ax (k) + Ba(k) (11)

P (k + 1) = AP (k)A> + BQnB
> (12)

where (Eqs.7–10) update the KF with the new information from the
prediction error e (k) in (Eq.8), and (Eqs.11–12) compute a predic-
tion of the system’s state and of the covariance matrix P . M (k) is
also called Kalman gain, and adapts over time depending on the
magnitude of the prediction error e [37]. �e estimate x̂ (k) can be
used, in place of ξ (k), to solve the optimization problem in (Eq. 5).

Figure 2 shows the block diagram for the resulting control scheme.
�e controller is then executed every ∆t time units. Summarizing,
the control design is performed by using the identi�ed matrices of
the model (Eq. 1), and by choosing appropriate weights for the cost
function, i.e., qj and r j . �e Kalman �lter is designed on the basis of
the identi�ed model and keeps said model updated during runtime.
Step 5 produces the python code for the MPC, which should be
complemented with the code used to obtain the measured values
of the goals and apply the actuators values.
Discussion. To apply this methodology, users must provide sen-
sors that measure behavior for any goals the controller should meet.
�ese sensors usually take the form of methods that return some
system property; e.g., performance or power. Users must also pro-
vide a list of actuators and their minimum and maximum values.
�ese actuators are, again, usually methods that changes some key
parameter; e.g., the strength of a �lter. For the methodology to
work, the number of goals (and thus sensors) must, in general, be
less than or equal to the number of actuators. Similarly, if the actu-
ators cannot be used to meet the goals (i.e., the controllability test
fails), our methodology reports this to the users who must either
add actuators or change goals. �e methodology assumes that actu-
ator se�ings are continuous between the minimum and maximum
se�ings. If the actuators are discrete, then users can either choose
the closest discrete se�ing or approximate the continuous value
by time averaging di�erent actuators se�ings. Our experiments
include examples of both approaches (Sections 5.2 and 5.3). Im-
portantly, we note that this methodology does not assume linear
functions mapping actuator se�ings to goals. �e Kalman �lter is
added speci�cally to account for complex actuation mechanisms: it
continually computes an optimal estimate of the underlying system
state, as measurable by the sensors. �is process of continual state

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany M. Maggio, A.V. Papadopoulos, A. Filieri, H. Ho�mann

estimation makes the controller robust to inaccuracies in the system
identi�cation process. To demonstrate this robustness, all three case
studies in the evaluation section include actuators with complex,
non-linear interactions. Additional stress tests that evaluate more
complex actuation functions (including cosine and higher-order
polynomials, which we have never observed in real so�ware) are
available with our code release.
Implementation. We provide an implementation that automati-
cally generates the controller code in Python and C++, which we
use for our case studies. �e user does not need to provide more
than the weights, the bounds on the actuators and the actuate and
sense functions that interact with the so�ware. We implemented
Step 3, 4 and 5 in Matlab. �e subspace identi�cation procedure
relies on the Matlab function n4sid, using as parameters the given
data and the keyword best for the model order. In this way, the
model’s order is the one that best approximate the data obtained
during the experimental phase in the range between one and ten.

4 FORMAL ASSESSMENT
Applying control theory in so�ware systems provides a set of formal
guarantees about the so�ware’s response to dynamic changes [17].
�e MPC presented in this work belongs to the class of optimal
controllers, since control decisions are based on the solution of an
optimization problem [32]. In particular, adopting the model predic-
tive approach allows us to provide a number of formal guarantees.
Convergence to the objectives. MPCs generated by our method-
ology ensure that all goals are reached, when they are reachable [32];
i.e., if there are actuator se�ings that achieve the goals within the
given constraints (Eq. 5), then the MPC will �nd them. Conver-
gence is proven by observing that whenever there exists a feasible
actuator con�guration, the MPC optimization problem is equivalent
to the unconstrained optimization problem that minimizes `k [32].
�e values for the actuators’ variation are ∆a?k = argmina `k .
Considering the gradient of (Eq. 4), the closed-form solution is
∇a`k = 2H∆a + 2Fξ , where H and F are functions of qj , r j and
the dynamic matrices of the system (Eq. 3). �e gradient has a
minimum for ∇a`k = 0, which corresponds to ∆a? = −H−1Fξ (k),
where ∆a? is a vector containing the optimal plan for the future
∆a?k+i−1, i = 1, . . . ,L. In the MPC case, only the �rst element of
the plan is applied.

�e controller can thus be expressed as a matrix multiplied by
the current state value ξ (k) as a(k) = Γξ (k). �us, the closed-loop
system dynamics (Eq. 3) can be rewri�en as follows.

ξ (k + 1) = (A + Γ)ξ (k)

дm (k) = Cξ (k)

Assume, without loss of generality, that all goals are zero, д(k) =
0. A well known result says that the steady-state error converges
to zero if and only if all eigenvalues of A + Γ have magnitudes
less than unity [32]. If qj in (Eq. 4) are all positive (required by
our methodology), the eigenvalues of A + Γ always lie in the unit
circle in the complex plane. �is property guarantees stability and
convergence to the objective when it is reachable with the actuators
supplied by the user.
Minimum distance for infeasible cases. If the goals are not
reachable, the MPC �nds actuator se�ings that minimize the overall
steady state error. �e de�nition of “closeness” depends on the
weights for each term of the cost function (Eq. 4) – a solution is

closer to the desired one when it minimizes the cost function [32].
�e minimum distance depends on qj . Since di�erent values of qj
yield di�erent quantitative solutions, the choice of qj is used to
enforce the prioritization of the goals.
Minimum convergence time. �e dynamic model in (Eq. 1) re-
lates control parameters and outputs to time. �e optimization
problem �nds the best trajectory converging to the goals, according
to the selected cost function `k . By construction, the cost function
penalizes all the time instants when дm is not equal to the goal д,
therefore the MPC leads to a minimum se�ling time solution.
Real-Time Computation. Since the proposed solution solves an
optimization problem at each control instant, it is critical to discuss
timing issues that could prolong the controller’s execution. In
some cases, the time required for computing the next control action
might be longer than the time between two subsequent control
actions. To address this issue, there is a vast literature in the control
community on how to implement fast solvers (e.g., [29, 48]). �e
area has been explored especially when these solvers are part of
embedded systems [28, 31]. For an overview on the ma�er see [60].

O�en, such advanced algorithms are not required when deal-
ing with so�ware components. For example, one can set ∆ak+1 =
∆ak+2 = . . . = ∆ak+L−1 = 0 and solve the optimization problem
for ∆ak , which is the only one that will actually be applied at time
k . �is modi�cation reduces the complexity to be just O (v3). An-
other approach exploits interior point algorithms, which iteratively
update a feasible, but sub-optimal, solution to the constraints. If the
iteration did not converge before a new control action is required,
it can be forced to stop and return the current sub-optimal solution.
Finally, another possibility to deal with real-time deadlines is ex-
ploiting the MPC’s proactive nature. At each time step, the MPC
computes a plan of future actions ∆ak+i−1, i = 1, . . . ,L. Accord-
ing to the receding horizon principle, only the �rst one is applied;
i.e., ∆a(k) = ∆a?k . Assuming that at the next control instant the
solver takes more time to converge and that a new control action
is required before the optimal solution is found, one can store the
previously computed plan and apply the second control action; i.e.,
∆a(k + 1) = ∆a?k+1. Doing so is obviously sub-optimal, but ful�lls
real-time deadlines and execution constraints.

5 EXPERIMENTAL EVALUATION
In this section we present the application of the proposed method-
ology to three di�erent case studies: the �rst case study is based on
a video encoder, the second on a radar positioning system and the
third one on a dynamic binder. Finally, we also show some results
about the real-time computation and the overhead of the control
signal generation.

5.1 Video Compression
Prior work demonstrated automatic synthesis of a single-input,
single-output controller for lossy video compression [15]. We ex-
tended this case study to achieve multiple goals using multiple
actuators and made it available for comparison with other tech-
niques [42, 43].

�e actuators A are:
• a1, the same quality parameter used in [15] to specify the

compression density. It ranges betweena1,min = 1 anda1,max =
100, where 100 preserves all frame details and 1 produces the
highest compression. We specify a weight d1 = 1000.

Automated Control of Multiple So�ware Goals using Multiple Actuators ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

0.7
0.8
0.9

SS
IM

дm 1 д1

08k
11k
15k

siz
e дm 2 д2

1
40
.80

qu
al
ity a1

0
2

0.4

sh
ar
pe
n

a2

0 20000 40000
0
2

0.4

no
ise a3

(a) д1 = 0.7 and д2 = 8000

0.7
0.8
0.9

SS
IM

дm 1 д1

08k
11k
15k

siz
e дm 2 д2

1
40
.80

qu
al
ity a1

0
2

0.4

sh
ar
pe
n

a2

0 20000 40000
0
2

0.4
no

ise a3

(b) д1 = 0.8 and д2 = 8000

0.7
0.8
0.9

SS
IM

дm 1 д1

08k
11k
15k

siz
e дm 2 д2

1
40
.80

qu
al
ity a1

0
2

0.4

sh
ar
pe
n

a2

0 20000 40000
0
2

0.4

no
ise

a3

(c) д1 = 0.9 and д2 = 8000

0.7
0.8
0.9

SS
IM

дm 1 д1

08k
11k
15k

siz
e

дm 2 д2

1
40
.80

qu
al
ity a1

0
2

0.4

sh
ar
pe
n

a2

0 20000 40000
0
2

0.4

frame

no
ise a3

(d) д1 = 0.7 and д2 = 15000

0.7
0.8
0.9

SS
IM

дm 1 д1

08k
11k
15k

siz
e

дm 2 д2

1
40
.80

qu
al
ity a1

0
2

0.4

sh
ar
pe
n

a2

0 20000 40000
0
2

0.4

frame

no
ise a3

(e) д1 = 0.8 and д2 = 15000

0.7
0.8
0.9

SS
IM

дm 1 д1

08k
11k
15k

siz
e

дm 2 д2

1
40
.80

qu
al
ity a1

0
2

0.4
sh
ar
pe
n

a2

0 20000 40000
0
2

0.4

frame

no
ise a3

(f) д1 = 0.9 and д2 = 15000
Figure 3: Results for the video experiment.

• a2, the sharpen parameter, which speci�es the size of a sharp-
ening �lter to be applied to the image. �e size ranges between
a2,min = 0 and a5,max = 5 where 0 indicates no sharpening. We
select a weight d2 = 100000 for this actuator. Given its reduced
range compared to a1, we would like to use it less.

• a3, noise, which speci�es the size of a noise reduction �lter,
which also varies between a3,min = 0 and a3,max = 5. We
specify a weight d3 = 100000, equivalent to sharpen.

�e goals G include:
• д1, the SSIM [56] that quanti�es the similarity between the

original and compressed frames. SSIM is a unitless metric that
ranges from 0 to 1, with near 1 indicating similar images. As
SSIM is between 0 and 1, we use weight w1 = 1000 so that
the corresponding component of the cost function J is in the
hundreds;

• д2, the frame size (in kilobytes). We use a weightw2 = 0.0001 so
this second goal is considered slightly more important than the

�rst. When the controller can reach only one goal, we prefer
to hit the size target, making communication predictable.

Clearly, these two goals con�ict with one another. When a speci�c
frame size is set, this will correspond to a speci�c value for the
SSIM on the frame. Similarly, if a speci�c SSIM is reached, the
corresponding frame will have a prescribed size. We conduct this
test to show how the controller trades o� a goal for the other to
achieve the optimal value for the cost function.

We run the video compression example using the Obama Victory
Speech video3 with a resolution of 854×480 pixels and with di�erent
combinations of goals д1 and д2, using a prediction horizon of
L = 4. Speci�cally, we run all possible combinations where д1 ∈
{0.7, 0.8, 0.9} and д2 ∈ {8000, 15000}. Notice that this is a stress
test. In fact, even se�ing the values of quality, sharpen and noise
that would achieve the lowest possible SSIM, this value hardly ever
3h�ps://www.youtube.com/watch?v=nv9NwKAjmt0

https://www.youtube.com/watch?v=nv9NwKAjmt0

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany M. Maggio, A.V. Papadopoulos, A. Filieri, H. Ho�mann

becomes lower than 0.75, therefore the 0.7 setpoint is not feasible.
Also, the goals’ con�icting nature makes it impossible to reach most
goal combinations simultaneously. For example, when д1 = 0.9,
the frame size o�en exceeds 15000.

Figure 3 shows the six di�erent experiments with the di�erent
values ofд1 andд2. In these experiments, there are only two feasible
values for the setpoints: (1) д1 = 0.8 and д2 = 8000 (Figure 3b) and
(2) д1 = 0.9 and д2 = 15000 (Figure 3f). In all others it is impossible
to achieve both the SSIM and frame size setpoints. �erefore, as
shown in the �gures, the controller opts to reach д2, which has an
higher relevance: w2 × д2. In the �rst row, Figure 3a shows that д2
and дm2 are basically equal, while the achieved SSIM дm1 is higher
than desired. �e encoding quality a1 is kept low and there is no
active noise compensation, while the sharpen value a2 varies during
the execution. Figure 3b shows that both the SSIM and the size
setpoint are achieved using some sharpening, a small amount of
noise reduction, and a quality similar to that used for the previous
combination of setpoints. When the SSIM goal is increased – so,
information loss should be diminished – even more noise correction
and sharpening is added, as shown in Figure 3c. �e setpoint д1 is
reached for some frames, but overall the size limit (and its heavier
weight in the cost function) leads to SSIM below the setpoint.

Figures 3d, 3e and 3f show the goal д1 = 0.9 and д2 = 15000
can be achieved by selecting the values of a1, a2 and a3 and the
controller therefore selects appropriate values to achieve both the
setpoints. In the opposite case (Figures 3d and 3e) the size setpoint
is achieved, while the similarity index is kept as close as possible.

5.2 Secure Radar System
�is second case study features a cyber-physical system: a secure
radar. �e radar moves on a mobile platform, possibly a drone, and
detects small boats that may be pirates [11]. Once the radar has
compiled a list of possible pirates, it encrypts it using the Advanced
Encryption Standard (AES) [6], and sends it to a centralized location
where multiple lists are merged. Encryption is necessary to avoid
providing information on whether pirates have been detected.

�e secure radar must meet performance goals for both the radar
and the encryption. �e �rst goal is to ensure that the so�ware
processes frames at the same rate as the sensor produces them, the
second is to ensure timely delivery to the central entity that merges
the lists. We meet these goals with two actuators: the number of
cores allocated to the radar system (all additional cores can be used
by encryption) and the processor’s clockspeed.

Speci�cally, the set of actuators A consists of:
• a1 is the number of cores assigned to the radar signal processing

application. We measure this as a percentage of the available
cores, and our test platform has 12. We assume a minimum
of one core must be assigned to the radar. We therefore set
a1,min = 1/12 and a1,max = 1, any cores not used by the radar
processing can be used by encryption. We assign d1 = 1.

• a2 is a single clock speed to be used for the processor. Our
platform, in fact, does not allow us to set a clock speed per core.
We measure this value as a percentage, where the hardware
supports a minimum speed of 1.6 GHz and a maximum speed of
3.201 GHz4, a2,min = 0.499 and a2,max = 1. We assign d2 = 1,

4Technically, se�ing the maximum speed turns frequency control over to hardware
which can use Intel’s TurboBoost to occasionally increase speed beyond the listed
maximum for brief periods of time.

5
10

0.15RP
[p
ul
se
s/
s]

дm 1 д1

5
10

0.15

ER
[M

B/
s]

дm 2 д2

0.05
0.10
0.15

co
re
s

[%
] a1

50 100 150
0.50
0.70
0.90

control periods

sp
ee
d

[%
]

a2

Figure 4: Results for the radar experiment.

since we do not want to enforce any actuators precedence.
�e set of goals G includes:
• д1, the Radar Performance (RP) measured in radar pulses pro-

cessed per second. We use an existing radar benchmark [11],
which can operate in many di�erent processing modes. For this
case study we con�gure the radar so that it needs to process 10
pulses per second to keep pace with the sensor. Also, w1 = 1.

• д2, the Encryption Rate (ER) of the AES so�ware. We use
OpenAES5 for encryption and we measure its rate in MB/s.
For each possible pirate in each pulse we need to maintain
an encryption rate of approximately 0.8 MB/s. To keep up
with the radar, we need 8 MB/s per target; i.e. the required
encryption rate will vary as the number of targets changes. Our
control system treats this as a change in setpoint and handles it
automatically. Finally, we set w2 = 1 to not privilege any goal.

�e combination of actuators and goals used in this case study
demonstrates one of the key bene�ts of the proposed approach.
Prior work presented a similar case study of a secure radar system
[16]. �at case study used a hierarchical control scheme to imple-
ment MIMO control and required that both cores and clockspeed
be used to manage the radar’s performance. �is policy leaves no
system-level actuators for encryption, which instead is required to
switch to a shorter, and less secure, key length to meet encryption
performance requirements. In contrast, the technique presented
in this paper allows actuators to be used to meet multiple goals.
Speci�cally, clockspeed will be used to meet both goals, meaning
that we do not need to reduce security to maintain encryption
performance using the proposed technique.

We run the secure radar with the speci�ed goals and actuators
and a prediction horizon of L = 5. It must maintain a radar perfor-
mance of 10 pulses/s. Initially, the radar detects a single possible
pirate, which requires an encryption performance of 8 MB/s. A�er
100 control periods, a second possible pirate is detected. �is addi-
tional target does not a�ect the radar performance (the same signal
processing algorithms are used), but it requires the encryption
performance to rise to 16 MB/s.

Figure 4 shows the results of this case study. �ere are four
charts, the top shows the radar performance, the second shows
AES performance, the third shows the percentage of cores assigned
5h�p://nalramli.com/OpenAES/

Automated Control of Multiple So�ware Goals using Multiple Actuators ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

to the radar, and the �nal chart shows the percentage of the maxi-
mum clockspeed used. Solid red horizontal lines show the д1 and д2
for each of the radar and AES; д1 is a constant and д2 changes when
the second target is detected. As shown in the �gure, the controller
meets both goals, quickly pulling performance down to the desired
level for each goal. When the second possible pirate appears, the
controller reacts by both increasing clockspeed (which increases
performance for both applications) and removing one core from
the radar, making it available to AES. As noted above, this use
of actuators that a�ect both goals simultaneously is not possible
with prior approaches like [16, 50]. �is demonstrated ability to
meet multiple goals simultaneously with multiple actuators is a
unique contribution of our approach. We note that there is some
small amount of oscillatory behavior here due to our use of discrete
actuators in this example. �ere are 12 cores and 12 clockspeeds in
the system and when the controller produces a continuous actua-
tion value, we select the highest discrete se�ing above that value.
�erefore, this example also demonstrates the methodology works
even with discrete actuators.

5.3 Multi-Objective Dynamic Binding
Dynamic binding is a critical means of adapting Service Oriented
Applications (SOAs) [7]. �e binding mechanism selects a service
to process an incoming request from a set of functionally equivalent
alternatives, based on quality criteria. In this experiment, we adopt
the same se�ings of [16]; i.e., the controller has three goals in
di�erent, con�icting, dimensions: reliability, performance, and cost.

�e controller binds each request to one of three services, and
for each service it decides among �ve di�erent service levels. A
higher service level reduces the response time (performance) at a
higher cost. Also, we use this case study to show how the solution
scales with the size of the problem. �e controller uses a prediction
horizon of L = 100. Given the prediction horizon and the size of
the involved matrices, we expect the overhead of the controller
execution to be quite high. Because of that, we also executed the
controller with the real-time optimization mentioned in Section 4
(se�ing ∆ak+1 = ∆ak+2 = . . . = ∆ak+L−1 = 0), to show the
di�erence in the resulting trace. In the following we distinguish
between the MPC solution and the MPC fast solution, which uses
the real-time optimization.

More precisely, the set of actuators A is speci�ed as follows.
• a1 is the fraction of requests to be served by Service 1. a1,min =

0.0, a1,max = 1.0, d1 = 100 (MPC) and d1 = 2000 (MPC fast).
• a2 is the fraction of requests to be served by service 2, among

those not served by implementation 1; i.e., Service 2 will serve
a fraction a2 · (1 − a1) of the incoming requests. a2,min = 0.0,
a2,max = 1.0, d2 = 100 and d1 = 2000 for MPC fast. Service 3
will serve (1 − a2) · (1 − a1) requests. While a linear selection
model can be de�ned, we deliberately used this more complex
selection model (from [16]) to demonstrate how the controller
handles nonlinear transfer functions by automatic, higher-order
linear approximations.

• a3 is the service level requested to Service 1. a3,min = 1,
a3,max = 5, d3 = 1 for the MPC solution and d3 = 20 for
MPC fast. �e service levels are integer numbers. �e con-
troller computes a real value; this value is approximated using
a pulse width modulation [36] over an actuation window of 4
time steps. For example, if the reference is 3.73, the actuator

will hold level 4 for three steps and level 3 for one step, obtain-
ing an average of 3.75 over the actuation window, which is the
closest achievable approximation. �e feedback mechanism
will take care of the approximation error automatically. �e
same approximation is used also for a4 and a5.

• a4 is the service level requested to Service 2a4,min = 1, a4,max =
5, d4 = 1 for the MPC solution and d4 = 20 for MPC fast.

• a5 is the service level requested to Service 3a5,min = 1, a5,max =
5, d5 = 1 for the MPC solution and d5 = 20 for MPC fast.

�e goals in [16] are prioritized: the controller achieves the
reliability goal �rst, then performance, and �nally minimizes the
cost in best e�ort. �e proposed MPC controller has no notion
of priority, thus we will set the weight of each goal to practically
approximate the prioritization scheme of [16]. More precisely, the
set of goals G is the following:
• д1 is the user-perceived reliability, de�ned as the fraction of

requests served successfully over those received since the last
control decision. �e weight associated to this goal is w1 = 10

• д2 is the performance, quanti�ed by the end-to-end response
time (in milliseconds). To quantify the error, we measure the av-
erage response time since the last control decision. �e weight
of д2 is w2 = 10−1

• д3 is the cost (in 10−2$). In [16], the cost is a free dimension to
be minimized in best e�ort. To emulate this minimization goal,
we will set д3 close to 0 (non zero to avoid numerical issues);
to approximate the best e�ort priority, we give the goal a low
weight: w3 = 10−10.

Each service is con�gured by three parameters: nominal reliabil-
ity ri , performance coe�cient ti , and cost coe�cient ci . For each
incoming request, the service implementation �ips a fair coin to
decide whether to raise an exception or not, according to the nomi-
nal reliability ri . �e processing time for each request is sampled
from an exponential distribution with mean ti/(l

2
i) where li is the

service level at the time of request processing. Notably, the time
required to process the request is an inverse quadratic function of
the service level, introducing another nonlinearity in the transfer
function. �e cost of processing an incoming request is ci · li . �e
nominal values ri , ti , and ci are not known by the controller, which
can only measure: the time to process a request, how many requests
are successful or raise an exception, and the cost of each request.

�e experimental results are shown in Figure 5. �e con�gura-
tion parameters of the three services are the following: {r1 = .9, t1 =
2, c1 = 15}, {r2 = .65, t2 = 10, c2 = 10}, {r2 = .45, t2 = 20, c2 = 5}.
�e experiments last 800 control periods. �e setpoints for reli-
ability and performance are changed during the experiment. In
the period 0-300, д1 and д2 are feasible and achieved with minimal
cost; similarly in 300-420, where the reliability setpoint changed.
In the period 420-650, an infeasible goal is requested for reliability
and the controller goes as close as possible to its satisfaction, while
achieving the performance goal. At time 520, the required response
time is reduced; the controller achieves this harder goal, though at
a higher cost. Finally, in the period 650-800 the reliability goal is
also raised; the high reliability and low response time are achieved,
though with an higher cost. Finally, as a comparison between the
MPC and the MPC fast solution, one can see the di�erence in the
cost (the last plot of Figure 5), around the control period 650, when
the cost for the solution presented in [16] is the highest of the three,
followed bu the non-optimal solution computed by the the MPC

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany M. Maggio, A.V. Papadopoulos, A. Filieri, H. Ho�mann

0

50

100

Re
l.

[%
]

д1,2,3 дm 1,2,3 [16]
дm 1,2,3 MPC дm 1,2,3 MPC fast

0

4.5

0.9

Pe
rf.

[m
s]

300 420 520 650 800
0

15

0.30

control periods

Co
st

[1
0−

2 $
]

Figure 5: Results for the multi-objective dynamic binder ex-
periment.

fast solver. �e best of the three costs is the one achieved by the
MPC solution presented in this paper.

As a comparison, the performance of the controller from [16] is
also reported in Figure 5. Due to its global optimization capabilities,
the MPC controller achieves the reliability and performance goals
with a minor cost. �e total cost for the solution presented in [16] is
138.49$, for the MPC solution is 124.82$ and for the MPC fast solu-
tion is 130.76$, which corresponds to a save of 1.71 · 10−2$ per time
istant for the MPC solution – 9.87% cheaper – and of 0.97 ·10−2$ for
MPC fast – 5.59% cheaper. Indeed, trying to achieve the three goals
with a cascade schema, according to the prioritization, [16] can-
not guarantee global optimality on all the three dimensions at the
same time. Finally, the MPC controller synthesis requires a much
smaller learning time, exploring only a small number of system
con�gurations. Notably, [16] uses an online learning mechanism,
which can detect changes in the services’ performance and adapt
the controller online. While in this paper we focus on a static model
construction, recursive state space identi�cation [37] can be used
to re�ne the model online, as well as using the measurements from
the running system to train a new state space model in parallel and
switching when a change is detected [14].

5.4 Control Computation Overhead
Finally, we analyze the cost to compute the control signal for the
three given case studies. Figure 6 shows the empirical distribution
of the computation times for 10000 executions of the controller
code and Table 1 reports some statistics. As can be seen, the video
and radar case studies—presented respectively in Section 5.1 and
5.1—are quite fast, with computation times less than 10ms . On the
contrary, the optimal solution for the dynamic binding case study—
presented in Section 5.3—takes a quarter of a second. Indeed, the
dynamic binding problem is costlier because of the longer prediction
horizon. Due to the longer execution times, the dynamic binder is
a good case study for the optimizations discussed in Section 4—in
particular, constraining the solver to �nd a solution for the current
time only while se�ing the actuator changes for future time instants
in the prediction horizon to zero. �e faster solution is not optimal,
as shown in Figure 5—but it trades optimality for computation
time. In fact, the computation times for the MPC fast algorithm
is comparable with the times obtained for the other case studies,
where the problem size is much smaller.

Table 1: Statistics on Ovehread Data.
Case Study Average [s] Standard Deviation [s]
Video 0.00305 0.00074
Radar 0.00471 0.00091
Dynamic Binder 0.20030 0.02332
Dynamic Binder (fast) 0.00184 0.00036

0.002 0.006 0.010
0.00
0.50
1.00

overhead [s]

Video

0.002 0.006 0.010
0.00
0.50
1.00

overhead [s]

Radar

0.0 0.1 0.2 0.3 0.4 0.5
0.00
0.50
1.00

overhead [s]

Dynamic Binder

0.002 0.006 0.010
0.00
0.50
1.00

overhead [s]

Dynamic Binder (fast)

Figure 6: Empirical distribution of the duration of the con-
trol signal computation for given case studies.

Whenever a lower computation time is required, the optimiza-
tion can be turned on with a boolean �ag in the code for the con-
troller initialization, making our proposal �exible and capable of
accommodating di�erent requirements and execution scenarios.

6 CONCLUSION
We propose a formal method to design self-adaptive so�ware ca-
pable of targeting multiple objectives simultaneously. Unlike prior
work, our approach exploits all the available tuning parameters that
a�ect the so�ware behavior. Our method is based on system identi-
�cation and control theory. �rough experimentation, it builds an
equation-based model of the so�ware system and uses that model
to automatically synthesize a model predictive controller. �e use
of control theory allows us to distinguish between feasible and
infeasible objectives, and formally guarantee that the goals are
reached whenever feasible. Compared with the state of the art,
this is the �rst contribution that simultaneously uses all available
actuators to tackle all objectives.

We combined the theoretical guarantees with tests on di�erent
domains, from dynamic binding to radar positioning and video
compression. In all our case studies, our proposal has shown that
the method is functional and versatile. From the technical stand-
point, this advancement opens new perspective because it formally
exploits the actuators’ inter-dependencies on multiple goals.

ACKNOWLEDGEMENTS
�is work was partially supported by the Swedish Research Council
(VR) for the projects “Cloud Control” and “Power and tempera-
ture control for large-scale computing infrastructures”, and by the
Swedish Foundation for Strategic Research under the project “Fu-
ture factories in the cloud (FiC)” with grant number GMT14-0032.
Henry Ho�mann’s work on this project was partially funded by the
U.S. Government under the DARPA BRASS program, by the Dept.
of Energy under DOE DE-AC02-06CH11357, by the NSF under CCF
1439156, and by a DOE Early Career Award.

Automated Control of Multiple So�ware Goals using Multiple Actuators ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

REFERENCES
[1] Konstantinos Angelopoulos, Alessandro Vi�orio Papadopoulos, Vı́tor E.

Silva Souza, and John Mylopoulos. Model predictive control for so�ware systems
with cobra. SEAMS ’16, pages 35–46. ACM, 2016.

[2] Luciano Baresi, Sam Guinea, Alberto Leva, and Giovanni �a�rocchi. A discrete-
time feedback controller for containerized cloud applications. In Proceedings of
the 2016 11th Joint Meeting on Foundations of So�ware Engineering, FSE 2016,
2016.

[3] Yuriy Brun, Giovanna Marzo Serugendo, Cristina Gacek, Holger Giese, Holger
Kienle, Marin Litoiu, Hausi Müller, Mauro Pezzé, and Mary Shaw. Engineering
self-adaptive systems through feedback loops. In So�ware Engineering for Self-
Adaptive Systems, pages 48–70. 2009.

[4] E.F. Camacho and C. Bordons. Model Predictive Control. Springer London, 2004.
[5] Be�y Cheng, Rogerio de Lemos, Holger Giese, Paola Inverardi, Je� Magee, Jesper

Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna
Di Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein, Cristina Gacek,
Kurt Geihs, Vincenzo Grassi, Gabor Karsai, Holger Kienle, Je� Kramer, Marin
Litoiu, Sam Malek, Ra�aela Mirandola, Hausi Müller, Sooyong Park, Mary Shaw,
Ma�hias Tichy, Massimo Tivoli, Danny Weyns, and Jon Whi�le. So�ware engi-
neering for self-adaptive systems: A research roadmap. In So�ware Engineering
for Self-Adaptive Systems. Springer, 2009.

[6] Joan Daemen and Vincent Rijmen. �e Design of Rijndael. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2002.

[7] Elisabe�a Di Ni�o, Carlo Ghezzi, Andreas Metzger, Mike Papazoglou, and Klaus
Pohl. A journey to highly dynamic, self-adaptive service-based applications.
Automated So�ware Engineering, 15(3-4):313–341, 2008.

[8] Yixin Diao, Joseph L. Hellerstein, Sujay Parekh, Rean Gri�th, Gail Kaiser, and
Dan Phung. Self-managing systems: A control theory foundation. ECBS. IEEE
CS, 2005.

[9] Nicolas D’Ippolito, Vı́ctor Braberman, Je� Kramer, Je� Magee, Daniel Sykes, and
Sebastian Uchitel. Hope for the best, prepare for the worst: Multi-tier control for
adaptive systems. In Proceedings of the 36th International Conference on So�ware
Engineering, ICSE 2014, pages 688–699, New York, NY, USA, 2014. ACM.

[10] Xavier Dutreilh, Aurélien Moreau, Jacques Malenfant, Nicolas Rivierre, and Isis
Truck. From data center resource allocation to control theory and back. CLOUD,
pages 410–417. IEEE CS, 2010.

[11] Anne Farrell and Henry Ho�mann. Meantime: Achieving both minimal energy
and timeliness with approximate computing. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16), pages 421–435, Denver, CO, June 2016. USENIX
Association.

[12] Antonio Filieri, Carlo Ghezzi, Alberto Leva, and Martina Maggio. Self-adaptive
so�ware meets control theory: A preliminary approach supporting reliability
requirements. ASE, pages 283–292. IEEE CS, 2011.

[13] Antonio Filieri, Carlo Ghezzi, and Giordano Tamburrelli. Run-time e�cient
probabilistic model checking. In Proceedings of the 33rd International Conference
on So�ware Engineering, ICSE ’11, pages 341–350, New York, NY, USA, 2011.
ACM.

[14] Antonio Filieri, Lars Grunske, and Alberto Leva. Lightweight adaptive �ltering
for e�cient learning and updating of probabilistic models. In Proceedings of the
37th International Conference on So�ware Engineering, ICSE 2015, pages 200–211.
IEEE, May 2015.

[15] Antonio Filieri, Henry Ho�mann, and Martina Maggio. Automated design of
self-adaptive so�ware with control-theoretical formal guarantees. In Proceedings
of the 36th International Conference on So�ware Engineering, ICSE, pages 299–310,
New York, NY, USA, 2014. ACM.

[16] Antonio Filieri, Henry Ho�mann, and Martina Maggio. Automated multi-
objective control for self-adaptive so�ware design. In Proceedings of the 2015
10th Joint Meeting on Foundations of So�ware Engineering, ESEC/FSE 2015, pages
13–24, New York, NY, USA, 2015. ACM.

[17] Antonio Filieri, Martina Maggio, Konstantinos Angelopoulos, Nicolas D’Ippolito,
Ilias Gerostathopoulos, Andreas Hempel, Henry Ho�mann, Pooyan Jamshidi,
Evangelia Kalyvianaki, Cristian Klein, Filip Krikava, Sasa Misailovic, Alessan-
dro Vi�orio Papadopoulos, Suprio Ray, Molzam Shari�oo, Amir, Stepan Shevtsov,
Mateusz Ujma, and �omas Vogel. So�ware Engineering Meets Control �eory.
In Proceedings of the 10th International Symposium on So�ware Engineering for
Adaptive and Self-Managing Systems, Firenze, Italy, May 2015.

[18] Antonio Filieri, Martina Maggio, Konstantinos Angelopoulos, Nicolás D’ippolito,
Ilias Gerostathopoulos, Andreas Berndt Hempel, Henry Ho�mann, Pooyan
Jamshidi, Evangelia Kalyvianaki, Cristian Klein, Filip Krikava, Sasa Misailovic,
Alessandro V. Papadopoulos, Suprio Ray, Amir M. Shari�oo, Stepan Shevtsov,
Mateusz Ujma, and �omas Vogel. Control strategies for self-adaptive so�ware
systems. ACM Trans. Auton. Adapt. Syst., 11(4):1–31, February 2017.

[19] Antonio Filieri, Giordano Tamburrelli, and Carlo Ghezzi. Supporting self-
adaptation via quantitative veri�cation and sensitivity analysis at run time.
IEEE Transactions on So�ware Engineering, 42(1):75–99, January 2016.

[20] H. Ghanbari, M. Litoiu, P. Pawluk, and C. Barna. Replica placement in cloud
through simple stochastic model predictive control. InCloud Computing (CLOUD),
2014 IEEE 7th International Conference on, pages 80–87, June 2014.

[21] Graham C. Goodwin, Stefan F. Graebe, and Mario E. Salgado. Control System

Design. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2000.
[22] Mark Harman, Yue Jia, William B. Langdon, Justyna Petke, Iman Hemati

Moghadam, Shin Yoo, and Fan Wu. Genetic improvement for adaptive so�-
ware engineering (keynote). SEAMS, pages 1–4. ACM, 2014.

[23] Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury. Feedback
Control of Computing Systems. John Wiley & Sons, 2004.

[24] Henry Ho�mann. Coadapt: Predictable behavior for accuracy-aware applications
running on power-aware systems. In 26th Euromicro Conference on Real-Time
Systems, ECRTS 2014, Madrid, Spain, July 8-11, 2014, ECRTS 2014, pages 223–232,
Washington, DC, USA. IEEE Computer Society.

[25] Henry Ho�mann. Jouleguard: energy guarantees for approximate applications.
In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP 2015,
Monterey, CA, USA, October 4-7, 2015, pages 198–214, 2015.

[26] Henry Ho�mann, Martina Maggio, Marco D. Santambrogio, Alberto Leva, and
Anant Agarwal. A generalized so�ware framework for accurate and e�cient
management of performance goals. EMSOFT, pages 1–10. IEEE Press, 2013.

[27] Connor Imes, David H. K. Kim, Martina Maggio, and Henry Ho�mann. POET: a
portable approach to minimizing energy under so� real-time constraints. In 21st
IEEE Real-Time and Embedded Technology and Applications Symposium, Sea�le,
WA, USA, April 13-16, 2015, pages 75–86, 2015.

[28] J.L. Jerez, P.J. Goulart, S. Richter, G.A. Constantinides, E.C. Kerrigan, and
M. Morari. Embedded online optimization for model predictive control at mega-
hertz rates. Automatic Control, IEEE Transactions on, 59(12):3238–3251, Dec
2014.

[29] Juan L. Jerez, Eric C. Kerrigan, and George A. Constantinides. A sparse and
condensed QP formulation for predictive control of LTI systems. Automatica,
48(5):999–1002, 2012.

[30] Christos Karamanolis, Magnus Karlsson, and Xiaoyun Zhu. Designing control-
lable computer systems. HOTOS, pages 9–15. USENIX Association, 2005.

[31] David HK Kim, Connor Imes, and Henry Ho�mann. Racing and pacing to idle:
�eoretical and empirical analysis of energy optimization heuristics. In Cyber-
Physical Systems, Networks, and Applications (CPSNA), 2015 IEEE 3rd International
Conference on, pages 78–85. IEEE, 2015.

[32] Basil Kouvaritakis and Mark Cannon. Model Predictive Control – Classical, Robust
and Stochastic. Springer International Publishing, 2016.

[33] Je� Kramer and Je� Magee. Self-managed systems: An architectural challenge.
In 2007 Future of So�ware Engineering, FOSE, pages 259–268, Washington, DC,
USA, 2007. IEEE CS.

[34] D. Kusic, J.O. Kephart, J.E. Hanson, Nagarajan Kandasamy, and Guofei Jiang.
Power and performance management of virtualized computing environments
via lookahead control. In Autonomic Computing, 2008. ICAC ’08. International
Conference on, June 2008.

[35] Dara Kusic and Nagarajan Kandasamy. Risk-aware limited lookahead control
for dynamic resource provisioning in enterprise computing systems. Cluster
Computing, 10(4):395–408, 2007.

[36] William S Levine. �e control handbook. CRC, 1996.
[37] Lennart Ljung. System Identi�cation: �eory for the User. Prentice Hall PTR,

Upper Saddle River, NJ, USA, 1999.
[38] Chenyang Lu, Ying Lu, Tarek F. Abdelzaher, John A. Stankovic, and Sang Hyuk

Son. Feedback control architecture and design methodology for service delay
guarantees in web servers. IEEE Trans. Parallel Distrib. Syst., 17(9):1014–1027,
2006.

[39] J.M. Maciejowski. Predictive Control: With Constraints. Prentice Hall, 2002.
[40] M. Maggio, H. Ho�mann, M.D. Santambrogio, A Agarwal, and A Leva. Control-

ling so�ware applications via resource allocation within the heartbeats frame-
work. CDC, pages 3736–3741. IEEE, 2010.

[41] M. Maggio, H. Ho�mann, M.D. Santambrogio, A. Agarwal, and A. Leva. Power
optimization in embedded systems via feedback control of resource allocation.
IEEE Trans. Control Syst. Technol., 21(1):239–246, 2013.

[42] Martina Maggio, Alessandro Vi�orio Papadopoulos, Antonio Filieri, and Henry
Ho�mann. Self-adaptive video encoder: Comparison of multiple adaptation
strategies made simple. In Proceedings of the 12th International Symposium on
So�ware Engineering for Adaptive and Self-Managing Systems, SEAMS ’17, pages
123–128, Piscataway, NJ, USA, 2017. IEEE Press.

[43] Martina Maggio, Alessandro Vi�orio Papadopoulos, Antonio Filieri, and Henry
Ho�mann. Self-Adaptive Video Encoder: Comparison of Multiple Adaptation
Strategies Made Simple (Artifact). Dagstuhl Artifacts Series, 3(1):2:1–2:3, 2017.

[44] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. Proactive
self-adaptation under uncertainty: A probabilistic model checking approach. In
Proceedings of Foundations of So�ware Engineering, ESEC/FSE 2015, pages 1–12,
New York, NY, USA, 2015. ACM.

[45] Simon Oberthür, Carsten Böke, and Björn Griese. Dynamic online recon�gura-
tion for customizable and self-optimizing operating systems. EMSOFT. ACM,
2005.

[46] T. Patikirikorala, A Colman, J. Han, and Liuping Wang. A systematic sur-
vey on the design of self-adaptive so�ware systems using control engineering
approaches. In So�ware Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2012 ICSE Workshop on, SEAMS, pages 33–42, June 2012.

[47] Raghavendra Pothukuchi, Amin Ansari, Petros Voulgaris, and Josep Torrellas.

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany M. Maggio, A.V. Papadopoulos, A. Filieri, H. Ho�mann

Using multiple input, multiple output formal control to maximize resource
e�ciency in architectures. 2016 ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA), 00:658–670, 2016.

[48] S. Richter, C. N. Jones, and M. Morari. Computational complexity certi�cation
for real-time mpc with input constraints based on the fast gradient method. IEEE
Transactions on Automatic Control, 57(6):1391–1403, June 2012.

[49] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive so�ware: Landscape and
research challenges. ACM Trans. Auton. Adapt. Syst., 4(2), May 2009.

[50] Stepan Shevtsov and Danny Weyns. Keep it simplex: Satisfying multiple goals
with guarantees in control-based self-adaptive systems. In Proceedings of the
2016 11th Joint Meeting on Foundations of So�ware Engineering, FSE 2016, 2016.

[51] Sebastian Uchitel, Victor A. Braberman, and Nicolas D’Ippolito. Runtime con-
troller synthesis for self-adaptation: Be discrete! In Proceedings of the 11th
International Symposium on So�ware Engineering for Adaptive and Self-Managing
Systems, SEAMS ’16, pages 1–3, New York, NY, USA, 2016. ACM.

[52] G. van der Veen, J.-W. van Wingerden, M. Bergamasco, M. Lovera, and M. Ver-
haegen. Closed-loop subspace identi�cation methods: an overview. Control
�eory Applications, IET, 7(10), July 2013.

[53] Michel Verhaegen and Vincent Verdult. Filtering and System Identi�cation: A
Least Squares Approach. Cambridge University Press, New York, NY, USA, 2012.

[54] Lixi Wang, Jing Xu, H.A. Duran-Limon, and Ming Zhao. Qos-driven cloud

resource management through fuzzy model predictive control. In Autonomic
Computing (ICAC), 2015 IEEE International Conference on, pages 81–90, July 2015.

[55] Yang Wang and S. Boyd. Fast model predictive control using online optimization.
Control Systems Technology, IEEE Transactions on, 18(2), March 2010.

[56] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assess-
ment: from error visibility to structural similarity. IEEE Transactions on Image
Processing, 13(4):600–612, 2004.

[57] Danny Weyns, M. Usman I�ikhar, Didac Gil de la Iglesia, and Tanvir Ahmad. A
survey of formal methods in self-adaptive systems. C3S2E, pages 67–79, 2012.

[58] Chu-Pan Wong, Christian Kästner, �omas �üm, and Gunter Saake. On essential
con�guration complexity: Measuring interactions in highly-con�gurable systems
jens meinicke. ASE. IEEE CS, 2016.

[59] Eric Yuan, Naeem Esfahani, and Sam Malek. A systematic survey of self-
protecting so�ware systems. ACM Trans. Auton. Adapt. Syst., 8(4), 2014.

[60] Melanie N. Zeilinger, Davide M. Raimondo, Alexander Domahidi, Manfred
Morari, and Colin N. Jones. On real-time robust model predictive control. Auto-
matica, 50(3):683–694, 2014.

[61] Qi Zhang, �anyan Zhu, M.F. Zhani, and R. Boutaba. Dynamic service placement
in geographically distributed clouds. In Distributed Computing Systems (ICDCS),
2012 IEEE 32nd International Conference on, pages 526–535, June 2012.

	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	4 Formal Assessment
	5 Experimental evaluation
	5.1 Video Compression
	5.2 Secure Radar System
	5.3 Multi-Objective Dynamic Binding
	5.4 Control Computation Overhead

	6 Conclusion
	References

