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Abstract In a legendary technical report, the Google founders sketched a wisdom-of-
crowds justification for PageRank arguing that the algorithm, by aggregating incoming
links to webpages in a sophisticated way, tracks importance (quality, relevance, etc.) on
the web. On this reading of the report, webpages that have a high impact as measured
by PageRank are supposed to be important webpages in a sense of importance that is
not reducible to mere impact or popularity. In this paper, we look at the state of the art
regarding the more precise statement of the thesis that PageRank and other similar in-
link-based ranking algorithms can be justified by reference to the wisdom of crowds.
We argue that neither the influential preferential attachment models due to Barabási and
Albert in (Science 286:509-512, 1999) nor the recent model introduced by Masterton
et al. in (Scientometrics 106:945–966, 2016) allows for a satisfactory wisdom-of-
crowds justification of PageRank. As a remedy, we suggest that future work should
explore Bdual models^ of linking on the web, i.e., models that combine the two
previous approaches. Dual models view links as being attracted to both popularity
and importance.
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1 Introduction

In a legendary technical report, the Google founders gave what looks like an informal
wisdom-of-crowds justification for PageRank arguing that the algorithm tracks impor-
tance on the web by aggregating in-links in a sophisticated way (Brin et al. 1998). We
refer to this thesis as wisdom-of-crowds justification for PageRank (WCJPR). In this
paper, we look at the state of the art regarding a precise statement of the WCJPR thesis
and its proof.

Our first point is that while the influential preferential attachment model due to
Barabási and Albert (1999) is, in a minimalist sense, a realistic model of the web in that
it gives rise to scale-free networks not dissimilar to the WWW, it does not allow for a
convincing formulation, much less a proof, of the WCJPR thesis. Our second point is
that while the recent linking model proposed by Masterton et al. (2016), which was
explicitly introduced to account for the Google founders’ reasoning, does allow for a
formulation, and proof of the WCJPR thesis, it is not a realistic model of the web
because although it can generate scale-free networks of the right kind for the WWW, it
does so for the wrong reasons. Thus, there is at present, to the best of our knowledge,
no fully satisfactory formulation and proof of the WCJPR thesis.

As a remedy, we suggest that future work should explore Bdual models^ of the web,
i.e., models that combine preferential attachment and the Masterton, Olsson, and
Angere (MOA) model into one account of the web. We conjecture that there are dual
models that are realistic models of the web and at the same time allow for the rigorous
formulation and proof of the WCJPR thesis.

2 Background

The PageRank algorithm of Google is a method for evaluating the relative importance
of webpages. Everything else being equal, the more webpages that link to a given page,
the higher that page’s PageRank. A page’s PageRank is further increased if the
webpages linking to it have higher PageRanks themselves. Finally, a page’s PageRank
decreases as the profligacy of linking of those pages that link to it increases. Thus, the
PageRank of a webpage depends not only on the local topology of the web in which it
occurs but also upon the global topology. PageRank should be contrasted with the
simpler In-Degree algorithm which simply ranks webpages by counting their respective
numbers of incoming links. What we will say in the following about the justification of
PageRank, or lack thereof, applies equally to In-Degree. However, for the sake of
definiteness, we will focus on PageRank. Much of what we say will also generalize to
citation-based algorithms for ranking scientific publications. However, we will leave
this obvious parallel unexplored for the purposes of the present investigation. For the
details of the PageRank algorithm (US patent 6,285,999), see Brin et al. (1998).
Franceschet (2011) and Wills (2006) have useful popular introductions.

PageRank is not the only factor determining the ranking of a given webpage in
Google. There are reportedly some 300 further Bquality signals^ that determine the
ranking of a particular webpage. However, all signals are not of the same importance,
and PageRank is believed to still play a significant initial role in Google’s rankings of
search results.
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One intuitive motivation for PageRank invites us to consider the case of a Brandom
surfer^ (Brin and Page 1998; see also Brin et al. (1998)):

BWe assume there is a ‘random surfer’ who is given a webpage at random and keeps
clicking on links, never hitting ‘back’ but eventually gets bored and starts on another
random page. The probability that the random surfer visits a page is its PageRank.^

This however is purely Bweb-internal^ justification of PageRank: a webpage with a
high PageRank has a central position in the web seen as a graph structure of nodes and
links. There is no claim in the random surfer justification that having a central position
in a webgraph should correspond to being of great importance or quality in any more
substantial sense of these terms.

A more intriguing attempt at justifying PageRank refers to a proposed analogy with
scientific citation (Brin and Page 1998):

BAnother intuitive justification is that a page can have a high PageRank if there are
many pages that point to it, or if there are some pages that point to it and have a high
PageRank. Intuitively, pages that are well cited from many places around the web are
worth looking at.^

Google’s homepage identifies an Bunderlying assumption^ behind the citation
analogy:

BPageRank works by counting the number and quality of links to a page to
determine a rough estimate of how important the website is. The underlying assump-
tion is that more important websites are likely to receive more links from other
websites.^1

Similarly, Surowiecki (2004, p. 16) attributes the following quote to Google:
BPageRank capitalizes on the uniquely democratic characteristic of the web by

using its vast link structure as an organizational tool. In essence, Google interprets a
link from page A to page B as a vote, by page A, for page B. Google assesses a page’s
importance by the votes it receives. But Google looks at more than sheer volume of
votes, or links; it also analyzes the page that casts the vote. Votes cast by pages that
are themselves ‘important’ weigh more heavily and help to make other pages
‘important’.^

The claim is that while one link/vote by itself may not be a very strong indicator of
importance, the aggregation of many links/votes is. PageRank, moreover, is a
(sophisticated) algorithm for aggregating many links/votes which takes into account
the impact of the voting webpage. Therefore, it is concluded that webpages with high
PageRanks tend to be more important than other webpages.

This is a Bweb-external^ justification of PageRank that motivates the algorithm by
referring to its alleged capacity for tracking importance where the latter is understood in
a web-external sense (as information quality, truthiness, informativity, authority, and the
like). It is also a wisdom-of-crowds justification. Wisdom of crowds here refers to the
idea that B[e]ven if most of the people within a group are not especially well-informed
or rational, [the group] can still reach a collectively wise decision^ (Surowiecki, 2004,
p. xiii–xiv). Surowiecki (2004, p. xiv) is explicit about Google drawing on the wisdom
of crowds:

1 Quoted from http://www.google.com/competition/howgooglesearchworks.html, January 3, 2014. This link
is no longer valid as of September 12, 2016; however, this passage is independently cited in http://www.
wikiweb.com/page-rank/ and http://en.wikipedia.org/wiki/PageRank.
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BThis intelligence, or what I’ll call ‘the wisdom of crowds’ is at work in the world in
many difference guises. It’s the reason why the Internet search engine Google can scan
a billion webpages and find the one page that has the exact piece of information you
were looking for.^

Here is an explicit recent statement of the WCJPR by a prominent scholar of the web
(Thelwall 2013, p. 77):

B[W]eb pages/sites attracting many hyperlinks tend to be more important and
popular than those attracting fewer. This is exploited by Google’s hyperlink-based
algorithm PageRank that helps Google to return highly linked sites at the top of its
results.^

We do not claim that the Google founders can be unambiguously tied to the WCJPR
thesis. Some things they write definitely point in this direction. Other quotes suggest
that they think of importance as something purely web-internal, i.e., as a measure of a
specific type of popularity (with webmasters), and that this is the end of the story.
Typically, passages can be read in both ways. Yet, there is huge difference between
claiming that PageRank only tracks popularity (Why should we care?) and claiming
that it (also) tracks something Bout there,^ something that we really value, such as truth,
authority, relevance, or quality. Hence, regardless of the interpretational issues, we
think that the WCJPR thesis is a highly interesting one in its own right and that it has by
far not been given the attention it deserves, which is why it is the focus of the present
article.

Curiously, even though WCJPR has arguably been in circulation for some 20 years,
until recently, there existed no rigorous attempt to actually formulate and prove it. The
first (and only) attempt that we know of is that of Masterton et al. (2016). Before we
look at the MOA model, we will show that the popular preferential attachment model
due to Barabási and Albert’s (1999) model (henceforth, the Barabási-Albert (BA)
model) of the web is unsuitable as a framework within which WCJPR could be even
rigorously formulated, much less proven. One reason why we take up BA for consid-
eration in this context is because it is arguably the most influential theory of linking to
date. The reason why the BA model fails also turns out to be instructive for the purpose
of acquiring a deeper understanding of what WCJPR involves. Finally, we will, in the
end, suggest that a fully satisfactory WCJPR needs to incorporate BA as a part of a
more accurate linking model.

3 The BA Model and Attraction to Popularity

The influential preferential attachment model of the linking process is motivated as
follows according to Albert and Barabási (2002, p. 73):

B[M]ost real networks exhibit preferential connectivity. For example, a newly
created webpage will more likely include links to well known, popular documents
with already high connectivity. This example indicates that the probability with which a
new vertex connects to the existing vertices is not uniform, but there is a higher
probability to be linked to a vertex that already has a large number of connections.^

According to the BA model, introduced by Barabási and Albert (1999), the prob-
ability for entrant page j to link to incumbent page i is equal to the proportion of all the
links in the graph that terminate at page i. That is, where V = {pk : k ∈ [1, j − 1] ⊆ℕ} is
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the vertex set of the webgraph just prior to the addition of page j, and Nk is the number
of in-links of the kth page, then the probability for a link from entrant page j (pj ∉ V) to
incumbent page i (pi ∈ V) is

PBA j→ið Þ ¼ Ni

∑ j−1
k¼1Nk

:

To avoid dividing by zero, and to get the ball rolling, the BA model usually assumes
a small random starter graph and then Bgrows^ this graph by consecutively adding
vertices and their links.2

Albert and Barabási (2002) went on to show that a network generated in accordance
with their model organizes itself into a scale-free stationary state with a power law In-
Degree distribution not too dissimilar from the WWW. Let us expand on the meaning
of this significant result.

Consider first the In-Degree distribution of the WWW. Graphs are useful mathe-
matical constructs for modeling how things are related to each other, with the things
represented as vertices on the graph and the relations represented as edges. When we
are only concerned about how a few, say less than 30, things are related to each other,
one can simply draw graphs to appreciate their topology. But when the number of
things and relations is large, and some graphical representations can be very large
indeed, we face the problem of how to come to grips with the topology of objects that
are unimaginably large and complex. The primary way of dealing with this problem is
to define graph statistics. One can find many of these in the literature but some principle
ones are clustering coefficient, the shortest path length distribution, and degree
distribution.

The cluster coefficient of a vertex is the ratio of the number of links between all
those vertices linked to that vertex to the maximum number of such links. The
clustering coefficient of a graph is the average of the cluster coefficients of its vertices.
One definition of the shortest path length distribution for a graph is the number of
vertex pairs with the shortest path length of k, for each k between 0 and n − 1. The
degree distribution P(N) of a graph of order n, for each number N between 0 and n − 1,
is the proportion of vertices with N links. Directed graphs have both an In-Degree
distribution and an Out-Degree distribution, where the former is, for each number N
between 0 and n − 1, the proportion of vertices with N in-links, and the latter is the
same for out-links. As our interest herein is solely with directed graphs and in-link
based metrics, we shall adopt the common shorthand of referring to In-Degree distri-
butions as degree distributions.

Degree distributions are of particular interest, because many networks exhibit
scale-free degree distributions. A scale-free degree distribution is one that conforms
to an inverse power law. One such network is the Internet at the Autonomous Systems
(AS) level, another is the WWW. In the former, a vertex represents a subnet roughly
corresponding to an Internet service provider (ISP). The links are then inter-ISP
connections covered by the border gateway protocol (Vázquez et al. 2002). This
network’s degree distribution has been empirically found to follow a power law.
There have been various studies done to determine the exponent of that power law.

2 The value of ∑ j−1
k¼1Nk may, or may not, be updated while the links from the jth page are assigned.
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The exponent was determined by Albert and Barabási (2002) to be 2.1 ± 0.1 and by
Maxim Zhukovskiy et al. (2012) to be 2.276 ± 0.001. That is, the log of the number of
ASs with N in-links on the Internet is a linear function of the log of ASs with a
gradient of about − 2.2. The webgraph of the WWW represents URLs (webpages) as
vertices and hypertext links as directed edges. TheWWWis accessed via the Internet,
so the two networks are deeply intertwined, but conceptually, one can disassociate
them. The In-Degree distribution of the WWW is also scale free and has been
empirically found to have an exponent of around 2.1 (Albert et al. 1999; Broder
et al. 2000). Figure 1 shows a typical power law (Bbroomstick^) distribution for a
portion of the web. As one can see from this figure, strictly speaking, only the tails of
WWW degree distributions typically conform to power laws; at higher numbers of
in-links, such distributions often deviate from being scale free. This is a common
feature of empirical phenomena that exhibit adherence to power laws and has led
some, e.g., Clauset et al. (2009), to claim that most of the time, the most we can say is
that our data is consistent with the phenomenon in question being governed by a
power law up to a certain cut off threshold. We shall conform to the common, though
somewhat sloppy, practice of referring to distributions that are consistent with a
governing power law up to a certain threshold as Bpower law^ or Bscale free^
distributions. Where we claim that some model of linking can account for such
distributions, this claim is tacitly restricted to the tail of such distributions.

Albert and Barabási (2002) note that the fact that the BAmodel gives rise to the right
degree distribution makes the model a minimally realistic model of linking on the
WWW (p. 75):

BIt is far from us to suggest that the scale-free model introduced above describes
faithfully the topology of the www…Nevertheless, we believe that our model captures
in a minimalist way the main ingredients that are responsible for the development of the
scale free state observed for the www.^

Fig. 1 A typical power law link distribution for a portion of the web (log-log plot, adapted from Thelwall
(2013), p. 73)
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However, Albert and Barabási (2002) also register a number of limitations of their
model (p. 76). For instance, the model assumes that new links appear only when new
nodes are added to the network, where as in the WWW, new links are added contin-
uously. They suggest that their model can be extended to incorporate the addition of
new links without the network reducing to a fully connected network.

More important for our purposes is the fact that their preferential attachment model
is a purely Binternal^ model of link creation in the sense that the probability of new
links to a given node is solely dependent on structural features of the webgraph. Thus,
the Google founders’ Bfundamental assumption^ that links are attracted to important
webpages—assuming Bimportance^ to refer to web-external qualities such as truthful-
ness and comprehensiveness—is not valid, or indeed even expressible, in the model.
Hence, the links that are created in the process described by the model cannot be
interpreted as Bvotes^ for important pages, which means that there is nothing that
PageRank can aggregate so as to produce an importance-tracking ranking of webpages
reflecting the wisdom of crowds. More precisely, the BA model is compatible with the
interpretation that the initial links have been generated in a way that reflects an
attraction to importance in the relevant sense. However, links that are added as the
webgraph grows cannot reasonably be thus interpreted.

Preferential attachment models are generally unsuitable as frameworks within which
a wisdom-of-crowds justification of PageRank (WCJPR) can be rigorously formulated,
much less demonstrated. The critical observation is that such models make linking a
wholly web-internal affair that can be defined and understood solely on the basis of
structural features of the webgraph. This goes not only for the original BA model but
also for all relevantly similar models, by which we mean models that take attraction to
popularity to be the fundamental mechanism behind linking on the web. One could add
that it is counterintuitive to view linking merely as a Bsociological^ phenomenon, as it
were, without linking having any contact with an Bexternal^ world outside the network,
a point that we will return to in Sect. 5.

4 The MOA Models and Attraction to Importance

Masterton et al. (2016) present two models designed to model the web ecology
assumed by the Google founders in their sketch of a wisdom-of-crowds justification
for PageRank. A central concept in their model is that links are attracted, not to
popularity, but to importance. We know of no other mathematically precise models
of this kind. We will spend some time describing these models, as they are less well
known than the BA model.

The models are based on two assumptions. First, there is the Google founders’ funda-
mental assumption already alluded to that those responsible for assigning links from a page
(source page) are, to some degree, Battracted to importance^ in the sense that ceteris paribus
the probability of them assigning a link to a page (target page) will be higher the more
important that target page is. This is why links fromone page to another can be viewed as the
webmaster of the source page Bvoting^ for the target page. Second, there is also an
assumption that the strength of this attraction of importance varies with the competence of
the webmaster of the source page with more competent webmasters administrating more
important pages. In particular, the more important the source page, the greater the tendency
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of its webmaster to link to other important pages, while the less important the source page,
the more random the webmaster will be in her linking behavior. The basic MOA model
implements the first of these assumptions in a model of Internet ecology, and the extended
MOAmodel implements both. (For simplicity, the extendedMOAmodel assumes that each
webmaster is administrating a website with only one webpage.)

In both models, the web is modeled as a directed graph, with webpages represented
by vertices and links represented by directed edges. The vertices are endowed with a
single attribute: importance. Page importance (I ∈ [0, 1]) is sampled from distributions
truncated to the unit interval. Any type of truncated distribution is permissible, though
herein, we have sampled importance from negative exponential and Pareto distributions.

In both models, the model parameters will include the size of the webgraph (n ∈ℕ+)
and the parameters determining the importance sampling; in the case of negative
exponential distributions over the unit interval, they are characterized by their
expectation (expected page importance = α ∈ (0, 0.5)), while in the case of the Pareto
distributions, they are characterized by a minimum value (minimum page importance =
mpi ∈ (0, 0.2]) and scale (γ ∈ℝ+). Beyond 0-importance indicating the complete lack of
all qualities that go towards making a page important and 1-importance indicating their
maximal presence, we leave the interpretation of page importance deliberately vague.

Where the models differ is in how the importance of the pages determines the link
structure of the webgraph. In the basic model, the probability that the jth page links to
the i-th page is a function of the ith page’s importance; g(Ii) : [0, 1]→ [0, 1]. The
parameters are probability scaling (Ps ∈ [0, 1]), which determines overall link density,
and the probability weighting (Pw ∈ℝ+), which determines the linearity of the
dependence of linking probability on target page importance. Thus, the probability
for any page j (j ≠ i) to have a link to page i is given by

PB j→ið Þ ¼ g I ið Þ ¼ Ps I ið ÞPw:

In the extended model, the probability of page j linking to page i is to be dependent on
the importance of both these pages. There are innumerable ways this could be done.What
are needed are some constraints on the function P(j→ i) = f(Ii, Ij) : [0, 1] × [0, 1]→ [0, 1],
to wit

1. f(Ii, 1) = Ps(Ii)
Pw. Our basic model holds when a webmaster is fully competent and

the webmasters of maximally important pages are fully competent.
2. f(Ii, 0) = c, where c is a constant. A totally incompetent webmaster should link

randomly, and the webmasters of utterly unimportant pages are totally incompetent.
3. EP = f(a, a) = g(a), Ideally, the expected link density (EP) for a given parameter

configuration should be equal to the expected link density for that configuration in
our basic model to allow direct comparison of degrees of correlation in web metrics
across models without risk of differences in link density skewing the results.

4. The basic and extended models should have the same parameters to make config-
uration comparison possible.

5. The more incompetent the webmasters, the more they link randomly; and the more
competent the webmasters, the more their linking is determined by target page
importance.
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The following function satisfies these five desiderata:

PE j→ið Þ ¼ f I i; I j
� � ¼ Ps αð ÞPw 1−I jð Þ I ið ÞPw I jð Þ:

Proof of 1–3:

f I i; 1ð Þ ¼ Ps αð ÞPw 1−1ð Þ I ið ÞPw 1ð Þ ¼ Ps I ið ÞPw

f I i; 0ð Þ ¼ Ps αð ÞPw 1−0ð Þ I ið ÞPw 0ð Þ ¼ Ps αð ÞPw ¼ c

f α;αð Þ ¼ Ps αð ÞPw αð ÞPw −αð Þ αð ÞPw αð Þ ¼ Ps αð ÞPw ¼ g αð Þ

Indeed, the following generalization of the previous function also satisfies these five
desiderata:

PE j→ið Þ ¼ f I i; I j
� � ¼ Ps αð ÞPw 1−h I jð Þð Þ I ið ÞPw∙h I jð Þ

so long as h(0) = 0 and h(1) = 1 for h(Ij): [0, 1]→ [0, 1].
The function h(Ij) is referred to as the linking competence function. A candidate for

this function is h(Ij) = (Ij)
C where C is the competence factor. We shall herein assume

that linking competence scales linearly with page importance (C = 1), but competence
might trail page importance (C > 1) or it might advance on page importance (0 ≤C < 1).
Then, the basic model can be viewed as being valid in the limit where all webmasters,
irrespective of the importance of the webpage in their charge, are fully competent in
their linking (C = 0). As C increases, the linking probability becomes less and less
dependent upon the target page’s importance for any given source page importance
until, ultimately, only the webmasters of very important pages will link in a manner
dependent upon the target page’s importance. Indeed, in the limit where C goes to
infinity the linking probability becomes constant and equal to the expected linking
probability.

As stated previously, we here assume that linking competence scales linearly with
page importance (h(Ij) = Ij), so that for the purposes of this article, the linking proba-
bility in the extended model is

PE j→ið Þ ¼ Ps að ÞPw 1−I jð Þ I ið ÞPw Ijð Þ:

Figure 2 shows a contour plot of the probability of a link from the jth to the ith page.
Note how P(j→ i) is constant but non-zero where Ij = y = 0 and how P(j→ i) = Ps(Ii)

Pw

is recovered when Ij = y = 1.
In either model, one populates the network with links by, for each prospective link,

(metaphorically) flipping a coin with a heads bias equal to the linking probability for
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that link and assigning the link if the coin lands heads. As noted in Masterton et al.
(2016), this makes link assignment for a given page a Bernoulli trial in the basic model
and a Poisson trial in the extended model. Completing this process samples a webgraph
for the web ecology specified by the pair of model and parameter configuration.

The striking fact about the MOA models is that they allow for a rigorous statement
and proof of the WCJPR thesis and also for a similar thesis about In-Degree: impact, as
measured by PageRank or In-Degree, is perfectly correlated with importance Bin the
limit,^ i.e., as the webgraph grows. In particular, impact implies importance in a
statistical sense if the webgraph is sufficiently large. Specifically, Masterton et al.
(2016), pp. 962–964, proved the following three theorems (in the case of Theorem 2
drawing on a theorem from Fortunato et al. (2008)):

Theorem 1: If linking probability is a monotonically increasing function of target
page importance, then as the number of pages in a webgraph goes to
infinity, the probability that In-Degree is perfectly correlated with page
importance in that webgraph tends to one.

Theorem 2: If linking probability is a monotonically increasing function of target
page importance, then as the number of pages in a webgraph goes to
infinity, the probability that PageRank is perfectly correlated with page
importance in that webgraph tends to one.

Theorem 3: If linking probability is a monotonically increasing function of target and
source page importance, then as the number of pages in a webgraph goes
to infinity, the probability that In-Degree is perfectly correlated with page
importance in that webgraph tends to one.

The first theorem states that the ranking induced by In-Degree is perfectly correlated
with webpage importance in the limit in the basic MOA model. The second theorem
states the same result but for PageRank instead of In-Degree. The third theorem states
that the result generalizes to In-Degree in the extended MOA model. Thus, if the

Fig. 2 A 3D contour plot of P j→ið Þ ¼ Ps αð ÞPw 1−I jð Þ I ið ÞPw pi jð Þ, where Ij = y, pii = x, α = 0.75 , Ps = 0.3 ,
Pw= 3, and P(j→ i) = z
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ecology of the WWW is accurately described by the basic MOA model, then, given the
WWW’s size, we can be practically certain that rankings of webpages by PageRank—
such as those performed by Google—will perfectly agree with rankings of webpages
by their importance.

We now turn to the important question whether the MOA models satisfy the
constraint of being minimally realistic models of the WWW. In other words, do they
generate webgraphs reflecting the degree distribution of the web? Unsurprisingly, given
the linking probability functions characterizing the basic and extended models, the
degree distribution of the webgraph generated by the MOA models for a particular
parameter configuration is entirely dependent upon how importance is distributed
across the webpages of that webgraph. Indeed, one can prove the following theorem.

Theorem 4: In the basic MOA model, where attraction to importance is linear (Pw =
1) and link density is maximal (Ps = 1), the degree distribution of a graph
will almost surely converge on the importance distribution from which
webpage importance was sampled.

Proof: see Appendix.
As an immediate consequence of Theorem 4, we get the following result:

Corollary: If importance is distributed according to a power law, then the degree
distribution of a graph generated in the basic model with Pw = 1, will converge on
being scale free in the limit.

We can easily confirm this result in a computer simulation of the basic MOA model
(Fig. 3).

As shown in Fig. 3, we get the characteristic broomstick distribution of links by
selecting a corresponding importance distribution.

While the connection between importance distribution and degree distribution is
demonstrably direct in the basic model where attraction to importance is linear, the
general point holds in both the extended and the basic models irrespective of param-
eterization: for a particular model parameterization and webgraph degree distribution,
there will be an importance distribution such that that parameterized model almost
surely generates that degree distribution in the limit. That importance distribution may
differ markedly from the target degree distribution (Fig. 4), but there will still be some
importance distribution that does the job.

The upshot of all this is that for any parameterization of our basic or extended
models, one can specify a distribution of importance so that the webgraphs generated
are practically certain, if sufficiently large, to have the same degree distribution as the
WWW. For instance, if importance is Pareto distributed with a minimum level of
importance of 0.0001 and an expected level of importance of 0.00066, then the degree
distribution of the resultant webgraphs in the basic model with Ps = Pw = 1 is roughly
that of the WWW (Fig. 5).

Thus, our basic and extended models can account for the degree distribution of the
WWW. However, one may still doubt that the MOA models are minimally realistic
despite their capacity to account for the degree distribution of the WWW. There is
something quite ad hoc about choosing the importance distribution in the model in

From Impact to Importance: the Current State of the Wisdom of...



order to get the right webgraph topologies being generated. Indeed, in the extended
model, the importance distributions would have to be quite peculiar to result in the
desired topologies and the only reason for adopting such peculiar distributions would
be to get those topologies. This concern is arguably not as serious for the basic MOA
model; one can argue that importance being distributed according to a power law and
important webpages being generally rare are natural assumptions and so argue that the
basic model really accounts for the degree distribution on the web. However, this would
be very much a non-standard explanation of the cause of this degree distribution and
one that is peculiarly sensitive to the characteristic parameters of the cited importance
distribution. We now turn to a more detailed discussion of these and related concerns.
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Fig. 4 Ln/Ln plots of the degree distribution of a 1000-page webgraph generated in the extended model (Ps =
Pw = 1) with importance Pareto distributed with minimum importance level set at 0.0001 and expected
importance at 0.01
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Fig. 3 Ln/Ln plot of the degree distribution of a 1000-page webgraph generated in the basic model (Ps =
Pw = 1) with importance Pareto distributed with minimum importance level set at 0.0001 and expected
importance at 0.01
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5 Towards Dual Models of the Linking Process

The upshot of our discussion so far is a dilemma for anyone who finds a wisdom-of-
crowds justification of PageRank (WCJPR) and similar in-link-based ranking algo-
rithms plausible: there seems to be no model on the market which both allows for a
precise statement and proof of the WCJPR thesis and at the same time is minimally
realistic in the sense of naturally giving rise to scale-free webgraphs with the same
degree distribution as the real WWW. The MOA models of Masterton, Olsson, and
Angere satisfy the former condition by allowing for a precise statement and proof of the
thesis in question, but they fail to generate the right kind of webgraphs. As we saw, the
latter claim is in need of some qualification. The MOA models can in fact generate any
degree distribution, including a degree distribution that corresponds to the WWW, but
the way this is accomplished seems entirely ad hoc, though perhaps slightly less so for
the basic model. The BA model of Barabási and Albert, by contrast, satisfies the latter
condition of giving rise to the right kind of webgraphs (for the right reasons), but does
not allow for a precise statement, much less proof, of the WCJPR thesis.

As we noted, there are independent reasons to think that the BA model is inaccurate
as a model of the linking process. It is implausible to view the linking process as a
wholly web-internal affair. Surely, people link to other webpages not only because
others have linked to them, thereby making those pages more visible in search engines
and other web services. 3 They must also link to what they themselves consider
important and perhaps find by chance or through offline friends. Similarly, there are
independent reasons to think that the MOA models are not completely faithful to the

3 Cf. Thelwall (2013, p. 72): BSearch engines repeatedly claim that they do not manipulate their results for
money, so how do they decide which sites to prioritize? The primary data that they use to identify popular
websites is the structure of the Web itself in the form of hyperlinks: the more links point to a website, the more
likely it is to have a large audience (Brin and Page, 1998). This creates a rich-get-richer effect, because popular
websites attract more visitors from commercial search engines, making them even more popular and likely to
attract even more links.^
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Fig. 5 Ln/Ln plot of the degree distribution of a 1000-page webgraph generated in the basic model (Ps =
Pw = 1) with importance Pareto distributed with minimum importance level set at 0.0001 and expected
importance at 0.00066. Note that the power of the degree distribution is 2.05 which is close to the value
given by Albert et al. (1999) for the WWW
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phenomena that they attempt to represent. Surely, people link to other webpages not
only because of the intrinsic qualities of those pages but also because others have linked
to them, thereby making those pages more visible.

Since the BA and MOA models seem to reflect complementary rather than con-
trasting ways of looking at the linking process, the obvious move would be to combine
them. We will call such combined models dual models. Dual models recognize two
mechanisms behind linking on the web: attraction to popularity, as in the BA model,
and attraction to importance, as in the MOA model.

Now, there are twomain dual models arising from combining the BAmodel with either
the basic or the extendedMOAmodel. For instance, a linear combination of the BAmodel
with the basic (B) MOA model gives rise to the following dual model (0 < μj < 1):

PBþBA j→ið Þ ¼ μ j⋅PB j→ið Þ þ 1−μ j

� �
⋅PBA j→ið Þ

We get different variations of this model by choosing the weight μj differently. A
high value makes attraction to importance the main factor; a low value makes attraction
to popularity the dominant mechanism. Moreover, since Bcombining^ can mean a lot of
different things and does not necessarily have to be interpreted linearly, we would
expect there to be more than two plausible main dual models. Indeed, even if we fix on
a particular linear combination of models and relative weights, there are a lot of
parameters that can be given different values.

The fundamental question now is whether there are dual models that give rise to
a power law distribution of in-links corresponding to the web for reasons that are
not ad hoc and such that PageRank (and In-Degree) are well correlated with
importance. Such a model would ideally allow for an exact statement and proof
of the WCJPR thesis while satisfying the requirement of minimal realism with
regard to the degree distribution of the WWW. To wit, the exhibition of such a
model would be a strong argument for the rationality of using link-based ranking
on the real web. If, by contrast, no such model can be found, we would have reason
to doubt the rationality of such ranking on the real web. Either way, the importance
of the question can hardly be exaggerated. We conjecture that there are dual
models of the kind in question, but we have to leave a detailed inquiry into the
matter for future work.

6 Conclusion

In this paper, we attempted to identify the state of the art regarding the more
precise statement of the claim that PageRank (and other in-link-based ranking
algorithms) can be justified with reference to the wisdom of crowds. Our first
point was that while current preferential attachment models are, in a minimalist
sense, realistic models of the (complete) web as they naturally give rise to scale-
free networks, they do not allow for formulation, much less proof, of the wisdom-
of-crowds thesis.

Our second point was that while the recent linking models proposed by Masterton
et al. (2016) do allow for the formulation and proof of the thesis in question, they are
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not minimally realistic models of the web because, as we demonstrated, although they
can give rise to scale-free networks of the required kind, they do so in an ad hoc
manner. We concluded that there is, to the best of our knowledge, at present no fully
satisfactory wisdom-of-crowds justification for PageRank or similar in-link-based
algorithms.

Finally, we proposed, as a remedy, that future work should explore dual models of
the linking process, i.e., models that combine preferential attachment models with the
kind of models explored by Masterton et al. into one unified account of the linking
process. We conjectured that there are dual models that are realistic models of the web
and at the same time allow for the rigorous formulation and proof of the wisdom-of-
crowds thesis. We left a detailed investigation into the validity of this conjecture for
future work.
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Appendix

Theorem 4: In the basic model, where attraction to importance is linear (Pw = 1) and
link density is maximal (Ps = 1), the degree distribution of a graph will
almost surely converge on the importance distribution from which
webpage importance was sampled.

Proof: In the basic model, where Pw = 1 and Ps = 1, the linking probability function
is

PB j→ið Þ ¼ I i

By the law of large numbers—due to link assignment being a Bernoulli trial—and
every page being able to link to all others but once and never to itself, the probability is
one that as n⟶∞, so Ni

n−1⟶I i, where n is the size of the webgraph and Ni is the

number of in-links to the ith page. As this is true of all pages, so N
n−1⟶I in the limit

almost surely (see Masterton et al. (2016) for the full proof of this).
By convergence in distribution it follows that if importance in a population of n

webpages is sampled from a PDF ρ(I), then as n⟶∞, so nI∈ a;b½ �
n ⟶∫baρ Ið ÞdI , where

nI ∈ [a, b] is the number of pages with importance I ∈ [a, b] ⊆ [0, 1].
As

nI∈ a;b½ �
n is the proportion of pages with importance in [a, b], and as N

n−1ð Þ⟶I in the

limit almost surely, so
nN∈ a n−1ð Þ;b n−1ð Þ½ �

n ⟶
nI∈ a;b½ �

n in the limit almost surely, where nN ∈ [a(n − 1),

b(n − 1)] is the number of webpages with between a(n − 1) and b(n − 1) in-links. As there
can only be a whole number of in-links to a page, so nN ∈ [a(n − 1), b(n − 1)] = nN ∈ [s, t],
where a(n − 1) ≤ s ≤ a(n − 1) + 1, (b)(n − 1) − 1 ≤ t ≤ (b)(n − 1) and s , t ∈ℕ. Further,
given these restrictions on s and t:

nI∈ a;b½ � ¼ n
I∈ s

n−1ð Þ;
t

n−1ð Þ

h i:
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It follows that almost surely in the limit

nN∈ s;t½ �
n

→

n
I∈ s

n−1ð Þ;
t

n−1ð Þ

h i

n
:

As

n
I∈ s

n−1ð Þ;
t

n−1ð Þ

h i

n →∫
t

n−1ð Þ
s

n−1ð Þ
ρ Ið ÞdI in the same limit by substitution into

nI∈ a;b½ �
n ⟶∫baρ Ið ÞdI ,

so in the limit almost surely

nN∈ s;t½ �
n

⟶∫
t

n−1ð Þ
s

n−1ð Þ
ρ Ið ÞdI :

The In-Degree distribution of a webgraph is defined as P Nð Þ≔nN
n , where nN is the

number of webpages with N in-links. Naturally,

∑
t

s
P Nð Þ≔nN∈ s;t½ �

n
:

It immediately follows that almost surely in the limit

∑
t

s
P Nð Þ⟶∫

t
n−1ð Þ
s

n−1ð Þ
ρ Ið ÞdI :

This is so for all values s , t ∈ [0, n − 1] ⊆ℕ , t > s. By definition, both sides of the
convergence equal one where s = 0 and t = n − 1.

Thus, in this way, degree distribution almost surely converges on the distribution
from which page importance is sampled as n⟶∞ in the basic model where attraction
to importance is linear and link density is maximal.

QED
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