
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

A Feedback Scheduler for Real-Time Controller Tasks

Eker, Johan; Hagander, Per; Årzén, Karl-Erik

Published in:
Control Engineering Practice

DOI:
10.1016/S0967-0661(00)00086-1

2000

Link to publication

Citation for published version (APA):
Eker, J., Hagander, P., & Årzén, K.-E. (2000). A Feedback Scheduler for Real-Time Controller Tasks. Control
Engineering Practice, 8(12), 1369-1378. https://doi.org/10.1016/S0967-0661(00)00086-1

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1016/S0967-0661(00)00086-1
https://portal.research.lu.se/en/publications/cd2245a5-a6f6-4053-8540-af2775059260
https://doi.org/10.1016/S0967-0661(00)00086-1


 
 

 
 

This is the final, accepted and revised manuscript of this article. Use 
alternative location to go to the published version. Requires subscription. 

 
A Feedback Scheduler for Real-Time Control Tasks 

Johan Eker, Per Hagander, Karl-Erik Årzén, 
Control Engineering Practice, Volume 8, Issue 12, pages 1369-1378 

Pergamon:  
Alternative location: [http://dx.doi.org/10.1016/S0967-0661(00)00086-1] 

http://dx.doi.org/10.1016/S0967-0661(00)00086-1


In IFAC Control Engineering Practice 2000

A FEEDBACK SCHEDULER FOR REAL-TIME
CONTROLLER TASKS

Johan Eker Per Hagander Karl-Erik Årzén

Department of Automatic Control
Lund Institute of Technology

Box 118, S-221 00 Lund
Sweden

Fax: +46-[0]46 13 81 18
johan.eker|karlerik.arzen|per.hagander@control.lth.se

Keywords Real-time; Feedback scheduling; Linear quadratic control; Opti-
mization.

Abstract

The problem studied in this paper is how to dis-
tribute computing resources over a set of real-
time control loops in order to optimize the to-
tal control performance. Two subproblems are
investigated: how the control performance de-
pends on the sampling interval, and how a re-
cursive resource allocation optimization routine
can be designed. Linear quadratic cost functions
are used as performance indicators. Expressions
for calculating their dependence on the sam-
pling interval are given. An optimization rou-
tine, called a feedback scheduler, that uses these
expressions is designed.

1. INTRODUCTION

Control design and task scheduling are in
most cases today treated as two separate is-
sues. The control community generally assumes
that the real-time platform used to implement
the control system can provide deterministic,
fixed sampling periods as needed. The real-time
scheduling community, similarly, assumes that
all control algorithms can be modeled as pe-
riodic tasks with constant periods, hard dead-
lines, and known worst case execution times.
This simple model has made it possible for the
control community to focus on its own problem
domain without worrying how scheduling is be-

ing done, and it has released the scheduling
community from the need to understand how
scheduling delays impact the stability and per-
formance of the plant under control. From a his-
torical perspective, the separated development
of control and scheduling theories for computer
based control systems has produced many use-
ful results and served its useful purpose.

Upon closer inspection it is, however, quite
clear that neither of the above assumptions
need necessarily be true. Many of the comput-
ing platforms that are commonly used to im-
plement control systems, are not able to give
any deterministic guarantees. This is especially
the case when commercial off-the-shelf operat-
ing systems, e.g. Windows NT or Linux, are
used. These systems are, typically, designed to
achieve good average performance rather than
high worst-case performance. Many control al-
gorithms are not periodic, e.g. internal com-
bustion engine control, or they may switch be-
tween a number of different fixed sampling pe-
riods. Control algorithm deadlines are not al-
ways hard. On the contrary, many controllers
are quite robust towards variations in sampling
period and response time. It is in many cases
also possible to compensate for the variations
on-line by, e.g., recomputing the controller pa-
rameters, see Nilsson (1998). It is also possi-
ble to consider control systems that are able
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Fig. 1 New sampling rates are calculated based on the
desired CPU load, the execution times of the controllers,
and the performance of the controllers.

to do a tradeoff between the available compu-
tation time, i.e., how long time the controller
may spend calculating the new control signal,
and the control loop performance.

For more demanding applications, requiring
higher degrees of flexibility, and for situations
where computing resources are limited, it is
therefore desirable to study more integrated ap-
proaches to scheduling of control algorithms.
The approach taken in this paper is based on
dynamic feedback from the scheduler to the con-
trollers, and from the controllers to the sched-
uler. The idea of feedback has been used infor-
mally for a long time in scheduling algorithms
for applications where the dynamics of the com-
putation workload cannot be characterized ac-
curately. The VMS operating system, for exam-
ple, uses multi-level feedback queues to improve
system throughput, and Internet protocols use
feedback to help solve the congestion problems.
The idea of feedback has also been exploited
in multi-media scheduling R&D, recently, under
the title of quality of service (QoS). An applica-
tion demonstrating QoS reasoning in a real-time
control system is found in Abdelzaher, Atkins
and Shin (1997).
In this paper the goal is to schedule a set of real-
time control loops in order to maximize their
total performance. The number of control loops
and their execution times may change over time
and hence the task schedule must be adjusted
to maintain optimality and schedulability. Since
the optimizer works in closed loop with the
control tasks, it is referred to as a feedback
scheduler. The feedback scheduler adjusts the
control loop frequencies to optimize the control
performance while maintaining schedulability.
The input signals are the performance levels
of each loop, their current execution times,
and the desired workload level, see Fig. 1.
Two problems are studied when designing such
a feedback scheduler. The first is to find a
suitable performance index and calculate how it
depends on the sampling frequency. The second
problem is to design an optimization routine. It
is assumed that measurements or estimates of
the execution times and system workload are
available from the real-time kernel at run-time.

As a performance index, a linear quadratic (LQ)

formulation is used. The controllers are state
feedback algorithms designed to minimize this
quadratic cost function. The performance index
is calculated as a function of the sampling in-
terval. Given this control performance indicator
an optimization routine is designed. The opti-
mization routine aims to find the control perfor-
mance optimum, given a desired CPU utiliza-
tion level (workload) and the execution times for
the tasks. The global cost function that should
be minimized consists of the sum of the cost
function of each control loop. The minimiza-
tion is performed subject to a schedulability
constraint. The minimization of the global cost
function constitutes a nonlinear programming
problem. The solution of this problem is facili-
tated by the knowledge of the first and second
derivatives of the cost functions with respect to
the sampling rate. Expressions for the deriva-
tives are calculated and used in the optimiza-
tion.

Using a feedback scheduling strategy it is now
possible to design real-time control systems
that are more robust against uncertainties in
execution times and workload. When a control
task performs a mode change and this leads
to a change in its execution time the feedback
scheduler adjusts the sampling frequencies so
that the system remains schedulable.

Deadlines may be missed if a change in exe-
cution time causes the system to overload. In
such a situation, the feedback scheduler adjusts
the sampling rates to regain schedulability, but
deadlines may, however, still be missed. If in-
stead the feedback scheduler is aware of a forth-
coming mode change, it could avoid an overload
by changing the sampling rates in advance. This
can be dealt with by establishing a communi-
cation channel between the feedback scheduler
and the control tasks. The control tasks notify
the feedback scheduler, by sending a request,
prior to a mode change and may not proceed
with the mode change until given permission to
do so. The module that handles this is called
the admission controller. It is also responsible
for handling the arrival of new tasks and the
termination of old tasks. Fig. 2 shows a block
diagram of the feedback scheduler with the ad-
mission controller.

1.1 Outline

An overview of related work is given in Sec-
tion 2. Section 3 defines the problem, and
the LQ-based cost function calculation are pre-
sented in Section 4. Section 5 describes the de-
sign of the feedback scheduler.



2. INTEGRATED CONTROL AND
SCHEDULING

In order to achieve on-line interaction between
control algorithms and the scheduler a num-
ber of issues must be considered. Control design
methods must take schedulability constraints
into account. It must be possible to dynamically
adjust task parameters, e.g., task periods, in or-
der to compensate for changes in workload. It
can also be advantageous to view the task pa-
rameters adjustment strategy in the scheduler
as a controller. In this section an overview is
given of the work that has been performed in
these areas. A more detailed survey on control
and scheduling can be found in Årzén, Bern-
hardsson, Eker, Cervin, Nilsson, Persson and
Sha (1999).

2.1 Control and scheduling co-design

A prerequisite for an on-line integration of con-
trol and scheduling theory is the ability to make
an integrated off-line design of control algo-
rithms and scheduling algorithms. Such a de-
sign process should ideally allow an incorpora-
tion of the availability of computing resources
into the control design by utilizing the results
of scheduling theory. This is an area where rel-
atively little work has been performed so far.
In Seto, Lehoczky, Sha and Shin (1996) an al-
gorithm was proposed that translates a system
performance index into task sampling periods,
considering schedulability among tasks running
with pre-emptive priority scheduling. The sam-
pling periods were considered as variables, and
the algorithm determined their values so that
the overall performance was optimized subject
to the schedulability constraints. Both fixed pri-
ority rate-monotonic and dynamic priority, Ear-
liest Deadline First (EDF) scheduling were con-
sidered. The loop cost function was heuristi-
cally approximated by an exponential function.
The approach was further extended in Seto,
Lehoczky and Sha (1998).

A heuristic approach to optimization of sam-
pling period and input-output latency subject
to performance specifications and schedulabil-
ity constraints was also presented in Ryu, Hong
and Saksena (1997) and Ryu and Hong (1998).
The control performance was specified in terms
of steady state error, overshoot, rise time, and
settling time. These performance parameters
were expressed as functions of the sampling pe-
riod and the input-output latency. An iterative
algorithm was proposed for the optimization of
these parameters subject to schedulability con-
straints.

2.2 Task attribute adjustments

A key issue in any system allowing dynamic
feedback between the control algorithms and
the on-line scheduler is the ability to dynami-
cally adjust task parameters. Examples of task
parameters that could be modified are period
and deadline.

In Shin and Meissner (1999) the approach in
Seto, Lehoczky, Sha and Shin (1996) is ex-
tended, making on-line use of the proposed off-
line method for processor utilization allocation.
The approach allows task period changes in
multi-processor systems. A performance index
for the control tasks is used, weighting the im-
portance of the task to the overall system, to
determine the value to the system of running a
given task at a given period.

In Buttazzo, Lipari and Abeni (1998) an elas-
tic task model for periodic tasks is presented.
A task may change its period within certain
bounds. When this happens, the periods of the
other tasks are adjusted so that the overall
system is kept schedulable. An analogy with
a linear spring is used, where the utilization
of a task is viewed as the length of a spring
that has a given spring coefficient and length
constraints. The MART (Modification and Ad-
justment of Real-time Tasks) scheduling algo-
rithm (Kosugi, Takashio and Tokoro, 1994; Ko-
sugi, Mitsuzawa and Tokoro, 1996; Kosugi and
Moriai, 1997) also supports task period adjust-
ments. MART has been extended to also handle
task execution time adjustments. The system
handles changes both in the number of periodic
tasks and in the task timing attributes. Before
accepting a change request the system analyzes
the schedulability of all tasks. If needed, it ad-
justs the period and/or execution time of the
tasks to keep them schedulable with the rate
monotonic algorithm.

2.3 Feedback scheduling

An on-line scheduler that dynamically adjusts
task attributes can be viewed as a controller.
Important issues that must be decided are what
the right control signals, measurement signals,
and set-points are, what the correct control
structure should be, and which process model
that may be used.

So far, very little has been done in the area
of real-time feedback scheduling. A notable ex-
ception is presented in Stankovic, Lu, Son and
Tao (1999), where a PID controller is used as
an on-line scheduler. The measurement signal
(the controlled variable) is the deadline miss
ratio for the tasks, and the control signal is
the requested CPU utilization. Changes in the



requested CPU are effectuated by two mecha-
nisms (actuators). An admission controller is
used to control the flow of workload into the sys-
tem, and a service level controller is used to ad-
just the workload inside the system. The latter
is done by changing between different versions
of the tasks with different execution time de-
mands. A simple liquid tank model is used as
an approximation of the scheduling system.

Using a controller approach of the above kind,
it is important to be able to measure the appro-
priate signals on-line, e.g., to be able to measure
the deadline miss ratio, the CPU utilization, or
the task execution times.

An event feedback scheduler is proposed in Zhao
and Zheng (1999). Several control loops share
a CPU, and only one controller may be active
at each time instant. The strategy used is to
activate the controller connected to the plant
with the largest error. Similar ideas are found
in Årzén (1999), which suggests an event-based
PID controller that only executes if the control
error is larger than a specified threshold value.

Execution

Requests

Load

Events
Task Task Task

Kernel
Resource
allocations

Admission

statistics

reference

Feedback
scheduler

controller

Fig. 2 The real-time kernel is connected in a feedback
loop with the feedback scheduler and the admission
controller.

3. PROBLEM STATEMENT

Consider a control system where several control
loops share the same CPU. Let the execution
times of all tasks and the system workload be
available from the real-time kernel at all times.
Furthermore, associate each controller with a
function, which indicates its performance. The
execution times, the number of tasks, and the
desired workload may vary over time. The aim
of the feedback scheduler is to optimize the
total control performance, while keeping the
workload at the desired level.

Two separate modules are used, see Fig. 2. The
feedback scheduler adjusts the sampling inter-
vals to control the workload. The workload ref-
erence is calculated by the admission controller

which contains high-level logic for coordinating
tasks.

The tasks and the feedback scheduler commu-
nicate using requests and events. A task can
send a request for more computing resources
and the scheduler may grant this by replying
with the appropriate event. The kernel manages
the tasks at the low level, i.e. task dispatch-
ing, etc. The feedback scheduler gets execution
statistics, such as the actual execution times of
the tasks, and the system workload from the
kernel. This information is then used to calcu-
late how CPU resources should be allocated in
an optimal fashion.

Let the number of tasks on the system be
n, and let each task execute with a sampling
interval hi (task period) and have the execution
time Ci. Each task is associated with a cost
function Ji(hi), which gives the control cost as a
function of sampling interval hi. The following
optimization problem may now be formulated

minimize J =
n∑

i=1

Ji(hi), (1)

subject to the constraint
∑n

i=1 Ci/hi ≤ Uref ,
where Uref is the desired utilization level.

4. COST FUNCTIONS

In this section the LQ cost function and its
derivatives with respect to the sampling in-
terval are calculated. These functions will be
used in the feedback scheduler algorithm, as de-
scribed in Section 5.

Let the system be given by the linear stochastic
differential equation

dx =Axdt+Budt + dvc. (2)

where A and B are matrices and vc is a Wiener
process with the incremental covariance R1cdt.
A continous stochastic system description is
used as the goal is to study the cost of sampling
the system at different rates. The sampled
system is given by

x(kh+ h) =ΦΦΦx(kh) + ΓΓΓu(kh) + v(kh),

where ΦΦΦ = eAh, ΓΓΓ = ∫ h
0 eAsdsB, and v(kh) is

white noise with the following property:

Ev(kh)vT(kh) = R1(h) =
∫ h

0
eAτR1ceATτ dτ .

(3)



The cost function for the controller is chosen as

J(h) = 1
h

E
∫ h

0
[ xT(t) uT(t) ]Qc

[
x(t)
u(t)

]
dt,

where

Qc =
[

Q1c Q2c

QT
2c Q3c

]
.

The cost per time unit for the discrete LQ-
controller is given as:

J = E( 1
Nh

∫ Nh

0
[xT(t) uT(t) ]Qc

[
x(t)
u(t)

]
)

= E( 1
Nh

N∑
k=0

∫ kh+h

kh
[xT(t) uT(t) ]Qc

[
x(t)
u(t)

]
dt)

When time goes to infinity, limN→∞ ,the influ-
ence from the initial conditions decreases, and
the cost may be written as

J = E(1
h

∫ h

0
[x(t) u(t) ]Qc

[
x(t)
u(t)

]
dt)

This means that only the cost in stationarity
is regarded, and that the cost is scaled by the
time horizon, i.e. the sampling interval h. The
controller u = −Lx(t) that minimizes the cost is
given by solving the stationary Riccati equation
with respect to the matrices S and L.[

S+ LTGL LTG
GL G

]
=
[ΦΦΦT

ΓΓΓT

]
S [ΦΦΦ ΓΓΓ ] +Qd

(4)

where G = ΓΓΓTSΓΓΓ +Q3d, and

Qd =
[

Q1d Q2d

QT
2d Q3d

]
=
∫ h

0
eΣΣΣT tQceΣΣΣtdt,

ΣΣΣ =
[

A B
0 0

] (5)

The minimal value of J is given by Åström
and Wittenmark (1997) and Gustafsson and
Hagander (1991) as:

min J(h) =1
h
(trSR1 + J̄), where

J̄ = tr(Q1c

∫ h

0
R1(τ )dτ )

In order to use the cost function in the optimiza-
tion it is useful to know the derivatives with
respect to the sampling period.

Theorem 1
The first derivative of J is given as

dJ
dh

=1
h
(tr dS

dh
R1 + trS

dR1

dh
+ dJ̄

dh
) −

1
h2 (trSR1 + J̄)

where

dS
dh

=(ΦΦΦ − ΓΓΓ L)T dS
dh
(ΦΦΦ − ΓΓΓL) + W,

W =
[ΦΦΦ − ΓΓΓL

−L

]T

Qc

[ΦΦΦ − ΓΓΓL

−L

]
+

{(ΦΦΦ − ΓΓΓL)TAT − LTBT}S(ΦΦΦ − ΓΓΓL) +
(ΦΦΦ − ΓΓΓL)TS{A(ΦΦΦ − ΓΓΓL) − BL},

The matrix R1 is calculated using Lemma 1
in the appendix and derivative of R1 is given
directly from Eq. 3.

dR1

dh
=eAhR1ceATh,

dJ̄
dh

=trQ1cR1

See Appendix A for the proof. Expression for the
second derivative of the cost functions is also
given there.

Example 1
Consider the linearized equations for a pendu-

lum:

dx =
[

0 1

αω2
0 −d

]
xdt+

[
0

α b

]
udt+ dvc

y = [1 0 ]x, R1c =
[

0 0

0 ω4
0

]
The natural frequency is ω0, the damping d =
2ζ ω0, with ζ = 0.2, and b = ω0/9.81. If α = 1,
the equations describe the pendulum in the
upright position, and if α = −1 they describe
the pendulum in the downward position. The
incremental covariance of vc is R1cdt, which
corresponds to a disturbance on the control
signal.

The cost functions J for the closed loop control
of the inverted pendulum as a function of the
sampling interval is shown in Fig. 3. The cor-
responding function for the stable pendulum is
shown in Fig. 4. Fig. 4 clearly demonstrates
that faster sampling not necessarily gives better
control performance. Sampling the pendulum as
slowly as this is however unrealistic. The rule of
thumb from Åström and Wittenmark (1997) is
to choose the sampling rate as ω0h � 0.2− 0.6.
The time scale for Fig. 4 is out of bounds for
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Fig. 3 The cost Ji(h) as a function of the sampling interval
for the inverted pendulum. The plot shows the graph for
ω 0 = 3.14(full), 3.77(dot-dashed), and 4.08(dashed).
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Fig. 4 The cost Ji(h) as a function of the sampling
interval for the pendulum. The plot shows the graph
for ω 0 = 3.14(full), 3.77(dot-dashed), and 4.08(dashed).
The peaks are due to the resonance frequencies of the
pendulum.

any practical use for the current application. It
does however give an indication of what could
happen in a system with a high frequency me-
chanical resonance.

5. A FEEDBACK SCHEDULER

In this section a feedback scheduler, see Fig. 2,
for a class of control systems with convex cost
functions is proposed. Standard nonlinear pro-
gramming results are used as a starting point
for the feedback scheduler design. First, an algo-
rithm, using the cost functions presented in the
previous section is designed, and then an ap-
proximate, less computation-intense algorithm
is presented. Simulation results for a system
with three control loops are also given.

5.1 Static Optimization

For the class of systems for which the cost func-
tions are convex, ordinary optimization theory,
e.g. steepest decent search or constraint New-
ton, may be applied. The optimization criterion
in Eq. (1) has nonlinear constraints and is first
rewritten. By optimizing over the frequencies
instead of the sampling intervals, the following
optimization problem is given:

min
f

V ( f ) =
n∑

i=1

Ji(1/ f i),

subject to cTf ≤ Uref

f =[ f1, . . . , fn]T

The Kuhn-Tucker conditions, see for exam-
ple (Fletcher, 1987), give that if f̄ = [ f̄1, . . . , f̄ n]T
is an optimal solution then:

Vf (f̄) + λc = 0

λ [Uref − cTf̄] = 0,
λ ≥ 0

(6)

where the column vector Vf is the gradient,
c = [C1, . . . , Cn]T, and λ is the Lagrange mul-
tiplier. Since Vi( f i) = Ji(1/ f i) = Ji(hi), the
derivative of Vi is dVi

fi
= −h2 dJi

hi
. This gives

V T
f = [ dVi

f1
, . . . , dVi

fn
] = [−h2

1
dJi
h1

, . . . ,−hT
n

dJn
hn
].

5.2 Recursive Optimization

Since changes in the computer load Uref and
the execution times C change the optimization
problem, they need to be resolved at each step
in time. In principle, one can repeat the solu-
tion to the static optimization problem at each
step in time. However, instead of looking for a
direct solution a recursive algorithm will be con-
sidered. Assume that there is a solution f (k), at
step k, which is optimal or close to optimal. Now
a recursive algorithm to compute new values for
f and λ will be constructed. Let the execution

schedulerrefU  (k)

∆
Feedback

(k)c
(k+1)f

Fig. 5 The feedback scheduler calculates new sampling
frequencies to accomodate for changes in the execution
times C or in the desired workload level.

time vector C(k) be time-varying. A control loop
that adjusts the sampling frequencies so that
the control performance cost is kept at the opti-



mum is to be designed, see Fig. 5. Let

f(k+ 1) =f(k) + ∆f(k)
λ(k+ 1) =λ(k) + ∆λ(k)
c(k+ 1) =c(k) + ∆c(k)

Assume that λ > 0, i.e. that the CPU constraint
is active. Linearization of Eq. (7) around the
optimum gives

Vf + Vf f ∆f + (λ + ∆λ)(c+ ∆c) = 0

(cT + ∆cT)(f+ ∆f) = Uref

If the quadratic delta terms are disregarded[
Vf f c

cT 0

] [ ∆f

∆λ

]
=
[−(Vf + λc) − λ ∆c

Uref − cTf− ∆cTf

]

is obtained. Now the increments in f and λ are
given as[ ∆f

∆λ

]
=
[

Vf f c
cT 0

]−1 [ −(Vf + λc)
Uref − cTf− ∆cTf

]
(7)

A solution exists if Vf f is positive (or negative)
definite and c �= 0. Note that the matrix Vf f is
diagonal.

Vf f = diak(
[
V2V
V f 2

1
. . . V2V

V f 2
n

,
]
)

Thus, there is a solution to Eq. (8) if V
2V
V f 2

i
> 0, ∀i.

Remark It can be shown that this optimiza-
tion routine corresponds to constrained Newton
optimization, see for example Gill, Murray and
Wright (1981). The algorithm has mostly been
investigated through simulation and it seems
very stable. In general a constrained Newton
algorithm would not necessarily converge, but
there may be reasonable assumptions that could
guarantee the convergence seen in simulations.

Example 2
A single CPU-system is used to control three

inverted pendulums of different lengths. Every
pendulum is controlled by one LQ-controller,
designed using the same weight matrix Qc as in
Example 1. Each control loop has an execution
time Ci and a sampling frequency = f i. Let the
initial sampling frequencies be f 0

i . One of the
tasks operates in two modes with very different
execution times. The feedback scheduler adjusts
the sampling frequencies for the tasks, so that
the total control performance is optimized, given
the current execution times and the workload

reference. The workload reference is given by
the admission controller.

Fig. 6 shows some plots from a simulation,
where execution times, sampling frequencies
and load are plotted as functions of the iter-
ation steps. From the initial frequencies f0 =
[4, 4.5, 5], an optimal solution is found after 7-8
iterations. At step 15, Task #2 sends a request
to the admission controller for more execution
time, due to a forthcoming mode change. The ad-
mission controller must first lower the workload
reference, before any task is allowed to increase
its execution time, in order to avoid overload.

The new workload reference at step 15 is cho-
sen so that there will enough room to allow
task#2 to increase its execution time. The size
of the CPU reserved for change in task#2 is
based on the current sampling rates. In this
example C1 = 0.04, C2 = 0.05, C3 = 0.07 and
the frequencies at step 14 are f1 = 5.84, f2 =
6.50, f3 = 6.31. If task#2 doubles its execution
time, the workload will increase with approxi-
mate 30%. The workload reference is therefore
set to 0.7 to prevent overload. At step 20, the
actual workload is sufficiently near the refer-
ence and the admission controller grants the
request from Task #2, which then immediately
performs a mode change. At the same time
the admission controller changes the workload
reference back to 1. The final frequencies are
f = [ 4.822 4.378 5.276 ].

5.3 An approximate version

The feedback scheduling algorithm proposed
above, includes solving both Riccati and Lya-
punov equations on-line. This is expensive, and
a computationally cheaper algorithm is desir-
able. From Fig. 3 it seems that the cost func-
tions could be approximated as quadratic func-
tions of the sampling interval h. The relation
between performance and sampling rates for
LQG controllers was also discussed in Åström
(1963), where it was shown that the cost is in-
deed quadratic for small sampling intervals.

Let the approximative cost J̃(h) be defined as

J̃(h) = α + β h2.

By choosing a suitable nominal sampling in-
terval h0, and using J̃(h0) = J(h0), J̃h(h0) =
Jh(h0) the coefficients are given as:

β = Jh(h0)/(2h0)
α = J(h0) − β h2

0

The following approximate cost function and
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Fig. 6 Plots from Example 2. The top plot shows how
the execution time for task #2 doubles at step 20.
The second plot from the top shows how the sampling
rates are adjusted by the feedback scheduler (Task #1–
full, Task #2–dash-dotted, Task#3–dashed). The load
plot shows how the workload reference (dash-dotted)
goes from 100% to 70% at step 15, and back to 100%
at step 20. The full line is the actual workload. The
bottom plot shows the sum of the cost functions, i.e.
the optimization criterion.

derivate are then obtained:

Ṽ(f) =
n∑
i

α i + β i/ f 2

Ṽf ( f ) = −2 [ β 1/ f 3, . . . , β n/ f 3 ]T
Vf f = 6 diag [ β 1/ f 4, . . . , β n/ f 4 ]

Using these approximate functions instead of
the exact ones will give a much less computation
intense problem.

The optimal solution is obtained from Eq. (7),
and by inserting the approximative expression
for Vf

2β i/ f 3
i = λ Ci ; f i = (2β i/(λ Ci))1/3

; U =
n∑
1

Ci f i =
n∑
1

Ci(2β i/(λ Ci))1/3

is obtained. Now, an explicit expression for the
optimal solution is given by{

λ = (1/U
∑n

1 C2/3
i (2β i)1/3)3

f i = (2β i/(λ Ci))1/3
(8)

Example 2 continued
Again, consider the system with three pendu-
lum controllers. From the explicit analytical ex-
pressions in Eq. (9) the following frequencies
are calculated:

f = [ 4.866 4.347 5.29 ]

Note that these frequencies are very close to
those previously calculated in Example 2. This
example shows that the approximative cost
functions are sufficient to achieve good opti-
mization results for some processes.

A similar approximative version can be de-
signed for cost functions that are approximately
linear in the sampling interval h, i.e. J̃ = α +
β h. For example, for short sampling intervals
in Fig. 4 the cost is almost linear.

Comment 1
The rate of the feedback scheduler, and hence
the rate of the changes to the sampling frequen-
cies, is assumed to be much slower than the
sampling frequencies. If the sampling frequen-
cies are adjusted at a too high rate there will be
problems with large jitter and possibly stability.

6. CONCLUSION

In this paper a novel feedback scheduler has
been proposed. For a class of control systems
with convex cost functions, the feedback sched-
uler calculates the optimal resource allocation
pattern. The calculation of cost functions and
their dependence on sampling intervals has
been investigated. Formulaes for calculating the
cost functions and their derivatives have been
presented. The feedback scheduler is demon-
strated on a three control loops system, and the
result is promising. The algorithm is, however,
complex and quite computation-intense. The ex-
ecution time needed for solving the optimization
problem would probably exceed the execution
times of most control tasks. By instead using
approximative cost functions good results may
be achieved at much less computational cost.

Many questions have been left out in this pa-
per’s discussion on feedback scheduling. One
thing that has been neglected is what happens
during the transient phase, when a sampling
rate is changed. This problem must be treated
differently depending on the used scheduling al-
gorithm, e.g EDF or RMS.

Using a feedback scheduler approach it would
be possible to design real-time, plug-and-play
control systems. Tasks and resources are al-
lowed to change and the system adapts on-line.
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APPENDIX A – PROOF AND CONTINUATION OF THEOREM 1

Proof To find out how J depends on the sampling interval it remains to investigate S. Eq. (5) is
differentiated with respect to h: [

0 0
dL
dh 0

]T [S 0

0 G

] [
I 0

L I

]
+[

I 0
L I

]T [ dS
dh 0

0 dG
dh

] [
I 0
L I

]
+[

I 0

L I

]T [S 0

0 G

] [
0 0
dL
dh 0

]
=

dQd

dh
+
[

dΦΦΦT

dh
dΓΓΓT

dh

]
S [ΦΦΦ ΓΓΓ ] +

[ΦΦΦT

ΓΓΓT

]
dS
dh
[ΦΦΦ ΓΓΓ ] +

[ΦΦΦT

ΓΓΓT

]
S [ dΦΦΦ

dh
dΓΓΓ
dh ]

Rearranging the terms yields[
0 dLT

dh G
0 0

]
+
[ dS

dh 0

0 dG
dh

]
+
[

0 0

G dL
dh 0

]
=[ΦΦΦT − LTΓΓΓT

ΓΓΓT

]
dS
dh
[ΦΦΦ − ΓΓΓL ΓΓΓ ] +

[
I 0
−L I

]T

W̄
[

I 0
−L I

]
(9)

where the block matrix W̄ is defined as

W̄ = dQd

dh
+
[

dΦΦΦT

dh
dΓΓΓT

dh

]
S [ΦΦΦ ΓΓΓ ] +

[ΦΦΦT

ΓΓΓT

]
S [ dΦΦΦ

dh
dΓΓΓ
dh ]

The following Lyapunov equations for dS
dh and dL

dh are obtained by extracting elements from Eq. (10),
and introducing ΨΨΨ = (ΦΦΦ − ΓΓΓL).

dS
dh

= ΨΨΨT dS
dh

ΨΨΨ + [ I −LT ] W̄
[

I
−L

]
G

dL
dh

= ΓΓΓT dS
dh

ΨΨΨ + [ 0 I ] W̄
[

I
−L

]

The derivative dL
dh is needed later for the calculation of the second derivative of J. To calculate W̄

formulas for dQd
dh , dΦΦΦ

dt , and dΓΓΓ
dh are needed. Since[ΦΦΦ ΓΓΓ

0 I

]
= exp

([A B
0 0

]
h
)
= eΣΣΣh

and Qd
dh is given from Eq.uation (6) it is straightforward to calculate

dΦΦΦ
dh

= AΦΦΦ,
dΓΓΓ
dh

=AΓΓΓ +B,
dQd

dh
= eΣΣΣT hQceΣΣΣh

W̄ can now be written as

W̄ =
[ΦΦΦ ΓΓΓ

0 I

]T

Qc

[ΦΦΦ ΓΓΓ
0 I

]
+

[AΦΦΦ AΓΓΓ + B ]T S [ΦΦΦ ΓΓΓ ] + [ΦΦΦ ΓΓΓ ]T S [AΦΦΦ AΓΓΓ +B ]
and now let W be

W = [ I −LT ] W̄
[

I
−L

]
=
[ ΨΨΨ
−L

]T

Qc

[ ΨΨΨ
−L

]
+

{ΨΨΨTAT − LTBT}SΨΨΨ +ΨΨΨTS{AΨΨΨ −BL}.



which now leads to the following expression, and dJ
dh may now be calculated.

dS
dh

= ΨΨΨT dS
dh

ΨΨΨ +W

G
dL
dh

= ΓΓΓT dS
dh

ΨΨΨ + [ΓΓΓT I ]Qc

[ ΨΨΨ
−L

]
+ ΓΓΓTS(AΨΨΨ −BL) + (AΓΓΓ +B)TSΨΨΨ

Theorem 2
The second derivative is given by

d2J
dh2 =

1
h

{
tr(d2S

dh2 R1) + 2tr(dS
dh

R1

dh
) + tr(S d2R1

dh2 ) +
d2J̄
dh2

}
− 2

h2

{
tr(dS

dh
R1) + tr(SR1

dh
) + dJ̄

dh

}
+ 2

h3

{
tr(SR1) + J̄

}
where

d2S
dh2 =ΨΨΨT d2S

dh2 ΨΨΨ +W2, W2 = dΨΨΨT

dh
dS
dh

ΨΨΨ +ΨΨΨT dS
dh

dΨΨΨ
dh

+ dW
dh

dΨΨΨ
dh

=AΦΦΦ − (AΓΓΓ + B)L− ΓΓΓ
dL
dh

dW
dh

=
[ dΨΨΨ

dh

− dL
dh

]T

Qc

[ ΨΨΨ
−L

]
+
[ ΨΨΨ
−L

]T

Qc

[ dΨΨΨ
dh

− dL
dh

]
+

{
ΨΨΨTAT − LTBT}(dS

dh
ΨΨΨ + S

dΨΨΨ
dh
) +

(ΨΨΨT dS
dh

+ dΨΨΨT

dh
S){AΨΨΨ − BL

} +{dΨΨΨT

dh
AT − dLT

dh
BT}SΨΨΨ +ΨΨΨTS

{
A

dΨΨΨ
dh

− B
dL
dh

}

d2J̄
dh2 =tr(Q1c

dR1

dh
), d2R1

dh2 =AΦΦΦR1cΦΦΦT +ΦΦΦR1cATΦΦΦT

Proof Proven with similar techniques as Theorem 1.

Lemma 1
The integral ∫ t

0
eAτ QeATτ dτ

is calculated using the following equations taken from van Loan (1978). Consider the linear system[
ẋ1

ẋ2

]
=
[−A Q

0 AT

] [
x1

x2

]
, (10)

which has the following solution[
x1(t)
x2(t)

]
= exp(

[−A Q
0 AT

]
t)
[

x1(0)
x2(0)

]
If [ΨΨΨ11 ΨΨΨ12

ΨΨΨ21 ΨΨΨ22

]
= exp(

[−A Q
0 AT

]
t)



then

x1(t) = ΨΨΨ11x1(0) +ΨΨΨ12x2(0)
x2(t) = ΨΨΨ21x1(0) +ΨΨΨ22x2(0)

An alternative way of solving Eq. (11) is

x2(t) = eATtx2(0) ; ẋ1(t) = −Ax1(t) +QeATtx2(0)

; x1(t) = e−Atx1(0) + e−At
∫ t

0
eAτQeATτ dτ x2(0)

Identification of the terms from the different solutions now gives

I(t) =
∫ t

0
eAτQeATτ dτ = ΨΨΨT

22ΨΨΨ12,

which concludes the lemma.

Comment
The double integral

∫ t
0 I(τ )dτ may be calculated in a similar fashion by extending the equations

above and using the following system ẋ1

ẋ2

ẋ3

 =
−A I 0

0 −A Q
0 0 AT

 x1

x2

x3

 .
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