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Complex-Coefficient Systems in Control

Olof Troeng, Bo Bernhardsson, Claudio Rivetta

Abstract— Complex-valued dynamics can be used for mod-
eling rotationally invariant two-input two-output systems and
bandpass systems when they are considered in the baseband.
In a few instances, control design has been done in the
complex domain, which facilitated analysis and synthesis. While
previous work has been application specific, we will discuss
more generally how complex valued dynamics arise, basic
properties of these systems, revisit some classic control theoretic
results in the complex setting, and discuss two novel examples
of control design in the complex domain — accelerator cavity
field control and feedback linearization of RF amplifiers.

I. INTRODUCTION

Certain systems are most conveniently modeled by
complex-coefficient differential equations [1]–[10]. In two
cases, also control design has been done in the complex
domain: regulation of electric machines [1]–[3] and active
vibration damping of rotating machinery [4], [5]. For these
applications it was found that the complex formulation
facilitated design and analysis compared to previous real-
valued formulations.

The utility of complex-coefficient representations has also
become apparent in the authors’ work on accelerator cavity
field control at the European Spallation Source [11] and the
SLAC National Accelerator Laboratory [12]. When complex-
coefficient transfer functions are analyzed in existing cavity
field control literature, either the coefficients are assumed to
be real, or an equivalent, real-coefficient, two-input two-output
representation is considered, which complicates analysis and
synthesis. With complex-coefficient systems, the standard
Nyquist criterion can be used, rather than the less intuitive
MIMO Nyquist criterion as in [14, p. 85].

As remarked in [3], little has been written on complex-
coefficient systems in the control literature, some noteworthy
examples are: linear systems theory [15], Routh-Hurwitz’s
stability criterion [16], Kharitonov’s theorem [17], the Nyquist
stability criterion [18] and root locus [3].

In the next section we look at how complex-coefficient
dynamics arise in real-world applications, in Section III we
discuss basic properties of complex systems, in Sections IV
and V we consider some classic control theoretic results in
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the complex setting, and in the final two sections we discuss
two novel applications of complex-coefficient systems for
control analysis: cavity field control and Cartesian feedback
linearization of RF amplifiers. In the Appendix we mention
some pitfalls when analyzing complex systems with MATLAB.

II. ORIGIN OF COMPLEX-VALUED DYNAMICS

A. Rotationally Invariant TITO Systems

A two-input two-output (TITO) system

G(s) =

[
G1(s) −G2(s)
G2(s) G1(s)

]
(1)

acting on signals
[
x1 x2

]T
can be compactly represented

by the complex SISO system

G(s) = G1(s) + iG2(s) (2)

acting on signals x1 + ix2.
For example, the dynamics of the Foucault pendulum in

the xy-plane, can, subject to small angle approximation, be
represented by the complex differential equation

z̈ + 2iΩż sinφ+ ω2z = 0

where z = x+iy, ω is the natural frequency of the pendulum,
Ω the rotational frequency of the Earth and φ is the latitude
where the pendulum is located. See [6] for similar examples.

Two other examples are the dynamics of balanced three-
phase electric machines, which take the form (1) after
application of an αβ-transformation [1]–[3], and vibrations in
rotating machines [4], where the states x1 and x2 correspond
to the x- and y-positions of the rotating shaft.

B. Bandpass Systems

In applications such as telecommunications, where the
signals of interest are narrowband around some frequency
ωc, it is convenient to consider the complex envelopes of the
signals [7], [19], [20].

If the physical signal is given by

xc(t) = A(t) cos (ωct+ φ(t))

= Re
{
A(t)eiφ(t)eiωct

}
, (3)

where the modulation, i.e. A(t) and φ(t), varies slowly, then
the complex envelope, or the equivalent baseband signal, is
given by

xBB(t) := A(t)eiφ(t)

= xRe(t) + ixIm(t), (4)

where xRe(t) and xIm(t) are real-valued.



An input-output-relation

Yc(s) = Gc(s)Uc(s)

in the Laplace domain, is conveniently transformed to the
base-band via the transformation s 7→ s+ iωc, which gives

Yc(s+ iωc) = Gc(s+ iωc)Uc(s+ iωc).

Yc(s+ iωc) and Uc(s+ iωc) are equivalent baseband signals
and thus the equivalent baseband model of Gc(s) can be
identified as

GBB(s) = Gc(s+ iωc). (5)

If the signals of interest are have narrow support around
ωRF, high frequency dynamics of GBB(iω) can be neglected.
Typically the resulting GBB(s) has complex coefficients [7].

Example, Baseband model of complex pole pair: The
second order resonant system

2ζ0ω0s

s2 + 2ζ0ω0s+ ω2
0

has a baseband model given by

2ζ0ω0(s+ iωc)

(s+ ζω0 + iω0 + iωc)(s+ ζω0 − iω0 + iωc)
.

If ω0 ≈ ωc and the damping factor ζ is small, then for small s
the first term in the denominator is ≈ 2iωc and the following
first-order approximation holds,

GBB(s) ≈ ζ0ω0

s+ ζω0 + i(ωc − ω0)
.

Example, Baseband model of time-delay: The baseband
model of a time delay e−sT is e−(s+iωc)T = e−sT e−iωcT .
If ωc is large, the phase of baseband model is sensitive to
variations in T .

C. Quantum Systems

Linear stochastic quantum systems are naturally described
by complex, quantum stochastic differential equations — see
[8]–[10] for control design for these systems.

III. COMPLEX SIGNALS AND SYSTEMS

In the previous section we motivated the study of systems
of the form

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) (6)

where the signals and matrices are complex. The complex
setting gives rise to some peculiarities not seen for real
systems. In Fig. 1 it is seen that a first-order complex system
may exhibit an oscillatory step response and in Fig. 2 it is
seen that the frequency response is not necessarily conjugate
symmetric with respect to positive and negative frequencies.

To better understand the structure of the system (6) we
split its impulse response into its real and imaginary parts

g(t) = gRe(t) + igIm(t).
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Fig. 1: Step response y(t) of first-order system 2/(s+ 1− i).
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Fig. 2: Frequency response of G(s) = 12/(s+1+8i)/(s+2).
Solid lines correspond to ω > 0 and dashed lines to ω < 0.

Denoting the Laplace transform of gRe and gIm by GRe(s)
and GIm(s) respectively, it is seen that the transfer function
for (6) is given by

G(s) = GRe(s) + iGIm(s). (7)

Note that GRe(s) and GIm(s) are not the real and imaginary
parts of G(s), but that the subscripts are motivated by their
relative contribution to the impulse response. Since gRe(t)
and gIm(t) are real it follows that g∗(t) = gRe(t)− igIm(t)
and

G∗(s̄) = GRe(s)− iGIm(s),

due to conjugate symmetry of GRe(s) and GIm(s). Thus the
decomposition (7) can be recovered from G(s) via

GRe(s) =
G(s) +G∗(s̄)

2
, GIm(s) =

G(s)−G∗(s̄)
2i

. (8)

The action of the complex coefficient transfer function (7)
on a signal x(t) = xRe(t) + ixIm(t) is illustrated in Fig. 3.

A. Correspondence to Real-Valued Representation

In some applications, [14], [21], the complex transfer
function (7) is represented as a real, two-input two-output
(TITO) system of the form

G(s) =

[
GRe(s) −GIm(s)
GIm(s) GRe(s)

]
, (9)

acting on real-valued vector signals
[
xRe xIm

]T
.
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Fig. 3: Illustration of how a complex transfer function G(s) =
GRe(s)+iGIm(s) acts on a signal x = xRe+ixIm to produce
a signal y(t) = yRe + iyIm.

To better understand the relationship between the real
system representation (9) and the complex representation (7),
we consider the eigenvalue factorization of (9),

G(iω)=S∗
[
G(iω) 0

0 G(−iω)

]
S, S=

1√
2

[
1 1
−i i

]
,

(10)
from which we see that the eigenvectors are indepen-
dent of frequency, and that the eigenvector

[
1 −i

]T ↔[
cosωt sinωt

]T ↔ eiωt, and similarly for
[
1 i

]T
.

While the real-coefficient representation (9) is necessary
for physical implementation of complex transfer functions, it
contains redundant information, and from (10) we see that
the frequency responses of G(iω) for positive and negative
frequencies are intertwined, complicating analysis.

The eigenvectors of G(iω) are orthogonal, so the singular
values of G(iω) are the modulus of the eigenvalues, thus

||G||∞ = ||G||∞ (11)

||G||2 =
√

2 ||G||2 . (12)

B. Response to Signal with Specific Direction

Even if the dynamics of a system is rotationally invariant,
and hence can be represented as a complex SISO system,
disturbances may have a specific direction. Consider for
example phase noise in radio-frequency applications.

To illustrate the general behavior, consider without loss of
generality, the output of (6) when subjected to a purely real
signal u(t) = cos(ωt),

y(t) = |GRe(iω)| cos (ωt+ ∠GRe(iω))

+ i |GIm(iω)| cos (ωt+ ∠GIm(iω)) . (13)

The signal (13) corresponds to Lissajous ovals in the complex
plane, see Fig. 4.

IV. FREQUENCY DOMAIN ANALYSIS

When analyzing complex systems in the frequency domain
it is necessary to consider both positive and negative frequen-
cies, as illustrated in Fig. 2. For example a factor eiε gives
the impression of an improved phase margin if only positive
frequencies are considered.

A. Nyquist’s Stability Criterion

The assumptions and standard proof of the Nyquist stability
criterion require no change as the argument principle is valid
for any meromorphic function [18].

−1 1

−1

1

Re y

Im y

f = 0.05Hz

−1 1

−1

1

Re y

Im y

f = 0.20Hz

−1 1

−1

1

Re y

Im y

f = 0.50Hz

Fig. 4: Lissajous ovals in the complex plane generated by
excitation of 1/(s+ 1 + i) by u = sin(2πft).

B. Bode’s Sensitivity Integral

Bode’s sensitivity integral is typically considered over only
positive frequencies [22], however double-sided integration
is necessary for complex coefficient transfer functions,∫ ∞

−∞
log |S(iω)|dω = 2π

Np∑
k=1

Re pk, (14)

where {pk} are the RHP poles of G. Also, unlike the real
case, it is crucial to take the real part of the poles in (14).
The proof is the same [22].

That the single-sided version of (14) fails to hold in the
complex case, is seen from that G(s+ iδ) would correspond
to different lower limits of integration for different δ.

C. Bode’s Complementary Sensitivity Integral

The relationship for the complementary sensitivity function
[23] needs the same modifications as in (14) to cover complex
coefficient transfer functions,∫ ∞
−∞

log |T (iω)| dω
ω2

= −πK−1v +πτ + 2π

Nz∑
k=1

Re
1

zk
, (15)

where τ is the system time-delay, {zk} are the RHP zeros
of G(s) and Kv = lims→0 sL(s). The result follows, with
minor modifications, from the proof in [23].

D. Bode’s Gain-Phase Relationship

Bode’s gain-phase relationship which relates the phase
of a real, minimum phase system G(s), to the slope of its
gain curve in logarithmic scale, does not hold for complex
G(s). The less intuitive relationship given by the double-sided
version of the Kramers-Kronig relations [24],

∠G(iω0) =
1

π
P
∫ ∞
−∞

log |G(iω)|
ω − ω0

dω,

where P denotes the Cauchy principle value, still holds for
complex, minimum phase systems.

V. STATE-SPACE ANALYSIS

Notions such as controllability, stability, etc. are analogous
to the real case [15]. Below, some special results are discussed
in more detail.



A. H2 and H∞ Norms

The H2-norm can be calculated using the same formulas as
in the real case, i.e. ‖C(sI −A)−1B‖22 = trace (B∗Y B) =
trace (CXC∗), where X = X∗ and Y = Y ∗ are solutions
to the complex Lyapunov equations XA+A∗X +B∗B = 0
and AY + Y A∗ + CC∗ = 0 respectively.

The linear matrix inequalities for calculating the H∞-norm
also carry over, given that Hermitian transposition is used.

Remark: MATLAB’s functions for H∞-synthesis does not
handle complex systems correctly.

B. LQR

In [15] the optimal feedback for a complex linear system
with respect to a cost functional

J =

∫ ∞
0

[
x(t) u(t)

]∗ [ Q N
N∗ R

] [
x(t)
u(t)

]
dt

is derived. The optimal feedback is given by u = −Kx with

K = R−1(N∗ +B∗X),

where the Hermitian matrix X ≥ 0 satisfies the complex
Riccati equation

A∗X +X∗A− (N +XB)R−1(N∗ +B∗X) +Q = 0.

For a first order system it seen that when N = 0, BK is
real and positive, and the linear optimal regulator moves the
closed loop pole, A−BK, parallel to the real axis, further
into the LHP.

The amazing robustness properties of LQR (for N = 0),
that hold in the real case (infinite gain margin and ≥ 60◦

phase margin), hold also in the complex case, even if the
Nyquist curve is not symmetric with respect to the real axis.

C. Kalman Filter for Complex-Valued Normally Distributed
Noise

It is natural to allow the state and measurement noise to
be complex-valued. A complex-valued normally distributed
variable Z with zero mean is determined by the matrices
E(ZZ∗) and E(ZZT ). If the latter is zero, one says that
Z is circular-symmetric, which means that the distribution
function is rotationally invariant in the complex plane. The
paper [25] discusses the general problem and introduces the
concept of ”widely linear state space models” to describe the
optimal estimator in an aesthetic form.

VI. EXAMPLE I: AMPLIFIER LINEARIZATION

Cartesian feedback linearization of power amplifiers was
actively studied 10–20 years ago as a means to reduce
power consumption and adjacent channel interference in
telecommunications [26]–[28]. To avoid instability and per-
formance degradation, the phase shift φ between up- and
down-conversion needs to be properly compensated by an
adjustment phase φ̂, see Fig. 5.

If the amplifier is operating in an almost linear region, the
open loop system is well approximated by

G(s) = H(s)P (s)e−τseiδ, (16)

H(s)

H(s)
i.PA

sinωRFt

cosωRFt

Σ

Σ

I ′

−

Q′

−

−φsin(ωRFt+ φ̂)

cos(ωRFt+ φ̂)

I

Q

Fig. 5: Amplifier linearization by Cartesian feedback [28],
loop filters, up- and down-conversion mixers are shown.

-1

Re

Im

Nominal
10◦ adjustment error
20◦ adjustment error

Fig. 6: Nyquist curves for Cartesian feedback loop with
different phase adjustment errors. The nominal curve is from
[26, Sec. 4.2].

where H(s) is the loop filter, P (s) is a baseband model of
the mixer and amplifier dynamics, τ is the loop delay and
δ := (φ̂− φ) is the phase adjustment error.

Although [29] simulated (16) as a complex systems,
the stability properties were analyzed using the equivalent
TITO form (1). After algebraic computations and a clever
observation it was shown that an adjustment error δ translates
directly to a corresponding reduction in phase margin.

In the complex setting the same conclusion follows directly
from the Nyquist criterion (Sec. IV-A), by noting that the
factor eiδ corresponds to a rotation of the Nyquist curve
H(iω)P (iω)e−iτω by δ radians, see Fig. 6 for an illustration.

VII. EXAMPLE II: CAVITY FIELD CONTROL

In radio-frequency accelerators, particle bunches are accel-
erated by electromagnetic fields confined in RF cavities. The
amplitude of the fields, and their phase relative the particle
bunches, need to be precisely controlled [30].

To see how complex transfer functions play a role in this,
we first derive the baseband equations for the cavity and the
RF system (Fig. 7), and then design a complex H∞-controller.

A. Model of Cavity Dynamics

From Maxwell’s equations it follows that the electric field
in the cavity can be expressed as a linear combination of
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Fig. 7: Block diagram of RF system for one cavity. Variations
in the voltage supply to the power amplifier (d1) and ripple
on the accelerated current (d2), affect the system as load
disturbances on the cavity input.

Fig. 8: Fundamental passband modes in the nine-cell TESLA
cavity [14], that is used in many large accelerators, e.g.
LCLS II. The π-mode is used for particle acceleration, while
all other modes are detrimental to both particle acceleration
and RF system stability.

eigenmodes,

E(r, t) =

∞∑
k=0

vk(t)Ek(r),

where the mode amplitudes ek satisfy [30, Ch 5, 10]

d2

dt2
vk + 2γk

d

dt
vk + ω2

kvk = 2κk
d

dt
ig + 2αk

d

dt
ib, (17)

where ωk is the resonance frequency and γk the half
bandwidth of mode k. κk and αk quantify how the output
of the power amplifier, modeled as a current ig, and the
accelerated particle current ib, couple to the cavity field. The
amplifier output ig, can considered as the control signal.
Variations in ib enter as load disturbances.

The distribution of modes in the fundamental passband
for an elliptical cavity is shown in Fig. 8. The mode that is
used for particle acceleration is typically the π-mode, and
the purpose of the RF system is to excite the π-mode and
control its phase and amplitude.

After both Laplace and baseband transformations of (17),
we get

Vk(s) :=
1

s+ γk + i∆ωk
(κkIg(s) + αkIb(s)) , (18)

where ∆ωk = ωRF − ωk.
A baseband model of the RF system in Fig. 7, including

the accelerating π-mode and one parasitic mode, now takes
the form

P (s) = Pamp(s)e−iωRFτe−τs

×
[

cπκπ/2

s+ γπ + i∆ωπ
+

c1κ1/2

s+ γ1 + i∆ω1

]
, (19)

where Pamp(s) is the dynamics of the power amplifier, τ is
the system time delay, ck quantify the coupling of mode k to
the measurement probe, and e−iωRFτ is an additional factor
resulting from the baseband transformation of the loop delay
(cf. II-B). Complex quantities in (19) have been highlighted.

B. H∞-synthesis Example

As we demonstrate in the Appendix, the MATLAB functions
for H∞-synthesis does not work for complex coefficient
systems, instead we used the TITO representation (1), which
resulted in a controller that also had structure (1), from which
we recovered a complex controller.

1) Specifications: The main requirements for cavity field
control is to suppress load disturbances while maintaining
good robustness and avoiding excessive control signal activity.
These requirements correspond to the following weights for
mixed sensitivity synthesis,

WS(s) = 1

WPS(s) = k1 ·
1

s+ ε

WKS(s) = k2 ·
s+ ωbw

s+Nωbw
.

By tuning how the parameters of the weighting functions, we
arrived at a reasonable controller design.

2) Results: The frequency response of the controller is
shown in Fig. 9, note the asymmetry with respect to positive
and negative frequencies, which imply that the controller has
complex-coefficients. It can also be seen that a notch has been
by the H∞-design, which allow a high control bandwidth for
negative frequencies, without introducing positive feedback
via the parasitic mode. The gang of four for the design is
shown in Fig. 10.

VIII. CONCLUSIONS

We have described some applications where system dynam-
ics are conveniently modeled by complex-coefficient systems.
Most control theoretic results developed for the real-valued
case carry to the complex setting with minor changes, such
as ensuring that transposition is Hermitian and that both
negative and positive frequencies are considered. Instances
where complex systems are erroneously handled by MATLAB
were pointed out.

A design example for cavity field control was presented
in some detail and it was demonstrated that it was possible
to synthesize a complex H∞ controller. Due to the special
structure of the plant, with resonance peaks only occurring at
negative frequencies, the optimal controller had a markedly
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different frequency response for positive and negative fre-
quencies.

We believe that there are many applications where a
complex approach could bring increased insight and that
there are related control theoretical questions worthy of further
investigation.
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APPENDIX

MATLAB handles complex-coefficient systems incorrectly.
We detected the following issues with version R2016a (Linux).

In the nyquist plot, the frequency response for negative
frequencies equals that at positive frequencies, which is
incorrect for complex coefficients system. hinfnorm only
considers positive frequencies, while minreal does not
support complex data at all.

The first example of H∞-synthesis in the MATLAB docu-
mentation,

G = (s-1)/(s+1)^2;
W1 = 0.1*(s+100)/(100*s+1);
W2 = 0.1;
[~,~,GAM] = mixsyn(G,W1,W2,[])

gives GAM=0.23. Multiplying the plant G by a complex
factor exp(0.4i) should not affect the resulting value,
as the factor could be canceled by the controller. However
the result in this case is GAM=0.40, thus demonstrating
incorrectness.


