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Abstract 

Since the finishing of the Human Genome Project, many next-generation (NGS) or 
high-throughput sequencing platforms have emerged. One of the applications of 
NGS technology, variant discovery, can serve as a basis for precision medicine. 
Large sequencing projects are generating huge amounts of genetic variation data, 
which are stored in databases, either large central databases such as dbSNP, or gene- 
or disease-centered locus-specific databases (LSDBs). There are many variation 
databases with many different formats and varying quality. Apart from storage and 
analysis pipeline capacity problems, the interpretation of the variation is also an 
issue. Computational methods for predicting the effects of variants have been and 
are being developed, since experimental assessment of variation effects is often not 
feasible. Benchmark datasets are needed for the development and for performance 
assessment of such prediction methods. 

We studied quality related aspects of variant databases and benchmark datasets. The 
online tool called VariOtator was developed to aid in the consistent use of the 
Variation Ontology, which was specifically developed to describe variation. 
Standardization is one aspect of database quality; the use of an ontology for variant 
annotation will contribute to the enhancement of it. 

BTKbase is a locus-specific database containing information on variants in BTK, 
the gene involved in X-linked agammaglobulinemia (XLA), a primary 
immunodeficiency. If available, phenotypic data, i.e. the variant effects, are also 
provided. Statistics on variants and variation types showed that there is a wide 
spectrum of variants and variation types, and that the distribution of protein variants 
in the different BTK domains is not even. 

The VariSNP database containing datasets with neutral (non-pathogenic) variants 
was generated by selecting variants from dbSNP and filtering for variants found in 
the ClinVar, PhenCode and SwissProt databases. Variants in these three databases 
are considered to be disease-related. The VariSNP database contains 13 datasets 
following the functional classification of dbSNP, and is updated on a regular basis. 

To study the sensitivity to variation in different protein and disease groups, we 
predicted the pathogenicity of all possible single amino acid substitutions (SAASs) 
in all proteins in these groups, using the well-performing prediction method 
PON-P2. Large differences in the proportions of harmful, benign and unknown 
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variants were found, and distinctive patterns of SAAS types were found, both in the 
original and variant amino acids. 

Representativeness is one quality aspect of variation benchmark datasets, and relates 
to the representation of the space of variants and their effects. We studied the 
coverage and distribution of protein features, including structure (CATH) and 
enzyme (EC) classification, Pfam domains and Gene Ontology terms, in established 
benchmark datasets. None of the datasets is fully representative. Coverage of the 
features is in general better in the larger datasets, and better in the neutral datasets. 
At the higher levels of the CATH and EC classifications, all datasets were unbiased, 
but for the lower levels and other features, all datasets were biased. 
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Introduction 

Background 

The Human Genome Project (HGP) was initiated in 1990, with the aim of 
determining the complete sequence of DNA bases in the human genome, and to 
disclose all human genes and make them accessible for further study (Lander, et al., 
2001). The HGP officially ended in 2003 with a near-complete sequence containing 
~99.7% of the euchromatic genome, only interrupted by ~300 gaps and an error rate 
of one nucleotide per 100 000 bases (Consortium, 2004; Lander, 2011). Sanger 
sequencing was essentially the sequencing method used in the HGP (Sanger and 
Coulson, 1975; Sanger, et al., 1977). Next-generation sequencing (NGS) or high-
throughput sequencing technologies have since emerged and evolved, increasing the 
capacity and decreasing the cost of human genome sequencing (Goodwin, et al., 
2016). NGS platforms are now a routine part of biological research and are 
becoming more widespread in the clinical sector (Goodwin, et al., 2016). The NGS 
platforms can be classified into two groups, short- and long-read sequencing, both 
with their advantages and drawbacks, depending on the objectives. Applications of 
sequencing include whole-genome sequencing (WGS), whole-exome sequencing 
(WES), RNA sequencing (RNA-seq) and targeted sequencing, among many others. 
Through WGS, which is becoming one of the most widely used NGS applications, 
it is possible to obtain the most comprehensive view of genomic information and 
associated biological implications (Goodwin, et al., 2016). 

All these NGS platforms generate huge amounts of data, which is challenging for 
both analysis and infrastructure. The world capacity was in 2013 estimated at ~15 
petabytes of sequencing data per year, and at a rate increasing three- to five-fold per 
year (Schatz and Langmead, 2013). Projected needs for data acquisition and data 
storage are estimated at 1 zetta-bases/year and 2-40 exa-bytes/year for the year 2025 
(Stephens, et al., 2015). 

One of  the applications of NGS technology, variant discovery, is becoming 
common in medical genetics and can serve as a basis for personalized medicine 
(Nekrutenko and Taylor, 2012). Although often used interchangeably, the term 
precision medicine is now preferred, since it covers the current approach better 
(Carrasco-Ramiro, et al., 2017). 
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Sequencing errors, which are thought to be mostly caused by polymerase chain 
reaction mistakes or sequencing miscalls, are a challenge. Preprocessing of NGS 
data to improve quality can be done e.g. by simply trimming based on quality scores, 
but there are also more advanced error-correction methods (Yang, et al., 2013). Next 
to sequencing errors and variant calling errors, interpretation of these DNA 
sequence changes regarding their functional consequences can also be problematic. 
Although many variants have been associated with rare and common genetic 
disorders correctly, false assignments exist at a substantial level (MacArthur, et al., 
2014). Incorrect assignment of pathogenicity can have serious consequences, both 
for medicine and research.  A recent study (Chen, et al., 2017) indicated that 
mutagenic DNA damage occurring during sequencing is a cause of sequencing 
errors, previously thought to occur only in specialized samples, causing erroneous 
variant identification. Guidelines for the evaluation of causality of variants have 
been published (MacArthur, et al., 2014). 

Variation data are being submitted to variation databases, such as gene variant or 
locus-specific variation databases (LSDBs) or large depositories such as the 
Database for Short Genetic Variations (dbSNP) (Sherry, et al., 2001), UniProt 
(UniProt Consortium, 2017) and Ensembl (Aken, et al., 2017). Making variation 
data publicly available is a prerequisite for further analysis, such as variation 
interpretation. To illustrate the growth of variation data, dbSNP, the largest variation 
database, is taken as an example. dbSNP contains both benign and disease-causing 
cases. Despite of the abbreviation for single nucleotide polymorphism (SNP) in 
dbSNP, it is a public archive for all short sequence variation, and includes of broad 
collection of simple genetic variations such as single-base nucleotide substitutions, 
small-scale multi-base deletions or insertions, and microsatellite repeats (National 
Center for Biotechnology Information, 2014). Human Build 150, released in April 
2017, contains more than 336 million records on Homo sapiens. Inclusion of data 
from large sequencing projects such as the 1000 Genomes Project (Genomes 
Project, et al., 2015), and recently from Human Longevity Inc.  (Telenti, et al., 2016) 
and the Trans-Omics for Precision Medicine (TOPMed; https://www.nhlbi.nih.gov/ 
research/resources/nhlbi-precision-medicine-initiative/topmed)  programme 
contributed substantially to the growth of this database, it more than doubled its 
contents, from 154 to 324 million reference SNPs in April 2017. The growth of 
human variation data in dbSNP in the last 10 years is illustrated in Fig. 1. Ongoing 
large-scale projects such as the 100,000 Genomes Project (https:// 
www.genomicsengland.co.uk/the-100000-genomes-project/) (Peplow, 2016) and 
the All of Us Research Program (formerly Precision Medicine Initiative Cohort 
Program, https://allofus.nih.gov) will likely cause an even faster growth of the 
amounts of variation data in the future; the large amounts of data are already 
straining data storage capacities and analysis pipelines (McPherson, 2014). 
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Figure 1: Growth of human variation data in dbSNP in the last 10 years 

Quality of variant databases is a very important aspect to consider, because the 
information in these databases can be used in health decision-making, research and 
clinical practice. Quality evaluation criteria for variation databases were developed 
by a Human Variome Project (HVP) workgroup, and are divided into four major 
areas, each having several components (Vihinen, et al., 2016). These areas are data 
quality, technical quality, accessibility and timeliness. 

 Gene-variant databases or LSDBs focus either on a single gene or on a group of 
genes related to certain diseases and are generally considered as the most reliable 
source of variation as these are typically curated by experts in the genes and diseases 
(Vihinen, et al., 2016). 

The formats and platforms used for LSDBs and central databases is often very 
different, making comparison of variants complicated. Many LSDBs are using the 
Leiden Open Variation Database (LOVD) management software (Fokkema, et al., 
2011) which is developed to provide a flexible and freely available tool for gene-
centered collection and display of DNA variations. Other frequently used database 
management software includes MUTbase (Riikonen and Vihinen, 1999) and 
Universal Mutation Database (UMD) platform (Beroud, et al., 2005). The LOVD 
software (version 3) also provides patient-centered data storage and storage of NGS 
data. LOVD is open source, its underlying relational database management system 
being MySQL (www.lovd.nl). LOVD also offers to host databases on their servers, 
freeing database managers of making backups and updating their software. 
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Standardization is one component of data quality. A systematic representation of 
information facilitates data integration, comparison of data, automated searching 
within and across databases, and the development of dedicated software tools. One 
of the recommendations for LSDBs is the use of standardized nomenclature (Cotton, 
et al., 2008). The HUGO Gene Nomenclature Committee (HGNC) provides 
systematic gene names and symbols (Yates, et al., 2017). Standardized reference 
sequences are generated by the European Bioinformatics Institute (EBI) and the 
National Center for Biotechnology Information (NCBI) in the Locus Reference 
Genomic (LRG) sequence format (Dalgleish, et al., 2010). If for a certain gene no 
LRG is available, a request for one can be made, or one can use a NCBI reference 
sequence (RefSeq) (O'Leary, et al., 2016). Systematics for the description of 
sequence variants can be found in the Human Genome Variation Society (HGVS) 
nomenclature (den Dunnen and Antonarakis, 2000; den Dunnen, et al., 2016). 
General recommendations are provided, as well as specific recommendations on the 
DNA, RNA and protein level. The HGVS recommendations are designed to be 
accurate, unambiguous, stable, meaningful, but also flexible to correct 
inconsistencies and to extend the nomenclature for cases not previously covered. 
Three organizations, the HGVS, the HVP and the Human Genome Organization 
(HUGO), established the Sequence Variant Description Working Group (SVD-
WG). The SVD-WG takes care of the nomenclature website 
(http://varnomen.hgvs.org/), answers questions, handles incoming requests to 
change or extend the recommendations, prepares, where necessary, proposals for 
community consultation, publishes new versions of the standards and assigns HGVS 
nomenclature version numbers. The HGVS nomenclature has been widely adopted 
and has become an internationally accepted standard. All major variant databases, 
including dbSNP, support the HGVS nomenclature, and organizations such as the 
American College of Medical Genetics and Genomics (ACMG) are recommending 
its use for the interpretation of sequence variants (Richards, et al., 2015). Mutalyzer 
is a tool that has been developed to check if an HGVS description is correct 
(https://mutalyzer.nl) (Wildeman, et al., 2008). Next to this name checking function, 
the tool has several other options, such as a syntax checker, a position converter, a 
name generator and a description extractor. The hgvs Python package has similar 
functionalities: parsing, representing, formatting, and mapping variants between 
genome, transcript, and protein sequences (Hart, et al., 2015). 

The abovementioned standardization examples concern variant descriptions. 
Annotation, i.e. adding explanatory or commentary notes, is often used to enrich 
data. Genome annotation or DNA annotation is the process of adding layers of 
analysis to and interpretation of a sequence, and is done at the nucleotide level, 
protein level and process level (Stein, 2001). An option to come to a standardized 
annotation of variant descriptions is the use of an ontology, a controlled vocabulary 
conceptualizing a knowledge domain by defining the central terms and their 
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relationships. Annotation of variation using an ontology will facilitate data 
integration and data mining, pattern recognition and statistics, and the development 
of analysis and prediction tools (Vihinen, 2014a). Some well-known and widely 
used ontologies in live sciences are the Gene Ontology (GO) and the Sequence 
Ontology (SO). The GO is a controlled vocabulary for describing the roles of genes 
and gene products (Ashburner, et al., 2000). The SO (Eilbeck, et al., 2005) is for 
describing features and properties of biological sequences. 

Variation databases and annotation 

The recently developed Variation Ontology (VariO; http://variationontology.org) is 
a specific ontology for describing and annotating types, effects, and mechanisms of 
variations (Vihinen, 2014a). The ontology has four major levels, type, function, 
structure and property, in addition to the three molecular levels DNA, RNA and 
protein. VariO terms can be further modified by attribute terms. 

Variation type terms describe the origin and classification of variation. Examples of 
variation type terms at all three molecular levels, DNA, RNA and protein, are given 
in Fig. 2. 
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Figure 2: VariOtator output for variation type. The variant description 
NM_000061.2:c.1226_1227insA was used as input. 

The full lineage up to but not including the top-level term, ‘VariO:0001 variation’, 
is provided. This example was generated with the VariOtator tool, using the coding 
DNA variant description ‘NM_000061.2:c.1226_1227insA’ as input. 

VariO function terms describe the functions affected by the variation, e.g. 
‘VariO:0399 effect on translation’. VariO structure terms are for describing the 
affected structural features, e.g. ‘VariO:0085 effect on alpha helix’. Property terms 
can be used for diverse features, an example is ‘VariO:0301 effect on RNA 
stability’.  

Since ontologies can be complicated, we developed the user-friendly, easy-to-use 
online application VariOtator, to promote the use of VariO and to safeguard the 
consistency of annotation with VariO. VariOtator assigns automatically VariO 
terms to variant type descriptions and suggests terms for the other three VariO 
levels, function, structure and property. 
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IDbases: BTKbase 

BTKbase (Vihinen, et al., 1995; Väliaho, et al., 2006) is an example of a locus-
specific database (LSDB) which is manually curated by experts on the gene and 
disease. It is one of the 131 IDbases, LSDBs for immunodeficiency-causing 
variations. IDbases contain in addition to gene variation, also information about 
clinical presentation (Piirilä, et al., 2006). The IDbases were implemented under the 
MUTbase system (Riikonen and Vihinen, 1999) but are gradually being moved to 
the LOVD system (Fokkema, et al., 2011). 

Bruton tyrosine kinase (BTK) variations lead to X-linked agammaglobulinemia 
(XLA, MIM# 300755), a hereditary primary immunodeficiency (PID) (Tsukada, et 
al., 1993; Vetrie, et al., 1993). XLA is characterized by failure to produce mature B 
lymphocytes and is associated with a failure of Ig heavy chain rearrangement. This 
block in B cell differentiation results in severely decreased numbers of B 
lymphocytes and an almost complete lack of plasma cells and very low or missing 
immunoglobulin levels of all isotypes. The disorder resides in the BTK gene, a key 
regulator in B-cell development (Rawlings and Witte, 1994). The BTK gene (HGNC 
approved name Bruton tyrosine kinase; reference sequence LRG_128) has 19 exons, 
with exon 1 completely, and exons 2 and 19 partially outside the coding region. The 
BTK protein (UniProt ID: Q06187; recommended name tyrosine-protein kinase 
BTK) belongs to the Tec family of related cytoplasmic protein kinases, and has the 
following domain organization in common: the N-terminus pleckstrin homology 
(PH) domain, the Tec homology (TH) domain, the Src homology 3 (SH3) domain, 
the Src homology 2 (SH2) domain, and the catalytic tyrosine kinase (TK) domain. 

BTKbase (https://structure.bmc.lu.se/idbase/BTKbase/) adheres to a number of 
standards including HGNC gene name, LRG reference sequence, HGVS variation 
nomenclature, and follows the recommendations for LSDBs (Vihinen, et al., 2012) 
and their curation (Celli, et al., 2012). In addition to the variant descriptions, the 
records contain literature citations and annotation in detail at DNA, RNA, and 
protein levels, including annotation with VariO terms. Also, the most important 
clinical parameters and laboratory findings are included, if available. 

An overview of the variation statistics in BTKbase is provided. These include the 
distribution of variants to BTK gene regions and BTK protein domains, the 
distribution of variation types based on their effects on DNA or RNA level, and the 
distribution of amino acid substitutions (AASs). 
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Benchmark datasets: VariSNP and representativeness 

A major problem with variant databases is the interpretation of the variants, i.e. what 
is the consequence of the variation on the phenotype. Large numbers of identified 
variations in sequencing projects are novel and knowledge about disease association 
is absent (Niroula and Vihinen, 2016). Experimental analysis of the variations 
would be too costly and time-consuming, and in practice impossible due to the large 
numbers of newly identified variants. Therefore, many computational tools have 
been developed to predict the pathogenicity of variants, and are based on different 
principles. Evolutionary conservation is among the most useful data items for 
predictions. Evolution based tools include PANTHER (Thomas and Kejariwal, 
2004), PROVEAN (Choi, et al., 2012) and SIFT (Ng and Henikoff, 2001). Many 
methods utilize machine learning (ML) algorithms. PON-P2 (Niroula, et al., 2015) 
is a ML-based method using features such as evolutionary sequence conservation, 
amino acid properties, and functional annotations. Another category are the meta-
predictors, methods that use the predictions of other methods to make their own 
decisions. Some examples are PON-P (Olatubosun, et al., 2012), Condel (Gonzalez-
Perez and Lopez-Bigas, 2011) and PredictSNP (Bendl, et al., 2014). For the 
development and assessment of predictor performance, approved and widely 
accepted benchmark datasets are needed (Nair and Vihinen, 2013). 

Benchmark datasets are standard representative datasets with known outcome and 
they are essential for assessment of predictor performance (Vihinen, 2012). 
Benchmark datasets can also be used for training and testing of new predictors when 
based on ML methods. The VariBench database holds the first systematic 
benchmark datasets for variation effects  (Nair and Vihinen, 2013). The criteria 
considered for inclusion of data and datasets included relevance, representativeness, 
non-redundancy, experimentally verified cases, positive and negative cases, 
scalability, and reusability. Since the release of VariBench, many new variants had 
been discovered and the need for newer and larger datasets was apparent. Easy 
updating of the datasets was also a requirement because of the accelerating speed of 
variation detection. For this, we developed VariSNP, a database with neutral variant 
datasets. dbSNP was used as the source of data for the new benchmark datasets. It 
is considered the largest variation database (over 324 million reference SNPs, April 
2017) and is a public domain archive for a broad collection of simple genetic 
variations (Sherry, et al., 2001). 

Since our aim was to generate benchmark datasets for benign variants, and dbSNP 
contains both disease-related and non-disease related variants, subsets of dbSNP 
were created by filtering out variants found in ClinVar, UniProt and PhenCode 
datasets, and which were annotated as either pathogenic or disease-causing. These 
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three databases are considered to be among the most comprehensive resources for 
disease-related variants. 

ClinVar contains reports of relationships among human variations and medically 
relevant phenotypes with supporting evidence (Landrum, et al., 2014). The Swiss-
Prot section of UniProt (UniProtKB/Swiss-Prot) contains manually annotated 
records with information on protein sequences extracted from literature and curator-
evaluated computational analysis (UniProt Consortium, 2017). Manual curation 
includes a thorough review of available information on sequence variants (mostly 
single amino acid substitutions) and associated genetic disease information. 
PhenCode (phenotypes for ENCODE) complements human phenotype and clinical 
data in various LSDBs with data on genome sequences, evolutionary history, and 
function from the ENCODE project and other resources in the University of 
California, Santa Cruz (UCSC) Genome Browser (Giardine, et al., 2007). 

One of the criteria and requirements of benchmark datasets is their 
representativeness, how well do the data in the dataset provide a good example of 
existing cases, the population. For variant pathogenicity prediction, this means that 
the data represent the space of variations and their effects. Pathogenicity/tolerance 
prediction methods are often based on ML methods which require training and 
testing datasets consisting of known examples, and the tool will not attain its 
complete performance if these examples do not represent the variations space. 

To evaluate the representativeness of datasets, we studied some features of the data, 
including coverage and distributions of the human proteome space, the CATH 
classification, the relation of proteins to Pfam families, the Enzyme Commission 
(EC) classification of proteins, and the allocation of GO terms to proteins. 

CATH (Class, Architecture, Topology, Homology) is a classification of protein 
structures, providing information on the evolutionary relationships of protein 
domains (Sillitoe, et al., 2015). Protein structures are obtained from the Protein Data 
Bank (PDB) and split into the consecutive polypeptide chains, where applicable. 
Using both automated methods and manual curation, protein domains are identified 
within these chains. The domains are then classified within the CATH hierarchy: 
according to their secondary structure content domains are assigned to one of the 
four Class levels, all alpha, all beta, mixture of alpha and beta, little secondary 
structure. At the Architecture level, secondary structure arrangement information is 
used for classification. The Topology level relates to information about the 
connection and arrangement of the secondary structure elements; assignments to the 
Homologous superfamily level are made if there is good evidence of evolutionary 
relationship, i.e. they are homologous (http://www.cathdb.info/wiki). Examples of 
CATH classifications are given in Fig. 3. 
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Figure 3: CATH classification of two domains in the PDB structure 3k54. 3k54: PDB structure, 
3k54A: chain A, 3k54A01: domain 01, 3k54A02: domain 02, top CATH classification: 3k54A01, 
bottom CATH classification: 3k54A02. 

The PDB structure 3k54 is the crystal structure for human BTK kinase domain 
(Marcotte, et al., 2010), and has one chain, 3k54A, and two structure domains, 
3k54A01 and 3k54A02. The CATH classification of the two domains is provided 
from the 1st (Class) level to the 4th level (Homology or superfamily). 

The Pfam database (http://pfam.xfam.org) is a collection of protein domain families. 
Protein domains are functional regions of which proteins in general have one or 
more. Each Pfam entry is represented by multiple sequence alignments and hidden 
Markov models (Finn, et al., 2016). Pfam entries are classified into one of six 
categories, depending on the length and nature of the sequence regions included in 
the entry. The six categories are domain, family, repeat, motif, coiled-coil and 
disordered. 

EC numbers relate to the classification scheme for enzymes, which is based on the 
chemical reactions they catalyze (International Union of Biochemistry and 
Molecular Biology. Nomenclature Committee and Webb, 1992). The 6 main classes 
are EC 1: Oxidoreductase, EC 2: Transferases, EC 3: Hydrolases, EC 4: Lyases, EC 
5: Isomerases and EC 6: Ligases. Each of these main classes have up to three levels 
of subclasses, so a full EC classification is made up of the 4 numbers referring to 
the 4 levels of the classification. The database is accessible at 
http://www.chem.qmul.ac.uk/iubmb/enzyme/. 

The GO defines concepts/classes used to describe gene function, and relationships 
between these concepts. It classifies functions along three aspects: biological 
process, cellular component and molecular function in a species-independent 
manner (http://www.geneontology.org). Biological process refers to a biological 
objective to which the gene or gene product contributes. Molecular function is 
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defined as the biochemical activity (including specific binding to ligands or 
structures) of a gene product. Cellular component refers to the place in the cell 
where a gene product is active. 

Protein groups and sensitivity to variation 

Variation databases contain only known variants. One fundamental question related 
to sequence variants is how many of possible variants are harmful or benign. Despite 
numerous sequencing studies, proportions of harmful and harmless substitutions are 
not known for proteins and protein groups. Related to this is whether there are 
differences in variant frequencies between proteins, protein groups, protein 
structural classes, chromosomes, or amino acid substitution types. Functional 
analysis is possible using experimental methods such as massively parallel 
mutagenesis. This technique has been used for certain genes/proteins (Haller, et al., 
2016; Starita, et al., 2015), but methods like this have not been/are not being 
employed on a large scale. 

There is extensive variation in the mutation rate between and within human genes 
associated with Mendelian disease (Smith, et al., 2016), differences in proportions 
of harmful and benign variants are to be expected between gene and disease classes. 
Genes related to cardiomyopathy were found to have very low rates of genetic 
variation (Pan, et al., 2012). Other studies have investigated the numbers of 
pathogenic variants in certain proteins (Niroula and Vihinen, 2015; Väliaho, et al., 
2015), but no systematic studies have been performed. Sufficiently large 
experimental datasets are not available, therefore we investigated the proportions of 
harmful and benign variants in nine protein groups by predicting the outcome/effect 
of all possible single amino acid substitutions (SAASs) in proteins belonging to 
these groups. 
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Aims of the study 

The main aims of this study were to develop tools for improving variation 
annotation, specifically the standardization of annotation, and for supporting the 
development of methods for variant interpretation. 

More specific aims were: 

Development of an automated tool for annotating variant descriptions with 
Variation Ontology terms (paper I). 

Provide an overview of variation in BTK (paper II). 

Generate variation benchmark datasets from dbSNP (paper III). 

Examine differences in sensitivity to variation in disease and non-disease related 
protein groups (paper IV). 

Investigate the representativeness of variation benchmark datasets (paper V). 
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Materials and methods 

Variation data 

VariOtator (Paper I) 

VariO was downloaded from its website, http://variationontology.org. The ontology 
is available in three file formats of which we used the Web Ontology Language 
(OWL) format. OWL is an ontology language for the Semantic Web with defined 
meaning. It is designed for use by applications that need to process the content of 
information instead of just presenting information to humans 
(https://www.w3.org/TR/owl2-overview/). 

BTKbase (Paper II) 

Statistics on the three molecular levels, DNA, RNA and protein, were determined 
in BTKbase (Väliaho, et al., 2006). These included the distribution of variants and 
variant types in the BTK domains and types of nucleotide and amino acid 
substitutions. 

Database of variation benchmark datasets VariSNP (Paper III) 

Variation data were collected from dbSNP (Sherry, et al., 2001). For filtering out 
pathogenic/disease-causing variants, variation data were collected from the 
PhenCode (Giardine, et al., 2007), the ClinVar (Landrum, et al., 2014) and the 
UniProtKB/Swiss-Prot (UniProt Consortium, 2017) databases. These three 
databases are considered to be among the most comprehensive resources for 
disease-related variants. Since our aim was to generate benchmark datasets for 
benign variants, and dbSNP contains both disease-related and non-disease related 
variants, subsets of dbSNP were created by filtering out variants found in ClinVar, 
UniProt and PhenCode datasets, and which were annotated as either pathogenic or 
disease-causing. ClinVar contains reports of relationships among human variations 
and medically relevant phenotypes with supporting evidence (Landrum, et al., 
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2014). The Swiss-Prot section of UniProt (UniProtKB/Swiss-Prot) contains 
manually annotated records with information on protein sequences extracted from 
literature and curator-evaluated computational analysis (UniProt Consortium, 
2017). Manual curation includes a thorough review of available information on 
sequence variants (mostly single amino acid substitutions) and associated genetic 
disease information. PhenCode (phenotypes for ENCODE) complements human 
phenotype and clinical data in various LSDBs with data on genome sequences, 
evolutionary history, and function from the ENCODE project and other resources 
in the University of California, Santa Cruz (UCSC) Genome Browser (Giardine, et 
al., 2007). 

Sensitivity of protein categories (Paper IV) 

We investigated all possible SAASs in nine groups of proteins with a highly reliable 
prediction method, PON-P2 (Niroula, et al., 2015) to see if there are differences in 
sensitivity for variations and to reveal the proportions of harmful and benign 
SAASs. Although there are several prediction methods for variation consequences, 
numerous assessments have indicated that PON-P2 has superior performance 
among related tools (Bendl, et al., 2014; Niroula, et al., 2015; Riera, et al., 2016). 
PON-P2 is also fast and has a low error rate. The groups of proteins included those 
involved in diseases as well as housekeeping and non-disease genes and proteins. 

Protein sequences were collected for nine categories of proteins, representing those 
involved in diseases as well as housekeeping and non-disease proteins. The disease 
related groups were proteins from the so-called actionable genes, cancer genes, 
cardiomyopathy related genes, developmental disorder genes, genes for early 
infantile epileptic encephalopathy, PID genes, and neurodegenerative disease-
related genes. Non-disease related proteins were from a selection of housekeeping 
genes and from a random selection of genes from the HGNC database which were 
not disease-related. 

The actionable genes group consisted of 56 genes from the ACMG 
recommendations (Green, et al., 2013) for which findings should be reported, since 
therapies to treat individuals with variants in these genes exist. The cancer group 
consisted of 166 genes, selection criteria ‘somatic’ and ‘missense’, downloaded in 
April 2016 from the Cancer Gene Census repository (http://cancer.sanger.ac.uk/ 
census). The 46 cardiomyopathy genes were from (Pan, et al., 2012). The 53 genes 
in the developmental set were selected (criterion: “Developmental”) from the 
dataset published by (Goh, et al., 2007). The 37 epilepsy-related genes were taken 
in April 2016 from the Online Mendelian Inheritance in Man (OMIM) database 
(Amberger, et al., 2015), using phenotypic series PS308350 (Epileptic 
encephalopathy, early infantile) as selection criterion. The 200 housekeeping genes 
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were a random selection from the dataset published by (Eisenberg and Levanon, 
2013). The 283 genes in the PID set were taken from the ImmunoDeficiency 
Resource (Samarghitean, et al., 2007), from IDbases (Piirilä, et al., 2006), from a 
classification by the International Union of Immunological Societies (IUIS) expert 
committee for PIDs (Picard, et al., 2015) and from a recent review (Vihinen, 2015a). 
The 126 neurodegenerative genes came from the Neurodegenerative Disease 
Variation database (http://bioinf.suda.edu.cn/NDDvarbase/LOVDv.3.0/genes). The 
non-disease related genes were a random selection of 200 genes from the HGNC 
database (Yates, et al., 2017) which were not disease-related (no OMIM id) and 
which were not in the housekeeping set. 

Gene-specific indices were obtained from the publications (Aggarwala and Voight, 
2016; Itan, et al., 2015; Lek, et al., 2016; Petrovski, et al., 2013; Samocha, et al., 
2014). 

Representativeness of variation benchmark datasets (Paper V) 

The VariBench (Nair and Vihinen, 2013) and VariSNP (paper III) databases contain 
variation benchmark datasets which are used for training and testing of prediction 
methods. The representativeness of datasets from these databases and some other 
datasets was studied. As no related research on this topic was found, we chose some 
features thought to capture the representativeness. 

Variation benchmark datasets were collected from the VariSNP database, from the 
VariBench database, from filtered versions of five benchmark datasets for 
pathogenicity prediction (Grimm, et al., 2015), from PolyPhen-2 HumVar training 
datasets (Adzhubei, et al., 2010) and from SwissVar (Mottaz, et al., 2010). Protein 
structure data were downloaded from the PDB in Europe 
(https://www.ebi.ac.uk/pdbe/) or the Research Collaboratory for Structural 
Bioinformatics (RCSB) PDB (http://www.rcsb.org/pdb), protein sequence data 
from the UniProt database. Cross-mapping files (UniProt-PDB) were obtained from 
the EBI. CATH data were downloaded from the CATH website, Pfam data from the 
Pfam database. EC-UniProt ID  cross references came from the UniProt Retrieve/ID 
mapping service (http://www.uniprot.org/uploadlists/), GO terms cross-references 
were obtained using the EBI QuickGO service (http://www.ebi.ac.uk/QuickGO/ 
GAnnotation). Number of genes per chromosome and Ensembl-UniProt cross-
references were obtained using the Ensembl Biomart service 
(http://www.ensembl.org/biomart/martview/). 

The distribution of variants over the human chromosomes was examined, using the 
number of genes per chromosome as a weighting factor. 



32 
 

Background information of the studied features is needed for comparing. This was 
easy to obtain for some of the investigated properties, such as the distribution of 
genes over the human chromosomes and the distribution of GO terms in the human 
proteome. For other features this was less obvious and we had to consider the 
present understanding of the representative event space, e.g. in the case of protein 
folds we used structures in the PDB (Berman, et al., 2000) as background data. 

Background data for CATH superfamilies were taken as follows: representative 
protein chains were obtained from RCSB PDB by using a file with protein chain 
clusters with 95% identity. The first chain from each (12,583) cluster was taken as 
a representative and the frequencies of CATH superfamilies were determined for 
each domain in that chain. For the human proteome, 4 classes, 30 architectures, 508 
topologies and 907 superfamilies were determined. 

For the Pfam background data, the frequencies of Pfam domains (5,734) in the file 
with UniProt ID-Pfam ID cross-references (17,340) were determined. 

The EC background data consisted of 4,220 human proteins with one or more EC 
numbers at level 4 (the full numbers). At the first level these were 4,692 proteins, at 
the second level 4,605 and at the third level 4,479. Sometimes a classification of a 
protein does not include all levels, that explains the differences in these numbers. 

Mapping of the 20,201 proteins to GO resulted in 19,137 UniProt sequences with 
one or more GO identifiers. The frequencies of the unique GO terms were calculated 
and served as background. 

Methods 

Most data were downloaded as tab-delimited files, except PhenCode data which 
were only available as MySQL tables. These were stored in a local MySQL 
database. All variant selection, filtering and mapping steps were performed with 
Python (2.7) scripts. Filtering was done by comparing variant descriptions following 
the HGVS (den Dunnen, et al., 2016) recommendations. HGVS variant descriptions 
were checked with the Mutalyzer variant nomenclature checker (Wildeman, et al., 
2008). For statistical analyses, the stats package from the Python SciPy library was 
used. From this package, specifically the implementations of the chi square test 
(scipy.stats.chisquare), of the binomial test (scipy.stats.binomial) and of the 
Kolmogorov-Smirnov 2-sample test (scipy.stats.ks_2samp) were used. Predictions 
of the consequences of amino acid substitutions were obtained using the PON-P2 
prediction method (Niroula, et al., 2015). Webpages were developed using PHP and 
JavaScript, web services with the Python RDFLib library and soaplib package. To 
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retrieve information from the ontology, the SPARQL query language was used for 
searching the OWL version of VariO. 
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Summary of results 

The quality of variant data in databases and benchmark datasets is of utmost 
importance. We developed some tools and analyzed a variant database and variant 
benchmark datasets with regard to quality aspects. 

As stated before, standardization is an important component of quality. 
Standardization of annotation can be achieved with the use of an ontology. VariO is 
an ontology specifically for variation. To assure the consistent use of VariO, we 
developed a tool, VariOtator, for automatically annotating variant descriptions with 
VariO (paper I). Variation databases are for storing, annotating and making 
variation data publicly available. As an example of an LSDB, the variation database 
BTKbase is presented in paper II. The interpretation of the effects of variants is 
often lacking and experimental analysis is not feasible at a large scale, so 
computational prediction methods are being used. Benchmark datasets are needed 
for the development and performance assessment of such methods. A benchmark 
database for neutral variants, VariSNP, was generated by selecting variants from 
dbSNP and filtering for deleterious variants (paper III). Variation databases contain 
only variants which have been identified in e.g. sequencing projects. The 
proportions of benign and pathogenic variants in proteins and protein groups are not 
known. Predictions of harmful and harmless substitutions of all possible single 
amino acid substitutions were made for proteins in nine disease and non-disease 
groups (paper IV). Representativeness of a dataset, i.e. how well does a dataset 
represent the space, is one quality aspect of benchmark datasets. The 
representativeness of existing benchmark datasets was investigated (paper V). 

VariOtator, an online tool for variation annotation 
(paper I) 

The user-friendly VariOtator tool assigns VariO terms automatically for variation 
type annotations. Variant descriptions following the HGVS nomenclature are 
accepted and a VariO annotation is generated, either with or without the full 
ontology lineage. When the user provides a full coding DNA description, i.e. with 
a reference sequence, the variant description is first checked with the Mutalyzer 
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name checker (https://mutalyzer.nl). The RNA description is predicted from the 
DNA description, the protein prediction is provided by Mutalyzer. The variation 
types at all three molecular levels are then determined using these descriptions, e.g. 
‘ins’ is an insertion. These variation types are looked up in the OWL version of 
VariO and either just the top VariO term or the term including its full lineage in the 
ontology is returned, depending on what the user had chosen. An output example of 
the Graphical User Interface (GUI) version of VariOtator (http:// 
variationontology.org/VariOtator.php) for variant type is given in Fig. 2. The HGVS 
variant description (at coding DNA level) used as input was 
NM_000061.2:c.1226_1227insA, an insertion of an adenine between positions 1226 
and 1227 in the reference sequence (NCBI RefSeq) NM_000061, version 2. The 
variation type annotation consists of a part on the DNA level, a part on RNA level 
and a part on the protein level. Note that the last two parts are based on predicted 
variant descriptions, hence the brackets in the HGVS RNA and protein descriptions.  

This fully automated part is available in several implementations; the GUI and three 
batch versions, one with a web interface that requires a tab-delimited file as input, 
and two stand-alone versions (Linux and Windows) requiring an LOVD download 
file as input. There is also a web service available for programmatic access. 

For the VariO sublevels function, structure and property, suggested annotation is 
provided based on provided details. This part could not be automated, the user 
chooses the relevant term in every step. More than one term can be chosen, and 
attribute terms can be added to specify previously chosen terms. Terms of the 
Evidence Ontology (Chibucos, et al., 2014) can be added to VariO structure and 
property terms to describe the experimental methods and evidence on which the 
annotation is based on. 

 

BTKbase, an example of a curated variant database 
(paper II) 

The distribution of variations and variation types is presented in Table 5.1 (paper 
II). Although variants appear in all gene regions and BTK domains, this distribution 
is not even. Some domains contain more than the expected number of variants, some 
less, compared to a random distribution. Likewise, some exons contain more than 
the expected number of variants. Missense variations causing AASs was the largest 
group. No AAS were found in the SH3 domain. Arginine was found to be the most 
substituted amino acid, this also leads to the enrichment of tryptophan. Proline is 
the amino acid to which most other amino acids were substituted to. On nucleotide 
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level, G>A and C>T substitutions were the largest categories of substitutions.  
Compared to the other IDbases, BTKbase shows a very similar distribution of 
variation types (Piirilä, et al., 2006). 

Variation benchmarks: VariSNP (paper III) 

A total of 13 datasets for neutral variations could be generated, following the 
functional categorization used in dbSNP (Table 1, paper III). These datasets are 
single nucleotide variants, non-coding transcript variants, downstream variants 
500B, frameshift variants, cds-indel variants splice acceptor variants, splice donor 
variants, stop gained variants, stop lost variants, synonymous codon variants, 
upstream variants 2KB, utr-3-prime variants, and intronic variants. The dataset with 
the intronic variants is by far the largest set, at the time of publication of paper III 
over 5 million variants (more than 90% of all variants), at present (update 2017-02-
16) already almost 26 million variants. This illustrates the enormous growth of 
variant data in dbSNP. Future updates are expected to generate much bigger 
datasets. 

The distribution of variants in the single nucleotide variants dataset was studied to 
some detail. As in BTKbase, the G>A substitutions were the largest class, followed 
by C>T substitutions. Both types are transitions, and the higher rate of these were 
found to be typical for human genes (Stephens, et al., 2001). Of the AASs, arginine 
is the most frequently substituted amino acid, and arginine to glutamine 
substitutions are the most frequent. This overrepresentation of substituted arginines 
can be explained by the high mutability of codons containing CpG dinucleotides 
(Ollila, et al., 1996); four out of six codons coding for arginine have a CpG 
dinucleotide in the first and second position. 

Information in the single nucleotide variants dataset contains information from three 
sources: dbSNP, the Mutalyzer Name Checker, and from the VariOtator tool, which 
generated the VariO annotation. The other datasets do not contain all this 
information because for instance intronic variant descriptions cannot be checked 
with the Mutalyzer Name Checker. 

These datasets are being updated on a regular basis. 

Protein groups and sensitivity to variation (paper IV) 

Nine datasets with in total 1066 genes and corresponding proteins were collected, 
of which 996 genes were unique, since there was some overlap between some 
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groups (paper IV). All 19 possible SAASs for each position in all proteins were 
generated. For these 13 540 914 SAASs, predictions were made with the PON-P2 
predictor, which classifies variants into three categories: pathogenic, benign, and 
unknown (Niroula, et al., 2015). 

The nine groups varied in size, the group related to epilepsy being the smallest with 
37 predicted proteins and the group related to PIDs being the largest with 263 
proteins. There is some overlap of a few groups, which was the largest for the cancer 
and actionable groups. This is expected since the actionable group contains very 
well studied genes and proteins from the other groups. 

Due to requiring more than one nucleotide substitution in a codon, most studied 
SAASs are unlikely to occur in nature. Only 150 out of 380 possible SAASs can 
originate from single-nucleotide substitutions. 

Large differences in the proportions of harmful, benign and unknown variants were 
found between the groups. The largest proportion of harmful variants was found in 
the cancer group (ratio harmful/neutral 4.70), the lowest ratios were found in the 
non-disease group (0.06) and the housekeeping group (0.90). However, some 
proteins in the housekeeping group have high percentages of pathogenic 
predictions: the ubiquitin-conjugating enzyme E2 B from this group had the highest 
percentage of all proteins (90.3%). This illustrates the large differences in the 
proportions of harmful and benign variants within the groups. Differences in the 
percentages of unknown variants were also large, both between and within the 
protein groups. These were in the range from 99% for histone H3.3 in the cancer 
group to almost 0 for several proteins in the non-disease group. 

Protein domains which appeared frequently in the protein groups showed a broad 
spectrum of variant frequencies. The most frequently found domain, the 
immunoglobulin I-set domain, had the lowest proportions of neutral and pathogenic 
predictions together. Major protein structural class-specific differences were not 
detected. 

All studied groups showed distinctive patterns of AAS types in the original and 
variant amino acids. The distributions for the original and variant AASs in the 
actionable dataset are presented in Fig. 4. This is the same figure as Figure 4 in paper 
IV, except that the titles of the plots have been corrected; an erratum has been sent 
to the journal and will be published soon. 
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Figure 4: Distributions of amino acid substitutions in the actionable dataset. 
Amino acid substitutions among the original and variant amino acids for those 
predicted to be neutral and pathogenic. 

The most frequent neutral AASs are substitutions from serine (11.7%) and to alanine 
(7.9%). The least frequent neutral AASs are the substitutions from tryptophan 
(0.5%) and to proline (2.1%). Substitutions from leucine (10.9%) and to cysteine 
(6.5%) are the most frequent pathogenic predictions, whereas the least frequent 
pathogenic predictions are from tryptophan (1.5%) and to G (2.3%). 

Comparison of genic intolerance scores (gene-specific indices) showed only 
marginal correlations with our predictions. 
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The distribution of predictions over the chromosomes showed that the differences 
for pathogenic variants are somewhat smaller than for the neutral predictions, and 
that the differences between the chromosomes are smaller than between the protein 
groups. 

Differences between proteins regarding proportions of harmful, benign and 
unknown predictions are large. In some proteins, no AASs, in others almost all 
variants were predicted to be harmful. 

Representativeness of benchmark datasets (paper V) 

The distributions of variants over the chromosomes and proteins varies greatly 
between the benchmark datasets. The distributions of the variants over the whole 
human genome, so all chromosomes, are biased in all datasets. The differences 
between the chromosomes are great. The lowest number of chromosomes with an 
unbiased variant distribution in a dataset is 2, the highest 13 chromosomes. The 
distributions for the X chromosome are in all datasets biased, and for chromosome 
19 in all but one dataset. 

Mapping protein variant descriptions to a PDB structure, which is essential for being 
able to perform analyses for most other features, was only possible for fractions of 
the data (paper V). Mapping rates vary from 7.8-54%, with ratios in the pathogenic 
datasets always being higher than in the neutral counterparts.  

Similar to the situation for mapping to PDB structures, mapping to CATH domains 
and superfamilies varies greatly, ranging from 29.5% to 69.9% for domains, and 
from 26.8% to 68.1% for the CATH classification (superfamilies). In our reference 
proteome, there are 4 classes, 30 architectures, 508 topologies (folds) and 907 
homologies (superfamilies). The maximum numbers in the datasets are 4, 30, 419 
and 700, respectively. 

On the Class level, all datasets are unbiased. This is also the case for most datasets 
on the Architecture level, whereas on the Topology and Homology levels all 
datasets are biased. 

Mapping to Pfam families could be done for 86% of the proteins in the human 
proteome, which mapped to 5,734 Pfam families. The distributions of variants over 
Pfam domains are biased for all datasets. The fractions of variants within a Pfam 
domain range from ~37% to ~80%, and these percentages are invariably lower for 
the neutral datasets compared to their pathogenic counterparts. The distributions to 
the Pfam families are also variable, 14 datasets mapped to more than 1,000 Pfam 
families, two datasets to more than 2,000.  
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Mapping to an EC classification could be done for 21% of the proteins in our 
reference dataset, to in total 1,292 EC classes (4th level, so full numbers). Since not 
all proteins are enzymes, the low percentage is expected. On the first level of the 
EC classification, no dataset has a different distribution from the reference set, 
whereas on the second level, 5 out of the 24 sets are biased. On the third level, 20 
sets are biased, on the fourth level all sets are biased. 

Mapping to GO resulted in 17,637 unique GO terms for 95% of the proteins in the 
reference set. The distribution of variants over GO terms is not biased for all sets on 
the aspect level, but on the term level, all sets are biased. 
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Discussion 

As part of our efforts to improve the quality of variation data, we developed the 
VariOtator tool for assisting in the use of VariO, the ontology for standardized 
annotation of variation. We described the LSDB BTKbase, which was also used as 
a case study for assessing database quality. We generated the benchmark database 
VariSNP, which can be used for the development and performance assessment of 
prediction methods. We looked at differences in sensitivity to variation in different 
protein and disease groups. The representativeness of benchmark datasets was our 
last point of attention. 

VariOtator 

The use of VariOtator will assist in the use of VariO and promote the consistency 
of VariO annotation. Since the VariO type annotation is fully automated, variation 
type annotation can be systematically added to databases, thus enhancing their 
standardization. VariOtator is being used to add VariO type annotation to BTKbase 
(https://databases.lovd.nl/shared/genes/BTK) and other IDbases (Piirilä, et al., 
2006). The suggestions of VariO terms generated by VariOtator for the other VariO 
levels, function, structure, and property, aid users to choose VariO terms 
consistently. 

Instructions for annotators are available (Vihinen, 2014b), and examples of VariO 
annotation can be found in (Vihinen, 2015b) or at http://www.variationontology. 
org/Examples.shtml. Guidelines for curating gene variant databases or LSDBs have 
been published (Celli, et al., 2012). Adding variant annotations by means of an 
automated tool such as VariOtator could expand these guidelines. 

One of the central variation databases, UniProtKB/Swiss-Prot, is working on 
improving the representation of functional characterization data by combining 
ontologies such as VariO and GO. The characteristics of a normal protein can be 
specified by GO terms, the effect(s) of a variant on it by VariO terms (Famiglietti, 
et al., 2014). The use of (a batch version of) VariOtator can be of great help in this, 
especially for retrospective annotation of variants already in the database. 
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BTKbase 

The distribution of variants was found to be uneven over the gene regions and 
corresponding BTK domains. The PH and SH2 domains contain about the expected 
number of variants at DNA level, the TH and SH3 domains contain less than 
expected and the kinase (TK) domain contain more than the expected number of 
variants. The uneven distribution is also the case for the variation types at protein 
level, e.g. no AASs were detected in the SH3 domain (paper II). This is in 
accordance with the findings that there is substantial variation in the mutation rate 
between and with human genes associated with Mendelian disease (Smith, et al., 
2016). The other IDbases, of which BTKbase is one, show very similar distributions 
of variation types (Piirilä, et al., 2006). 

The quality of BTKbase was assessed using the recently developed database quality 
evaluation criteria (Vihinen, et al., 2016). 

BTKbase was taken as an example of a manually curated LSDB. BTKbase was 
recently moved to the LOVD database management system and VariO type 
annotation was added to each variant description. The use of VariO annotation in 
the database will greatly simplify the generation of database statistics. BTKbase was 
also used as a case study for assessing database quality (Vihinen, et al., 2016). 

VariSNP 

The datasets from the VariSNP database have been used in research projects to 
construct datasets for developing and assessing the performance of prediction 
methods. The predictors in question were PredictSNP2, a meta-predictor using the 
outcome of 5 other methods to come to a consensus score (Bendl, et al., 2016) and 
ENTPRISE, an ML approach using protein sequence and structure features (Zhou, 
et al., 2016). The VariSNP single nucleotides dataset was also used our sensitivity 
project (paper IV). The VariSNP database has been cited/quoted a few times as well 
(Niroula and Vihinen, 2016; Vihinen, 2015b). 

Updates of the datasets have been made available on a regular basis, however 
updating these datasets will become problematic because of the enormous growth 
of dbSNP, the source of the VariSNP database. dbSNP is increasingly using a 
‘Clinical Significance’ annotation, making it easier for users to download those data 
they are interested in. It remains to be seen, however, how useful and reliable that 
annotation is. This annotation is provided by the submitters and not interpreted by 
NCBI, and available for only a fraction of the variants in dbSNP. Updating the 
datasets will also be needed in the future. The smaller groups such as the neutral 
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stop-loss and stop-gained datasets are of special interest since these are not available 
elsewhere. 

Sensitivity of protein groups 

There are large differences in the proportions of harmful and neutral AASs in 
proteins belonging to the different disease groups we studied. Differences in 
mutation rates between and within human genes are well known (Hodgkinson and 
Eyre-Walker, 2011; Smith, et al., 2016). Variation in mutation rate can be found at 
different scales, from the nucleotide level up to the chromosomal level. Variation at 
the single nucleotide level was found across bacterial and eukaryotic species: C and 
G nucleotides are approx. twice as mutable as A and T nucleotides (Hershberg and 
Petrov, 2010). Variation can be due to context, the effect of having certain 
nucleotides surrounding a specific site, or non-context related variation called 
cryptic variation (Hodgkinson, et al., 2009). The ‘CpG effect’ (Hodgkinson and 
Eyre-Walker, 2011; Ollila, et al., 1996) is an example of context-dependent effect: 
the rate of mutations at CG dinucleotides is ~10-fold greater than at other sites. 
Variation in mutations rate at larger-scale levels is also found, within and between 
chromosomes. At genomic level, the greatest differences can be found between the 
autosomes and the sex chromosomes. The Y chromosome has a mutation rate of at 
least 50% higher than that of the autosomes, which in turn have a ~30% higher 
mutation rate compared to the X chromosome. It is suggested (Smith, et al., 2016) 
that a reason for certain genes being associated with disease may be the presence of 
hypermutable sites. 

This result is important to realize, e.g. when creating benchmark datasets or in the 
interpretation of variant effects. Prediction methods based only on evolutionary 
information have been shown to perform less well than methods using other features 
as well. 

Representativeness 

Variant benchmark datasets can be used for the development of prediction methods 
as well as for the assessment of the performance of such methods. Requirements for 
benchmark datasets include relevance, representativeness, non-redundancy, 
experimentally verified cases of both positive and negative cases, scalability and 
reusability (Nair and Vihinen, 2013). The representativeness of a dataset can be 
determined by examining features of the data thought to capture the 



46 
 

representativeness. We examined to which extent some properties are present in 
variation benchmark datasets and found huge differences between the studied 
datasets. 

The coverage of the studied features varied greatly between the datasets (Table 7, 
paper V), and is the best for the largest dataset. The coverage of the proteome space 
is in general quite low. The smallest size of a dataset would be 20,201 variants to 
cover each protein at least once. Some of the datasets are much bigger or close to 
this number, however the distribution of variant to the proteins is very unbalanced. 
In the studied benchmark datasets, some proteins are represented by more than 2,200 
variants, many others by only one variant. Also, the uneven distribution of variants 
to the proteins is the main cause for the differences in the chromosomal 
distributions. 

These differences can be explained by the huge differences in the number of known 
variants for certain genes and encoded proteins. Certain diseases and genes/proteins 
are very well studied and many variants are known. For other proteins, only one 
variant can have been found incidentally. The strongly biased distributions on 
chromosome X for the pathogenic datasets can be explained by the fact that X-
linked single-gene disorders have full penetrance. We did not find the same for the 
Y chromosome, which is expected. This can be explained by the very low numbers 
of variants on this chromosome. 

Coverage of the first levels of the CATH and EC classifications is in general 
complete, except for the smallest datasets. These levels are the least specific, with 
CATH having only 4 classes and EC 6, so it is easy to get complete coverage. The 
coverage of the highest levels of CATH and EC (4th level) varies greatly: the range 
for CATH is 1-77%, for EC 1-99%. The intermediate levels have intermediate 
coverages, so the less specific the classification, the better the coverage. The 
coverage of the CATH and EC levels in the datasets indicate that many protein types 
are present, albeit far from complete. The coverages of Pfam families and GO terms 
also vary greatly. There seems to be some correlation between the number of 
variants in a dataset and the coverage of Pfam and GO. 

Depending on the level, the distributions in the datasets of the CATH and EC 
classifications are unbiased, partly biased or biased for all datasets. For CATH, this 
can be partly explained by the reduction of the coverage from the 2nd to the 3rd level 
by about a half, but in the EC classifications the reduction of the coverage from the 
2nd to the 3rd level is much smaller. So probably other factors play a role. The 
distributions of Pfam and GO at terms level are always biased, which cannot be 
explained by a low coverage of these features, e.g. in the largest dataset, GO terms 
are covered by more than 98%. 
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Conclusions 

Precision medicine is entering clinical practice nowadays. The tailored diagnosis 
and treatment is dependent on genome sequencing and data analysis. NGS 
technologies are becoming increasingly used in research and common in the clinical 
sector. Large sequencing projects are producing huge amounts of variation data and 
it is expected that this will increase at an accelerating rate in the near future. Not 
only will this growth put strains on data storage, data analysis will also become 
computationally challenging. Knowledge of the underlying mechanisms of disease 
is essential, but the effects of newly discovered variants are often unknown. Since 
experimental verification of variation effects is not feasible on a large scale, 
computational methods have and are being developed to predict these. 

Storage of variant data in database is not only becoming demanding with regard to 
storage capacity, the quality of the data and databases is also of utmost importance. 
One aspect of database quality is standardization, making easy searching and 
comparison of data possible. The use of ontologies is one way of achieving 
standardized variation annotation. The Variation Ontology VariO was specifically 
developed for describing the effects, consequence and mechanisms of DNA, RNA 
and protein variations. In addition to these 3 molecular levels, VariO has four major 
levels: variation type, variation function, variation structure and variation property. 
We developed the online VariOtator tool to assist in the consistent use of VariO. 
For variation type annotation, the tool is fully automated, for the other three levels, 
annotation is generated based on details provided by the user. 

A group of diseases which has also benefited from NGS are the PID. Variation data 
related to one of these, XLA, are deposited in BTKbase, an LSBD containing 
variants in BTK, the gene involved in BTK. Database statistics at the three 
molecular levels DNA, RNA and protein show a wide spectrum of variant and 
variation types, and differences in the distribution of variants over the BTK protein 
domains. BTKbase was used as a case study for evaluating the quality of databases 
using defined quality assessment criteria. BTKbase is being updated depending on 
new submissions and variation data being published. At the time of the study, 
BTKbase contained public data on 1375 variants in patients, of which 742 unique, 
at present (August 2017) these figures are 1684, and 851, respectively. 

For the development and performance assessment of variant prediction tools, variant 
benchmark datasets are needed. We developed VariSNP, a database of neutral 
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variants selected from dbSNP. To our knowledge, the neutral SAASs set in VariSNP 
was the largest and qualitatively the best neutral variants dataset available. The 
database is updated on a regular basis and is being used in several projects. 

It is well known that groups proteins and diseases have a different sensitivity to 
sequence variation. To examine this for some interesting disease groups and a few 
non-disease groups, we predicted the outcome of all simulated SAASs in all proteins 
involved in these groups and found large differences within and between these 
groups in the ratios of harmful, benign and unknown variants. This information can 
be helpful in the interpretation of variant effects and in the development of 
computational methods/predictors. 

Variant benchmark datasets are essential for the development and assessment of 
computational methods, especially those using ML methods. One aspect of 
benchmark dataset quality is its representativeness. We studied the 
representativeness of some benchmark datasets, using features of the data which we 
think to capture the representativeness and found that all datasets are more or less 
unrepresentative of the protein universe. Since most datasets are rather limited in 
size and often unbalanced for variants in certain proteins, especially in the 
pathogenic datasets, this is not surprising.  Coverage of the features we studied was 
variable for the different datasets, for some features in some datasets (in general, the 
larger ones) however, almost complete. It is expected that using the more 
representative datasets in the development of ML-based prediction methods will 
improve their performance. Obtaining highly representative benchmark variant 
datasets will remain a challenging task. 
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ABSTRACT: The Variation Ontology (VariO) is used for
describing and annotating types, effects, consequences,
and mechanisms of variations. To facilitate easy and con-
sistent annotations, the online application VariOtator was
developed. For variation type annotations, VariOtator is
fully automated, accepting variant descriptions in Human
Genome Variation Society (HGVS) format, and generat-
ing VariO terms, either with or without full lineage, that
is, all parent terms. When a coding DNA variant descrip-
tion with a reference sequence is provided, VariOtator
checks the description first with Mutalyzer and then gen-
erates the predicted RNA and protein descriptions with
their respective VariO annotations. For the other sub-
levels, function, structure, and property, annotations can-
not be automated, and VariOtator generates annotation
based on provided details. For VariO terms relating to
structure and property, one can use attribute terms as
modifiers and evidence code terms for annotating exper-
imental evidence. There is an online batch version, and
stand-alone batch versions to be used with a Leiden Open
Variation Database (LOVD) download file. A SOAP Web
service allows client programs to access VariOtator pro-
grammatically. Thus, systematic variation effect and type
annotations can be efficiently generated to allow easy use
and integration of variations and their consequences.
Hum Mutat 37:344–349, 2016. C© 2016 Wiley Periodicals, Inc.

KEY WORDS: annotation; ontology; Variation Ontol-
ogy; bioinformatics; software; database; LSDB; variation;
LOVD; mutation

Introduction
Information on (genetic) variation is being collected in a wide

range of databases. Central databases comprise, for example,
UniProtKB [UniProt Consortium, 2015], ClinVar [Landrum et al.,
2014], and Ensembl Variation [Cunningham et al., 2015]. Other
types of variation databases include locus-specific databases (LS-
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Contract grant sponsors: Vetenskapsrådet (Swedish Research Council), Faculty of

Medicine, Lund University; Barncancerfonden.

DBs), of which those using the Leiden Open Variation Database
(LOVD) management software [Fokkema et al., 2011] form the ma-
jority. LSDBs are generally considered as the most reliable source
of variation information as these resources are typically curated by
experts in the genes and diseases.

A systematic representation of information facilitates data inte-
gration, comparison of data, automated searching within and across
databases, and the development of dedicated software tools. Pub-
lished recommendations for LSDBs [Cotton et al., 2008] include
the use of a standardized nomenclature. Systematic gene names
and symbols are implemented and approved by the HUGO Gene
Nomenclature Committee (HGNC) [Gray et al., 2013]. Standard-
ized reference sequences in the Locus Reference Genomic (LRG) se-
quence format [Dalgleish et al., 2010] are being created and curated
at the European Bioinformatics Institute (EBI) and the National
Center for Biotechnology Information (NCBI). The LRG records
contain stable fixed reference DNA sequences along with all rele-
vant transcript and protein sequences essential to the description
of gene variants, and an exon numbering system [MacArthur et al.,
2014]. Efforts are being made to standardize variant descriptions,
such as the use of the Human Genome Variation Society (HGVS)
nomenclature [den Dunnen and Antonarakis, 2000]. Guidelines
for establishing [Vihinen et al., 2012] and curating [Celli et al.,
2012] LSDBs highlight the importance of systematics in gene vari-
ant databases.

Gene variant databases would benefit from a standardized an-
notation of variant descriptions, so that automated searches and
analyses within and across databases would become possible and/or
much easier. One way to create a standardized annotation is to use
an ontology, a controlled vocabulary conceptualizing a knowledge
domain by defining the central terms and their relationships. The
use of consistent terminology is essential to guarantee that the in-
formation, the message, is correctly understood [Vihinen, 2015a].
The Gene Ontology (GO) [Ashburner et al., 2000] and the Se-
quence Ontology (SO) [Eilbeck et al., 2005] are widely used for
describing gene products in terms of their associated biological pro-
cesses, cellular components, and molecular functions (GO) or for
describing features pertinent to sequence annotation (SO). These
ontologies have a very broad scope. The Variation Ontology (VariO)
[Vihinen, 2014a] was developed as a specific ontology for describing
and annotating types, effects, and mechanisms of variations. Note
that VariO does not contain clinical terms apart from pathogenicity
association.

VariO can be used for describing variations and their conse-
quences only, that is, it cannot be utilized for annotation of normal
or wild-type situations. It should be possible to describe any type of
variation and effect with VariO. The ontology is work in progress
and new terms will be added whenever necessary, for example, to fa-
cilitate annotations based on novel technologies. VariO annotations

C© 2016 WILEY PERIODICALS, INC.



are made by combining terms. VariO is organized in three main
levels: DNA, RNA, and protein, each of which has four sublevels:
variation type, function, structure, and property. Each of these sub-
levels has then more detailed terms. Variation type terms describe
the origin and classification of variations, including such terms as
“VariO:0136 DNA substitution” and “VariO:0147 epigenetic DNA
variation.” General functions affected by variation can be described
with function terms. Structure terms are for describing affected
DNA, RNA, and protein structural features, and vary substantially
between the three levels. Property terms are used for diverse char-
acteristics, such as conservation of DNA variation site or effect on
protein abundance. In addition to these four sublevels, attribute
terms can be used as modifiers of the structure and property terms,
for instance, to describe effects on quantity or affected interactions
due to the variation. Since the function terms are general, modifying
these with attribute terms does not add much information and thus
attribute terms are not used with these. Specific descriptions can be
made with property terms.

Guidelines for how the annotation is made and how to use VariO
in different situations have been published [Vihinen, 2014a, 2015b).
The flowchart for steps in VariO annotation has been described
[Vihinen, 2014b]. Briefly, the database curator collects all relevant
information about the variant and its effects, mechanisms, and con-
sequences. This may include data from laboratories, databases, and
literature. The precise position of the variant in the three reference
sequences for DNA, RNA, and protein (where relevant) will be ob-
tained and annotated with variation type annotations. For function
annotations, the user has to choose the appropriate terms at the rel-
evant levels DNA, RNA, and/or protein. Structural changes due to
variation can be explained in detail. Depending on the annotation
level, the property annotation items can vary. Both the structure and
property annotations can be modulated by using attributes to make
the annotations more detailed. Further, Evidence Ontology (ECO)
terms can be added to provide users with the possibility to eval-
uate the strength of evidence behind annotations. ECO describes
the methods used to obtain the annotated results [Chibucos et al.,
2014].

To facilitate easy annotation and to enhance the consistency in the
use of the VariO terms for annotating variants, a user-friendly on-
line application called VariOtator was developed. For variation type
annotations the tool is fully automated, it accepts variant descrip-
tions according to the HGVS nomenclature and generates VariO
annotation, either with or without the full ontology lineage. When
the user provides a full coding DNA variant description, that is, with
the reference sequence, the description is first checked with the Mu-
talyzer Name Checker (https://mutalyzer.nl) tool [Wildeman et al.,
2008]. For the other sublevels, function, structure, and property,
annotations cannot be automated. VariOtator generates annotation
at these levels based on provided details.

Implementation
Several implementations of the VariOtator tool are avail-

able at http://variationontology.org/ (Fig. 1). There is a Graph-
ical User Interface (GUI) at http://variationontology.org/Vari
Otator.php for interactive submissions. For variation type anno-
tations, there are three batch versions at http://variationontology.
org/VariOtatorBatch.php, one with a Web interface that requires as
input a tab-delimited file and two stand-alone versions that use as in-
put an LOVD download file. These stand-alone versions (Linux and
Windows) can be downloaded and installed locally. The Web service
is available at http://variationontology.org/VariOService/?wsdl.

The core of the VariOtator is a Python (2.7) script with the RD-
FLib package (4.2.0), in combination with vario.owl and eco.owl,
the Web Ontology Language (OWL 2) versions of VariO and ECO,
respectively (see Fig. 1). The most recent version of vario.owl can
be downloaded from http://variationontology.org/download.shtml,
(at the moment version 1.04), the latest eco.owl file (release 2015-
01-12) was downloaded from the Evidence Ontology Website
(http://evidenceontology.googlecode.com/svn/trunk/eco.owl).

The VariOtator Web interface (http://variationontology.org/
VariOtator.php) was developed using PHP5 and JavaScript (Fig. 1).
Checking variant descriptions with Mutalyzer is done through their
SOAP Web service (https://mutalyzer.nl/webservices). The VariO-
tator SOAP Web service makes use of the python-soaplib package
(0.8.1), the client example uses the suds.client package (0.4).

The stand-alone batch versions (LOVD VariOtator) for use with
LOVD download files were developed with the cx-Freeze package
(4.3.1) (http://cx-freeze.sourceforge.net). The Linux version is a
ready-to-use package, the Windows version is available as a Win-
dows Installer package (msi file). All the software is freely available
and released and distributed under the terms of the GNU Affero
General Public License version 3 (GPLv3).

Features

Web Interface

The user interface is organized according to the levels in VariO.
First, the user chooses between annotation for variation type, func-
tion, structure, and property, and whether full lineage is desired or
not (Fig. 2). If full lineage is chosen, all VariO terms down to the
root term (“VariO:0001 variation”) in the ontology are provided.
The resulting VariO annotations are shown on screen, and can be
downloaded as a text file. After each annotation step, the user can
choose either to restart or to continue, in which case the new anno-
tations are added to the previous one(s). The annotation can also
be downloaded in a text file.

Variation Type Annotation

When choosing for variation type, the user can enter a variant
description in HGVS format (Fig. 2). If a reference sequence is pro-
vided with a coding DNA description, the variant description will
be checked with Mutalyzer and predicted RNA and protein descrip-
tions and their annotations are provided, as well. VariOtator accepts
the variation details in several formats including coding DNA, RNA,
and protein descriptions, with or without the reference sequence.
Both one- and three-letter amino acid codes are accepted. Exam-
ples of input are LRG 1:c.72G>A, NG 008680.1(PAX2):c.412A>G,
NM 003990.3:c.412A>G, chr15:g.40702997G>A, r.(21a>u), and
p.Trp26Cys. An example of VariOtator output with full lineage for
variation type annotation can be found in Figure 3.

Since the terms “VariO:0313 transition,” “VariO:0314 pyrimi-
dine transition,” “VariO:0315 purine transition,” and “VariO:0316
transversion” can be used for annotation of both DNA and RNA
substitutions, ancestor terms are included in the annotation also
when full lineage is not chosen. So, if the resulting VariO terms
are either “VariO:0315 purine transition” or “VariO:0314 pyrim-
idine transition,” the ancestor terms “VariO:0136 DNA substitu-
tion” and “VariO:0313 transition” are added in the case of DNA
or “VariO:0312 RNA substitution” and “VariO:0313 transition” are
added in the case of RNA. Similarly, when the final VariO term is
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Figure 1. Overview of the VariOtator implementations. The scripts in the dotted box all have the same functionality, but are optimized for
different purposes (mainly regarding to I/O). ECO: Evidence Ontology, format eco.owl; VariO: Variation Ontology, format vario.owl; GUI: Graphical
User Interface; LOVD: Leiden Open Variation Database; SOAP: computer network messaging protocol; RDFLib: Python library for working with the
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“VariO:0316 transversion,” either “VariO:0136 DNA substitution”
or “VariO:0312 RNA substitution” is added.

Annotation of Variation Affecting Function

The first step for annotation of variations affecting function is to
choose the molecular level (DNA, RNA, or protein) (Fig. 2). Then,
an overview of VariO terms on the specific level is displayed. The
relevant term is chosen by clicking it after which the annotation
is generated. If necessary, more than one term can be chosen. An
example of function annotation can be found in Figure 3.

Annotation of Variation Affecting Structure

As with functional annotation, the user first chooses the molecu-
lar levels (Fig. 2). If the selected term has sublevels, they are shown.
This way the user can make very detailed annotations. Once the
structure terms are chosen, it becomes possible to pick an attribute
term, to modify and specify the annotation. For example, the quan-
tity of the structure terms can be specified by using quantity change
attributes including those for increased, decreased, missing, and not
changed. In the next phase, an ECO term can be added to annotate
the (experimental) evidence and method based on which the anno-
tation is made. An example of structure annotation can be found in
Figure 3.

Annotation of Variation Affecting Property

Variation properties are annotated similar to structural variations,
including the use of attribute terms and ECO annotations. Both
structure and property terms are specific for the molecular levels.

The protein level allows for the largest number of choices due to the
very wide spectrum of effects. An example of property annotation
with attribute and ECO terms can be found in Figure 3.

Batch Versions

As variation type annotations can be automated and there
are numerous databases containing very large numbers of vari-
ants, effective tools are needed for their annotation. For this
purpose, we developed batch versions (http://variationontology.
org/VariOtatorBatch.php) (see Fig. 1). The Web-based batch ver-
sion requires a tab-delimited file with variant descriptions (coding
DNA and optionally protein variant descriptions) as input. The
results are provided in a tab-delimited file containing the original
variant descriptions and predicted RNA variant descriptions, and
the VariO terms for the variation type annotations at the DNA,
RNA, and optionally at protein levels. The VariO terms are given
including the full lineage up to but not including the root term
“VariO:0001 variation.” In contrast to the Web interface, the terms
are not checked with Mutalyzer. There is a batch version for that
purpose.

For annotating databases using the LOVD management system,
stand-alone batch versions are available, both for Linux and Win-
dows. These can be downloaded from http://variationontology.
org/VariOtatorBatch.php. These versions are for variation type an-
notation only, and the variant descriptions are not checked with
Mutalyzer. The user has to add columns for VariO annotations at
the three molecular levels, DNA, RNA, and protein, to the LOVD
database prior to using the VariOtator tool, as the tool uses an
LOVD download file as input and adds the VariO terms to the rel-
evant columns in that file. As how to add columns to the database,
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Figure 3. VariOtator Web interface output. Variation type annotation with full lineage using NM_000061.2:c.1574G>A as input, and variation
function, structure, and property annotation on protein level, with full lineage and attribute and ECO terms.

we refer to the LOVD documentation and VariOtator help files. An-
notations are automatically added to the database when uploading
the LOVD download file. If for some reason the annotation cannot
be made an error log is provided, so that the users can solve the
problematic cases.

Web Service

For programmatic access to the VariO annotation type tool,
a SOAP Web service was developed, with which VariO annota-
tion generation can be fully integrated into other software. An
example client script for how to use this Web service can be
found at http://variationontology.org/VariO-client-suds.py. It is a
Python script that takes one variant description at a time, and
generates the VariO annotations for that description, including

the full lineage up to the root term (not included). A Web
Service Definition Language (WSDL) description is available at
http://variationontology.org/VariOService/?wsdl for easy genera-
tion of client programs in many languages. Again, the variant de-
scriptions are not checked with Mutalyzer, this can be done with
their Web services, if desired. Because of this, predicted RNA and
protein descriptions are not provided when entering a coding DNA
variant description, as is the case with the web interface.

Discussion
The VariOtator tool was developed to guarantee the consistency

of annotations with VariO terms and to help with the task of
variation annotation. By using the fully automated scripts, varia-
tion type annotation systematics in databases can be significantly
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improved. The specific batch versions for use with LOVD databases
allows addition of variation type annotations to be included to the
resources in the most widely used LSDB environment. For the three
other annotation levels, function, structure, and property, the tool
provides an easy-to-use and user-friendly interface. A guide with
detailed instructions for annotators is available [Vihinen, 2014b]
and examples of annotation with VariO can be found in [Vihinen,
2015b] or at http://www.variationontology.org/Examples.shtml.

An example of the use of VariO in an LSDB can be found
at http://databases.lovd.nl/shared/genes/BTK. BTKbase [Väliaho
et al., 2006; Schaafsma and Vihinen, 2015] is a database for Bruton
agammaglobulinemia tyrosine kinase (BTK) variants causing
X-linked agammaglobulinemia, a rare primary immunodeficiency
[Tsukada et al., 1993; Vetrie et al., 1993]. BTKbase has been
previously maintained with MUTbase software [Riikonen and
Vihinen, 1999; Väliaho et al., 2006]. As part of the conversion to
the LOVD database management system, some novel features such
as VariO annotations were included. In the LOVD installation,
the VariO annotations can be found in the columns “VariO
Annotation DNA level,” “VariO Annotation RNA level,” and
“VariO Annotation protein level.” With the generated batch tools,
variation type annotations can be automatically added to all the
other LOVD-based LSDBs. It is up to the database curators to
make these annotations as VariOtator is not integrated with LOVD.
Once the annotations are added, it will become possible to make
new kinds of analyses over known variation space. The other types
of annotations are so variable and complex that they cannot be
automated. VariO annotations are currently being added to the
remaining 130 IDbases [Piirila et al., 2006] and are already available
in NDDVD, NeuroDegenerative Diseases Variation Database
(http://bioinf.suda.edu.cn/NDDvarbase/LOVDv.3.0/genes) con-
taining information for 126 genes in 49 diseases [Yang et al., in
preparation].
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Piirilä H, Väliaho J, Vihinen M. 2006. Immunodeficiency mutation databases (IDbases).
Hum Mutat 27:1200–1208.

Riikonen P, Vihinen M. 1999. MUTbase: maintenance and analysis of distributed
mutation databases. Bioinformatics 15:852–859.

Schaafsma GCP, Vihinen M. 2015. Genetic variation in Bruton tyrosine kinase. In:
Plebani A, Lougaris V, editors. Agammaglobulinemia. Switzerland: Springer Inter-
national Publishing. p 75–85.

Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, Sparkes RS, Kuba-
gawa H, Mohandas T, Quan S, Belmont JW, Cooper MD, et al. 1993. Deficient
expression of a B cell cytoplasmic tyrosine kinase in human X-linked agamma-
globulinemia. Cell 72:279–290.

UniProt Consortium. 2015. UniProt: a hub for protein information. Nucleic Acids Res
43:D204–D212.

Väliaho J, Smith CIE, Vihinen M. 2006. BTKbase: the mutation database for X-linked
agammaglobulinemia. Hum Mutat 27:1209–1217.
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5.1             Introduction 

 Bruton agammaglobulinemia tyrosine kinase ( BTK ) variations lead to X-linked 
agammaglobulinemia (XLA, MIM# 300300), a hereditary primary immunodefi -
ciency [ 26 ,  29 ]. XLA is caused by a block in B cell differentiation resulting in 
severely decreased numbers of B lymphocytes and an almost complete lack of 
plasma cells and very low or missing immunoglobulin levels of all isotypes. The 
patients have increased susceptibility to mainly bacterial infections because of vir-
tually absent humoral immune responses. The frequency of XLA has been esti-
mated to be 1:200,000 live births. The disease is considered to have full penetrance. 
Female carriers are healthy but display nonrandom X-chromosome inactivation in 
their B cells. Only a few female patients have been identifi ed. 

 The  BTK  gene (LRG_128, reference sequence used U78027.1) contains 19 
exons (Fig.  5.1 ) and codes for a protein of 77 kDa. Exon 1 is outside the coding 
region. BTK is expressed in all hematopoietic lineages except for T lymphocytes 
and plasma cells [ 23 ]. BTK belongs to the Tec family of related cytoplasmic protein 
tyrosine kinases (PTKs) formed by BMX (BMX non-receptor tyrosine kinase), ITK 
(IL2-inducible T cell kinase), TEC (tec protein tyrosine kinase), and TXK (TXK 
tyrosine kinase). Except for TXK, they have the same domain organization, from 
the N-terminus pleckstrin homology (PH) domain, Tec homology (TH) domain, Src 
homology 3 (SH3) domain, SH2 domain, and catalytic tyrosine kinase (TK) domain. 

 The three-dimensional structure has been determined for the PH domain and the 
fi rst half of the TH domain [ 7 ], the SH3 domain [ 4 ], the SH2 domain [ 6 ], and the 
kinase domain [ 12 ]. For the full-length BTK, there is a low-resolution structure in 
an extended conformation [ 13 ]. BTK interacts with several partners [ 15 ]. 
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 Variations in BTK account for about 80 % of agammaglobulinemia cases. Several 
other genes can lead to a failure of B cell development and agammaglobulinemia 
[ 1 ]. These genes encode components of the pre-B cell receptor or proteins that 
are activated by cross-linking of the pre-B cell receptor. Defects in these genes 
lead to a block in B cell differentiation at the pro-B to pre-B cell transition. Other 
forms of agammaglobulinemia appear with growth hormone defi ciency or as auto-
somal recessive diseases. Some autosomal recessive agammaglobulinemias 
have been identifi ed involving pre-B cell receptor (pre-BCR) or BCR component 
genes μ-heavy chain ( IGHM ), λ5/14.1 ( IGLL1 , immunoglobulin lambda-like 
 polypeptide 1), Igα ( CD79A ), and Igβ ( CD79B ). Variations in the B cell linker 
 protein ( BLNK ), which is essential for Igμ signal transduction, and  PIK3R1  
(phosphoinositide-3- kinase, regulatory subunit 1 (alpha)) for phosphoinositide 
3-kinase regulator are downstream of BCR. 

5.1.1     BTKbase 

 BTKbase is the fi rst immunodefi ciency variation database (IDbase) founded in 
1994 [ 32 ]. Subsequently more than 130 immunodefi ciency variation databases 
(IDbases) have been released [ 19 ]. BTKbase contains public variation entries for 
1362 patients from 1198 unrelated families (total number of variants in these unre-
lated families is 1209) showing 742 unique molecular events. 

 BTKbase aims at collecting all published variations. Data are either directly sub-
mitted or derived from more than 100 publications. The database format has been 
previously published [ 31 ,  34 ]. The data are presented as individual entries, each 
carrying a unique patient identifi cation number (PIN) and accession number, sys-
tematic names according to the Human Genome Variation Society (HGVS) varia-
tion nomenclature, a short verbal description of the variation, submission information 
(submission and update dates, version numbers, and submitter details), literature 
citations, and annotation in detail at DNA, RNA, and protein levels. In addition, the 
most important clinical parameters and laboratory fi ndings are included, provided 
they are available. 

 IDbases, including BTKbase, follow a number of standards including the use of 
HUGO Gene Nomenclature Committee (HGNC) gene names (  www.genenames.
org    ), HGVS variation nomenclature [ 3 ], and IDRefSeqs (reference sequences for 
primary immunodefi ciency genes and proteins). Currently, IDbases are in the pro-
cess of changing to Locus Reference Genomic (LRG) reference sequences, which 
are already available for some 100 immunodefi ciency genes (  www.lrg-sequence.
org    ). BTKbase follows the recommendations for locus-specifi c variation databases 
(LSDBs) [ 33 ] and their curation [ 2 ]. 

 BTKbase is freely available at   http://structure.bmc.lu.se/idbase/BTKbase/    . The 
website contains information related to XLA and  BTK . The bioinformatics pages 
include several tables for statistics of  BTK  variations. The variation distributions are 
shown along sequences in illustrative ways. The submission page provides variation 
checking facilities and electronic submission services. The variation browser allows 
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visual means for browsing variations along the protein sequence. The reference 
information for variation publications and related protein structures are included in 
their own sections.   

5.2     Analysis of BTK Variations 

 XLA arises as a block in B cell development. BTKbase contains information in 
many entries for the immunological status of patients. These properties have been 
extensively discussed in a previous publication [ 28 ]. The majority of the reported 
patients have signifi cantly reduced numbers of B cells and Ig levels. A large portion 
of patients with X-linked diseases have de novo variations. 

5.2.1     Variation Statistics 

 Extensive statistical analyses of variations at the three molecular levels, DNA, RNA, 
and protein, were performed. Since data per unique families are considered the most 
representative regarding, e.g., mutational effects and prevalence, the discussion 
about variation statistics mainly relates to these. 

 Variations appear throughout the BTK domains as well as in exons and introns 
(Fig.  5.1 , Table  5.1 ); however, the distribution is not even. Some exons contain more 
variations than expected. The PH and SH2 domains contain approximately the expected 
number of variations, whereas there are less than expected in the TH and SH3 domains 
and more than expected in the kinase domain (Table  5.2 ). The TH domain has two 
structural elements [ 31 ,  35 ], an N-terminal BTK motif and a C-terminal proline-rich 
region which contains two proline-rich regions capable of intra- and intermolecular 
interactions [ 4 ,  17 ]. The reason for under- representativeness of the TH domain may be 
that it likely has a partially intrinsically disordered structure in the C-terminal half of 
the domain, and therefore, variations do not have a major effect. On the other hand, 
XLA-causing variants do appear in the Zn 2+ -binding BTK motif.

     We have recently investigated the putative effects of all possible amino acid sub-
stitutions due to single nucleotide changes in the BTK TK domain [ 27 ]. Altogether 
67 % of the 1495 substitutions were predicted to be harmful. Although this number 

  Fig. 5.1    Distribution of all variations to  BTK  gene regions and BTK protein domains. Variations 
in exons are indicated by green numbers in exons which are numbered in red. Variations in introns 
are in black below the domain chart. Domain borders are above the chart and numbers of variations 
in the domains above them       
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seems very high, it is considered to be realistic because the kinase domain contains 
so many conserved regions and has several functions. The situation is likely very 
different in the SH3 and TH domains. 

 The variants are classifi ed in Table  5.1  based on their effects on DNA or RNA 
level. The largest group of the variants is amino acid substitution causing missense 
variations (41 % of independent families). The SH3 domain is the only one where 
amino acid substitutions do not occur. Although SH3 domains are abundant in the 
human proteome, no disease-causing amino acid substitutions have been reported in 
any of them. 

 Nonsense variations account for 17 % of all variations, frameshift variations 
19 %, and intronic variations 14 %. The proportions of deletions (4 %) and inser-
tions (0.7 %) are very low and different from those reported in previous publications 
[ 10 ,  28 ] where proportions of 20 % (deletions) and 7 % (insertions) were given. 
These differences are due to the way the variants were counted, e.g., a variant with 
a DNA name “deletion” and an RNA name “frameshift” has been considered here 
as a frameshift variation. In the future we will avoid this kind of issues by adopting 
variation naming according to the Variation Ontology [ 30 ]. 

 The distribution of variation types is very similar compared to the other 
IDbases [ 19 ]. The ratio of missense/nonsense variations, 2.5, is slightly higher 
in BTKbase compared to IDbases (1.5). Multiple variants in  BTK  have been 
identifi ed in 17 families, complex variations in 9 families, and miscellaneous 
cases in 15 families. 

 There are altogether 341 unique amino acid substitutions. The theoretical maxi-
mum is 4151: thus, until now we have 8.2 % of the total variation; however, just a 
fraction of them is harmful and thus identifi able from XLA patients. In the case of 
nonsense variations, a larger portion has been seen in patients. There are 94 (28 %) 
of all the possible ( n  = 297) variants in the BTKbase. According to  χ  2  statistics, there 
is highly signifi cant overrepresentation ( p  < 0.0001). 

 When we are looking at the changes at amino acid level, it is apparent that argi-
nine, as previously indicated, harbors the largest number of variants (Table  5.3 ). 
However, the most common outcome at protein level is protein truncation due to 
incorporation of a stop codon to the coding region. Altogether 29.5 % of single 
nucleotide changes lead to protein truncation.

   Table 5.2    Spectrum of variants in the structural BTK domains   

 Domain  Length 
 Length/total 
length 

 Normalized 
expected  Observed   χ  2    P  a  

 PH  414  0.209  242  253  0.47384  0.49122 

 TH  231  0.117  135  74  27.69467  <10 −6 *** 

 SH3  194  0.098  114  75  13.07900  0.00030*** 

 SH2  292  0.148  171  192  2.60845  0.10630 

 TK  846  0.428  495  563  9.31070  0.00228** 

 Total  1977  1  1157  2257 

   a Signifi cance levels: **  p  < 0.01 ***  p  < 0.001  

5 Genetic Variation in Bruton Tyrosine Kinase
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   Arginine is by far the most frequently substituted amino acid (31 %). This has 
not only been observed in BTK before [ 28 ] but also in variant datasets extracted 
from dbSNP [ 21 ], and this overrepresentation of arginine is known to be due to the 
high mutability of the codons containing CpG dinucleotides. Arginine is coded by 
six codons, four of which have a CpG dinucleotide in the fi rst and second codon 
position [ 18 ]. The overrepresentation of arginine as the most frequently substituted 
amino acid also leads to the enrichment of tryptophan as the residue other amino 
acids are substituted to; arginine was replaced by tryptophan in 6.3 % of all amino 
acid substitutions (Table  5.3 ). 

 Proline is the amino acid to which most amino acids have been substituted to 
(8 %) closely followed by tryptophan (6.9 %), histidine (5 %), arginine (5 %), glu-
tamine (4.8 %), and serine (4.8 %). 

 The G > A and C > T substitutions form the largest classes of changes, ~24 % 
(Table  5.4 ). The types of base changes were investigated more closely. The changes 
from amino to keto base and vice versa are much more frequent than substitutions within 
these groups. There is clearly a higher frequency of transitions (purine to purine and 
pyrimidine to pyrimidine, 66 %) than transversions (34 %). The higher rate of transi-
tions agrees with the higher rate (~70 %) of transitions found to be typical for human 
genes [ 25 ]. The strong to weak base substitutions are by far the biggest category, con-
taining 60 % of the variations. This was also found in the VariSNP variant datasets [ 21 ].

Hydrophilic
Hydrophobic Acidic Basic Polar Special

-> A F I L M V W Y D E H K R N Q S T C G P X Total
A 0 1 0.6 0.4 0 0 0 0.8 0 2.8
F 0 0 0.4 0.1 0.3 1 0.1 0.1 2.1
I 0.1 0 0 0.1 0 0 0 1 0 0.1 0.6 0 2
L 1.3 0.3 0 0 0.3 0.1 0 0.6 0.1 0.6 3.8 0.6 7.6
M 1.1 0.1 0 0.4 0.4 0.1 2 0 4.2
V 0.4 0.7 0 0 0 0.1 0.4 0.1 0.3 0 0.1 2.2
W 0.1 0.8 0.3 0.3 0 4.1 5.6
Y 0 0 0.7 0.6 0.6 0.8 1.3 4.8 8.7
D 0 0.4 0.1 0 0.1 0.1 0.3 0.3 0 1.4
E 0 0 0.7 0 0.3 0 0.4 1.8 3.2
H 0 0.1 0.1 0 0.4 0 0.1 0.3 0 1.1
K 0.1 0 1.1 0 0.4 0.3 0 0 1.4 3.4
R 0 0.3 0 6.3 4.1 0.6 0.1 4.5 1 0.3 2.5 2 1.1 8.3 31
N 0 0.1 0 0 0.1 0 0 0 0.1 0.4
Q 0 0 0 0.3 0 0.1 0 0.1 6.2 6.7
S 0 0.7 0.1 0.1 0 0.4 0.1 0 0 0 0 0 0.7 1 3.2
T 0.1 0.4 0 0 0 0 0 0 1.1 0 1.7
C 0.7 0.3 1.7 0.4 0.3 0 0.4 0.7 4.5
G 0.1 0.1 0.1 1.1 2.1 1.5 0 0 0.1 0.3 5.6
P 0.3 0.6 0 0 0.3 0 0.7 0.7 0 0 2.5
Total 1 3.5 2.1 1.7 0.1 2.5 6.9 2.8 3.6 3.9 5 1.4 5 2.1 4.8 4.8 3.5 4.2 3.5 8 29.5 100

    Table 5.3    Amino acid substitutions indicated in percentages       
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5.2.2        Structural Consequences 

 BTK consists of fi ve domains which, except for the SH3 domain, contain amino 
acid substitutions (Fig.  5.2 ). The effects and consequences of the variations vary 
widely. A recent study revealed that about two thirds of all kinase domain varia-
tions originating from a single nucleotide change likely lead to XLA [ 27 ]. This 
is not to say that two thirds of all possible amino acid changes were harmful 
since the majority of them do not originate from single base changes (because of 
the organization of the genetic code). Numerous variants affect functional sites, 
such as ligand- and substrate-binding regions at the domains. Stability-affecting 
changes are common. There are putative explanations available for the conse-
quences of all the 1495 substitutions studied. These results are well in line with 
previous studies and predictions of BTK variants [ 5 ,  7 – 9 ,  11 ,  12 ,  14 ,  16 ,  20 ,  22 , 
 24 ,  28 ,  32 ,  35 – 41 ].

   Minor changes can be accommodated without major structural alterations. As 
has been seen in especially the PH domain, changes to electrostatics are common 
[ 16 ]. When the charge is reversed, added, or removed, the properties of the site are 
modifi ed. If this happens on the protein surface of the binding site, then the interac-
tions with partners are impaired or weakened. 

 Structural variations appear frequently in secondary structural elements. 
Although there are some variations at loops connecting these elements, the α- and 

a
All

c g t Total
a 0 3.5 8.3 2.8 14.6
c 5 0 2.1 23.5 30.7
g 23.7 5.5 0 7.8 36.9
t 3.6 10 4.2 0 17.8
Total 32.3 19 14.6 34.1 100

Summarized into amino and keto categories
Amino Keto Total

Amino 8.5 36.7 45.2
Keto 42.8 12 54.8
Total 51.3 48.7 100

Summarized into weak and strong categories
Weak Strong Total

Weak 6.4 26 32.4
Strong 60 7.6 67.6
Total 66.4 33.6 100

Summarized into purine and pyrimidine categories
Purines Pyrimidines Total

Purines 31.9 19.6 51.5
Pyrimidines 14.9 33.6 48.5
Total 46.9 53.1 100

   Table 5.4    Nucleotide substitutions 
in unique families (%)       
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β-structures are more sensitive for substitutions. Structural variants are frequent 
on the protein core where there is no space for larger side chains due to tight pack-
ing. Further, introduction of charged or polar residues to the protein core, even if 
sterically possible, is usually harmful. Much more variation is allowed on the 
protein surface in areas not involved in intra- or intermolecular interactions. Some 
of these interactions are known; however, we do not even know the three-dimen-
sional organization of the entire BTK. The domains are independently folding and 
connected by loops, which can be quite long. It is likely that the domain interac-
tions are different in different folds of the entire protein. There is structural infor-
mation for the entire BTK in elongated conformation [ 13 ]; however, this 
conformation is not likely the only one. 

  Fig. 5.2    Distribution of amino acid substitutions to BTK domains. Affected amino acids are 
shown in yellow. PH domain is on top left (PDB code 1BTK [ 7 ]). The fi rst part of the TH domain 
including the BTK motif binding Zn 2+  (magenta) is on the top of the domain. In the SH3 (1AWX 
[ 4 ]), top right, and SH2 domain (2GE9 [ 6 ]), bottom left, an in-frame deletion of 21 residues is 
indicated. The kinase domain (1K2P [ 12 ]) is at  bottom to the right . Amino acid substitutions 
appear throughout all the domains except the SH3 domain where there are none       
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 BTK variation information has been collected already for two decades into 
BTKbase, which has been a central resource for research and diagnosis. The data-
base is constantly growing; however, the recent explosion in sequencing activities 
has not contributed much to the increased numbers in the database. That is presum-
ably because many cases remain in laboratories and are never published or submit-
ted to a database. It is in the interest of the entire community to share information 
about variations, especially in rare diseases such as XLA.      
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ABSTRACT: For development and evaluation of meth-
ods for predicting the effects of variations, benchmark
datasets are needed. Some previously developed datasets
are available for this purpose, but newer and larger
benchmark sets for benign variants have largely been
missing. VariSNP datasets are selected from dbSNP.
These subsets were filtered against disease-related variants
in the ClinVar, UniProtKB/Swiss-Prot, and PhenCode
databases, to identify neutral or nonpathogenic cases.
All variant descriptions include mapping to reference se-
quences on chromosomal, genomic, coding DNA, and
protein levels. The datasets will be updated with auto-
mated scripts on a regular basis and are freely available at
http://structure.bmc.lu.se/VariSNP.
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Introduction
The development of high-throughput sequencing technologies

has caused the vast growth of genetic variation data. Interpreta-
tion of the effects of variations is often missing. Since experimental
validation at a large scale is not feasible, computational methods
for predicting the effects and consequences of variations have been
developed. Approved and widely accepted benchmark datasets are
needed to enable the systematic quantitative comparison of vari-
ant effect predictor performance. Benchmark datasets are standard
representative datasets with known outcome and they are vital for
measurement and judgment of predictor performance [Vihinen,
2012]. Criteria for variation benchmark sets have been discussed
in detail [Nair and Vihinen, 2013]. Benchmark datasets can also be
used for training and testing of novel predictors most often based
on machine learning systems. The need for benchmarks has been
expressed frequently [Thusberg et al., 2011; Johnston and Biesecker,
2013; Peterson et al., 2013].

The first systematic benchmark datasets for variation ef-
fects became available with the release of VariBench [Nair and
Vihinen, 2013] and include datasets used in method performance
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assessment studies. For the data and datasets in VariBench, crite-
ria for inclusion included relevance, representativeness, nonredun-
dancy, experimentally verified cases, positive and negative cases,
scalability, and reusability. While VariBench includes experimen-
tally verified cases, the SNPdbe database [Schaefer et al., 2012]
contains nonsynonymous single amino acid substitutions from
>2,600 organisms also with predictions of computationally anno-
tated functional impacts. Many new variants have been discovered
since the release of VariBench. To keep up with the new devel-
opments, it became apparent that there is a need for newer and
larger sets, which can also be easily updated. The Database for
Short Genetic Variations (dbSNP) is a public domain archive for
a broad collection of simple genetic variations [Sherry et al., 2001].
It is regarded as the largest variation database and was therefore
used as the source of data for new benchmark datasets. Since db-
SNP contains both disease-related variants (pathogenic, function
affecting variants) and nondisease-related variants (variants not af-
fecting function), neutral (nonpathogenic) subsets of the dbSNP
database were generated by filtering out variants found in ClinVar,
UniProtKB/Swiss-Prot, and PhenCode datasets, and which were
annotated as either pathogenic or disease-causing in the source
databases. These three resources are among the most comprehen-
sive ones for disease-related variants. As dbSNP classifies variants
into functional classes (Table 1), we were able to produce neu-
tral benchmark datasets for all the populated classes, altogether 13
benchmarks.

ClinVar contains reports of relationships among medically impor-
tant variants and phenotypes with supporting evidence [Landrum
et al., 2014]. Submissions are accepted from different sources: clin-
ical tests, research, and extracted from the literature. The content is
highly structured and harmonized with controlled vocabularies and
other data standards. Variations are mapped to mRNA, genomic,
and protein reference sequences, according to the Human Genome
Variation Society (HGVS) recommendations.

The Swiss-Prot section of the Universal Protein Knowledge-
base (UniProtKB/Swiss-Prot) contains manually annotated records
with information on protein sequences extracted from literature
and curator-evaluated computational analysis [UniProt Consor-
tium, 2014]. Manual curation includes a thorough review of avail-
able information on sequence variants (mostly single amino acid
substitutions) and associated genetic disease information. There
are almost 70,000 variations, 35% of which are associated with
one of over 4,000 described genetic diseases [Famiglietti et al.,
2014].

PhenCode (phenotypes for ENCODE) connects human pheno-
type and clinical data in various locus-specific databases (LSDBs)
with data on genome sequences, evolutionary history, and func-
tion from the ENCODE project and other resources in the UCSC
Genome Browser [Giardine et al., 2007]. It contains about 34,000

C© 2014 WILEY PERIODICALS, INC.



Table 1. NCBI Functional Classes

Functional class Description SO IDa

reference Contig reference –
missense Alters codon to make an altered amino

acid in protein product
0001583

cds-indel Indel snp with length of multiple of
3 bp, not causing frameshift
(inframe variant SO: 0001650)

–

synonymous-codon Sequence variant where there is no
resulting change to the encoded
amino acid

0001588

intron-variant Transcript variant occurring within an
intron

0001627

nc-transcript-variant Transcript variant of a noncoding
RNA gene

0001619

downstream-variant-500B Sequence variant located within a half
KB of the end of a gene

0001634

upstream-variant-2KB Sequence variant located within 2 KB
5′ of a gene

0001636

stop-gained Sequence variant whereby at least one
base of a codon is changed, resulting
in a premature stop codon, leading
to a shortened transcript

0001587

stop-lost Sequence variant where at least one
base of the terminator codon (stop)
is changed, resulting in an elongated
transcript

0001578

frameshift-variant Sequence variant that causes a
disruption of the translational
reading frame, because the number
of nucleotides inserted or deleted is
not a multiple of three

0001589

utr-variant-3-prime UTR variant of the 3′ UTR 0001624
upstream-variant-5KB Sequence variant located within 5 KB

5′ of a gene
0001635

splice-acceptor-variant Splice variant that changes the two
base region at the 3′ end of an intron

0001574

splice-donor-variant Splice variant that changes the two
base pair region at the 5′ end of an
intron

0001575

aSO ID: Sequence ontology ID; deprecated terms omitted. From ftp://ftp
.ncbi.nih.gov/snp/specs/docsum_3.4.xsd

variants originating from LSDBs and about 57,000 variants from
UniProtKB/Swiss-Prot.

All variant descriptions in VariSNP include mapping to
reference sequences on chromosomal, genomic, coding DNA,
and protein levels. Where possible, a mapping to PDB struc-
ture coordinates is included. The datasets are available on
http://structure.bmc.lu.se/VariSNP, and will be updated on a regu-
lar basis.

Data Collection and Selection
The workflow for downloading, selecting, and filtering data from

the different sources is depicted in Figure 1. The procedure is ex-
plained in more detail below.

dbSNP Data

Data were downloaded from the NCBI FTP-site
(ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606/XML), the
latest update (August 5, 2013) was used. Each variant in dbSNP
is assigned to one or more functional classes, which are described
in Table 1. These classes are available in the docsum 3.4.xsd
file at ftp://ftp.ncbi.nlm.nih.gov/snp/specs. Deprecated and not-

implemented terms were omitted. A variation may belong to
multiple functional classes. Multiplicity will result, for exam-
ple, when a variation falls within an exon of one transcript
and an intron of another for the same gene (http://www.ncbi
.nlm.nih.gov/books/NBK21088/). Functional classifications can
vary from genome build to build.

Selections of variations were made based on functional class and
having values for “minor allele frequency” (MAF) and for “val-
idation” (any type of validation, e.g., “by1000G” for variants in
The 1000 Genomes Project). Disease-related variations were filtered
out based on variants found in ClinVar, UniProtKB/Swiss-Prot, or
PhenCode.

ClinVar Data

In ClinVar, reports about sets of assertions on the same varia-
tion/phenotype relationship are aggregated and given as a Reference
ClinVar (RCV) accession. Because of this model, an allele appears
in multiple RCV accessions whenever different phenotypes are re-
ported for that allele. RCV records contain the information needed
for our purpose.

The XML file (ClinVarFullRelease 2014–5.xml.gz) was down-
loaded from http://www.ncbi.nlm.nih.gov/clinvar/ (May 1, 2014).
Selections were first made based on molecular consequence, variant
type, and clinical significance. Values for molecular consequence
describe the effects of sequence changes and are based on NCBI an-
notation, standardized by reference to identifiers from the Sequence
Ontology [Eilbeck et al., 2005], see also Table 1. Values for variant
type include terms such as single-nucleotide variant, deletion, and
indel. Terms for clinical significance recommended by the American
College of Medical Genetics and Genomics (ACMG [Richards et al.,
2008]) include terms such as “Pathogenic,” “Likely pathogenic,” and
“Benign”. Variants classified as “Pathogenic” or “Likely pathogenic”
were excluded from VariSNP.

UniProtKB/Swiss-Prot Data

Data were downloaded (May 30, 2014) in tab-delimited
format through the SwissVar portal (http://swissvar.expasy.org/
cgi-bin/swissvar/result?format=tab) and variants having a disease
description were selected.

PhenCode Data

Data were downloaded from the PhenCode Website
(http://phencode.bx.psu.edu/dist/phencode/database/), last update
April 30, 2014, and stored in a local MySQL database. To be
able to compare the variants with those in dbSNP, all variant
descriptions were checked with the Mutalyzer Name Checker
(http://mutalyzer.nl) and HGVS descriptions were added. Only vari-
ants with HGVS descriptions (72,544 out of 81,639) could be used
for filtering.

Data Filtering, Checking, and Annotating
The HGVS descriptions of variants in the dbSNP selec-

tions were compared with HGVS descriptions in the ClinVar,
UniProtKB/Swiss-Prot, and PhenCode selections. When a match
was found in any of these three datasets, it was filtered out.
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Figure 1. Workflow schema of data selection and filtering.

After selection and filtering was performed, a file was pro-
duced with the HGVS variation descriptions. This file was then
submitted to the batch version of the Mutalyzer Name Checker
(http://mutalyzer.nl) for checking the HGVS descriptions. The re-
sults were combined with the filtered data set, using only the columns
“Genesymbol,” “Coding Reference,” “Coding DNA Descr.,” “Pro-
tein Reference,” “Protein Descr.,” and “Reference Sequence Start
Descr.”

An RNA prediction was generated from the coding DNA descrip-
tion and variation type annotations from the Variation Ontology

(VariO, [Vihinen, 2014]) were added, using the batch version of the
VariOtator tool (Schaafsma and Vihinen, in preparation).

Datasets Contents

neutral_snv

The neutral snv dataset consists of single-nucleotide variations
(SNVs; all entries in dbSNP with “missense” as functional class) with
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a MAF value and validation. The information in this dataset origi-
nates from three sources: dbSNP (dbSNP Build 138, genomeBuild
37.5, and groupLabel GRCh37.p10), Mutalyzer Name Checker, and
VariOtator.

The dbSNP part comprises the following fields: dbSNP id (rsId),
estimated average heterozygosity from allele frequencies, standard
error of heterozygosity estimate, creation date, creation build, up-
date date, update build, observed alleles, starting map location in
contig coordinates, ending map location in contig coordinates, ref-
erence allele, orientation, MAF, minor allele, sample size, validation,
HGVS names, allele origin, clinical significance, functional class, se-
quence identifier (gi), and accession.version number.

The Mutalyzer part has the following fields: Genesymbol, Ref-
erence Sequence Start Description, Coding Reference, Coding
DNA description, Protein Reference, and (predicted) Protein De-
scription. The RNA prediction can be found in the field pre-
dicted RNA variation. The VariO annotation consists of the ap-
propriate VariO terms (full lineage included) for the coding DNA
description and if applicable for the protein description (i.e., p. =

as HGVS name does not describe a variant, so cannot have a VariO
annotation).

Other datasets

Filtered datasets for the functional classes other than “missense”
with more than zero variants were also generated. Each set was fil-
tered in the same way as described above, except for checking the
HGVS descriptions with Mutalyzer. Name checking was only done
when possible (e.g., variants at an intronic position in combina-
tion with a coding DNA reference such as NM 000061.2 cannot be
checked with Mutalyzer) and entries that could not be checked were
not filtered out, as in the neutral snv dataset.

Results and Discussion
The distribution of unfiltered and filtered variants in the func-

tional classes is presented in Table 2.
The “intron-variant” class contains the largest number of unique

variants, altogether about 91%. The average exon length (170 bp) is
only about 3% of the average intron length (5,419 bp) [Sakharkar
et al., 2004]. Apart from variants at or near splice sites or at exon–
intron junctions, intronic variants are most often considered to be
harmless, and there is no selection pressure against them. Thus, the
“intron-variant” class being the largest is as expected. The “refer-
ence” functional class just refers to alleles on the contigs. The “mis-
sense” class contains over 102,000 variants, about 1.8% of the total
number of variants with a MAF value and validation. The reason for
the largest exclusion in this class is because amino acid substitutions
are often disease-causing and because coding sequences are the most
studied genome regions.

neutral_snv

Filtering of disease-causing variants left us with 80,346 entries.
Checking these with the Mutalyzer Name Checker resulted in 78,951
variants with a proper HGVS description (Table 2), whereas the rest
were discarded. For 1,394 variants, the HGVS description could
not be checked. Reasons included “no gene specified,” reference
sequence not found, cases not having a correct nucleotide at the
position, in-frame stop codon, and position out of range. Entries

Table 2. Variants in dbSNP with a MAF Value and Validated,
Classified According to Functional Classa

Functional class Unfiltered % Filtered

cds-indel 306 <0.1 306
coding-sequence-variant 0 0 –
complex-change-in-transcript 0 0 –
downstream-variant-500B 47,795 0.83 47,711
downstream-variant-5KB 0 0 –
frameshift-variant 21 <0.1 20
incomplete-terminal-codon-variant 0 0 –
intron-variant 5,273,764 91.38 5,272,189
mature-miRNA-variant 0 0 –
missense 102,043 1.77 78,951
nc-transcript-variant 55,089 0.95 53,957
nmd-transcript-variant 0 0 –
nonsynonymous-codon 0 0 –
reference 193,943 3.36 –
splice-acceptor-variant 344 <0.1 338
splice-donor-variant 552 <0.1 543
splice-region-variant 0 0 –
stop-gained 1,369 <0.1 1,282
stop-lost 97 <0.1 97
synonymous-codon 91,904 1.59 91,462
upstream-variant-2KB 230,930 4.00 230,423
upstream-variant-5KB 0 0 –
utr-variant-3-prime 110,266 1.91 110,032
Unique variants 5,771,431

aNote that a variant can appear in more than one functional class.

Table 3. Nucleotide Substitutions (%) in the neutral_snv Dataset

Purines Pyrimidines

→ A G C T Total

A 0 13.7 3.1 2.5 19.3
G 29.5 0 5.3 4.3 39.1
C 4.8 5.8 0 21.1 31.7
T 1.9 2.0 6.0 0 9.9
Total 36.2 21.5 14.4 27.9 100

Table 4. Amino-Keto Substitutions (%) in the neutral_snv Dataset

Amino Keto Total

Amino 7.9 43.1 51.0
Keto 42.7 6.3 49.0
Total 50.6 49.4 100.0

Table 5. Purine–Pyrimidine Substitutions (%) in the neutral_snv
Dataset

Purines Pyrimidines Total

Purines 43.2 15.2 58.4
Pyrimidines 14.5 27.1 41.6
Total 57.7 42.3 100.0

where the minor allele provided in dbSNP did not agree with the
allele in the variant description were also discarded.

Table 3 shows an overview of the nucleotide substitutions in the
neutral snv dataset. The G>A (purine>purine) substitutions form
the largest class of changes, almost 30%, followed by C>T transi-
tions. Our results agree with the higher rate of transitions (�70%)
compared with transversions found to be typical for human genes
[Stephens et al., 2001].

The types of base changes were investigated more closely. Table 4
shows the substitutions from amino group containing nucleotides
(A, C) to keto group containing nucleotides (G, T) and Table 5 the
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Table 6. Weak–Strong Substitutions (%) in the neutral_snv
Dataset

Weak Strong Total

Weak 4.4 24.8 29.2
Strong 59.7 11.1 70.8
Total 64.1 35.9 100.0

purine (A, G) to pyrimidine (C, T) substitutions, and in Table 6
the weak base pair (A, T) to strong base pair (C, G) substitutions.
The changes from amino to keto and vice versa are much more
frequent than substitutions within these groups. There is clearly a
higher frequency of transitions than transversions. The strong to
weak base substitutions is by far the biggest category, containing
almost 60% of the variations.

A comparison of caused amino acid substitutions is presented in
Figure 2. The Arg>Gln substitutions are the most frequent, (4.56%),
followed by Arg>His (4.09%), Ala>Thr (3.71%), Ala>Val (3.21%),
Val>Ile (3.21%), Arg>Cys (3.02%), and Pro>Leu (3.03%) replace-
ments.

Figure 3 shows the relative mutabilities of the amino acids to
which the original residues are substituted (A), and of the original
amino acids, how often amino acids have changed to a specific
amino acid (B). The relative mutabilities were calculated using the
following formula [Khan and Vihinen, 2007]:

Rm(N) =
(Nobs × N ′

exp)

(N ′
obs × Nexp)

where N′ is the least mutated or variant residue type that was ob-
tained by calculating the ratio between observed and expected value.
N represents the number of original or variant residues for an amino
acid type. For the original residues, tryptophan has the lowest ratio,
whereas for the variant residues, proline has the lowest ratio. In the
previous study [Khan and Vihinen, 2007], these were found to be
lysine and alanine, respectively.

Arginine is the most frequently substituted amino acid, whereas
methionine and histidine are the amino acids to which other amino
acids are most often changed. The overrepresentation of arginines
is known to be due to the high mutability of the codons containing
CpG dinucleotides [Ollila et al., 1996], which can spontaneously
mutate by deamination either to TG or CA dinucleotides. Arginine
is coded by six codons, four of which have a CpG dinucleotide in
the first and second codon position.

A different mutability score has been used in a study of 1000
Genomes variants by taking the total number of variants for a spe-
cific amino acid in the data and dividing by the frequency of occur-
rence for the specific amino acid in the genome [de Beer et al., 2013].
In the entire 1000 Genomes Project dataset, arginine had the high-
est mutability, whereas the more chemically complex amino acids,
tryptophan, and phenylalanine, were the least mutable. Applying
their method to our data shows exactly the same trend (Fig. 4).

Conclusions
To our knowledge, the neutral snv dataset is the largest neu-

tral variants dataset available. For the other functional classes, no

Figure 2. Lego plot of amino acid substitutions in the neutral_snv dataset; absolute numbers.
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Figure 3. Relative mutabilities of mutated (A) and mutant (B) amino
acids.

Figure 4. Relative mutability scores.

benchmark datasets have been previously available. A neutral dataset
of 21,170 human nonsynonymous coding SNVs was used for
method performance assessment [Thusberg et al., 2011]. Subsets
of this neutral dataset, one of 17,393 cases [Olatubosun et al., 2012]
and one of 14,848 cases (Niroula et al., in preparation), were used
for prediction method development. Apart from being much larger,
our dataset is also qualitatively better and improved, that is, due to
more robust minor allele frequencies. Updates of the database will be
done for each dbSNP release. All generated datasets, including those
from previous updates, will be available at and can be downloaded
from http://structure.bmc.lu.se/VariSNP.
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Abstract
Genes and proteins are known to have differences in their sensitivity to alterations. Despite

numerous sequencing studies, proportions of harmful and harmless substitutions are not known

for proteins and groups of proteins. To address this question, we predicted the outcome for all

possible single amino acid substitutions (AASs) in nine representative protein groups by using the

PON-P2 method. The effects on 996 proteins were studied and vast differences were noticed.

Proteins in the cancer group harbor the largest proportion of harmful variants (42.1%), whereas

the non-disease group of proteins not known to have a disease association and not involved in the

housekeeping functions had the lowest number of harmful variants (4.2%). Differences in the pro-

portions of the harmful and benign variants are wide within each group, but they still show clear

differences between the groups. Frequently appearing protein domains show a wide spectrum of

variant frequencies, whereas no major protein structural class-specific differences were noticed.

AAS types in the original and variant residues showed distinctive patterns, which are shared by

all the protein groups. The observations are relevant for understanding genetic bases of diseases,

variation interpretation, and for the development of methods for that purpose.

K EYWORDS

disease groups, pathogenicity, proteins, sensitivity, variation

1 INTRODUCTION

Although modern next-generation sequencing technologies have

identified huge variation datasets, which are publicly available in

generic databases such as dbSNP (Sherry et al., 2001), ExAC (Lek

et al., 2016), and UniProtKB/Swiss-Prot (The UniProt Consortium,

2017) and in locus-specific variation databases such as IDbases (Piirilä,

Väliaho, & Vihinen, 2006) and the Duchenne Muscular Dystrophy

database (Aartsma-Rus, van Deutekom, Fokkema, van Ommen, &

den Dunnen, 2006), some fundamental questions still remain. One

of these is how many of possible variants are harmful or benign. A

further question is whether there are differences in variant frequen-

cies between proteins, protein groups, protein structural classes,

chromosomes, or amino acid substitution (AAS) types. All these

questions are relevant for understanding and interpreting identified

variations.

The mutation rate varies vastly depending on the chromosomal

location (Smith et al., 2016). Thus, differences in proportions of harm-

ful and benign variants are to be expected between gene and dis-

ease classes. Some disease groups, such as cardiomyopathy-related

genes, have been claimed to be highly intolerant for variations (Pan

et al., 2012). Recently, some studies have investigated the numbers of

harmful variants in certain proteins including Bruton tyrosine kinase

(BTK) (Väliaho, Faisal, Ortutay, Smith, & Vihinen, 2015) and mismatch

repair system proteins (Niroula & Vihinen, 2015a). However, no sys-

tematic studies have been performed to test over large gene and pro-

tein groups. One reason has been that sufficiently large experimental

datasets aremissing.

Several prediction methods have been developed for variant toler-

ance/pathogenicity (Niroula & Vihinen, 2016), but they have largely

variable performance (Bendl et al., 2014; Grimm et al., 2015; Riera,

Padilla, & de la Cruz, 2016; Thusberg, Olatubosun, & Vihinen, 2011).

To answer to the questions presented above, a highly reliable and

fast prediction method is needed. Although experimental approaches

are available for saturation mutagenesis (Haller et al., 2016) and

references therein, there is a bottleneck in large-scale functional

assays. We investigated all possible variants in nine groups of pro-

teins with a highly reliable prediction method, PON-P2 (Niroula,

Urolagin, & Vihinen, 2015). Large differences in proportions of

harmful and benign variations were detected between the protein

categories, types of variants, and their domain and chromosomal

distributions.

HumanMutation. 2017;38:839–848. c© 2017Wiley Periodicals, Inc. 839wileyonlinelibrary.com/journal/humu



840 SCHAAFSMA AND VIHINEN

2 MATERIALS AND METHODS

Sequences were collected for nine categories of proteins, which

represent those involved in diseases as well as housekeeping and

nondisease genes and proteins. The actionable genes group (ACTION)

includes 56 genes from the American College of Medical Genetics

and Genomics recommendations (Green et al., 2013). Since there

are therapies to treat individuals with variants in these genes, find-

ings should be reported. Five hundred seventy-two cancer genes

(CANCER) were taken from the Cancer Gene Census repository

(http://cancer.sanger.ac.uk/census). From this list, a selection of 166

genes with the annotations “somatic” and “missense” was made. The

cardiomyopathy set (CARDIO) contains 46 genes (Pan et al., 2012).

The developmental disorder dataset (DEVEL): altogether 53 genes

fromGoh et al. (2007) and classified as “Developmental.” The epileptic

group (EPIL) of 37 genes for epileptic encephalopathy, early infantile

(phenotypic series PS308350), are from the Online Mendelian Inher-

itance in Man (OMIM) database (Amberger, Bocchini, Schiettecatte,

Scott, & Hamosh, 2015). The housekeeping dataset (HOUSE) contains

3,804 genes altogether (Eisenberg & Levanon, 2013). A random sam-

ple of 200 genes was taken for the analysis. Housekeeping genes are

required for the maintenance of basal cellular functions essential for

the existenceof a cell, so they are expressed inmost or all cells. Primary

immunodeficiency (PID) genes include283entries from the ImmunoD-

eficiency Resource (Samarghitean, Väliaho, & Vihinen, 2007), IDbases

(Piirilä et al., 2006), the most recent classification by the International

Union of Immunological Societies (IUIS) expert committee for PIDs

(Picard et al., 2015), and a recent review (Vihinen, 2015). The set

of 126 neurodegenerative genes (NEURO) is from the Neurode-

generative Disease Variation database (Yang et al., submitted) at

http://bioinf.suda.edu.cn/NDDvarbase/LOVDv.3.0/genes. The nondis-

ease genes (NONDIS) dataset is a random selection of 200 genes

from the HUGO Gene Nomenclature Committee (HGNC) database

(Gray et al., 2013) without anOMIM id and not included in the HOUSE

dataset. UniProt (The UniProt Consortium, 2017) protein accession

numbers for these genes were obtained using the HGNC service, and

if there was no UniProt accession available, the genewas discarded.

A Python (version 2.7.12) script was used to submit all 19 possible

substitutions on all positions in the protein sequence to PON-P2

(http://structure.bmc.lu.se/PON-P2). The tool predicts the conse-

quences of variants to be neutral, pathogenic, or unknown, and it

provides predictions only for those variants for which reliable results

can be obtained (default cut-off 0.95).

Statistical parameterswere calculated using the stats package from

the Python SciPy (release 0.18.1) library. Domains in the investigated

proteins were obtained from the Pfam database (30.0) (Finn et al.,

2016). Structural classifications for the domains were obtained by

mapping Pfam families to the CATH database (version 4.1) (Sillitoe

et al., 2015). The domains were assigned to one of the four CATH

classes (mainly alpha, mainly beta, alpha beta, and few secondary

structures). Protein structures were visualized with UCSF Chimera

(version 1.11.2) (Pettersen et al., 2004). Protein sequence lengths

were collected from theUniProtKB/Swiss-Prot database (TheUniProt

Consortium, 2017) and correlated with the ratios of harmful/total

variants per protein. In a similar way, the number of paralogous

sequences per protein, obtained from the Ensembl compara database

(Herrero et al., 2016), were correlated with the ratios of harmful/total

variants per protein.

Theproportions of pathogenic andneutral variants in proteinswere

correlated to four recently introduced genic intolerance scores using

Spearman’s correlation coefficient. These scores include the gene

damage index (Itan et al., 2015), residual variation intolerance score

(Petrovski, Wang, Heinzen, Allen, & Goldstein, 2013), Aggarwala gene

tolerance score (Aggarwala & Voight, 2016), and the probability of

being loss-of-function intolerant score (Lek et al., 2016). The Samocha

score (Samocha et al., 2014) was not studied because of a very low

number of genes with index scores. As intolerance scores are not

available for all the studied proteins, those without a score were not

included in the comparison. Further correlation wasmade to the three

categories of proteins obtained based on their network properties

(Vinayagam et al., 2016).

3 RESULTS AND DISCUSSION

The goal of this study was to investigate whether genes and proteins

in different disease and functional groups have different sensitivity for

variations and to reveal the proportions of harmful and benign AASs

in protein categories. The method used to determine variation conse-

quences was PON-P2 (Niroula et al., 2015). Numerous assessments

have indicated it to have superior performance among related tools

(Bendl et al., 2014; Niroula et al., 2015; Riera et al., 2016). PON-P2 is

also fast, thus suitable for this kind of large-scale analysis. Further, as

is shown below, our new data indicate that the ratio of benign variants

predicted as harmful is very low, only 2.5%. The error rates of several

other methods are even more than 10-fold higher (Bendl et al., 2014;

Niroula et al., 2015; Niroula & Vihinen, 2016; Riera et al., 2016).

We collected nine datasets of altogether 1,066 genes and corre-

sponding proteins (Table 1).

The total number of unique proteins is 996, because of overlaps

between the groups (Supp. Table S1). Especially, theACTIONandCAN-

CER sets overlap, with 17 proteins, and theCANCER andPID setswith

19 proteins. The sizes of the protein sets vary.

The ACTION set contains 56 proteins, whereas the CANCER and

the PID groups contain 166 and 281 proteins, respectively. Overlap of

the ACTION group is expected since this class contains some of the

best studied genes and proteins from the other classes.

The predictions were made for all the possible 19 AASs at each

position. In total, we made 13,540,914 unique predictions. The vari-

antswere classified into three categories: pathogenic (harmful), benign

(neutral), and unknown significance (Niroula et al., 2015). In nature, the

majority of the studied substitutions are very unlikely due to requir-

ing more than one nucleotide substitution in a single codon. Out of the

380 possible AASs, only 150 can originate from single-nucleotide vari-

ations. Depending on the codon type, the number of single-nucleotide

change-caused AASs (SNAVs) varies. We recently investigated all the

SNAVs in the kinase domain of BTK (Väliaho et al., 2015) and in the
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TABLE 1 Predicted outcome of variants in the nine datasets

ACTION CANCER CARDIO DEVEL EPIL HOUSE NEURO NONDIS PID

Number of genes 56 166 46 53 37 193 126 175 281

Number of predicted proteins 56 159 45 53 37 187 120 146 263

Predicted proteins (%) 100.00 95.78 97.83 100.00 100.00 96.89 95.24 83.43 93.59

Number of amino acids 65,981 163,244 67,996 44,972 37,198 92,800 81,827 74,964 180,535

Number of possible variants in predicted proteins 1,253,639 3,101,636 1,291,924 854,468 706,762 1,763,200 1,554,713 1,424,316 3,430,165

Number of predicted variants 1,251,692 3,099,458 806,345 793,130 703,309 1,760,880 1,553,707 1,398,123 3,416,178

% predicted variants (of possible) 99.84 99.93 62.41 92.82 99.51 99.87 99.94 98.16 99.59

Number of variants predicted as ‘neutral’ 110687 277241 92985 98410 112301 460746 237948 1026537 825655

% neutral variants 8.84 8.95 11.53 12.41 15.97 26.17 15.32 73.42 24.17

Average number of neutral variants per protein 1,976.55 1,743.65 2,066.33 1,856.79 3,035.16 2,463.88 1,982.90 7,031.08 3,139.37

Median number of neutral variants per protein 580 222 780 642 671 1,185 801 5,208 1,438

Number of variants predicted as “pathogenic” 440,982 1,303,446 212,579 280,692 262,602 414,743 525,790 58,630 880,146

Pathogenic variants (%) 35.23 42.05 26.36 35.39 37.34 23.55 33.84 4.19 25.76

Average number of pathogenic variants per protein 7,874.68 8,197.77 4,723.98 5,296.08 7,097.35 2,217.88 4,381.58 401.58 3,346.56

Median number of pathogenic variants per protein 4,924.5 6,649 2,615 3,704 6,216 1,135 2,918.5 0 2,067

Number of variants predicted as “unknown” 700,023 1,518,771 500,781 414,028 328,406 885,391 789,969 312,956 1,710,377

Unknown variants (%) 55.93 49 62.11 52.2 46.69 50.28 50.84 22.39 50.07

Average number of unknown variants per protein 12,500.41 9,552.02 11,128.47 7,811.85 8,875.84 4,734.71 6,583.08 2,143.53 6,503.34

Median number of unknown variants per protein 7,500 6,305 4,408 5,680 6,754 3,356 4,549.5 166 4,859

Ratio of pathogenic and neutral variants 3.99 4.70 2.29 2.85 2.34 0.90 2.21 0.06 1.07

mismatch repair proteins (Niroula & Vihinen, 2015a) by using PON-

BTK and PON-MMR2, respectively, and found large differences in the

proportions of tolerated variants.

The investigated proteins show also in this study great variation

in the proportions of harmful, benign, and unknown variants (Supp.

Tables S2–S4). PON-P2 uses classification by reject option, which

means that cases without strong evidence for being either harmful

or harmless are grouped into the unknown class. The benefit is that

the predicted harmful and tolerated variants are correct with very

high likelihood (Niroula et al., 2015). Further, because of heterogene-

ity of the phenotype caused by variants (Vihinen, 2017), we expect the

method to predict cases to the unknown class. The results thus present

the lower boundaries for the harmful and benign classes. PON-P2 is

a tolerance (pathogenicity) predictor and has been trained on known

disease-causing and benign variants. Therefore, it cannot be used to

make for example functional or structural predictions. Thus, although

a certain variant may be, for example, structurally incompatible, it may

not be harmful if the protein is not essential.

The most sensitive proteins for variations, that is, those with the

largest proportion of pathogenic variants, are found in the CANCER

group, although a few proteins from the HOUSE group also have

very high percentages of pathogenic predictions. The protein with the

highest percentage of pathogenic predictions (90.3%) is the ubiquitin-

conjugating enzyme E2 B (P63146) that belongs to HOUSE group

(Supp. Dataset S1). This is a very high proportion for harmful varia-

tions, but in line with the protein function. The protein is an essential

component of protein degradation processes and postreplicative DNA

damage repair. The sequence is entirely invariant with several species,

indicating the high conservation required for function, which on the

other hand leads to a high sensitivity for variants.

Proteins with the lowest ratio of pathogenic predictions (0%) are

mainly from the HOUSE and NONDIS groups. Remarkable exceptions

are the SET-binding protein (Q9Y6X0) from the HOUSE group and

the inducible T-cell costimulator (Q9Y6W8) from the PID group. Pro-

teins with the highest percentages for the neutral predictions (Supp.

Dataset S2) belong mainly to the NONDIS group, and some to the

HOUSE group, although there are also a few proteins from the disease

groups PID and NEURO, which have more than 95% neutral predic-

tions. The proteins with no neutral predictions all belong to a disease

group (ACTION, CARDIO, CANCER, DEVEL, NEURO, or PID) except

for the ubiquitin-conjugating enzyme E2 B, from the HOUSE group.

The ratio of unknown variants ranges from 99% for histone H3.3

in the CANCER set to close to 0 for several proteins mainly in the

NONDIS category (Supp. Dataset S3). There are several reasons why

variants are predicted to the unknown class, all of them related to the

fact that the predictor cannot find sufficient support (at least 0.95)

for classification into either the neutral or pathogenic classes. These

include low sequence conservation and the presence of very different

types of residues in corresponding positions in the multiple sequence

alignment.

The distributions of the harmful and benign variants as well as

those with unknown significance are shown in Figure 1 for the kinase

domain of BTK (PDB id 3k54). Our previous study indicated that 67%

of SNAVs are harmful (Väliaho et al., 2015). The corresponding number

for all AASs is 72.7%. The distributions of predicted variant outcomes

are clearly different at different positions due to the accessibility of
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F IGURE 1 The distribution of predicted variants in BTK. The distribution of the predicted pathogenic (left) and neutral (middle) variants and
those with unknown significance (right) in the tyrosine kinase domain of Bruton tyrosine kinase (PDB id 3k54). The distributions of the variant
effects are highly structural context-dependent. The numbers of the variation types in each category are shown by the scales on the right side of
the panel

the site, involvement in binding or catalysis, or location within sec-

ondary structural elements. Harmful variants are most frequent at the

protein core and at the secondary structural elements. Neutral vari-

ants are mainly located to surface loops or toward the ends of 𝛼- and

𝛽-structures. These are also the locations for the largest numbers of

unknownvariants. TheBTKkinase domain containsmoreharmful vari-

ants thanmanyother domains or proteins due to importanceof numer-

ous sites for the catalytic activity, substrate binding, and multimodal

regulation of the protein. Therefore, the structure contains numerous

positions at which only a few, if any, substitutions are tolerated.

3.1 Comparison of protein classes for variation

sensitivity

PON-P2 has shown excellent performance, both for neutral and harm-

ful variants (Bendl et al., 2014; Niroula et al., 2015; Riera et al., 2016).

To find out the false prediction rate for neutral variants, we collected

all AASs from VariSNP (release 2016-06-09) (Schaafsma & Vihinen,

2015a), a database for cases filtered from dbSNP (Sherry et al., 2001)

to not contain disease variants. The selection consisted of 26,121 vari-

ants with a minor allele frequency of 0.01 or higher, and not present

in the PON-P2 neutral training dataset. Of these, 17,667 (67.6%) vari-

ants could be predicted by PON-P2, 73.5% as neutral and 2.5% as

pathogenic. The reason for having 24.0% of variants as unknown is

at least partly because of phenotypic heterogeneity (Vihinen, 2017).

Results indicate the ratio of false pathogenic predictions tobevery low.

The investigated protein classes represent current knowledge, and

it is likely that novel proteins will be added at least to disease classes

in the future. These may slightly change the overall results but likely

not very much as all the classes are already of substantial size and

addition of a few proteins cannot largely alter the identified patterns.

Although the selected classes represent numerous different functions

and aspects of genes and proteins, they are only a sample of the entire

genome and proteome. It remains to be seen whether substantially

larger deviations from the investigated classes could be found. We do

not expect major differences as the investigated classes well repre-

sent the studied classes including the extremes: cancer proteins and

nondisease nonhousekeeping genes/proteins. Anyhow, it is important

to know the sensitivity for variations in each gene/protein category as

well as the deviations within the classes.

In the analyses of the protein categories, the percentage of pre-

dicted variants is high, over 92% (Table 1), even higher than for the

PON-P2 test dataset (86%) (Niroula et al., 2015). Predictions were

made for most of the proteins, typically for over 95% and in many

datasets for all proteins. The only exception is the NONDIS dataset

where predictions were made only for 146 out of 175 proteins (83%).

If a protein sequence is unique for human, PON-P2 cannot make pre-

dictions as these would be unreliable, due to missing the selective

pressure and sequence profile features that are based on multiple

sequence alignments of orthologous sequences. Some sequences such

as Q96L12 could not be mapped to an Ensembl reference sequence

and were discarded. The percentage of predicted variants is very high,

over 90%, except for the CARDIO set. This is due to one single pro-

tein, titin, which is the largest human protein with 34,350 residues in

the longest isoform. Because of its repetitive nature (over 200 copies

of type I and II domains), only 25.7% of the variants in this protein can

be reliably predicted.

The percentages of variants classified as unknown are found to be

around 50%–55%, the largest deviations being 62.1% for the CARDIO

set and 22.4% for the NONDIS dataset (Table 1).

The ratios of neutral and pathogenic variants are clearly different

for the protein groups. The largest number of neutral variants, 73.4%,

appears in theNONDIS group. In this group, only 4.19%of the variants

are predicted as harmful. These figures indicate the high tolerance of

proteins in this group for variations.

In the other protein groups, the highest ratios of neutral variants

appear in theHOUSE andPID proteins, 26.2% and 24.2%, respectively.

The smallest ratios of neutral variants appear in theACTIONandCAN-

CERgroups, 8.8%and9.0%, respectively. These groups are partly over-

lapping (Supp. Table S1). Of these, the CANCER group contains the

largest frequency of harmful variants, 42.1%, in line with our previous

study (Niroula & Vihinen, 2015b).

The HOUSE and PID categories have the lowest ratios of harmful

variants, 23.6% and 25.8%, respectively. The CARDIO disease group,
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F IGURE 2 Ratios of predicted variation outcomes. Distribution of the proteins over the prediction ratios (neutral/total and pathogenic/total) for
each dataset. The results for neutral variants are shown in gray bars and for pathogenic with white bars

claimed to be highly intolerant (Pan et al., 2012), has a higher degree

of harmful variants (26.4%) and a lower frequency of neutral vari-

ants (11.5%) than these two groups. This class is not especially prone

for harmful variants. There are other disease groups with significantly

larger proportions of harmful variants.

When looking at the average and median numbers of variants per

protein, we see huge differences. The median for pathogenic variants

per protein is 0 for the NONDIS proteins (average 401.58) and 6649

for the CANCER class (average 8,197.77) (Table 1).

The range in the ratios for harmful versus neutral variants is also

very wide, from 0.06 for the NONDIS group to 4.70 for the CANCER

proteins. The only groups with a close to equal ratio are HOUSE and

PID. The high ratio is expected for the CANCER class. The results indi-

cate that even in the so-called cancer driver proteins, the majority

of variants are not harmful. The percentage for unknowns is 49% for

CANCER. By far, the smallest proportion of unknown variants is in the

NONDIS group where only 22.4% of the predictions are of unknown

significance.

The unknown class contains cases that the predictor cannot sepa-

rate to either harmful or neutral. Many of these variants can have a

variable phenotype depending on the other factors including sever-

ity, extent, and modulation in case of diseases (Vihinen, 2017). As the

first application of the pathogenicity model, we recently introduced a

method for predicting disease severity of variants (Niroula & Vihinen,

2017).

The distributions of proteins to bins according to ratios of pre-

dicted harmful and neutral variants are shown in Figure 2. The CAN-

CER and NONDIS groups represent the two extremes. In CANCER,

almost 80% of the proteins have less than 10% of variants pre-

dicted to be neutral, whereas in the NONDIS group, about 60% of

the proteins contain >90% neutral variants. The HOUSE and PID

groups have the most even distributions in the bins. The percent-

ages of proteins in the bins with the largest ratios are small. The

results indicate that the protein groups are heterogeneous regard-

ing variant proportions; however, they show certain clear trends.

Results are in line with those predicted by the ExAC project (Lek

et al., 2016). They found that in total 3,230 genes are highly intoler-

ant for function destroying variants. Thirty out of 42 (71%) proteins

with a proportion of pathogenic variants >70% are among the ExAC

data.

To see whether the protein size correlates with the sensitivity, we

plotted sequence length versus ratio of pathogenicity for each pro-

tein class (Supp. Fig. S1) and studied the length distributions within

the classes (Supp. Fig. S2). No correlation was noted. When we took

into consideration the possibility that the existence of paralogous pro-

teins could contribute to the proportions of pathogenic variations, no
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F IGURE 3 Analysis of variation distribution in protein domains.
Distribution of neutral (gray), pathogenic (black), and unknown (light
gray) predictions in the nine most frequent domains in the pro-
teins. PF07679: Immunoglobulin I-set domain; PF00041: Fibronectin
type III domain; PF00084: Sushi domain; PF00400: WD domain, G-
beta repeat; PF00096: Zinc finger, C2H2 type; PF00008: EGF-like
domain; PF07645: Calcium binding EGF domain; PF00520: Ion trans-
port domain; PF00435: Spectrin repeat

statistically significant correlation was found in any class either (Supp.

Fig. S3).

3.2 Sensitivity of protein domains for variants

Next, we investigated the variants in the most frequent protein

domains in the datasets. Altogether, nine domains appeared at least 40

times in the investigated proteins (Supp. Table S2). The immunoglob-

ulin I-set domain (PF07679) is the most frequent one (189 times).

Among the nine most frequent domains, it has the lowest proportion

of neutral and pathogenic predictions together, 27.7% (Fig. 3). The

immunoglobulin I-set domain is frequent in cell adhesion proteins, but

appears also in many other types of proteins.

The domain with the highest sum of harmful and neutral vari-

ants (60.0%) is WD domain, G-beta repeat (PF00400), immediately

followed by zinc finger domain, C2H2 type (PF00096, 58.0%), and

Sushi repeat (PF00084, 56.2%). The Sushi repeat domain (SCR) has

the highest proportion of neutral predictions, 52.3%. Sushi domains

are involved in many recognition processes and so are also the I-

set, WD40, zinc finger, and calcium-binding EGF-domain, and EGF-like

domain.

The structural classifications for all domains in the investigated pro-

teinswere obtained bymapping to theCATHdatabase (Supp. Table S3;

Supp. Fig. S4).Mappings are available for 30.7%of the total length of all

sequences. Themixed alpha beta class is themost common (45.6%) fol-

lowedby themainly alpha andmainly beta classes.Only seven domains

belong to the smallest class of few secondary structures. The distribu-

tions for the predicted outcome of variants are quite similar for the

three major categories. Variants with unknown prediction are clearly

the smallest category in all the groups. The numbers in the proteins

with few secondary structures are so small that the differences cannot

be considered as statistically significant.

F IGURE 4 Distributionsof aminoacid substitutions.Aminoacid sub-
stitutions among the original and variant amino acids for those pre-
dicted to be neutral and pathogenic; ACTION dataset

3.3 Analysis of amino acids

To further investigate the types of variants among the neutral and

harmful variants, amino acid distributions for the original and variant

residues were studied. Results are shown in Figure 4 for the ACTION

class. Results for the other groups are in Supp. Figure S5. The distribu-

tions are clearly different for the neutral and harmful variants as well

as for the original residues. Results are very similar between the tested

categories.

Substitutions from S are the most frequent ones among the neu-

tral AASs (11.7%), followed by substitutions from A (9.8%), E (7.4%),

and L (8.3%). The least frequent neutral predictions are for the substi-

tutions from W (0.5%), C (1.2%), and Y (1.4%). Among the pathogenic

predictions, the substitutions from L (10.9%) are the most frequent

ones, followed by those from E (8.3%) and G (8.2%). The least frequent

pathogenic substitutions are fromW (1.5%).

Substitutions to A are the most frequent ones among the neutral

AASs (7.9%), followed by substitutions to G (6.7%), L (6.9%), and V

(7.2%). The least frequent neutral predictions are for the substitutions



SCHAAFSMA AND VIHINEN 845

to C (3.0%), P (2.1%), W (2.5%), and Y (3.0%). Among the pathogenic

predictions, the substitutions to C (6.5%) are the most frequent ones,

followed by those to D (6.1%), P (6.1%), and W (6.4%). The least

frequent pathogenic substitutions are to G (2.3%).

The figures for the variant residues show more even distributions,

especially for the harmful predictions. Substitutions to G (2.3%) are

the least frequent pathogenic predictions, whereas no clear maximum

can be found. Glycine and alanine substitutions are largely tolerated

outside functional sites as these smallest residues can be easily fitted

into structures without steric clashes and structural alterations. For all

the investigated datasets, A (7.9%), V (7.0%), G (6.7%), L (6.9%), S and

T (both 6.2%), and I (6.1%) are the amino acids with the highest num-

bers of neutral predictions. The lowest numbers of neutral predictions

are for P (2.1%) and W (2.5%). Proline has due to its special structure

a rigid backbone conformation that breaks secondary structural ele-

ments. Tryptophan has the largest side chain and is thus difficult to

accommodate to other positions than those on the protein surface.

The distributions of the predicted harmful and benign variants

are qualitatively similar to those published previously, for the 1000

Genomes project (de Beer et al., 2013), those annotated in UniProt

(Petukh, Kucukkal, & Alexov, 2015), and variants in BTK (Schaafsma &

Vihinen, 2015b).

3.4 Comparison to genic intolerance scores

Gene-specific indices have recently been introduced to describe intol-

erance for variants (Aggarwala & Voight, 2016; Itan et al., 2015; Lek

et al., 2016; Petrovski et al., 2013; Samocha et al., 2014). Although

interesting, they suffer from extremely small sample sizes, in the case

of EVP6500-based (Tennessen et al., 2012) scores on average 5.8 vari-

ants per gene, and totally on 2,835 proteins with just one single vari-

ant. For the 1000 Genomes Project, the numbers are even less (1000

Genomes Project Consortium et al., 2015), and somewhat higher for

the ExAC-based data (Lek et al., 2016). Random events are likely to

have a great effect on these indices. Another problem is that they have

not been experimentally validated unlike tolerance/pathogenicity pre-

dictors. The network-derived classes (Vinayagam et al., 2016) do not

correlate with ratios of pathogenic or neutral variants in the entire

protein set.

Results in Supp. Table S4 show only a marginal correlation with

our predictions that can be considered highly reliable due to exten-

sive benchmarking on numerous proteins (Niroula et al., 2015; Riera

et al., 2016). The highest correlation coefficient is only 0.61, between

the Aggarwala gene tolerance score and the ACTION set.

The essentiality of genes in the human genome has been investi-

gated by the genome editing approach (Blomen et al., 2015; Wang

et al., 2015). These gene sets were not investigated further here as

they largely overlap with the housekeeping genes. The HOUSE set

contains 130 essential genes mentioned by Blomen et al. (2015) and

140 essential genesmentioned byWang et al. (2015).

Saturation mutagenesis combined with high-throughput functional

assays would provide the gold standard data. However, such data

are largely missing. Further, the functional assays should describe

the cellular effect. The decreased/increased activity level required for

phenotype varies widely. One of the extreme cases is adenosine deam-

inase where enzymatic activity less than 1% is indicative of the severe

combined immunodeficiency (Arredondo-Vega, Santisteban, Daniels,

Toutain, & Hershfield, 1998). Direct predictions with PON-P2 provide

a much more reliable estimation of gene intolerance for substitutions

than the derived indices.

3.5 Chromosomal distribution

The distribution of the predicted tolerance effects over the chromo-

somes is shown in Supp. Table S5. No genes coding for the studied

proteins are located on the Y chromosome, except for P15509, which

is encoded by CSF2RA on the pseudoautosomal region 1. This pro-

tein is assigned also to the X chromosome. The percentages of neu-

tral variants range from 12.3% for chromosome 13 to 43.8% for chro-

mosome 18. The differences are smaller for the pathogenic variants,

from 19.1% (chromosome 6) to 38.9% (chromosome 15). The percent-

ages of variants predicted as unknown are from 35.4% (chromosome

18) to 57.8% (chromosome 13). Compared with the ranges of neutral

and pathogenic predictions over the datasets (Table 1, neutral 8.8%–

73.4%; pathogenic 4.2%–42.1%), the differences between the chromo-

somes are smaller than those between the protein groups. The range

of the ratios for pathogenic and neutral variants is from 0.47 (chromo-

some 18) to 2.43 (chromosome 13), this range also being smaller than

the range of ratios over the entire datasets.

In Supp. Table S6, the distribution of the studied proteins over the

chromosomes is presented.

The largest number of variants originates from proteins coded by

genes on chromosome 1, as expected since it is the largest chromo-

some and contains the largest number of coding genes. For the other

chromosomes, there seems not to be a clear pattern. The EPIL set has

the highest number of chromosomeswithout any protein coding any of

the investigated proteins, but it is also the set with the lowest number

of proteins, only 37.

3.6 Ratios of harmful and benign variants

Our results indicate that theproportionsof variants of harmful, benign,

and those of unknown significance vary widely between proteins.

Extreme examples (e.g., Q8N9V6, ankyrin repeat domain-containing

protein 53; Q9P2E3, NFX1-type zinc finger-containing protein 1;

Q5T870, proline-rich protein 9) include proteins in which no AASs

are predicted to be harmful. On the other end of the spectrum,

almost all variants are predicted to be harmful (e.g., P63146, ubiquitin-

conjugating enzymeE2B; P35222, catenin beta-1; P61586, transform-

ing protein RhoA). It is not possible to give a single number for the

variant effects as it depends on the protein and protein domain.

Previously, several attempts have been made to reveal the rate

of harmful variants based on several approaches, especially the

strength of positive and purifying selection. Fitness effects have been

calculated utilizing evolutionary information for sequence relation-

ships. Germline mutation rates have been estimated by using human

genetic disease phenotype frequencies, between species nucleotide
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divergence at putatively neutral sites, and by sequencing genomes of

relatives (Keightley, 2012).

The results from these studies indicate a wide spectrum and con-

centrate on genome and proteome wide estimates not taking the

differences between genes/proteins into account. 20% of AAS have

been presented to lead to loss of function, and up to 70% of low-

frequency AASs have been claimed to be mildly deleterious (Kryukov,

Pennacchio, & Sunyaev, 2007). Based on the recent data in the ExAC

database, 99% of the listed variants are rare and most of them are

not considered to be linked to any condition. In other studies, 15%,

29%–49%, and 48% of AASs were presented to be strongly deleteri-

ous (Boyko et al., 2008; Eyre-Walker, Woolfit, & Phelps, 2006; Subra-

manian, 2012).

The results presentedhere canbeconsideredmore reliablebecause

of the following reasons. Our results are specific for each individual

protein, not estimates over entire genomes/proteomes. The fitness-

related methods are largely based on evolutionary information, which

indeed is very important for variant tolerance predictors, such as

PON-P2. However, evolutionary information alone is not sufficient

for high-performance predictions. As assessments have shown, the

mainly or only evolutionary information-based methods like SIFT (Ng

& Henikoff, 2001), Condel (Gonzalez-Perez & Lopez-Bigas, 2011),

PROVEAN (Choi, Sims, Murphy, Miller, & Chan, 2012), and Muta-

tionAssessor (Reva, Antipin, & Sander, 2007) are far behind the state-

of-the-art tools (Bendl et al., 2014; Grimm et al., 2015; Niroula &

Vihinen, 2016; Riera et al., 2016). The successful prediction of variant

effects requires additional features todescribe thevariants and sites at

which they occur. Just as with the genic intolerancemethods, the tools

that are based on allele frequencies still suffer from relatively small

sizes of available datasets. In conclusion, the estimates of benign and

harmful variants calculated inherearemoreaccurate and realistic than

those published before.

4 CONCLUSIONS

Analysis of all possibleAASs in nine protein groups indicated that there

are big differences in the ratios of harmful, pathogenic, and unknown

variants. This information can be utilized for and should be considered

in the interpretation of variant effects. The published gene intolerance

scores do not correlate with our observations (Supp. Table S4), which

is not a surprise considering the small numbers of cases used to define

those scores.

In the disease-associated protein groups, the proportion of pre-

dictedneutral variants ranges fromaround38% for theproteins having

a neutral/total prediction ratio between 0 and 0.1 in the PID dataset to

about 80% in the CANCER dataset (Fig. 2). Interestingly, this observa-

tion does not coincide with the high pathogenic/total prediction ratio.

The NONDIS set showed quite a different pattern: the highest num-

ber of proteins (80%) had a pathogenic/total prediction ratio of 0–0.1,

where the highest number of proteins (∼68%) had a neutral predic-

tion ratio between 0.9 and 1.0. These proteins are likely not involved

in essential functions and are therefore the most tolerant for vari-

ants. The distributions of the original and variant AASs are similar for

all datasets presumably originating from the combination of PON-P2

features. Like protein classes, the frequently appearing protein

domains in the dataset show a wide spectrum of variant frequencies.

Protein structural classes do not showmajor differences for variants.

In summary, our observations indicate clear protein, protein

domain, and AAS type differences due to variants. This information is

relevant for variation interpretation and for the development of meth-

ods for that purpose.
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