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Abstract 

Hematopoiesis is defined as the ongoing production of blood cells. As most 
mature blood cells are relatively short-lived and require continuous replacement, 
hematopoiesis is characterized by an extraordinary turnover rate with production 
of trillions of new blood cells every day. To cope with the enormous proliferation 
required to generate sufficient numbers of blood cells to maintain homeostasis, the 
hematopoietic system is hierarchically organized within the bone marrow. Scarce 
hematopoietic stem cells (HCSs) reside at the top of this hierarchy. More abundant 
and increasingly developmentally restricted and proliferating progenitor cells, that 
massively amplify hematopoietic cell generation, reside further down in the 
hierarchy. HSC function is typically evaluated using transplantation experiments, 
which offers quantitative and qualitative information on their self-renewal and 
multilineage differentiation potential. In this setting, potent long-term multilineage 
contribution can be observed from even single HSCs. After transplantation of 
myeloablated hosts, HSCs are forced to proliferate extensively to rebuild the 
hematopoietic system. In sharp contrast, native HSCs display very low 
proliferation rates. Emerging data has highlighted fundamental differences 
between hematopoiesis as seen after transplantation compared to that in steady 
state. Therefore, analysis of native hematopoiesis in models that allows for 
evaluation in unperturbed settings is necessary.  

In article 1 we characterize HSC and progenitor proliferation dynamics in the 
steady state and following several types of induced stress. Whereas transplantation 
promoted sustained, long-term proliferation of HSCs, both cytokine-induced 
mobilization and acute depletion of selected blood cell lineages elicited very 
limited recruitment of HSCs to the proliferative pool. In addition, coupling of 
proliferation history with gene expression analysis on single cells led to 
identification of subtypes of HSCs that have distinct molecular signatures and 
differ drastically in their reconstitution potentials. 

The Mx1-Cre mouse strain is the most commonly used conditional gene-
knockout strain in experimental hematology. The Mx1 promoter is activated by 
endogenous interferon release that is induced by injection of 
polyinosinic:polycytidylic acid (poly I:C). However, interferon is also released as 
a part of the inflammatory response. In Article 2, we highlight pitfalls associated 
with the Mx1-Cre system. Transplantation of cells where Mx1-Cre activation is 
required for gene knockout resulted in high rates of spontaneous gene deletion. In 
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addition, poly I:C administration introduced alterations to the hematopoietic stem 
and progenitor cell (HSPC) compartment. Collectively, this study emphasize that 
proper controls are crucial when modeling gene deletion with the Mx1-Cre system. 

A model with limited HSC contribution to native hematopoiesis has been 
proposed. This is in sharp contrast to the continuous contribution of HSCs to 
hematopoiesis after transplantation. In the work leading up to article 3 we set out 
to explore HSC contribution to native hematopoiesis by evaluation of blood cell 
generation from HSCs in native adult hematopoiesis. For this we used Fgd5-
CreERT2 mediated lineage tracing, a model that can label close to 100 % of adult 
HSCs in a highly specific manner. We show that apart from blood cells with a 
known fetal origin, HSC contribution to all blood cell lineages is robust and occurs 
via a hierarchy of defined intermediate progenitor cells. Our experiments reveal 
that the time course of regeneration for distinct blood lineages varied substantially. 
Myeloerythroid cells were generated from HSCs more rapidly than lymphoid cells, 
with platelets and their corresponding progenitor cells emerging first. Therefore, 
adult HSCs are active contributors to all lineages of adult hematopoiesis in the 
steady state. 

In summary, we have highlighted features with experimental 
systems/procedures that are used in experimental hematology and have explored 
hematopoiesis and HSC biology in models that allows evaluation of unperturbed 
hematopoiesis. 
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Abbreviations 
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Background 

Maintenance of internal stability in biological systems, homeostasis, is paramount 
for preservation of life. To maintain homeostasis, organisms are structured at 
different levels. In mammals, one level of structure consists of the cooperation 
between different tissues/organs – so-called organ systems. One such organ system 
is the cardiovascular system that is responsible for the continuous circulation of 
blood to all areas of the body. The basic components of the cardiovascular system 
include the blood system (hematopoietic system), the heart and the blood vessels. 
The blood system is a highly regenerative system with distinct cell types and fluid 
plasma that together mediate a range of essential functions to the organism. For 
instance, red blood cells (erythrocytes) are responsible for oxygen transport 
throughout the body, while cell fragments called platelets (thrombocytes) are 
responsible for blood coagulation Moreover, the hematopoietic system contains 
white blood cells (leukocytes) that constitute the immune system and protect 
against foreign pathogens.  The leukocytes can be further subdivided into cells that 
are part of the innate or adaptive immune system. Innate immune cells function as 
a “first line of defense” against harmful agents [1], and include macrophages, 
neutrophils, basophils, eosinophils, natural killer (NK) cells and certain T cell 
subsets. The adaptive immune system mounts a delayed, more specific immune 
response to pathogens, and is constituted primarily of B and T cells. Due to their 
short-lived nature, most mature cells in the hematopoietic system are continuously 
replaced by newly generated blood cells in an ongoing process called 
hematopoiesis.  

The Discovery of Hematopoietic Stem Cells 

In 1658, 68 years after the invention of the microscope, red blood cells were the 
first cells to be described as components of the blood by the Dutch naturalist Jan 
Swammerdam. It took another almost 200 years before white blood cells were also 
identified in 1843 [2, 3]. Although these pioneering studies identified crucial 
components of blood, it was not until after the 2nd world war, in the 1950s, that 
hematopoietic research started to generate results that explained how blood cells 
were formed. Observations of survivors of the nuclear bombings of Hiroshima and 
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Nagasaki in 1945 revealed that despite surviving the initial explosion, many of 
them died at later time points by hematopoietic marrow failure caused by exposure 
to gamma irradiation [4]. Later studies in mice revealed that the hematopoietic 
failure could be rescued by shielding the spleen from irradiation [5] or by injection 
of spleen or bone marrow cells from non-irradiated donors [6, 7]. The discovery 
that injection of cells could save mice from irradiation induced lethality suggested 
that the bone marrow and the spleen contained proliferating cells that can generate 
blood cells, and established hematopoietic cell transplantation (HCT) as an assay 
for evaluation of the “rescue-potential” of cells. Experiments by Till and 
McCulloch identified a linear relationship between the number of transplanted 
bone marrow cells and survival of irradiated recipient mice [8]. In following 
experiments, the same researchers identified splenic nodules that contained 
proliferating cells of donor origin in recipient mice. These colonies were initiated 
by cells, referred to as colony forming unit-spleen (CFU-S), and the numbers of 
transplanted cells and CFU-S displayed a linear relationship [9]. In an elegant 
follow up study, using sub-lethal irradiation of cells prior to transplantation to 
introduce cell-specific chromosomal marking, Till and McCulloch showed that the 
vast majority of cells in individual spleen colonies stemmed from one individual 
cell and thus had a clonal origin [10]. In addition, when CFU-S cells were 
transplanted into irradiated secondary hosts they could give rise to new CFU-S 
[11], demonstrating that the initial CFU-S could self-perpetuate through a process 
called self-renewal [11]. CFU-S colonies in these experiments only contained cells 
of erythroid, megakaryocytic and myeloid lineages. However, later studies 
revealed that CFU-S also harbored lymphoid potential [12], suggesting existence 
of a common precursor cell for all hematopoietic lineages. Although CFU-S 
colonies were initially thought to be derived from hematopoietic stem cells 
(HSCs), CFU-S could not maintain hematopoiesis in the long-term and subsequent 
experiments revealed that CFU-S colonies are derived from hematopoietic 
progenitor cells (HPCs) rather than from HSCs [13]. It was not until the 1980s that 
bone marrow cells capable of generating all hematopoietic lineages for extended 
periods of time were first observed in experiments based on the same principle of 
individual genetic marking as those performed by Siminovitch et al. on CFU-S 
[11]. Donor cells were individually marked by retroviral genetic integration and 
subsequently transplanted. Identification of common genetic marks in different 
blood lineages revealed the presence of common clones with multilineage 
capacities [14-16]. Collectively, these studies strongly indicated the existence of 
cells with long-term multilineage differentiation potential and ability to self-
renew, the defining properties of HSCs (Figure 1). 

The lack of HSC-enriching markers made the study of purified HSCs 
challenging. Technological advancements, such as Fluorescence-Activated Cell 
Sorting (FACS) and generation of specific antibodies against various cell surface 
proteins have influenced experimental hematology immensely. Prospective 
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isolation of increasingly homogenous populations of hematopoietic stem and 
progenitor cells (HSPCs) has facilitated delineation of the hematopoietic system. 
Advancements of protocols for HSC identification have revealed HSCs as very 
rare cells within the bone marrow and have resulted in successful isolation of 
single HSCs capable of serial long-term multilineage reconstitution [17]. 

 
Figure 1. Defining properties of HSCs; Self-renewal ability and multilineage differentiation potential. 

Hematopoiesis 

Hematopoiesis is defined as the ongoing production of all blood cellular 
components. As most mature blood cells are relatively short-lived and require 
continuous replacement, hematopoiesis is characterized by an extraordinary 
turnover rate with production of trillions of new blood cells every day [18]. To 
cope with the enormous proliferation required to generate sufficient numbers of 
blood cells and maintain homeostasis, the hematopoietic system is hierarchically 
organized (Figure 2) within the bone marrow [19]. Scarce HCSs reside at the top 
of the hematopoietic hierarchy with increasingly abundant and proliferating 
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progenitor cells downstream in the hierarchy that massively amplify hematopoietic 
cell generation. Progress downstream in the hematopoietic hierarchy is associated 
with increasingly restricted self-renewal ability and differentiation potential.  

The adult hematopoietic hierarchy 

FACS-based isolation along with development of functional assays have generated 
increasingly detailed insights into the hematopoietic hierarchy (Figure 2) [19]. No 
single, easily accessible, marker has been identified for identification of HSCs. 
Instead, combinations of surface markers are used to prospectively isolate HSPCs. 
Adult HSCs and most early progenitors are devoid of mature lineage marker 
expression, but express the cell surface markers stem cell antigen 1 (Sca1) and the 
tyrosine kinase receptor c-kit, so called Lin-Sca1+c-kit+ (LSK) cells [20-23]. The 
frequency of HSCs within the LSK population has been estimated to 
approximately one in 30 [19]. LSK cells can be further enriched for HSCs with the 
surface markers CD34, Flt3, CD48 and CD150; HSCs being positive for CD150 
and negative for CD34, Flt3, and CD48 [17, 24, 25].  

Differentiation without cell division would quickly deplete the HSC pool. 
Therefore, HSC differentiation is thought to be accompanied by cell division. 
When HSCs divide they can either undergo a symmetric cell division, generating 
two HSCs (self-renewal; HSC amplification) or two non-HSCs (differentiation; 
HSC loss) or an asymmetric cell division generating one HSC and one 
differentiated cell. Differentiation of HSCs into multipotent progenitor (MPP) 
cells is accompanied by loss of self-renewal. Like HSCs, MPPs display low 
proliferation rates, and can be separated from HSCs by loss of CD150 expression 
and gain of CD34 expression [24, 26]. Further fractionation of MPPs has revealed 
distinct subsets that differ in proliferation rates and lineage potential [27]. 
Alternative differentiation routes have been proposed where differentiation of 
HSCs through an MPP state may not be mandatory or even the primary 
differentiation route [28]. 

Lineage commitment downstream of MPPs remains controversial. In one 
model, further differentiation involves differentiation through either a common 
myeloid progenitor (CMP) or a common lymphoid progenitor (CLP). CMPs have 
the capacity to form myeloid, megakaryocytic and erythrocyte progeny, while 
CLPs form NK, B and T cells [29, 30]. CMPs have subsequently been found to be 
a highly heterogeneous population containing several types of lineage committed 
progenitors [31]. More recently lymphoid-primed multipotent progenitors (LMPP) 
were identified as LSK cells, located downstream of MPPs, that express the CD34 
and Flt3 markers [32]. LMPPs are phenotypically highly overlapping with the later 
identified granulocyte monocyte lymphoid progenitors (GMLPs). Both subsets 
harbor myeloid and lymphoid potential but lack robust megakaryocyte and 
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erythroid (MegE) potential [33]. This suggests a common differentiation route for 
granulocytes, monocytes and lymphoid cells that is separate from MegE 
differentiation. Downstream of GMLPs, the prevailing view has been that cells 
become committed to either granulocytes-monocyte (GM) differentiation via 
preGM progenitors, or to lymphoid differentiation via CLPs. MegE cells are 
believed to be generated from HSCs and MPPs via MegE restricted preMegEs that 
can generate megakaryocyte progenitors (MkP) and erythroid progenitors (pre-
colony-forming-unit-erythroid; preCFU-E, CFU-E), that upon further maturation 
generate mature platelets or erythrocytes, respectively. 

preGM is a functionally heterogeneous population that can be further 
fractionated based on expression of the transcription factor Gata1 or by expression 
of CD55 [34]. Functional analysis of Gata1+ preGMs revealed that these cells, in 
addition to megakaryocytes and erythroid cells, had the potential to generate mast 
cells and eosinophils, two granulocytic cell types, while lacking monocyte-
macrophage capacity and harboring only limited neutrophil potential. Conversely, 
Gata1- preGMs generated monocytes and neutrophils, no mast cells and limited 
amounts of eosinophils [34]. These findings question the commonly held view that 
separation of monocyte-macrophage versus granulocyte lineages occur 
downstream of preGMs in a common granulocyte-monocyte progenitor (GMP), 
and instead suggest that the eosinophil and mast cell lineages separate from the 
monocyte-neutrophil lineages before they segregate from the MegE linages. 

Combined MegE and granulocyte (eosinophil, mast cell) potential in Gata1 
expressing preGMs challenges the suggestion of an early segregation of MegE and 
myeloid lineages, and highlights the hematopoietic hierarchy as an evolving model 
rather than a set framework portraying hematopoietic differentiation (Figure 2). 
Continuous efforts aimed at elucidating differentiation trajectories and cellular 
constituents of the hematopoietic system will likely refine this model further. 
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Figure 2. Schematic depiction of the proposed hematopoietic hierarchy and hematopoietic differentiation from HSCs. 
EoMP: Eosinophil Mast Cell progenitor, NMP: Neutrophil Monocyte progenitor. 

Hematopoietic stem cell development 

Establishment of the hematopoietic system during ontogeny is characterized by 
two distinct waves referred to as primitive and definitive hematopoiesis (Figure 3). 
In the mouse embryo, primitive hematopoiesis generates the first blood cells at 
embryonic day 7-7,5 (E7-7,5) in the extra-embryonic yolk sac [35, 36]. Primitive 
hematopoiesis is transient and generates mainly red blood cells. These are distinct 
from later-generated red blood cells by their presence of a large nucleus and an 
embryonic form of hemoglobin [37, 38]. Primitive hematopoiesis is not believed 
to produce cells that contribute to adult hematopoiesis. Following primitive 
hematopoiesis, a second wave of definitive hematopoiesis gives rise to the first 
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definitive HSCs (dHSCs), defined by their ability to self-renew and long-term 
multilineage reconstitute irradiated hosts after transplantation (Figure 3). The first 
evidence of the emergence of embryonic dHSCs came from studies of chimeric 
quail-chicken embryos [39]. dHSCs were later confirmed also in mouse embryos 
where the aorta-gonads-mesonephros (AGM) region was proposed as the site for 
de novo dHSC generation (at approximately E10,5) [40, 41]. Additional sites 
where dHSCs are generated have subsequently been suggested, including the 
placenta [42, 43], vitelline/umbilical arteries [44, 45], the embryonic head [46] and 
the yolk sac [47-49] (Figure 3). Fetal liver, which is the major site for 
hematopoiesis in the developing embryo, is seeded at E9,5 by developmentally 
restricted HPCs that generate fetal hematopoietic cells [50, 51]. However, it is not 
until E11 that the first dHSCs, capable of long- term reconstitution of irradiated 
hosts can be found within the fetal liver [41]. dHSC expand massively in the fetal 
liver during E12-E16 [52] after which they begin their migration to the bone 
marrow, where they can be found in adult mice. During the first 3-4 weeks after 
birth, bone marrow HSCs retains some fetal dHSC characteristics before switching 
to adult HSCs characteristics [53].  

 
 

Figure 3. Scheme depiciting early hematopoietic development. A wave of primitive hematopoiesis is followed by 
definitive hematopoiesis. Proposed developmental origins of dHSCs are indiciated. Hematopoietic cells seed the fetal 
liver where dHSCs expands before colonizing the bone marrow, which is the major hematopoietic organ during adult 
life. AGM. aorta-gonads-mesonephros, E: Embryonic day, dHSC: definitive hematopoietic stem cell. 
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Fetal liver dHSCs differ extensively from their counterparts in the adult bone 
marrow with regards to their surface marker phenotype and, most strikingly, their 
high proliferation rates [54]. Despite that high proliferation of adult HSCs is 
typically associated with a lower long-term reconstitution capacity, fetal HSCs 
outperform adult HSCs after transplantation. Additionally, fetal and adult HSCs 
show distinct differentiation potentials [55]. Although most mature hematopoietic 
cell types are continuously maintained by adult HSCs, some subsets are only 
generated during fetal hematopoiesis, including tissue resident macrophages such 
as Langerhans cells (skin) and microglia (brain), and lymphoid peritoneal B1a B 
cells and epidermal Vγ3δ+ T cells. Maintenance of these cells is primarily upheld 
by homeostatic proliferation in the tissues where they reside [56-60].  

Aging hematopoiesis is associated with functional impairments, such as 
increased incidence of myeloid diseases (for instance leukemia) and anemia, as 
well as decreased potential to mount adaptive immune responses [61]. A hallmark 
of hematopoiesis in aged subjects is a skewed output of mature effector cells. 
Upon transplantation of aged HSCs into young recipients, donor HSCs generate 
myeloid biased reconstitution patterns at the expense of lymphoid cell 
reconstitution [62-65]. Age-associated alterations of HSCs are believed to be 
mostly intrinsic to aged HSCs as reciprocal transplantation of young HSCs into 
aged recipients confers normal reconstitution patterns [63]. However, extrinsic 
factors regulating HSC aging have also been reported [66]. The aged 
hematopoietic system also associates with skewed frequencies of HSPCs, where 
lymphoid progenitors are severely decreased while myeloid progenitor frequencies 
are increased. The aged HSC compartment is greatly expanded and display 
impaired performance in competitive transplantation experiments compared to 
young HSCs [63, 67, 68]. Reports of transcriptional changes in old HSCs are in 
line with the observed myeloid skewing seen from aged HSCs [63, 69, 70]. 
Collectively, studies of hematopoiesis in aged subjects indicate that impairment of 
the aged hematopoietic system is primarily a consequence of cell-intrinsic, age-
associated alterations to HSCs. 

Regulation of HSCs and Hematopoiesis 

To maintain life-long hematopoiesis cells within the hematopoietic system needs 
to be able to respond to challenges and at the same time avoid exhaustion. HSCs 
are constantly faced with different fate-options including entry into cell-division, 
apoptosis or differentiation. To maintain a proper balance between available fate-
options, HSPCs and are regulated by a complex network of both intrinsic and 
extrinsic regulators that are discussed in the section below. 
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The HSC niche 

The existence of a three-dimensional local tissue-microenvironments (niche), 
located in the bone marrow where the HSCs reside, was postulated by Schofield in 
1978 [13]. For many years, technical difficulties hindered elucidation of the niche 
that maintain and regulate HSCs. However, in the last decades, dissection of 
structures and cells that regulate HSCs locally has intensified, resulting in the 
proposed existence of two distinct niches with different supportive functions; an 
endosteal niche, lining the trabecular bone that supports HSC quiescence [13, 71], 
and a perivascular niche at sinusoidal blood vessels that regulates HSC 
proliferation and differentiation [24]. Recent progress has favored a perivascular 
niche as the primary locale for adult quiescent HSCs [72-75]. HSC niches are 
constituted by multiple cell types that contribute to regulation of HSCs, including 
endothelial and mesenchymal stromal cells [24, 76] as well as megakaryocytes, 
sympathetic nerves, macrophages, osteoclasts and non-myelating Schwann cells 
(Figure 4) [24, 77-81]. Niche cells can regulate HSCs by secreting cytokines and 
growth factors. For example, osteoblasts secrete Thrombopoietin and Angiopoietin 
1 that regulate HSC quiescence and bind to HSC-expressed Thrombopoietin and 
Tie2 surface receptors, respectively [82, 83]. Endothelial cells in the perivascular 
HSC niche express stem cell factor (SCF) that signals through the c-kit tyrosine 
kinase receptor, that is expressed on all HSPCs. Genetic deletion of SCF from 
endothelial cells has been shown to deplete HSCs, whereas SCF deletion in 
hematopoietic cells had no effect on HSC function or frequency [84].  

Figure 4. Representation of various cell types that may constitute the bone marrow niche. 
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Regulation of HSCs by inflammatory signaling 

Inflammation can regulate HSCs via emerging response signals. Inflammation is 
triggered by pathogen infection or injury and is characterized by an inflammatory 
response elicited by components of the hematopoietic system. Inflammation is 
triggered by defined cytokines that have strong effects on both immune effector 
cells and HSCs. Haas et al. reported that stem cell like megakaryocytic 
progenitors, that are phenotypically similar to HSC, can effectively generate 
platelets. These cells are quiescent but primed for platelet generation and are 
activated in response to acute inflammation [85]. Interferons are inflammatory 
cytokines that are released in response to several pathogens, such as bacteria and 
viruses. Interferons have been shown to directly stimulate HSC proliferation [86-
88], while another cytokine, granulocyte colony-stimulating factor (G-CSF), 
disrupts the HSC niche and mobilizes HSCs from the bone marrow [89, 90]. HSCs 
express multiple pattern recognizing Toll-like receptors (TLR), which recognize 
pathogens directly. TLR-signaling play key roles in activation of the innate 
immune system and ligation by for example Lipopolysaccharide (LPS) to TLRs 
enhances HSPC proliferation and activate HSCs [91-93]. Chronic exposure to LPS 
or inflammatory cytokines leads to HSC exhaustion highlighted by compromised 
reconstitution after transplantation and impaired self-renewal ability [86, 94]. 

Studies of HSCs during inflammation is complicated by phenotypic alterations 
induced by inflammatory signals. For example, Ly6a, the gene encoding for the 
cell surface protein Sca1, is regulated by an interferon responsive DNA element 
resulting in increased Sca1 expression after exposure to interferons [95]. Similarly, 
c-kit expression is reduced in response to treatment with the chemotherapeutic 5-
fluorouracil (5-FU) [96]. In summary, inflammatory signaling regulates HSCs and 
can change their immunophenotype; hence, care must be taken in experiments 
with possible ongoing inflammatory signaling (discussed in article 2).  

Intrinsic regulation of hematopoiesis 

While the microenvironment is clearly important for HSC regulation, intrinsic 
genetic regulators and their interactions are also crucial determinants of HSC fate. 
Transcription factors (TFs) are proteins that control gene expression. TFs are 
instrumental in regulating HSC differentiation programs and ~50 different TFs 
have been implicated in HSC regulation directly or indirectly [97]. These include 
Stem cell leukemia/TAL1 (SCL/TAL1), which is instrumental in fetal HSC 
genesis and in adult megakaryocyte/erythroid development [98], and HOX genes, 
that in many cases are preferentially expressed in HSCs and are proposed to 
regulate HSC self-renewal [99, 100]. The HOX co-factor MEIS1 have also been 
implicated in HSC regulation, where its loss results in increased HSC cycling and 
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subsequent HSC exhaustion [101]. Many additional TFs, which are often involved 
in downstream lineage commitment, are also important for HSC maintenance, 
including C/EBPA, E2A, IKAROS, MYC and PU.1 [102-106]. Other types of 
HSC-regulators have also been identified, for example regulators of apoptosis such 
as the anti-apoptotic gene BCL2 [107, 108] and cell cycle inhibitors and their 
regulators, including the transcriptional repressors GFI1 and retinoblastoma and 
the cycline-dependent kinase inhibitors p21 and p18 [109-112]. 

Epigenetic changes are stable modifications that lead to a reshaped overall 
structure of a DNA sequence without altering the underlying DNA sequence, and 
make up another form of intrinsic regulation to HSCs. Epigenetic modifications 
include DNA methylation and various alterations to core histone proteins. 
Histones are stable proteins that form nuclear structures, which pack DNA by 
wrapping DNA stretches into units called nucleosomes. DNA methylation is 
typically associated with repression of gene expression while histone modification 
generally promote gene activation [113]. Epigenetic regulators play crucial roles in 
the regulation of HSC self-renewal and differentiation by modulating gene 
expression patterns. For example, the DNA methyltransferases DNMT3a and 
DNMT3b and the chromatin modifying polycomb repressive complex 1 and 2 
(PRC1 and PRC2) have been shown to regulate HSCs self-renewal [114-116]. In 
addition, epigenetic changes have been linked to age-associated alterations of 
HSCs [117-119] as well as to malignant hematopoiesis and leukemia [120]. 

Lineage priming 

In addition to expression of TFs and regulators that maintain HSCs, lineage 
affiliated genes that become increasingly higher expressed during differentiation 
have been found to be expressed at low levels in HSCs [121, 122]. This 
phenomena, commonly termed “lineage priming”, suggests that these cells have 
not yet committed to any specific developmental path and has been proposed to 
reflect multipotency of HSCs [123]. Studies using single-cell transplantations of 
HSCs revealed that subsets of HSCs show specific lineage biased reconstitution 
patterns that were either myeloid biased, lymphoid biased or balanced, perhaps 
reflecting transplantation of HSC clones with different lineage priming [124]. 
Reconstitution experiments, where also platelet generation was evaluated, revealed 
platelet-biased HSCs that express the platelet-lineage associated protein von 
Willebrand factor and showed a megakaryocyte-affiliated gene expression pattern 
[125]. Generally, HSCs express more myeloid and MegE associated transcripts 
compared to lymphoid associated transcripts, suggesting that the HSC 
compartment per se is naturally myeloid biased. Furthermore, Comparisons of old 
and young HSCs by single-cell RNA sequencing and clonal transplantation 
experiments have revealed a relative expansion of megakaryocyte-biased HSCs, 
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with a coinciding loss of lymphoid biased, myeloid biased and balanced HSCs 
upon aging [69]. 

Lineage development 

Several TFs and regulators that dictate specific differentiation fates of progenitors 
downstream of HSCs have been identified. PU.1 and GATA1 have been proposed 
to act as antagonists during early erythroid development where GATA1 promotes 
erythropoiesis while PU.1 stimulates myelopoiesis in multipotent progenitors 
[126]. However, the importance of GATA1-PU.1 antagonism in early myeloid 
lineage choice has been challenged, instead these TFs have been suggested to 
execute and reinforce lineage choice once made [127]. 

Maturation toward the platelet or erythroid lineages from bipotent MegE 
progenitors depends on an antagonistic TF relationship between KLF1, which 
promotes erythropoiesis, and FLI1, that promotes megakaryopoiesis [128]. 
Development into myeloid or lymphoid lineages from multipotent progenitors 
(GMLP/LMPP) depends on the magnitude of PU.1 expression, with a higher PU.1 
expression favoring myeloid differentiation [129]. Further myeloid development 
of preGMs/GMPs into macrophage or neutrophil lineages depends on PU.1 and 
C/EBPA regulation of an antagonistic relationship between GFI1 and EGR, where 
GFI1 promotes neutrophil and EGR macrophage differentiation [130, 131]. 
Lymphoid differentiation is specified in PU.1 expressing cells, that are capable of 
lymphomyeloid differentiation, and requires IKAROS expression. IKAROS is 
believed to promote GFI1 expression that in turn suppress the expression of PU.1 
and, thereby, myeloid fate [132, 133]. Further lymphoid development into B cells 
from the CLP depends on an E2A-EBF-PAX5-FOXO1 transcriptional program 
while E2A and GATA3 expression and Notch signaling support T cell 
development [134, 135].  

Hematopoietic Stem Cell Transplantation 

HCT transplantation is tremendously important both clinically and in experimental 
hematology. Historically, transplantation has been the mainstay of research on 
HSPC biology in vivo. In HCTs, prospectively isolated hematopoietic cell 
populations are most commonly transplanted by injection into the bloodstream of 
hosts that have been myeloablated with irradiation (Figure 5). Mice or humans that 
are exposed to lethal doses of irradiation succumb to hematopoietic failure caused 
by depletion of vital mature cells; for example, maintenance of sufficient levels of 
platelets is necessary to prevent internal bleedings [136]. However, transplantation 
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of non-irradiated bone marrow can save lethally irradiated animals [7]. Purified 
HSCs alone are not able to produce mature blood cells rapidly enough to ensure 
survival after lethal irradiation. Therefore, it is critical to co-transplant HPCs to 
ensure survival in the short-term. Transplantation of HSCs is however critical for 
long-term survival. Competitive transplantation measures the functional potential 
of HSCs against a set number of co-transplanted HSCs (usually whole bone 
marrow that includes both HPCs and HSCs). Long-term and multilineage 
reconstitution potential of competitively transplanted HSCs is evaluated by 
analysis of peripheral blood cell reconstitution kinetics and bone marrow 
chimerism at least 16 weeks after transplantation. Self-renewal ability of HSCs is 
evaluated in serial transplantations where bone marrow cells from primary 
recipient mice are transplanted into secondary recipients followed by HSC 
chimerism analysis (Figure 5). To distinguish donor cells from host and 
competitor cells after transplantation, congenic mice, that express CD45.1 and/or 
CD45.2 on the cell surface, are routinely used. However, only leukocytes express 
the CD45 antigen and therefore analysis of reconstitution of the platelet and 
erythrocyte lineages has most often been omitted in transplantation experiments. 
 

 
Figure 5. Schematic depicting hematopoietic stem cell transplantation followed by evaluation of the key 
characteristics of hematopoietic stem cells; durable self-renewal and long-term multilineage potential. 

Transplantation - in vivo – but non-physiological 
The transplantation procedure exposes HSCs to several non-physiological 
circumstances. Isolation of HSCs from their resident niches in the bone marrow is 
commonly followed by purification of HSCs, often involving extensive 
preparations followed by FACS. This workflow exposes HSCs to in-vitro 
mechanical handling, which is potentially destructive [137]. After isolation, cells 
are injected into the blood stream of irradiated recipient animals, where they are 
exposed to a distorted cytokine milieu caused by massive cell death and an 
inflammatory response [138]. Transplanted HSCs are next forced to circulate, exit 
circulation and migrate to their niche in the bone marrow. Only HSCs that are able 
to colonize new niches can be evaluated by transplantation. Under physiological 
conditions, HSCs are perhaps never exposed to the massive proliferation pressure 
they encounter when they are forced to rebuild the obliterated hematopoietic 
system after transplantation into irradiated recipients. Instead, their native 
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residence is in a protected environment where adult HSCs display very low 
proliferation rates [139, 140]. 

Substantial efforts have been aimed at limiting the confounding factors that pre-
conditioning confers to evaluation of HSCs in transplantation. Sub-lethal doses of 
irradiation relieve some of the stress inflicted by lethal irradiation. Mice strains 
that have defective c-kit signaling have been used as recipients of the transplanted 
graft. Such strains allow engraftment of HSCs without prior irradiation, although, 
c-kit signaling impairments in recipients introduces new confounding factors [141-
143]. Depletion of HSCs, by antibodies or restricting dietary valine, has also been 
proposed as possible strategies to allow engraftment without prior irradiation [144-
147]. 

Post- vs. Pre-transplantation hematopoiesis 
Methods utilizing in vivo labeling of hematopoietic cells that do not rely on 
transplantation have recently been adopted and developed for analysis of 
hematopoiesis in native conditions (see chapters on lineage tracing and 
proliferation assays, pages 33-39). For example, histone labeling allows for long-
term tracking of proliferation history in HSPCs by evaluation of cell-division 
dependent dilution of label, while lineage tracing in native conditions have begun 
to resolve HSC contributions to native hematopoiesis. 

Single HSC transplantation experiments have exposed substantial heterogeneity 
in the HSC pool [124, 148-151] and transplantations of individually “barcoded” 
HSCs have allowed analysis of many HSC-reconstitution patterns simultaneously 
in the same recipient [152, 153]. Such experiments have revealed oligoclonal HSC 
contribution to post-transplantation hematopoiesis, with low numbers of 
contributing HSCs at any given time point. In sharp contrast, lineage tracing and 
evaluation of lineage relationships and kinetics of cell generation in an 
unperturbed hematopoietic hierarchy has revealed that native blood production is 
highly polyclonal, with many thousands of clones contributing simultaneously 
[154, 155]. In article 1, we show that transplantation/reconstitution alters HSC 
behavior long-term after reconstitution of the blood system. This suggests that the 
underlying behavior of transplanted HSPCs is altered even after normal blood-
values are restored, perhaps permanently. Collectively, fundamental differences of 
hematopoiesis post- and pre-transplantation highlight a need for analysis of 
hematopoiesis in models that allows for evaluation in unperturbed settings. 

The Cre/loxP System 

The mouse is a powerful experimental model in medical research. Reasons for this 
includes the ability to introduce a DNA sequence (so called transgene) into a 
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specific site in the germline genome of mice. This has traditionally been done by 
homologous recombination and is called gene targeting. Gene deletion/disruption 
(knockout) is one outcome of gene targeting. Here, a gene is made non-active 
because of mutation or deletion, allowing examination of phenotypes resulting 
from knockout of the target gene. Gene knock-in is another outcome of gene 
targeting; here, an endogenous DNA-sequence (e.g. gene) is replaced with a 
transgene that is inserted into the genome. Knock-in of reporter genes in various 
loci has generated models that allow monitoring of where and when genes of 
interest are expressed. A further developed form of gene knockout is conditional 
knockout. With this technique, specific genes can be targeted at specific times 
rather than being deleted in cells from the beginning of life. 

Cre/loxP recombination 
Cre recombinase (Cre)/loxP recombination is an experimental system that is 
frequently used in biomedical research as it enables conditional activation or 
deletion of specific genes at precise time points and/or in specific cells/tissues. Cre 
is a site-specific recombinase enzyme derived from the bacteriophage P1. The Cre 
enzyme recognizes distinct short DNA sequences, called loxP-sites, between 
which it recombines DNA segments (so-called “floxed” regions). Recombination 
leads to inversion or deletion of the floxed DNA segment depending on the 
orientation of the loxP sites (Figure 6). Cre expression is driven by a promoter, 
which initiates transcription of Cre in all cells where the promoter is active. This 
allows targeting of Cre to specific cells/tissues by selection of a Cre-promoter that 
is active in the cell type of interest. The Cre/loxP system was originally developed 
and used in yeast and mammalian cell lines [156, 157] before it was adopted for 
use in transgenic mouse models [158, 159], with Cre expressed from cell type 
specific promoters [160, 161]. 

Figure 6. Cre/loxP recombination leading to deletion of a floxed gene. 
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Even though Cre/LoxP recombination deletes (or inverts) the DNA sequence 
between loxP sites, strategies have been developed that allows activation of gene 
expression by Cre-mediated recombination [162, 163]. In the most widespread 
strategy, a STOP cassette that is flanked by loxP sites (often referred to as a lox-
STOP-lox or LSL cassette) is deleted by recombination, thereby ceasing 
transcription inhibition of a target gene. The transgene that harbor the LSL cassette 
antecedently to the target gene is commonly targeted to the ubiquitously expressed 
ROSA26 locus, conferring expression of the target gene in all cells where Cre 
excises the STOP cassette (Figure 7).  

 

 

Figure 7. Cre/loxP recombination, leading to deletion of a lox-STOP-lox cassette that hinder expression of a reporter 
protein by a CAG promoter from the ROSA26 locus. 

Continuous expression of Cre, without temporal control of recombinase activity, 
precludes studies of gene knockouts that present embryonically lethal phenotypes. 
In addition, Cre activity through ontogeny can generate unwanted, complex 
phenotypes, resulting from secondary compensatory effects to gene-deletion in 
early development. This can make interpretations of adult knockout phenotypes 
difficult. To overcome such issues, Klaus Rajewsky’s group developed transgenic 
mice where expression of Cre could be conditionally activated at a given time 
during ontogeny [164]. In the generated mouse-strain, expression of a Cre 
transgene is controlled by the inducible Mx1-promoter (Mx1-Cre mice) that is 
involved in defense against viral infections. Expression from the Mx1-promoter is 
silent in healthy mice but can be transiently activated to high levels of 
transcription upon exposure to high levels of interferon α or β (Figure 8) [165].  
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Figure 8. Schematic illustration over the Mx1-Cre/loxP system. Endogenous interferon production is induced by 
injection of Poly I:C. The Mx1-promoter is activated by interferon and drives expression of Cre recombinase that 
recombines between loxP sites leading to deletion of a floxed gene. 

Further development of inducible forms of Cre has addressed issues with 
promiscuous “leaky” expression from the Mx1-promoter and has enabled stricter 
temporal control over the recombinase activity then can be achieved with the Mx1-
Cre system. One commonly used, inducible, form of Cre is a chimeric protein 
where Cre recombinase is fused with the ligand-binding domain of the estrogen 
receptor (ER) [166]. The CreER chimeric protein is retained in the cytoplasm until 
Tamoxifen ([TAM] or its metabolite 4-OH TAM) binds to the receptor part of 
CreER. 4-OH TAM binding allows translocation of CreER to the nucleus where 
Cre can recombine between loxP sites (Figure 9). CreERT2 is a more recently 
modified form of CreER that is extra sensitive to exogenously administrated TAM 
but is insensitive to endogenous estrogen [167].  
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Figure 9. Schematic illustration over CreER mediated recombination. CreER is expressed in all cells where its 
promoter is active but can only enter the nucleus and recombine after binding to 4-OH Tamoxifen. Therefore 
recombination activity is conditional and can be controlled by administration of Tamoxifen. 

Studying Native Hematopoiesis 

Studies of native and perturbed hematopoiesis are necessary for establishing how 
and why hematopoiesis is altered after challenge. Hematopoietic challenges 
include hematological malignancies like anemia and leukemia, as well as 
infections and clinical treatments, such as cytokine induced HSPC mobilization, 
chemotherapy, irradiation and transplantation, and combinations of these 
regimens. It is clear that hematopoiesis is disrupted by several of these 
states/treatments. However, the mechanisms for regeneration of hematopoiesis and 
niches after injury are largely unknown. In addition, much of the knowledge 
gained from experimental hematology is derived from transplantation experiments. 
Generation of long-term multilineage progeny exclusively from HSCs after 
transplantation has argued for a critically important role of HSCs in maintenance 
of homeostasis of the hematopoietic system. However, fundamental differences 
between post- and pre-transplantation prompt investigation of hematopoiesis in 
more unperturbed conditions. Development of transgenic approaches that allows 
dissection of unperturbed hematopoiesis has generated insights into how the 
hematopoietic system is maintained and has led to re-examination of a critical role 
for HSCs in maintenance of adult hematopoiesis [154, 155, 168]. 
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Proliferation assays 

Most adult HSCs reside in a quiescent state. Upon differentiation HSCs enter HPC 
stages that are characterized by extensive proliferation [169]. Proliferative status is 
correlated with functional capacity of HSCs after transplantation, where cycling 
HSCs display impaired reconstitution potentials [170]. However, it is possible that 
analysis of adult HSCs in active cell cycle is selecting for HSCs that initiated 
differentiation and thus have lost key HSC properties [171]. In addition, cell cycle 
analysis only gives a snapshot illustration of the fraction of cells that reside in 
different cell cycle phases at the time of analysis. Therefore, evaluation of 
proliferation history should be advantageous for studies aimed at elucidating a 
possible link between proliferation and HSC potential. 

Bromodeoxyuridine (BrdU) is a thymidine analogue that has been extensively 
used for detection of proliferating cells. Analysis of incorporation of BrdU in 
DNA [172, 173] or dilution of BrdU after DNA-labeling [139, 174] can be used to 
evaluate proliferation history in HSCs both short- and long-term. Generally, 
results from such investigations have supported low proliferation rates of HSCs. 
Detection of BrdU in cells is however incompatible with prospective isolation of 
viable cells as it requires fixation of cells prior to analysis. This together with 
reports of BrdU-induced toxicity that directly affects proliferation [139, 175, 176] 
has highlighted the need for further development of proliferation-quantification 
tools. 

Labeling techniques that allow for prospective isolation of viable cells after 
label-evaluation has been developed [177, 178]. In an approach published by 
Takizawa et al., LSK cells were labeled with the cell-memebrane permeable 
fluorescent dye carboxyfluorescein succinimidyl ester (CFSE) resulting in stable 
labeling due to intracellular coupling of CFSE to lysine residues. In this approach 
cells are labeled in vitro, prior to transplantation into non-conditioned recipient 
mice [177]. CFSE label is subsequently diluted between daughter cells upon cell 
division and CFSE label retention can thus be used for discrimination of cells 
based on their divisional history (Figure 10). The in vitro labeling of cells 
associated with this method does however preclude investigations of cellular 
proliferation of cells at steady state conditions. To overcome such obstacles, in 
vivo biotin labeling was developed as a method that allows for investigation of 
cellular proliferative history in steady state [178]. 

Biotin labels surface membrane proteins and is diluted upon division, but allows 
for labeling without isolating cells ex vivo and preserves cell viability. Biotin 
labeling does however suffer from poor resolution due to non-proliferation-
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associated label dilution and is therefore not suitable for evaluation of proliferation 
in long-term experiments [178].  

Histone-2B Labeling 
Recent development of transgenic mouse models that transiently express 
fluorescent protein-coupled Histone-2B (H2B) has facilitated more reliable 
evaluations of long-term steady state proliferation history [179-181]. Natural and 
modified H2B proteins are very stable, allowing for long-term tracking of label 
retention. After a labeling period, when labeled H2B proteins are produced and 
incorporated into nucleosomes, a chase period is initiated when no more H2B 
labeled protein is produced. During the chase period, H2B label is divided 
between daughter cells upon cell division and the level of label retention is 
therefore correlated to the proliferative history of the cell (Figure 10). 

 

 
Figure 10. Schematic outline depicting the principle of H2B-label dilution. Cells are labeled during a labeling period. 
During a following chase period label is divided among daughter cells, and thereby diluted, upon cell division. 

 Both Tetracycline (Tet)-ON [182] and Tet-OFF [139, 171] H2B labeling 
systems have been adapted for use in mice. In Tet-OFF systems H2B labeling is 
continuous until Tetracycline (or a Tetracycline derivate like Doxycycline [DOX]) 
is administrated, whereas in Tet-ON systems H2B labeling is induced (ON) only 
when DOX is administrated. Which cells that are H2B labeled is decided by the 
promoter/locus that controls labeling. Both ubiquitous (ROSA26) and HSPC-
specific models have been used for H2B-labeling, however, so far, no HSC-
specific system. 

Despite reports of transgene expression “leakage” in a H2B Tet-OFF system 
[183] evaluations of label retention in Tet-ON and Tet-OFF systems have 
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generated similar results in regard to HSC proliferation [139, 182]. Multiple 
reports on proliferation after H2B labeling have now confirmed that HSCs are 
slowly dividing cells in steady state [139, 140], in addition, it has been established 
that also immature multipotent progenitor cells are slowly dividing [27, 140]. 

Further studies of H2B-label retention has revealed sex specific proliferation 
rates in HSPCs that are dependent on sex hormones [184] and proliferation history 
has been correlated with HSC surface phenotypes and reconstitution potentials 
[171]. Recently Bernitz et al. used a HSPC-selective Tet-OFF labeling system to 
evaluate very long-term divisional history in adult and aged HSCs [185]. From 
these experiments, it was concluded that HSCs can count and remember their self-
renewal divisions, however, no mechanism for how this is achieved was presented. 

H2B-labeling has several advantages over previously used assays for evaluation 
of proliferation. This system allows labeling without perturbation to the 
hematopoietic system and, importantly, enables prospective isolation of cells 
based on proliferation history. Collectively this has made evaluation of H2B-label 
retention the new standard for the study of proliferation in mice. 

Lineage tracing 

In lineage tracing techniques, single cells are labeled with heritable marks that are 
passed on to their progeny and can thus be used to evaluate common origins of 
generated cells. Lineage tracing can be used to evaluate for example proliferation 
kinetics and progeny founder (Figure 11). Lineage tracing has classically been 
used to study development and embryonic origin of various tissues and cell types, 
but is being increasingly applied for adult stem cell research.  

 

 
Figure 11. Schematic depiction of the principle of label tracing. Cells are labeled with heritable marks that are passed 
on to their progeny. Contribution of an initially labeled population of cells to distinct cell types can be followed over 
time. 
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The first lineage tracing studies were performed at the turn of the 18th century 
by direct observation of cells under a microscope. Developmental biologists 
studied lineage relationships in leech and nematode embryos by light microscopy 
culminating in determination of the fate of every cell in the C. elegans embryo 
[186]. Lineage tracing by direct observations is only possible in species with few 
cells or in transparent embryos that are accessible. When direct observation of 
cells is not possible lineage tracing requires labeling of cells in a way that ensures 
that the label is transmitted to all progeny of a labeled cell. This results in 
progression of label from the originally marked cells to their descendants (Figure 
11). Developmental biologists have studied neural development in chicken and 
frog embryos with use of lipid soluble dyes that label the cell membrane [187, 
188] and DNA or histone label that is divided among daughter cells upon cell 
division has been used to track the fate of progeny from infrequently dividing stem 
cell populations [180, 189, 190]. 

Genetic labeling 
In recent years, genetic marking of cells has become a common practice for 
lineage tracing studies. In one early study of HSC fate after transplantation into 
irradiated recipient mice Lemischka et al. genetically marked cells using a c-myc 
retroviral vector [16]. Transplantation of cells from one embryo or animal to 
another is one form of lineage tracing that presents many options for 
distinguishing between host and donor cells and therefore allows fate mapping of 
transplanted cells. However, a major disadvantage is that cells may not behave the 
same after transplantation as in homeostasis (see discussion in chapter on 
transplantation, pages 26-28) [140, 154, 191]. 

In hematopoietic research, the Cre/loxP system is the most commonly used 
method for labeling cells for lineage tracing. A variety of mouse strains where Cre 
is expressed from different promoters have been used to visualize distinct mature 
hematopoietic cell types and for fate mapping in specific cell lineages. Most of 
these strains are based on constitutive expression of Cre under control of a 
promoter that display a lineage restricted expression pattern [192-195]. Several 
Cre strains that mark progenitors downstream of HSCs have proven useful for 
elucidation of the in-vivo differentiation potential of the targeted progenitors. For 
example, IL7ra-Cre mice allowed investigation of development downstream of the 
IL7ra expressing CLP [196]. Boyer et al. generated an Flt3-Cre lineage tracing 
mouse model where CLPs and more immature progenitors just downstream of 
HSC are efficiently labeled. In this strain Flt3-Cre labeled cells in all lymphoid 
and myeloid lineages suggesting that development of all hematopoietic cell types 
involves progression through an Flt3 expressing progenitor [197]. 

Label tracing studies have been used to elucidate when and where HSCs emerge 
in a developing embryo. Using a model where an enhancer of SCL that is 
responsible for SCL expression within early HPCs where used to drive CreER 
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expression, Göthert et al. pulse labeled E10,5-E11,5 embryos and found labeling 
of adult HSCs, implying that adult HSCs originate from an embryonic stage [198]. 
Similarly, Samokhvalov et al. labeled embryonic Runx1 expressing cells before 
onset of circulation to show that Runx1 is essential for the emergence of HSCs and 
that its expression at E7,5 is limited to the yolk sac [49, 199]. These cells were 
later shown to give rise to both primitive and definitive hematopoiesis in the fetal 
liver. Additionally, approximately 10 % of adult HSCs were labeled in this model, 
suggesting that the yolk sac can contribute substantially to definitive 
hematopoiesis [49]. 

Multicolor reporters 
Lineage tracing with multicolor reporter constructs was pioneered with the 
development of the “Brainbow” construct [200]. In this system, recombination at 
multiple loxP sites enables combinatorial expression of multiple fluorescent 
proteins. Multicolor reporter models are useful for lineage tracing in solid tissues, 
because the underlying tissue-architecture can be preserved while clonal 
composition is observed by microscopy. In a further developed Brainbow system 
(Brainbow 2.1), cells are stochastically labeled with one of four possible 
fluorophores. The Brainbow 2.1 system was used in the “Confetti mouse” to 
investigate stem cell-derived clones within the intestinal crypt [201]. Brainbow 
technology was also applied in a recent study aimed at dissecting the clonal 
dynamics in hematopoiesis and the associated epigenetic memory in HSC clones 
[202]. In this work, a “HUe” mouse model with approximately 20 tandemly 
integrated fluorescent reporter cassettes was generated. After recombination, 
stochastic expression of one out of 4 possible fluorescent proteins from each 
cassette can in theory generate 103 distinct color combinations, which was 
proposed to allow for assessment of individually labeled clones. However, in mice 
where multiple clones are actively contributing to hematopoiesis, identification of 
cells that constitute clones is dependent on flow cytometric analysis of 
simultaneous expression of multiple fluorescent proteins that will be expressed at 
different levels and have overlapping emission spectra. Based on these concerns, it 
is difficult to envision the exactness in the system, thereby raising concerns of the 
resolution that can be achieved in the HUe system. Analysis of clonal dynamics in 
this model suggested that native hematopoiesis is composed of a few major clones 
that persist and additional clones that emerge, disappear or expand. Furthermore, 
as labeling in the HUe system is ubiquitous, it precludes direct investigations of 
HSCs and their contributions without transplantation. 

HSC lineage tracing 
Evaluation of labeled cells at different time points after labeling can be used to 
estimate label progression from the initially labeled cells into their progeny 
(Figure 11). From such data, it is possible to estimate generation kinetics and 
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contribution to distinct cell types. Analysis of label progression in adult mice is 
preferably done after inducible labeling, where the initial labeling of cells can be 
controlled. Models with constitutive Cre expression are therefore less suitable for 
analysis of dynamics of hematopoiesis. In addition, constitutively active Cre 
strains that label only adult HSCs have been unavailable. Hence, lineage tracing 
studies from HSCs have used inducible labeling of HSCs by various versions of 
CreER. 

Tie2 is a transmembrane tyrosine-protein kinase receptor that is expressed in 
both adult and embryonic HSCs. Taking advantage of the HSC specificity, Busch 
et al. used the Tie2 locus to drive inducible expression of a modified form of 
CreER (MerCreMer) in a reporter mouse strain [155]. Differentiation monitoring 
after HSC labeling revealed striking differences between fetal and adult HSC 
contribution to hematopoiesis. Downstream label progression from fetal liver 
HSCs was very rapid, reaching an almost complete label-equilibrium between 
HSCs and HPCs and mature blood cells at one week after birth, revealing robust 
generation of all investigated hematopoietic cell types by fetal HSCs. In sharp 
contrast, label progression from adult HSCs into their proposed progeny was 
extraordinarily slow. Label progression from adult HSCs was however increased 
after perturbation of hematopoiesis by injection of the cytostatic 5-FU, that kills 
dividing cells and causes transient leukopenia in the blood. From these results, it 
was concluded that adult HSCs are only rarely active in unperturbed 
hematopoiesis but can be activated by hematopoietic stress. 

Direct comparisons of label progression between fetal and adult HSCs after 
Tie2MerCreMer labeling is not straightforward as the frequency of initially labeled 
HSCs are very different in fetal and adult HSCs. After in utero TAM injection, at 
E10,5, on average 25 % of fetal HSCs were labeled, while multiple TAM 
injections in adult mice labeled less than 1 % of the HSC pool. Very low labeling 
of adult HSCs could make label tracing in adult mice unreliable as a very low 
frequency of initially labeled HSCs may aggravate or preclude evaluation of label 
progression into certain cell types because the fraction of labeled cells is too low 
for reliable evaluation. More importantly, initial labeling of a small fraction of 
HSCs is potentially the result of biased labeling of a subset of HSCs. Label tracing 
after biased HSC labeling will reflect the behavior of the labeled subset of HSCs, 
which may not reflect the general behavior of the HSC pool. These considerations 
need to be taken into account when the results discussed above are evaluated 
[155]. 

A recent lineage tracing study by Sawai et al. evaluated steady state dynamics 
of adult HSC contribution to hematopoiesis using a Pdzk1ip1-CreER mouse model 
to specifically label HSC [203]. By sampling of serial bone marrow biopsies, the 
authors revealed an expansion of the initially 30 % labeled HSC fraction over 
time, and concluded that a subset of HSCs that self-renew more than the average 
HSC pool are labeled by Pdzk1ip1-CreER. Robust label progression was noted 
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into all investigated peripheral blood and HPC populations. In contrast, cell types 
that are thought to emerge during embryonic hematopoiesis, like B1a B cells, 
brain microglia and Langerhans cells, harbored only minor fractions of labeled 
cells confirming their primarily fetal origin. Finally, Sawai et al. proposed that 
adult HSCs continuously contribute to all hematopoietic cell lineages in steady 
state. This conclusion seems incompatible with the conclusions from Busch et al. 
[155]. However, the observed differences could very well be explained by labeling 
of distinct HSC subsets. 

A novel mouse model that allows fate mapping after clonal labeling of cells in-
situ was recently developed in Fernando Camargo’s lab [154]. In this system, 
inducible mobilization followed by genome reintegration of a transposone 
generates heritable, cell-specific, DNA “scars” that can be utilized as cell-specific 
barcodes. This system is driven by the ROSA26 locus, hence, both differentiated 
and immature hematopoietic cells are barcoded. When the clonal composition in 
mature peripheral blood cells was monitored over time, granulocyte production 
was revealed to be highly polyclonal and originate from distinct sets of progenitors 
that are successively activated to generate granulocytes. Comparison of clonal 
compositions between blood lineages revealed only a few granulocyte clones that 
were present in multiple lineages. Instead, most clones were detectable only at one 
sampling time point. When barcodes in HSPCs and previously analyzed blood 
cells were compared, surprisingly few overlapping tags were detected in HSCs and 
mature blood cells or HPCs. In contrast, multipotent progenitor cells readily 
shared tags with myeloid progenitors and mature blood cells. This generated the 
conclusion that HSC contribute only sparsely to granulopoiesis in unperturbed 
hematopoiesis; rather, successive recruitment of thousands of lineage-restricted 
and multipotent clones drive hematopoiesis. The conclusion from the work of Sun 
et al. has been challenged and potential caveats of this experimental approach, like 
“leaky” secondary transposone mobilization and detection of false positive 
integration sites have been pointed out [203]. 
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Articles 

Article 1 

Mitotic History Reveals Distinct Stem Cell Populations and Their 
Contributions to Hematopoiesis. 
Petter Säwén, Stefan Lang, Pankaj Mandal, Derrick J. Rossi, Shamit Soneji, David 
Bryder 
Cell Rep. 2016 Mar 29;14(12):2809-18 

Background to Article 1 

Most mature hematopoietic cells are short-lived cells in need of continuous 
replenishment during an individual’s lifetime. The hematopoietic system is 
therefore characterized by high cellular output and vigorous proliferation. This 
proliferation capacity is utilized in clinical HCT. For such, HSPCs are commonly 
harvested from the peripheral blood of donors following cytokine-induced 
mobilization of HSPCs from the bone marrow. Harvested HSPCs are subsequently 
transplanted into patients that have been preconditioned with chemotherapy and/or 
irradiation. HCTs are tremendously important in the treatment of many blood cell 
malignancies, including leukemia. Little is however known about potential long-
term adverse effects on hematopoiesis derived from mobilization of cells from the 
bone marrow or from the extensive proliferation that is required by the 
transplanted graft to rebuild the hematopoietic system. To evaluate such effects 
evaluations of HSCs and hematopoiesis with non-invasive methods is necessary 
(See chapter on studying native hematopoiesis, pages 32-39). 

The first experiments that linked proliferation activity to HSC potency revealed 
that actively cycling cells (identified by a high DNA content) in HSC enriched 
Lineage marker negative and Sca1+ (L-S+) adult bone marrow possess lower 
reconstitution capacities compared to non-cycling cells [170]. Competitive 
transplantation experiments of LSK cells at different cell cycle phases confirmed 
that adult HSCs typically reside in the G0/G1 phase of the cell cycle [172, 204] 
with a sharp reduction in reconstitution capacity when recruited to active cycling 
[204-206].  
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Development of assays where proliferation history can be followed without 
disruption of cells has facilitated studies of HSC proliferation in the steady state 
(see chapter on proliferation assays, pages 33-35). By combining results from 
long-term H2B-GFP and BrdU label retention studies with computational 
modeling, Wilson et al. concluded that in the steady state about 20 % of HSCs are 
deeply dormant, dividing only approximately 5 times over the lifetime of a mouse 
[139]. Furthermore, this study reported that dormant HSCs could be reversibly 
activated into cell cycle upon exposure of hematopoietic stressors, such as 5-FU 
treatment, G-CSF mobilization or exposure to BrdU. Foudi et al. also 
demonstrated, using a Tet-ON H2B labeling model, that HSCs divide very 
infrequently and that the most potent reconstituting HSCs are confined to the most 
dormant HSCs [182]. 

HSCs are most commonly identified by complex multi-parameter flow 
cytometry. Refinements of HSC identification-strategies has been ongoing for 
decades and has allowed study of increasingly pure populations of HSCs. Isolation 
based on high H2B label retention can substantially enrich for primitive HSCs in 
mouse bone marrow but cannot be used alone to identify HSCs [182]. Despite 
substantial efforts for purification of HSCs phenotypically equivalent prospective 
HSCs show heterogeneous behavior with purities of sorted HSCs typically under 
50 % [17, 24, 28, 124, 150, 151, 153, 207].  

Single-cell index sorting has made it possible to review the full flow cytometry 
phenotypes of individually sorted cells [208]. This knowledge allows prospective 
correlation of differences in surface marker expression, and combinations of such, 
with functional and transcriptional single-cell data. Index sorting can be used to 
refine existing isolation protocols for hematopoietic cell types and has revealed 
gating strategies that enhance existing HSC purification protocols further [207]. In 
article 1 we combine analysis of proliferation history with index sorting and 
single-cell gene expression to dissect HSC heterogeneity and identify HSC subsets 
with distinct potentials. 

Summary of Article 1 

In this study, we explored proliferation dynamics of HSPCs in steady state and 
after exposure to various stressors to the hematopoietic system by use of a DOX-
inducible Tet-ON Histone-2B-mCherry (H2B-mCherry) mouse model. 
Establishment of this model revealed high, homogenous, labeling of HSPCs after a 
labeling period, when DOX was administrated, of one week. Previous reports of 
fast proliferation kinetics among myeloid progenitors were confirmed in analysis 
of H2B-mCherry label retention one week after the end of the labeling period 
(chase) (Figure 10) [169]. Further evaluations of label retention after longer 
periods of chase (up to 56 weeks) confirmed low proliferation rates of HSCs in 
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steady state [139, 182]. Interestingly, MPPs, believed to be located immediately 
downstream of HSCs in the hematopoietic hierarchy (Figure 2), exhibited label 
retention levels comparable to those seen in HSCs. In contrast, GMLPs showed 
faster proliferation kinetics than HSC or MPPs, which was further elevated in 16 
months old mice, while HSCs and MPP proliferation was not significantly 
increased in aged mice. 

Following establishment of steady state proliferation dynamics among HSPCs 
we moved on to investigate effects of hematopoietic stressors on HSPC 
proliferation behavior. To investigate how HSC proliferation is affected by 
transplantation we transplanted bone marrow from H2B-mCherry mice into 
lethally irradiated wild type recipients. After reconstitution of the blood system, 
donor derived cells were labeled and label retention in donor HSCs was 
subsequently analyzed after a chase period. Although recipient mice had regained 
normal and stable peripheral blood values at the time of H2B-mCherry labeling, 
proliferation kinetics of HSCs were elevated up to 4-5 months post transplantation. 
In addition, the increased proliferation rate of HSCs was further enhanced upon 
serial transplantation. 

Mobilization has been suggested to be interlinked with HSPC proliferation 
[204]. Therefore, we set out to study proliferation kinetics in HSPCs after 
cyclophosphamide/G-CSF-induced mobilization. HSPCs were successfully 
mobilized from the bone marrow of previously H2B-mCherry labeled mice, 
resulting in an almost complete depletion of MPPs from both the spleen and the 
bone marrow. Label retention analysis in mobilized mice revealed increased 
proliferation of both splenic and bone marrow HSPCs. Next, we investigated the 
effects of selective depletion and subsequent recovery of mature blood cells on 
proliferation kinetics of HSPCs. By injections of cell-depleting antibodies, 
directed specifically against mature B or myeloid cells, we successfully depleted 
cells of the respective lineages from the peripheral blood in previously labeled 
mice. Label retention analysis revealed no alterations to HSPC proliferation 
kinetics after B-cell depletion, whereas depletion of Gr1+ myeloid cells increased 
the proliferation kinetics of MPPs and GMLPs while proliferation in HSCs was 
unaffected. 

As a last part of this study we explored whether information on the proliferative 
history of HSCs can be correlated to identifiable gene expression signatures. 
HSCs, retaining heterogeneous levels of H2B-mCherry, were index sorted from   
mice after two or five weeks of chase. Multiplexed single-cell gene expression 
analysis was subsequently performed on a panel of genes including hematopoiesis-
related TFs, cytokine receptors, cell surface markers and cell-cycle-related genes. 
Clustering of HSCs with similar gene expression profiles identified 4 distinct 
groups of HSCs. H2B-mCherry label retention values were next probed to all 
HSCs. This revealed that gene expression could be linked to proliferative history. 
HSCs that had proliferated the least generally displayed a more primitive gene 
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expression signature compared to HSCs with higher proliferation kinetics. 
Furthermore, index markers revealed apparent differential expression of both Sca1 
and c-kit between groups. HSCs that had proliferated the most displayed higher 
values of c-kit and lower values of Sca1 surface expression compared to remaining 
HSCs. In contrast, HSCs in the least proliferative group demonstrated the lowest 
c-kit levels. Differential expression of Sca1 and c-kit cell surface markers between 
molecularly distinct HSC groups allowed us to compare these groups functionally 
by prospective isolation followed by transplantation into lethally irradiated hosts. 
Peripheral blood reconstitution analysis revealed that the identified HSC subsets 
displayed distinct reconstitution potentials. Sca1low HSCs generated virtually no 
long-term reconstitution, whereas Sca1high HSCs showed robust peripheral blood 
reconstitution with Sca1highc-kitlow HSCs, representing the most slowly dividing 
HSCs, demonstrating the highest reconstitution capacity.  

In summary, this study established an H2B-mCherry labeling mouse model that 
allows for evaluation of steady state proliferation history. This model was utilized 
for evaluation of the effect of various hematopoietic stressors on HSPC 
proliferation. We show that milder stressors enforce proliferation of MPPs rather 
than HSCs, and conclude that transplantation enforces increased HSC proliferation 
even after reestablishment of “normal” hematopoiesis. Furthermore, HSC 
divisional history was linked to distinct surface marker expression patterns, 
reconstitution potentials, and gene expression profiles. 

Article 2 

Potential Pitfalls of the Mx1-Cre System: Implications for Experimental 
Modeling of Normal and Malignant Hematopoiesis. 
Velasco-Hernandez T, Säwén P, Bryder D, Cammenga J. 
Stem Cell Reports. 2016 Jul 12;7(1):11-8. doi: 10.1016/j.stemcr.2016.06.002.  

Background to Article 2 

Cre/loxP recombination is commonly used for generation of gene knockouts. 
When temporal control over gene deletion is necessary the conditionally inducible 
Mx1-Cre system is frequently used (see chapter on the Cre/loxP system pages 28-
32). In Mx1-Cre mice, Cre is expressed after interferon binding of the Mx1-
promoter. Interferon release is usually induced by injection of the synthetic RNA-
analog poly I:C that induces a strong interferon response when administered to 
mice (Figure 8) [209]. Interferon induction has been suggested to trigger HSC 
cycling [86, 88] and introduce phenotypic alterations to HSPCs [86]. Endogenous 
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interferon production can activate the Mx1 promoter in the absence of poly I:C 
injection, explaining reports of approximately 10 % spontaneous gene deletion in 
spleens of non-treated Mx1-Cre-driven knockout mice [164]. 

In experimental hematology, transplantation of bone marrow cells from Mx1-
Cre knockout models is performed for evaluation of effects from gene-deletion 
only in the hematopoietic system. This is achieved by letting transplanted bone 
marrow cells reconstitute the irradiation-ablated blood system before inducing 
gene knockout by administration of poly I:C. However, irradiation causes 
extensive cell death and is accompanied by massive release of inflammatory 
cytokines, including interferons, which can potentially activate the Mx1 promoter 
(See chapter on hematopoietic stem cell transplantation, pages 26-28). Interferons 
are normally made and released by cells in response to presence of several 
pathogens such as viruses, bacteria and parasites. Tumor cells can also induce 
interferon release by, for example, plasmacytoid dendritic cells (pDC) [210], 
which depend on FLT-3 signaling for their development [211, 212]. In the FLT-
3ITD mouse model, a constitutively activated form of the FLT-3 receptor tyrosine 
kinase is expressed. We therefore also evaluated pDCs and spontaneous Mx1-Cre 
activation in the context of FLT-3ITD expression. 

Summary of Article 2 

In this study, we originally set out to investigate the involvement of hypoxia 
inducible factor 1α (HIF-1α) in leukemia. For this aim, conditional knockout mice 
with floxed Hif-1α alleles were crossed to Mx1-Cre mice. C-kit+ bone marrow 
progenitor cells from the generated Mx1-Cre;Hif-1α flox/flox mice were transduced 
with retroviruses carrying different oncogenes before transplantation into wild 
type recipients. Remarkably, a substantial fraction of cells were deleted for Hif-1α 
prior to poly I:C injection [213]. This prompted us to investigate the underlying 
cause for the observed spontaneous deletion of Hif-1α. For this, we crossed 
YFPLSL reporter mice [214] with Mx1-Cre mice to generate a strain (Mx1-Cre-
YFPLSL) where (spontaneous)recombination results in YFP expression, that is 
detectable by flow cytometry. Next, c-kit+ cells from Mx1-Cre-YFPLSL mice were 
subjected to transduction of retroviruses encoding fluorescent proteins and/or 
transplantation after which the rate of spontaneous recombination was determined. 
Strikingly, YPF expression could be identified in approximately 20 % of the non-
manipulated cells. In vitro culturing for 48 hours or transduction with retroviruses 
did not significantly increase the percentage of YFP+ cells. By contrast, > 70 % of 
donor cells expressed YFP at 10 weeks after transplantation despite any evident 
positive selection pressure of recombined cells, indicating that the transplantation 
procedure per se promotes spontaneous recombination in Mx1-Cre deletion 
models. 
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Previous work revealed that adult mice with a combination of Mx1-Cre; Hif-
1αflox/flox and FLT-3ITD knock-in showed spontaneous deletion of Hif-1α prior to 
poly I:C injection [215-217]. To investigate if Hif-1α deletion was initiated 
already during embryonic development, fetal liver cells from E14,5 embryos were 
extracted and analyzed in vitro. Around 20 % of colonies derived from fetal liver 
cells showed partial spontaneous deletion of Hif-1α, whereas an astonishing 70 % 
of colonies from 12-week-old bone marrow cells were deleted for the Hif-1α gene 
in both alleles. This indicates that the spontaneous excision effect observed in 
Mx1-Cre mice is cumulative over time. To exclude that the high levels of 
spontaneous recombination was due to a particularly high sensitivity for 
recombination of the Hif-1αflox/flox allele, FLT-3ITD-Mx1-Cre mice were crossed 
with Phd2flox/flox mice to evaluate spontaneous recombination of another floxed 
region. In Mx1-Cre-FLT-3ITD-Phd2flox/flox strain, over 70 % of colonies expanded 
from adult bone marrow showed spontaneous deletion of the floxed Phd2 gene. 
Comparison of the ~70 % deletion rate seen in FLT-3ITD-Mx1-Cre crossed models 
with the < 20 % spontaneous deletion rate noted in Mx1-Cre-YFPLSL mice indicate 
that FLT-3ITD expression increases the spontaneous excision effect observed in 
Mx1-Cre mice. An explanation for the high rate of spontaneous recombination at 
floxed alleles in FLT-3ITD-Mx1-Cre mice may be promiscuous Mx1-Cre activation 
caused by increased endogenous interferon levels. Indeed, an increased abundance 
of interferon-producing plasmacytoid dendritic cells (pDCs) was observed in FLT-
3ITD mice [212]. 

Mx1 promoted expression of Cre is most commonly induced by endogenous 
interferon release as a response to poly I:C injection. Interferon signaling has been 
shown to enhance proliferation of HSPCs in vivo [86, 88]. To further evaluate 
proliferation after poly I:C administration, we investigated HSPC proliferation 
with the H2B-mCherry labeling model we established in article 1. HSPCs from 
bone marrow in previously labeled H2B-mCherry mice were analyzed for label 
retention at different time points (1-24 days) after poly I:C or control injections. 
These analyses revealed no significant increase of proliferation in HSCs after poly 
I:C injection. In contrast, one and three days after poly I:C injection, GMLPs and 
more lineage restricted preGMs showed decreased label retention, indicating a 
possible transient increase in proliferation among these progenitors. However, 
dramatic phenotypic alterations and skewed frequencies of HSPCs within the bone 
marrow LSK and LK compartments were noted immediately after poly I:C 
injection. Therefore, observed changes in HSPC proliferation short-term after poly 
I:C administration are hard to interpret. HSPC frequencies had returned to baseline 
values 3 days after poly I:C induction while Sca1 surface expression and H2B-
mCherry label retention in HPCs was comparable to control-levels 8 days after 
poly I:C injection. These results indicate that even though strong Sca1 induction is 
seen after poly I:C injection, this effect is transient and completely resolved at 8 
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days post injection, in line with previous reports of Sca1-induction upon interferon 
administration [86]. 

Finally, we explored an alternative approach to the Mx1-Cre model for 
recombination in cells with floxed alleles. In this approach, recombination of a 
floxed DNA segment was resolved by in vitro incubation with Tat-Cre before 
transplantation rather than by in vivo transgenic expression of Cre. Tat-Cre is an 
engineered form of the Cre recombinase enzyme that can diffuse through cell 
membranes and enter the nucleus where it carries out recombination at loxP sites 
[218]. Tat-Cre could mediate efficient recombination in control experiments. Next, 
Tat-Cre-induced recombination was used in a model where expression of an 
activating Kras mutation (KrasG12D) is hindered by a floxed stop cassette (KrasLSL-

G12D). Such mice were crossed with DOX inducible MLL-ENL mice [219] to study 
KrasG12D in the context of MLL-ENL-driven leukemia. As previously reported 
[219], transplantation of purified MLL-ENL expressing HSCs does not generate 
leukemia. However, all recipients of MLL-ENL-KrasLSL-G12D HSCs, which had 
been subjected to incubation with Tat-Cre prior to transplantation, developed 
myeloid leukemia within 10 weeks after transplantation, confirming the feasibility 
of Tat-Cre mediated recombination in in-vivo leukemia models.  

In summary, we highlight several potential pitfalls of the Mx1-Cre system in 
this study. First, we report a high spontaneous recombination rate in Mx1-Cre 
models, especially upon transplantation but also when Mx1-Cre and FLT-3ITD are 
present together in the genome. Second, we show that injection of poly I:C, a 
routine procedure for Mx1-promoter activation, transiently alters bone marrow 
HSPC phenotypes in treated mice. Finally, we propose Tat-Cre treatment as an 
alternative to Mx1-driven Cre expression for recombination in cells that will be 
subjected to transplantation or any other ex vivo procedure. 
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Article 3 

Adult Hematopoietic Stem Cells Contribute Actively to Myeloerythroid 
Hematopoiesis in Steady State. 
Säwén P, Eldeeb M, Laterza C, Christiansen T, Kokaia Z, Karlsson G, Yuan J, 
Mandal P, Rossi DJ, Bryder D. 
Manuscript 

Background to Article 3 

Recent developments of transgenic mouse models have facilitated the study of 
HSCs in unperturbed hematopoiesis. Non-invasive systems for evaluation of 
proliferation history have revealed that HSCs proliferate very slowly in steady 
state [139, 140, 182]. Furthermore, HSC lineage tracing experiments in 
unperturbed hematopoiesis have generated conflicting conclusions regarding HSC 
contribution to hematopoiesis in steady state (see chapter about lineage tracing 
pages 35-39). This prompted us to investigate HSC contribution to steady state 
hematopoiesis using an HSC-specific Fgd5CreERT2 lineage tracing model. 

Although HSCs are commonly identified by their immunophenotype using 
complex multi-parameter flow cytometry, recently developed genetic models have 
enhanced the ability to detect rare HSCs. In these reporter strains, expression of 
fluorescent proteins is driven from promoters of HSC-specific genes, such as α-
catulin, Hoxb5, Hoxb4 and Fgd5, which allows single-parameter identification of 
HSCs [75, 99, 220, 221]. or Fgd5 gene was identified as a potential HSC-marker 
gene by comparison of transcriptomes from more than 40 hematopoietic 
populations. In addition to expression in HSCs, Fgd5 is abundantly expressed in 
endothelial cells. Transgene knock-in to the Fgd5 locus disrupts endogenous Fgd5 
expression and homozygous Fgd5 knock-in mice die during embryonic 
development, whereas heterozygous Fgd5 knock-in mice display no phenotype. 
Bone marrow cells identified based solely on Fgd5 reporter expression show 
robust HSC activity with stem cell activity restricted to the Fgd5 labeled fraction. 
In addition to Fgd5 reporter mice, an inducible CreERT2-Fgd5 knock-in strain, 
Fgd5ZsGreen-CreERT2 mice, that harbor a fluorescent reporter (ZsGreen) has been 
developed [220]. 
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Summary of Article 3 

In the study “Adult Hematopoietic Stem Cells Contribute Actively to 
Myeloerythroid Hematopoiesis in Steady State” we set out to perform lineage 
tracing from adult HSCs in steady state. For this we utilized Fgd5-CreERT2 mice 
that were developed in Derrick Rossi’s lab [220]. Within the hematopoietic 
system, Fgd5 is expressed in HSCs and at low levels in scarce immature 
progenitors. We confirmed HSC specific expression of Fgd5 by comparison of 
single-cell transcriptome data from 520 SLAM-HSCs (LSKCD150+CD48-Fgd5+) 
and 793 Fgd5-HSCs (Lineage-Kit+Fgd5+) to a large data set of single-cell 
transcriptome data (11,588 cells) from c-kit+ bone marrow cells that includes many 
types of HPCs, but very few HSCs. This comparison revealed that SLAM-HSC 
and Fgd5+-HSC transcriptomes overlapped almost completely, confirming that 
Fgd5 expression marks HSCs at a transcriptional level. Next, Fgd5-CreERT2 mice 
were crossed with TomatoLSL reporter mice to generate a strain (Fgd5-CreERT2-
TomatoLSL) that allows for lineage tracing from HSCs. HSC specific labeling was 
confirmed by evaluating the fraction of Tomato labeled bone marrow HSPCs 
short-term after Tomato labeling by a single TAM injection. 48 hours after 
labeling 5,7 % of HSCs and 0,2 % of other LSK cells were Tomato labeled, while 
no other hematopoietic bone marrow cells expressed Tomato.  

To investigate the generation dynamics of mature hematopoietic cell types we 
Tomato labeled HSCs by feeding cohorts of Fgd5-CreERT2-TomatoLSL mice with 
TAM containing food pellets for 16 weeks. HSCs were completely Tomato 
labeled (>99 %) after the labeling period and label progression into mature 
peripheral blood cell lineages was monitored by regular blood sampling both 
during the labeling period and during the following chase period (up to 32 weeks). 
Myeloerythroid cells generally acquired label with more rapid kinetics than 
lymphoid cells. Platelets acquired Tomato label with the fastest kinetics, followed 
by granulocytes and erythrocytes. Among lymphoid cells, NK cells were labeled 
faster than B or T cells. T cells showed the slowest labeling kinetics and CD4+ T 
cells acquired label faster than CD8+ T cells. In addition to Tomato labeling by 
continuous administration of TAM containing food, we also “pulse labeled” mice 
by injecting TAM one or five times on consecutive days. After labeling, mice were 
chased for up to 32 weeks. During the chase period all mice were regularly bled 
and evaluation of Tomato label progression into peripheral blood cells revealed 
similar label progression kinetics as after labeling with TAM food. At the 
experimental end-point all mice were evaluated for Tomato label in the HSC 
compartment. The fraction of Tomato+ HSCs was next correlated to the fraction of 
Tomato+ peripheral blood cells at the experimental end-point. This analysis 
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revealed that 5x injected HCSs more actively generate mature peripheral blood 
cells then HSCs from 1x injected mice, indicating that labeling of a larger fraction 
of HSCs (5x TAM) includes labeling of more active HSCs then labeling of a 
smaller fraction of HSC (1x TAM). 

We took advantage of completely HSC labeled Fgd5-CreERT2-TomatoLSL mice 
by analyzing the input from adult HSCs to reportedly fetal derived hematopoietic 
subsets. By investigating the fraction of Tomato+ cells from hematopoietic cells 
types in the epidermis we confirmed a fetal origin of the tissue resident 
macrophages of the skin, Langerhans cells. We next investigated Tomato label 
progression into B1a B cells isolated from the peritoneal cavity of completely 
HSC labeled mice. Only a minor fraction (<10 %) of B1a B cells were Tomato+ 
confirming their fetal origin. Finally, we investigated Tomato expression in 
microglia, the tissue resident macrophages of the brain, and in line with their 
reported fetal origin we did not find any Tomato+ microglia. 

At the end-point analysis we investigated the fraction of Tomato+ cells in 
various HSPC subsets in 1x and 5x TAM injected mice. When fractions of labeled 
progenitors were related to the fraction of labeled HSCs in individual mice, we 
noted faster labeling kinetics of progenitors in 5x injected mice than in 1x injected 
mice, in line with the faster label progression into peripheral blood cells in 5x 
injected mice. MkPs acquired Tomato label with faster kinetics then lineage 
restricted erythroid (CFU-E) and myeloid (preGM) progenitors, in agreement with 
the fast label progression into the platelet lineage. Among LSK-progenitors, 
LSKCD150-CD48- cells (MPPs) acquired label with the most rapid kinetics 
approaching label equilibrium with HSCs after 12 days in 5x injected mice. The 
rare population of LSKCD150+CD48+ cells also reached label-equilibrium with 
HSCs (after 112 days). By contrast, the much more abundant LSKCD150-CD48+ 
cells (GMLPs) acquired Tomato label with slower kinetics then other LSK cell 
subsets. Comparisons of percentages of labeled cells between mature peripheral 
blood cells and their proposed progenitor after different periods of chase revealed 
that granulocytes and platelets reach label equilibrium with their respective 
progenitor 25 days after labeling, while label equilibrium between erythrocytes 
and CFU-Es reached equilibrium with slower kinetics. This suggests a longer 
maturation time for erythrocytes than for platelets and granulocytes before entry 
into circulation. 

The fast label progression seen into LSKD150+CD48+ cells prompted us to 
characterize this subset further with regards to lineage potentials/affiliations. First, 
we performed multiplexed quantitative Real Time-PCR to obtain gene expression 
data from a panel of defined HSPCs including LSKCD150+CD48+ cells. Principal 
component analysis revealed a transcriptional association of LSKCD150+CD48+ 
cells with progenitors of the platelet and erythroid lineages rather than with 
myeloid progenitors or HSCs. Finally, we functionally evaluated the lineage 
potentials of LSKCD150+CD48+ in vitro. When generated cell types from single-
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cell sorted HSCs, GMLPs and LSKCD150+CD48+ cells were compared, higher 
generation of megakaryocytes and erythrocytes were seen from 
LSKCD150+CD48+ cells than from HSCs or GMLPs. Collectively, gene 
expression analysis and cell culture experiments suggest MegE lineage 
potential/bias of LSKCD150+CD48+ cells. 

In summary, we here present the Fgd5-CreERT2 model as a suitable model for 
lineage tracing studies from adult HSCs. We confirmed initial HSCs specific 
labeling, and achieved labeling of virtually all HSCs in adult mice. Results from 
our label tracing studies confirm the conclusion that adult HSCs contribute 
substantially to adult hematopoiesis but not to fetal derived hematopoietic subsets 
that was reported by Sawai et al. [203]. Further, this study reveal that platelets are 
generated from HSC with faster kinetics than other peripheral blood cells and that 
myeloid cells in general are generated with faster kinetics than lymphoid cells. 
MPPs are labeled with the fastest kinetics among LSK-progenitors, while 
LSKCD150+CD48+ cells displayed fast labeling kinetics compared to GMLPs. 
Furthermore, gene expression analysis and cell culture experiments with 
LSKCD150+CD48+ cells suggest an association of these cells with the MegE 
lineages. 
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Future Studies 

Continued efforts aimed at dissecting properties of native hematopoiesis are 
necessary to maintain hematopoietic research as a fundament for study of adult 
stem cell biology. In situ labeling of individual HSCs is an interesting avenue for 
dissection of clonal contributions of HSCs in native hematopoiesis [154]. Future 
studies in such models could perhaps reach higher resolution by initial labeling of 
HSCs specifically, while clonal labeling at different stages in life could answer 
outstanding questions regarding clonal dynamics in aged hematopoiesis. Further 
studies of H2B-label retention, in HSC specific labeling systems, could be used for 
lineage tracing in the hematopoietic system as have been done in other tissues 
[180, 201]. Simultaneous evaluations of H2B label retention and lineage tracing 
dynamics [203, 222] would be informative and could identify progeny of label-
retaining HSCs over time and generate informative results about relationships 
between proliferation and lineage output/potential. Combined evaluations of native 
HSC properties and single-cell RNA-sequencing is another exiting avenue for 
systematic dissection of relationships between transcriptome profiles and function 
in the hematopoietic system.  
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Populärvetenskaplig Sammanfattning 

Bildandet av blodets celler pågår ständigt och kallas hematopoes. Blodets celler 
har olika funktioner och ansvarar bland annat för att skydda oss mot sjukdomar, 
läka skador och transportera syre och avfallsämnen. Många blodceller har kort 
livslängd och behöver därför ständigt ersättas av nya celler. För att klara av detta 
är blodsystemet organiserat i en hierarki, där sällsynta blodstamceller befinner sig 
högst upp. Nedanför finns celler med stegvis mer begränsad potential att bilda alla 
blodets celltyper; dessa celler delar sig ofta och kallas progenitorer. Längre ner i 
hierarkin återfinns progenitorer med förmåga att endast bilda en typ av blodceller; 
dessa bildar de mogna blodceller man hittar i blodet. Blodets stamceller har både 
förmåga att återbilda nya stamceller och att upprätthålla produktion av alla blodets 
celltyper under lång tid. Dessa förmågor används för att definiera vilka celler som 
kan räknas som stamceller och de utvärderas som regel genom transplantation av 
celler in i möss där blodsystemet har förstörts av strålning. Efter transplantation 
ska äkta blodstamceller kunna återbilda blodets alla celltyper under lång tid, samt 
återbilda nya stamceller. Transplantation används rutinmässigt i kliniken samtidigt 
som den utgör ett fundament för forskning kring blodbildande och blodets 
stamceller. Men transplantation är en procedur som utsätter transplanterade celler 
för en artificiell situation när de tas ut från sin normala miljö i benmärgen och 
transplanteras in möss där strålning har orsakat massiv celldöd. Vanligtvis delar 
sig blodets stamceller mycket lite, men efter transplantation utsätts de för en 
extrem press att dela sig när de måste återbilda hela blodsystemet. De 
ofysiologiska prövningar blodets stamceller utsätts för vid utvärdering genom 
transplantation nödvändiggör analys av blodbildande och andra 
stamcellsfunktioner under mer fysiologiska förhållanden. 

Under senare år har det utvecklats musmodeller som tillåter analys av 
blodsystemet och dess celler utan större påverkan på blodsystemet. I en sådan 
modell har vi analyserat hur mycket blodstamceller och progenitorer delar sig, dels 
under normalt blodbildande och dels efter att blodsystemet utsatts för olika typer 
av stress. Vi kom fram till att efter transplantation ökar frekvensen som blodets 
stamceller delar sig med även lång tid efter att blodsystemets återbildats. 
Förflyttning av blodstamceller från benmärgen till blodet påverkade inte hur ofta 
blodstamceller delar sig. Istället försvinner vissa omogna progenitorer helt från 
benmärgen efter sådan behandling. Selektiv destruktion av endast B-celler 
påverkade inte celldelningsfrekvensen hos blodets stam eller progenitor celler, 
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däremot påverkade destruktion av andra mogna blodceller, granulocyter, hur ofta 
vissa progenitorer delade sig. Slutligen kopplade vi ihop hur mycket individuella 
stamceller hade delat sig med analys av uttryck av ett antal gener i samma cell. 
När blodstamceller delades in i grupper beroende på hur mycket de hade delat sig 
såg vi att stamceller i olika grupper uttryckte olika gener och de hade också olika 
potential i transplantationsexperiment. 

Att ”knocka ut” gener är en viktig experimentell strategi för att utvärdera 
specifika geners betydelse i olika sammanhang. ”Knocka ut” betyder ofta att man 
helt raderar ut den DNA sekvens som utgör en viss gen från en cell. Det finns 
väletablerade musmodeller där man kan styra när radering av en gen ska ske 
genom att skapa en stark immunreaktion i musen. I artikel 2 har vi undersökt en 
sådan modell och visar att i denna modell kan man inte helt kontrollera när en gen 
ska raderas eftersom transplantation/strålning orsakar en immunreaktion som leder 
till att genen raderas spontant i vissa celler. Vi belyser också andra problem med 
denna modell. Bland annat förändras sammansättningen av omogna blod 
stamceller och progenitorer i benmärgen av immunreaktionen som ska kontrollera 
när gen-knockout ska ske. Sammantaget måste man vara försiktigt när man 
använder denna modell i transplantations experiment och vi föreslår slutligen en 
alternativ procedur där dessa problem kan undvikas. 

Utvärdering av blodets stamceller under normala förhållanden har genererat 
olika slutsatser angående hur mycket blodstamceller bidrar till blodproduktion. 
Därför bestämde vi oss för att utvärdera detta i en musmodell där vi kan märka 
endast blodets stamceller. En märkt cell kan inte förlora sin märkning, dessutom är 
märkningen ärftlig. Det betyder att all avkomma från märkta stamceller också 
kommer att vara märkta. För att utvärdera om och med vilken hastighet blodets 
stamceller producerar olika typer av blodceller märkte vi blodstamceller i vuxna 
möss. Sedan tog vi blodprov med jämna mellanrum där andelen märkta celler i 
olika blodcellstyper analyserades. Detta visade att blodets stamceller producerar 
alla olika typer av blodceller i blodet men det skedde med olika kinetik. 
Blodplättar, som bland annat ansvarar för koagulering av blod efter skada, blev 
först märkta av alla mogna blodcellstyper, det indikerar att de bildas snabbast av 
blodets stamceller. Celler från det adaptiva immunförsvaret (B och T celler), som 
ansvarar bland annat för immunologiskt minne, blev märkta långsammare än andra 
typer av immunceller, medan röda blodkroppar blev märkta något långsammare än 
blodplättar men ändå snabbt jämfört med andra mogna blodceller. Vi undersökte 
också hur snabbt progenitorer, som befinner sig på olika nivåer i blodsystemets 
hierarki, bildas från blodstamceller. Precis som för mogna blodplättar såg vi att 
deras progenitorer bildas snabbt från stamceller jämfört med andra celltypers 
progenitorer. Vi undersökte också bildande av omogna progenitorer som befinner 
sig alldeles under blodstamceller i hierarkin, bland dessa bildades de mest omogna 
cellerna snabbast från stamceller. Slutligen, identifierade vi en sällsynt blodcells 
progenitor som bildas snabbt från blodstamceller. När vi analyserade dessa celler 
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vidare upptäckte vi att många av dessa celler är progenitorer till blodplättar och 
röda blodkroppar. Sammanfattningsvis visar vi i denna studie att blodstamceller 
bidrar till bildande av alla typer av blodceller under normala förhållanden men 
med olika kinetik. 

Vi har i dessa studier analyserat blodets stamceller i modeller där de kan 
studeras med minimal yttre påverkan. Detta har lett till identifiering av subklasser 
av stamceller såväl som till etablerande av blodets stamceller som kontinuerligt 
blodcellsbildande. 
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