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Abstract—Despite its long history, the Theory of Characteristic 

Modes has only been utilized in antenna design for perfect 

electric conductors. This is due to computational problems 

associated with dielectrics and magnetic materials. In particular, 

the symmetric form of the PMCHWT surface formulation for the 

Method of Moments (MoM) solves for both external (real) and 

internal (non-real) resonances of a structure. The external 

resonances are the characteristic modes, whereas the internal 

resonances are not. This article proposes a new post-processing 

method capable of providing unique and real characteristic 

modes in all physical mediums, including lossy magnetic and 

dielectric materials. The method removes the internal resonances 

of a structure by defining a minimum radiated power, which is 

found through utilizing the physical bounds of the structure. The 

characteristic modes found using the proposed method are 

verified through the use of a MoM volume formulation, time 

domain antenna simulations, and experiments involving multiple 

antenna prototypes.  

 
Index Terms—Antenna design, characteristic modes, dielectric 

resonant antenna, MIMO systems, quality factor 

 

I. INTRODUCTION 

IGNIFICANT insights into the fundamental scattering and 

radiation properties of any structure can be obtained 

through analysis of the orthogonal radiation currents it is 

capable of producing. The Theory of Characteristic Modes 

(TCM), conceived by Garbacz, Harrington, and Mautz in 1971 

[1], [2], solves for these currents in any conducting body. The 

scattered and radiated modes, or characteristic modes (CMs), 

of a structure are uniquely solved through an eigenvalue 

decomposition of the structure’s symmetric impedance matrix.  

Following its introduction, TCM received interest for 

analyzing and solving a variety of problems, including radar 

scattering [1], [3], excitation of large structures with coupling 

elements (CE) [4], wide-band antenna analysis [5] and antenna 

shape synthesis [6]. However, TCM remained relatively low 

profile until recently, when it was recognized in the antenna 

community as a powerful tool that enables systematic analysis 

and design of efficient compact antennas [7]-[13]. However, 

despite substantial existing research on TCM, nearly all prior 

work focuses on the CMs of perfect electric conductors (PEC). 

Relatively little attention was given to develop TCM for real 

materials. 
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In [14], Harrington et al. first proposed a method to solve 

for CMs in real materials, which is based on the eigenvalue 

decomposition of the structure’s impedance matrix for a 

Method of Moments (MoM) volume integral equation (VIE) 

formulation. However, computation of a volume impedance 

matrix was, and still is, computationally prohibitive. Hence, 

Chang and Harrington developed a computationally efficient 

surface integral equation (SIE) formulation in [15]. However, 

[14] and [15] focus on constructing the mathematical proof 

behind solving for the CMs of any object; no computed CMs 

are shown. 

The proof given in [15] was first used in [16] to extract the 

impedance matrix of a PEC object in close proximity to a 

dielectric object. This work did not analyze, compute, or 

utilize the modes within the dielectrics, but only studied the 

CMs of the PEC object. The first known computation of CMs 

of a dielectric object was published in [17]. The paper stated 

that the CMs from the VIE formulation in [14] satisfy field 

orthogonality and every CM radiates unity power, thus 

fulfilling the requirements for TCM.  Furthermore, it briefly 

computed and examined the CMs of a simple lossless object, 

which were obtained using the SIE formulation outlined in 

[15]. It was stated that the CMs solved using [15] did not 

satisfy field orthogonality, nor did every CM radiate unity 

power. The modes which radiated unity power were labelled 

physical modes whereas all other modes were labeled non-

physical modes. No details were provided on how these 

computations were carried out and why an eigenvalue 

decomposition using the MoM SIE formulation gives rise to 

CMs which do not radiate unity far-field power. Furthermore, 

no analysis or results were provided on real materials which 

must dissipate some amount of power, and thus theoretically 

cannot not radiate unity far-field power. 

This article proposes a new and practical post-processing 

method that yields the correct CMs in real materials. Herein, 

the Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT) SIE 

formulation for MoM [18] will be analyzed, and shown that 

when forced into symmetry, the CM solution is susceptible to 

the MoM internal resonance problem [18]. These internal 

resonances do not correspond to real structural resonances, 

and can be found in the simplest of structures which utilize 

this formulation. A power threshold defined from the 

structure’s physical bounds can be used to isolate the CMs 

corresponding to internal resonances. To demonstrate the 

effectiveness of the proposed method, the CMs of 

homogeneous dielectric and magnetic composite cubes found 

with this method are compared to those found using the VIE 
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formulation. Two characteristic modes of the structures are 

then excited using coupling feeds, and these real CMs are 

verified using far-field simulations and measurements. In this 

context, the main contributions of this work are: 

 Explaining the appearance of non-real modes when the 

CMs of a structure are computed by means of the 

PMCHWT SIE MoM formulation. 

 Providing an effective method for isolating and removing 

the non-real CMs of an object that are found using a 

MoM SIE formulation. 

 Verifying the computed CMs to be real CMs through 

multiple means: VIE formulation, full wave time domain 

analysis, and measured physical prototypes.  

The paper is organized as follows: Section II presents an 

overview of the SIE MoM formulations and explains the MoM 

internal resonance problem. A novel method to identify and 

remove non-real CMs attributed to internal resonances is 

described in Section III. Section IV overviews a VIE MoM 

formulation and how it is applied to a specific structure. 

Section V solves for the CMs in several lossless, lossy, and 

magnetically doped composite dielectric cubes, and compares 

these modes to the VIE CMs. In Section VI, the far-fields of 

selected SIE and VIE CMs are compared against the CMs 

excited in antenna simulations and physical antenna 

prototypes. Finally, the main findings and conclusions are 

provided in Section VII.  

II. INTERNAL RESONANCE PROBLEM 

Previous publications which rely on CM analysis to aid in 

the understanding and design of antenna structures have 

utilized the PEC formulation of CMs [2]. As can be seen from 

existing literature (e.g., [3]-[13]), the PEC formulation can 

solve a large variety of different antenna related problems. 

However, PEC and perfect magnetic conducting (PMC) 

objects are some of the simplest scattering objects [18]. 

Structures built entirely from these classes of materials are 

often referred to as impenetrable, as the tangential field is zero 

across the surface of the object, i.e., no power can penetrate 

the object. However, many antenna-related problems involve 

materials which are both penetrable (dielectric objects and 

magnetic objects) and lossy. In these types of objects it is 

possible for power to flow both into and through the object. 

When MoM integral equations are used to solve for the 

electromagnetic properties of all materials, there are two 

formulations which can be utilized to set up the required 

systems of equations. The first and most often applied is the 

surface integral equation (SIE), whereas the volume integral 

equation (VIE) is less often applied due to its high 

computational complexity. The SIE formulation is often used 

when the problem consists of homogeneous materials, 

whereas the VIE formulation is preferred when the problem 

consists of extremely heterogeneous materials [18].  

There are three main types of SIE formulations: electric 

field integral equation (EFIE), magnetic field integral equation 

(MFIE), and combined field integral equation (CFIE). The 

standard EFIE and MFIE suffer from what is known as the 

internal resonance problem. The existence of these internal 

resonances can be easily understood in some cases (PEC and 

PMC objects), whereas it is less understood in other cases 

(dielectric and magnetic objects) [18]. For a closed PEC 

object, the internal resonances can be related to the non-

radiating resonance cavity mode; however, this is not as easily 

explained for dielectric objects, as the resonance frequency of 

a dielectric scatterer must be complex due to radiation 

dampening (i.e., energy cannot be perfectly confined within 

the object) [18]. However, the internal resonances of an object 

can be proved through different Gedanken experiments [19]; 

for brevity this will not be reviewed but interested readers 

should refer to [19] for more information. 

These internal resonances can be eliminated through proper 

combination of the EFIE, MFIE, electric combined integral 

equation (ECIE), and magnetic combined integral equation 

(MCIE). This is possible because whereas all the individual 

equations suffer from internal resonances, the mathematics 

causing the resonances are different among them [20]. These 

equations provide four equations and two unknowns. In order 

to reduce the equation space so that there are the same number 

of equations as unknowns, the number of equations should be 

reduced to two. This is done through a linear combination of 

four integral equations as shown in (1) and (2), where ai, bi, ci, 

and di are the coupling coefficients within the domain Di. For 

SIE problems there are two domains (i.e., i = 1, 2), these 

domains correspond to the penetrable, homogeneous, isotropic 

scatterer (D2) and homogeneous, isotropic background (D1) 

[20]. It should be noted that the specific values of the coupling 

coefficients, within the domain, have a significant effect on 

properties of the final SIE solution [21].   

         Combined Equation 1: ai ECIE + bi EFIE 
(1) 

         Combined Equation 2: ci MCIE + di MFIE (2) 

There are several ways of combining these equations to 

obtain a unique solution free from internal resonances. A 

computationally efficient way is to use a linear combination 

which forces two of the integral equations to zero; this can be 

done by setting ai = ci = 0 or bi = di = 0. The two most used 

SIE formulations utilize this method and are referred to as the 

NMüller and PMCHWT MoM SIE formulations [18]. The 

NMüller formulation, the most popular variant of the Müller 

formulation, sets ai = µi and ci = εi, where µi is the absolute 

permeability and εi is the absolute permittivity within the 

domain Di. The PMCHWT formulation is the most widely 

implemented SIE solution and uses bi = di = 1. Both the 

PMCHWT and NMüller formulations have been shown to 

effectively create a lossy boundary condition such that all null-

space solutions (internal resonances) can only occur at 

complex frequencies [18]. A proof in [22] showed that any 

choice of ai, ci or bi, di for which ai ci
* or bi di

* (where (·)* is the 

complex conjugate) is equal to a real and positive number will 

provide a unique solution (free from internal resonances) to an 

SIE formulation.  

Formulations which hold true to this proof are capable of 

providing an impedance matrix for any 3D structure. This 

impedance matrix can then be used to solve for the 
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characteristic modes of the structure if and only if the 

impedance matrix  Z  is symmetric (i.e.,     ,B Z C   

    ,Z B C , where ,   is the inner product operator and 

   ,B C  are arbitrary square matrices) [2]. Neither the 

NMüller formulation nor the PMCHWT formulation provides 

a symmetric impedance matrix. It is not clear how to force 

NMüller into symmetry, but it is possible to force PMCHWT 

into symmetry, as was shown in [15]. The remainder of this 

manuscript will utilize the PMCHWT method which sets bi = 

di = 1. The matrix construction of the PMCHWT formulation 

is shown in (3). 
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In these equations k±, η±, µ±, ε± are the wavenumbers, 

intrinsic impedances, permeability, and permittivity of the 

internal (-) and external (+) media, Λn is the associated MoM 

basis function, and , ,    is the intersection of all subspaces. 

The impedance matrix of this combined equation can be 

forced into symmetry through the addition of a complex scalar 

to (2), creating the new symmetric impedance operator and a 

modified version of the PMCHWT formulation as described 

by [15] 

   ,
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where the symmetric impedance matrix (Z) of (10) is now 
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This symmetric formulation was introduced by Harrington in 

[15] prior to the proof in [22].  Reference [22] revealed that 

any choice of bi di
* must be real and positive to provide a 

unique solution to an SIE formulation. Therefore, the 

symmetric form of the combined equation (10) no longer 

fulfills this condition for a unique solution. The choice of 

coupling coefficients in (11) allows the matrix to be 

symmetric, but moves the complex frequency null-space 

solutions into the real solution space, i.e., the internal 

resonances are moved into the solution space. 

Hence, the internal resonances within the impedance matrix 

are individually solved for, and placed within the TCM 

solution space as individual CMs. Many publications have 

shown that all TCM methods solve for the internal resonances 

of a structure [2], [23]. However, with a properly formed 

impedance matrix these internal resonances are easily 

disregarded as their eigenvalues, in the solution space, are 

approximately infinity. This is due to the resonant frequency 

of the null space solutions being located outside of the real 

frequency domain. However, this is no longer valid when the 

impedance matrix holds the form of the symmetric PMCHWT 

matrix shown in (10). The eigenvalue solution set for the 

impedance matrix in (11) solves for the structure’s internal 

resonances which now occur at real frequencies. In theory 

these internal resonant modes can be easily removed as the 

associated surface currents are non-radiating and as such the 

modes cannot be normalized using the method described by 

(16) in [2]. However, in practice the structures domain is built 

using approximate expansion functions, e.g. Rao-Wilton-

Glisson (RWG) edge elements. As a result the associated 

surface currents radiate a power greater than zero [18]. The 

non-zero radiated power allows for the characteristic currents 

to be normalized. These internal resonances create a serious 

challenge for solving many MoM problems. As a direct result 

of this internal resonance problem there has been no obvious 

solution to allow for TCM to be effectively applied to an SIE 

MoM formulation. However, a unique TCM identity can be 

exploited to provide a solution to this problem, as will be 

shown in Section III.  

III. IDENTIFICATION OF TCM INTERNAL RESONANCES 

TCM is unique when compared to other MoM equations as 

it provides an independent solution to each orthogonal current 

mode a structure is capable of supporting (internal and 

external). This is possible as the CMs are derived through an 

orthogonal decomposition of the real and imaginary parts of 

the symmetric impedance matrix. Proper formulation of a 

weighted eigenvalue equation leads to the solution for these 

orthogonal currents, herein referred to as characteristic 

currents.  This specific weighted eigenvalue equation  is 

formulated as 

   ( ) ( )n n nX J R J , (12) 

where  R  and  X  are the real and imaginary parts of the 

symmetric impedance matrix  Z , and Jn is the nth CM 

associated with the nth eigenvalue λn. When this equation is 

solved using the impedance matrix in (11) it is not obvious 

how to distinguish between eigenvalues associated with 

internal resonances and those associated with external 

resonances. For loss-free structures, both the characteristic 

currents and characteristic far-fields are fully orthogonal [14]. 
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This is true for the characteristic currents, but no longer true 

for the characteristic far-fields due to the radiated far-field 

pattern of the internal resonances [2] [14].  

It can be argued that these internal resonances can be 

removed by calculating the far-field radiated power of a 

structure using  

*1

2
n n

S

P E H ds



  , 
(13) 

where En and Hn are the electric and magnetic fields associated 

with the eigenmode Jn,, and S∞ is the sphere at infinity. In 

principle this is true as the far-field radiated power of the 

internal resonances should be equal to zero. However, due to 

the utilization of approximate expansion functions and 

application of eigenmode current normalization, the radiated 

power of internal resonances can be greater than zero. It 

should be noted that due to small number rounding errors 

powers greater than unity can be found in some structures 

after applying eigenmode current normalization. Furthermore, 

when losses are included in (11) through the introduction of 

complex permeability and permittivity, some external (real) 

resonances will radiate less power than some of the 

normalized internal resonances.  

One simple and intuitive solution is to remove these internal 

resonances through MoM mesh perturbation, thus changing 

the individual basis functions. When the MoM mesh is 

changed, the expansion functions must also change. This will 

relate to a change in the amount of far-field power radiated by 

internal resonant modes. If the same mode under two different 

mesh perturbations radiate different amounts of far-field, the 

mode can be associated with an internal resonance. However, 

initial studies revealed that in practice it is not always possible 

to understand how much the mesh should be perturbed to 

guarantee every internal resonant mode radiates a significant 

enough power difference to be detected and identified as an 

internal resonance. Therefore, the mesh perturbation approach 

is not studied further in this paper. 

To resolve the aforementioned problems, a new equation 

can be introduced to solve for which modes are associated 

with internal and external resonances. This can be done by 

computing the quality factor (Q) associated with each mode. 

The quality factor is a measure of how much energy is stored 

versus dissipated in a structure. If it is possible to determine 

the Q for each mode, the maximum amount of energy lost can 

be calculated. This allows for computation of the radiation 

efficiency of an antenna [24], [25]. When applied to antenna 

modes as calculated by TCM, modes with a radiation 

efficiency (derived from Q) not equal to the radiated power 

efficiency as calculated by (13), can be associated to an 

internal resonance. The efficiency of an antenna can be 

equated to the antenna quality factors, where the quality factor 

is calculated by (14) and the total efficiency (15) [26], [27], 

[28]. In (14) and (15), (·)tot, (·)rad, (·)sw, (·)d, and (·)c, are, 

respectively, the quality factors and radiated power associated 

with the total structure, radiation, surface wave, dielectric, and 

conductor. In electrically compact structures the surface wave 

is difficult to excite, and does not support any significant 

bandwidth (i.e. 
swQ  ). For these reasons this article 

assumes  in order to simplify the overall computation while 

maintaining accurate results. However, it should be noted that 

the exact value of Q can be calculated from the difference 

between the internal and external electric and magnetic fields.  

1 1 1 1 1

tot rad sw d cQ Q Q Q Q
     (14) 

rad
tot

rad c d sw

P

P P P P
 

  
 (15) 

It was shown in [25] that these equations can be used to 

calculate the total losses an antenna is capable of supporting at 

a given Q.  A simplified form of (15) that lower bounds the 

total efficiency of an antenna is shown in Eq. (16), 

com
rad

com rad

Q

Q Q
 


, (16) 

1
tan tand m

dQ

 
 

 

 
   

 
, (17) 

where ηrad is the radiated power efficiency of the antenna, 

com sw d cQ Q Q Q    is the sum of the quality factors of each 

component as calculated by (14) [24]-[26], and 
radQ  is the 

quality factor of the antenna as calculated by TCM. It may be 

of interest to the reader that the quality factor can be related 

back to the complex permeability (   ' j   ) and 

permeability (   ' j  ) of a material by means of the 

dielectric and magnetic loss tangents (17). Qrad was defined in 

[29] and [30], and can be found using the symmetric 

PMCHWT characteristic currents [31] using  

 
         

    
,

2

H H

n n n n

rad H

n n

I X I I X I
Q

I R I

  
  (18) 

where  nI  is the eigencurrent of the nth mode,  R  and  X  

are the real and imaginary parts of the impedance matrix  Z , 

   ,X X      
H

is the conjugate transpose operator, and 

  .
T

n n nI J jM  nJ  and nM  are purely real electric currents 

and purely imaginary magnetic currents, respectively. Using 

these definitions, it can be shown that the real part of the inner 

product     
*
,n nI Z I  is identical to the mode’s radiated 

power found by means of the Poynting Theorem. However, 

the imaginary part of     
*
,I Z I , which is defined as n , 

is not equal to the corresponding imaginary part of the 

Poynting Theorem, i.e.,  2 ,m eW W   relating to the 

difference in the stored magnetic energy mW  and electric 

energy eW . However, the calculation of Q in (18) is based on 

the characteristic currents nI and the impedance matrix  Z , 

and hence unaffected by n . For EFIE PEC problems (i.e., 

 n nI J ), n  corresponds to the imaginary part of the 

Poynting Theorem [32].   

Using (16) and the associated quality factors in (18), it is 

possible to determine if a mode is related to an internal or 

external resonance. The modes which do not adhere to (16) are 

modes associated with internal resonances whereas all other 

modes are external resonances. This method, henceforth called 
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physical bounds method, can be applied to the CMs computed 

using (12) and the symmetric SIE MoM impedance matrix 

(11). The final computed external resonances can be easily 

verified by means of properly solving for the VIE CMs and 

matching the VIE modes to this SIE formulation. However, as 

will be described in Section IV, this can be difficult as solving 

for the VIE CMs is not trivial. 

IV. CM SOLUTION TO A MOM VIE FORMULATION 

It has been shown that an eigenvalue decomposition of the 

MoM impedance matrix obtained using a VIE formulation 

provides only the external CMs for any real material [14]. 

However, this method has not been applied in the literature 

due to its extremely high computational complexity. 

Computing CMs using the VIE formulation is computationally 

prohibitive due to the large number of basis functions, i.e., 

proportional to the square of the number required for a well-

conditioned SIE formulation [18]. When using the 

prohibitively large VIE impedance matrix to solve for the 

CMs of an object, the total solution time increases relative to 

the cube of the computational time required for calculating the 

CMs of an object using a SIE formulation [33]. This increase 

in time is due to the computations required to solve for the 

impedance matrix which requires matrix inversion operations 

to properly decompose the impedance matrix into individual 

characteristic modes and currents.  

Applying volume-based TCM to anything other than 

electrically very small objects is not currently practical for 

engineering applications. However, in theory it is possible to 

exploit a VIE method to provide the external CMs of any 

object. These modes can then be used to prove that non-real 

CMs are associated with a direct SIE decomposition of both 

(3) and (11), and applying (16) to (11) solves for non-real 

CMs. Although this does not prove if a TCM method will 

always solve for non-real CMs, it does show if a TCM method 

solves for any non-real CM at a defined frequency for a 

defined structure. Therefore, this process allows for the 

identification of non-real modes in a given solution space that 

were formed by a specific SIE TCM method.  

Whereas the majority of existing MoM VIE formulations 

apply the same physics, slight differences can be found in 

them, as was seen in the different ways to apply (1) and (2) in 

Section II. The VIE analysis presented in this article applies 

the matrix formulation as defined by (4.46)-(4.48) in [18]. 

These equations provide an impedance matrix which can be 

decomposed into CMs using (63) in [14]. Using this matrix 

formulation, the number of basis functions can be reduced by 

half when applied to objects consisting of either only electric 

or magnetic materials. In this specific case the resulting 

impedance matrix is symmetric and the CMs can be found 

using (12). However, when utilizing these equations on an 

object consisting of both electric and magnetic materials the 

solution space must be forced into symmetry [14].    

The accuracy of the mentioned VIE solution depends 

significantly on the quality of the volume mesh used to 

quantify the object. The solution accuracy degrades when the 

mesh quality is not sufficient. This type of inaccuracy is 

derived from large basis elements as the edge element 

tetrahedral expansion functions give rise to surface 

singularities on the surface of each tetrahedron. Surface 

singularities result in elements of the impedance matrix 

overestimating the amount of stored energy within any given 

tetrahedral [18]. This is important to remember when a VIE 

method is used to solve for the CMs of an object. If an 

object’s volume mesh tetrahedral are too large, CM with high 

quality factors can result in an overestimation of the amount of 

stored energy in a tetrahedral thus resulting in the eigenvalues 

being different than reality. 

The effect of eigenvalue inaccuracies derived from poor 

VIE mesh qualities can be seen when solving for the CMs of a 

single object over a variety of different mesh densities. In this 

article the SIE CMs of dielectric cubes measuring 2.54cm × 

2.54cm × 2.54cm are compared against the VIE solution in 

Section V. The small differences between the VIE solution 

and the SIE solution can be observed in modes with high Q; 

these differences are due to the quality of the VIE mesh. The 

effect of mesh density on a dielectric cube is shown in Fig. 1. 

This figure uses three different mesh densities to solve for the 

CMs of a loss-free dielectric cube (relative permittivity εr = 

9.4). The three different mesh densities shown consist of 928, 

1640, and 6256 basis elements. As the number of mesh 

elements increase the values converge to an SIE solution point 

at a nearly exponential rate (observed). This convergence can 

be seen in the figure, where each solution converges to a point 

equal to one of the CM values found by an SIE solution. It 

should be noted that while a VIE solution requires an 

extremely dense tetrahedral mesh to converge there are also 

known convergence problems associated with solving the SIE 

impedance matrix when using RWG basis elements. While the 

SIE RWG convergence rate can be increased in many different 

ways, for the purposes of this study the number of RWG mesh 

elements (created in the open source GMSH code) was 

iteratively increased until the SIE impedance matrix produced 

eigenvalues (between -20 < λ < 20) which changed by no more 

than 10-2. This condition is generally reached when the SIE 

mesh element length was approximately equal to 1/20th of the 

effective wavelength of the structure being characterized.  

 

 
Fig. 1.  Impact of mesh quality on the accuracy of CM eigenvalues for a 

dielectric cube.  
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The CMs for a mesh density consisting of 6256 basis 

elements is still considered to be a coarse VIE mesh. 

However, this tetrahedral density is computationally 

prohibitive for CM solutions, as the VIE simulation containing 

6256 bases elements took 373,242 seconds to complete. Both 

the VIE and SIE solutions in the article were computed using 

Matlab codes using the built-in eigensolver. All solutions 

throughout this article were completed on an Intel Core i7-

5960 PC with 32 GB of DDR4 memory and no parallel 

processing. In the following section, it will be seen that the 

physical bounds method provides an SIE solution that is as 

accurate as this VIE solution and is significantly more 

computationally practical. 

V. COMPARISON OF SIE MODES TO VIE MODES 

For conciseness, this article will not explore all facets of the 

physical bounds method presented in Section III. However, in 

an effort to illustrate the differences between methods, five 

different dielectric resonators were chosen and analyzed to 

show the differences between the two SIE solutions and the 

VIE solution. It should be noted that the internal resonance 

problem is not only found in purely dielectric problems, but in 

any problem which utilizes the symmetric form of the 

PMCHWT SIE formulation to solve for the MoM impedance 

matrix. The impedance matrices for the SIE solutions in this 

manuscript were found using an in-house, Matlab-based, 

PMCHWT MoM solver and verified using the 

computationally efficient commercial MoM solver, FEKO. On 

the other hand, all VIE impedance matrices were found using 

FEKO. The impedance matrices were then exported to Matlab 

for CM processing. Beyond the computation of the impedance 

matrices, all computations were carried out using in-house 

Matlab codes. Each dielectric resonator was designed to be 

identical in size whereas the material properties of each 

resonator were varied. Each dielectric resonator measures 

2.54cm × 2.54cm × 2.54cm and is made from a composite 

consisting of a base material of alumina (Al2O3). Different 

losses were added to the alumina through carbon loading, 

while magnetic permeability was added through doping the 

alumina with BaFe12O9 (0.15 micron). The simulated material 

parameters were extracted from physical prototypes [34], and 

the approximate properties of each cube are shown in Table I, 

where µr denotes relative permeability. 
 

TABLE I 

PROPERTIES OF DIELECTRIC AND MAGNETIC CUBE RESONATORS 

Cube εr tan δd µr tan δm 

NL 9.4 0 1.0 0 

L0 9.4 0.003 1.0 0 

L1 9.3 0.012 1.0 0 

L5 9.1 0.053 1.0 0 

M3 8.7 0.026 2.6 0.034 

 

Each cube is labeled to simplify recurring references to the 

specific material properties of the individual cube structures. 

The cubes are labeled as follows:  
 

 Cube NL is loss-free. It is made of a non-real material and 

is only used for simulation purposes. 

 Cube L0 is made of real Al2O3 yielding a permittivity loss 

tangent (tan δd) of 0.003. 

 Cube L1 adds pure carbon powder, obtaining a loss 

tangent of 0.012. 

 Cube L5 adds pure carbon powder, obtaining a loss 

tangent of 0.053. 

 Cube M3 is doped with BaFe12O9 (obtained from Sigma-

Aldrich Incorporated) to add some permeability and 

magnetic losses to the cube (µr = 2.6, tan δm = 0.034) 

while achieving εr = 8.7 and moderate tan δd = 0.026.    
 

Each of these cubes has different CMs across frequency. 

The first resonance of the loss-free cube structure (cube NL) is 

located near 3.0 GHz. To show the differences between CM 

simulation methods and material types, the structures’ CMs 

were analyzed from 2.0 GHz to 4.2GHz. Each of the methods 

presented produces a set of eigenvalues for each structure at 

each frequency point. However, for completeness, while 

reducing extraneous information from this article, the CMs 

produced using (3) and (11) will only be plotted for the ideal 

loss-free cube (Cube NL).  

The CMs, as calculated through the decomposition of (3), 

do not satisfy any of the CM requirements. Some of the 

requirements which are not satisfied by the resulting CMs are 

the non-orthogonal characteristic far-fields and characteristic 

currents. Additionally, by definition electrically small 

structures support a low number of excitable or near-resonant 

CMs (with -1.5 < λ < 1.5). As can be seen from Fig. 2, the 

decomposition of (3) produces more than 12 near-resonant 

CMs at 2GHz, and as many as 25 at 4GHz. These results are 

expected as the impedance matrix of (3) is not symmetric, 

which is contrary to the requirement in TCM computations.  

 

 
Fig. 2.  First 25 CMs of the non-symmetric PMCHWT impedance matrix 

which are near resonance. In particular, 12 modes are near resonance at 2GHz, 

where the structure is electrically too small to support any near resonant 

modes at this frequency. 

 

The symmetric form of the PMCHWT MoM impedance 

matrix (11) provides the CMs corresponding to both internal 

and external resonances of the structure, as was described in 

Section II. Figure 3 shows the CMs of both the VIE solution 
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as well as the modes of (11) for Cube NL. The modes shown 

with positive eigenvalues for this specific structure are related 

to internal resonances. These internal resonant modes are not 

present in the VIE solution; and whereas the currents are 

orthogonal, the far-field patterns are not orthogonal. It should 

be noted that the computational time of this SIE solution took 

226 seconds while the computational time of the VIE solution 

took 373,242 seconds (4.32 days). If the VIE modes in Fig. 2 

are compared to the modes in Fig. 3 it is apparent that an eigen 

decomposition of (11) does not provide a correct or usable 

TCM solution. 

It is possible to remove these internal resonances from the 

problem space using one of two methods: the power 

thresholding method that was expressed as a preliminary 

observation in [17], or the proposed physical bounds method 

that was described in Section III. The power thresholding 

method was applied using a trial and error procedure within 

this manuscript. This was done by iteratively decreasing the 

radiated power threshold until all VIE modes between -20 < λn 

< 20 were present in the solution, or until a significant number 

of non-real modes were observed within these bounds. It 

should be noted that this procedure is optimistic, as it requires 

the VIE solution to be known for each of the simulations prior 

to applying the power thresholding method, which is 

impractical.  

Figure 4 shows the CMs for SIE thresholding, SIE physical 

bounds, and the VIE method. It can be seen that all three 

methods work well for the non-realistic material which has no 

losses. Small discrepancies between the SIE formulations and 

the VIE formulation in modes with high Q can be attributed to 

the coarse VIE meshing, as discussed in Section IV. The 

computational times for the power thresholding and physical 

bound methods are greater than the direct decomposition of 

(11) which is seen in Fig. 3. This is because the radiated 

power must be computed for each CM. The computational 

time for power thresholding was 302 seconds whereas the 

computational time of the defined physical bounds was 518 

seconds. The time difference between these SIE methods is 

due to the required quality factor computation. To compute the 

quality factor, an additional closely spaced frequency step was 

added 50 kHz from the plotted simulation point. This allows 

for a valid computation of the Q of each mode using (18). 

With the help of VIE CMs in the trial-and-error procedure, 

SIE power thresholding has been found to be as accurate as, 

and faster than, both the physical bounds and VIE solutions, 

when applying TCM to loss-free dielectric materials. 

However, when small amounts of loss are added into the 

simulation, power thresholding does not always provide an 

accurate and reliable solution, even when assisted by known 

CMs from VIE. When very small losses are added to any 

object, the power thresholding technique provides reliable 

results only near resonance. For example, non-real CMs can 

be found at eigenvalues greater than | λn | = 105 for Cube L0, 

which has a small dielectric loss tangent of 0.003. When 

designing antennas using TCM, eigenvalues with this order of 

magnitude are not relevant. However, from a purely 

theoretical perspective, the solution is not completely accurate. 

 

 
Fig. 3.  Comparison of CMs of the symmetric PMCHWT SIE impedance 

matrix (11) and the CMs of the VIE formulation for Cube L0. The symmetric 

SIE impedance matrix produces several inductive modes near resonance, these 

are non-real modes as this structure does not support inductive eigenmodes at 

frequencies below 3GHz. 

 

 
Fig. 4.  Comparison and visualization of the all the SIE and VIE CM solutions 

between -100 < λ < 50 for the loss free cube (Cube NL). 

 

When realistic losses are added to an object (e.g., Cube L1), 

the power thresholding method becomes unreliable, whereas 

the physical bounds method remains stable. The CMs of Cube 

L1 are shown in Fig. 5. The unreliability of the power 

thresholding method is due to the presence of non-real CMs 

which pass through resonance. These non-real modes are 

detrimental to TCM antenna design, as these “resonant 

modes” are likely to be chosen as candidates for antenna 

designs, but in reality cannot be excited and will not radiate 

power. This problem of non-real CMs worsens as the loss of 

the structure increases. Figure 6 shows the modes of Cube L5, 

and it can be seen that several non-real CMs exist in the power 

thresholding solution, whereas the physical bounds solution 

remains accurate. 
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Fig. 5.  Comparison of the first four characteristic modes for the SIE and VIE 

solutions of Cube L1. Non-real CMs are only found in the power thresholding 

method. The non-real modes found by this method are shown with a black line 

through the blue diamond marker to indicate the non-real CMs found in this 

specific solution. 

 

Materials with mixed permittivity and permeability present 

a problem to all TCM solution sets. Even though magnetic 

materials may not be as common as dielectric materials in 

antenna design, they can play a vital role in antenna 

miniaturization [35] and absorbing materials [36]. In recent 

years, nano-ferrites have been proven useful at higher 

frequencies, with reduced loss while maintaining high 

permeability [37] These new materials, while still lossy, can 

significantly reduce the resonant frequency of multi-GHz 

dielectric resonator antennas (DRAs). For these reasons, it is 

important to understand the limitations of TCM design using 

materials with mixed permittivity and permeability. 

 

 
Fig. 6.  Comparison of the first four characteristic modes for the SIE and VIE 

solutions of Cube L5. Non-real modes are only found in the power 

thresholding solution and are indicated by a black line through a blue diamond 

marker. 

 

When materials of mixed composition are used to calculate 

the CMs of a VIE solution, the number of basis functions used 

is doubled. This is problematic as the computational time 

increases with the number of basis functions (see section IV). 

When evaluating the CMs of Cube M3 using the same number 

of meshing elements, the computational time becomes 

unrealistic. To determine the VIE CM solution for Cube M3, 

the number of mesh elements was reduced by half, 

corresponding to half as many basis functions. This causes 

significant computational error in high Q modes. However, the 

VIE CM solution will provide only real CM modes, thus non-

real CMs and missing CMs can be found within the SIE 

solution set. The VIE CMs for Cube M3 are shown as red 

circles in Fig. 7. Point A in this figure shows an example of 

the error which is observed in high Q modes. 

The power thresholding solution in Fig. 7 consists of both 

missing and non-real CMs. As described previously, the 

radiated power threshold was increased until all modes were 

observed or until a significant number of non-real CMs 

appeared. Point B in Fig. 7 indicates a few of the power 

thresholding modes that cannot be linked to any mode in the 

VIE solution set, therefore these modes are determined to be 

non-real CMs. Apart from the existence of a significant 

number of non-real modes, many real CMs are missing in the 

solution. At points A and C, modes matching the VIE solution 

can only be found within the physical bounds solution, 

whereas the power thresholding solution has no matching 

CMs in these areas.  

 

 
Fig. 7. Comparison of notable and interesting characteristic modes for the SIE 

and VIE solutions of Cube M3. Far-field CM tracking [34] was utilized to 

link modes at different frequencies (solid lines added) to help identify the 

corresponding modes for the different solutions. Non-real modes are only 

found in the power thresholding solution and are indicated by a black line 

through a blue diamond marker. 

 

The problems associated with using the power thresholding 

method to compute the CMs of dielectric/magnetic objects are 

highlighted in Figs. 5-7, and the speed of current computers 

places severe limitations on computing CMs using a VIE 

MoM impedance matrix. However, one problem is observed 

in the physical bounds method that may place some limitations 

on this method. At point D in Fig. 7, one of the VIE modes is 

missing from the physical bounds solution. Application of the 

physical bounds method requires that two impedance matrices 

be computed at adjacent frequencies (in this case 50kHz) in 

order to compute the Q of the given mode. In order to 

calculate the correct Q, the modes must not be degenerated, 

i.e. it should be possible to properly track the same mode at 

two adjacent frequency points; this is where a problem arises.  

Degenerated modes cause problems in determining the 
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correct currents at frequency points where two modes cross. 

When (12) is applied to an impedance matrix the associated 

eigenvalues are not sorted between one frequency point and 

the next, and locations of CM crossover cannot be located 

[38], thus degenerated modes cannot be determined. If a 

degenerated mode occurs for a specific mode, the currents can 

be effected, thus altering the Q of the mode. Advanced CM 

tracking techniques have been developed in recent years, these 

advances allow the physical bounds method to perform as well 

as it does. However, because internal resonances have 

correlated far-fields, the tracking method in [38] cannot be 

utilized, thus a current based tracking solutions must be 

applied. In [38], it was shown that tracking techniques which 

use characteristic currents often fail in many ways, including 

when differences between modes are limited to high currents 

in small regions of the structure. The mode at point D may be 

degenerated, and cannot be detected using current based 

tracking methods [39]. The degenerated mode changes 

currents and the quality factor, thus one modal point was 

determined to be an internal resonance rather than properly 

defined as a real CM. Future improvements in current based 

tracking solutions, or proper removal of degenerated modes, 

should solve this problem. However, the high accuracy of the 

presented physical bounds method allows for TCM to be used 

to effectively design antennas in any material. 

VI. VERIFICATION OF CM ANALYSIS 

The CMs found using the physical bounds method can be 

utilized to design antennas and understand how to adapt 

antennas for specific performance goals. The CMs found in 

Section V for each cube can be used to design antenna feeds, 

or coupling elements (CEs), which will primarily only excite 

specific CMs. To verify that a given CM is successfully 

excited, the radiated far-field pattern of the physical structure 

can be analyzed to determine the CMs which are excited 

within the structure [23]. If the primary excited mode 

corresponds to that of the intended CM (from Section V), then 

this CM is verified to be a physical structural resonance (i.e., a 

real mode). Whereas the theoretical proof of these modes 

being real was given in [15] for SIE structures and [14] for 

VIE structures, here a physical representation of these proofs 

is shown. 

The near-fields of the first two resonances of each cube 

structure were evaluated for the placement of CEs. The first 

CM of Cube L0, L1, and L5 maintained a resonant frequency 

of approximately 3.1GHz (see Table II), whereas the second 

CM for these cubes maintained a resonant frequency of 

approximately 4.0GHz. The modal resonance for both modes 

slightly increased in frequency as the loss of the structure 

increased. The first two CM resonances of Cube M3 were 

significantly below that of the other cubes, i.e., the first 

resonance was seen at 2.1GHz and the second resonance at 

2.4GHz. Once the real CMs of the structure are found, the 

corresponding characteristic near-fields and currents of each 

CM can be used to determine the placement of current or near-

field CEs. When properly designed and implemented these CE 

will only couple energy into the selected CM, and thus the 

antenna will radiate that specific mode. This design procedure 

is different than that of traditional DRA coupling elements, 

which often utilize either a slot-coupled aperture or a vertical 

monopole. These types of DRA CE designs require a ground 

plane and dielectric cutouts which may influence the specific 

CMs previously found. However, it may be of interest to the 

reader that the CM near fields can be used in the same manner 

as those of natural modes (i.e., TE/TM modes) when using 

CMs for DRA specific designs. 

The CEs for each resonance were designed using cross 

sectional cuts of electric and magnetic near-fields for the real 

characteristic modes 1 and 2. The near-field cross sectional 

cuts of Cube L1 are shown in Fig. 8. The near-fields of mode 

1 show that the mode primarily radiates electric near-fields in 

region A (Fig. 8). This indicates that if z-directed electric-field 

energy can be coupled into the cube structure in this region, 

mode 1 of the structure should be effectively excited. It is well 

known that a small non-resonant dipole stores a significant 

amount of electric-field energy along the long axis of the 

dipole in its reactive near-field region. If the small dipole is 

placed along the dotted line in region A of Fig. 8, the dipole 

will couple electric-field energy into the cube structure and 

effectively excite mode 1. The near-fields of mode 2 are 

significantly different than those of mode 1 and show that the 

mode primarily radiates magnetic near-fields around the 

structure as seen in region B (Fig. 8). This indicates that if a 

CE is introduced which can induce the same fields in that 

region, the near-fields will couple energy into mode 2, and 

mode 2 will be excited.  A small non-resonant loop stores 

magnetic-field energy along the length of the loop structure in 

its reactive near-field region. Therefore, when a small loop is 

placed around the structure in the x-y plane (dotted line along 

region B in Fig. 8) the loop will couple magnetic-field energy 

into the cube structure and effectively excite mode 2. The final 

design parameters and dimensions of the electric CE are 

shown in Fig. 9(a), while the dimension of the magnetic CEs 

are shown in Fig. 9(b).  

The two distinctive CEs which should correspond to two 

orthogonal antennas were analyzed using the Finite-difference 

time-domain (FDTD) solver in CST, and simulated from 

1GHz to 4.5GHz. The simulated resonant frequencies of each 

cube are shown in Table II. This table provides the CM 

resonance frequencies, the frequencies at which each cube 

antenna’s imaginary impedance crosses zero, and where the 

antenna’s real impedance is equal to 50Ω. It should be noted 

that λn = 0 is not related to the ideal 50Ω matching frequency 

(i.e., Im(Z) = 0Ω and Re(Z) = 50Ω), but rather it indicates 

where m eW W  for these structures. When designing antenna 

structures using CMs, the optimal 50Ω antenna match must 

often be realized through the use of matching components. 

The fed cube structures (Fig. 9) have a resonance frequency 

for Im(Z) = 0Ω within 80 MHz of where λn crosses zero. The 

antenna feeds did not utilize a matching circuit in an effort to 

preserve the imaginary impedance’s characteristics. This 

implies that the CE are properly exciting the expected 

characteristic current. As expected, the CM resonance 

frequency is unrelated to the ideal 50Ω match frequency. 
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Thus, when comparing λn = 0 to Re(Z) = 50Ω a constant 

frequency offset is not observed. 

 
Fig. 8.  xy, xz, and yz cross sectional cuts of the electric and magnetic near-

fields (magnitudes only) for modes 1 and 2 of Cube L1. The dashed line in 

region A corresponds to a predicted location to place an electric coupling 

element which will couple electric energy into mode 1, whereas the dashed 

line in region B corresponds to a predicted location of a magnetic coupling 

element which will feed couple magnetic energy into mode 2. 

 

 
Fig. 9.  (a) The electric CE and (b) the magnetic CE were designed using the 

CM cross-sectional near-fields.  The loaded resonance frequency of both CE 

structures are not resonant near the characteristic modal resonance frequency. 

 

TABLE II 

MODAL RESONANCE AND SIMULATED ANTENNA RESONANT FREQUENCY 

Cube Type 
Feed 

Type 

Modal 

Resonance 

Simulated 

Im(Z) = 0 

Simulated 

Re(Z) = 50Ω 

Cube NL Electric 3.08 GHz 3.11 GHz 3.24 GHz 

Cube L0 Electric 3.08 GHz 3.10 GHz 3.24 GHz 

Cube L1 Electric 3.10 GHz 3.13 GHz 3.24 GHz 

Cube L5 Electric 3.18 GHz 3.22 GHz 3.24 GHz 

Cube M3 Electric 2.12 GHz 2.10 GHz 2.21 GHz 

Cube NL Magnetic 4.03 GHz 4.10 GHz 4.14 GHz 

Cube L0 Magnetic 4.05 GHz 4.11 GHz 4.14 GHz 

Cube L1 Magnetic 4.05 GHz 4.11 GHz 4.15 GHz 

Cube L5 Magnetic 4.09 GHz 4.17 GHz 4.17 GHz 

Cube M3 Magnetic 2.41 GHz 2.47 GHz 2.49 GHz 

The modal far-field energy contribution to the individual 

simulated far-field patterns can be determined using the modal 

reconstruction theory presented in [23]. As can be observed 

from Fig. 10, the predicted mode contributes more than 90% 

of the energy of each simulated antenna’s far-field pattern. 

Mode 4 contributes 7.2% of the far-field energy of Cube L5’s 

simulated antenna resonance. This was determined to be due 

to the length of the magnetic CE used to excite the structure. 

This contribution can be reduced by reducing the overall 

length of the magnetic CE. If the CE’s length is reduced by 

means of placing the CE 3mm within the cube’s surface, the 

contribution of mode 4 to the antenna pattern is reduced to 

0.8%.  However, placing the CE within the cubes surface is 

not easily implemented in a real structure; therefore, the 

choice was made to place the CE on the exterior of the cubes 

surface. Less than 1% of the total far-field energy was 

contributed to the simulated antenna patterns by non-existent 

modes (i.e., modes from the feed structure itself, which is not 

part of the original cube structure), higher order modes, or the 

individual coupling elements.  

 

 
Fig. 10.  The simulated antenna far-field patterns have a significant modal 

contribution from the expected modes for all ten structures. Each modal 

reconstruction was computed for the simulated frequency where Im(Z) = 0, as 

shown in Table II. 

 

The described CEs were implemented on the physical cube 

structures (i.e., Cube L0-L5 and Cube M3 in Section V), and 

fed using a standard 50Ω coaxial cable (see Fig. 11). The 

measured resonant frequencies of each cube is shown in Table 

III. The simulated (Table II) and measured (Table III) resonant 

frequencies correspond extremely well to one another. It 

should be noted that resonant frequencies in Table III utilized 

a balun as well as absorbing material around the coaxial cable. 

A high correlation between the simulated and measured 

resonances is expected as the simulated material properties 

were defined by the physical properties of each prototype. The 

small differences between the measured and simulated 

resonance frequencies were determined to be due to cable 

coupling effects (significant), variation in CEs (marginal), and 

simulation mesh density (minimal). 
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TABLE III 

MODAL RESONANCE AND MEASURED ANTENNA RESONANT FREQUENCY 

Cube Type 
Feed 

Type 

Modal 

Resonance 

Measured 

Im(Z) = 0 

Measured 

Re(Z) = 50Ω 

Cube L0 Electric 3.08 GHz 3.10 GHz 3.30 GHz 

Cube L1 Electric 3.10 GHz 3.21 GHz 3.39 GHz 

Cube L5 Electric 3.18 GHz 3.15 GHz 3.18 GHz 

Cube M3 Electric 2.12 GHz 2.22 GHz 2.44 GHz 

Cube L0 Magnetic 4.05 GHz 3.92 GHz 3.98 GHz 

Cube L1 Magnetic 4.05 GHz 3.94 GHz 4.06 GHz 

Cube L5 Magnetic 4.09 GHz 4.21 GHz 4.29 GHz 

Cube M3 Magnetic 2.41 GHz 2.52 GHz 2.66 GHz 

 

Each physical structure’s 3D complex radiation pattern was 

measured in an anechoic chamber at Lund University. As with 

the simulated radiation patterns, the modal reconstruction 

theory in [23] was applied to determine the individual modal 

contribution of the final measured antenna far-field patterns. 

During this measurement campaign, it was determined that the 

feed cable radiated a significant amount of far-field energy. 

The coaxial cable effects were determined to be the cause of 

the radiation discrepancies. These discrepancies were 

discovered through evaluating the far-field envelope 

correlation coefficient (ECC) of the simulated and measured 

antennas. The ECC was found to be as low as 0.6 in some 

prototypes. When a 5cm feed cable was introduced into the 

simulation, the ECC increased by as much as 0.2, thus 

demonstrating the significant effect the coaxial cable has on 

the final radiated pattern. 

When mapping the modal contribution of the cubes without 

compensating for the cable effects, more than 40% of the 

radiated energy could not be mapped to any mode (non-

existent modes). To reduce the effect of the feed cable, a balun 

was connected to the feed point of each cube, and magnetic 

radar absorbing material covered the first 5cm of the cable 

directly following the balun. The same setup was used to 

obtain the results in Table III. The modal contributions (Fig. 

12) show that the expected mode contributes more than 80% 

of the energy of the measured far-field antenna patterns. The 

small discrepancies between the measured and simulated 

prototypes are believed to be due to remaining feed cable 

effects as well as practical problems associated with 

measuring physical prototypes at these frequencies. The 

normalized 2D principal plane cuts for the simulated and 

measured patterns for Cube L0 are shown in Fig. 12 (mode 1) 

and Fig. 13 (mode 2). Note, these figures utilize linear scaling 

to more effectively show the differences between the 

simulated and measured patterns. 

Figures 9 and 11 as well as Tables II and III clearly show 

strong agreement between the physical bounds CMs and VIE 

CMs computed in Section V. The physical antenna resonances 

can be strongly linked to the CMs of the structure by means of 

modal reconstruction. This provides evidence that the first two 

modes solved for in Section V correspond to a real resonances. 

These resonances can be effectively, and realistically, excited 

to radiate far-field energy. Therefore, this provides evidence 

that the first two resonant modes of these structures cannot be 

attributed to a MoM internal resonance, and thus, must be 

attributed to real CMs. 

 

 
Fig. 11.  Four of the eight physical prototypes that were fabricated. Two of the 

structures show how the electric CE was implemented, while the other two 

structures show how the magnetic CE was implemented. 

 

 
Fig. 12.  The measured antenna far-field patterns have a high (>80%) modal 

contribution from the expected modes for the eight physical structures. Each 

modal reconstruction was computed for the measured frequency where Im(Z) 

= 0 as shown in Table III. 

 

 
Fig. 13.  Normalized simulated and measured patterns of Cube L0 for mode 1 

(Electrical CE) at 3.10 GHz. The Theta and Phi patterns are aligned with the 

coordinate system shown in Fig. 8 and Fig. 9.  

 

 
Fig. 14.  Normalized simulated and measured patterns of Cube L0 for mode 2 

(Magnetic CE) at 3.92 GHz. The Theta and Phi patterns are aligned with the 

coordinate system shown in Fig. 8 and Fig. 9.  
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VII. CONCLUSIONS 

In this work, a new and practical physical bounds post-

processing method for obtaining the real CMs of any 

impedance matrix found using a MoM surface formulation 

was developed, presented, and verified. This new method 

provides the real CMs of any material by utilizing the inherent 

properties of TCM to locate and remove internal resonances 

formed by an improperly formulated CFIE SIE MoM 

equation. This work demonstrated the viability of this method 

using a symmetric form of the PMCHWT SIE formulation for 

MoM. The symmetric PMCHWT impedance matrix was 

analyzed and it was shown that any CM solution found using 

this impedance matrix is susceptible to the MoM internal 

resonance problem, including but not limited to: dielectric 

resonators, printed circuit board (PCB) substrates, and antenna 

support structures. Utilizing the fundamental properties of 

TCM, it is possible to isolate the CMs that correspond to 

internal resonances through either basis function perturbation, 

power thresholding [17], or the proposed physical bounds 

defined threshold. 

Power thresholding and the proposed method of isolating 

the CMs that correspond to real resonances were analyzed 

against each other, as well as against a VIE formulation. The 

physical bounds method gave superior results when compared 

against the power thresholding method. The power 

thresholding method provided inaccurate results in lossy 

materials, and no specific defined threshold could be found to 

be acceptable for all low loss material types and shapes.  

However, the physical bounds method was found to provide 

an efficient and correct result when compared directly against 

the VIE CMs of several cube structures of different material 

properties. Degenerated modes may cause problems when 

using the physical bounds method; if modes are degenerated 

across frequency, real modes can be defined as internal modes 

and internal modes can be defined as real modes. The high 

accuracy of current algorithms allowed this method to perform 

extremely well, but future improvements in removing 

degenerated modes will lead to even higher accuracy in a 

physical bounds solution set. 

The CMs of several cube-shaped dielectric structures were 

used to develop eight different physical antennas. The far-field 

patterns of the excited DRAs were used to map the theoretical 

CMs to the physical resonances of the structure. The mode 

mapping verified that the CMs were related to real resonances. 

Time domain simulations of these cube structures also confirm 

the accuracy of the achieved experimental results.  

This work shows that it is now possible to obtain CMs in 

lossy real materials in a computationally efficient manner, 

allowing the TCMs to be used for engineering applications.  

When properly applied, this proposed method of calculating 

the theoretical CMs of a structure can be used to better 

understand the underlying properties of any antenna, as well 

as to design and construct antennas for specific performance 

goals. 
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