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Energy Optimal Excitation of
Radio-Frequency Cavity

Olof Troeng ∗ Bo Bernhardsson ∗

∗Department of Automatic Control, Lund University, Sweden
E-mail: {oloft,bob}@control.lth.se.

Abstract: We show how to minimize the energy required to build up the electromagnetic
field in radio-frequency cavities, which will allow power savings for pulsed particle accelerators.
By formulating an optimal control problem for a first-order system we obtain a solution on
state-feedback form. We numerically compare the optimal solution to previous approaches.

1. INTRODUCTION

Large particle accelerators require megawatts of power for
building up and maintaining the electromagnetic fields in
the accelerating radio-frequency (RF) cavities. In pulsed
accelerators, the energy required to fill the cavities (i.e.
build up the electromagnetic fields), is significant, but
does not contribute to particle acceleration. For the linear
accelerator at the European Spallation Source (ESS), which
has 2.86 ms long beam pulses at 14 Hz, it takes 150 µs to fill
the superconducting cavities in the high-β section, which
amounts to a yearly cost of 100 ke 1 , Peggs et al. (2013).
Currently, the RF amplifier of choice for high-power
accelerators is the klystron, which has constant power
consumption regardless of output power. For the accelerator
at ESS, the industry has been encouraged to develop an
inductive output tube (IOT), for the 84 cavities in the
high-β section. IOTs have an almost constant efficiency
down to 30% of maximum output power, which will give
substantial power savings.
For klystrons, which have constant power consumption,
the energy optimal filling strategy is simply to drive it at
saturation. However, for IOTs, the energy consumption can
be reduced by using a more sophisticated filling strategy.
As remarked in a recent article by Bhattacharyya et al.
(2015), little work has been done on energy optimal filling
of RF cavities. In their article, they derived analytically
how to minimize the energy reflected from the cavity during
filling, which corresponds to minimization of the wall-plug
energy for ideal amplifiers. In this contribution we show how
to minimize the wall-plug energy consumption for arbitrary
amplifier characteristics. The components involved in the
control problem are illustrated in Figure 1.

? The authors work with development of the RF control system for
the linear accelerator at the European Spallation Source, and would
like to acknowledge many helpful discussions with the RF group at
ESS. They have also received financial support from the ELLIIT
Excellence Center and the Swedish Research Council through the
LCCC Linnaeus Center.
1 The filling constitutes 0.15 ms/(2.86 + 0.15) ms = 5 % of the RF
pulse, and the expected average electricity consumption of the RF
amplifiers (IOTs) is 6 MW, which gives the following cost estimate:
5 % × 6 MW × 5000 h/year × 0.07 e/kWh = 100 ke/year.
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Figure 1. Main components of an RF station. We will not
consider feedback in this article (dashed line).

1.1 Problem formulation

The complex-coefficient baseband dynamics for the accel-
erating cavity mode are, Schilcher (1998),

V̇ = (−ω1/2 + i∆ω(t))V + ω1/2RLIg+ω1/2RLIb, (1)
where V is the cavity field voltage (phasor), ∆ω(t) is
the detuning of the cavity, Ig is the generator current,
which is the controlled output of the RF amplifier, and
Ib is the beam-current, which is equal to 0 during the
filling. Throughout, bold letters will denote complex-valued
signals. To simplify the exposition we assume, without
loss of generality, that V has nominal value 1, the cavity
bandwidth ω1/2 = 1, and the loaded shunt impedance
RL = 1.
We want to determine how to fill the cavity, i.e. reach
V(tf ) = 1, while minimizing the energy consumption

W =
∫ tf

0
Pamp(|Ig|) dt, (2)

where Pamp(Ig) = I2
g/η(Ig) is proportional to the wall-plug

power drawn by the amplifier, and η(Ig) is the amplifier
efficiency as a function of output amplitude. The final time
tf is a free parameter and there is an upper limit Imax

g on
|Ig|, see Figure 2 for an illustration.
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Figure 2. Normalized amplitudes of the cavity field and the
generator current during an RF pulse, for the standard
approach of minimum time filling, i.e. |Ig| = Imax

g

(solid lines), and energy optimal filling for an IOT
(dotted lines).

Formally stated, the problem is

minimize
Ig,tf

∫ tf

0
Pamp(|Ig|) dt (3a)

subject to V̇ = (−1 + i∆ω(t))V + Ig (3b)
|Ig| ≤ Imax

g (3c)
V(0) = 0 (3d)
V(tf ) = 1. (3e)

In the problem formulation (3), we assume the detuning
∆ω(t) for 0 ≤ t ≤ tf to be known in advance, that the
amplifier has no dynamics, that there are no disturbances
and that all relevant parameters are perfectly known. These
assumptions are approximations, but we believe that they
are sufficiently good for our conclusions to hold.

1.2 Previous Work

Bhattacharyya et al. (2015) derived, for ∆ω ≡ 0 and no
limit on |Ig|, how to minimize the reflected energy for a
fixed final time tf — a problem similar to minimizing the
power consumption for constant amplifier efficiency η. The
derived optimal generator current profile was

I∗g (t) = exp(t)
sinh tf

, (4)

with the corresponding cavity voltage

V (t) = sinh(t)
sinh tf

.

If the amplifier saturation level is too low to implement
(4), i.e. exp(tf )/ sinh tf > Imax

g , the solution was shown
to instead be of the form I∗g (t) = min(Ket, Imax

g ), for a
suitably chosen K. Bhattacharyya et al. also compared the
energy consumption for amplifiers with different efficiency
characteristics η(Ig), with Ig given by (4), note that I∗g
was computed for η ≡ constant, and thus suboptimal for
amplifiers whose efficiency depend on the output amplitude.

1.3 Outline of the paper

In the next section we solve (3) for arbitrary, known, detun-
ing ∆ω(t), and arbitrary efficiency characteristics η(Ig). In
Section 3 we compare the energy optimal filling strategies
for different forms of η(Ig) and different saturation levels
Imax
g . We conclude with a remark on cryogenic losses and
a discussion of the results.

2. SOLVING THE OPTIMIZATION PROBLEM

2.1 Optimal phase of Ig(t)

Transforming the cavity equation (3b) to polar coordinates,
gives, Brandt (2007),

V φ̇−∆ωV = Ig sin(θ − φ) (5a)
V̇ + V = Ig cos(θ − φ), (5b)

where Ig≥0, V ≥0, θ and φ are defined via
Ig(t) = Ig(t)eiθ(t) (6)
V(t) = V (t)eiφ(t). (7)

By considering (5b), we see that choosing θ as
θ∗(t) = φ(t), (8)

maximizes V̇ for any value of Ig. Since the cost (3a) is
independent of φ, and we wish to minimize the cost for
reaching V (tf ) = 1, it is clear that (8) is optimal. With
this choice of θ(t), equation (5a) reduces to φ̇ = ∆ω, and
since we want φ(tf ) = 0, we must have

φ(t) = −
∫ tf

t

∆ω(t′) dt′. (9)

From (8) it follows that the optimal phase θ∗ of the
generator current equals the right hand side of (9).
Remark: Actually, for superconducting cavities, ∆ω(t)
depends on the cavity field V , via Lorenz force detuning.
However, since the the optimization of θ and Ig/V is
decoupled, the optimal V can be found first.

2.2 Optimal amplitude of Ig(t)

The optimal phase of the generator current is given by (8),
so finding the optimal amplitude Ig reduces to the following
problem,

minimize
Ig,tf

∫ tf

0
Pamp(Ig) dt (10a)

subject to V̇ = −V + Ig (10b)
|Ig| ≤ Imax

g (10c)
V (0) = 0 (10d)
V (tf ) = 1. (10e)

From (10), it seems reasonable that the optimal choice of
Ig at each time-instant maximizes the ratio between the
increase of the cavity field and the power consumption, i.e.

I∗g (t) = argmax
Ig

−V (t) + Ig
Pamp(Ig)

. (11)

That (11) indeed is optimal, follows from the following,
slightly more general theorem.



Theorem 1. Consider the optimal control problem

minimize
u,tf

∫ tf

0
r(u(t)) dt (12a)

subject to ẋ(t) = f(x(t), u(t)) (12b)
x(0) = 0 (12c)
x(tf ) = 1 (12d)
u(t) ∈ U , (12e)

where U is a compact set, r(u) > 0 for all u ∈ U , f(x, u)
and r(u) are continuous functions of u, and

∀x ∈ [0, 1] ∃u ∈ U so that f(x, u) ≥ c > 0. (13)
Define

u∗(x) := argmax
u∈U

f(x, u)
r(u) . (14)

and assume that u∗ is sufficiently well-behaved for
ẋ = f(x, u∗(t)) to have a unique solution x∗(t). Then the
optimal control signal is given by u(t) = u∗(x∗(t)).

Proof. See the Appendix for a proof based on the
Hamilton-Jacobi-Bellman technique.

Remark 1: The assumption (13) guarantees finite-time
feasibility.
Remark 2: The maximum in (14) exists since a continuous
function is optimized over a compact set. If several u
maximize the expression, any can be chosen.
Remark 3: It is clear that the actual functions r(u) and
f(x, u) considered in (10), give a well-behaved u∗.
Remark 4: A constraint tf < tmax on the final time, can be
handled by adding a constant term to r(u), and doing a
binary search over that constant.

Solution for constant efficiency For a constant efficiency
η ≡ η0 we have Pamp(Ig) = I2

g/η0, and (11) becomes,

I∗g = argmax
Ig

−V + Ig
I2
g/η0

= 2V.

Note that this corresponds to V not reaching 1 in finite
time, which is possible since the cost is not strictly greater
than 0. If a fixed final time is imposed, the solution follows
from the maximum principle, or as in Bhattacharyya et al.
(2015).

3. RESULTS

In this section we compare the energy consumption for
three filling strategies:
• Minimum time, i.e. Ig(t) = Imax

g .
• Minimum reflection, (Bhattacharyya et al. (2015)),
i.e. Ig(t) = min(et/ sinh τ̂i, Imax

g ), τ̂i = 2.
• Energy optimal, according to (11),

considering four amplifier characteristics (Figure 3):
• Tetrode
• Doherty architecture solid state amplifier (SSA)
• Inductive output tube (IOT)
• Ideal (constant efficiency) amplifier,
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Figure 3. Efficiency as a function of normalized output
power (Ig/Imax

g )2, for the considered amplifiers types.
The data is from (Bhattacharyya et al., 2015, Fig. 9),
and has been slightly smoothed.

Table 1. Energy consumption of minimum time
(MT) and minimum reflection (MR) filling

relative energy optimal (EO) filling.

Imax
g = 1.5

Amplifier
WEO
WMT

WEO
WMR

Tetrode 98% 94%
Doherty Arch. SSA 90% 98%
IOT 92% 98%
η = 1 83% 96%

Imax
g = 2.25
WEO
WMT

WEO
WMR

97% 82%
82% 94%
87% 92%
68% 96%

and two saturation levels, given in normalized units by:
• Imax

g = 1.5
• Imax

g = 2.25.
The levels correspond to a normal conducting cavity and a
heavily beam-loaded superconducting cavity respectively.
The energy consumption for the different parameter combi-
nations are shown in Figure 4. The energy required by the
optimal filling strategy relative to minimum time filling and
minimum reflection filling are compared in Table 1. The
corresponding profiles for the cavity voltage and generator
current are shown in Figure 5.
For the high-β section at ESS, where IOTs will be used,
and Imax

g = 2.25, the energy reduction of using energy
optimal filling, relative to minimum time filling, is 13%,
corresponding to 13 ke/year.

3.1 Remark on cryogenic losses

As seen in Figure 5, the energy optimal filling profiles take
about 50-100% longer time than minimum time filling. This
implies increased RF heating of the cavities, and a higher
load on the cryogenic system, corresponding to a yearly
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Figure 4. Comparison of the energy consumption for mini-
mum time filling (standard approach), minimum reflec-
tion filling according to Bhattacharyya et al. (2015),
and energy optimal filling according to (11). Four
different amplifier types and two different saturation
levels are considered.

cost of 1–2 ke.2 This cost is clearly outweighed by the
savings from using energy optimal filling.
If desired, it is easy to incorporate cryogenic losses into
the optimization problem by adding a term αcryoV

2 to
the integrand in (10a). We performed some experiments
with this, and found that the resulting energy optimal
trajectories were similar, but slightly faster, than the
original ones.

4. CONCLUSIONS

We have shown how to reduce the energy required to
build up the fields in an RF cavity, compared to the
standard approach of driving the amplifier at saturation.
We proved that the energy optimal amplitude and phase of
the generator current, for a normalized cavity with ω1/2 = 1
and RL = 1, are given by

I∗g (t) = argmax
Ig

−V (t) + Ig
Pamp(Ig)

θ∗(t) =
∫ tf

t

∆ω(t) dt.

We compared the energy savings for different amplifier
characteristics and found that the energy consumption
2 The cryogenic load due to RF heating in the high-β section is
1.6 kW@4.5K, cooling efficiency of 250W/W, the required wall-plug
power is 400 kW, Peggs et al. (2013). Assuming a linear increase
of V during the filling, the average heating is proportional to∫ T

0 (V/T )2dV = T/3, on average a third relative when V = 1:
5 % × 1/3 × 400 kW × 5000 h/year × 0.07 e/kWh = 2 ke/year.
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Figure 5. Cavity voltage and generator current for different
filling strategies: minimum time, minimum reflection
and optimal with respect to the efficiency charac-
teristics in Figure 3 (ideal amplifier ↔ minimum
reflection filling). Note that minimum time and mini-
mum reflection filling are independent of the amplifier
characteristics. Two saturation levels are considered.

could be reduced by up to 30%. For the high-β section at
the European Spallation Source we estimated the yearly
savings to be about 10 ke. As the proposed filling strategy,
or at least an approximate version thereof, is relatively
easy to implement, it provides an straight-forward way to
reduce the operating costs and environmental footprint of
pulsed accelerators.
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Appendix A. PROOF OF THEOREM 1

Proof. Define the optimal cost-to-go function

V (x) :=
1∫
x

r(u∗(x′))
f(x′, u∗(x′) dx

′.

Let u be an arbitrary control signal with u(t) ∈ U , such that
the corresponding state trajectory x satisfies (12b)–(12d).
It then holds that
r(u) + d

dt
V (x(t)) = r(u) + dV

dx
f(x, u)

= r(u)− r(u∗(x))
f(x, u∗(x))f(x, u) =

= r(u)r(u∗(x))
f(x, u∗(x))

(
f(x, u∗(x))
r(u∗(x)) −

f(x, u)
r(u)

)
≥ 0, (A.1)

where the inequality follows from f(x, u∗(x)) > 0, r(u) > 0
and the definition (14) of u∗. Equality holds for u = u∗.
Integration of (A.1) gives, since x(0) = 0 and x(tf ) = 1,∫ tf

0
r(u(t)) dt ≥ V (x(0))− V (x(tf )) = V (0),

with equality for u = u∗. This proves optimality of u∗.


