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Preface

At the core of many computer vision models lies the minimization of an
objective function consisting of a sum of functions with few arguments.
The order of the objective function is defined as the highest number of
arguments of any summand. To reduce ambiguity and noise in the solution,
regularization terms are included into the objective function, enforcing dif-
ferent properties of the solution. The most commonly used regularization
is penalization of boundary length, which requires a second-order objec-
tive function. Most of this thesis is devoted to introducing higher-order
regularization terms and presenting efficient minimization schemes.

One of the topics of the thesis covers a reformulation of a large class
of discrete functions into an equivalent form. The reformulation is shown,
both in theory and practical experiments, to be advantageous for higher-
order regularization models based on curvature and second-order derivatives.
Another topic is the parametric max-flow problem. An analysis is given,
showing its inherent limitations for large-scale problems which are common
in computer vision. The thesis also introduces a segmentation approach
for finding thin and elongated structures in 3D volumes. Using a line-
graph formulation, it is shown how to efficiently regularize with respect to
higher-order differential geometric properties such as curvature and torsion.
Furthermore, an efficient optimization approach for a multi-region model
is presented which, in addition to standard regularization, is able to enforce
geometric constraints such as inclusion or exclusion of different regions.
The final part of the thesis deals with dense stereo estimation. A new
regularization model is introduced, penalizing the second-order derivatives
of a depth or disparity map. Compared to previous second-order approaches
to dense stereo estimation, the new regularization model is shown to be
more easily optimized.
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Chapter 1

Introduction

Images contain a lot of information which humans are very apt at extracting.
Examples include boundaries of objects and distances between objects. The
problem of finding such information belongs to the family of inverse prob-
lems which forms the basis of computer vision. Solving an inverse problem
is usually posed as computing the minimizer to an objective function of the
form

f(x) = D(x)︸ ︷︷ ︸
data term

+ R(x),︸ ︷︷ ︸
regularization term

(1.1)

where x is a vector of variables representing for instance labels for all the
pixels in an image. The data term usually models the local appearance of a
pixel and could for example be the probability of a pixel being part of an
object. In an ideal scenario, the data term would be sufficient to solve the
inverse problem. However, in most cases the output of the data term is noisy
and far from perfect. To overcome ambiguity and noisy solutions, some
kind of regularization term is often used. Usually, the regularization term
does not depend on the underlying data. The term penalizes unwanted
properties of the solution such as, for example, unsmooth boundaries.
Figure 1.1 shows an example of an inverse problem: object segmentation.
The example shows the effect of adding a regularization term.

Without regularization, the optimal solution can often be found by
thresholding the data term. Adding regularization adds complexity to the
model, at the cost of having to minimize a more difficult function. Most of
this thesis is devoted to introducing higher-order regularization terms and
presenting efficient methods for minimization of the resulting functions.
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CHAPTER 1. INTRODUCTION

(a) Image (b) Data term

(c) Solution without regularization (d) Solution with regularization

Figure 1.1: Example of an inverse problem; segmenting the boundary of
the left ventricle in the human heart. In (a) a two-dimensional image of the
heart is shown. In (b) a data term, D(x), is constructed from the image,
based on both spatial and intensity statistics. Darker regions indicate higher
probability of the left ventricle. In (c) the solution when f(x) = D(x)
is shown. The resulting segmentation boundary is incoherent. In (d) the
solution when f(x) = D(x) +R(x) is shown, where the regularization,
R(x), penalizes the boundary length. The resulting segmentation is now
one coherent object. In reality, the left ventricle in a healthy human heart
is round. In this example, the data term alone is not sufficient to model
the ventricle, since the ventricular boundary is occluded by the papillary
muscle. By penalizing the boundary length, the resulting segmentation
becomes more correct as opposed to simply choosing the largest connected
component in (c).
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Thesis overview

Chapter 2. This chapter introduces necessary background needed for the
rest of the thesis.

Chapter 3. Most objective functions used in computer vision can be
written on the form

f(x) =
∑
a∈F

fa(xa), (1.2)

where each function fa is only defined for a subset of x, denoted xa. Each
set xa usually represents a set of pixels which are spatially close to each
other, for instance all pixels in some patch of an image. In this chapter,
this special structure is exploited to reformulate the minimization of f into
a weighted constraint satisfaction problem. The gain is two-fold. Firstly, it
allows a larger class of functions to be optimized using popular and efficient
decomposition methods such as TRW-s and dual decomposition. Secondly,
it is shown both in theory and experiments that even if the original function
can be solved using a decomposition method, the reformulated function is
preferable as the resulting solutions often give a lower objective value. The
chapter also introduces a novel curvature regularization model where costs
are defined on overlapping patches.

Author contributions: My contributions to this chapter include im-
proving the implementation, performing experiments and comparing the
method to the state of the art.

Chapter 4. This chapter deals with the parametric max-flow problem:
Given a submodular function,

fγ(x) =

n∑
i=1

Ui(xi) +

n∑
i=1

n∑
j>i

Bij(xi, xj) +

n∑
i=1

d∑
j=1

γjcijxi, (1.3)

with the parameter vector γ, find all optimal solutions for any choice of
γ ∈ Rd.

Working with the one-dimensional case, d = 1, has found its uses
in computer vision, see Kolmogorov, Boykov, et al. (2007) and Carreira
and Sminchisescu (2010). Working with two or more dimensions, d ≥ 2;
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CHAPTER 1. INTRODUCTION

however, has been largely overlooked. In this chapter, an efficient algo-
rithm used to solve the parametric max-flow problem is considered. The
algorithm performs multiple intersections of hyperplanes, resulting in nu-
merical issues. An implementation using exact arithmetic is compared to
an implementation using floating precision. The result shows that even for
moderately sized problems, the floating precision algorithm fails to recover
many solutions. Furthermore, it is revealed that the number of solutions,
even using only two parameters, can be intractably large even for modestly
sized problem instances. To combat this, an approximate algorithm is also
presented.

Author contributions: This chapter is based on joint work between me,
Fredrik Kahl and Olof Enqvist. We have all worked on the theoretical side
of the problem. I have done the implementation of the algorithm and
performed all experiments.

Chapter 5. In medical imaging, a common problem is locating elongated
structures in 3D volumes, such as for example blood vessels. These struc-
tures are often modeled as curves. Standard properties of a curve include
length, curvature and torsion. Yet most methods used to extract curves
in 3D only regularize length and sometimes curvature. In this chapter, it
is shown, using a line graph formulation, how to penalize all of the three
aforementioned properties. It is also shown how to more properly measure
the length between two points on a given depth map.

Author contributions: The implementation and experiments are joint
work between me and Petter Strandmark, our contributions to this chapter
are roughly equal.

Chapter 6. In this chapter, it is shown how to efficiently optimize a
segmentation model able to segment several regions simultaneously. The
model is able to enforce geometric constraints such as inclusion or exclusion
of different regions. These priors are especially useful for medical images
where anatomy can pose natural constraints on the resulting segmentation.
For instance, a constraint could be that the heart chamber is always found
inside the heart muscle.

Author contributions: I did most of the work on this chapter. Petter
Strandmark helped out with the initial implementation and some experi-
ments.
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Chapter 7. Dense stereo estimation is a classical computer vision prob-
lem; given two or more input images, estimate the depth of every pixel
in one of the images. A common approach is to give each pixel a label
indicating its depth or disparity. In this chapter, the label space is increased
by associating a tangent plane to each pixel. By penalizing deviations from
the tangent planes, it is possible to efficiently regularize a function of the
second derivative. Penalizing the second derivative has previously been
shown to be successful, see Woodford et al. (2009). The optimization itself
is performed by fusing proposed solutions. On this note, the chapter also
introduces a method of fusing several proposals at the same time, improving
the end results. Furthermore, novel ways of generating proposed solutions
are also presented.

Author contributions: Most of my work with this chapter is related
to disparity experiments and development of the theory for simultaneous
fusion. I also did initial work with ADMM for local refinement.
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Chapter 2

Preliminaries

This chapter introduces some necessary background which will benefit
newcomers to the field of optimization in computer vision. Firstly, some
computer vision basics are covered; the pinhole camera model and stereo
vision. Thereafter, a brief introduction to differential geometry is given, fol-
lowed by a more thorough introduction to optimization, with an emphasis
on discrete optimization.

2.1 Cameras and stereo vision

A pair of human eyes can estimate the distance to an object by combining
the view of each eye. This is used in modern 3D cinemas to emulate a
feeling of depth in a movie. A related problem is to estimate the depth
of each pixel in an image, given two images of the same scene taken from
slightly different angles. This problem is known as dense stereo estimation
and is a classical problem in computer vision.

In a camera, points in a scene in R3 are projected into images in R2.
To model this we use the standard pinhole camera model, see Figure 2.1
and Hartley and Zisserman (2003). Every scene pointX ∈ R3 along a ray
projects onto the same pixel x ∈ R2. This projection is described as

λ

[
x
1

]
= P

[
X
1

]
, (2.1)

where P is the 3 × 4 camera matrix and λ ∈ R. The camera matrix
contains information about the spatial location of the camera and its internal
parameters.

Now assume that we have a stereo setup; two identical cameras are
viewing the same point X ∈ R3. The geometry of this setup is called

7



CHAPTER 2. PRELIMINARIES

X1

X2

C

x1

x2

π

Figure 2.1: Mathematical model of the pinhole camera. C is the camera
center and π the image plane. The two scene points X1 and X2 are
projected onto x1 and x2 in the image plane. In a real pinhole camera,
the image plane is located behind the camera center. By placing the image
plane in front of the camera center, we avoid upside down images.

Cl Cr

X

b

xl xr
el er

Figure 2.2: Epipolar geometry; two cameras viewing the same scene
point X . The left and right camera centers are given by Cl and Cr,
respectively, and the projections are given by xl and xr. The two camera
centers are connected by the baseline b. The intersections of the baseline
and the two images give the two epipoles el and er.
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2.1. CAMERAS AND STEREO VISION

Il Ir

X

CrCl

xl xr

xl xr

f z(xl)

b

b

b− d(xl)

Figure 2.3: A rectified setup viewed from above, showing the two camera
centers, Cl and Cr, and their respective image planes, Il and Ir. The
scene point X is projected onto xl and xr in the two images. Note that
b+ xr − xl = b− d(xl).

epipolar geometry and is depicted in Figure 2.2. The ray connecting the left
camera center, Cl, toX will be projected along a line in the right image,
this line is called the epipolar line of the point xl. Equivalently, the right
epipolar line is defined using the ray connecting Cr andX . The geometry
is further simplified if the right and left epipolar lines coincide in the image
coordinate system. This can be achieved either by aligning the cameras
before the images are taken, or by a process known as image rectification.
Two images are rectified by rotating the camera pair and transforming the
images, see Seitz (2001). A rectified setup is shown in Figure 2.3. Once we
have a pair of rectified images, matching xl and xr is easier. The reason is
that xr must be located on the same row as xl in their respective images.

Definition 2.1. Given two rectified cameras and a scene point, X . Let xl
and xr be the projections ofX in the left and right image plane. For the two
pixels xl = (xl, yl) and xr = (xr, yr) it follows that yl = yr, since the
cameras are rectified. The disparity of xl is defined as

d(xl) = xl − xr. (2.2)

9



CHAPTER 2. PRELIMINARIES

Using the notation from Figure 2.3 and similar triangles we get

b− d(xl)

z(xl)− f
=

b

z(xl)
⇐⇒ z(xl) =

fb

d(xl)
. (2.3)

For all pixel pairs in the two images, the focal length, f , and baseline, b, are
constant. It follows that the depth, z(xl), is inversely proportional to the
disparity, d(xl).

2.2 Differential geometry

An arc length parametrized curve is a C3 function,

γ : [a, b]→ R3, (2.4)

such that |γ ′(s)| = 1 for all s ∈ [a, b]. Assume that γ is parametrized by
arc length and that γ ′′(s) 6= 0 for all s ∈ [a, b] and define

t(s) = γ ′(s) (2.5)

as the tangent vector to the curve. Furthermore, define

n(s) =
γ ′′(s)

|γ ′′(s)| (2.6)

as the normal vector to the curve. The two vectors are orthogonal, this
follows because γ is parametrized by arc length,

0 =
d

ds
(1) =

d

ds

(
γ ′(s) · γ ′(s)

)
= 2
(
γ ′′(s) · γ′(s)

)
. (2.7)

The tangent vector and the normal vector span the osculating plane for each
point s ∈ [a, b]. Finally, define

b(s) = t(s)× n(s) (2.8)

as the binormal vector to the curve. We have now defined three orthogonal
vectors in R3 at each point s. These vectors together define the Frenet-Serret
frame for the point s, see Figure 2.4.

10



2.2. DIFFERENTIAL GEOMETRY

t(s)

b(s)

n(s)

γ(s)

Figure 2.4: The Frenet-Serret frame for a point, s, on the curve γ. The
osculating plane for the same point is indicated in shaded gray.

t(s)

n(s)

γ(s)

r(s)

Figure 2.5: Interpretation of curvature in R2. The osculating circle is the
largest circle whose boundary, but not interior, touches the curve. It can be
shown that κ(s) = 1

r(s) , where r(s) is the radius of the osculating circle.
Intuitively for a straight line, κ(s)→ 0 will give r(s)→∞ and for a very
curved line, r(s)→ 0 will give κ(s)→∞.

At each point of a curve, the curvature is a measure of how much the
curve bends and it is defined as

κ(s) = |γ ′′(s)| = |t′(s)|. (2.9)

A straight line will always have zero curvature. In R2, the curvature has
a geometrical interpretation in terms of an osculating circle as shown in
Figure 2.5. Another property of a curve is the torsion which tells us how
much the curve bends out of the osculating plane. The torsion is defined as

τ(s) = −n(s) · b′(s). (2.10)

From this definition it follows that a curve contained inside a plane has zero
torsion everywhere.

11



CHAPTER 2. PRELIMINARIES

p0

p2

p1

α0

α1

α2

Figure 2.6: The exterior angles of a closed piecewise linear curve, δ,
are denoted αi. The absolute integral of the curvature is given by
P (δ) = α0 + α1 + α2.

In computer vision, we deal with discrete data, which means that the
curves which we treat tend to be piecewise linear. Let δ be a piecewise
linear curve defined by the points (p0, . . . , pn) and let α denote the set of
exterior angles formed by the ordered points (pi−1, pi, pi+1). The absolute
integral of the curvature of δ is then defined as

P (δ) =
∑
α∈α

α. (2.11)

An example of exterior angles is given in Figure 2.6. This definition is
possible to extend to closed smooth curves γ as∫ b

a
|κ(s)|ds = sup

{∫ b

a
P (δ) : δ is inscribed in γ

}
, (2.12)

see Bruckstein et al. (2001).
Up until now, we have only considered curves in Euclidean space.

Suppose that a curve, γ, lies on some surface, M , embedded in R3. Let
TM (s) be the tangent plane at the point s on the curve. Then, a curve on
M is a geodesic if

TM (s) ⊥ γ ′′(s) for all s ∈ [a, b]. (2.13)

Geodesics can be seen as a generalization of the concept of straight lines
in Euclidean space. The shortest path between two points on a surface is
guaranteed to be a geodesic, this distance will be referred to as the geodesic
distance.

12



2.3. OPTIMIZATION

2.3 Optimization

All methods discussed in this thesis basically boil down to the same core; a
problem is modeled by some function and the minimizer of the function
gives the solution to the model. The computational cost to optimize these
functions ranges from low to very high depending on the model. Generally,
we will consider the optimization problem

minimize
x∈Xn

f(x), (2.14)

where X is some space and f : X n → R. The function f is the objective
function and the function value f(x) is the objective value.

Remark 2.2. In the computer vision community, f is often referred to as the
energy function and f(x) as the energy. This is most probably due to many
functions’ mathematical relation to the Ising model in physics.

We will start this section with some necessary definitions.

Definition 2.3. A function f ∈ Cn if f ′, f ′′, . . . , f (n) all exist and are
continuous.

Definition 2.4. A set S is said to be convex if x,y ∈ S implies that

(1− t)x+ ty ∈ S, (2.15)

for all t ∈ [0, 1]. That is, if every line connecting two points in the set is fully
contained in the set.

Definition 2.5. A function f is convex if, given x1,x2 ∈ X n,

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2) (2.16)

for all t ∈ [0, 1]. Similarly, a function f is concave if, given x1,x2 ∈ X n,

f(tx1 + (1− t)x2) ≥ tf(x1) + (1− t)f(x2) (2.17)

for all t ∈ [0, 1].

For non-differentiable convex functions, there is a generalization of the
concept of gradients known as subgradients.

13
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Definition 2.6. A vector g ∈ X n is a subgradient to a convex function f at
x0 if, for all x ∈ X n,

f(x)− f(x0) ≥ gT(x− x0). (2.18)

Similarly, a vector g ∈ X n is a supergradient to a concave function f at x0

if, for all x ∈ X n,

f(x)− f(x0) ≤ gT(x− x0). (2.19)

A reason for focusing on convex functions is that they are relatively easy
to optimize globally. In this chapter, we will cover several methods which
are able to find the global minimum of convex functions. The methods
covered are all iterative; starting at some initial solution, x1, the solution at
iteration k, xk, is given by some function of xk−1. All methods also have
some convergence criteria which for instance can be to stop when

|f(xk)− f(xk−1)| ≤ ε, (2.20)

for some ε ∈ R, or when

k > M, (2.21)

for some M ∈ N.

2.3.1 Gradient descent

Assume that f ∈ C1. The optimization method called gradient descent
iteratively solves (2.14) by taking steps in the descent direction. The method
can be expressed as

xk+1 = xk − τk∇f(xk), (2.22)

where τk is a step length usually determined via line search. An example of
line search is the exact line search given by solving

τk = argmin
τ

f (xk + τ∇f(xk)) . (2.23)

14



2.3. OPTIMIZATION

2.3.2 Newton’s method

If we have the slightly stronger requirement f ∈ C2, a related optimization
method is Newton’s method, where f is locally approximated by a second-
order polynomial. The second-order Taylor expansion at xk is given by

t(x) = f(xk) +∇f(xk)
T (x− xk) +

1
2

(x− xk)THf (xk)(x− xk),
(2.24)

where Hf is the Hessian of f . Differentiation of t gives the following
characterization of an optimum of the Taylor expansion:

∇t(x) = ∇f(x) +Hf (xk)(x− xk) = 0⇐⇒ (2.25)

x = xk −Hf (xk)
−1∇f(xk). (2.26)

Provided that Hf is invertible, this short derivation gives the Newton
method, which can be expressed as

xk+1 = xk −Hf (xk)
−1∇f(xk). (2.27)

Newton’s method has faster theoretical convergence than the gradient de-
scent method, see Boyd and Vandenberghe (2004). Even though Newton’s
method has faster convergence, it has its drawbacks. Evaluating

Hf (xk)
−1∇f(xk) (2.28)

is computationally expensive andHf may be close to singular, resulting in
numerical instabilities.

2.3.3 Levenberg-Marquardt

The Levenberg-Marquardt method addresses the numerical stability issues
of Newton’s method. The method is given by

xk+1 = xk −
(
Hf (xk) + λI

)−1∇f(xk), (2.29)

where I is the identity matrix and λ is a non-negative number chosen such
thatHf (xk) + λI is positive definitive. Choosing λ = 0 gives Newton’s
method (2.27). Choosing λ as a very large number gives a method similar
to the gradient descent method (2.22).
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2.3.4 Broyden-Fletcher-Goldfarb-Shanno

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method addresses the issue
of the computational efficiency of Newton’s method. It replaces the Hessian
inverse with an approximation,

Bk ≈H−1
f (xk). (2.30)

The approximation Bk is initialized as the identity matrix and in each
iteration, it is efficiently updated by a low-rank approximation. Hence, the
first iteration is just a gradient descent step. The method is simply expressed
as

xk+1 = xk −Bk∇f(xk). (2.31)

For an n-dimensional function, storing Bk requires an n × n matrix
which might be intractable for large problems. This issue is addressed in
the Limited-memory BFGS (LBFGS) method where Bk is never explicitly
stored. Instead, a history of previous updates is stored, making it possible
to evaluate (2.31) without actually storing Bk. See Wright and Nocedal
(1999) for details.

2.3.5 The subgradient method

Efficient minimization of non-differential functions is also possible. Sup-
pose that f ∈ C0 and that f is convex. The subgradient method is given
by

xk+1 = xk − τkg(xk), (2.32)

where g(xk) is any subgradient of f at xk and τk is the step length at
iteration k. There are several ways of choosing the step length. One family
of step lengths with favorable theoretical properties is the non-summable
diminishing step lengths.

Definition 2.7. A non-summable diminishing step length τk satisfies

lim
k→∞

τk = 0,
∞∑
k=1

τk =∞. (2.33)
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A commonly used non-summable diminishing step length is

τk =
1
k
, (2.34)

where k is the iteration number.

Proposition 2.8. For a non-summable diminishing step length and any ε > 0,
we are guaranteed that the iterative solutions, {x1, . . . ,xk}, given by the
subgradient method fulfill

lim
k→∞

∣∣∣∣ min
x∈{x0,...,xk}

f(x)− f(x?)

∣∣∣∣ < ε, (2.35)

where x? = argminx f(x).

Proof. See Boyd, Xiao, et al. (2003).

For a non-summable diminishing step length, each step taken in the
direction of the optimal solution is shorter than the previous one. Since
the sum of all step lengths is infinite, we will eventually reach the optimal
solution. It is worth noting that we are not guaranteed to decrease the
objective value in each iteration.

There are also some step length schemes which are more experimental.
In Strandmark, Kahl, and Schoenemann (2011), each dimension, p, is
given its own step length, τpk , which is initialized as τp1 = 1 and updated as

τpk+1 =

{
τpk if sign

(
xpk
)

= sign
(
xpk−1

)
,

τpk/2 if sign
(
xpk
)
6= sign

(
xpk−1

)
.

(2.36)

This is a more aggressive step length scheme which lacks the theoretical jus-
tification of non-summable diminishing step lengths. However, in practice,
it converges much faster.

Proposition 2.9. For any integer k ≥ 0 and point x1, there exists a convex
function f with subgradient g at x, such that any optimization scheme, where
xk is chosen as

xk+1 ∈ x1 + span {g(x1), . . . , g(xk)} , (2.37)
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needs O(1/ε2) iterations to achieve

|f (xk)− f (x?) | < ε, (2.38)

where x? = argminx f(x) and ε > 0.

Proof. Theorems 3.2.1 and 3.2.2 in Nesterov (2004).

As shown in Proposition 2.9 the worst case convergence of the subgra-
dient method, in (2.32), is very slow. Empirically, the rate of convergence,
in the applications in this thesis, is far better than the worst case of Proposi-
tion 2.9.

2.4 Constrained optimization

Restrict the domain of (2.14) by considering the primal problem

minimize
x∈Xn

f(x)

subject to a(x) ≤ 0,

b(x) = 0,

(2.39)

where a : X n → Rm and b : X n → R`. The set

C = {x : a(x) ≤ 0, b(x) = 0} (2.40)

is called the feasible set. The Lagrangian to (2.39) is defined as

L(x,γ,µ) = f(x) + γTa(x) + µTb(x), (2.41)

where γ ∈ Rm and µ ∈ R`. For notational convenience introduce

c(x) =
[
a (x)T b (x)T

]T
,

λ =
[
γT µT

]T
.

(2.42)

Using this we can rewrite the Lagrangian on a more compact form

L(x,λ) = f(x) + λTc(x), (2.43)
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where λ ∈ Rm+`. Furthermore, the dual function is defined as

d(λ) = min
x∈Xn

L(x,λ). (2.44)

Given any solution x, it follows that f(x) + λTc(x) is an affine function
in λ. The dual function is concave in λ since it is defined as the pointwise
minimum of a set of affine functions. The domain of the dual function is
given by

Λ =
{
λ : γ ∈ {0 ∪R+}m,µ ∈ R`

}
. (2.45)

Since the dual function is concave, the dual problem

max
λ∈Λ

d(λ), (2.46)

is often easier to optimize than the primal problem defined in (2.39).

Proposition 2.10 (Weak duality). Given the dual problem (2.46) to the
primal problem (2.39), the following holds

d? = max
λ∈Λ

d(λ) ≤ min
x∈C

f(x) = p?, (2.47)

where C is the set of feasible solutions to (2.39).

Proof. For any λ ∈ Λ we have

L(λ,x)− f(x) = λTc(x) ≤ 0 for all x ∈ C, (2.48)

from which the result follows directly.

Given any solution λ0 to the dual problem, we can extract a primal
feasible solution xp as

xp = PC

(
argmin
x∈Xn

L(x,λ0)

)
, (2.49)

where PC is an orthogonal projection on the feasible set C. The feasible
solution xp does not have to be the global minimizer to the primal problem.
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By weak duality we have that the duality gap is greater than or equal to zero:

f(xp)− f(xd) ≥ 0. (2.50)

The duality gap gives a bound on the difference between the current objec-
tive value and the optimal objective value.

All models which will be used in this thesis have an arbitrary scaling;
minimizing 2f(x) or f(x) will yield the same result but the former will
have twice the duality gap. To alleviate this problem, we define the relative
duality gap as as

|f(xp)− f(xd)|
|f(xp)|

. (2.51)

Lagrangian duality lays the foundation to several methods able to opti-
mize (2.39). The two methods dual ascent and augmented dual ascent are
both based on the projected supergradient method and are suitable for a large
number of constraints. The cutting plane method, on the other hand, is
more suited for fewer constraints.

2.4.1 Projected supergradient method

Consider the problem

maximize d(λ) (2.52)

subject to λ ∈ Λ, (2.53)

for some constraint set Λ. This constrained problem is possible to iteratively
maximize using the projected supergradient method given by

xk+1 = PC
(
xk + τkg(xk)

)
, (2.54)

where PC is an orthogonal projection on C, g is a subgradient to f at xk
and τk is a step length. The convergence results from Section 2.3.5 for
the subgradient method can be extended to the projected supergradient
method, see Boyd, Xiao, et al. (2003) for details.
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2.4.2 Dual ascent

The method of dual ascent minimizes (2.39) by solving the dual problem
(2.46) using the projected supergradient method. The dual function in
(2.44) is not differentiable, it is however concave. For a general C0 function,
it is difficult to find a supergradient, fortunately (2.44) is an exception.

Proposition 2.11. Let λ0 be given and consider the dual function in (2.44)
and the constraints c(x) in (2.42). Furthermore, let

x? = argmin
x∈Xn

L(x,λ0) = min
x∈Xn

f(x) + λT
0 c(x). (2.55)

Then c(x?) is a supergradient to d at λ0.

Proof. Given any λ weak duality gives

d(λ) ≤ f(x?) + λTc(x?) (2.56)

= f(x?) + λT
0 c(x

?) +
(
λ− λ0

)T
c(x?) (2.57)

= d(λ0) +
(
λ− λ0

)T
c(x?), (2.58)

which simplifies to

d(λ)− d(λ0) ≤
(
λ− λ0

)T
c(x?). (2.59)

Using Proposition 2.11 and the projected supergradient method, we
get the dual ascent method as

xk+1 = argmin
x∈Xn

L(x,λk), (2.60)

λk+1 = PC
(
λk + τkc(xk+1)

)
. (2.61)

2.4.3 Augmented dual ascent

For some classes of problems, dual ascent may converge slowly. To combat
this, the Lagrangian is augmented with an additional penalty term ρ > 0.
Define the augmented Lagrangian to (2.43) as

Lρ(x,λ) = f(x) + λTc(x) +
ρ

2
||c(x)||22 , (2.62)
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and the augmented dual function as

dρ(λ) = min
x∈X

Lρ(x,λ). (2.63)

The set of supergradients for the augmented dual function is identical to
that of the dual function (2.44).

Proposition 2.12. Consider the augmented Lagrangian (2.62) and the aug-
mented dual function (2.63). Let λ0 be given and

x? = argmin
x∈Xn

Lρ(x,λ0). (2.64)

Then c(x?) is a supergradient to dρ at λ0.

Proof. Identical to the proof of Proposition 2.11.

This leads to an algorithm almost identical to the projected supergradi-
ent method:

xk+1 = argmin
x∈Xn

Lρ(x,λk), (2.65)

λk+1 = PC
(
λk + ρc(xk+1)

)
. (2.66)

The change in step length is motivated by the following example.

Example 2.13. Suppose that f is differentiable, then for an optimal solution
we have

0 = ∇xLρ(xk+1,λk) (2.67)

= ∇xf(xk+1) +∇xc(xk+1)T (λk + ρc(xk)) (2.68)

= ∇xf(xk+1) +∇xc(xk+1)Tλk+1 ⇐⇒ (2.69)

∇xf(xk+1) = −∇xc(xk+1)Tλk+1, (2.70)

under the assumption λk + ρc(xk) ∈ C. After updating the dual variables,
the gradient of the function and the constraints are parallel, which is required
for an optimal solution.
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2.4.4 The cutting plane method

Consider the dual problem (2.46). Given any point λk ∈ Λ, let

xk = argmin
x∈Xn

L(x,λk). (2.71)

Using this, we can define a hyperplane as

d(λk)− (λk − λ)Tc(xk) = 0. (2.72)

If each point in Λ is evaluated, then the lower envelope of all hyperplanes
would correspond to d(λ). The lower envelope is defined as

Ck(λ) = min
{
d(λ0) + (λ0 − λ)T c(x0), . . . ,

d(λk−1) + (λk−1 − λ)T c(xk−1)
}
.

(2.73)

Using this, the cutting plane method can be expressed as the following
iterative algorithm:

xk+1 = argmin
x∈Xn

L(x,λk), (2.74)

λk+1 = argmax
λ∈Λ

Ck(λ). (2.75)

Proposition 2.14. Assume that the supergradients c(xk) form a bounded
sequence. Then every limit point of the sequence

(λ0, . . . ,λk) (2.76)

generated by the cutting plane method gives the optimal solution to (2.46).

Proof. See Bertsekas (1999).

The update in (2.75) can be efficiently minimized using linear pro-
gramming. The downside with the cutting plane method is that we need
to solve a growing linear program in each iteration. For a large number of
constraints, this might be intractable.
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2.5 Decomposition methods

Suppose that a function f lends itself into a natural decomposition of two
functions as

f(x) = f1(x) + f2(x). (2.77)

The two optimization approaches presented in this section, dual decomposi-
tion and alternating direction method of multipliers, use Lagrangian duality
to split the optimization task into two subproblems; one optimizing f1 and
one optimizing f2.

2.5.1 Dual decomposition

Given the function in (2.77), consider

minimize
x,y∈Xn

f1(x) + f2(y)

subject to x = y.
(2.78)

Note that we have introduced a new set of variables y constrained to be
equal to x. The problem in (2.78) is a special case of (2.39). When (2.78)
is optimized using dual ascent, it is often referred to as dual decomposition.
The iterative algorithm can be expressed as

xk+1 = argmin
x∈Xn

L(λ,x,yk), (2.79)

yk+1 = argmin
y∈Xn

L(λ,xk,y), (2.80)

λk+1 = λk + τk(xk+1 − yk+1). (2.81)

The optimization in (2.79) and (2.80) are independent of each other and
can be optimized separately, this is the strength of dual decomposition.
Even better is that we are not restricted to only two subproblems. The
procedure can be repeated, resulting in a problem decomposed into any
number of subproblems.

2.5.2 Alternating direction method of multipliers

A downside with the augmented Lagrangian is that the dual problem (2.63)
is not separable. In this section we present the Alternating Direction Method
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of Multipliers (ADMM) which is similar to performing dual ascent on the
augmented Lagrangian, while ignoring the issue of separability. We restrict
our attention to linear constraints and consider

minimize
x,y∈Xn

f1(x) + f2(y)

subject to Ax+By = z.
(2.82)

The ADMM algorithm performs the following updates

xk+1 = argmin
x∈Xn

Lρ(λk,x,yk), (2.83)

yk+1 = argmin
x∈Xn

Lρ(λk,xk+1,y), (2.84)

λk+1 = λk + ρk (Axk+1 +Byk+1 − z) . (2.85)

Proposition 2.15. Assume that f1 and f2 are convex and that each sublevel
set to f1 and f2 is closed and bounded. Furthermore, assume that L0 in (2.62)
has a saddle point. That is, there exists (x?,y?,λ?) for which

L0(x?,y?,λ) ≤ L0(x?,y?,λ?) ≤ L0(x,y,λ?) (2.86)

holds for all x,y,λ. Then

f1(xk) + f2(yk)→ p? as k →∞, (2.87)

where p? is the optimal solution to (2.85).

Proof. See Boyd, Parikh, et al. (2011).

The convergence results hold for fixed ρk. Letting ρk increase with
k can improve convergence speed and the convergence results for the
algorithm hold, as long as ρk eventually converges.

It is worth noting that the underlying mechanic behind the convergence
proof of (2.15) is not based on dual ascent, see Eckstein (2012). This is
further emphasized by the fact that we need to restrict ourselves to linear
constraints. Furthermore, ADMM does not generalize to three subproblems
such as

f(x) = f1(x) + f2(x) + f3(x). (2.88)

This decomposition may result in a non-convergent algorithm, see Chen
et al. (2014).
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Remark 2.16. Many methods discussed in this chapter will converge to the
global optimum under certain conditions. In practice, all of these conditions
may not be fulfilled. For instance, the models used for computer vision are
seldom convex. However, applying methods on non-convex functions may still
make sense. For methods based on duality, the duality gap still holds and after
the algorithm has terminated we know how far away we are from the global
optimum even if the function is non-convex.

2.6 Boolean optimization

In this section we consider the family of functions which can be expressed
as

f : Bn → R, (2.89)

where B = {0, 1}. A function on this form is known as a pseudo-boolean
function and can uniquely be expressed as a multi-linear polynomial,

f(x) = a0 +
n∑
i=1

aixi +
∑

1≤i<j≤n
aijxixj

+
∑

1≤i<j<`≤n
aijlxixjxl + · · · .

(2.90)

The order of the pseudo-boolean function is the degree of the polynomial.
Minimization of f is known to be NP-hard so we will have to rely on

approximative algorithms or consider subsets of the family. A subset of
functions which is easier to optimize are the submodular functions.

Definition 2.17. Let ∨ be element-wise maximum and ∧ element-wise mini-
mum. A function f is submodular if

f(x ∨ y) + f(x ∧ y) ≤ f(x) + f(y), for all x,y ∈ Bn. (2.91)

An equivalent and sometimes more convenient characterization is

∂2f

∂xi∂xj
(x) ≤ 0, for all 1 ≤ i < j ≤ n and x ∈ Bn, (2.92)

where ∂f
∂x is defined as the symbolic derivative of (2.90), see Strandmark

(2012).
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We will briefly outline the current state of the art for minimizing
submodular functions in the field of computer vision. Typically the number
of variables is very large so general methods such as the ellipsoid method,
see Fujishige (2005), will be intractable for real-world applications.

Order 2. Ivunescu (1965) showed that the problem of minimizing a
second-order submodular function can be reformulated into a max-flow
problem, which can be efficiently optimized. In the next section we will
describe this reformulation.

Order 3. Billionnet and Minoux (1985) showed how to reformulate a
third-order submodular function into a second-order submodular function
by introducing additional variables. This reformulation is known as a
reduction.

Order ≥ 4. Any submodular function can be described as

f(x) =
∑
a∈F

fa(x), (2.93)

where each fa(x) is submodular. In Kolmogorov (2012) an efficient al-
gorithm is given if the order of each fa is low. This is the typical form of
submodular functions of interest for computer vision.

Remark 2.18. The results of Ivunescu (1965) and Billionnet and Minoux
(1985) were popularized in computer vision community by Boykov, Veksler,
et al. (2001) and Kolmogorov and Zabih (2004).

2.6.1 Submodular functions of order 2

Let G be a graph with vertices, V , connected by directed edges, E, where
each edge has an associated weight, wij ≥ 0, connecting vertex i to vertex
j. There are two special vertices; the source s and the sink t. This graph
construction is referred to as an st-graph. A cut in the graph is a partition
of the vertices into two sets S and T such that S ∪T = V , S ∩T = ∅ and
s ∈ S and t ∈ T . The value of the cut is the sum of all edges going from
S to T . Finding minimum-cuts is a well studied area with very efficient
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algorithms. For computer vision problems there are special implementa-
tions with attractive execution times see Boykov and Kolmogorov (2004);
Goldberg et al. (2011).

Let x be an indicator variable where

xi =

{
0 if i ∈ S,
1 if i ∈ T.

(2.94)

Then any minimum-cut problems can be expressed as

min
x∈Bn

n∑
i=1

wit(1− xi) +

n∑
i=1

wsixi +
∑

1≤i<j≤n
wij(1− xi)xj , (2.95)

which is equivalent to,

min
x∈Bn

n∑
i=1

(wsi − wit)xi +
n∑
i=1

wit

+
∑

1≤i<j≤n
wijxj +

∑
1≤i<j≤n

(−wij)xixj .
(2.96)

Proposition 2.19. Any second-order submodular function on the form (2.90)
with a specific constant a0 can be transformed to the form in (2.96).

Proof. Using the definition of a submodular function we know that each
aij ≤ 0. For the binary term set

wij = −aij , (2.97)

it follows that wij ≥ 0. For any unary term set

wi =

n∑
j=1

−aij + ai, (2.98)

and then set

wsi =

{
wi if wi ≥ 0,

0 if wi < 0,
(2.99)
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wit =

{
0 if wi ≥ 0,

wi if wi < 0.
(2.100)

By construction wsi − wit ≥ 0. Finally we have equality if the constant a0

fulfills

a0 =

n∑
i=1

wit. (2.101)

Corollary 2.20. Any second-order submodular function on the form (2.90)
can be minimized by performing minimum cut on a st-graph.

Proof. As the proposition shows (2.90) and (2.96) are equivalent up to
known constant. The constant will not influence the minimizer to (2.96).

In the computer vision community using Corollary (2.20) is usually
referred to as performing graph-cuts.

2.6.2 General functions

We will now turn our attention on how to minimize non-submodular
functions via a relaxation known as roof duality. The idea behind roof
duality is to find a submodular lower bound relaxation, g, to the original
function f . The idea was originally given in Hammer et al. (1984) for
second-order functions. It was later extended to higher-order functions
in Kolmogorov (2012). Kahl and Strandmark (2012) were the first to
show how to efficiently find the submodular relaxation for higher-order
functions. Using roof duality for higher-order functions will be referred to
as performing generalized roof duality.

Remark 2.21. In Hammer et al. (1984) maximization of functions were
considered and g was a upper bound on the function value, hence the name
roof dual.

The list of properties we wish our submodular relaxation to have is

1. g : B2n → R is submodular.
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2. g(x,x) = f(x) for all x ∈ Bn

3. g(x,y) = g(y,x) for all (x,y) ∈ B2n (symmetry),

where x = 1− x.
Note that the relaxation g has twice as many variables as f . But since g

is submodular it is easy to optimize. Let

(x?,y?) = argmin
(x,y)∈B2n

g(x,y). (2.102)

It follows by construction that

min
(x,y)∈B2n

g(x,y) ≤ min
x∈Bn

g(x,x) = min
x∈Bn

f(x). (2.103)

The minimum of g works as a lower bound for the minimum of the original
function f . By construction there is some freedom in how to choose our
lower bounding function g. A natural choice is to choose the lower bound
giving us the highest value:

maximize
g,`

`

subject to g(x,y) ≥ `, for all(x,y) ∈ B2n,

g satisfies (1)− (3).

(2.104)

Proposition 2.22. Restricting g to be symmetric (property 3) has no effect on
the maximum of the lower bound.

Proof. See Kahl and Strandmark (2012).

For the second-order case (2.104) has a closed form solution. Every
symmetric second-order g can be written on the form

g(x,y) =
1
2

∑
i

bi(xi + ȳi) +
∑
i

biixiȳi

+
1
2

∑
i<j

(
bij(xixj + ȳiȳj) + cij(xiȳj + ȳixj)

)
.

(2.105)
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Proposition 2.23. An optimal submodular relaxation g, of a second-order
pseudo-boolean function, in the sense of (2.104), is given by (2.105) with the
coefficients

bi = ai for 1 ≤ i ≤ n, (2.106)

bii = 0 for 1 ≤ i ≤ n, (2.107)

bij = min(aij , 0) for 1 ≤ i < j ≤ n, (2.108)

cij = max(aij , 0) for 1 ≤ i < j ≤ n. (2.109)

Proof. See Kahl and Strandmark (2012).

This result is equivalent to the construction in Boros and Hammer
(2002) which is used in Rother et al. (2007). Before we consider higher-
order functions we need some of the most useful results of the relaxation.

Definition 2.24. For any x ∈ Bn and (x?,y?) we define the overwrite
operator Bn ×B2n → Bn as

x← (x?,y?) = u (2.110)

where

ui =

{
x?i if x?i 6= y?i ,

xi otherwise,
for i = 1,. . . , n. (2.111)

Proposition 2.25 (Autarky). Let g be a function satisfying (1)− (3) and

(x?,y?) ∈ argmin g. (2.112)

Then f (x← (x?,y?)) ≤ f(x) for all x.

Proof. See Kolmogorov (2012); Hammer et al. (1984).

The result gives us a way to iteratively minimize f using proposed
relaxations g.

Corollary 2.26 (Persistency). Let g be a function satisfying (1)-(3) and

(x?,y?) ∈ argmin g. (2.113)

If x ∈ argmin(f), then x← (x?,y?) ∈ argmin(f).
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Proof. See Kahl and Strandmark (2012).

This result gives us partial optimality. All variables replaced by the
overwrite function are equal to some solution x? ∈ argmin(f).

Definition 2.27. Every variable replaced by a overwrite function is said to be
labeled. All other variables as said to be unlabeled.

Remark 2.28. A minimizer of g that labels all variables gives us the optimal
solution.

In Kahl and Strandmark (2012) relaxations for higher-order functions
are found by simplifying (2.104) and iteratively reducing the number of
variables using persistency. In each of these iterations a large linear program
needs to be solved to find g. This might be more expensive than to minimize
the relaxed function g. To combat this Kahl and Strandmark (2012) also
introduce a number of heuristic ways to find g. The lower bound function
given might not be optimal but the persistency and autarky results still hold
making these heuristics useful in some applications.

2.7 Multi-label optimization

In this section we consider the family of function which can be expressed as

f : Ln → R, (2.114)

where L = {0, . . . , k}. Each possible value of L will be referred to as
a label and each possible solution x will be referred to as a assignment.
Generally the functions we are interested in can be expressed as

f(x) =
∑
a∈F

fa(xa), (2.115)

where xa is the restriction of x to the factor a, representing a subset of x,
F is a set of factors, and

fa : L|a| → R. (2.116)
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The largest number of variables covered by any factor is known as the order,
or arity, of the function. For each variable xi, we will introduce a vector of
indicator variables, xi =

[
xi(0) . . .xi(k)

]
, with the property

xi(j) =

{
1 if xi = j,

0 otherwise.
(2.117)

We will use boldface xi to denote indicator variables and regular xi to
denote the original variables. The indicator variables are a useful tool when
analyzing different methods used to minimize (2.115). More on this later
in the chapter.

Remark 2.29. For boolean variables xi is an indicator variable.

We will start to focus on function consisting of symmetric factors of
order at most two. They can be expressed as

f(x) =

n∑
i=1

Ui(xi) +

n∑
i=1

n∑
j=1

Bij(xi, xj), (2.118)

where Ui : L→ R and Bij : L×L→ R are the unary and binary terms
respectively. We will only consider symmetric binary terms, that is

Bij(xi, xj) = Bji(xj , xi) for all i and j. (2.119)

It is possible to represent the function in (2.115) as a graph where each
variable, and indirectly each unary term, is represented by a vertex. Further-
more each binary term Bij , is represented as an edge connecting the two
vertices associated with the variables xi and xj . Figure 2.7 gives an example
construction. This representation of (2.118) will be used throughout this
chapter.

2.7.1 Dynamic programming

We will now focus on how to find the minimizer of (2.118) if the function
can be represented as a tree graph with a distinct root. For this subset of
functions we are able to find the global minimizer to (2.118) using dynamic
programming.
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x1 x2

x3

B12

B13 B23

Figure 2.7: A graph representation of the function
f(x) = U1(x1) + U2(x2) + U3(x3) + B12(x1, x2) + B23(x1, x2) +
B13(x1, x3).

Let d(i, j) be the number of edges on the shortest path from vertex
i and j in the graph representation. Number the variable such that n is
the root vertex of the tree and for each vertex i define a parent p(i), the
children c(i) and all descendants d(i) as

c(i) = {j : Bij 6= 0 and d(i, n)− d(j, n) = 1},
d(i) = {j : Bij 6= 0 and d(i, n)− d(j, n) > 0},
p(i) = {j : Bij 6= 0 and d(i, n)− d(j, n) = −1}.

(2.120)

The functions we consider in this section can now be expressed as

f(x) =

n∑
i=1

Ui(xi) +
∑
j∈c(i)

Bij(xi, xj)

 . (2.121)

The minimization of f(x) can be split into recursive subproblems as,

Dk(y) = min
{x :xk=y}

 ∑
i∈{d(k),k}

Ui(xi) +
∑
j∈c(i)

Bij(xi, xj)

 .

(2.122)

Note that

min
y∈L

Dn(y) = min
x∈Ln

f(x). (2.123)

Examples of all these definitions are given in Figure 2.8. The following
proposition gives us an efficient algorithm for minimizing Dk(y).
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x1

x2

x3

x4

x5

x6

x7

D7

D5

D6

Figure 2.8: Example graph representation of f(x) with the subproblem
D7, D6, and D5 in (2.30) marked. Each vertex corresponds to a variable
and each edge corresponds to a binary term. x7 is the root. c(7) = {5, 6},
p(7) = ∅ and d(7) = {1, 2, 3, 4, 5, 6}.

Proposition 2.30. For any k ∈ {1, . . . , n}, the function Dk(y) defined in
(2.122) can be computed as

Dk(y) =


Uk(y) c(k) = ∅
Uk(y) + min

{x :xk=y}

∑
i∈c(k)

(
Bki(y, xi) +Di(xi)

)
c(k) 6= ∅,

with the notation given in (2.120).
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Proof.

Dk(y) = min
{x :xk=y}

 ∑
i∈{d(k),k}

Ui(xi) +
∑
j∈c(i)

Bij(xi, xj)

 .

= Uk(y) + min
{x :xk=y}

( ∑
i∈c(k)

Bki(y, xi)

+
∑
i∈d(k)

(
Ui(xi) +

∑
j∈c(i)

Bij(xi, xj)

))

= Uk(y) + min
{x :xk=y}

∑
i∈c(k)

(Bki(y, xi) +Di(xi)) (2.124)

Using Proposition (2.30) we can calculate the optimal value f(x?) in
an efficient manner. What we most of the time are aiming for however is to
recover x? = argminx f(x). The next proposition helps us with that.

Proposition 2.31. Given a function of the form in (2.118). The optimal
solution

x? = argmin
x∈Ln

f(x), (2.125)

can be computed as

x?k =


argmin
y∈L

Dk(y) p(k) = ∅

argmin
y∈L

Dk(y) +Bp(k)k

(
y, x?p(k)

)
p(k) 6= ∅,

(2.126)

where Dk(y) is defined in (2.122) and the p(k) is defined in (2.120).

Remark 2.32. If each x?k is calculated breadth-first starting at the root, x?p(k)
is always known.

Proof. If p(k) = ∅ the result follows from the definition. For any other k
consider the set

C =
{
{d(n), n}\{d(k), k}

}
. (2.127)
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It follows that

x?k = argmin
y∈L

min
{x :xk=y}

f(x) (2.128)

= argmin
y∈L

min
{x :xk=y}

∑
i∈{d(n),n}

Ui(xi) +
∑
j∈c(i)

Bij(xi, xj)


(2.129)

= argmin
y∈L

min
{x :xk=y}

( ∑
i∈{d(k),k}

(
Ui(xi) +

∑
j∈c(i)

Bij(xi, xj)
)

(2.130)

+
∑
i∈C

(
Ui(xi) +

∑
j∈c(i)

Bij(xi, xj)
)

︸ ︷︷ ︸
independent of y

)

= argmin
y∈L

(
Dk(y) +Bp(k)k

(
y, x?p(k)

))
. (2.131)

We can now summarize this section.

Minimize (2.121) using dynamic programming.

1. Use Proposition 2.30 to compute Dk for every variable k.

2. Use Proposition 2.31 to recover the optimal solution x?.

2.7.2 Belief propagation

In the statistical literature minimizing functions of form (2.118) is usually
done via belief propagation, see e.g. Weiss and Freeman (2001). In this
section we will show the connection between belief propagation and the
dynamic programming approach discussed in the previous section. We
will once again only consider functions which can be represented by a tree
graph. A message from variable i to variable j is defined as
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(a) Inward pass.
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(b) Outward pass.

Figure 2.9: The order in which the messages are passed for the inward and
outward pass. The message are calculated sequentially in breadth-first-order.
For the inward pass m46,m36, and m25 are calculated before m67 and
m57. Similarly for the outward pass m67 and m57 are calculated before
m46,m36,m25, and m15.

mij(xj) = min
xi

Ui(xi) +Bij(xi, xj) +
∑

`∈{N (i)\j}

m`i(xi)

 ,

(2.132)

where N (i) = {c(i), p(i)} and each mij(xj) is initialized to be zero.
Calculating mij(xi) for all xi will be referred to as passing the message vector
from i to j. The messages are passed first from the leaf variables towards the
root. This is known as the inward pass. After that the messages are passed
from the root towards each leaf. This is known as the outward pass. These
two passes are illustrated in Figure 2.9.

Proposition 2.33. Consider Dk defined in (2.30). For the inward pass

Dk(y) = Uk(y) +
∑
j∈c(k)

mjk(y), (2.133)

where the messages m is defined in (2.132).
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Proof. Proof by induction. For the inward pass we have

{N (i)\p(i)} = c(i). (2.134)

If c(k) = ∅ then it holds by definition of Dk. Now assume it hold for all
variables in d(k). By definition it then holds for all variables in c(k). From
Proposition 2.30 and using symmetry of the binary term we have

Dk(y) = Uk(y) + min
{x :xk=y}

∑
i∈c(k)

(
Bik(xi, y) +Di(xi)

)
(2.135)

= Uk(y)+

min
{x :xk=y}

∑
i∈c(k)

(
Bik(xi, y) + Ui(xi) +

∑
j∈c(i)

mji(y)
)

(2.136)

= Uk(y) +
∑
j∈c(k)

mjk(y). (2.137)

Definition 2.34. The min-marginals for a variable k corresponds to

min
{x :xk=s}

f(x), (2.138)

for any s ∈ L.

Corollary 2.35. Let n be the root of the tree, then

min
{x :xn=y}

f(x) = Un(y) +
∑

j∈N (n)

mjn(y) (2.139)

Theorem 2.36. After both the inward and outward messages are passed, the
min-marginals are given by

min
{x :xi=y}

f(x) = Ui(y) +
∑

j∈N (i)

mji(y), (2.140)

where the messages m is defined in (2.132).
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Proof. We begin to note that from Proposition 2.33

mip(y) = min
{x :xp=y}

(
Ui(xi) +Bip(xi, y) +

∑
`∈c(i)

m`i(xi)
)
, (2.141)

= min
{x :xp=y}

(
Di(xi) +Bip(xi, y)

)
. (2.142)

By corollary 2.35 it holds for the root. Now assume that it holds for
variable p = p(i). From Proposition 2.33 we can rewrite it as follows

Ui(y) +
∑
`∈N (i)

m`i(y) (2.143)

= Di(y) +mpi(y) (2.144)

= Di(y) + min
{x :xi=y}

(
Up(xp) +Bpi(xp, y)+∑

`∈N (p)

m`p(xp)−mip(xp)
)
. (2.145)

= Di(y) + min
{x :xi=y}

(
Up(xp) +Bpi(xp, y)

+
∑

`∈N (p)

m`p(xp)−min
z

(
Di(z) +Bip(z, xp)

))
. (2.146)

Reordering and using symmetry of Bip we get

min
{x :xi=y}

(
Up(xp) +

∑
`∈N (p)

m`p(xp)+

Di(y) +Bip(y, xp)−min
z

(
Di(z) +Bip(z, xp)

))
. (2.147)

Recall that Di(y) handles the subset of the function rooted at variable i.
We can add terms to extend this to include all variables in f . Furthermore

min
xp

(
Up(xp) +

∑
`∈N (p)

m`p(xp)
)

= min
x
f(x), (2.148)
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by construction. This allows us to rewrite (2.147) into,

min
x

(
f(x) + f(x)|xi=y − f(x)

)
= min
{x :xi=y}

f(x), (2.149)

where f(x)|xi=y is the restriction of f to xi = y.

We can now summarize this section.

Minimize (2.121) using belief propagation.

1. Starting at the leaf variables send messages inwards towards the
root variable using (2.132), until all inward message has been
sent.

2. Starting at the root variable send message outwards towards the
leaf variables using (2.132), until all outward messages has been
sent.

3. Use Theorem 2.36 to recover the optimal solution x?.

Belief propagation is exact on the subset of problems to which we have
restricted our attention. In practice it has however often been used on
general problems where the connectivity cannot described as a tree, see e.g.
Tappen and Freeman (2003). When this method is applied it usually goes
under the name loopy belief propagation (LBP). LBP is not guaranteed to
yield an optimal solution, nor give any lower bound or even converge.

Reparametrization

For optimization schemes based on message passing, like belief propaga-
tion, it is possible to save memory by storing the message implicitly by
reparametrization of the problem, see Wainwright et al. (2004); Rother
et al. (2007).

In this section we will denote the function in (2.118) as fw, wherew
consist of all functions Ui(xi) and Bij(xi, xj) defining f in (2.118). If

fw(x) = fw′(x) for all x, (2.150)
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then w′ is a reparametrization of w.
The goal of this section is to reparametrize the function such that,

U ′i(xi) = Ui(xi) +
∑

j∈N (i)

mji(xi), for all xi ∈ L. (2.151)

That is the unary terms correspond to the min-marginals. By performing
this reparametrization it is possible to implement message based optimiza-
tion without explicitly storing the message during optimization. Suppose
that we have calculated mij , the messages from vertex i to vertex j. Then
instead of storing it, we can reparametrize the function as follows; for each
xi ∈ L set

U ′i(xi) = Ui(xi) +mij(xi),

B′ij(xi, xj) = Bij(xi, xj)−mij(xi) for all xj ∈ L.
(2.152)

This is repeated for each message going sent to i. The final reparametrization
becomes

U ′i(xi) = Ui(xi) +
∑
`∈N (i)

m`i(xi),

B′ij(xi, xj) = Bij(xi, xj)−mij(xi) for all xj ∈ L.
(2.153)

Proposition 2.37. After the reparametrization given in (2.153) the message
in (2.132) is given by

mij(xj) = min
xi

(
U ′i(xi) +B′ij(xi, xj)

)
. (2.154)

Proof.

min
xi

(
U ′i(xi) +B′ij(xi, xj)

)
(2.155)

= min
xi

(
Ui(xi) +

∑
`∈N (i)

m`i(xi) +Bij(xi, xj) −mij(xj)

)
(2.156)

= min
xi

Ui(xi) +Bij(xi, xj) +
∑

`∈{N (i)\j}

m`i(xi)

 (2.157)

= mij(xj). (2.158)
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Figure 2.10: Example decomposition of f into f1 and f2. All functions
are represented as graphs, where there the unary and binary terms are
represented by vertices and edges respectively. It is straightforward to
construct unary and binary terms in f1 and f2 such that f(x) = f1(x) +
f2(x) for all x.

This proposition shows that (2.132) can be optimized using only the
current parameterization, the messages are not needed to be stored.

Efficient message passing

If each message in (2.132) is calculated using brute-force, then O
(
|L|2

)
evaluations are performed. For problems with many labels this might be
intractable. If we restrict our binary functions to

Bij(xi, xj) = min
(
c|xi − xj |, τ

)
or (2.159)

Bij(xi, xj) = min
(
c(xi − xj)2, τ

)
, (2.160)

where τ, c ∈ R; then Felzenszwalb and Huttenlocher (2006) showed
how the messages can be found using O(|L|) evaluations via a distance
transform.

2.7.3 Decomposition methods

In this section we will use Lagrangian duality to derive two efficient algo-
rithms able to minimize arbitrary functions on the form given in (2.118).
The resulting algorithms can be seen as a combination of the efficient solvers
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for tree structure problems, and the decomposition methods discussed in
earlier sections.

In this section we will assume that the function has decomposed into
tree structured subfunctions, S = {1, . . . ,m}, such that

f(x) = f1(x) + · · · fm(x), for all x ∈ Ln. (2.161)

Figure 2.10 shows an example of such a decomposition. Throughout this
section will use binary indicator variables. Each variable xi ∈ L will be
represented by the binary indicator variable xi. Furthermore, a new set
indicator variables xij is introduced, encoding the assignments of variables
xi and xj .

In this section each subproblem s, will be given their own set of binary
indicator variables denoted as xsi . The indicator variables for the original
function f will be denoted by y. Furthermore, ys will be used to denote
the restriction of y to subproblem s. For any subfunction fs : Ln → R
we define

fs(xs) = fs(x̃), (2.162)

where x̃ ∈ Ln are converted from the indicator variables xs as

x̃i = k if xsi (k) = 1. (2.163)

The variables xsij are not part of the original problem and we will enforce
them to coincide with our original variables by restricting our attention to
the set

X=


x :

∑
a∈L
xi(a) = 1 for all i : Ui 6= 0∑

b∈L
xij(a, b) = xi(a) for all ij : Bij 6= 0, b ∈ L

xi(a) ∈ B for all i : Ui 6= 0, a ∈ L
xij(a, b) ∈ B for all ij : Bij 6= 0, a, b ∈ L

 .

(2.164)

Furthermore, let X s be the same set of constraints for each set of variables
xs. The minimization of (2.118) can now be expressed as the following
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constrained problem

min
{xs∈X s},y∈X

∑
s∈S

fs(xs)

subject to xs = ys for all s ∈ S.
(2.165)

The dual function is given by

d(λ) = min
{xs∈X s},y∈X

∑
s∈S

f s(xs) +
∑
s∈S

(
λs
)T(

xs − ys
)
, (2.166)

constrained to the domain

Λ=

{
λ :
∑

s∈S λ
s
i (a) = 0 for all i : Ui 6= 0, a ∈ L∑

s∈S λ
s
ij(a, b) = 0 for all ij : Bij 6= 0, a, b ∈ L

}
.

(2.167)

Without these constraints d(λ) = −∞ for some λ ∈ Λ. The dual problem
is then given by

maximize
λ∈Λ

d(λ). (2.168)

The dual function (2.166) is also called the Lagrangian relaxation of the
primal problem (2.165). This is because the inequality constraint of the
primal problem (2.165) is relaxed by the dual variables, λ, in (2.166).

Remark 2.38. We are working with indicator variables. For a problem with
|L| labels each variable xi in (2.165) produces |L| equality constraints. We
could also have chosen to work with the variables directly; however, this would
lead to fewer constraints. Later in this chapter we will discuss how the number
of constraints can influence the optimization of the dual problem.

There are two reasons for introducing the dual function; first it gives us
a lower bound and secondly the dual function is easier to optimize, since it
is concave.

Remark 2.39. Any optimization algorithm for the dual problem (2.168) can
be implemented via reparametrization, just like in Section 2.7.2. In Kolmogorov
(2006) maximization of d(λ) is interpreted as maximizing the dual function,
with respect to a reparametrization.
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In order to simplify the presentation we will restrict our attention to
decompositions where each subproblem is given the same weight. This
allows us to set

U si (a) =
Ui(a)

S(i)
for all a ∈ L, (2.169)

Bs
ij(a, b) =

Bij(a, b)

S({i, j}) for all a, b ∈ L, (2.170)

where S(I) is the number of subproblems containing the variables in the
set I .

The strength of the relaxation

It might come as a surprise the we introduced redundant binary constraints
in (2.164). For any pair of variables (i, j) forcing{

xsi (a) = xti(a)

xsj(b) = xtj(b)
for all s, t ∈ S and a, b ∈ L, (2.171)

will implicitly enforce

xsij(a, b) = xtij(a, b). (2.172)

We will motivative this in two different ways. One using a linear program-
ming relaxation, where the indicator variables are relaxed to [0, 1], and one
using the dual problem where the equality constraints are relaxed by the
dual variables.

We start by considering the dual problem. Let λ be all dual variables
associated with the constraint set X given in (2.164). Given one of the
constraints c, used to define X ; let λc ⊂ λ denote the dual variables
used by c. Furthermore, for subproblem s, let xsc ⊂ xs and yc∩s ⊂ ys
denote the restriction of xs and ys, to the variables used by c. Given some
constraint set C, the dual function in (2.166) can now be expressed as

dC(λ) =
∑
s∈S

fs(xs) +
∑
c∈C

∑
s∈S

(
λsc
)T(

xsc − yc∩s
)
, (2.173)
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and the dual problem in (2.168) can now be expressed as

max
λ∈ΛC

dC(λ), (2.174)

where

ΛC =

{
λsc :

∑
s∈S

λc(a) = 0 for all a ∈ L, s ∈ S and c ∈ C
}
. (2.175)

As each constraint has associated dual variables, removing the constraints c
can be thought of as restricting λc = 0. This observation give us our next
result.

Proposition 2.40. Given two sets of constraints

C1 ⊂ C2, (2.176)

the following holds

max
λ∈ΛC1

dC1(λ) ≤ max
λ∈ΛC2

dC2(λ). (2.177)

Proof. Introduce C = C1 ∩ C2 and D = C2\C1 and define

ΛC′2 =

{
λc :

∑
s∈S λ

s
c(a) = 0 for all a ∈ L and c ∈ C,

λd :λsd(a) = 0 for all a ∈ L, s ∈ S, and d ∈ D

}
.

ΛC′2 and ΛC2 contains the same variables but ΛC′2 is more restricted. It
directly follows that

max
λ∈ΛC1

dC1(λ) = max
λ∈ΛC′2

dC′2(λ) ≤ max
λ∈ΛC2

dC2(λ). (2.178)

This shows that adding more constraints can potentially increase our
lower bound. Taking Proposition 2.40 to the extreme, by including every
constraint would give the best dual problem. This is of course not tractable
even for moderately sized problem.

47



CHAPTER 2. PRELIMINARIES

Definition 2.41. A relaxation with the constraint set C1 is said to be stronger
than a relaxation with constraint set C2 if

C2 ( C1. (2.179)

We will now consider the linear programming relaxation. In Werner
(2010) the minimization of f is formulated as a relaxed linear program,
sometimes called the Schlesinger LP relaxation. Each relaxation is specified
by two sets, the factors F , and coupling scheme J . For each a ∈ F
and for each possible labeling xa an indicator variable τa(xa) ∈ {0, 1}
is introduced; the integrality constraint is then relaxed to τa(xa) ∈ [0, 1].
The coupling set, J , contains pairs (a, b)

a ∈ F , b ⊂ a, (2.180)

which means that (F , J) is a directed acyclic graph. The simplest choice is

J =
{

(a, {i}) : a ∈ F , i ∈ a
}
. (2.181)

In Kolmogorov and Schoenemann (2012) this choice is called a relaxation
with singleton separators. For each edge (a, b) ∈ J we add a consistency
constraint between a and b. The resulting relaxation is given by

minimize
∑
a∈F

∑
xa

fa(xa)τa(xa) (2.182a)

subject to
∑
xa

τa(xa) = 1 for all a ∈ F , (2.182b)∑
xa : (xa)a∩b=xb

τa(xa) = τb(xb) for all (a, b) ∈ J, (2.182c)

τa(xa) ≥ 0 for all a ∈ F . (2.182d)

Constraints which were redundant in the original problem may no longer
be redundant in the relaxed problem. Adding more linear constraints may
yield a stronger relaxation.

Now suppose that we have chosen (F , J) to correspond to the con-
straint set X in (2.164), then Kolmogorov (2006) shows that the linear
programming relaxation (2.182) is a dual problem to (2.168) and that
strong duality holds.

48



2.7. MULTI-LABEL OPTIMIZATION

Optimizing (2.168)

So far in this section we have decomposed the function and talked about
the potential quality of the solutions. But we have yet to cover the most
important part, how to optimize (2.168). In this section we will cover two
competing methods both able to optimize (2.168), dual ascent and average
ascent. In the computer vision community maximizing (2.168) using dual
ascent is usually referred to as dual decomposition and maximizing it using
average ascent is referred to as TRW-s. In order to avoid confusion we will
use the established nomenclature and use TRW-s and dual decomposition.

TRW-s

Wainwright et al. (2005) introduced tree-reweighted message passing. In
this initial formulation the algorithm is not guaranteed to converge. Modi-
fications in Kolmogorov (2006) led to a convergent algorithm called tree-
reweighted sequential message passing (TRW-s). The algorithm belongs to
a class of optimization routines knowns as tree-consistency bound optimiza-
tion introduced by Meltzer et al. (2009). These optimization algorithms
are usually expressed in terms of reparameterization of the original problem.
In this section we will link this description to the arguably more straight-
forward interpretation of updating the dual variables λ and optimizing
(2.168). First we need to introduce two min-marginals functions as

bi(a) = min
{x :xi=a}

f(x), (2.183)

bij(a, b) = min
{x :xi=a,xj=b}

f(x). (2.184)

Identically bsi and bsij denote the min-marginals for subproblem s. In
each iteration for any unary variable i, define the average as

bi(xi) =
1

S({i})
∑
s∈S

bsi (xi) (2.185)

And similarly for the binary term connecting i and j, define the average as

bij(xi, xj) =
1

S({i, j})
∑
s∈S

bsi (xi) + bsij(xi, xj) + bsj(xj) (2.186)
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In the algorithm the binary and unary terms are successively reparameterized
such that

bi(xi) = U sp (xi), (2.187)

bij(xi, xj) = U si (xi) +Bs
ij(xi, xj) + U sj (xj). (2.188)

In the binary update Ui(xi) is always fixed, only Bij(xi, xj) and Uj(xj)
are updated. If each subproblem is optimized using message-passing and
reparametrization; then, the min-marginals are simply the current reparam-
eterized binary and unary weights.

In order to present an efficient version of TRW-s we need to introduce
a special ordering of the variables. The subproblems s ∈ S are said to be
monotonic if there exist an ordering function o, such that if

us1, . . . , u
s
k, (2.189)

are consecutive variables in each subproblem then(
o(us1), . . . , o(usk)

)
, (2.190)

is a monotonic sequence. We can now describe TRW-s in a compact way.

Minimize (2.118) using TRW-s implemented via reparametrization.

1. For each unary term i in increasing order o(i) do:

(a) Average the unary dual variables using (2.192).

(b) For every binary term (s, t) with o(t) > o(s) do:

i. Average the binary dual variables using (2.193).

ii. Send the message mst.

2. Reverse order o(u) = n+ 1− o(u).

3. Check for convergence otherwise go back to step 1.

Kolmogorov (2006) shows that by introducing the monotonic ordering
the messages sent in each iteration are actually correct. That is, they would
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have been the same even if we had reoptimized each subproblem after each
averaging operation.

Next we will show the connection between averaging and an update
scheme on the dual variables. This will show that the averaging operations
actually corresponds to an ascent method, which we will call average ascent.
Instead of viewing (2.185) as a reparametrization step we can view it as an
update of the dual variables as

bsi (xi) + λsp(xi) = bi(xi). (2.191)

The averaging step for variable i can thus be interpreted as the dual update

λsi (xi) = bi(xi)− bsi (xi). (2.192)

Similarly the dual variables associated with i and j can be updated as

λsij(xi, xj) = bij(xi, xj)− bsij(xi, xj)− bsi (xi)− btq(xj). (2.193)

Each averaging step reparametrizes the problem such that the current min-
marginals for each subproblem coincide. Summing over all subproblems it
directly follows that

Proposition 2.42. After averaging in (2.192) or (2.193) the dual variables

λ ∈ Λ. (2.194)

where Λ is defined in (2.167).

The next theorem show that this update scheme actually is an ascent
algorithm.

Theorem 2.43. Let λk be the dual variables after k iterations of TRW-s then
either λk has converged or

d(λk) ≥ d(λk−1). (2.195)

where d is defined in (2.166).

Proof. See Kolmogorov (2006).

The next theorem show that TRW-s works well with a common, and
relatively easy class of optimization problems.
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Theorem 2.44. Given a second-order submodular pseudo-boolean function
TRW-s converges to the optimal solution.

Proof. See Kolmogorov and Wainwright (2012).

The fact that TRW-s uses average ascent is one of TRW-s biggest
advantages. After averaging, the unary and binary terms defining each
subproblems are all equivalent. This allows us to implement TRW-s in an
efficient manner, by only storing one version of each unary and binary term
for every subproblem The gain is two-fold; firstly, this allows us to save a
lot of memory, and secondly the implementation will be faster, due to less
memory overhead.

Dual decomposition

Dual decomposition was first explored by Komodakis et al. (2007); Ko-
modakis et al. (2011) for solving general pseudo-boolean functions and in
Strandmark, Kahl, and Schoenemann (2011) for its parallelization ability.
Given the dual function in (2.166) we can directly from Proposition (2.11)
find a supergradient and optimize the dual function using dual ascent.

Minimize (2.118) using dual decomposition.

1. Initialize with λ = 0.

2. For all s ∈ S compute (xS)? = argminx fλ(x).

3. Project the supergradients onto Λ

sλs
′
i = λsi + τ

(
xs?p −

∑
s∈S x

s?

|S(i)|

)
(2.196)

λs
′
ij = λsij + τ

(
xT?ij −

∑
s∈S x

s?
ij

|S({i, j})|

)
(2.197)

where τ is some step length.

4. Check for convergence, if the algorithm has not converged restart
at step 2.
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Comparing TRW-s to Dual decomposition

In this section we will cover some pros and cons with TRW-s and dual
decomposition.

Theorem 2.45. The solution given by dual decomposition on a set of subprob-
lem S, is at least as good as the solution given TRW-s.

Proof. See Komodakis et al. (2011).

Furthermore, Komodakis et al. gives an example where TRW-s get
stuck in a local optima, while dual decomposition finds the global optimal
solution.

Min-marginals. TRW-s requires that the min-marginals are computed,
dual decomposition only requires the global minimizer. If the subproblems
can be optimized using belief propagation the min-marginals are given
directly. However, it does not easily generalize to different decompositions.
For instance if we would like to split the subproblems into submodular
parts, then calculating the min-marginals is very costly, see Kohli and Torr
(2006).

Speed and memory. Dual decomposition needs to store and update each
subproblem separately, whereas TRW-s needs only to store one problem
instance representing every subproblem. For decompositions with many
subproblem this could lead to huge memory savings and also potential
speedups thanks to less memory overhead. This has been shown experimen-
tally in Kappes et al. (2013) where TRW-s is faster than dual decomposition.

Step length. The convergence of dual decomposition stems from the fact
that we chose the step length τ as a decreasing function taking smaller and
smaller steps. For TRW-s we do not choose the step length and it may
not decrease, this can be interpreted as TRW-s taking slightly more greedy
steps.

2.7.4 General functions

We will briefly review some methods for minimizing general functions of
the form given in (2.115). Both TRW-s and Dual decomposition can be
generalized to solver higher-order functions.
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Generalized TRW-s

Recall the linear programming relaxation given in (2.182). Given any
coupling scheme, J defined in (2.181) the set (F , J) defines a acyclic
graph. This is exploited by Kolmogorov and Schoenemann (2012) to
generalize TRW-s to higher-order functions. The generalized version works
with any coupling scheme J and each (a, b) ∈ J get its own message mab.
A generalization of monotonic chains is also given which makes an efficient
implementation possible.

Dual decomposition

The already presented algorithm for second-order functions can be gen-
eralizes to higher-order functions, see Komodakis et al. (2011). In their
formulation the functions is decomposed into “subgraphs”, and consistency
is enforced between the different subgraphs. A example construction would
be to choose each factor, a ∈ F , as subgraph and enforce consistency
between all subgraphs, with overlapping variables, using dual variables.

2.8 Improving existing solutions

It is quite common to be stranded with a set of possibly incomplete solutions
to a problem. It might be a solution from a previous frame in a video
sequence, or a incomplete solution given by roof duality. In this section a
few methods are presented which improve upon already given solutions.

2.8.1 Fusion moves

Fusion moves is an iterative method used to optimize a large family of
functions. Given a set of proposed solutions, or proposals, S , fusion moves
iteratively combines them into one final solution. The number proposed
solutions is finite, so the resulting optimization problem is discrete. We are
however not restricted to functions with discrete domain.

Fusion moves were introduce in Boykov, Veksler, et al. (2001) for
a limited set of functions and was called α-expansion. This result was
generalized in Lempitsky et al. (2010) and given the name fusion moves.

The two mentioned approaches are restricted in that they only fuse two
solutions at the same time. In the section we outline how this can be ex-
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tended to fusing arbitrary number of solutions simultaneously. Simultaneous
fusion was first explored in Veksler (2009).

Fusing two solutions

We will restrict our attention to function on the form

f(x) =
n∑
i=1

Ui(xi) +
∑

1≤i<j≤n
Bij(xi, xj), (2.198)

where Ui : R→ R and Bij : R×R→ R. Introduce a set of indicator
variables z = {z1, . . . , zn} and suppose we have two proposed solutions a
and b. For notational brevity let zi = (1− zi). We can now introduce a
function which for each variable i will choose either the solution from a or
b as

h(z) =
n∑
i=1

ziUi(a) + ziUi(b)

+
∑

1≤i<j≤n
zizjB(ai, aj) + zizjB(bi, aj)

+
∑

1≤i<j≤n
zizjB(bi, aj) + zizjB(bi, bj).

(2.199)

It directly follows that

h(0) = f(b), (2.200)

h(1) = f(a). (2.201)

The fusion move is performed by solving

z? = argmin
z∈Bn

h(z). (2.202)

Solving (2.202) via roof duality will be useful even if we cannot label every
variable. Let g be the submodular relaxation used for roof duality and let
(x?,y?) ∈ argmin g. Now we can use the overwrite function to define

1← (x?,y?) = z. (2.203)
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From Proposition (2.25) it follows that

h(z) ≤ h(1) = f(a). (2.204)

We can construct our solution, y, to the fusion problem as

yi =

{
ai if zi = 1

bi if zi = 0.
(2.205)

By constructing we have

f(y) = h(z) ≤ h(1) = f(a), (2.206)

After performing a fusion move we have a new solution y which is at
least as good as the initial solution a. Constructing y from a and b in
(2.203) will be referred to as performing binary fusion of a and b.

Remark 2.46. If function h in (2.199) is a submodular we do not need to
use roof duality. The function can be efficiently optimized using the method
described in Section 2.6.1.

Each fusion move is guaranteed to generate a solution at least as good as
the previous one. This gives us an optimization procedure. Generate a large
set of proposals S and then fuse them one by one. This will be referred to
as performing iterative binary fusion.

Fusing n solutions

The iterative binary fusion has some problems, the order in which we fuse
the proposal may influence the end result and we have no guarantee that
we have fused our proposals in an optimal way.

Suppose we have a function on the form (2.198) and m proposed
solutions

S =
{
x1, . . . ,xm

}
. (2.207)

Introduce a set of indicator variables z = {z1 · · · zn} where zi : L→ B
and

zi(`) =

{
1 if zi = `,

0 if zi 6= `.
(2.208)
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We can now generalize (2.199) by introducing

s(z) =

n∑
i=1

m∑
a=1

zi(a)Ui(x
a
i )

∑
1≤i<j≤n

m∑
a=1

m∑
b=1

zi(a)zj(b)Bij(x
a
i , y

b
i ).

(2.209)

By construction we have

s(i) = f(xi). (2.210)

The optimization problem we needs to solve is

z? = argmin
z∈Ln

s(z) (2.211)

The function is of the same form as (2.115) in Section 2.7. Section
2.7 describes methods which can be used to optimize (2.211). Given any
solution we extract a fused solution y as

yi = x
z?i
i , for all i = 1, . . . , n. (2.212)

Optimizing (2.211) for all proposals in S and constructing y using (2.212)
will be referred to as performing simultaneous fusion. If we are able to find
the global optimal to (2.211) it directly follows that

f(y) ≤ f(xi), for all i = 1, . . . ,m. (2.213)

The advantages with simultaneous fusion is clear; given any number of
proposed solutions, it will find a solution to f , at least as good as iterative
binary fusion. The downside is that solving (2.211) is substantially harder
than solving (2.202).

2.8.2 Completing solutions

After minimizing a function using roof duality we may end up with some
unlabeled variables, that is an incomplete solution. We will now briefly
cover two methods which can be used to generate a complete solution.

57



CHAPTER 2. PRELIMINARIES

Probing

For all variables with persistency we know the optimal labeling, see Corollary
2.26. These variables can be contracted and we end up with a function f̃
with potentially less variables than f . Given a variable z in f̃ construct two
new functions

f̃0 = f̃|z=0,

f̃1 = f̃|z=1.
(2.214)

Minimizing f̃0 and f̃1 using roof duality may give us additional persistencies.
Now assume that the persistences for f̃0 and f̃1 agree on some variables x.
Since they agree for both labelings of z, they are persistent in the original
problem f and all variables in x can be contracted. The trick is that by
fixing z we may end up different set of persistencies than just running roof
duality on f .

Iteratively performing the steps above for one or more variables is
known as probing, a method introduced by Boros, Hammer, and Tavares
(2006). If the number of variables fixed in each iteration is increasing then
probing will converge to the optimal solution. However, the worst case
is brute-force testing all combinations of all unlabeled variables; this is
intractable even for moderate sized sets of unlabeled variables.

Improve

Another way to generate a complete solution is to use binary fusion and fuse
the incomplete solution with any complete solution. This was proposed
by Rother et al. (2007) and can be seen as a precursor to the more general
fusion moves framework. If the complete solution is randomly generated
this is known as running improve on an incomplete roof duality solution.

58



Chapter 3

Partial enumeration

This chapter deals with optimization of high-order multi-label functions.
The function variables are assumed to be placed on a grid, and all higher-
order interactions are assumed to be contained inside small patches on this
grid. This grid structure is used in many computer vision applications.

Exhaustive search is a naive and general optimization approach, where
the cost of all possible variable assignments are enumerated. In this chapter,
a general optimization method, partial enumeration, is introduced. The
method is based on enumeration of small patches and it reduces complex
high-order formulations to pairwise weighted constraint satisfaction problems,
which can be efficiently optimized using standard methods like TRW-s.

To showcase the strength of partial enumeration, it is benchmarked
against different state-of-the-art algorithms on a number of computer vision
tasks: a novel curvature segmentation approach, binary deconvolution and
higher-order stereo regularization.

3.1 Algorithm

This chapter considers minimization of functions,

f : Lk → R, (3.1)

given on the form

f(x) =
∑
a∈F

fa(xa), (3.2)

where xa is the restriction of x to the factor a, representing a subset of x,
L = {1, . . . , k}, F is a set of factors, and fa : L|a| → R.
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(a) f (b) Patches (c) fpe

Figure 3.1: Example of a partial enumeration for a function which can be
represented by a grid. Each variable is shown as a vertex and the binary
terms are shown as edges, connecting the two variables they are a function
of. In (a) the graph representation for f is shown. In (b) patches are formed
by grouping pixels in a sliding window fashion. Note that a variable may be
part of more than one patch. In this representation the new binary terms
enforce consistency between patches. In (c) the patches are enumerated
resulting in fpe. In this representation the higher-order interactions in f
are transformed into the unary terms of fpe.

Select a new set of factors denoted V , such that

a ⊆ b for some b ∈ V , given any a ∈ F . (3.3)

Each factor in b ∈ V will be referred to as a patch. By construction each
factor a ∈ F is fully contained inside a patch b ∈ V . Two patches a, b ∈ V ,
are said to be overlapping if a ∩ b 6= ∅.

We are now ready to reformulate f ; take any set of patches V , for each
patch, a ∈ V , enumerate the cost of every possible assignment of xa. This
turns a set of variables xa ∈ L|a|, into one patch variable with higher label
space:

Xa ∈
{

0, . . . , |L||a|
}

= La. (3.4)

By doing this we have partially enumerated the function f . For any patch
a ∈ V , the patch assignment costs can now be encoded into a unary term
by a function

Ua : La → R. (3.5)
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Denote the space of all patch variables as

X =×
a∈V

La. (3.6)

Definition 3.1. The assignment of two variables

Xa ∈ La and Xb ∈ Lb, (3.7)

is said to be consistent if their corresponding representations

xa ∈ L|a| and xb ∈ L|b|, (3.8)

agree for all overlapping variables. This will be denoted as Xa ∼ Xb. The set
of all variables X ∈ X is said to be consistent if all overlapping patches are
consistent.

The patch variables can be forced to be consistent using a binary term.
We can now reformulate (3.2) as

fpe : X → R, (3.9)

where

fpe(X) =
∑
a∈V

Ua(Xa) +
∑

(a,b)∈E

Bab(Xa, Xb), (3.10)

with the binary term defined as

Bab(Xa, Xb) =

{
0 if Xa ∼ Xb

∞ otherwise .
(3.11)

The minimization of fpe is a weighted constraint satisfaction problem,
formulated as the minimization of a second-order multi-label function. By
construction fpe can be minimized with standard approaches discussed in
Section 2.7. An example of this reformulation is given in Figure 3.1.

It remains to specify how to choose the set of binary terms E . One
possibility would be to select all pairs overlapping patches. However, in
some cases we may be able to choose a smaller set.
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Definition 3.2. We call a set of edges E valid if it for every variable, xi ∈ L,
and every pair of patches a, b ∈ V with xi ∈ xa and xi ∈ xb, there exists a
sequence of patches

S = (s0, s1, . . . sn), (3.12)

in E , with s0 = a, sn = b, and xi ∈ xsi ∩ xsi+1 .

In other words the consistency is enforced via a sequence of constraints
linking patch a and patch b.

Proposition 3.3. For a valid set of edges E , the labeling X is consistent if
and only if ∑

(a,b)∈E

Bab(Xa, Xb) = 0, (3.13)

for all (a, b) ∈ E .

Proof. One direction is trivial: if X is consistent then each binary term
Bab(Xa, Xb) = 0. For the other direction it suffices to show that every
variable is consistent. Consider any variable xi. For every a, b ∈ V for
which xi ∈ xa and xi ∈ xb there exists a sequence of patches S, by
construction, connecting the two such that Bsisi+1(Xsi , Xsi+1) = 0 for
all si ∈ S. From this it follows that each xi must be consistent over all
patches in V .

This proposition tells us that we do not need to include every possible
overlapping (a, b) ∈ E , it suffices that they are implicitly included. An
example where we have removed some constraints is given in Figure 3.2.

3.1.1 Efficient message passing

Throughout this chapter we will optimize fpe using the message passing
based method TRW-s. Since the number of labels can be large for higher-
order factors it is essential to compute the messages fast. The messages sent
during optimization has the form

mab(Xb) = min
Xa

(Bab(Xa, Xb) + h(Xa)), (3.14)
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(a) A 3× 3 grid

a b

c d

(b) Four 2× 2 patches

Figure 3.2: Example of how to use Proposition 3.3. in (a) a 3× 3 grid has
been split into four 2× 2 patches named a, b, c, and d. The intersection
a ∩ d = x is highlighted. In (b) the sequence (c, a, b, d) connects all
patches enforcing consistency for the variable x over all patches. Therefore
there is no need to add edges enforcing consistency directly between for
instance c and d.

where h is some function of the patch labelXa. Due to the special structure
of the binary term (3.11), we can find the optimal message very efficiently.
Given any pair variables Xa and Xb, order the labels into disjoint group
pairs such that Xa ∼ Xb for all labels in each group pair. The message
values mab(Xb) for all the Xb in the same group can now be found by
searching for the smallest value of h(Xa) in its paired group. The label
order depends on the set E ; however, it does not change during optimization
and can therefore be precomputed at startup. The bottleneck is therefore
searching the groups for the minimal value, which can be done in linear
time.

This process does not require all the possible patch assignments to
be considered. For larger patches many assignments might be unwanted,
they can simply be set to be inconsistent and never explicitly stored. This
observation is imperative for applications using larger patches, as the label
space grows rapidly as a function of the patch size.

63



CHAPTER 3. PARTIAL ENUMERATION

(a) Decomposition of f (b) Decomposition of fpe

Figure 3.3: An example decomposition of f and fpe in Figure 3.1. (a) After
the decomposition of f , each subfunction lacks some binary terms of f
(missing edges). (b) For the decomposition of fpe however, all binary terms
of f are still present. (The removed binary terms enforces consistency.)
The subfunctions in (b) contains more structure of f compared to the
subfunctions in (a).

3.1.2 Strength of relaxations

In the previous section the original function f was reformulated into an
equivalent form fpe. For higher-order functions the reformulation allows
for efficient optimization using TRW-s. In this section it will be shown that
even for second-order multi-label functions, which TRW-s can optimize
directly, the reformulation is advantageous. Intuitively each part of the
decomposition contains more structure for fpe compared to f , see Figure
3.3. By comparing the decomposition of f and fpe we will show that the
resulting relaxation used by fpe is stronger than the relaxation of f .

Consider fpe in (3.10), the Schlesinger LP relaxation is given by

minimize
∑
a∈F

∑
xa

fa(xa)τa(xa) (3.15a)

subject to
∑
xa

τa(xa) = 1 for all a ∈ F , (3.15b)∑
xa:xa∼xb

τa(xa) = τb(xb) for all (a, b) ∈ J, (3.15c)

τa(xa) ≥ 0 for all a ∈ F , (3.15d)

where xa ∼ xb means that labelings xa and xb are consistent on the
overlap area and τa(xa) ∈ [0, 1] is the relaxed indicator variable. Adding
more edges to the coupling scheme J gives more constraints and leads to
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the same or stronger relaxation. The simplest choice is to set

J = {(a, {i}) : a ∈ F , i ∈ a}. (3.16)

This coupling scheme is known as relaxation with singleton separators.
TRW-s uses the coupling scheme

J = {(a, b) ∈ E}, (3.17)

see Kolmogorov (2006). In this section we will show that fpe uses a larger
coupling scheme than f , when they are both optimized using TRW-s.

Theorem 3.4. Given a second-order multi-label function f , (3.2), and its
partial enumeration reformulation fpe, (3.10). Then the Schlesinger LP relax-
ation for fpe, with the coupling scheme used by TRW-s, (3.17), is equivalent to
the Schlesinger LP relaxation for f , with

F = {a : a ⊆ â for some â ∈ V},
J = {(a, b) : a, b ∈ F , b ⊂ a}. (3.18)

Proof. First, let us write down the Schlesinger LP for (3.10). It uses variables
τ̂a(xa) for a ∈ F where xa ∈ La and variables τ̂ab(xa,xb) for (a, b) ∈ E
where (xa,xb) ∈ La×Lb. The variables τ̂ab(xa,xb) and τ̂ba(xb,xa) are
treated as the same variable. If xa � xb then τ̂ab(xa,xb) will be zero at
the optimum, since the associated cost is infinite. Thus, we can eliminate
such variables from the formulation. The LP can now be expressed as

minimize
∑
a∈V

∑
xa

fa(xa)τ̂a(xa) (3.19a)

subject to
∑
xa

τ̂a(xa) = 1 for all a ∈ V, (3.19b)∑
xa:xa∼xb

τ̂ab(xa,xb) = τ̂b(xb) for all (a, b) ∈ E , (3.19c)

τ̂a(xa) ≥ 0 for all a ∈ F , (3.19d)

τ̂ab(xa,xb) ≥ 0 for all (a, b) ∈ E (3.19e)

such that xa ∼ xb.
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Our goal is to show that this LP is equivalent to the LP (3.15) with the
graph (F , J) defined in (3.18). Let Ω and Ω̂ be the feasible sets of the
LP (3.15) and LP (3.19) respectively. We will prove the claim by showing
that there exist cost-preserving mappings Ω̂→ Ω and Ω→ Ω̂.

Mapping Ω̂→ Ω. Given a vector τ̂ ∈ Ω̂, we define vector τ as follows:
consider γ ∈ F . By the definition of F , there exists a ∈ V with γ ⊆ a.
We set

τγ(xγ) =
∑

xa:xa∼xγ

τ̂a(xa) (3.20)

Let us show that this definition does not depend on the choice of a. Suppose
there are two patches a, b ∈ V with γ ⊆ a ∩ b. We consider three cases:

Case 1: γ = a ∩ b, (a, b) ∈ E . Using condition (3.19c) for pairs (a, b)
and (b, a), we obtain the desired result:∑

xa:xa∼xγ

τ̂a(xa) =
∑

xa:xa∼xγ

∑
xb:xb∼xa

τ̂ab(xa,xb)

=
∑

xa:xa∼xγ

∑
xb:xb∼xγ

τ̂ab(xa,xb)

=
∑

xb:xb∼xγ

∑
xa:xa∼xb

τ̂ab(xa,xb) =
∑

xb:xb∼xγ

τ̂b(xb).

Case 2: γ ⊂ a ∩ b, (a, b) ∈ E . Denote γ′ = a ∩ b. Using the result that
we just proved we obtain∑

xa:xa∼xγ

τ̂a(xa) =
∑

xγ′ :xγ′∼xγ

∑
xa:xa∼xγ′

τ̂a(xa)

=
∑

xγ′ :xγ′∼xγ

∑
xb:xb∼xγ′

τ̂b(xb) =
∑

xb:xb∼xγ

τ̂b(xb).

Case 3: (a, b) /∈ E . Let (a0, . . . , ak) be the sequence specified in propo-
sition 3.3 for patches a and b. As proved above, for each i, it holds that∑

xai :xai∼xγ

τ̂ai(xai) =
∑

xai+1 :xai+1∼xγ

τ̂ai+1(xai+1).
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Using an induction argument, we obtain the desired result. We have now
proved that definition of τγ(xγ) does not depend on the choice of a.
Showing that obtained vector τ satisfies (3.15c) for each (α, β) ∈ J is
straightforward: in the definition (3.20) for τa(xa) and τβ(xβ) we need
to select the same cluster â ∈ V with b ⊂ a ⊆ â, then (3.15c) easily
follows. Condition (3.19b) implies (3.15b) for all a ∈ V ; combining this
with (3.15c) gives condition (3.15b) for all a ∈ F . We proved that τ ∈ Ω.

Mapping Ω→ Ω̂. Consider vector τ ∈ Ω. We define

τ̂a(xa) = τa(xa), (3.21)

for patches a ∈ V and labelings xa. For each edge (a, b) ∈ E and labelings
xa ∼ xb we define

τ̂ab(xa,xb) =

{
τa(xa)τb(xb)

τγ(xγ) τγ(xγ) 6= 0

0 τγ(xγ) = 0,
(3.22)

where γ = a ∩ b. Let us show that (3.19c) holds for a pair (a, b) ∈ E and
a fixed labeling xa. Denote γ = a ∩ b, and let xγ be the restriction of xa
to γ. If τγ(xγ) = 0 then from (3.15c),(3.15d) we have τa(xa) = 0, and
so both sides of (3.19c) are zeros. Otherwise we can write∑

xb:xb∼xa

τ̂ab(xa,xb) =
τa(xa)

τγ(xγ)

∑
xb:xb∼xa

τb(xb)

=
τa(xa)

τγ(xγ)

∑
xb:xb∼xγ

τb(xb) =
τa(xa)

τγ(xγ)
· τγ(xγ) = τ̂a(xa)

(3.23)

where we used condition (3.15c). We proved that τ̂ ∈ Ω̂.
We finished the construction of mappings Ω̂→ Ω and Ω→ Ω̂. In both

cases we have τ̂a(xa) = τa(xa) for a ∈ V , and therefore the mappings are
cost-preserving.

Remark 3.5. The factors (F ) and coupling scheme (J ) in (3.18) satisfies:

1. If a ∈ F then any non-empty subset of a is also in F .

2. If a, b ∈ F and b ⊆ a then (a, b) ∈ J .
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TRW-s solves the dual of the Schlesinger LP (Kolmogorov (2006)).
From this it follows that a larger factor set (F ) and a larger coupling scheme
(J) correspond to a stronger relaxation. A stronger relaxation can give
better, but never worse, optimization results as discussed in Section 2.7.3.

Corollary 3.6. Given a second-order multi-label function f , let fpe be the
partial enumeration reformulation as given in (3.10) using patches of size at
least 2× 2. Then TRW-s uses a stronger relaxation when optimizing fpe than
when optimizing f .

Proof. A second-order multi-label function can be expressed as

f(x) =

n∑
i=1

Ui(xi) +
∑

(i,j)∈E

Bij(xi, xj). (3.24)

For the problem of minimizing f , TRW-s uses:

F =
{
i ∪ j : (i, j) ∈ E} ∪ {1, . . . , n},

J =
{

(i, j) ∈ E}. (3.25)

Now consider fpe and the patches V used in the reformulation. By con-
struction, given any a ∈ E, there exists a patch v ∈ V such that a ( v.
The corresponding coupling scheme and factors used by TRW-s when
optimizing fpe are given in (3.18). The factor set and coupling scheme in
(3.18) are clearly larger than the ones in (3.25).

The following corollary follows from the same argumentation.

Corollary 3.7. Given a second-order multi-label function f , let fn be the
partial enumeration reformulation as given in (3.10) with patches of size
n × n. Then TRW-s uses a stronger relaxation when optimizing fn+1 than
when optimizing fn.

The corollary tells us that increasing the patch size also increases the
strength of the relaxation. For very difficult problems, using patches larger
than the factors in (3.2) may be worthwhile.
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3.1.3 Higher-order functions and related work

Partial enumeration can also be used to optimize functions with higher-
order terms. In this section we will relate partial enumeration to two
other methods able to do the same: generalized TRW-s (GTRW-s), intro-
duced in Kolmogorov and Schoenemann (2012), and dual decomposition,
introduced in Komodakis et al. (2011).

GTRW-s is formulated to work with any type of relaxation, including
the relaxation in (3.18). For a general type of relaxation, however, GTRW-s
is very complex to implement. The currently available implementation, see
Schoenemann (2013), only enforces consistency between single variables
and pairs of variables. This is a weaker relaxation than the corresponding
relaxation used by partial enumeration with 2× 2 patches.

Partial enumeration is similar to the dual decomposition construction of
Komodakis et al. In their formulation the function is decomposed into, pos-
sibly overlapping, patches (in their paper the patches are called “subgraphs”
and are more general.) The patches are then enforced to be consistent, just
like for the partial enumeration formulation. There is, however, an impor-
tant difference: For partial enumeration, consistency is strongly enforced
using the binary terms in (3.11). This allows each subproblem, which
is solved exactly, to contain many more variables than just the variables
from one patch, see Figure 3.3. For dual decomposition, consistency is
only loosely enforced via dual variables. Then each subproblem, which is
solved exactly, contains only the variables from one patch. Furthermore,
the following contributions of this chapter can be carried over to the dual
decomposition formulation of Komodakis et al. (2011):

• Limited label space of each patch. It is not required to consider every
possible assignment of a patch. For larger patches this is needed to
make the algorithm tractable.

• Limited number of consistency terms. The consistency between patches
does not need to be enforced directly for all overlapping patches; they
need only to be enforced indirectly, cf. Definition 3.2.

• Stronger relaxation. Even for functions which dual decomposition
can minimize directly, without forming patches, decomposition into
overlapping patches makes the relaxation stronger.
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This chapter approaches the minimization of f differently than dual
decomposition and GTRW-s. The function f is first reformulated into
an equivalent form, fpe. The function fpe can then be minimized by any
of the readily available and highly optimized methods able to minimize a
second-order function with large label space.

3.2 Curvature regularization

This section will introduce a novel approach to segmentation using cur-
vature regularization. The curvature costs will be directly encoded into
the patches, making these segmentation problems a perfect benchmark for
partial enumeration. The segmentation will be given by the minimizer of

f(S) =

∫
int(S)

d(x) dx+ w

∫
∂S
|κ(s)|ds, (3.26)

where κ(s) is curvature, w is a weighting parameter and d(x) is a data term.

A common approach for evaluating curvature is to work with the edges
in a mesh of complex patches as used by Schoenemann et al. (2012);
El-Zehiry and Grady (2010); Strandmark and Kahl (2011). In Figure
3.4 the proposed approach based on integral geometry is compared to a
complex-patch technique.

In Schoenemann et al. (2012) curvature is reduced to unary terms
using auxiliary variables. Their integer linear programming approach is
formulated over a large number of binary variables defined on fine geometric
primitives (vertices, faces, edges, pairs of edges, etc), which are tied by
constraints. In contrast, for the proposed approach, unary representation
of curvature uses larger-scale geometric primitives (overlapping patches)
tied by consistency constraints. The number of corresponding variables is
significantly smaller, but the label space is larger.

Another approach to curvature regularization is to enforce the regular-
ization cost using high-order factors, both El-Zehiry and Grady (2010) and
Strandmark and Kahl (2011) follow this route. Despite technical differences
in the underlying formulations and optimization algorithms, the proposed
patch-based approach for complexes and the approaches of Schoenemann
et al. (2012); Strandmark and Kahl (2011) use geometrically equivalent
models for approximating curvature. That is, all of these models would
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Standard geometry
π/2 3π/4
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(a) Patches on a cell complex
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(b) Patches on a pixel grid
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(c) Cell complex patches
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0 0 00 0 0 00

(d) Pixel grid patches

(e) Resulting segmentation (f ) Resulting segmentation

Figure 3.4: Evaluating the curvature of a image segment on a complex using
complex geometry and on a grid using integral geometry. At high resolution, any
segment S can be approximated by a polygon. Thus, to minimize functions like∫
∂S
|κ(s)|ds we need to evaluate all corners. Overlapping patches are created

for each vertex on a complex (a) and for each pixel on a grid (b). A patch on a
complex consists of all cells adjacent to a vertex and a grid patch is a square window
centered at a pixel. Each corner on a complex (a) can be directly evaluated from
a labeling of a single patch using standard geometry. However, each corner on a
grid (b) should be evaluated using integral geometry by summing over multiple
patches covering the corner. Black patches occur at straight boundaries and should
have zero curvature. Red patches correspond to curved boundaries. The weights
{A, . . . ,H} for all assignments in (d) can be precomputed. The accuracy of
integral geometry approach to curvature on a grid is comparable to the standard
basic geometry used on complexes, see (c) and (d).
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produce the same solution if there were exact global optimization algorithms
for them. The optimization algorithms for these models do however vary
in quality, memory, and run-time efficiency.

In practice, grid patches are easier to implement than complex patches
because of the grids’ regularity and symmetry. Grid patches were also re-
cently used for curvature evaluation in Shekhovtsov et al. (2012). Unlike
the integral geometry in Figure 3.4(c), their method computes a minimum
response over a number of affine filters encoding some learned “soft” pat-
terns. The response to each filter combines the deviation from the pattern
and the cost of the pattern. The mathematical justification of this approach
to curvature estimation is not fully explained and several presented plots in-
dicate its limited accuracy. As stated in Shekhovtsov et al. (2012), “the plots
do also reveal the fact that we consistently overestimate the true curvature
cost.”

3.2.1 Patch-cost assignments

We will now explain in detail how curvature cost can be approximated
for different patch sizes. For small patches the curvature estimations are
very coarse and we are unable to penalize small curvature costs. As the
patch size grows the precision increases. Throughout this chapter we
only concern ourselves with the absolute curvature of polygons. For a
polygon, the integral of the absolute curvature corresponds to the sum of
the exterior angles in the polygon, see Bruckstein et al. (2001). Hence,
for each patch size we need only to determine the exterior angles of the
polygonal segmentation boundary.

Patches of size 2× 2

Patches of size 2 × 2 are the smallest ones we consider, these are able
to approximate curvature with π/2 precision. Each patch has 4 pixel
boundaries that intersect in the middle of the patch. To compute the
curvature contribution of a patch we need to determine which of the 4 pixel
boundaries also belong to the segmentation boundary. If two neighboring
pixels are sharing a boundary and have different assignments, then their
common boundary belongs to the segmentation boundary. Each patch can
take 16 values corresponding to assignments of the individual pixels. It is
straightforward to assign each of these assignments its curvature cost.
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3.2. CURVATURE REGULARIZATION

Figure 3.5 shows all the possible labelings for this case. The unary terms
are added to the cost of each different labeling. Note that each pixel may be
in as many as four different patches. The patch costs need to be reweighted
to compensate for this.

Patches of size 3× 3

Patches of size 3× 3 are able to approximate the curvature cost with π/4
precision. Since patches are overlapping, changes in boundary direction will
be visible in the assignments of more than one patch. We need to make sure
that the total contribution of the patch assignments equals the curvature of
the segmentation boundary.

To determine the assignments in the case of 3× 3 patches, we generate
windows of size 5× 5. These windows contain the binary assignments that
would result from a segmentation boundary which transitions between two
directions at the center of the window, see Figures 3.6. By looking in these
windows it is possible to determine all patch assignments that are present in
the vicinity of such a transition and constrain their sum to be the correct
curvature penalty.

Consider for example the window in Figure 3.7. If we let the labels of
the patch be la, where a ∈ {0, . . . , 511} encodes the assignments of the
individual pixels, then the patch in Figure 3.7 gives us the linear constraint

l38+ l311+ l447+ l452+ l486+ l503+ l504+ l508+ l510 =
3π
4
. (3.27)

In a similar way each window/boundary transition gives us a linear equality
constraint. In addition, it is required that la ≥ 0 for all a ∈ {0, . . . , 511}
and that la = ∞ for the labels that do not occur in any of the windows.
This gives us a system of linear equalities and inequalities. To find a solution
we randomly select a linear objective function (with positive entries) and
solve the resulting linear program. Since the system is underdetermined the
individual label costs can vary depending on the random objective function.
However, the linear equalities ensure that the resulting curvature estimate
obtained for each transition between boundary directions is correct when
combining patch assignments.
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Figure 3.5: All 16 patch assignments used to encode curvature cost for
2× 2 patches. Note that there are only four unique patches up to rotation
inversion and reflection.
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Figure 3.6: Seven of the 5× 5 windows used for computing curvature cost
for 3× 3 patches. The rest are obtained through rotations, reflections, and
inversions of the pixel assignments. The line shows the interpretation of
the segmentation boundary and its corresponding curvature is given below.
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l452 l486 l503
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Figure 3.7: First window of Figure 3.6 and its patch assignments.
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Patch size Precision |L|
2× 2 π/2 16
3× 3 π/4 122
5× 5 π/8 2422

Table 3.1: The three different patch sized use to approximate curvature.
Larger patches yields better precision, at the cost of increased label space.

Patches of size 5× 5

Patches of size 5 × 5 are able to approximate curvature cost with π/8
precision. It is straightforward in direct analogy to the 3× 3 case to create
even larger training patches to calculate the cost for every possible 5 × 5
patch. With these larger patches comes additional problems. For the 5× 5
patches, the number of possible enumerations is large, 225 = 33554432. If
we restrict our attention to boundaries with penalties in {0, π/8, . . . , 2π},
many of these enumerations can be discarded. We end up with 2422
different labelings for each 5× 5 patch. Any other labeling is given infinite
cost and is never explicitly stored. Similarly, for the 3 × 3 patches we
only need to store 122 labelings. This approach significantly simplifies the
optimization of fpe by reducing the label space for each patch. The results
are summarized in Table 3.1.

3.2.2 π/2 precision curvature

As observed by El-Zehiry and Grady (2010) the 2× 2 curvature interaction
can be represented by a third-order pseudo-boolean function. In the 8-
connected setting, pairs of edges can be used to approximate the angles of
the polygon and thus the curvature. The resulting function can be reduced
into a second-order function and minimized by a number of different
methods. However, it may still be useful to form patches of size 2× 2, even
though they are larger than necessary, since this reformulation results in a
stronger relaxation. In Figure 3.8, the partial enumeration reformulation is
compared to the third-order approach of El-Zehiry and Grady. In the figure
the reformulation is also compared to generalized roof duality (GRD). GRD
is able to directly optimize the third-order function. The function however
is very difficult for GRD to minimize and it fails for strong regularization.
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w 10−4

4
10−3

4
10−2

4
10−1

4
100

4
101

4

w
Partial Enumeration El-Zehiry and Grady

Obj. Lower bound Time (s) Obj. Lower bound

10−4/4 4677 4677 0.934 4677 4677
10−3/4 4680 4680 0.961 4680 4680
10−2/4 4707 4707 2.43 4709 4705
10−1/4 4910 4910 3.98 5441 4501
100/4 5833 5833 14.3 16090 −16039
101/4 7605 7605 28.8 15940 −19990

w
GRD GRD-heuristic

unlabeled Time (s) unlabeled Times(s)

10−4/4 0% 10737 0% 7.08
10−3/4 0% 9287 0% 10.7
10−2/4 0.2% 10731 0.2% 7.32
10−1/4 6.7% 12552 6.8% 6.96
100/4 100% 12337 100% 10.9s
101/4 100% 7027 100% 22.2

Figure 3.8: Global optimal results for 2× 2 curvature with different regu-
larization weight w are shown in the top row. The function in El-Zehiry
and Grady (2010) is optimized using TRW-s. Generalized roof duality
(GRD) fails to recover a complete labeling for strong regularization. Partial
enumeration optimized via TRW-s managed to recover the global optimal
solution for all regularization strengths.
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(a) Data term (b) 2× 2 (c) 3× 3 (d) 5× 5

Figure 3.9: Segmentation results on a 81× 81 pixel image with very high
regularization weight, w. 2× 2 patches clearly favor horizontal and vertical
boundaries. 3× 3 patches favor directions that are multiples of π/4. 5× 5
patches favor directions that are multiples of π/8.

3.2.3 π/4 and π/8 precision curvature

For patches of size 2× 2 it is only possible to encourage horizontal and ver-
tical boundaries. To make the model more accurate, and include directions
that are multiples of π/4 radians, larger patches are needed, see Figure 3.4.
This section presents experiments using 3× 3 and 5× 5 patches, which are
able to encourage angles of π/4 and π/8.

In Figure 3.9 a simple example is given. The data term is constructed as
a discretized circle, giving all pixels within some radius a very low cost and all
other pixels a very high cost. Since there is no noise in the image, truncating
the data term would correspond to the optimal solution given arbitrary fine
precision. The regularization penalty, w, used in these experiments is very
high, exposing the preferred angles for each patch size.

In Figure 3.11 an experiment on a real image is given. In this experiment
the original problem is optimized using GTRW-s, and the reformulated
problem is optimized using a number of different solvers; TRW-s, MPLP
and LBP. TRW-s and LBP is also used with and without the efficient
message-passing method discussed in Section (3.1.1). Of all methods tried,
TRW-s with efficient message passing is a clear winner both in terms of
quality of the solution and execution time. This point is further highlighted
in Figure 3.10 where the convergence plots for 2× 2 patches are given, for
all the different optimizers.
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100 101 102 103

1,600
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2,000
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2,400

Time (s)

TRW-s obj. TRW-s lower b.
TRW-s (g) obj. TRW-s (g) lower b.
GTRW-s obj. GTRW-s lower b.
MPLP obj. MPLP lower b.
LBP obj. Optimal solution

Figure 3.10: Logarithmic time plot for the objective value and lower bound
over time for the 2× 2 patches experiment in Figure 3.11.
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(a) Image (b) 2× 2 (c) 3× 3 (d) 5× 5

PE Optimizer

Yes TRW-s
Yes TRW-s (g)
Yes MPLP
Yes LBP
No GTRW-s

Obj. Lower b. Time (s)

1749.4 1749.4 21
1749.4 1749.4 1580
1749.4 1749.4 6584
2397.7 1565
1867.9 1723.8 2189

2× 2

Obj. Lower b. Time (s)

1505.7 1505.7 355
1505.7 1505.7 41503

‡ ‡ ‡
∗ 3148

99840 1312.6 10785

3× 3

PE Optimizer

Yes TRW-s
Yes TRW-s (g)
Yes MPLP
Yes LBP
No GTRW-s

Obj. Lower b. Time (s)

1417.0 1416.6 8829
‡ ‡ ‡
‡ ‡ ‡
∗ 157532
‡ ‡ ‡

5× 5

Figure 3.11: Segmentation of the cameraman, 256×256 pixels, using 2×2,
3×3 and 5×5 patches with w = 1. The image I is scaled to [0, 1] and the
data term is d(x) = I(x)− 0.5. TRW-s and LBP uses efficient message
passing whereas TRW-s (g) uses general message passing. GTRW-s encodes
the higher-order costs directly, all other methods solves the same partial
enumeration reformulation. Thus, GTRW-s solves a weaker relaxation
which is confirmed by the results. All algorithms have an upper bound of
10,000 iterations. In addition, for LBP, TRW-s and GTRW-s is stopped
when the lower bound stops increasing. MPLP is also stopped if the duality
gap is less than 10−4.
(‡) Creating the problem instance not feasible due to excessive memory

usage. (∗) Inconsistent labeling.
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3.3 Binary deconvolution

In binary deconvolution the goal is to, given a noise image y, reconstruct
the original binary image x. The original image is assumed to be blurred
by a known convolution matrix H as

y = Hx. (3.28)

The binary assumption makes it possible to reformulate the inverse
problem into a second-order pseudo-boolean function. The resulting func-
tion f is non-submodular if H is non-symmetric and it is usually hard to
minimize. Each second-order term is possible to cover by a 2 × 2 patch,
but this enumeration is not strong enough. To get a stronger relaxation,
patches of 3× 3 are formed.

Figure 3.12 gives an example result, comparing partial enumeration to
a number of different methods. Partial enumeration is the only method
able to recover the optimal solution.

Image PE RD TRW-s MPLP

Obj. Lower bound Unlabeled Times (s)

Partial enumeration 7.1553 7.1553 0 15.45
Roof duality 241.761 -57.542 909 2.59
TRW-s 18.6821 -57.542 0 1.04
MPLP 184.2140 -57.542 0 777.91

Figure 3.12: Binary deconvolution on a 100 × 100 pixel image. Each
algorithm has a maximum of 1,000 iterations. The resulting images are
given in the top row. The unlabeled pixels for roof duality are shown in gray.
For roof duality the objective value is given by setting each unlabeled pixel
to be background. The partial enumeration reformulation was optimized
using TRW-s with efficient message passing.
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3.4 Dense stereo regularization

In this section, functions in Woodford et al. (2009) are optimized. The
regularization part of the function penalizes the second-order derivatives
of the disparity map, either using a truncated `1- or `2-penalty. The
second-order derivatives are estimated from three consecutive disparity
values, vertically or horizontally, resulting in third-order interactions. The
resulting objective function is a third-order pseudo-boolean function. The
function is optimized using fusion moves. Each fusion move can be
reduced to a second-order function by introducing auxiliary variables. For
these experiments the problem is decomposed into 3 × 3 patches which
contain the third-order interaction. In Woodford et al. (2009) the resulting
relaxation is then solved using roof duality. Table 3.2 shows the results for
the CONES dataset from Scharstein and Szeliski (2003).

Obj. value Lower bound Time (s)

Partial Enumeration 1.4558 · 1010 1.4558 · 1010 315.3342
Roof duality 1.4637 · 1010 1.4518 · 1010 1.9216
PE/RD 0.9958 1.0019 180.6859

(a) `1 regularization, RD left on average 24% of the variables unlabeled.

Obj. value Lower bound Time (s)

Partial Enumeration 1.3594 · 1010 1.3594 · 1010 428.2557
Roof duality 1.5165 · 1010 1.0484 · 1010 4.6479
PE/RD 0.9092 1.1652 111.8597

(b) `2 regularization, RD left on average 64% of the variables unlabeled.

Table 3.2: Averaged stereo results on CONES sequence when fusing SegPln
proposals in Woodford et al. (2009). To ensure that each subproblem is
identical for the two approaches, the solution from roof duality is used
for partial enumeration in each fusion move. The partial enumeration
reformulation was optimized using TRW-s with efficient message passing.
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3.5 Conclusions

In this chapter, it has been shown how to reformulate a large class of func-
tions into an equivalent form. The reformulation is theoretically justified
by showing that it is beneficial when the optimization is performed using
TRW-s. Experimentally, the benefits are also shown for the following appli-
cations: a novel curvature segmentation framework, binary deconvolution
and dense stereo estimation.
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Chapter 4

Parametric max-flow

In this chapter, we focus on solving the parametric max-flow problem.

Problem 4.1 (Parametric max-flow). Let γ ∈ Rd. Find all minimizers to

fγ(x) =
n∑
i=1

Ui(xi) +
n∑
i=1

n∑
j>i

Bij(xi, xj) +
n∑
i=1

d∑
j=1

γjcijxi (4.1)

where x ∈ Bn and f0 is submodular, given any choice of γ. Each solution
defines a region in Rd and the set of all these regions is called the solution
diagram.

The parametric max-flow problem with d = 1 is known as the one-
parameter max-flow problem. This special case has found its uses in computer
vision. In Kolmogorov, Boykov, et al. (2007), ratios of form

r(x) =
p(x)

q(x)
with q(x) > 0, (4.2)

are minimized using a one-parameter max-flow formulation. In Carreira
and Sminchisescu (2010), one-parameter max-flow is used to generate sets
of segmentations as part of their object recognition pipeline.

The parametric max-flow problem with d ≥ 2 is not well studied in
computer vision, even though forms of the commonly used Chan-Vese
function belong to this family of problems.

Problem 4.2 (Chan-Vese, Chan and Vese (2001)). Given an image

I : [1, a]× [1, b]→ [0, 1] (4.3)
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with ab = n pixels, approximate the foreground and the background using
only two values, µ and λ, by solving

argmin
x∈Bn

min
µ,λ∈R

n∑
i=1

(1− xi)
(
I(i)− µ

)2
+ xi

(
I(i)− λ)

)2

+

n∑
i=1

n∑
j>i

Bij(xi, xj),

(4.4)

where I(i) is the intensity of pixel i.

In Strandmark, Kahl, and Overgaard (2009) Problem 4.2 is solved
via branch and bound, where the sub solver is an efficient one-parameter
max-flow solver. We can reformulate Problem (4.2) into the following
problem.

Problem 4.3 (Complete Chan-Vese). Find all solutions optimal for any
choice of µ and λ in Problem (4.2).

Proposition 4.4. Solving Problem 4.3 corresponds to solving a two-parameter
max-flow problem, and a subset of its solutions is the optimal solution to Problem
(4.2).

Proof. The unary term of (4.4) can be reformulated as as

n∑
i=1

2
(
λ2 − µ2)xi + 2I(i)(µ− λ)xi + µ2 − 1− 2I(i)µ. (4.5)

Here µ2 − 1 − 2I(i)µ is independent of x and can be removed since it
will not influence the solution. Introduce new variables as

γ1 = λ2 − µ2,

γ2 = µ− λ. (4.6)

The variable change allows us to define

ci1 = 2, (4.7)

ci2 = 2I(i). (4.8)
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min
x
fγ(x)

γ

fγ(x1) = 0

fγ(x2) = 0

fγ(x3) = 0

x1 x2 x3

Hyperplane
Lower envelope

Figure 4.1: An simple example showing the hyperplanes and solution
diagram for γ ∈ R. The three variable assignments x1,x2 and x3 all
define a hyperplane in R2 (a line.) The solution diagram is simply the
partition of R shown along the γ-axis.

Finally this allows us to rewrite (4.4) into

fγ(x) =
n∑
i=1

n∑
j>i

Bij(xi, xj) +
n∑
i=1

(
γ1ci1 + γ2ci2

)
. (4.9)

This function is of the form given in Problem 4.1 showing the first claim.
Secondly, we have found all solutions given any parameter choice, in

particular this includes the optimal choice in the sense of Problem (4.2).

4.1 Algorithms

4.1.1 Exact solution

In this section we will motivate and describe the algorithm of Fernández-
Baca and Srinivasan (1991) which can solve the parametric max-flow prob-
lem for any dimension of the parameter vector γ. Solving the parametric
max-flow problem can also be expressed as finding the function

h(γ) = min
x∈Bn

fγ(x), (4.10)
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where γ ∈ Rd. Here h is piecewise-linear and concave function and the
graph to h defines a concave polytope in Rd+1. Any solution

y = argmin
x∈Bn

fγy(x), (4.11)

defines a hyperplanes in Rd+1 as

h(γy) + ((γ − γy) · c)Ty = 0, (4.12)

where c is a vector of all weights in (4.1) and · denote elementwise multi-
plication. Now suppose we have evaluated h(γ) for k different values of
γ giving us k hyperplanes. We can define the lower envelope of all these
hyperplanes as

Ck(γ) = min
{
h(γ0) + ((γ − γ0) · c)T x0), . . . ,

h(γk−1) + ((γ − γk−1) · c)T xk−1
}
.

(4.13)

Now if we were to evaluate every possible γ ∈ Rd, we would end up with
Ck(γ) = h(γ). This is not possible to do and fortunately not needed.
The idea behind the algorithm is to successively build the polytope defining
the graph to h. For each point γ ∈ Rd, for which we solve (4.11) we do
the following.

1. Intersect the hyperplane in (4.12) with the polytope.

2. Keep track on any added corners points in the polytope produced by
the intersection.

In Fernández-Baca and Srinivasan (1991) it is shown that we only need to
consider the corners points produced by the intersection. Once we have
evaluated all corners points we end up with Ck(γ) = h(γ). This summed
up and formalized in Algorithm 1.

Remark 4.5. Dual ascent corresponds to solving

maximize
γ∈Rd

h(γ), (4.14)

where γ are the dual variables. The parametric max-flow problem on the
other hand finds the optimal solutions given any γ. From this it follows that
the optimal dual ascent solution can be found in the solution diagram to the
parametric max-flow problem.
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Algorithm 1 Solving the parametric max-flow problem.

Let u(γ) be the current approximation of h(γ) in (4.10).
u is stored as the polytope defining the graph of u.
Let c be a list of unvisited points where u ∈ Rd for all u ∈ c.

Restrict the search space to γmin × γmax.
Add all points in the search space to c.
Initialize u such that u(γ) =∞ for each point in the search space.
while c is non-empty do
γ ← u ∈ c.
c← c− u.
y ← min

x∈Bn
fγ(x).

Update the approximation u(γ) by intersecting the hyperplane in
(4.12) with graph of u.

Add all new intersection points to c.
Remove any point in c above hyperplane.

return u.

Proposition 4.6. Let T (n) be the times it takes to solve

argmin
x∈Bn

fγ(x), (4.15)

and let b be the number of solutions in the solution diagram. The computational
complexity of Algorithm 1 is

O
(
bT (n) + b2) . (4.16)

Proof. Using appropriate data structures it is shown in Fernández-Baca and
Srinivasan (1991).

4.1.2 Approximate solution

Suppose we are only interested in finding an approximate solution diagram.
Depending on application different approximations might be useful. If we
are only looking to get k solutions, Algorithm 1 can be stopped once k
solutions have been found. However, this will give us no information on
how well the current solution polytope approximate the graph to h. This is
something the algorithm described in this section remedies.
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Let `(γ) and u(γ) be any lower and upper bound functions to h(γ)
for all γ ∈ Rd. We would like to stop algorithm once

g(γ) = u(γ)− `(γ) ≤ a for all γ ∈ Rd, (4.17)

for some constant a. In each iteration k of Algorithm 1 the approximate
lower envelope of (4.13) define an upper bound to h as

u(γ) = min
γ∈Rd

Ck(γ). (4.18)

Furthermore, the upper boundary of the convex hull of each visited points
defines a lower bound function `(γ), see Figure 4.2.

Proposition 4.7. Consider Algorithm 1 and the gap g, defined in (4.17). Let
v be all points in Rd which have been visited by the algorithm and c be all
corner points in the current solution diagram. Then

argmax
γ∈Rd

g(γ) ∈ {c \ v}. (4.19)

Proof. First note that both graphs of u(γ) and `(γ) are built up by facets
which each has a unique normal direction. Let fu(γ) and f`(γ) denote
the facets associated with u(γ) and `(γ) respectively for γ. Now divide
Rd into regions such that r ⊂ Rd and

fu(γ1) = fu(γ2) for all γ1,γ2 ∈ r, (4.20)

f`(γ1) = f`(γ2) for all γ1,γ2 ∈ r. (4.21)

Consider any region r. We have two different cases:

1. If the normal direction fu is equal to the normal direction of fv.
Then g(γ) is equal for all γ ∈ r and it suffices to check the corner
points of the region.

2. If the normal directions of fu and fv differ then the gap is largest at
the boundary and it suffices to check corner points of the region.

The corner points of all these regions are built up by the set c. However, by
construction g(γ) = 0 for all γ ∈ v. It follows that we only need to check
the points in {c \ v}.

Using Proposition 4.7 it is straightforward to construct an approximate
algorithm, by adding convergence criteria to a Algorithm 1, resulting in
Algorithm 2.
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Algorithm 2 Approximate solution to the parametric max-flow problem.

Let `(γ) be the upper boundary of the convex hull of all visited points.
Let u(γ) be the current approximation of h(γ) in (4.10).
u is stored as the polytope defining the graph of u.
Let c be a list of unvisited points where u ∈ Rd for all u ∈ c.

Restrict the search space to γmin × γmax.
Add all points in the search space to c.
Initialize u such that u(γ) =∞ for each corner in the search space.
Initialize l such that l(γ) = −∞ for each corner in the search space.
while c is non-empty do
γ ← u ∈ c.
c← c− u.
y ← min

x∈Bn
fγ(x).

Update the lower bound `(γ) using y.
Update the approximation u(γ) by intersecting the hyperplane in

(4.12) with graph of u.
Add all new intersection points to c.
Remove any point in c above hyperplane.
Check convergence, u(γ)− `(γ) < a for all γ ∈ c.

return u.

min
x∈Bn

fγ(x)

γ

Upper bound, u(γ)

Lower bound, l(γ)

Visited corner point
Unvisited corner point

Figure 4.2: The idea behind the approximate algorithm. Suppose we have
visited four corner points, and there is one corner point yet to consider.
The solid line u(γ) correspond to the current estimate of Ck(γ) in (4.13).
The dashed line l(γ) correspond to the upper boundary of the convex hull
of all visited points. The graph of h in (4.10) is somewhere in between the
two lines.
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4.2 Theoretical results

4.2.1 One-parameter

For notational simplicity define a one-parameter instance of (4.1) as

fλ(x) =

(
n∑
i=1

ai + biλ

)
xi +

n∑
i=1

n∑
j>i

Bij(xi, xj). (4.22)

An important question to answer is: how many solutions are there?

Proposition 4.8. Given a one-parameter max-flow problem given in (4.22).
If each bi has the same sign, then there can be at most n solutions

Proof. Suppose each bi is positive then:

• if λ→∞ then argmin
x∈Bn

fλ(x) = 0,

• if λ→ −∞ then argmin
x∈Bn

fλ(x) = 1.

For some λ the optimal labeling for xi changes from 0 to 1. Further
decreasing λ will never make xi = 0 less costly. Hence each variable
changes label at most one time. The maximum number of solutions is
reached if each variable changes labeling at a different λ.

The case when each bi is negative follow by an analogous derivation.

When the sign of bi is unrestricted it is much harder to constrain the
maximum number of solutions. There are very rough upper bound results.

Proposition 4.9. Given a one-parameter max-flow problem on form (4.22)

with n variables. Then there can be at most O
(

2
√
n
)

solutions.

Proof. See Carstensen (1983).

The maximum number of assignments is 2n so O
(

2
√
n
)

is a significa-

tion reduction. Still for computer vision applications n may be very large
and 2

√
n is in most cases intractable.
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4.2.2 Two-parameters

For notational simplicity define a two-parameter instance of (4.1) as

f{λ,µ}(x) =
n∑
i=1

(ai + ciλ+ diµ)xi +
n∑
i=1

n∑
j>i

Bij(xi, xj). (4.23)

One might hope that restricting ci, di ≥ 0 will lower the bound on the
number of solutions similar to the one-parameter case. Unfortunately this
is not the case.

Proposition 4.10. Given a two-parameter max-flow problem of the form
given in (4.23). Restricting the signs of all ci and di to be equal results in
a problem with at least as many solutions as some one-parameter max-flow
problem given on form (4.22).

Proof. We will prove this by taking any one-parameter problem and trans-
forming it to a two-parameter problem with the given restrictions. We begin
by considering the case when ci and di are all non-negative. Now given
any one-parameter problem we can construct a two-parameter problem
fulfilling the restrictions as{

ci = bi

di = 0
if bi ≥ 0, (4.24)

and

{
ci = 0

di = −bi
if bi < 0. (4.25)

Now the line λ = −µ in the solution diagram to (4.23) corresponds to

fλ(x) =
∑
i=1n

(ai + ciλi − diλi)xi +

n∑
i=1

n∑
j>i

Bij(xi, xj) (4.26)

=
∑
i=1n

(ai + biλ)xi +

n∑
i=1

n∑
j>i

Bij(xi, xj). (4.27)

This is a function of form (4.22) with no restrictions on the coefficients.
The case of non-positive coefficients can be shown using the same technique.
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4.3 Experiments

An essential part of Algorithm 1 is repeated intersection of hyperplanes. If
these intersections are calculated with float-number precision, numerical
issues are bound to occur. To overcome this issue, the intersections are
calculated using exact arithmetic via the CGAL library, see Hachenberger
and Kettner (2000). This is made possible by restricting all coefficients in
(4.1) to be integers. The resulting coefficients for each facet in the solution
polytope can then be represented by rational numbers. Due to limitations
in CGAL, the algorithm has only been implemented for γ ∈ R2.

A random problem. All random problem instances are constructed on a
n× n grid as

fn(x) =

n2∑
i=1

(ai + ciλ+ diµ)xi

+
n2∑
i=1

n2∑
j>i

Bij(xi(1− xj) + (1− xi)xj).
(4.28)

The coefficients ai, bi, Bij ∈ Z are all chosen randomly. Furthermore, the
connectivity is restricted by imposing

|Bij 6= 0| ≤ 4 for all (i, j) ∈ [1, n2]× [1, n2]. (4.29)

Solution diagram. In Figure 4.3 the solution diagram for two randomly
generated problems is given.

One parameter. By choosing di = 0 in (4.28) for all i, the problem
becomes a standard one-parameter problem with arbitrary signs on the
parameter coefficients. Results on random problem instances are given in
Figure 4.4.

Two parameters. In this experiment random functions, fn, of increasing
size are solved, in order to study how well the algorithm scales with size.
The results are shown in Figure 4.5, indicating that the algorithm does scale
very poorly with increased problem size.
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(a) f5, 25 variables and 306 solutions. (b) f6, 36 variables and 638 solutions.

Figure 4.3: Solution diagrams for two random problem instances of Prob-
lem 4.28 with hidden axes. Each region in the solution diagram is given a
random color.
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Figure 4.4: Number of solutions averaged over 100 random one-parameter
(di = 0) instances of (4.28).
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Figure 4.5: Execution time and number of solutions averaged over 100
random two-parameter instances of (4.28).

Precision. In order to emphasize the need for exact arithmetic, a version
of the algorithm using floating-point precision is implemented. This version
is denoted by DOUBLE and the version using exact arithmetic is denoted
as EXACT. Both versions are compared in Table (4.1). As expected, the
floating-point precision algorithm fails to find a large number of solutions
even for the small problems considered in the experiments.

Chan-Vese. In the last experiment the complete Chan-Vese Problem is
solved for a small 64×64 pixel image, see Figure 4.6. Even for the relatively
small image, the number of possible parameter choices is huge.
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f2 f3 f4 f5 f6 f7 f8 f9

EXACT 11 45 133 309 628 1178 1971 3122
DOUBLE 11 44 128 289 589 1101 1855 2925

Difference 0 1 5 20 39 77 116 197

Table 4.1: The number of solutions for Problem (4.28). Comparing in-
tersection performed using floating-point precision (DOUBLE) and exact
arithmetic (EXACT). As the problem size grows, the number of solutions
which DOUBLE fails to find increases.

(a) Image (b) 1 (c) 3000 (d) 12552

Solution Objective value λ µ

1 6035 0.5804 0.1054
3000 7348 0.5690 0.1018

12552 22042 0.7507 0.4578

Figure 4.6: The complete Chan-Vese problem solved for a 64× 64 pixel
image, execution time 6.1 hours. The total number parameter choices
leading to different segmentation results are 12552. The top row shows the
image along with the best, the 3000th and the seldom seen worst solution.
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4.4 Conclusions

As indicated by the experiments, the algorithm does not scale well enough
with the size of the problem to be usable in real-world vision applications.
The largest obstacle is in the core of Algorithm 1, where hyperplanes are
intersected over and over again. By restricting ourselves to integer weights,
we only need to use exact arithmetic of rational numbers. However, the
effort required to store and perform computations with these rational
numbers grows with the number of intersections, as indicated in Figure 4.5.
The natural remedy to this is to resort to floating-point numbers. However,
as seen in Table 4.1, even for small problems, the numerical issues lead to
many solutions being lost. This highlights the most important points of
this chapter:

• If every solution of the parametric max-flow problem is wanted, exact
arithmetic is needed.

• For most real-world applications, exact arithmetic is too slow.

Comparing Figure 4.4 to Figure 4.5, we can see that the one-parameter
max-flow problem seems to grow linearly with the number of variables.
The two-parameter max-flow problem on the other hand, seems to be
growing much faster, resulting in a large number of solutions even for
smaller problems. This is highlighted in Figure 4.6 where the complete
Chan-Vese problem is solved. The solver is almost unusably slow, even for
the small 64× 64 pixel image used in the example.

If, as in Carreira and Sminchisescu (2010), parametric max-flow only is
used to generate a few hypotheses, exact solutions are not needed. Instead, it
would be advisable to simply use some approximate algorithm as discussed
in Section 4.1.2.

For the one-parameter max-flow problem, specialized solvers exist, see
Gallo et al. (1989).
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Chapter 5

Curves

This chapter describes a general method for finding thin, elongated struc-
tures in images and volumes, regularized with respect to high-order differen-
tial properties. These structures can be modeled as curves. In its most simple
form, the method reduces itself to performing shortest-path calculation on
a graph using Dijkstras algorithm. When using shortest-path on a ordinary
graph, where the graph represents the image, the only property of the curve
which we are able to penalize is its length. In real-world applications, it
is often desirable to penalize more complex properties, such as curvature.
Mumford (1994) showed that Euler’s elastica – the line integral of the
squared curvature – conforms better to intuitive completion of boundary
curves than length.

In many applications, the curve should closely follow the shape of an
underlying surface which is locally planar. In such situations, it may be
advantageous to penalize torsion. Figure 5.1 shows a drawing of a heart.
For coronary arteries, it is not ideal to penalize length or curvature, since
the coronary arteries are neither short nor do they have low curvature. Here,
penalizing torsion would be an ideal prior.

Right coronary artery

Left coronary artery

Figure 5.1: A drawing of a heart. The thinner coronary vessels are long with
high curvature, but have low torsion as they lie approximately in a plane.
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The flexibility of the framework presented in this chapter is highlighted
by two extensions. The first one is the geodesic shortest-path problem,
which is the problem of finding the shortest path between two points on
a surface — the geodesic distance. Gulshan et al. (2010) use the geodesic
distance as a regularization prior, Schwarz et al. (2012) use the geodesic
distance as a distance measure and Bronstein et al. (2006) use the geodesic
distance to match surfaces.

The second extension concerns subsidiary constraints on the mini-
mizing curve, encoded using resource constraints. This enforces global
constraints on the shortest path. In Irnich and Desaulniers (2005), this
formulation is employed for vehicle routing and crew scheduling. The
global constraint can be used to limit the maximum length of the curve or
to limit the integrated curvature.

5.0.1 Related work

A classical approach for computing the global minimum of an active contour
model is based on shortest path, see Cohen and Kimmel (1997); Fischler
et al. (1981). This is a flexible and frequently used tool for extracting
1D structures in both 2D and 3D images, especially in medical image
analysis, see Lesage et al. (2009). Most of these methods use only weighted
length regularization, even though the idea of applying shortest path to
higher-order functions involving curvature is not new. One early example
of minimizing a curvature-based objective functions can be found in Amini
et al. (1990). However, in order to obtain reasonable execution times, only
a small band around the initial contour is considered, making the approach
resemble a local refinement technique. In Schoenemann et al. (2011), the
elastic ratio function is proposed for edge-based 2D image segmentation.
The ratio is able to penalize the curvature of the segmentation boundary and
finds the global optima on a discrete mesh. Still, on a CPU, the execution
times are up to several hours for medium-sized images. One advantage of
their approach is that it is possible to implement it in a parallel manner on
a GPU, which drastically reduces execution times.

An extension of the live-wire framework with curvature priors is pre-
sented in Wang (2005). The algorithm is applied to image squares of
up to 80 × 80 pixels with 8-connectivity. In Péchaud et al. (2009), the
standard 2D shortest path is lifted to 4D by incorporating 12 discrete ori-
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entation angles and radii in the estimation, and hence implicitly penalizing
curvature. Many nice examples of the benefits with curvature are given
in both Péchaud et al. (2009) and Wang (2005), but no execution times
are reported. In contrast, the proposed method is used with significantly
larger resolutions of both the image and orientations with tractable execu-
tion times. In Krueger et al. (2013), a heuristic method is developed for
minimizing a pseudo-elastica for 2D segmentation. The computational
complexity of their algorithm is attractive, but at the price of approximate
solutions. The proposed algorithm has comparable execution times and
the same asymptotic complexity O(d2n log nd) where n is the number of
pixels and d depends on the neighborhood size.

Line graphs have been used before to add “turning costs” to shortest-
path problems Caldwell (1961); Winter (2002). This chapter continues
this work by showing how to optimize curvature, going beyond relatively
small graphs, refining the solution with local optimization, and showing
applications to medical problems. In particular, Winter (2002) mentioned
increased performance as an open question, an issue that will study in detail
in this chapter.

Finding the geodesic shortest path is well studied for analytic surfaces,
see Pressley (2010). Several works consider geodesic shortest path on
polyhedral surfaces, see Kapoor (1999); Sharir and Schorr (1986). This
chapter covers surfaces implicitly given by a depth map. For these surfaces,
the distance is usually approximated by the euclidean distance, see e.g.
Gulshan et al. (2010); Schwarz et al. (2012). In this chapter, a closed form
solution for the distance is given. Furthermore, it is shown that using the
correct distance can greatly improve the results at a low computational cost.

The resource constrained shortest-path problem has been optimized
using Lagrangian relaxations previously in the literature, see of instance
Beasley and Christofides (1989); Mehlhorn and Ziegelmann (2000). In
this chapter, it shown how this easily generalizes to function penalizing
higher-order properties, such as curvature. There is also previous work on
constraining local properties of a curve. In Reeds et al. (1990); Vendit-
telli et al. (1999) Dubins paths are used for path-planing in robotics as
they approximate the mechanical limitations of robots, yielding physically
feasible trajectories. The framework proposed in this chapter allows for
straightforward implementation of constraints of this type.

In MacCormick and Fitzgibbon (2013) local optimization of a curva-
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`1
`2

`3
`4 ∫ `

0 D(γ(s))ds =
∑4
i=1 `iD(i)

Figure 5.2: The data term interpolated using nearest neighborhood for a
two-dimensional problem.

ture dependent function is optimized using LBFGS. The derivatives are
calculated by hand and the authors noted that it was “tedious to implement
and debug.” In this chapter, local optimization is also performed using
LBFGS, but the derivatives are determined using automatic differentiation.
Using automatic differentiation is simpler to implement and can be compu-
tationally more efficient than symbolic differentiation, see Bendtsen and
Stauning (1996).

5.1 Problem formulation

We are interested in finding a curve γ, in two or three dimensions, which
minimizes a data-dependent objective function give on the form

minimize
γ,L

∫ L

0

(
f(γ(s)) + g(γ′(s))

+ h(γ′′(s)) + `(γ′′′(s))
)
ds

subject to γ(0) ∈ Estart, γ(L) ∈ Eend,

(5.1)

where γ : [0, L] → R2 or 3 is parametrized by arc length. The functions
f, g, h, and ` are all restricted to be non-negative. The curve has to start in
the set Estart and end in the set Eend. The main focus of the chapter is

f(γ(s)) = D(γ(s)), (5.2)

g(γ′(s)) = ρ, (5.3)

h(γ′′(s)) = σκ(s)2, (5.4)

`(γ′′′(s)) = ντ(s)2, (5.5)
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where D is a data term, κ is the curvature of γ, and τ is the torsion of
γ. The scalars ρ, σ and ν are weighting factors for length, curvature and
torsion, respectively.

Another problem, expressible as (5.1), is finding geodesics on surfaces
defined by some depth map D. For this problem f = h = ` = 0 and∫ L

0
g(γ′(s))ds, (5.6)

is the geodesic distance on the surface defined by D.
Furthermore, if we would like to constrain f at some point s to be at

most m, we can enforce this replacing it with

f̃(γ(s)) =

{
∞ f(γ(s)) > m

f(γ(s)) otherwise.
(5.7)

Any other term in (5.1) can be constrained in a similar manner. In Section
5.3 it is shown how the integral in (5.1) also can be constrained.

In this chapter, (5.1) is solved by considering piecewise linear curves γ.
In order to approximate k-th derivative of γ we use k + 1 points. In the
remainder of this section we show how to approximate all costs discussed as
a function of either 2, 3, or 4 points.

5.1.1 Data-dependent term (two points)

The integral of D(γ(s)) is approximated by nearest neighbor interpolation
as

∫ `

0
D(γ(s))ds ≈

n∑
i=1

`iD(i), (5.8)

where `i is the curve segment length for which voxel i is closest to γ(s), see
Figure 5.2 for an example.

5.1.2 Curvature (three points)

Every line segment has zero curvature, so we will need at least three points
to approximate curvature. Let (xi, yi, zi) for i = {1, 2, 3} be three ordered

101



CHAPTER 5. CURVES

points. The quadratic B-spline associated with these points is

r(t) =
1
2

x1 y1 z1

x2 y2 z2

x3 y3 z3

T  1 −2 1
−2 2 0

1 1 0

t2t
1

 . (5.9)

The curvature is defined as

κ(t) =
‖r′(t)× r′′(t)‖
‖r′(t)‖3 , (5.10)

see Pressley (2010). It is possible to analytically compute the squared
curvature as well as the length element ds = ‖r′(t)‖dt of the spline using
symbolic mathematics software, see Section 5.A.

There is no closed solution to
∫ 1

0 κ(t)2ds, but it can be approximated
with numerical integration. In this chapter, the integral is approximated
using the trapezoidal rule.

5.1.3 Torsion (four points)

Every curve contained in a plane has zero torsion and any given triplet
of points always lies in a plane. This means means we need at least four
points, (xi, yi, zi), i = {1, . . . , 4}, to approximate torsion. Torsion uses
derivatives of the third-order, which require cubic B-splines. The cubic
B-spline associated with these points is

r(t) =
1
6


x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4


T 
−1 3 −3 1

3 −6 3 0
−3 0 3 0

1 4 1 0



t3

t2

t
1

 . (5.11)

The torsion is given by

τ(t) = det
[
r′(t) r′′(t) r′′′(t)

]
/ ‖r′(t)× r′′(t)‖2, (5.12)

see Pressley (2010). Similarly to curvature, the torsion can be calculated
analytically, see Section 5.B.

Figure 5.3 shows an example curve (a helix), for which the exact curva-
ture and torsion are well known: they are both constant. Figure 5.4 shows
the error when approximating the curvature and torsion using three and
four points, respectively.
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Figure 5.3: Example curve (x, y, z) = (cos 6πt, sin 6πt, t).
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Figure 5.4: Error when computing the curvature (κ) and torsion (τ ) using
the middle point of a spline fit to three or four points on the curve in
Figure 5.3.
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5.1.4 Distance on a surface (two points)

We restrict our attention to the case where surfaces are defined implicitly by
the depth in a number of grid points, as defined by a depth map D. The
curve γ(s) on the surface D is defined as

γ(s) =
(
x(s), y(s), D(x(s), y(s))

)
, (5.13)

where r(s) = (x(s), y(s)) is a curve in R2. This approach was used in
Gulshan et al. (2010), where geodesic distance was defined by the euclidean
distance between between points on γ. This corresponds to interpolating
D using linear interpolation. This gives rise two related issues:

1. How do we define distance between two points whose depth is not
given in the depth map.

2. What kind of surface are we implicitly defining using this interpola-
tion.

Consider any patch of four points. Four points does not in general lie on
a surface, so simply using euclidean distance leads to contradictions. The
underlying surface may be different depending on which pair of points are
compared. The implicitly defined surface is inconsistent.

Nearest-neighborhood interpolation gives consistent estimation of the
surface. Yet at each point the curve changes nearest neighbor, the surface
may be discontinuous.

Bilinear interpolation is the simplest interpolation scheme giving a
continuous surfaces. Approximating the surface depth, d, by bilinear
interpolation yields an expression which can be simplified as

d(x, y) = d11xy + d10x+ d01y + d00 (5.14)

where (x, y) ∈ [0, 1]× [0, 1]. The coefficients are given by

d11 = D(0, 0) +D(1, 1)−D(1, 0)−D(0, 1), (5.15)

d10 = D(1, 0)−D(0, 0), (5.16)

d01 = D(0, 1)−D(0, 0), (5.17)

where D(i, j) are the depths defined by discrete depth map in the four
corners of the patch. Figure 5.5 shows the difference between the linear and
the bilinear interpolation for a patch.
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(a) Linear interpolation,
d(x, y) = 2(x− y),
line length

√
2 ≈ 1.4142.
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(b) Bilinear interpolation,
d(x, y) = −3xy + 2x+ y,
line length ≈ 2.1572.

Figure 5.5: The difference between linear and bilinear interpolation, when
measuring the length of curve lying on a surface. The depth map is only
defined in the four corner points shown in both images. For linear interpo-
lation we show a possible plane which is consistent with three of the four
points.
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A curve from (x0, y0) to (x1, y1) can be parametrized as

r(t) = (x(t), y(t)) (5.18)

= (t(x1 − x0) + x0, t(y1 − y0) + y0), (5.19)

with t ∈ [0, 1]. It turns out that even though we are using bilinear interpo-
lation we still get a closed form solution for the arc length:∫ 1

0

√
x′(t)2 + y′(t)2 + d′(t)2dt ={

L if d11 = 0 or ∆x = 0 or ∆y = 0,

B otherwise,

(5.20)

where

L =

√
∆x2 + ∆y2 + (∆xd10 + ∆yd01)2,

B =
|a|
2

(
c log

∣∣∣∣b+ 1 +
√
g

b+
√
f

∣∣∣∣+ (b+ 1)
√
g − b

√
f
)
,

(5.21)

a = 2d11∆x∆y,

b =
y0∆x+ x0∆y

2∆x∆y
+
d01∆y + d10∆x

a
,

c =
∆x2 + ∆y2

a2 ,

f = b2 + c,

g = 1 + 2b+ f,

∆x = x1 − x0,

∆y = y1 − y0.

(5.22)

Note that if ∆x,∆y or d11 equals 0, then the bilinear interpolation
along r(t) is linear. If the curve passes through several patches the line is
cut into pieces and the length is measured separately in each patch.

5.2 Shortest paths in line graphs

In this section we will show how optimize (5.1) by restricting γ to lie in
a predefined mesh represented by a graph, G. We will assume that the
reader is familiar with basic graph theory, see e.g Papadimitriou and Steiglitz
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1

2 3

4

(a) Graph (G)

1,2

2,3

3,4

1,4

1,3

(b) L(G) of the graph in (a)

Figure 5.6: Example construction of a line graph.

(1998). Given a data volume, D, each voxel is represented by a vertex in
G. Edges connecting the vertices in G represent possible line-segments for
γ, see Figure 5.7. Given a start and end sets we can find then find shortest
path very efficiently using Dijkstra’s algorithm, see Dijkstra (1959).

Definition 5.1. We refer to the number edges pointing to a vertex as the
connectivity of that vertex. If all vertices have the same connectivity we will
refer to that as the connectivity of the problem instance.

For example, adding all edges for a 2D problem with distance less than
or equal to 2.5 gives a connectivity of 16. This construction connects two
vertices and makes it possible to penalize functions of at most two points.
In order to penalize higher-order regularization like curvature and torsion
another graph construction is needed.

Definition 5.2. For a graph G, the line graph L(G) is given by a graph
where each edge in G is a vertex in L(G) and each pair of edges connected by a
vertex in G is a edge in L(G). See Figure 5.6 for an example construction.

Functions on form (5.1) with h(γ) = `(γ) = 0

The objective functions is a function of two points and the original graph
suffices, see Figure 5.7(a).
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(a) Using vertices (b) Using edges (c) Using edge pairs

Figure 5.7: The same path through a graph, edges shown in black, repre-
sented in three different ways. The graph vertices, shown in color, corre-
spond to (a) vertices, (b) edges, and (c) edge pairs in the graph.

Functions on form (5.1) with `(γ) = 0

Function h(γ) requires at least three points to be calculated. Form L(G)
of the original graph. The start set of L(G) consists of all vertices in L(G)
whose corresponding edge in G connects to a vertex in Estart. In the same
way the end set of L(G) is constructed. By construction each edge in L(G)
connects three vertices in the original graph G, see Figure 5.7(b).

Any function on form (5.1)

Function `(γ) requires at least four points to be calculated. We repeat the
graph construction for the previous case and form L(L(G)). Now each
edge connects four vertices in the original graph G, see Figure 5.7(c).

Going beyond (5.1), penalizing functions of k points

It is possible to penalize any function of k points by nesting the line graph
construction k − 2 times. The main issue with penalizing even higher-
order functions is that the size of the nested line graph grows very rapidly.
Suppose we would like to penalize a function of k points and thereby for
instance approximating the k − 1 derivative of γ. Given a problem with
a total of n points and a connectivity of c. The corresponding line graph
would have O(nck−2) vertices and O(nck−1) edges.
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5.3 The resource constrained shortest path

It is possible to extend (5.1) by introducing hard constraints such as maxi-
mum length, curvature or torsion of the curve. This problem is known as
resource constrained shortest path. In this section we solve this problem using
a Lagrangian relaxation, this was first done by Beasley and Christofides
(1989).

Consider the primal problem

minimize
γ,L

∫ L

0

(
f(γ(s)) + g(γ′(s))

+ h(γ′′(s)) + `(γ′′′(s)))
)
ds

subject to γ(0) ∈ Estart, γ(L) ∈ Eend∫ L

0
g
(
γ′(s)

)
ds ≤ u1∫ L

0
h
(
γ′′(s)

)
ds ≤ u2∫ L

0
`
(
γ′′′(s)

)
ds ≤ u3.

(5.23)

Define the dual function as

d(λ1, λ2, λ3) =

minimize
γ,L

∫ L

0

(
f(γ(s)) + g(γ′(s))

+h(γ′′(s)) + `(γ′′′(s)))
)
ds

+λ1

(∫ L

0
g(γ′(s))ds− u1

)
+λ2

(∫ L

0
h(γ′′(s))ds− u2

)
+λ3

(∫ L

0
`(γ′′′(s))ds− u3

)
subject to γ(0) ∈ Estart, γ(L) ∈ Eend,

(5.24)
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and the dual problem as

maximize
λ1,λ2,λ3

d(λ1, λ2, λ3)

subject to λi ≥ 0 for all i ∈ {1, 2, 3}.
(5.25)

For a feasible solution to the dual problem it follows that,

d(λ1, λ2, λ3) ≤
∫ L

0

(
f(γ(s)) + g(γ′)

+ h(γ′′(s)) + `(γ′′′(s))
)
ds.

(5.26)

This result is known as weak duality. Using this result we can instead of
minimizing the primal problem, maximize the dual problem.

The dual problem is maximized using the cutting-plane method. Note
that d can efficiently be evaluated, by shortest path computations, by simply
modifying the functions f , g, and h in (5.1).

5.4 Local optimization

So far we only discussed finding an optimal solution on a discrete mesh.
Ideally we would like a larger search space. This can be achieved by first
finding the optimal solution on the discrete mesh and then performing
local optimization, for example using gradient descent, on the discrete
solution. The major concern with most local optimization methods is
that we need to find the derivatives of the function. Approximating them
via finite differences can lead to issues with numerical stability. Deriving
them analytically by hand can be very cumbersome and is prone to human
error. A better approach is to derive the derivatives automatically via dual
numbers.

Dual numbers are an extension to the real numbers much like the
imaginary numbers. Given a real number a adjoin a new element ε and
define a dual numbers as z = a + εb, with the additional property that
ε2 = 0.

Now consider a function f and its Taylor expansion around a,

f(a+ ε) =
∞∑
k=0

εkf (k)(a)

k!
= f(a) + εf ′(a). (5.27)
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Using the dual number we can recover the derivative of by simply reading
the coefficients in front of ε.

It is possible to efficiently implement Automatic Differentiation (AD)
using dual numbers in a programming language supporting templates, see
Bendtsen and Stauning (1996), such as C++. The compiler is able to
generate and optimize multiple overloads of the same function; one for
scalar floating point evaluation and another for dual numbers, which gives
the derivative.

In this chapter, automatic differentiation is used to perform LBFGS
using the software by Strandmark (2013). This allows us to locally optimize
the curve without calculating any derivatives symbolically or numerically.
Since the problem is relatively low-dimensional, local optimization is typi-
cally much faster than finding the discrete solution using Dijkstra.

5.5 Implementation

Dijkstra’s algorithm for computing the shortest path is well known. An
important property is the fact that it does not require the graph to be stored.
Two things are required:

1. The number of vertices along with a start and end sets.

2. An oracle that given a vertex returns its neighbors and edge weights.

Using an oracle means that the weight does not have to be precomputed for
every edge in the graph. As Section 5.1 shows, computing the edge weights
can become quite involved.

Creating the line graphs explicitly in memory is not needed; they can
be derived on the fly from the original graph. This observation is crucial
for higher-order regularization as the number of edges in nested line graphs
explodes. Furthermore, assuming that each vertex have the same type of
neighborhood system, then the graph itself does not have to be stored. This
is assumption is true for all the experiments performed in this chapter.

The same implementation of Dijkstra’s algorithm is used for all experi-
ments in this chapter. It uses the C++ standard library for all data structures.
The limiting factor memory-wise is the priority-queue; each entry requires
12 bytes and consists of a int index and double weight.
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A cache is used in order to avoid performing the same computations
twice. For example, the curvature cost between two edges is the same
when both edges are translated by the same amount. Thus, the integrated
curvature needs only be computed once for each configuration of edge
pairs. The cache has to be fast, since when working with torsion there
are millions of different configurations of two edge pairs. For general
connectivity the implementation uses an std::map with the coordinates
(mean subtracted) as keys. For a fixed connectivity all costs are precomputed
and stored in a std::vector for more efficient lookup.

5.5.1 The A?-algorithm

A common improvement to Dijkstra’s algorithm is A?, which changes the
vertex visitation order. It requires a function l, which for each vertex returns
a lower bound of the distance to the end set. Any such l yields a correct
algorithm. If l ≡ 0, then A? becomes the standard Dijkstra algorithm.

In some cases, finding a good lower bound is easy. For example, when
computing the path with shortest length, the distance “as the crow flies”,
ignoring D, can be used as a lower bound, ignoring any obstacles in the
graph. For higher-order regularization, however, computing a useful lower
bound is more difficult (it has to be done really fast to make a difference).
One option is to set h(γ) = `(γ) = 0 and solve (5.1) for all vertices (this
is fast), and use the result as a lower bound. This lower bound will be
evaluated in experimental section of this chapter.

5.5.2 Parallelization

Computing the shortest path between two vertices efficiently in parallel is
not a trivial task. Therefore Dijkstra’s is sequentially run and the neighbors
of each vertex are sequentially computed. The oracle can compute the
edge weights for all neighbors in parallel on a multi-core CPU. Since these
computations are a large portion of the total computational cost (even with
the above-mentioned cache), some parallelization is obtained.

5.6 Experiments

This section gives many examples showcasing the strength of higher-order
regularization; both on synthetic and real data.
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5.6.1 Synthetic Experiments

River segmentation

This experiment highlights the difference between length and curvature
regularization. The river image in Figure 5.8 is manually sampled at differ-
ent locations. The samples are used to construct the data term for every
pixel as the shortest (Euclidean) distance in L*a*b* space to any of the color
samples of the river delta. Estart is the upper boundary and Eend is the
lower boundary of the image.

Figure 5.8 presents the results. With curvature regularization it is possi-
ble to find a long path which does not turn much. No amount of length
regularization is able to find this path in Figure 5.8. Local optimization
is able to improve the shortest-path solution and is most effective when
curvature regularization is used. In Figure 5.9 the improvements of lo-
cal optimization are highlighted, note that the solution given after local
optimization is much smoother, resulting in much lower curvature cost.

The execution times are heavily dependent on the regularization as
shown in Figure 5.10. For length regularization, the execution time increases
with the regularization strength. In the extreme case, ρ =∞, all lines up
to the Euclidean shortest path need to be considered before the algorithm
terminates. The execution times for curvature penalty behave differently.
For low regularization, a strong data term together with the A? lower bound
will leave most of the graph unvisited when the shortest path is found. For
σ =∞, only the straight lines are considered, which also leaves most of the
graph unvisited. The longest execution time occurs with medium strong
regularization, as most of the graph needs to be visited. The execution times
are compared in Figure 5.11 for Dijkstra and A?, and it is evident that large
speed-ups are obtained with A?.
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Torsion

In Figure 5.12 an experiment indicating the difference between curvature
and torsion regularization is shown. High torsion regularization forces the
curve to stay within a plane, but within the plane, the curve may have high
length and curvature. The graph used for torsion regularization had about
280 billion edges. The technique of not storing the line graph explicitly is
of course imperative for such a graph.

Geodesic shortest path

The last synthetic experiment covers geodesic shortest paths — the shortest
path between two points on a surface. Define a surface as the function
graph of

f(x, y) = 10 |cos(x) sin(y)| . (5.28)

Sampling f on a grid results in a discrete version of the function graph. This
discrete function graph will be used as a surface in this experiment. The
set Estart is chosen as the upper left corner of the grid and Eend is chosen
as the lower right corner of the grid. The geodesic shortest-path problem
is solved using both linear and bilinear interpolation on the discretized
function graph in Figure 5.13. This gives two curves for which the lengths
are determined by numerical integration of the analytical function graph of
f . For low resolutions, bilinear interpolation gives much better results. As
the sample rate goes up, the linear and bilinear interpolations give basically
identical solutions.

In Figure 5.14, the shortest-path problem is solved on the surface
defined by the function graph of

g(x, y) = 10
√
x2 + y2. (5.29)

The shortest-path solution is compared to a refined solution obtained
after local optimization. This experiment highlights the benefits of local
optimization which yields a much smoother curve, which fits the model
significantly better.
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Image Data term

Only length reg. After local optimization Close-up

Only curvature reg. After local optimization Close-up

ρ 0.25 1 1000 0 0 0
σ 0 0 0 0.25 50 500

Time (s)

A? 0.37 0.42 0.47 0.82 6.55 8.00
Local optimization 0.12 0.03 0.01 18.16 9.01 14.4

Local optimization decreased objective value by

1.5% 1.1% 0% 14% 48% 13%

Figure 5.8: Segmentation highlighting the difference between length and
curvature regularization. The start set Estart is the upper boundary of
the image and the end set Eend is the lower boundary. The images on
the second and third row use only length and curvature regularization
respectively. No amount of length regularization is able to find the long and
smooth river path. The underlying graph has 220,443 vertices (373× 591)
and 3,509,756 edges (16-connectivity).
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Data term Curvature term

Shortest path 68.71 65.66
+Local optimization 64.21 5.61

Figure 5.9: The effect of refining the shortest-path solution using local
optimization. The image shows a close-up of the shortest-path problem
solved in Figure 5.8, with regularization settings: ρ = 0 and σ = 50.

10−5 10−2 101 104

0.2

0.3

0.4

0.5

ρ

T
im

e
(s

)

(a) Only length regularization

10−5 10−2 101 104
0

5

10

σ

(b) Only curvature regularization

Figure 5.10: Execution time as a function of regularization strength for the
example in Figure 5.8. For purely length regularization the execution time
is increasing with the regularization strength. For purely curvature regular-
ization the longest execution times occur for medium strong regularization.
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σ
Dijsktra A?

Vertices visited Time (s) Vertices visited Time (s)

0.25 886,966 3.45 196,553 0.86
50 1,328,045 9.70 885,415 6.67

500 916,061 9.14 740,683 7.54

(a) Dijkstra, σ = 50 (b) A?, σ = 50

Figure 5.11: The number of vertices visited using Dijkstra’s and A? for
the curvature experiments in Figure 5.8. The images show the order in
which the vertices were visited for medium curvature with and without A?,
from blue (early) to red (late). Naturally, the heuristic works best for low
curvature regularization.

Curvature
Torsion
Start set
End set

Figure 5.12: Synthetic 3D experiment for torsion with volume-rendered
data term. Darker regions correspond to lower cost. The segmentation
is performed with either very high curvature or very high torsion regu-
larization. The underlying graph has 91,000 vertices (35 × 130 × 20),
13,286,000 edges (146-connectivity) and 1,939,756,000 edge pairs. Run
times are: 0.1670 seconds for curvature and 6.8991 seconds for torsion.
More difficult problems will take substantially longer time to solve.
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(a) f is sampled on a grid with resolution 20r × 20r.

Length Time (s)

Linear 72.7285 0.3530
Bilinear 66.1618 0.2183

(b) f is sampled on a 40 × 40 grid
(r = 2). The underlying graph has
1,600 vertices (40 × 40) and 76,800
edges (48-connectivity).

Length Time (s)

Linear 40.9942 0.9393
Bilinear 40.9931 1.0214

(c) f is sampled on a 120× 120 grid
(r = 6). The underlying graph has
14,400 vertices (120×120) and 691,200
edges (48-connectivity).

Figure 5.13: The geodesic shortest path from the top left corner to
the bottom right corner, on a discretized function graph of f(x, y) =
10| sinx cos y|. For lower sample rates, r, the curves determined via bi-
linear interpolation are significantly better than the curves determined via
linear interpolation.
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(a) Close-up of a corner of the resulting curves.

(b) The curves on the surface (the surface is not shown).

Length Time (s)

Shortest path 76.6101 0.0514
+Local optimization 66.4362 0.2454

Half circle 66.6332

Figure 5.14: The geodesic shortest path on the function graph of
10
√
x2 + y2. The start and end sets are chosen as two opposing points

with distance 21.2132 from origin. The underlying graph has 25,000
vertices (50× 50) and 120,000 edges (48-connectivity). Local optimization
is performed on the shortest-path solution. The surface is convex, hence the
local optimizer shines and produces a solution with a much shorter length.
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5.6.2 2D Retinal images

Automated segmentation of vessels in retinal images is an important prob-
lem in medical image analysis, which, for example, can be used when
screening for diabetic retinopathy. This section investigates whether cur-
vature regularization is useful for this task on the publicly available dataset
given in Staal et al. (2004). Figure 5.15 shows the experiment. Shortest
paths are iteratively computed from a user-provided start point to any point
on the image boundary. A curve could start anywhere along the previously
found curves, but not end close to a previous end point.

Experiments are performed with different amounts of length regular-
ization in Figure 5.15. No or low length regularization resulted in noisy,
wiggling paths. This problem expectedly disappeared for medium regular-
ization, but sharp turns were still present in the solution (sharp turns usually
change direction in the vessel tree). When using too high regularization,
Figure 5.15(e), the solution almost ignores the data term and prefers paths
along the image boundary. In contrast, curvature regularization is able to
more correctly capture the vessel tree.

5.6.3 Multi-view reconstruction of space curves

Curvature has previously been used to reconstruct space curves from mul-
tiple calibrated views of a static scene, see Kahl and August (2003), but
only using local optimization. Given start and end points, the curves can
now be optimally reconstructed. Figure 5.16 shows an experiment on the
same data as Kahl and August (2003). The tree is reconstructed iteratively
in the same way as in Figure 5.15 and, as expected, length regularization
introduces similar artifacts. Integrating the image along the projected 3D
edge gives the edge cost for a single view. The data term used for an edge is
simply the maximum of the cost over all views.
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(a) Data term (b) ρ = σ = 0.
Mean time: 0.41s

(c) Details of (b) and (f ),
respectively

(d) ρ = 0.1, σ = 0.
Mean time: 0.56s

(e) ρ = 1, σ = 0.
Mean time: 0.66s

(f ) ρ = 0, σ = 100.
Mean time: 10.1s

Figure 5.15: Segmenting a vessel tree with 8 branches in a 2D retinal image
from the Staal et al. (2004) data set. The green dots show the computed best
starting points for the new branches. The underlying graph has 329,960
vertices (584× 565) and 10,496,766 edges (32-connectivity). The arrows
point at sharp turns where the segmented vessel changes direction in the
vessel tree and at particularly noisy parts. All length regularizations (b-d)
have various issues and curvature regularization (e) finds a reasonable tree.
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ρ = 10, σ = 0 ρ = 100, σ = 0 ρ = 0, σ = 10 The tree

Figure 5.16: Reconstructing a tree in 3D from 4 different views, only one
view is shown. (a)-(b) Using only length regularization gives similar artifacts
(sharp turns) as in Figure 5.15. (c) Replacing the length regularization with
curvature regularization improves the resulting reconstruction. The under-
lying graph has 125,000 vertices and 24,899,888 edges (218-connectivity).
Run times are 4.8 minutes for length and 13.8 hours for curvature. The
data comes from Kahl and August (2003).
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5.6.4 3D coronary artery centerline extraction

Finding the centerlines of coronary arteries is of high clinical importance,
see Schaap et al. (2009). This task is however very time consuming when
performed manually. This section uses the public data set “Rotterdam
Coronary Artery Algorithm Evaluation Framework” from Schaap et al.
(2009). The data set consisting of 32 CT angiography scans. Frequency
analysis of the CT volumes in Schaap et al. (2009) show that the resolution
is artificially high in the dataset, see Friman et al. (2008). In the experiments
the volumes are downsampled to half the original size in each dimension
without any loss of information.

Most of the methods which have submitted to the Rotterdam challenge
use some sort of shortest path formulation in some part of their algorithm.
Reported results vary between 70–98% overlap, with different amounts of
human interaction and model complexity.

For the experiments the data term proposed by Metz et al. (2008) is
used. The data term is based on Frangis’ vesselness measure, see Frangi
et al. (1998). The vesselness measure is constructed by analyzing the
eigenvalues of Hessian matrix in each voxel of the volume. As is usual
for these measures the volume is first smoothed with a Gaussian kernel,
with standard deviation σ, allowing the Hessian calculation and Gaussian
smoothing to be combined into one filter. The eigenvalues of the Hessian
at voxel p are sorted as,

|λ1(p)| ≤ |λ2(p)| ≤ |λ3(p)|. (5.30)

The vesselness is then defined as

V(p) =

{
0 λ2(p) > 0 or λ3(p) > 0

(1− exp(A)) exp(B) (1− exp(C)) otherwise,
(5.31)

where

A = − 1
2α2

(
λ2(p)

λ3(p)

)2

(5.32)

B = − 1
2β2

λ1(p)2

|λ2(p)λ3(p)| (5.33)

C = − 1
2c2

(
λ1(p)2 + λ2(p)2 + λ3(p)2) . (5.34)

The motivations for the different functions are as follows.
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A: distinguishes between plate-like and line-like structures.

B: accounts for deviations from a blob-like structure.

C: captures that the norm of the eigenvalues should be small in the
background.

We are now ready to define the data term used by Metz et al. First the
voxel volume undergoes a soft thresholding

T (p)=
1
2

(
erf (b (I(p)− a1) + 1)

)(
1− 1

2
(erf (b (I(p)− a2)) + 1)

)
.

(5.35)

The voxel intensity, I(p), is measured in Hounsfield and the error function
is defined as

erf (x) =
2√
π

∫ x

0
exp(−t2)dt. (5.36)

The parameters are tuned to avoid bronchi and calcium intensities. The
data term for voxel p is defined as

D(p) =
1

V(p)T (p) + ε
(5.37)

All parameters are chosen as in Metz et al. (2008),

α =
1
2
, β =

1
2
, c = 230, σ = 0.92mm, (5.38)

a1 = −24, a2 = 576, b = 0.1, ε = 10−4.

The start and end set needs to be manually chosen and is extracted from the
ground truth data. In all experiments the connectivity is 96. Each coronary
artery volume has a resolution of about 200× 200× 150 voxels.

Two different regularization schemes are compared:

• LENGTH: vary ρ and keep σ = 0,

• CURVATURE: vary σ and keep ρ = 0.
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Overlap % Regularization
Wins

Time (s)

Mean ±std ρ σ Mean ±std

LENGTH

Shortest path 91.90 ±15.10 0.08 0.00 12 15.62 ±8.04

+Local opt. 91.94 ±15.04 0.08 0.00 11 16.59 ±8.16

CURVATURE

Shortest path 87.51 ±22.09 0.00 0.05 10 81.91 ±10.62

+Local opt. 87.80 ±22.14 0.00 0.05 11 89.35 ±11.76

Table 5.1: Quantitative results for coronary artery centerline extraction on
the training set of Schaap et al. (2009). The execution times include the
construction of the data the data term.

Data term Length Curvature∫ L
0 D(γ(s))ds

∫ L
0 1ds

∫ L
0 κ(s)2ds

Mean ±std Mean ±std Mean ±std

Ground truth 8.05 ±10.38 130.08 ±47.67 2.59 ±1.46

LENGTH

Shortest path 3.29 ±2.91 131.96 ±48.96 18.55 ±9.92

+Local opt. 2.87 ±2.33 128.57 ±47.84 359.58 ±422.61

CURVATURE

Shortest path 3.23 ±2.78 140.90 ±61.96 9.50 ±5.51

+Local opt. 2.89 ±2.47 137.89 ±60.72 3.76 ±3.54

Table 5.2: Curve characteristics for all coronary arteries in the training set
of Schaap et al. (2009).
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Length 220.1 271.2 238.7 184.7
Curvature 2.9 15.8 8.8 7.8

(a) Varying length regularization
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(b) Varying curvature regularization

Figure 5.17: Biggest advantage for LENGTH, the curve characteristics are defined
as in Table 5.2. The ground truth (gt) is shown as a black wireframe.
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(a) Varying length regularization
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(b) Varying curvature regularization

Figure 5.18: Biggest advantage for CURVATURE, the curve characteristics are
defined as in Table 5.2. The ground truth (gt) is shown as a black wireframe.
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Grid search gives the optimal values, ρ = 0.08 and σ = 0.05 for the two
approaches. In Table 5.1 the result on the training set of Schaap et al. (2009)
is given. The execution times are attractive compared to other methods
reported in Schaap et al. (2009). The error is measured as overlap, which is
defined as the percentage of the extracted curve which lies inside a ground
truth artery given by both a centerline and radius.

Performing local optimization improves the results slightly and is fast
compared to the shortest path execution time. LENGTH and CURVATURE

are best at about the same number of arteries whereas LENGTH have slightly
higher mean overlap. The resulting curves’ data term, length and curvature
is compared to the ground truth in Table 5.2. The curves recovered with
CURVATURE have curve characteristics closer resembling to the ground
truth compared to LENGTH.

To further investigate the advantages and disadvantages of the differ-
ent regularizations, the two arteries which performed best for LENGTH

and CURVATURE are compared. In Figure 5.17 the coronary artery which
yielded the best result for LENGTH is shown. High curvature regularization
is able to find the best possible solution, but still, there is no regulariza-
tion which gives a result close to the ground truth due to a weak data
term. In Figure 5.18 the coronary artery which yielded the best result for
CURVATURE is shown. The centerline in this artery is very smooth which
curvature models very well.

For the last experiment suppose that there is some natural limitations
on the curve like maximum length or maximum curvature. The resulting
problem is a resource constrained shortest-path problem. In Figure 5.19
an example is given showing the added benefits of constraining the total
length and curvature .
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Ground
truth

Overlap 100% 35.24% 78.43% 99.23%

Length limit (u1) ∞ 120 120
Curvature limit (u2) ∞ ∞ 2
Data 11.78 5.17 6.16 9.69
Length 111.55 123.83 118.49 111.17
Curvature 1.37 15.08 12.34 1.81
Time (s) 18.10 288.75 657.00

Figure 5.19: An example where global constraints improves the result for
coronary artery segmentation. Using only length regularization, ρ = 0.08,
the resulting blue curve has low overlap with the ground truth. For the red
curve more knowledge is added, constraining the length of the curve to be
less than or equal to 120. The cutting-plane algorithm terminated with
duality gap of 8.8 · 10−11. For the green curve even more knowledge is
added; the curve is constrained to have integrated squared curvature of less
than or equal to 2. The algorithm terminated with duality gap of 1.9 ·10−9.
The curve characteristics are defined as in Table 5.2 and the ground truth
artery is shown as a black wireframe.
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5.7 Conclusions

This chapter has demonstrated the possibility of incorporating higher-order
regularization, such as curvature and torsion, into shortest-path problems.
The underlying framework has been applied to several different applications,
in several different settings, showing the general applicability of the method.

The fact that the discretized problem converges to the underlying
continuous problem follows from the fact that quadratic and cubic splines
approximate second- and third-order derivatives well. The convergence
is also demonstrated in practice in Figure 5.4. Further, by using local
optimization, the initial discrete solution obtained from shortest path is
improved. The benefits of using local optimization should be clear from
Table 5.1 and Figure 5.14.

With the growing popularity of depth-map-generating cameras, the
need to measure distances on surfaces is increasing. Previous approaches
implicitly assume that the surface can be represented by a polyhedron which
is not true for an arbitrary depth map. In Section 5.6.1, it is shown that
this approximation breaks down for low resolution images. The section also
shows how to efficiently use bilinear interpolation instead, improving the
accuracy of the measured distance.

Figure 5.19 shows that constraining the maximum length and integrated
curvature can improve the results. For some applications, this can be very
useful, for instance if it is known that a vessel cannot be longer than x or a
that robot will be worn out after a certain amount of turning.

Even though, for all applications in this chapter, the execution time
is polynomial in the data size, using torsion regularization cannot be con-
sidered practical. Using torsion regularization is only possible for small
problems. However, for many problems, using curvature regularization is
not that computationally expensive. The usefulness of curvature regulariza-
tion in medical imaging problems is shown, both in 2D (Figure 5.15) and
in 3D (Figure 5.18).

The quality of the solution is dependent on the connectivity of the
mesh, the higher connectivity the better. Previous works have used 8-
connectivity, as in Wang (2005), and 16-connectivity, as in Krueger et
al. (2013). However, the experiments in this chapter indicate that 16-
connectivity is the bare minimum. Here, 32-connectivity or more has been
used for all experiments.
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Appendix

5.A Calculating curvature

Curvature uses second-order derivatives, which requires a quadratic B-
splines to be approximated. Let (xi, yi, zi) for i = 1, 2, 3 be three ordered
points. The quadratic B-spline associated with these points is

r(t) =
1
2

x1 y1 z1

x2 y2 z2

x3 y3 z3

T  1 −2 1
−2 2 0

1 1 0

t2t
1

 . (5.39)

The curvature is defined as κ(t) = ‖r′(t)×r′′(t)‖
‖r′(t)‖3 .

κ(t)2 =

(c∆y − b∆z)2 + (c∆x− a∆z)2

+ (b∆x− a∆y)2(
(a t−∆x)2 + (b t−∆y)2 + (c t−∆z)2

)3 , (5.40)

where

a = x1 − 2x2 + x3,

b = y1 − 2y2 + y3,

c = z1 − 2z2 + z3,

∆x = x1 − x2,

∆y = y1 − y2,

∆z = z1 − z2.

(5.41)

With the same notation, the length element ds = ‖r′(t)‖dt is equal to

ds =

√
(a t−∆x)2 + (b t−∆y)2 + (c t−∆z)2. (5.42)
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5.B Calculating torsion

Torsion uses third-order derivatives, which requires a cubic B-splines to
be approximated. Let (xi, yi, zi) for i = 1, 2, 3, 4 be four ordered points.
The cubic B-splines associated with these points is

r(t) =
1
6


t3

t2

t
1


T 
−1 3 −3 1

3 −6 3 0
−3 0 3 0

1 4 1 0



x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

 . (5.43)

The torsion

τ(t) = det
[
r′(t) r′′(t) r′′′(t)

]
/ ‖r′(t)× r′′(t)‖2, (5.44)

of the B-spline can also be expressed in closed form; let

N = y3

(
x2z4 − x2z1 + x4(z1 − z2)

)
− y4

(
x2z3 − x2z1 + x1(z2 − z3)

)
− x3

(
y1(z2 − z4) + y4(z1 − z2)

)
− y2

(
x1(z3 − z4)− x3(z1 − z4) + x4(z1 − z3)

)
+ y1(x2z3 − x2z4) + x1y3(z2 − z4) + x4y1(z2 − z3)

(5.45)

and

D = (s5s3 − s2s6)2 + (s4s3 − s1s6)2 + (s2s4 − s1s5)2, (5.46)
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where

s1 =
1
2

(z1 − 3z2 + 3z3 − z4)t2

+ (2z2 − z1 − z3)t+
z1

2
− z3

2
,

s2 =
1
2

(y1 − 3y2 + 3y3 − y4)t2

+ (2y2 − y1 − y3)t+
y1

2
− y3

2
,

s3 =
1
2

(x1 − 3x2 + 3x3 − x4)t2

+ (2x2 − x1 − x3)t+
x1

2
− x3

2
,

s4 = z1 − 2z2 + z3 − t(z1 − 3z2 + 3z3 − z4),

s5 = y1 − 2y2 + y3 − t(y1 − 3y2 + 3y3 − y4),

s6 = x1 − 2x2 + x3 − t(x1 − 3x2 + 3x3 − x4).

(5.47)

Then τ = N/D and ds =
√
s2

1 + s2
2 + s2

3.
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Chapter 6

Multi-region segmentation

The field of medical imaging is full of challenging segmentation tasks. The
aim of this chapter is to segment multiple regions simultaneously using a
model which encompasses both the underlying appearance and the shape
of the different regions, as well as their geometric relationships. This is
often overlooked in present methods. For example, many successful cardiac
segmentation approaches concentrate on segmenting the left ventricle (LV),
as this part is the most interesting for diagnostic purposes. Still, quantifiable
information about the cardiac function can be gained from segmenting
the right ventricle (RV) as well. The proposed framework allows for the
construction of a model of the entire heart, where the final result is improved
compared to segmenting the parts independently.

The main contribution of this chapter is a multi-region segmentation
framework with good optimizability. The framework builds on the multi-
region scheme presented by Delong and Boykov (2009). In their paper,
it is shown that geometric relationships, for instance when one object is
included in another, can be modeled as a second-order pseudo-boolean
function. The key property which makes efficient optimization possible
is that the resulting objective function is submodular. Not all geometric
relationships, however, are submodular. Delong and Boykov used roof
duality for these more difficult problems. However, roof duality is too
memory-intensive for large three-dimensional problems. In this chapter,
the resulting non-submodular function is instead minimized using dual
ascent.

Another contribution is the evaluation of the optimization framework
for medical segmentation problems. The cardiac segmentation model
is applied to publicly available data and the optimization framework is
compared to roof duality in terms of memory and speed.
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(a) Four-region model (b) MR view

r xp

0 (0, 0, 0, 0)
1 (1, 0, 0, 0)
2 (1, 1, 0, 0)
3 (1, 0, 1, 0)
4 (1, 1, 0, 1)

(c) Representation

1

2

3

4

∞

∞

∞
µ1 − µ0 st

µ4 − µ2

µ2 − µ1

µ3 − µ1

(d) Graph

Figure 6.1: (a) A constructed short-axis view showing how the heart is
modeled. Region 0 is the background, region 1 contains myocardium and
the left and right ventricular cavities. Region 2 is the left ventricular cavity,
and region 3 the right ventricular cavity. Region 4 is the papillary muscles
of the left ventricle. (b) An example of a slice from a short-axis image
acquired with MRI where all four regions have been manually delineated.
(c) The Boolean representation of the four regions reflect their geometric
relationships as given in (a). (d) Graph construction for one voxel. The
circled number corresponds to a vertex associated with the region number.
The directed arrows are the directed edges in the graph.
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6.1 Multi-region framework

It is often easer to get a general concept after given an example. To ease into
the general model consider an example construction given in Figure 6.1.
The inclusion constraints are enforced by adding terms of infinite cost.

LetR be the set of region labels excluding the background and let P
be the set of voxel indices. Each voxel p should be assigned a region label
r ∈ R ∪ {0} where 0 is the background region. Introduce x ∈ Bn, where
n = |R||P|, B = {0, 1}, and x is indexed as xrp, with r ∈ R and p ∈ P .
Furthermore, let xr represents all Boolean variables associated with region
r and xp represents all Boolean variables associated with voxel p. Each
voxel in the image is represented by |R| Boolean variables, which will make
it possible to directly encode geometric relationships between regions, like
inclusion and exclusion.

Figure 6.1(c) shows the correspondence between r and xp for the car-
diac model. The inclusion of region 2 and 3 inside region 1 is encoded in
the Boolean representation by settings the first boolean variable to one. Sim-
ilarly, region 4 is contained in both region 1 and region 2 and consequently,
the first two Boolean variables are set to one.

The objective function to be minimized can be expressed as

f (x) = D(x)︸ ︷︷ ︸
data

+ R(x)︸ ︷︷ ︸
regularization

+ G(x)︸ ︷︷ ︸
geometric

, (6.1)

whose three components are, in order, the data terms, the regularization
terms and the geometric interaction terms. For every voxel p, the data terms
introduce a cost for each labeling of xp:

D(x) =
∑
p∈P

∑
r∈R

Dr
p

(
xrp
)
. (6.2)

The regularization terms use a connectivityN to favor smooth and correctly
located boundaries:

R(x) =
∑
p∈P

∑
q∈N (p)

∑
r∈R

Rrpq
(
xrp, x

r
q

)
. (6.3)

The geometric interaction terms associate a cost with labeling voxel p in
region i with different labelings for voxel q in region j. These terms are
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used either to attract or repel different regions to each other:

G(x) =
∑
p∈P

∑
q∈N (p)

∑
(i,j)∈R
i 6=j

Gijpq
(
xip, x

j
q

)
. (6.4)

6.1.1 Data term

The data terms are constructed from the probability of each voxel belonging
to any of the regions. We define

µr(p) = − log
(
P
(
xrp = 1

))
, (6.5)

for voxel p and region r, where P
(
xrp = 1

)
is the probability of voxel p

belonging to region r. Region i is parent to region j if region j is forced to
be contained inside i directly. By directly we mean that if region j is forced
to be contained inside region i via another region k, we only consider k as
a parent to region j. Regions not forced to be contained inside any specific
regions is defined to have the background, r = 0, as parent.

As an example, consider the cardiac model in Figure 6.1. Region 4 has
just one parent — region 2. Now consider any region r and let Gr denote
the set of all parents to r, then we construct the data term as

Dr
p

(
xrp
)

= xrp

µr (p)−
∑
g∈Gr

µg (p)

 , (6.6)

for all p ∈ P and r ∈ R. Examples of these constructions are given in
Figures 6.1 and 6.7. The reason this construction works is most easily
explained through an example.

Example 6.1. Consider the cardiac model in Figure 6.1. According to (6.6)
we end up with:

4∑
r=1

Dr
p

(
xrp
)

= x4
p (µ4 (p)− µ2 (p)) + x3

p (µ3 (p)− µ1 (p))

+ x2
p (µ2 (p)− µ1 (p)) + x1

p (µ1 (p)− µ0 (p)) . (6.7)
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Now consider a voxel assigned to region 4 from the model. We know that
x1
p = x2

p = x4
p = 1 and x3

p = 0 . It follows that

D1
p (1) +D2

p (1) +D3
p (0) +D4

p (1) =

1 (µ4 (p)− µ2 (p)) + 0 (µ3 (p)− µ1 (p))

+1 (µ2 (p)− µ1 (p)) + 1 (µ1 (p)− µ0 (p)) =

µ4 (p)− µ0 (p) . (6.8)

The reason this construction works is that Boolean variables with par-
ents are linked to their parents by the geometric interaction term. The
final cost for assigning a voxel to a region is added up like a telescopic sum
resulting in µr − µ0 for each region r.

6.1.2 Regularization term

The regularization weights are chosen differently for each region, in a
method related to the discussion in Grady and Jolly (2008). For each region
i the regularization term is chosen as

Rrpq
(
xrp, x

r
q

)
= wpq

(
xrpx

r
q

1 + β
(
P
(
xrp = r

)
− P

(
xrq = r

))2

)
, (6.9)

where β can be used to tune the regularization. The neighborhood N for
the regularization is in the experiments chosen as 18-connectivity. The
multipliers, wpq, give different weights to different types of edges. One
common choice is wpq = 1/ dist (p, q); however, we instead use the
arguably more correct way described in Boykov and Kolmogorov (2003)
based on solid angles. The fact that MRI has anisotropic resolution is very
important to take into consideration both when calculating the distance
between voxels and when using the method from Boykov and Kolmogorov
(2003).

6.1.3 Geometric interaction term

Some regions should be contained inside other regions, while other regions
should be forced apart. This is controlled by the geometric interaction
terms.
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Submodular interaction terms. Suppose region j should be contained
inside region i. This is accomplished by settings

Gijpp (0, 1) =∞ for all p ∈ P. (6.10)

This term is clearly submodular. It is also possible to enforce a margin
between two regions by setting

Gijpq (0, 1) =∞ for all p ∈ P, (6.11)

where q is taken in some neighborhood N (p) of p. As an example, let
N (p) be the 8-connected neighborhood of p. Now region j will not only
be forced to be inside region i, it will be forced to be slightly smaller than
region i.

Non-submodular interaction terms. Similarly if region i should be ex-
cluded from region j set

Gijp,p (1, 1) =∞, for all p ∈ P. (6.12)

This term is non-submodular. In some special cases the Boolean variables
can be transformed, allowing for a submodular construction with exclusion
constraints, see Delong and Boykov (2009) for details. However, this is not
possible for either model discussed in this chapter.

6.2 Problem formulation

The standard approach for minimizing non-submodular functions of this
type is to use roof duality, see Delong and Boykov (2009). This chapter
will show that it is possible to optimize the functions using dual ascent
resulting in a fast and memory-efficient method. For any bounded function
the exclusion term for two binary variables x and y can be replaced by an
equality or inequality constraint as

xy = 0 or x+ y − 1 ≤ 0. (6.13)

Let f ′(x) be the objective function without the non-submodular ex-
clusion constraints. By this construction f ′ will be easy to minimize.
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Let g (x) ≤ 0 encode the exclusion constraints. Adding these con-
straints gives us the new problem

minimize
x∈Bn

f ′(x)

subject to g (x) ≤ 0.
(6.14)

This is the primal problem. We have now separated the easy part from the
difficult non-submodular constraints.

The primal problem can in principle be solved as an integer program-
ming problem. However, this is not a tractable approach due to the large
number of variables. Instead, we look at the dual problem:

maximize
λ∈Rc

d(λ)

subject to λ ≥ 0,
(6.15)

where the dual function is defined as

d(λ) = min
x∈Bn

(
f ′(x) + λTg (x)

)
, (6.16)

and c is the number of exclusion constraints.
In this chapter, we optimize the dual problem (6.15) using the dual

ascent algorithm with the aggressive step length discussed in Section 2.4.1.
Dual ascent evaluates d(λ) iteratively, efficiency of this evaluation is of
utmost importance. By rewriting the exclusion term into an inequality
constraint, evaluating the d(λ) corresponds minimization of a submodular
function. The fact that we can perform efficient optimization stems from
this fact. Furthermore, the structure of each dual function is very similar
and a lot calculations can be reused in each evaluation as described in Kohli
and Torr (2007).

6.3 Cardiac segmentation

The heart below the atrioventricular plane is modeled by four different
regions as shown in Figures 6.1(a-b). The joint model describes both the
geometry of the different regions and their appearances in the MR images.
In the cardiac model, region 1 contains both region 2 and region 3. This is
modeled by the use of geometric interaction terms as

G12
pp(0, 1) =∞ and G13

pp(0, 1) =∞ for all p ∈ P. (6.17)
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(a) Slice (b) µ0 (c) µ1 (d) µ2 (e) µ3 (f ) µ4

4
6
8
10

Figure 6.2: Example of µr for the slice shown in (a). Recall that
µr (p) = − log

(
P
(
xrp = 1

))
. A lower intensity corresponds to higher

probability.

Furthermore, the left ventricular papillary muscle must be inside the left
ventricle. This is modeled as

G24
pp(0, 1) =∞ for all p ∈ P, (6.18)

see Figure 6.1(d). We also want to exclude region 2 from 3; that is, add
terms of the form G23

pp (1, 1) = ∞. These terms, however, become non-
submodular. We want to handle the non-submodular terms using La-
grangian duality and setup the primal optimization problem as

min
x∈Bn

f ′(x)

subject to x2 + x3 − 1 ≤ 0,

where f ′ (x) the objective function without the non-submodular terms.
The data terms construction given in Figures 6.1(c-d) results in:

D1
p(1) = µ1(p)− µ0(p), D2

p(1) = µ2(p)− µ1(p),

D3
p(1) = µ3(p)− µ1(p), D4

p(1) = µ4(p)− µ2(p),
(6.19)

and Dr
p(0) = 0, for all r ∈ R and p ∈ P .

For the heart model the spatial probability is split into four categories:
left ventricle, right ventricle, myocardium, and background. Similarly the
intensity is split into three categories: blood, muscle, and background.
The probability for each region is then calculated with the assumption
that the spatial and intensity distributions are independent. An example
of the final µr’s can be found in Figure 6.2. The spatial distribution is
estimated by first resizing each image in the training data to the same size
using bilinear interpolation. Then a binary mask is constructed for each
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category. The masks are enlarged and smoothed and then they are all added
together constructing the final probability mask. The intensity distribution
for each region is estimated by collecting all intensities from the examples
in the training data. The histogram of intensities is then smoothed and a
distribution is constructed. For both the location and intensity probability
a lowest probability is set, in order to capture occurrences unseen in the
training data. The user selects which slices to be segmented and selects a
center point of the right and left ventricle in one slice. The two center points
are used to roughly align the hearts in order to get good spatial statistics. The
algorithm can handle slices lacking any of the regions. Badly captured MRIs
are identified by looking at the distribution of the intensities. If there are
multiple peaks in the histogram close to each other for the lower intensities,
the image is assumed to be too bright and the intensity distribution is
shifted to fit an average histogram.

In all ground truth data considered only the left ventricular epicardium
is delineated. The model is not restricted to this — it segments the full
myocardium. In order to compare the results with the ground truth all
myocardium which is not part of the left ventricular epicardium must
be removed. To do this, the thickness of the septum is approximated as
the shortest distance between the left and right ventricles in the resulting
segmentation. Then the outlying myocardium is removed based on this
thickness approximation. Another assumption on the segmentation is
that the left ventricle and the myocardium are convex. The resulting
segmentation is taken as the convex hull in each slice.

Due to the regularization, the segmentation sometimes misses the most
apical slice. From the user input it is known which slices the left and
right ventricles are contained in and it would be wasteful to throw this
information away. The user input is utilized by naturally extending the
segmentation into the apical slice. This is done by taking the segmentation
from another slice, shrinking it slightly and inserting at the bottom.

6.3.1 Experiments

The segmentation is only performed on the slices of the heart which are
fully below the atrioventricular plane. The quality of the segmentation is
measured by the dice metric given by 2 |A ∩B| / (|A|+ |B|), where A is
the ground truth segmentation and B is the computed segmentation. The
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(a) 3D rendering (b) 10 slices

Figure 6.3: Example segmentation from LUND. The color scheme is the
same as in Figure 6.1.

End systole End diastole

LV endo. LV epi. RV LV endo. LV epi. RV

Multi 0.87 ±0.05 0.88 ±0.05 0.80 ±0.11 0.96 ±0.02 0.93 ±0.03 0.91 ±0.07

Single 0.47 ±0.25 0.86 ±0.04 0.42 ±0.14 0.62 ±0.12 0.90 ±0.03 0.57 ±0.14

Table 6.1: Results measured in the dice metric for LUND reported as mean
± one standard deviation. On the first row the full multi-region model is
used. On the second row each region is segmented separately. Note that
the multi-region model has a huge influence on the segmentation results.
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algorithm is evaluated on two datasets: LUND and SUNNYBROOK. Each
dataset is trained and evaluated separately.

LUND consists of cine short-axis steady-state free-precession MR im-
ages of 62 healthy normal hearts captured on a Philips Interera CV 1.5T
with a five-channel cardiac synergy coil. Each heart has the left and right
ventricular endocardium and the left ventricular epicardium manually de-
lineated by an expert. The dataset is split into two equally sized parts, one
used for training and one used for evaluation. Results are given in the first
row of Table 6.1 and an example segmentation is given in Figure 6.3. Three
clinical parameters are also evaluated: the left ventricular mass has an error
of 15.6 ±11.5 g, the left and right ventricular ejection fraction errors are
5.6 ±2.9 % and 7.1 ±5.2 %, respectively.

The method is also compared to a simplified version where each region
is segmented separately, see the second row of Table 6.1. Without the
complete multi-region model, the localization of the ventricles becomes
very difficult and the blood pools are often overestimated. A few typical
examples where the multi-region model improves the segmentation are
given in Figures 6.4 and 6.5.

SUNNYBROOK consists of 30 patients with different heart diseases
and is split up into two equally sized parts, one for training and one for
evaluation. The dataset was used in a segmentation challenge, see Radau
et al. (2009). SUNNYBROOK lacks ground truth for the right ventricles,
this was manually constructed by a non-expert. Therefore, this ground
truth is only used for training and not for evaluation. The results, given
by the evaluation code used in the challenge, are given in Table 6.3 along
with results from competing methods. The evaluation code in the challenge
calculates the dice metric per slice and averages over all slices.

The small number of training data of SUNNYBROOK gives the pro-
posed method a disadvantage as there are only 15 hearts spanning over three
different diseases and one group of normals. Image-driven methods do not
suffer from the small training set as they do not need to be trained. The
limited number of training examples impedes the model since there are too
few examples of variation in shape for each disease and the normals. The
intensity model is less affected by this but would still benefit from a larger
training set. Note that all diseases and normals are covered by one model.

The model is also optimized using roof duality (RD). If RD is unable to
label all variables, the methods “probing” or “improve” are used to obtain a

145



CHAPTER 6. MULTI-REGION SEGMENTATION

complete labeling, this is denoted as RD-P and RD-I respectively. For RD-I
and dual ascent, the same termination criterion is used: either the relative
duality gap must be smaller than 10−4 or a maximum of 25 iterations must
be reached. RD-P is terminated either if all variables are labeled or after a
maximum of 12 hours execution time. If some variables still are unlabeled
after 12 hours they are set to 0. Dual ascent is faster and uses less memory
than both RD-I and RD-P. The final results for all the optimization methods
in terms of quality of segmentation are virtually identical, see Table 6.2. In
particular, all methods achieve small duality gaps. Only RD-P encounters
some problems on the SUNNYBROOK dataset, where the larger duality
gap is a result of 3 hearts that are not completely labeled after 12 hours of
probing. The progress of the duality gap and dice over time for the different
optimization methods is depicted in Figure 6.6.

To summarize, dual ascent finds a globally optimal solution for 52%
of the hearts. For the other hearts, from the very small relative duality gap,
it is certain that dual ascent finds a solution close to the global optimum.
For 4 out of a total of 46 hearts, probing takes more than 12 hours. This
highlights the problem with probing — there is no real guarantee that the
computations will be done within a reasonable time; on some problem
instances, probing is unable to return a complete solution, even after weeks
of execution time.

It is possible to extend the cardiac model to also include papillary mus-
cles in the right ventricle; only one more variable is needed per voxel. Initial
experiments gave worse results for both the right ventricle segmentation
and the myocardium segmentation with the added region. The new region
had a tendency to overflow into the septum since this would give region 3 a
rounder shape, resulting in lower regularization cost. Therefore, the model
used in this chapter only has four regions.

The LUND dataset is manually delineated using both short- and long-
axis images. For a number of hearts, the most basal slice of the short-axis
images containing the left ventricular cavity also cuts through to the atrium.
For these slices it is hard or even impossible to manually delineate the left
ventricle solely based on information from the short-axis images. When the
ground truth was produced, long-axis images were used to properly segment
them. It would be desirable for the algorithm to incorporate information
from long-axis images as well so that the algorithm could handle these few
slices.
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(a) Complete model (b) No papillary muscles

Figure 6.4: Example showing that the complete model including the pap-
illary muscles can improve the segmentation of the left ventricle and the
myocardium.

Method
Memory (MB) Time (s)

SUNNYBROOK LUND SUNNYBROOK LUND

Dual ascent 2727 ±680 2103±788 46±27 30±27

RD-I 5038 ±985 3913±1407 135±165 80±113

RD-P 5041 ±1014 3949±1402 6109±12451 1934±7984

Method
Relative duality gap Dice (average)

SUNNYBROOK LUND SUNNYBROOK LUND

Dual ascent 0.00054 ±0.0013 0.00054±0.0021 0.888±0.0484 0.892±0.0815

RD-I 0.00016 ±0.00034 0.00049±0.0021 0.888±0.0485 0.892±0.0816

RD-P 0.0011 ±0.0030 0.00056±0.0021 0.888±0.0484 0.892±0.0825

Table 6.2: Memory consumption of different optimization methods in
megabyte and their relative duality gap. The resolution of the data in
SUNNYBROOK is on average 146× 146× 10× 2 voxels and for LUND

on average 126× 126× 10× 2 voxels. The third dimension, the number
of slices, varied from heart to heart. Comparing each problem instance,
instead of the total mean, both versions of RD used ≈ 1.9 times more
memory than the dual ascent algorithm. The dice measure is calculated as
an average over each region where ground truth is available in the datasets.

147



CHAPTER 6. MULTI-REGION SEGMENTATION

(a) Complete model (b) No right ventricle

(c) Complete model (d) Only right ventricle

Figure 6.5: Examples of how modeling multiple regions improves the
segmentation of the ventricular epicardium and endocardium. The color
scheme is the same as in Figure 6.1.
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Method
Dice

LV Mass (g)
LV ejection
fraction (%)LV endo. LV epi.

This ch. 0.86 ±0.05 0.92 ±0.02 27.1 ±28.3 12.5 ±8.7

A 0.86 ±0.04 0.93 ±0.01 23 ±? 14 ±?
B 0.89 ±0.03 0.94 ±0.02 21.6 ±14.6 8.08 ±5.06

C 0.89 ±0.03 0.93 ±0.01 28.7 ±18.7 7.02 ±4.78

D ? 0.93 ±? † ?
E 0.81 ±? 0.91 ±? ? ?
F 0.89 ±0.04 0.92 ±0.02 † †
G 0.89 ±0.04 0.94 ±0.01 ? ?
H 0.88 ±0.04 0.93 ±0.02 31.8 ±17.7 8.35 ±5.78

A: Marák et al. (2009) E: O’Brien et al. (2009)
B: Lu et al. (2009) F: Constantinides et al. (2009)
C: Wijnhout et al. (2009) G: Huang et al. (2009)
D: Casta et al. (2009) H: Jolly (2009)

Table 6.3: Results for SUNNYBROOK. “?” means that the result is not
reported in the corresponding paper. “†” means that the result is not
directly comparable. Mass and ejection fraction is reported as the difference
between manual and automatic value.
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Figure 6.6: The typical progress for all optimization methods compared
in this chapter. For all methods the results in the dice metric are virtually
identical. The results can be divided into three different categories: In (a)
all iterations of dual ascent are done before the initial RD calculations are
completed. This happens for 70% of the hearts. In (b) RD manages to
label all variables before dual ascent terminated, which occurs for 6% of
the hearts. In (c) RD is unable to label all variables and RD-P converge
very slowly, which happened for 24% of the hearts. The top row shows the
relative duality gap and the bottom row the dice metric, as a function of
time for the three methods. The first and last iterations are highlighted and
for RD-P the number of iterations is limited to 25.
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(a) Four-region model (b) Seeds provided by user
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Figure 6.7: (a) A diagram showing the model used for lung segmentation.
Region 0 is the background, region 1 is the body, regions 2 and 3 are the
right and left lungs, respectively, and region 4 is the throat. (b) The seeds in
one slice used for the segmentation. In a clinical setting, these are provided
by a physician. (c) The Boolean representation of the four regions. (d)
Graph construction for one voxel, showing the geometrical relationships.

6.4 Lung segmentation

The second application of this chapter is segmentation of lungs in a full-
body X-ray CT scan. The model is shown in Figure 6.7 and uses four
regions: the body, region 1, the two lungs, region 2 and 3, and the heart
together with the throat, region 4. Regions 2, 3, and 4 are all forced to be
contained inside region 1 by adding the terms,

G12
p (0, 1) =∞, G13

p (0, 1) =∞, and G14
p (0, 1) =∞ for all p ∈ P.

(6.20)
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The largest difference to the cardiac model is that more than one separation
is needed to be enforced:

minimize
x∈Bn

f ′(x)

subject to x2 + x3 + x4 − 1 ≤ 0.
(6.21)

Alternatively, the three-variable constraint could equivalently be replaced
with three constraints of the same type as in the previous section

x2 + x3 − 1 ≤ 0,

x2 + x4 − 1 ≤ 0,

x3 + x4 − 1 ≤ 0.

(6.22)

The data terms construction can be seen in Figure 6.7(d). We get:

D1
p(1) = µ1(p)− µ0(p), D2

p(1) = µ2(p)− µ1(p),

D3
p(1) = µ3(p)− µ1(p), D4

p(1) = µ4(p)− µ1(p),
(6.23)

and Dr
p(0) = 0, for all r ∈ R and p ∈ P .

The user gives ground truth seeds only in one slice of the data as
shown in Figure 6.7(b). The background is removed by thresholding on
an intensity level between the seeds given from the background and the
body. The seeds are then used to build intensity histograms for the five
regions which are then used to estimate the intensity distribution. No
kind of spatial statistics is estimated, the probability is approximated by a
fading gradient from the left and right side of each slice. See Figure 6.10
for example data terms.

6.4.1 Experiments

The method is tested on a full-body X-ray CT dataset with seeds as shown
in Figure 6.7. A sample result from a few slices can be seen in Figure 6.8.
The execution time for roof duality is 39 seconds and for dual ascent 29
seconds. Both methods give exactly the same solution.

One thing not taken into account is the fact that the structure of each
function is highly repetitive. For instance, all geometric interaction terms
are equal and they need not be stored explicitly. A specialized-purpose
solver reducing the memory usage is introduced in Rykfors (2012); it only
supports submodular constraints and certain fixed neighborhoods.
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Figure 6.8: Sample results from the segmentation, the same color coding as
in Figure 6.7 is used.

(a) Region of interest (b) Forced separation (c) No separation

Figure 6.9: In (a) the region of interest is marked with a rectangle. In (b)
the model has constraints that force the two regions to be separate. In (c)
the exclusion constraint is removed. This results in a segmentation where
one region wrongly overflows into the other. Note that the image data for
the correct segmentation is very weak and hence it is necessary to encode
this prior information into the model.
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(a) Image (b) µ0 (c) µ1

(d) µ2 (e) µ3 (f ) µ4

4

6

8
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Figure 6.10: An example slice from the dataset with the data term for all 5
regions shown.

6.5 Conclusions

In this chapter, it has been demonstrated, through experimental results, that
a multi-region model achieves significantly better results than segmenting
the regions separately. See Figures 6.4, 6.5, and 6.9. Enforcing geometric
constraints and, more generally, incorporating prior information into the
model results in qualitative improvements. The qualitative improvements
are not always captured by quantitative measures such as the dice metric.

The optimization method based on dual ascent, proposed in this chap-
ter, outperforms roof duality, both in terms of speed and memory consump-
tion.

Application of the multi-region framework on cardiac segmentation,
using a publicly available data base, achieves results on par with dedicated
left ventricle methods. There are fine-tunings which can be made to im-
prove the segmentation performance, such as a better data term and better
parameter choices. However, the obtained results are still encouraging.

Finally, the model can easily be modified to fit other medical imaging
tasks; by adding and removing regions, as demonstrated by the small
differences between the heart and the lung models.
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Chapter 7

Dense stereo

This chapter deals with the classical dense stereo problem: given two or more
input images, estimate the depth or disparity of every pixel in one of the
images. To accomplish this, pixels in the different images are matched using
some matching criterion. Most matching criteria suffers from ambiguity
which is a result of e.g. textureless patches or occlusions. This turns dense
stereo estimation into an ill-posed problem and therefore regularization has
to be incorporated.

The most popular regularizers are the first-order ones, see Boykov,
Veksler, et al. (2001); Felzenszwalb and Huttenlocher (2006); Kolmogorov
and Zabih (2002). These typically penalize assignments where neighboring
pixels have different disparity or depth. Their popularity is in large part
due to the fact that they often result in submodular formulations when
applying move-making algorithms such as α-expansion (Boykov, Veksler,
et al. (2001)) or fusion moves (Lempitsky et al. (2010)). On the downside,
this type of regularization favors fronto-parallel planes, since surfaces with
non-zero disparity derivatives or depth derivatives are penalized.

To address this problem, Birchfield and Tomasi (1999) use 3D labels
corresponding to arbitrary 3D planes. The interaction cost between copla-
nar points is zero and therefore this approach is suitable for piecewise planar
scenes. Li and Zucker (2010) use pairwise interactions between 3D labels
(encoding disparity and disparity derivatives) to penalize non-smooth sur-
faces. In contrast, Woodford et al. (2009) use regular disparity labels to
encode second derivative priors. However, the optimization problem is
difficult due to the introduction of non-submodular third-order terms used
to approximate the second derivatives.

In this chapter, we will encode second derivative priors using labels
similar to those used by Li and Zucker (2010). The resulting problem
is optimized using iterative fusion of proposals. It will be shown, both

155



CHAPTER 7. DENSE STEREO

theoretically and experimentally, that the second-order fusion problems are
easier to optimize than their third-order counterpart. The formulation also
allows us to fuse more than two proposals simultaneously. Lastly, it is shown
how a large family of proposals can be generated using local optimization.

7.1 A second-order regularization prior

In this chapter we will let the depth or disparity for each pixel be encoded by
tangent planes. The intersection between the viewing ray and each tangent
plane will be the estimated depth or disparity. By interpreting the planes
as tangents of the viewed 3D surface, we can encourage smooth solutions
by penalizing neighboring points which deviate from neighboring tangents.
The standard approach to dense stereo is to simply encode each pixel with
either depth or disparity. Hence, it might seem counterintuitive to make
the label space larger by introducing tangent planes. But in this chapter, it
will be shown that the resulting optimization problem is actually easier to
solve when using the higher-order label space formulation.

Throughout this chapter we will let I be the reference image, for which
we are to perform dense stereo estimation. The two pixels p ∈ I and q ∈ I
are always assumed to be neighbors in the image.

7.1.1 Tangent planes and spaces

Assume a pinhole camera model where a camera has been calibrated and
normalized to be of form [I 0]. The projection of a scene point, P =
(X,Y, Z), into a pixel, p = (x, y) ∈ I, is then simply given by

x = X/Z, (7.1)

y = Y/Z. (7.2)

Given a depth function z and a disparity function d, the point in scene space
corresponding to the pixel p is given by

P =
(
p, 1
)
z(p), (7.3)

the corresponding point in depth space is given by

Pz =
(
p, z(p)

)
, (7.4)
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and the corresponding point in disparity space is given by

Pd =
(
p, d(p)

)
. (7.5)

Now consider any plane in scene space. Any such plane can be expressed as
all points x ∈ R3 fulfilling

nTx+ a = 0, (7.6)

where n ∈ R3 and a ∈ R. This plane can in terms of a depth function z
be expressed as

nT
(
(p, 1)z(p)

)
+ a = 0. (7.7)

This is equivalent to

z(p) = − a

nT(p, 1)
. (7.8)

Since the disparity, d, is inversely proportional to the depth, it immediately
follows that:

d(p) = −bn
T(p, 1)

a
, (7.9)

where b is the baseline of the stereo setup. In Figure 7.1, a plane in 2D (a
line) is shown in scene, depth, and disparity space.

From (7.8) and (7.9) an important fact follows: The image of a plane
viewed in depth space is not necessarily a plane itself. Hence, it does not
make sense to penalize deviations from tangent planes in depth space. In
contrast, the image of a plane viewed in disparity space is a plane itself. This
allows us to penalize deviations from tangent planes directly in disparity
space. For depth space, we have to work with tangent planes in scene space,
making the derivations slightly more complicated.

7.1.2 Rectified cameras and disparity

We will start by assuming that the cameras in the stereo setup have been
rectified, since this allows us to work in disparity space. For multiple views,
this places some restrictions on the camera positions which are usually not
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I p q
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Q

I p q

Pz

Qz

I p q

Pd

Qd

(a) Scene space (b) Depth space (c) Disparity space(
p, 1
)
z(p)

(
p, z(p)

) (
p, d(p)

)
Figure 7.1: The same plane viewed in scene, depth, and disparity space
with the viewing rays for the two pixels p and q and their corresponding
space points marked out. Note that a plane in scene space is also a plane in
disparity space.

I p q

d(p)

d(q)

Vpq

(a) Standard stereo regularization

I p q

d(p)

d(q)

Tpd(q)
Vpq

(b) Proposed stereo regularization

Figure 7.2: Geometric interpretation of the regularization term for rectified
cameras. The image plane, I, and the viewing rays of pixel p and q are
marked. The dashed line indicates a possible disparity function d. In (a)
a standard first-order stereo regularizer is shown. The difference between
the disparity estimates, Vpq = |d(p) − d(q)|, is penalized. In (b) the
proposed stereo regularizer is shown. The distance between the tangent
planes, Vpq = |Tpd(q)− d(q)|, is penalized.
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fulfilled in general image collections, see Seitz (2001) for further details.
We will therefore relax the restrictions on the camera positions in Section
7.1.3 where we work with regular cameras.

To each pixel p ∈ I, we assign a tangent plane which locally approx-
imates the disparity. We can think of these tangents as samples of the
disparity function and its derivatives. By the function Tpd : I → R, we
mean the tangent at the point p, seen as a function of the entire image, that
is

Tpd(x) = d(p) + ∇d(p)T (x− p), (7.10)

where d(p) and ∇d(p) are the assigned disparity and disparity gradient
(with respect to the image coordinate system) at pixel p. We define the
interaction between neighboring pixels as

Vpq = |Tpd(q)− d(q)|, (7.11)

see Figure 7.2. Intuitively, if the surface is smooth, then the tangent plane
should be a good approximation of the surface. Therefore Vpq is expected
to be small for smooth surfaces. Using Taylor expansion we get

d(q) ≈ d(p) + ∇d(p)T (q − p) +
1
2

(q − p)TH(p)(q − p), (7.12)

whereH(p) is the Hessian of d at p. It follows that

Vpq ≈
∣∣∣∣12(q − p)TH(p)(q − p)

∣∣∣∣ . (7.13)

The regularization, Vpq, measures the second derivative of the disparity
function, d, at p in direction q − p.

7.1.3 Regular cameras and depth

In many real-world situations, rectified cameras may not be available. In
such cases we work with depth rather than disparity. Once again deviations
from neighboring tangent planes are penalized, see Figure 7.3. This time,
however, we are considering tangent planes in scene space. By the function
Tpz : I → R, we mean the tangent at the point p ∈ I, seen as a
function of the entire image, encoded by the depth z(p) and the depth

159



CHAPTER 7. DENSE STEREO

I p q

(p, 1)z(p)

(q, 1)z(q)

(q, 1)k

Vpq

Figure 7.3: Geometric interpretation of the regularization term for regular
cameras. The regularization term, Vpq, measures the deviation from the
neighboring tangent along the viewing ray.

gradient ∇z(p). Assume a pinhole camera model where a camera has been
calibrated and normalized to be of form [I 0]. The point

(q, 1)k = (q, 1)Tpz(q) (7.14)

is the intersection between the tangent plane of pixel p and the viewing
ray of pixel q. The line between (p, 1)z(p) and (q, 1)k is contained in the
tangent plane Tpz(q) and can therefore be found by linearizing the curve

(p+ tv, 1)z(p+ tv). (7.15)

Here v is a vector chosen such that

q = p+ sv, (7.16)

where s is the distance between the two pixels. Linearization gives

l(t) = (p, 1)z(p) + t
(
(p, 1)z′v(p) + (v, 0)z(p)

)
. (7.17)

At the intersection point (q, 1)k, we have

l(t) = k(q, 1) = k ((p, 1) + s(v, 0)) . (7.18)

160



7.2. GENERAL-ORDER REGULARIZATION PRIORS

Identification of the coefficients yields

k = z(p) + z′v(p)t, (7.19)

s =
z(p)t

z(p) + z′v(p)t
, (7.20)

t =
z(p)s

z(p)− sz′v(p)
, (7.21)

k =
z(p)2

z(p)− sz′v(p)
. (7.22)

The regularization can thus be expressed as

Vpq = |Tpz(q)− z(q)| ||(q, 1)|| (7.23)

= |k − z(q)| ||(q, 1)|| (7.24)

=

∣∣∣∣ z(p)2

z(p)− sz′v(p)
− z(q)

∣∣∣∣ ||(q, 1)|| . (7.25)

Remark 7.1. The scalar ||(q, 1)|| can be incorporated into a regularization
constant for the regularization term.

7.2 General-order regularization priors

In the previous sections we used tangent planes to create the regularization.
It is possible to use higher-order local models to encode more complex
regularizations. Let Apf be a Taylor approximation of order n, then the
interaction

Vpq = |Apf(q)− f(q)|, (7.26)

would be a n+1 order regularization penalty. At the same time it is possible
to add a penalty for derivatives of order at most n, using only data terms.
For example, if we to each pixel assigns a quadratic function instead of
a tangent, then the interaction penalizes third-order derivatives. In this
case first- and second-order derivatives can be encoded into the data term.
Table 7.1 shows properties for some different choices of labels spaces.
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Labels Regularize Data term Submodular proposals

Depth or disparity f ′ f Constant f
Tangent planes f ′′ f and f ′ Constant f ′

Second-order
approximations

f ′′′ f, f ′, and f ′′ Constant f ′′

...
...

...
...

Table 7.1: Characterization of possible regularization terms given different
label spaces and their submodular proposals for fusion moves. The depth or
disparity function is denoted by f and its first, second, and third derivatives
in the direction of a neighboring pixel is denoted by f ′, f ′′ and f ′′′. Note
that higher-order label spaces also allows more information to be included
in the data term.

Using the methods shown later in Proposal 7.4 on page 168, it is easy
to see that if the proposed solutions fulfill

Apf(q) = f(q), (7.27)

then the fusion move will be submodular. Hence the n’th order surfaces
give submodular interactions.

Example 7.2. The regularization interaction for the zero-order Taylor expan-
sion corresponds to

Vpq = |f(p)− f(q)|, (7.28)

which is the standard first-order stereo regularization from Boykov, Veksler, et al.
(2001), see Figure 7.2. Fusion moves using this regularization term corresponds
to α-expansion.
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7.3 Problem formulation

The dense stereo estimation problem is formulated as finding the minimizer
of the objective function

E(f) =
∑
p∈I

Dp(f)

︸ ︷︷ ︸
data terms

+
∑
p∈I

∑
q∈N (p)

Rpq(f)

︸ ︷︷ ︸
regularization terms

, (7.29)

where N (p) is a predefined neighborhood to p. For rectified cameras
f = d denotes the disparity function, and for regular cameras f = z
denotes the depth function. In the experimental section two different
objective functions will be used. One is based on normalized cross correlation
and the other is based on pixel-wise photoconsistency. The second function is
introduced in order to facilitate comparison to the work of Woodford et al.
(2009). Figure 7.4 shows the difference between the data terms used by the
two objective functions.

Normalized cross correlation

Normalized cross correlation (NCC) compares a patch around a pixel to
a patch around the potential matching pixel. Let pl and pr denote the
two patches to be matched and (xl1, . . . ,x

l
n) and (xr1, . . . ,x

r
n) denote

the pixels in each patch. Furthermore, let µi denote the mean and σi the
standard deviation for the pixel intensities for patch i. The normalized cross
correlation is given by

NCC(pl, pr) =
1
n

n∑
i=1

(
Il
(
xli
)
− µl

)(
Ir
(
xri
)
− µr

)
σlσr

. (7.30)

The value ranges from −1 to 1 where 1 is a perfect match. In this chapter,
NCC is computed for 3× 3 patches.

An extra cost to assignments of planes which are roughly parallel to
the viewing rays is also added. The reason for doing this is that we are
unlikely to be able to see many pixels from such planes (and if we do, the
data term that we have computed using fronto-planar patches is probably
not accurate). The data term is given the extra term:

(1− nTpvp)2k, (7.31)
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(a) Left image (b) Right image
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(d) Pixel-wise photoconsistency, σd = 30

Figure 7.4: Comparing normalized cross correlation (NCC) to pixel-wise
photoconsistency (Dphoto) for a pair of stereo images. In the top row
the two images are shown along with three color coded points. The two
following rows show the resulting normalized cross correlation and pixel-
wise photoconsistency for the three points.
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where np is the normal of the plane assigned to p and vp is the direction
of the viewing ray in p (in the 3D space the viewing ray direction will be
p/‖p‖ and in disparity space (0, 0, 1)). The constant k is selected large
enough so that the penalty effects tangents with high tilt (k = 10 for all
experiments).

The regularization term is simply modeled as

Rpq(f) = min (Vpq(f), τ) , (7.32)

where τ ∈ R is a threshold introduced in order to preserve discontinuities.
Now we can define the objective function as

Encc(f) = −µ
∑
p∈I

NCC(f) + (1− nTpvp)2k

+
∑
p∈I

∑
q∈N (p)

min (Vpq(f), τ) ,
(7.33)

where the parameter µ controls the trade-off between the data term and the
regularization.

Pixel-wise photoconsistency

This section introduces an objective function based on Woodford et al.
(2009). The data terms are identical while the regularization terms are
modeled to be as close as possible to regularization of Woodford et al.

Each data term is based on pixel-wise photoconsistency between two
pixels, xl and xr, which is defined as

Dphoto(xl,xr) = log(2)− log

(
1 + exp

(
−‖I(xl)− I(xr)‖2

σd

))
,

(7.34)

where σd is a model parameter. Pixel-wise photoconsistency is cheaper to
compute than normalized cross correlation as it only takes pairs of pixels
into consideration, but it might be less robust to noise.
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The regularization terms used by Woodford et al. is defined as

W (N )τ min

(∣∣S(N )∣∣
τ

, 1

)γ
, (7.35)

where neighborhood, N , is a collection of, horizontal and vertical, triples
(p, q, r) of neighboring points and S

(
N
)

is an approximation of second
derivative defined as

S(N ) = f(p)− 2f(q) + f(r). (7.36)

W (N ) is a weight depending on a segmentation of the image. If N
contains pixels from several segments W (N ) takes a low value, if all pixels
are from the same segment it takes a high value.

To achieve a similar regularization with the proposed model the neigh-
borhood N is changed to normal 4-connectivity. Now N consist of collec-
tion of pairs (p, q) and the second derivative is penalized using,

S
(
(p, q, r)

)
= Vpq + Vqp. (7.37)

The resulting regularization term can be expressed as

Rpq(f) = W (N ) τ min

(
Vpq(f)

τ
, 1

)γ
, (7.38)

where γ ∈ {1, 2}. For all experiments in this chapter the parameters are
chosen as as in Woodford et al. (2009).

The objective function can now be defined as

Ephoto(f) =
∑
p∈I

Dphoto(f) +
∑
p∈I

∑
q∈N (p)

W (N ) τ min

(
Vpq(f)

τ
, 1

)γ
.

(7.39)

where γ ∈ {1, 2} and γ = i gives `i regularization.

7.4 Optimization

In this section it will be shown how to minimize (7.29) by fusing solu-
tion proposals. It will also be shown that binary fusion moves are often
submodular and how to go beyond binary fusion and fuse multiple pro-
posals simultaneously. The discussion on how to generate proposals will be
postponed to the next section.
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7.4.1 Binary fusion

Given a current function f , and a proposal function n, the fusion move
algorithm allows pixels to change their labels from the tangents of f to
the tangents of n. For the objective function in (7.29) the binary fusion
function can be expressed as

g(x) =
∑
p∈I

gp(xp) +
∑
p∈I

∑
q∈N (p)

gpq(xp, xq), (7.40)

where

gp(xp) = xpDp(f) + xpDp(n),

gpq(xp, xq) = xpxqRpq(f, f) + xpxqRpq(n, f)

+ xpxqRpq(f, n) + xpaqRpq(n, n),

(7.41)

where x = 1− x. A fusion move is performed by solving

argmin
x∈B|I|

g(x). (7.42)

Lemma 7.3. The function in (7.40) is submodular if and only if

Rpq(n, n) +Rpq(f, f) ≤ Rpq(f, n) +Rpq(n, f). (7.43)

Proof. By definition the first order term gp, will not influence the submod-
ularity. For submodularity it suffices to check that

gpq(1, 1) + gpq(0, 0) ≤ gpq(0, 1) + gpq(1, 0), (7.44)

holds for all (p, q), which by construction holds as long as (7.43) holds.
On the other hand if (7.43) does not hold, then it directly follows that

gpq(1, 1) + gpq(0, 0) > gpq(0, 1) + gpq(1, 0), (7.45)

showing that (7.40) is non-submodular.

Using this lemma it will be shown that some proposals are easy to fuse.
We will begin by restricting the attention to a certain class of regularization
terms, namely

Rpq(f, n) = cpqVpq(f, n) = cpq |Tpf(q)− f(q)| , (7.46)

where cpq ≥ 0 is some constant.
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Plane proposals

Proposition 7.4. Assume that the proposal function n is a plane. Then the
binary fusion function in (7.40) is submodular if we restrict the regularization
term to be of the form in (7.46).

Proof. Since n is a tangent plane we have

Tpn(q) = n(q), (7.47)

And therefore Rpq(n, n) = 0. Furthermore,

Rpq(f, f) = cpq |Tpf(q)− f(q)| (7.48)

= cpq |Tpf(q)− n(q) + Tpn(q)− f(q)| (7.49)

≤ cpq |Tpf(q)− n(q)|+ cpq |Tpn(q)− f(q)| (7.50)

= Rpq(f, n) +Rpq(n, f). (7.51)

From this it directly follows that

Rpq(f, f) +Rpq(n, n) ≤ Rpq(n, f) +Rpq(f, n), (7.52)

and via Lemma 7.3 the result follows.

General proposals

Next we derive more general sufficient conditions for submodularity of the
fusion move.

Proposition 7.5. Assume that the current solution f and the proposed solution
n are both convex (or alternatively both concave) between p and q. Then the
binary fusion function in (7.40) is submodular if we restrict the regularization
term to be of the form in (7.46).

Proof. To get the result first note that if both f and n are convex then they
are both bounded from below by their tangent planes:

f(q) ≥ Tpf(q) (7.53)

n(q) ≥ Tpn(q). (7.54)
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I p q

f(p) f(q)

Tpf(q)

n(p)

n(q)

Tpn(q)

Vpq(f, f) Vpq(n, n)

Vpq(f, n)

Vpq(n, f)

Figure 7.5: An example of a possible non-submodular term when
fusing the solution f and the proposed solution n. Using the
regularization term in (7.60) with cpq > 0, it follows that
Rpq(n, n) +Rpq(f, f) > Rpq(f, n) +Rpq(n, f).

Using this it follows that

Rpq(f, f) +Rpq(n, n) = (7.55)

cpq

(
f(q)− Tpf(q) + n(q)− Tpn(q)

)
≤ (7.56)

cpq|n(q)− Tpf(q)|+ cpq|f(q)− Tpn(q)| = (7.57)

Rpq(f, n) +Rpq(n, f). (7.58)

From this it follows that

Rpq(f, f) +Rpq(n, n) ≤ Rpq(n, f) +Rpq(f, n), (7.59)

and via Lemma 7.3 the result follows.
It is easy to see that the same statement is true if both n and f are

concave. In this case the inequalities in (7.53) and (7.54) are switched
which means that the signs of (7.56) are switched.

Figure 7.5 shows an example where the fusion function have a non-
submodular term. In this case both the functions f and n have a relatively
large second-order derivative. Choosing for example f at p and n at q (or
vise versa) gives a function with small second-order derivative.
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Truncating the regularization

To make the regularization discontinuity preserving it is desirable to intro-
duce threshold, τ > 0, on the regularization. Extend (7.46) to

Rpq(f, n) = cpq min(Vpq(f, n), τ), (7.60)

where cpq ≥ 0. The result from Proposition 7.4 carries over to the trun-
cated term.

Proposition 7.6. Assume that the proposal function n is a plane. Then the
binary fusion function in (7.40) is submodular if we restrict the regularization
term to be of the form in (7.60).

Proof. Using the same argument as in Proposition 7.4 it follows that
Vpq(n, n) = 0 =⇒ Rpq(n, n) = 0, and

Rpq(f, f) = cpq min(Vpq(f, f), τ) (7.61)

≤ cpq min
(
Vpq(f, n) + cpqVpq(n, f), τ

)
(7.62)

≤ cpq min
(
Vpq(f, n), τ

)
+ cpq min

(
Vpq(n, f), τ

)
(7.63)

= Rpq(f, n) +Rpq(n, f). (7.64)

From this we get

Rpq(f, f) +Rpq(n, n) ≤ Rpq(f, n) +Rpq(n, f), (7.65)

and via Lemma 7.3 the result follows.

Proposition 7.5 does not carry over for (7.60). The result can fail for
surfaces with large second derivative because of the added threshold.

Remark 7.7. For `1 regularization, the assumptions made on the objective
function in (7.60) holds for the objective function Encc in (7.33) and the
objective function Ephoto in (7.39).
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7.4.2 Simultaneous fusion

Binary fusion moves are limited in that they can only fuse two proposals at a
time. Therefore, the end result may depend on the order that the proposals
are fused. In this section we will go beyond binary fusion moves and fuse
hundreds of proposals simultaneously.

Assume that pixel p is assigned the tangent of function fi : I → R at
p and pixel q is assigned the tangent of fj : I → R at q. In this section we
will restrict our attention to the subset of the objective functions in (7.29),
whose regularization term can be expressed as

Rpq(fi, fj) = cpq min
(
|Tpfi(q)− fj(q)|γ , τ

)
, (7.66)

where γ ∈ {1, 2} and γ = i gives `i regularization.

Remark 7.8. The assumptions made on the objective function in (7.66) holds
for the objective function Encc in (7.33) and the objective function Ephoto in
(7.39).

Given a set of proposals, S = {f1, . . . , fm}, fusing all proposals
simultaneously corresponds to solving the multi-label problem

argmin
x∈L|I|

∑
p∈I

gp(xp) +
∑
p∈I

∑
p∈N (p)

gpq(xp, xq), (7.67)

where L = {1, . . . ,m} and

gp(xp) =

m∑
i=1

xp(i)Dp(fi),

gpq(xp, xq) =

m∑
i=1

m∑
j=1

xp(i)xq(j)Rpq(fi, fi),

(7.68)

where xp is the indicator variable for xp.

Why? One natural question to ask is: is it not sufficient to consider binary
fusion? One reason for simultaneous fusion is that we are able to avoid
local optima, as illustrated in Figure 7.6. Another advantage is that we can
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(a) Start solution (b) One plane (c) Three planes

Figure 7.6: Motivational example for simultaneously fusion. a) Suppose a
real surface is represented by the dashed curve, the current best solution is
given by the thick black line and three proposals are shown as the three gray
lines. b) A possible solution after binary fusion with one of the proposals,
note that this solution incurs a large regularization cost. Because of the cost
this proposal might never be successfully fused. c) If we fuse all three planes
simultaneously we can jump directly to a better solution.

get guarantees on the solution. That is, given n proposals we know how
far away from the optimal fusion of the n proposals the solution is. If we
perform binary fusion iteratively we can only get guarantees on each fusion
step but we do not know if the order of the fusion has led us into a local
optima.

Efficient optimization

In this section it will be shown how (7.67) can be efficiently optimized
using message-passing based methods, such as TRW-s. Each message is a
vector of the same dimension as the number of possible labels. Let mpq
denote the message p sends to q. The messages can be expressed as

mpq(xq) = min
xp∈L

(
gpq(xp, xq) + h(xp)

)
, (7.69)

where

h(xp) = Dp(xp) +
∑

s∈{N (p)\q}

msp(xp). (7.70)

Straightforward computation of messages using the formula (7.69) takes
O
(
n2
)

evaluations, where n is the number of labels. This section will
show how to use a generalized distance transform to compute the messages
in O(n). In principle the labels belong to a three-dimensional space and
computing distance transforms in this space may seem difficult. However,
due to the fact that the interaction is defined using distances along the
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viewing ray we can apply regular one-dimensional distance transforms
with little modifications. The only extra step required is sorting the labels
according to their disparity or depth as this can vary between points.

Efficient distance transform

In Felzenszwalb and Huttenlocher (2006) a distance transform is introduced
that can handle standard stereo regularization. It is possible to modify their
approach to work with the second-order stereo regularization proposed in
this chapter.

We will start by simplifying (7.66) into

Rpq(fi, fj) = cpq|Tpfi(q)− fj(q)|γ , (7.71)

the truncation will be handled later on in this section. With slight abuse of
notation, we will express the message updates as a function of the proposal
as

mpq(fj) = min
i∈{0,...,n}

Rpq(fi, fj) + h(fi), (7.72)

where

h(fi) = Dp(fi) +
∑

s∈{N (p)\q}

msp(fi) (7.73)

Suppose that we would like to fuse the proposals, S = {f0, . . . , fn}, for a
point pair (p, q) introduce,

Qq = {f0(q), . . . , fn(q)} = {q0, . . . , qn} , (7.74)

Q′pq = {Tpf0(q), . . . , Tpfn(q)} =
{
q′0, . . . , q

′
n

}
. (7.75)

Since we are only considering points along the viewing ray, each point in
the two sets are represented by their distance from the camera center.

`1 regularization. To compute the message mpq, in case of `1 regulariza-
tion, we need to evaluate the function

`(fi) = min
i∈{0,...,n}

cpq|q′i − q|+ h(fi) (7.76)
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for all fi ∈ S. Each point can be used to represent a cone rooted at(
q′i, h(fi)

)
, (7.77)

with slope

cpq|q′i − q|. (7.78)

If we construct the lower envelope of all these cones then we can solve
(7.76) in constant time, resulting in a linear time message update.

The order at which the points in Q′pq appear along the viewing ray
depends on the tilt of the tangent functions. Therefore the same set of
tangents at p will have different orderings for different neighboring pair
(p, q). To be able to compute the distance transform and evaluate `(f) in
linear time we thus need to maintain an ordering of the labels for each
neighborhood. Since the proposals and neighborhoods are fixed for each
fusion problem, the sorting can be done once at start up and maintained
during the optimization.

The distance transform sequentially constructs the lower envelope of
the cones by first sortingQ′pq and then going through each point q′ ∈ Q′pq.
In what follows, let i be the index of point q′i and let j be the last point
added to the lower envelope. For each point q′i drawn fromQ′pq one of the
following three cases may occur

1. h(fi) is above the current lower envelope at q′i.

2. h(fi) + cpq|q′i − q′j | is below the current lower envelope at q′i.

3. Neither 1 nor 2.

For case 1) we can just skip point i as it will never be part of the lower
envelope. For case 2) the previously added interval to the lower envelope
is removed and we repeat the comparison for interval j − 1. In case 3)
the lower envelope intersects the cone associated with point i. For `1

regularization two cones intersect when

q =
h(fi)− h(fj) + cpq|q′i + q′j |

2cpq
. (7.79)
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h(f0)

h(f1)

h(f2)

h(f3)

q′0 q′1 q′2 q′3

h(f0)
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(a) (b)

h(f0)
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h(f2)
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q′0 q′1 q′2 q′3

(c) (d)

Figure 7.7: Example construction of lower envelope for `1 regularization
assuming the points are ordered in ascending order. The dashed lines shows
cpq|q′i − q| + h(fi). The current estimated lower envelope is shown by
a thick red line and the progress is indicated by the green line. (a) The
algorithms is initialized. (b) cpq|q′1 − q′0| + h(f1) < h(f0). The cone
belonging to q′0 will never be part of the lower envelope. (c) cpq|q′2 −
q′1|+ h(f1) < h(f2). The cone belonging to q′2 will never be part of the
lower envelope. Finally in (d) the current estimate of the lower bound is
intersecting with q′3’s cone. The lower envelope is divided into two intervals.
One belonging to q′1 and one to q′3.
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The intersection is calculated and the new interval is added to the lower
envelope. An example lower envelope is constructed in Figure 7.7.

After the lower envelope is constructed the message cost for mpq(fj) is
just the height of the lower envelope at position qj . When using standard
stereo regularization the sets Q and Q′ are usually the same for all pixels.
When using regularization proposed in this chapter, they most likely differ.

A final thing to consider is when we add truncation to the regularization
term resulting in

Rpq(fi, fj) = cpq min (|Tpfi(q)− fj(q)|, τ) , (7.80)

where τ ∈ R is some truncation level. The highest cost any message can
have is

ρ = min
fi∈S

h(fi) + cpqτ. (7.81)

Adding the truncation is now easy. First ignore the truncation, and calculate
the message cost as if there is no truncation, call these message m′pq. The
message cost with the truncation can now be calculated as

mpq(fi) = min(m′pq(fi), ρ) for all fi ∈ S. (7.82)

Finding ρ and updating all messages requires O(n) calculations. Pseu-
docode for the algorithm is given in Algorithm 3.

`2 regularization. The only modification needed is related to the con-
struction of the lower envelope, which is described in Felzenszwalb and
Huttenlocher (2006). The rest is carried over from the `1 regularization
algorithm. For `2 regularization the lower envelope consists of parabolas
of the form cpq(q

′
i − q)2 + h(fi). The lower envelope is sequentially con-

structed by considering intersection of the parabolas, which for parabolas
(i, j) is given by

q =

(
h(fi) + cpq(q

′
i)

2
)
−
(
h(fj) + cpq(q

′
j)

2
)

2cpq
(
q′i − q′j

) . (7.83)

Let j be the last added point to the lower envelope and let zj be the
first point in the interval where it is part of the lower envelope. For each
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point i drawn fromQ′pq and as long as q′i 6= q′j , consider the intersection
of parabolas i and j, denote their intersection q. One of the following two
cases occur

1. q > zj . The intersection is added to the lower envelope.

2. q ≤ zj . Repeat intersection with parabola j − 1.

When q′i = q′j , the parabolas do not intersect and the parabola with
smallest h(fi) is kept in the lower envelope. This case is not covered in
Felzenszwalb and Huttenlocher (2006) and correspond to several proposals
intersecting the q-ray at the same point. This occurs frequently in practice.

Complexity of the message updates for `1 and `2 regularization. Let
n be the number of proposals. The sorting of points is done only once
and outside of the message update. For the lower envelope, the maximum
number of intervals is n+ 1. Each interval is visited at most 3 times. Once
when it is added, once when it is intersected and once when it is removed.
All other parts of the algorithm are at most single nested loops of size n.
Hence the complexity for each message update is O(n).
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Algorithm 3 Message update for `1 regularization.

function DISTANCE(x, y)
return cpq|x− y|

function UPDATE_INTERVALS(interval, start, intersection)
v[interval]← start . Label belonging to this interval.
z[interval]← intersection . Lower limit of this interval.
z[interval + 1]←∞ . Upper limit of this interval.

Precondition: Q andQ′ are sorted.
function MESSAGE_UPDATE(Q,Q′, cpq, τ )

UPDATE_INTERVALS(0, 0,−∞)
maxVal←∞
for i← 1 to n− 1 do

maxVal← min(maxVal, h(fi))
j ← 0 . Number of intervals in the lower envelope.
for l = i to 0 do

if DISTANCE
(
q′i, q

′
j

)
+ hv[j] ≤ h(fi) then . Case 1

break
else if DISTANCE

(
q′i, q

′
j

)
+ h(fi) < hv[j] then . Case 2

if j = 0 then
UPDATE_INTERVALS(0, i,−∞)

else
j ← j − 1

else . Case 3
j ← j + 1

intersection← (h(fi)−h(fj)+cpq(q′i+q′j)
2cpq

UPDATE_INTERVALS (j, i, intersection)
break

j ← 0
maxVal← maxVal + cpqτ . . Largest message cost.
for i← 1 to n− 1 do

while z[j + 1] < qi do
j ← j + 1

m[i]← min
(

DISTANCE
(
qi, q

′
j

)
+ hv[j],maxVal

)
returnm
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Algorithm 4 Message update for `2 regularization.

function DISTANCE(x, y)
return cpq(x− y)2

function UPDATE_INTERVALS(interval, start, intersection)
v[interval]← start . Label belonging to this interval.
z[interval]← intersection . Lower limit of this interval.
z[interval + 1]←∞ . Upper limit of this interval.

Precondition: Q andQ′ are sorted.
function MESSAGE_UPDATE(Q,Q′, cpq, τ )

UPDATE_INTERVALS(0, 0,∞)
maxVal←∞
for i← 1 to n− 1 do

maxVal← min(maxVal, h(fi))
j ← 0 . Number of intervals in the lower envelope.
for l = i to 0 do

if q′j = q′i then
if h(fj) > h(fi) then

if j = 0 then
UPDATE_INTERVALS(0, i,∞)

else
j ← j − 1

else
break . Parabola always above the lower envelope.

else
j ← j + 1

intersection←
(
h(fi)+cpqq

′
i

2
)
−
(
h(fj)+cpqq

′
j

2
)

2cpq(q′i−q′j)
UPDATE_INTERVALS(j, i, intersection)
break

j ← 0
maxVal← maxVal + cpqτ . . Largest message cost.
for i← 1 to n− 1 do

while z[j + 1] < qi do
j ← j + 1

m[i]← min
(
DISTANCE (qi, qj) + hv[j],maxVal

)
returnm
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7.5 Proposal generation

Both binary and simultaneous fusion are dependent on good proposals
to yield good results. In this section we will give a number of different
methods to generate proposals.

A useful and simple proposal is to choose f to correspond to tangent
planes with constant depth or disparity. In Woodford et al. (2009) these pro-
posals are given the abbreviation SameUni. For regular stereo regularization
with one-dimensional labels these proposals corresponds to the constant
proposals used by α-expansion in Boykov, Veksler, et al. (2001).

Another popular method is to generate tangent planes. Given a small
set of points in a region estimate the best 3D points by considering only
the data term. For most data terms this is rather inexpensive. From these
points it possible to generate tangent planes using RANSAC. In Woodford
et al. (2009) the regions are determined by over segmenting the image using
14 different settings and fitting a plane inside each region, resulting in 14
proposals called SegPln. It straight forward to generate higher-order surface
using this same method.

In Woodford et al. (2009) proposals are generated by smoothing the
current best solution, these proposals are called Smooth. For the proposed
model its possible to emulate this by averaging the normal directions among
the tangent planes. The next section will introduce a new of set proposals.

7.5.1 Local refinement

A usual approach for improving discrete solutions is the perform some sort
of local optimization. In essence this is what the Smooth proposals are trying
to accomplish. In this section we will generate proposals using alternating
direction method of multipliers (ADMM) which can be initialized from any
solution. Any proposals generated this way can be seen as a local refinement
of the current solution. Note that we still use these proposal as any other
proposal and fuse them. In this way we can guarantee that our objective
function is not increasing, even though the ADMM optimization have no
guarantees for non-convex functions.

We will begin to restrict our attention to the subset of the objective
functions in (7.29), whose regularization terms can be expressed as
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Rpq(z) = cpq min
(
|Tpz(q)− z(q)|γ , τ

)
, (7.84)

where τ ∈ R is some threshold level, cpq ∈ R some weight, and γ ∈ R+.
Furthermore, we assume that Rpq is piecewise differentiable.

In this section we will only cover regular cameras. This allows us to
introduce

Wpq(z) = Tpz(q)− z(q) =
z(p)2

z(p)− sz′v(p)
− z(q). (7.85)

The objective function in (7.29) can now be expressed as∑
p∈I

Dp(z) +
∑
p∈I

∑
q∈N (p)

Rpq (Wpq(z)) . (7.86)

where the regularization terms are given by

Rpq(Wpq(z)) = cpq min(|Wpq|γ , τ). (7.87)

Furthermore, we will also assume that data term, Dp, can be densely
sampled such that its minima can be found by simply searching all the
sample points.

Remark 7.9. The assumptions made on the objective function in (7.86) holds
for the objective function Encc in (7.33) and the objective function Ephoto in
(7.39).

Optimizing (7.86) is typically very challenging since the data term
is often non-differentiable with lots of local minima. In addition, the
regularization term is a sum of non-convex functions. To handle these
problems the terms are decoupled by two new sets of variables; x ∈ Rm

and y ∈ R|I|, where m is the number of binary terms. These variables are
constrained to be

xpq = Wpq(z) for all p ∈ I, q ∈ N (p), (7.88)

yp = z(p) for all p ∈ I. (7.89)
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The augmented Lagrangian is now

L(x,y, z,λ) =
∑
p∈I

∑
q∈N (p)

Rpq(xpq)

+
∑
p∈I

∑
q∈N (p)

λpq(xpq −Wpq(z))

+ σ
∑
p∈I

∑
q∈N (p)

(xpq −Wpq(z))
2

+
∑
p∈I

(
λp(yp − z(p)) + σ(yp − z(p))2)

+
∑
p∈I

Dp(yp).

(7.90)

When applying ADMM we get three subproblems:

minimize
xpq

Rpq(xpq) + λpq(xpq −Wpq(z)) + σ(xpq −Wpq(z))
2,

(7.91)

minimize
z

∑
p∈I

( ∑
q∈N (p)

λpq(xpq −Wpq(z))

+ σ(xpq −Wpq(z))
2

+
(
λp(yp − z(p)) + σ(yp − z(p))2)),

(7.92)

and

minimize
yp

λp(yp − z(p)) + σ(yp − z(p))2 +Dp(yp). (7.93)

In addition we obtain the dual update rules

λk+1
pq = λkpq + σ(xpq −Wpq(z)), (7.94)

λk+1
p = λkp + σ(yp − z(q)), (7.95)

see Boyd, Parikh, et al. (2011) for details. This decoupling of terms has
the following positive effects: The terms Rpq(xpq) and Dp(yp), that are
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non-smooth and difficult to approximate locally, end up in two different
subproblems both of which are separable and where optimization can be
carried out over individual pixels separately, greatly reducing the search
space. The coupling between pixels appears in problem (7.92) where the
involved functions are smooth and can be optimized locally using standard
descent methods. In the following subsections, solution strategies for each
individual problem is outlined.

Problem (7.91)

To solve (7.91) first note that the optimum must be in either a stationary
point or in a transition between differentiable segments of the functionRpq.
Since we will be using Rpq(xpq) = min(|xpq|, τ) in the experiments we
illustrate the process using this choice. There are four cases:

1. |xpq| > τ . Taking derivatives of (7.91) gives

λpq + 2σ(xpq −Wpq(z)) = 0. (7.96)

Solving for xpq gives the stationary point. Note that the solution
may violate |xpq| > τ . In this case the solution is false and there is
no stationary point in the interval. However, since we compare the
value of all "candidate" minimizers we do not have to test for this.
We are guaranteed that one of the candidates is the global minimizer
of (7.91).

2. −τ < xpq < 0. In this case the stationary point is given by

−1 + λpq + 2σ(xpq −Wpq(z)) = 0. (7.97)

3. 0 < xpq < τ . Here the stationary point is given by

1 + λpq + 2σ(xpq −Wpq(z)) = 0. (7.98)

4. In addition we need to test the two transition points xpq = ±τ and
xpq = 0.
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Problem (7.92)

The objective function in (7.92) is similar to non-linear least squares prob-
lem. We will apply a Levenberg-Marquardt approach to solve it. We
linearize the residual

xpq −
(

z(p)2

z(p)− sz′v(p)
− z(q)

)
. (7.99)

Note that yp − z(q) is already linear in terms of the unknowns (z(p),z(q)
and z′v(p)), and does therefore not require modification. The approxima-
tion that we get from the linearization is in most cases very accurate. This
can be heuristically explained by looking at the equivalent expression

xpq −
(
z(p) + sz′v(p) +

(sz′v(p))2

z(p)− sz′v(p)
− z(q)

)
. (7.100)

Assuming that s is small (recall that this is the distance between pixels)
the nonlinear term is likely to be neglectable for reasonable values of the
derivative z′v(p).

Problem (7.93)

Since the function Dp is one-dimensional and sampled densely it is easy
to optimize it by simply searching the sample values. To solve (7.93) we
simply recompute the samples of Dp by adding

λp(yp − z(p)) + σ(yp − z(p))2 (7.101)

to Dp(yp) and chose the optimum as the best new sample.

7.6 Experiments

For all experiments presented in this chapter a few hundred proposals are
generated using the methods described in Section 7.5. The proposals are
then fused using binary fusion if nothing else is stated.

The results are presented either using surface plots or disparity maps.
In a surface plot the estimated tangent planes are used to build a surface
representation of the scene. In a disparity map, each pixel in the reference
image is encoded by its estimated disparity. To enhance the contrast in the
disparity maps, the jet colormap, given in Figure 7.8, is used.
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0 5 10 15 20 25 30 35 40 45 50

Figure 7.8: The jet colormap used to display disparity maps in this section.

7.6.1 Rectified cameras

Second-order regularization

The first experiment uses the objective function Encc in (7.33) on the
Middlebury dataset from Scharstein and Szeliski (2003)). The dataset
consists of several image sequences. The name of each image sequence will
be given in small caps. Normalized cross correlations are calculated using
all images in each sequence. Figures 7.9 and 7.10 show the resulting surface
plots for two different sequences. The effects of the regularization term can
be seen by comparing the surface generated from the data term without
regularization (b) and the one with regularization (c). The data term is
particularly weak in the BOWLING sequence because of the large textureless
region.

In Figure 7.11 the disparity map for the proposed second-order stereo
regularizer is compared to a standard first-order stereo regularizer. (The
difference between the regularization models is shown in Figure 7.2.) Both
methods use the data term of the objective function Ephoto, defined in
(7.39), and the same parameters to define the regularization weights. The
resulting disparity map for the proposed second-order stereo regularizer is
clearly better. More examples, highlighting the quality gains using second-
order stereo regularizers are given in Woodford et al. (2009).

Comparison to Woodford et al. (2009)

In this experiment the objective function Ephoto, as defined in (7.39),
is compared to the objective function used by Woodford et al. (2009),
which will simply be referred to as woodford. For each binary fusion move,
“improve” is used to label all unlabeled variables after using roof duality, as
discussed in Woodford et al. (2009).

In Figure 7.12 both objective functions are initialized with the same
random solution with fronto-parallel tangent planes. After that, each SegPln
proposal is fused one at a time for each objective function. For each binary
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(a) Reference image (b) Only data term (c) Using regularization

Figure 7.9: CLOTH. Estimated surfaces using the objective function Encc

with µ = 40. In (b) no regularization is used (τ = 0) and in (c) the
proposed regularization is added (τ = 1).

(a) Reference image (b) Only data term (c) Using regularization

Figure 7.10: BOWLING. Estimated surfaces using the objective function
Encc with µ = 40. In (b) no regularization is used (τ = 0) and in (c) the
proposed regularization is added (τ = 1).

Reference image Standard stereo Proposed stereo
regularization regularization

Figure 7.11: CONES. Comparing standard first-order stereo regularization
to the proposed second-order stereo regularization. The disparity maps are
estimated by fusing the 14 SegPln proposals.
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fusion move, the number of unlabeled variables for roof duality is counted
and given in Table 7.2.

Note that the binary fusion move, for the proposed method, is only
submodular if each proposal function is one tangent plane, see Proposition
7.6. The SegPln proposals are piecewise planar, hence the regularization at
transitions between tangent planes may not be submodular.

The proposed regularization is also tested on the full pipeline of Wood-
ford et al. (2009) which uses three types of proposals (SegPln, SameUni and
Smooth). The results on all of the sequences in Middlebury (Scharstein and
Szeliski (2003)) are given in Table 7.3 and the execution times are given in
Table 7.4.

Simultaneous fusion

This experiment demonstrates the usefulness of performing simultaneous
fusion compared to iterative binary fusion. To quantitatively evaluate
simultaneous fusion the full Middlebury stereo dataset is used (Hirschmüller
and Scharstein (2007); Scharstein and Pal (2007); Scharstein and Szeliski
(2002); Scharstein and Szeliski (2003)), consisting of 40 stereo image pairs.
The objective functionEphoto in (7.39) is used for all experiments. For every
sequence, the SegPln proposals and 300 equally distanced fronto-parallel
proposals are generated.

For iterative binary fusion all proposals are iteratively fused, using roof
duality in a random order. This is repeated until all proposals have failed
to update the solution in a fusion move. The simultaneous fusion move
is optimized using TRW-s for either 3000 iterations or until the relative
duality gap is less than 0.001. Simultaneous fusion is expected to be slower
than iterative binary fusion, since it solves a much harder problem. To
make the comparison fair, the extra time for iterative binary fusion is spent
fusing random tangent planes with constant disparity. The final solution is
called extra.

Quantitative results for `1 regularization are given in Table 7.5. Note
that the ground truth lacks normal directions; it is not possible to calculate
the objective value for the ground truth disparities. An example highlighting
the quality difference between simultaneous and iterative binary fusion is
given in Figure 7.13. The difference is larger when the number of proposals
is low. When the number of proposals is very large the binary fusion
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(a) Ground truth (b) Ephoto (c) Woodford

(d) Reference image (e) Unlabeled Ephoto (f ) Unlabeled Woodford

Figure 7.12: TEDDY. (b-c) Disparity maps after fusing the SegPln proposals.
(e-f ) The unlabeled variables summed over all binary fusion moves. A white
pixel corresponds to failed fusion for every single proposal.

TSUKUBA VENUS TEDDY CONES

Ephoto 0.065% 0.0264% 0.127% 0.0847%
Woodford 30.0% 30.6% 27.6% 27.3%

Table 7.2: The percentage of variables unlabeled after binary fusion for the
SegPln proposals.
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TSUKUBA VENUS

Non occ All Disc Non occ All Disc

Ephoto 4.49 5.52 12.3 0.298 0.648 3.99
Woodford 4.83 5.99 13.9 0.536 0.921 6.39

TEDDY CONES
Average

Non occ All Disc Non occ All Disc

Ephoto 7.71 11.2 17.8 9.78 15.4 18.3 8.95
Woodford 8.16 11.8 19.3 9.74 15.6 18.4 9.63

Table 7.3: Scores on Middlebury using the same proposals, lower is better.
All values are % of pixels being ≥ 1 pixel incorrect for each of the three
classes. The classes are non occluded regions, all pixels and regions near
depth discontinuities.

TSUKUBA VENUS TEDDY CONES Average

Ephoto 21.3 25.5 29.4 36.5 28.2
Woodford 106 139 143 181.0 142

Ratio 4.96 5.47 4.87 4.96 5.07

Table 7.4: Execution time in seconds, using the convergence criteria in
Woodford et al. (2009).
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performs surprisingly well for many of the sequences. The resulting disparity
maps are almost as good as those of simultaneous fusion, which can be
verified to be near optimal, due to the lower bound being almost tight.
For some sequences the lower objective value clearly improves the resulting
disparity map, see Figure 7.14. For other sequences the improvement is
more subtle, see Figure 7.15.

Experiments are also performed using `2 regularization, quantitative
results are given in Table 7.6. Examples of improvement can be seen in
Figures 7.16 and 7.17.

The quality of the solution for iterative and simultaneous fusion as a
function of execution time is given in Figure 7.18. Iterative binary fusion
achieves lower objective values faster, but in the long run simultaneous
fusion produces the best solutions.

7.6.2 Regular cameras

In this section the depth functions for two non-rectified image sequences
are estimated, using the objective function Encc in (7.33). For the spe-
cific choices of µ and τ see the figure captions. The results are given in
Figures 7.19 and 7.20. Both of these sequences are part of a real outdoor
dataset, and as a preprocessing step the background sky is removed. In both
cases, nine neighboring images are used to compute the normalized cross
correlations.

Local refinement

This experiment highlights the usefulness of having proposals generated
by local refinement. Two approaches are compared; fusion moves with
sampled planar proposals with and without local refinement. Since the
problem is not convex, convergence of ADMM is not guaranteed for fixed
σ. Therefore, σ starts at a low value (0.1 in the implementation) and is
slowly increased in each iteration to a high value (10 in the implementation).
The specific update rule is

σk+1 = ησk, (7.102)

where η is determined such that σk is 10 in the last iteration.
In Figure 7.21 the result is given for the smooth and highly textured

surfaces of ÉGLISE DU DÔME, and in Figure 7.22 the result is given for the
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Sequence
Iterative (Iter) Simultaneous (Sim) Sim / Iter Sim/extra

Iterations Time Iterations Time Rel. gap Obj. Time Obj.

ALOE 3278 16.4 3000 358.8 0.001 0.994 21.83 0.996
ART 3546 23.1 3000 384.5 0.002 0.992 16.67 0.994
BABY1 2458 13.0 3000 342.3 0.036 1.006 26.25 1.006
BABY2 2862 14.8 3000 342.1 0.016 0.988 23.11 0.989
BABY3 3045 17.3 3000 361.7 0.021 0.976 20.94 0.976
BARN1 4353 22.2 3000 370.2 0.000 0.999 16.66 0.999
BARN2 2897 14.6 3000 366.5 0.001 0.997 25.06 0.997
BOOKS 3683 21.3 3000 383.7 0.014 0.996 18.00 0.998
BOWLING1 2126 14.8 3000 345.4 0.009 0.992 23.30 0.993
BOWLING2 3028 17.0 3000 356.1 0.002 0.995 20.94 0.996
BULL 3896 19.2 1302 163.8 0.000 0.997 8.52 0.997
CLOTH1 3614 17.3 3000 341.0 0.001 0.989 19.76 0.991
CLOTH2 3356 18.7 3000 352.4 0.020 0.988 18.87 0.990
CLOTH3 2967 14.0 3000 341.3 0.001 0.978 24.36 0.980
CLOTH4 3940 20.6 3000 353.9 0.001 0.988 17.20 0.990
COMPUTER 3382 20.1 3000 363.1 0.002 0.992 18.09 0.994
CONES 4180 23.6 3000 373.9 0.007 1.002 15.83 1.002
DOLLS 3219 19.4 3000 375.7 0.003 0.993 19.33 0.995
DRUMSTICKS 2844 17.9 3000 379.6 0.014 1.007 21.26 1.009
DWARVES 3388 19.3 3000 369.2 0.026 1.012 19.14 1.014
FLOWERPOTS 3103 16.8 3000 356.3 0.023 0.993 21.21 0.994
LAMPSHADE1 2498 15.9 1425 173.7 0.000 0.976 10.91 0.976
LAMPSHADE2 1935 13.1 3000 352.7 0.011 0.991 26.87 0.992
LAUNDRY 4047 24.1 3000 365.4 0.006 0.995 15.17 0.998
MAP 2704 4.5 3000 133.9 0.001 0.999 29.64 0.999
MIDD1 3627 36.0 3000 378.4 0.013 0.972 10.52 0.973
MIDD2 3082 35.8 3000 371.2 0.002 0.980 10.38 0.981
MOEBIUS 4261 26.7 3000 377.3 0.003 0.990 14.12 0.992
MONOPOLY 3577 47.3 3000 359.9 0.009 1.004 7.60 1.004
PLASTIC 2522 20.3 1551 181.6 0.000 0.980 8.93 0.980
POSTER 2798 15.1 3000 375.3 0.008 1.003 24.83 1.003
REINDEER 3708 23.3 3000 369.0 0.034 1.009 15.82 1.011
ROCKS1 2578 13.6 3000 351.5 0.011 0.989 25.86 0.990
ROCKS2 3365 16.1 3000 353.3 0.001 0.965 21.93 0.966
SAWTOOTH 3302 16.2 3000 369.8 0.003 0.999 22.79 1.000
TEDDY 4386 23.8 3000 379.6 0.012 1.006 15.97 1.007
TSUKUBA 2562 9.0 3000 246.9 0.001 0.995 27.41 0.996
VENUS 2697 14.2 3000 373.3 0.000 0.996 26.21 0.997
WOOD1 2555 16.2 914 123.5 0.000 0.989 7.63 0.989
WOOD2 2958 21.0 3000 355.8 0.000 1.000 16.98 1.000

Geom. mean 3150.9 18.1 2753.6 322.9 0.002 0.993 17.83 0.994

Table 7.5: Experiments on the Middlebury dataset using `1 regularization. Execu-
tion time is measured in minutes.
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Sequence
Iterative (Iter) Simultaneous (Sim) Sim / Iter Sim/extra

Iterations Time Iterations Time Rel. gap Obj. Time Obj.

ALOE 5113 26.4 3000 391.7 0.003 0.992 14.84 0.995
ART 4675 28.0 3000 421.4 0.075 1.054 15.04 1.058
BABY1 5776 30.2 3000 375.3 0.012 0.992 12.42 0.995
BABY2 4401 23.5 3000 369.5 0.050 0.967 15.75 0.971
BABY3 4382 24.8 3000 393.8 0.025 0.979 15.85 0.983
BARN1 4581 24.0 3000 406.2 0.001 0.998 16.93 0.999
BARN2 4159 21.8 3000 394.7 0.016 1.012 18.12 1.013
BOOKS 4931 29.6 3000 419.5 0.025 0.988 14.18 0.992
BOWLING1 4200 29.4 3000 377.1 0.007 0.969 12.83 0.971
BOWLING2 5123 31.4 3000 396.1 0.109 1.074 12.63 1.076
BULL 5185 27.2 3000 403.7 0.002 0.995 14.85 0.995
CLOTH1 4820 23.9 3000 382.8 0.034 1.030 16.03 1.035
CLOTH2 4230 24.0 3000 390.0 0.121 1.087 16.25 1.090
CLOTH3 4539 22.2 3000 381.2 0.004 0.990 17.16 0.994
CLOTH4 4192 23.3 3000 393.7 0.004 0.978 16.92 0.982
COMPUTER 5191 31.4 3000 403.5 0.025 1.002 12.83 1.006
CONES 6697 38.4 3000 418.8 0.016 1.006 10.90 1.007
DOLLS 5855 33.4 3000 422.5 0.123 1.116 12.66 1.119
DRUMSTICKS 4379 29.0 3000 427.3 0.027 1.011 14.71 1.015
DWARVES 4883 30.9 3000 424.4 0.068 1.020 13.75 1.022
FLOWERPOTS 5746 31.7 3000 390.9 0.109 1.045 12.33 1.047
LAMPSHADE1 4900 31.7 3000 388.7 0.108 1.036 12.27 1.037
LAMPSHADE2 3035 21.3 3000 389.3 0.124 1.055 18.28 1.057
LAUNDRY 6379 39.6 3000 411.0 0.100 1.068 10.37 1.071
MAP 5041 8.7 3000 154.2 0.002 0.994 17.66 0.997
MIDD1 4512 45.2 3000 412.5 0.046 0.994 9.13 0.996
MIDD2 6907 65.4 3000 407.9 0.008 0.967 6.24 0.971
MOEBIUS 50622 294.1 3000 421.5 0.076 1.062 1.43 1.064
MONOPOLY 4153 56.0 3000 402.0 0.054 1.032 7.18 1.033
PLASTIC 4884 41.8 3000 394.6 0.046 0.968 9.44 0.968
POSTER 4449 25.6 3000 415.2 0.026 1.017 16.21 1.019
REINDEER 5324 31.4 3000 409.2 0.037 1.011 13.03 1.014
ROCKS1 51868 267.1 3000 386.8 0.007 0.985 1.45 0.988
ROCKS2 4865 25.6 3000 409.3 0.021 0.995 15.98 0.997
SAWTOOTH 4834 25.3 3000 405.3 0.004 0.999 16.01 1.000
TEDDY 5921 34.6 3000 421.5 0.062 1.049 12.20 1.050
TSUKUBA 6969 24.6 3000 269.4 0.010 0.992 10.96 0.994
VENUS 5841 32.7 3000 404.0 0.004 0.997 12.35 0.998
WOOD1 5826 37.1 3000 414.3 0.001 0.982 11.17 0.983
WOOD2 4491 31.0 3000 382.5 0.021 1.016 12.34 1.017

Geom. mean 5584.0 32.7 3000.0 387.9 0.020 1.012 11.88 1.015

Table 7.6: Experiments on the Middlebury dataset using `2 regularization. Execu-
tion time is measured in minutes.
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(a) Reference image (b) Iterative binary fusion, (c) Simultaneous fusion,
objective value: 38164.6 objective value: 37955

Figure 7.13: BABY2. Surface view of a toy example on using `1 regulariza-
tion, where only the 14 SegPln proposals are fused.

(a) Reference image (b) Ground truth (c) Iterative, (d) Simultaneous,
obj. value: 4977 obj. value: 4918

Figure 7.14: CLOTH4. Estimated disparity maps using `1 regularization
for iterative binary fusion and simultaneous fusion.

(a) Reference image (b) Iterative, (c) Simultaneous, (d) Details
obj. value: 5314 obj. value: 5272

Figure 7.15: COMPUTER. Estimated disparity maps using `1 regularization
for iterative binary fusion and simultaneous fusion.
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(a) Reference image (b) Ground truth (c) Iterative (d) Simultaneous
obj. value: 36626 obj. value: 36180

Figure 7.16: CLOTH3. Estimated disparity maps using `2 regularization
for iterative binary fusion and simultaneous fusion.

(a) Reference image (b) Ground truth (c) Iterative (d) Simultaneous
obj. value: 15560 obj. value: 15260

Figure 7.17: TSUKUBA . Estimated disparity maps using `2 regularization
for iterative binary fusion and simultaneous fusion.
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(a) BABY1. Fusing 100 proposals (b) ROCKS1. Fusing 200 proposals

Figure 7.18: Objective value as a function of time using `1 regularization.
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(a) Reference image (b) Only data term (c) Using regularization

Figure 7.19: CASTLE. Estimated surfaces using the objective function
Encc with µ = 10. In (b) no regularization is used (τ = 0) and in (c) the
proposed regularization is added (τ = 1).

(a) Reference image (b) Only data term (c) Using regularization

Figure 7.20: ÖREBRO. Estimated surfaces using the objective function
Encc with µ = 10. In (b) no regularization is used (τ = 0) and in (c) the
proposed regularization is added (τ = 1).
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non-smooth untextured surfaces of NIJO CASTLE. Note that, in addition
to ambiguous texture, the NIJO CASTLE sequence contains people that
have walked around between images making the data term incorrect at these
positions. This is not handled in any special way other than applying more
regularization. In all of these cases, the fusion moves provide solutions that
approximate the underlying surfaces well. However, the planar nature of the
proposals gives the appearance of piecewise planarity. In contrast, with local
refinement the resulting surfaces have a much smoother appearance and at
the same time capture fine details better. In addition the local refinement
also repairs some defects, most likely caused by insufficient sampling, such
as the hole visible on the roof of the Nijo castle gate.

7.7 Conclusions

In this chapter, a method for second-order stereo regularization was intro-
duced. In contrast to popular approaches where third-order terms are used
for representing second-order surface derivatives, the proposed method uses
pairwise interactions with 3D labels. It is shown how to efficiently optimize
the model via binary fusion moves and how to extend this to simultaneous
fusion, where more than two proposals are fused at the same time. In a
number of experiments, the advantages of the proposed method are shown.
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7.7. CONCLUSIONS

(a) Reference image (b) Result without local refinement,
objective value: 14028

(c) Local refinement with texture (d) Result with local refinement,
objective value: 13411

Figure 7.21: ÉGLISE DU DÔME. Encc with µ = 0.5, τ = 0.18

(a) Reference image (b) Result without local refinement,
objective value: 5471

(c) Local refinement with texture (d) Result with local refinement,
objective value: 5254

Figure 7.22: NIJO CASTLE. Encc with µ = 0.5 and τ = 0.67
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augmented Lagrangian, 21, 182

belief propagation, 37

camera matrix, 7, 160
Chan-Vese, 83
concave function, 13, 45, 86, 169
connectivity, 92, 107
constraint satisfaction problem, 61
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function, 13, 168
set, 13

coupling scheme, 48, 54, 64
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cutting-plane method, 23, 110
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depth, 10, 159
dice metric, 143
disparity, 9, 157
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dynamic programming, 33
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simultaneous, 56, 171

generalized roof duality, 29, 75
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geodesic distance, 12, 101
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graph-cuts, 29
GTRW-S, 54, 69

indicator variable, 28, 33, 44, 64, 171

label, 32, 90, 137, 156
Lagrangian relaxation, 45, 68, 99
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Levenberg-Marquardt, 15, 184
line graph, 107

message passing, 38
efficient, 43, 62, 172

NCC, see normalized cross correlation
Newton’s method, 15
normalized cross correlation, 163

objective
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parametric max-flow, 83
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resource constrained shortest path, 109
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improve, 58, 145, 185
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scene, 7, 120, 155
Schlesinger LP, 48, 64
singleton separators, 48, 65
solution diagram, 83
step length, 14, 16, 141
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stronger relaxation, 48, 64
subgradient, 14
subgradient method, 16
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supergradient, 14
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