
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

LQG-Based Real-Time Scheduling and Control Codesign

Xu, Yang

2017

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Xu, Y. (2017). LQG-Based Real-Time Scheduling and Control Codesign. [Doctoral Thesis (monograph),
Department of Automatic Control]. Department of Automatic Control, Lund Institute of Technology, Lund
University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/ca00ea30-30ce-4d62-9b2f-6718d09591c0


LQG-Based Real-Time Scheduling and

Control Codesign

Yang Xu

Department of Automatic Control



PhD Thesis TFRT-1119
ISBN 978-91-7753-515-7 (print)
ISBN 978-91-7753-516-4 (web)
ISSN 0280–5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2017 by Yang Xu. All rights reserved.
Printed in Sweden by Media-Tryck.
Lund 2017



Abstract

Having multiple control tasks concurrently running on a single computing platform
increases the processor utilization but degrades the control performance due to de-
lay and jitter in the loops. In scheduling and control codesign, the objective is to
optimize the combined performance of all the controllers, subject to a schedulabil-
ity constraint. The codesign procedure consists of selecting task parameters, e.g.,
periods and priorities, as well as designing the controllers so that the scheduling-
induced delay and jitter are taken into account.

In the thesis, four linear-quadratic-Gaussian (LQG) codesign methods are pro-
posed: stochastic, periodic, harmonic, and robust LQG codesign. In stochastic LQG
codesign, the delay distributions are calculated at design-time. Then LQG con-
trollers are designed assuming these delay distributions. The obtained task periods
generally give rise to infinite hyperperiods. This can be avoided by perturbing the
periods slightly in order to obtain a finite hyperperiod, yielding a periodic delay pat-
tern for the control loops. The periodicity is then accounted for by using periodic
LQG control design, resulting in a periodic sequence of feedback gains for each
controller. In harmonic LQG codesign, again the task periods are perturbed, but this
time to make the periods harmonic. The scheduling-induced delays will be constant
and standard LQG design can be applied. Finally, a robust LQG codesign method
is presented. The design is based on convex optimization and guarantees system
robustness in the presence of delay and jitter. A new rule of thumb for initial sam-
pling period assignment is proposed. We propose a jitter-aware priority and period
assignment codesign method to optimize the overall system performance.

A large evaluation of the proposed four codesign methods is performed using
the Jitterbug toolbox. All of the four methods lead to improved control performance
compared to earlier work. The harmonic scheduling and control codesign shows the
largest overall improvements.

3





Acknowledgments

I am forever grateful and thankful to my supervisors Prof. Anton Cervin and Prof.
Karl-Erik Årzén. I am lucky to have the best supervisors not only academically, but
also personally. They spend a lot of time on providing me the general directions and
technical details in my study, which improve the quality of both the research and
the thesis. Their guidance and support are invaluable in both my professional and
personal development.

I would like to thank Prof. Zebo Peng, Prof. Petru Eles, Amir Aminifar, and
Rouhollah Mahfouzi at Linköping University for their advice and discussion.

Next, I would like to thank Prof. Enrico Bini at the University of Turin for his
guidance and advice. I also would like to thank my colleagues around the world.
In particular, I thank Mitra Nasri, Morteza Mohaqeqi, and Bogdan Tanasa. Their
insights and suggestions help me to solve some difficult problems in my work.

My work is helped by working with all the research engineers at the Department,
especially Anders Nilsson and Leif Andersson.

I also would like to thank all the administrators at the Department for their
help. They are Eva Westin, Mika Nishimura, Monika Rasmusson, Cecilia Edelborg
Christensen, and Ingrid Nilsson.

I would like to thank my office mates at the Department. They are Philip Reuter-
swärd, Wilbert Samuel Rossi, Gustav Nilsson, and Manfred Dellkrantz. I have the
pleasure to work with them over the last several years. Thanks for providing me
such a good working environment.

I also want to thank Sei Zhen Khong and Michelle Chong. I will never forget
the good times with them.

I also want to thank Prof. Zonghua Gu at Zhejiang University. He seems to have
read all papers about real-time systems and always knows where I should find the
relevant literature. I also want to thank a number of my friends and colleagues: Li
Zhu, Yuling Li, and Hong Wang.

Thanks to all the colleagues at the Department of Automatic Control. All of you
make our department the greatest place to study and work.

Finally, I would like to thank my parents. They are the source of my courage,
even though they are thousands of miles away from me. They support any decision

5



I made, and never ask for feedback. Most of all, I deeply thank Yi. Thanks for her
understanding and support.

Financial Support

Research funding has been provided by the ELLIIT projects “Integrated scheduling
and synthesis of networked embedded event-based control systems” and “Co-design
of robust and secure networked embedded systems”. The author is a member of the
LCCC Linnaeus Center and the ELLIIT Excellence Center at Lund University.

6



Contents

Nomenclature 9

1. Introduction 11

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Contributions and Publications . . . . . . . . . . . . . . . . . . 16
1.4 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2. Background 20

2.1 Control Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Real-Time System Scheduling . . . . . . . . . . . . . . . . . . . 25
2.3 Jitterbug and TrueTime . . . . . . . . . . . . . . . . . . . . . . 28

3. Related Work 37

3.1 Real-Time System Scheduling . . . . . . . . . . . . . . . . . . . 37
3.2 Controller Timing . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Scheduling and Control Codesign . . . . . . . . . . . . . . . . . 39
3.4 Delay-Aware LQG Design . . . . . . . . . . . . . . . . . . . . . 43

4. Stochastic LQG Scheduling and Control Codesign 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Real-Time Control System Model . . . . . . . . . . . . . . . . . 46
4.3 Validating the Model of the Task Delay . . . . . . . . . . . . . . 47
4.4 Period Assignment . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5. Periodic LQG Scheduling and Control Codesign 58

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Task Period Perturbation . . . . . . . . . . . . . . . . . . . . . . 59
5.3 Periodic LQG Control Design . . . . . . . . . . . . . . . . . . . 61
5.4 Periodic LQG Control Evaluation . . . . . . . . . . . . . . . . . 63
5.5 Calculation of Job Response-Time Distributions . . . . . . . . . 67
5.6 Periodic–Stochastic LQG Control Design . . . . . . . . . . . . . 69

7



Contents

5.7 Periodic–Stochastic LQG Control Evaluation . . . . . . . . . . . 70
5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6. Harmonic LQG Scheduling and Control Codesign 73

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Scheduling Analysis for Harmonic Tasks . . . . . . . . . . . . . 74
6.3 Finding Harmonic Control Task Periods . . . . . . . . . . . . . 79
6.4 Codesign Procedure . . . . . . . . . . . . . . . . . . . . . . . . 84
6.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7. Robust LQG Scheduling and Control Codesign 91

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.3 Initial Sampling Period Selection . . . . . . . . . . . . . . . . . 93
7.4 Jitter-Robust LQG Control Synthesis . . . . . . . . . . . . . . . 95
7.5 Real-Time System Scheduling Codesign . . . . . . . . . . . . . 98
7.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8. Evaluation 107

8.1 A Simple Codesign Example . . . . . . . . . . . . . . . . . . . 107
8.2 Randomly Generated Codesign Examples . . . . . . . . . . . . 110

9. Conclusion 124

9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Bibliography 127

A. Stochastic LQG Design 135

B. Periodic LQG Design 138

8



Nomenclature

Notation Description

A, B,C Plant state-space matrices
Cb Best-case execution time
Cw Worst-case execution time
D Relative deadline
δ Delay
Φ, Γ Sampled plant state-space matrices
G(s) General continuous-time transfer function
h Controller sampling period
H Hyperperiod
H(z) General discrete-time transfer function
J Jitter
Jm Jitter margin
K Kalman filter gain
K(z) Discrete-time controller transfer function
L State feedback gain
Ms Maximum sensitivity
n Number of tasks
O Task offset
P(s) Continuous-time plant transfer function
Q1, Q2, Q12 LQG cost function matrices
R1, R2 LQG noise intensity matrices
Rb Best-case response time
Rw Worst-case response time
T Task period
τ Task
tr Trace
u Control signal
U Utilization

9



Nomenclature

Notation Description

v1, v2 Process and measurement noise
w Disturbance input
V Cost function
x Plant state vector
y Measurement signal
z Performance output

Abbreviation Description

CPU Central processing unit
EDF Earliest deadline first
FP Fixed priority
LQ Linear-quadratic
LQG Linear-quadratic-Gaussian
MPC Model predictive control
PID Proportional–integral–derivative
RM Rate monotonic
RTOS Real-time operating system
ZOH Zero-order hold

10



1

Introduction

1.1 Motivation

The demand for efficient resource utilization in embedded and cyber-physical sys-
tems has led to an increased focus on codesign approaches, e.g., [Årzén et al., 2000],
[Årzén et al., 2003], [Derler et al., 2013]. Scheduling and control codesign is a fun-
damental problem that emerges from the combination of real-time computing and
feedback control.

For cost-saving reasons, it is not uncommon to let multiple feedback controllers
share the same computational platform. The controllers are often implemented as
periodic tasks in an RTOS with preemptive fixed-priority scheduling. When the
controllers are scheduled on the central processing unit (CPU), preemption from
higher-priority tasks will impede the execution of the lower-priority tasks. From a
control perspective, there will be extra delay as well as jitter (variable delay) in the
corresponding control loops. The delay and jitter, in turn, degrade the closed-loop
control performance. Delays can also come from real plant delays (e.g., transporta-
tion delays) or from network communication on a distributed platform. The total
control loop delay due to implementation consists of the time it takes to sample the
plant output, compute the control signal (including preemption and other scheduling
effects), actuate the control signal, and transmit the message between the relevant
network nodes (including waiting times in the network). In this thesis, we focus on
a single CPU as the only shared resource. However, many of the ideas should also
be valid for codesign problems involving control over communication networks or
multicore systems.

Control performance can be measured in many different ways. In the frequency
domain, control performance metrics include the magnitude of the resonance peak,
the loop gain crossover frequency, and the closed-loop bandwidth. In the time do-
main, common control performance metrics are the maximum overshoot, rise time,
settling time, steady-state error, or, as in this thesis, a quadratic function of the state
variables and the control signal. The most common controller type in industry is the
proportional–integral–derivative (PID) controller. It is often tuned heuristically us-
ing experiments and tuning rules, although analytical approaches also exist. In this

11



Chapter 1. Introduction

thesis, we focus entirely on the linear-quadratic-Gaussian (LQG) controller, which
represents an optimal linear controller for a given linear plant. The plant is assumed
to be disturbed by white noise, and control performance is measured in terms of a
quadratic cost function that penalizes deviations in the plant states and the control
signal from zero, which is assumed to be the desired steady state. Compared to PID,
LQG control is applicable to a wider class of plants, including higher-order, unsta-
ble, and oscillatory plants. Moreover, the optimal controller is obtained analytically
by solving a couple of Riccati equations. On the downside, LQG control design re-
quires an accurate model of the plant to be controlled, and the resulting controller
will be of the same order as the plant model it is based on. Also, an LQG controller
is normally not designed taking robustness explicitly into account.

While LQG control is not nearly as common as PID, the basic idea of optimizing
a cost function to obtain the best control signal is also employed in model-predictive
control (MPC), which is gaining popularity in the process industry [Camacho and
Alba, 2013]. MPC commonly employs a quadratic cost function just like LQG but
also adds the possibility to specify constraints and limitations on plant states and
control signals. Being a nonlinear control strategy, on-line optimization (or table
lookup) is needed to obtain a solution at each time step. Also in contrast to LQG, a
finite time horizon is typically assumed in the optimization.

Focusing on LQG control allow us to use the same performance criterion—a
quadratic cost function—for both controller design and control performance eval-
uation in real-time control systems. The LQG theory also is readily extended to
various cases with delay and jitter in the control loop, and under certain assump-
tions the resulting control performance can also be evaluated analytically.

Delay and jitter generally have a negative impact on control performance. A
typical case is illustrated in Figure 1.1, which shows the LQG cost (i.e., the value
of the quadratic cost function) for an inverted pendulum being controlled under
delay and jitter. Without going into details on this particular example, it is seen
that the cost increases monotonically with both the delay and the jitter, and the
increase seems to be near-linear for small delay and jitter values. Depending on the
particular plant dynamics and the sampling period, the shape of the cost function
can, however, be quite complex [Eker et al., 2000]. Hence, the need to approximate
the cost function arises, in particular if some optimization-based codesign approach
is to be used. There are different ways to approximate these cost functions, e.g., as
affine or quadratic functions [Cervin et al., 2002a].

To simplify the LQG design problems in this thesis as far as possible, we will
throughout assume that sampling (i.e., reading of the plant output value) occurs
when the control task is released, and actuation (i.e., updating of the plant control
signal) happens when the task finishes. Hence, there is only output jitter and no sam-
pling jitter. There are several alternatives to this approach. If the sampling instead
takes place at the task starting time, the control delay will on average be shorter,
but the resulting sampling periods are not equidistant. If the actuation time instead
is selected as the next sampling instant then the delay is constant but it will also

12



1.1 Motivation

0.2

0.15

0.3

0.4

0.15

L
Q

G
 c

o
s
t

0.1

0.5

Jitter

0.6

0.1

Delay

0.7

0.05
0.05

0 0

Figure 1.1 LQG cost as a function of delay and jitter for an inverted pendulum.
The sampling period is 0.3.

be longer on average. There are also task-splitting techniques that could be used
to schedule the sampling, control signal calculation, actuation, and controller state
update as separate (sub)tasks [Cervin, 1999], [Balbastre et al., 2000]. Furthermore,
virtualization or isolation techniques could be used to temporally isolate the tasks,
hence reducing scheduling-induced jitter. Such techniques could be combined with
the proposed LQG design methods to yield even better performance, but that is
outside the scope of this work.

In this thesis, we propose a number of different ways to deal with scheduling-
induced delay and jitter in multitasking real-time control systems. The first method
is named stochastic LQG codesign. The core idea is to measure or analyze the de-
lays, treat them as independent random variables, and design LQG controllers that
take these delay distributions into account.

In the periodic LQG codesign method, the controller periods are tweaked so that
a finite hyperperiod is obtained. This means that the delay will vary according to a
periodic pattern, which then can be utilized to design a time-varying but periodic
LQG controller.

In the harmonic LQG codesign, the periods are again tweaked but now so that
the periods become harmonic. This then (under certain assumptions) leads to con-

13



Chapter 1. Introduction

Scheduling

Plant

Timing

Control

Performance/

Robustness

Timing
analysis Evaluation

Evaluation

Control
synthesis

Optimization

Optimization

Control
synthesis

Timing
constraint Timing

constraint

Real-time
system

Control
system

Figure 1.2 Framework for the codesign problem.

stant control delays, which are straightforward to take into account in the LQG
design.

LQG is an optimal control policy, but not necessarily robust, so the above ap-
proaches do not give any guarantees on what will happen in the worst-case schedul-
ing scenario. The jitter margin describes how much jitter can be tolerated before the
feedback loop becomes unstable, and this is used as a robustness measure. In the
robust LQG codesign method, we design an LQG-optimal controller with a jitter
margin constraint using the Youla parameterization and convex optimization and
use this as the basis for codesign.

1.2 Problem Formulation

The goal of the scheduling and control codesign is to optimize the overall control
performance, subject to a real-time system schedulability constraint. In mathemat-
ical terms, this is formulated as an optimization problem, where the objective is to
minimize the overall cost of the control loops. The variables that we can optimize
over are the task priorities, the sampling periods, and the controllers themselves.

The framework of the codesign problem is shown in Figure 1.2. The controller
is designed according to the characteristics of the plant. Both the plant and the
controller impose certain timing constraints on the scheduling. For example, the
task period selection depends on the speed of the plant, and the execution time
depends on the time complexity of the control algorithm. The scheduling affects
the timing of the real-time system. For a given plant, the control performance and

14



1.2 Problem Formulation

robustness depend on the timing and the controller. The aim of the codesign is
to optimize the control performance or robustness by simultaneously tuning the
scheduling parameters and designing the controllers.

In order to achieve optimal control performance for each task, the sampling pe-
riod, the delay and the jitter should be small, but this requirement cannot be satisfied
simultaneously for every task due to the utilization constraint in the real-time sys-
tem. Furthermore, the relation between the scheduling parameters and the timing
parameters, as well as the relation between the timing parameters and the overall
control performance, are quite complicated. On the other hand, the overall control
performance also depends on the control strategy applied.

In this thesis, the cost function of the optimization problem is the sum of the
LQG costs of all the tasks. The inequality constraint is that the sum of utilizations
of all the tasks is less than or equal to a utilization bound, Ub, where Ub ≤ 1. The
optimization can be done by selecting task parameters, i.e, periods and priorities,
and designing the controllers so that they take the timing effects caused by the
scheduling into account. The optimization problem is generically formulated as

minimize ∑
i

Vi

subject to ∑
i

Ui ≤Ub,
(1.1)

where Vi and Ui are the LQG cost and the utilization of task τi, respectively.

Summary of Assumptions and Limitations

As already mentioned above, in the thesis several modeling assumptions and limita-
tions exist. We here summarize the most important limitations. References to related
work where some of the limitations are removed are given in Chapter 3.

Fixed-priority scheduling. While fixed-priority scheduling is the most common
scheduling policy in embedded systems, there are other scheduling policies with at-
tractive properties. For example, earliest-deadline-first (EDF) scheduling can often
achieve higher utilization. EDF is however not considered in the thesis due to the
more complicated response-time analysis.

Single-CPU systems. In multiprocessor systems, there is more computational ca-
pacity and parallelism available, and hence the potential for better performance.
The codesign problem is, however, complex already with a single processor. How-
ever, both the periodic LQG and the harmonic LQG methods can be extended to
the multiprocessor case, at least if one assumes partitioned scheduling. For global
scheduling, it becomes more difficult.

Independent tasks. Only independent control tasks are considered, and it is as-
sumed that each controller is designed independently of the others. Also, for sim-
plicity, no other tasks are assumed to occupy the CPU.

15



Chapter 1. Introduction

Only output jitter. Sampling jitter is assumed to be eliminated by some hardware
or software solution that does not introduce any overhead. The output jitter is due
to the execution of the task and interference from higher-priority tasks,

LQG control. Only linear plants with Gaussian noise and quadratic cost functions
are considered. Other controller types, nonlinear systems or alternative cost criteria
are outside the scope of this work. The only exception is the robustness constraint
introduced in Chapter 7, which leads to a non-standard LQG design problem.

CPU as the only shared resource. Resources besides CPU time, such as network
bandwidth, memory, or access to shared external devices, are not considered in the
thesis.

1.3 Contributions and Publications

In this section, the contributions and publications by the author are listed. The thesis
is based on the following papers:

Chapter 4

Xu, Y., K.-E. Årzén, E. Bini, and A. Cervin (2014). “Response time driven design
of control systems”. In: Proceedings of the 19th IFAC World Congress. Cape
Town, South Africa, pp. 6098–6104.

A correct control design must account for the schedule of the control task on the
processor. Existing design techniques are based on the assumption that there is no
delay, or that the delay is constant over time. However, in practice, almost all con-
trollers have time-varying delay, hence invalidating this assumption. In this paper,
we introduce stochastic LQG codesign, in which the controller delay is modeled by
the distribution of the task response time. We show, via simulation, that our method
can reduce the control cost compared to the state-of-art methods.

Y. Xu formulated the method for assigning optimal sampling period for real-
time control tasks under fixed priority scheduling. Further, Y. Xu implemented the
codesign method and evaluated it in MATLAB simulations. K.-E. Årzén, E. Bini,
and A. Cervin suggested the topic, contributed with feedback on the research and
wrote parts of the manuscript. Furthermore, E. Bini provided Figure 4.2.

Chapter 5

Xu, Y., K.-E. Årzén, A. Cervin, E. Bini, and B. Tanasa (2015). “Exploiting job
response-time information in the co-design of real-time control systems”. In:
Proceedings of the 21st International Conference on Embedded and Real-Time

Computing Systems and Applications (RTCSA). Hong Kong, China, pp. 247–
256.

16



1.3 Contributions and Publications

In this paper, we exploit the periodicity of the task response time, which corresponds
to a periodic delay pattern in the feedback control loop. Perturbed periods are used
as a tool to find a finite hyperperiod. We present an analytical procedure to design a
periodic LQG controller for tasks with fixed execution times as well as a numerical
solution to the periodic–stochastic LQG problem for tasks with variable execution
times.

Y. Xu, K.-E. Årzén, and A. Cervin proposed the periodic LQG and periodic–
stochastic LQG design methods, and Y. Xu implemented and evaluated them in
MATLAB simulations. K.-E. Årzén, and A. Cervin supervised the research and as-
sisted in writing the manuscript. E. Bini proposed the sampling period perturbation
method and wrote the corresponding part in the paper. B. Tanasa provided a method
to calculate response-time probability distribution and also provided Figure 5.3.

Chapter 6

Xu, Y., A. Cervin, and K.-E. Årzén (2016a). “Harmonic scheduling and control co-
design”. In: Proceedings of the 22nd International Conference on Embedded

and Real-Time Computing Systems and Applications (RTCSA). Daegu, South
Korea, pp. 182–187.

Xu, Y., A. Cervin, and K.-E. Årzén (2016b). “LQG-based scheduling and control
co-design using harmonic task periods”. Technical Report TFRT-7646. Depart-
ment of Automatic Control, Lund University.

The technical report is an extended version of the RTCSA conference paper. In this
work, we rely on the fact that harmonic task scheduling has many attractive prop-
erties, including a utilization bound of 100% under rate-monotonic scheduling, and
reduced jitter. At the same time, it places severe constraints on the task period as-
signment for the applications. We explore the use of harmonic task scheduling for
applications with multiple feedback control tasks and present two algorithms for
finding harmonic task periods: one that minimizes the distance from an initial set
of non-harmonic periods and one that finds all feasible harmonic periods within
a given set of ranges. We apply the algorithms in a scheduling and control code-
sign procedure, where the goal is to optimize the total performance of a number of
control tasks that share a common computing platform.

Y. Xu developed the two methods of harmonic period assignment, implemented
them, and performed the simulations. A. Cervin and K.-E. Årzén suggested the
research topic, supervised the research and wrote parts of the manuscript.

Chapter 7

Xu, Y., A. Cervin, and K.-E. Årzén (2017). “Jitter-robust LQG control and real-
time scheduling co-design”. In submission to the 2018 American Control Con-
ference.

Standard LQG control design does not give any guarantees on robustness, while
robust control design methods often do not handle controller timing uncertainty.

17



Chapter 1. Introduction

In this paper, we propose a sampled-data controller synthesis method that mini-
mizes an LQG cost function subject to a jitter margin constraint. By robustifying
the LQG controller we are able to retain good stability margins under delay and
jitter, while only paying a small price in terms of nominal performance. We also
present a codesign procedure that assigns optimal priorities and sampling periods to
a set of controllers based on their performance characteristics and jitter sensitivity.

The jitter-robust LQG design method was developed by A. Cervin and Y. Xu.
The codesign procedure was proposed and evaluated in simulations by Y. Xu.
A. Cervin and K.-E. Årzén suggested the research topic, supervised the research
and wrote parts of the manuscript.

Additional Publications

The following publications are related to, but not included in, the thesis:

Mohaqeqi, M., M. Nasri, Y. Xu, A. Cervin, and K.-E. Årzén (2016). “On the prob-
lem of finding optimal harmonic periods”. In: Proceedings of the 24th Confer-

ence on Real-Time and Network Systems (RTNS). Brest, France, pp. 171–180.

Mohaqeqi, M., M. Nasri, Y. Xu, A. Cervin, and K.-E. Årzén (2017). “Optimal har-
monic period assignment: complexity results and approximation algorithms”. In
submission to Real-Time Systems.

The papers above analyze the complexity of harmonic task scheduling and derive
bounds on the overall cost degradation when harmonizing a non-harmonic task set.

Xu, Y., K.-E. Årzén, E. Bini, and A. Cervin (2017). “LQG-based control and
scheduling co-design”. In: Proceedings of the 20th IFAC World Congress.
Toulouse, France.

This paper presents a summary of the different codesign methods in the thesis, to-
gether with an evaluation on randomized examples. It is superseded by the evalua-
tions in Chapter 8.

1.4 Outline of Thesis

This thesis begins with a general description of LQG design, real-time system
scheduling, and the MATLAB toolboxes Jitterbug and TrueTime in Chapter 2. Fol-
lowing an explanation of the background, Chapter 3 presents the related work on
real-time system scheduling, control systems, and their codesign.

Stochastic LQG codesign is developed in Chapter 4. The delay distributions are
obtained at design-time using schedule simulation and then stochastic LQG control
design is employed, i.e., the LQG controllers are designed assuming these delay
distributions. The task periods obtained generally give rise to infinite hyperperiods.

18



1.4 Outline of Thesis

Periodic LQG codesign is presented in Chapter 5. The idea is to perturb the
periods slightly in order to obtain a finite hyperperiod, which will correspond to a
periodic delay pattern for the control loops. This periodicity is then explicitly ac-
counted for by using periodic LQG control design, resulting in a periodic sequence
of feedback gains for each controller.

Harmonic LQG codesign is presented in Chapter 6. Again the task periods are
perturbed but this time to make the periods harmonic. The scheduling-induced de-
lays will be constant and again ordinary LQG design with constant delay can be
applied.

Robust LQG codesign is proposed in Chapter 7. A new rule of thumb for initial
sampling period assignment is proposed, and the robust LQG control design prob-
lem and its solution are described. Then we give a jitter-aware priority and period
assignment codesign method to optimize the overall system performance.

Extensive evaluations are presented in Chapter 8. Finally, Chapter 9 presents a
summary of the thesis, and future work is discussed.

19



2

Background

2.1 Control Design

Feedback controllers are ubiquitous in engineering systems. They can be tuned ex-
perimentally or designed based on a mathematical model of the plant. Control per-
formance can be evaluated using, for instance, a step response test, where the rise
time, the maximum overshoot, the settling time, and the steady-state error are mea-
sured. Another approach is to define a cost function for the control loop and evaluate
its value for certain disturbances or setpoint changes. In this thesis, we use the LQG
cost, which corresponds to the stationary weighted covariance of the plant state and
the control signal when white noise disturbances are acting on the system.

In control system implementation, there are several factors that affect the control
performance, e.g., the controller type, the controller parameters (alternatively the
design parameters), the sampling period, whether some information about the delay
and jitter is available at design time so that the controller can be designed for this,
whether some information about the delay and jitter is available at run-time so that
the controller can online compensate for this, the plant dynamic, the noise acting
on the closed-loop system, etc. In this thesis, the focus is how delays and jitter in
the delays influence the LQG control performance. A major source of the delays
and jitter is the scheduling-induced interference among the tasks which implements
the controllers. One approach to minimize this performance degradation is to study
control and scheduling codesign, i.e., how we should design the controllers so that
they can take the scheduling-induced timing variations into account and how we can
select the scheduling parameters to minimize these effects.

LQG Problem Formulation

The problem formulation and the solution of the LQG problem for sampled-data
systems are given in [Åström and Wittenmark, 2013]. The plant is given by

ẋ(t) = Ax(t)+Bu(t)+ v1c(t)

y(t) =Cx(t)+ v2c(t)
(2.1)

20



2.1 Control Design

where vc1 and vc2 are uncorrelated zero-mean continuous-time white-noise pro-
cesses with intensities R1c and R2c, respectively. (A, B) is assumed controllable and
(A,C) is assumed observable. The goal is to design a LQG controller that minimizes
the expected cost

V = lim
T→∞

1
T

E
∫ T

0

[

x(t)
u(t)

]T

Qc

[

x(t)
u(t)

]

dt

= lim
T→∞

1
T

E
∫ T

0

(

xT (t)Q1cx(t)+2xT (t)Q12cu(t)+uT (t)Q2cu(t)
)

dt.

(2.2)

The cost matrix Qc is chosen as a weighted sum of the states and the control
signal. A large weight gives a small variation in the corresponding state or control
signal. The noise represented by R1c and R2c are unrelated. R2c represents the mea-
surement noise and can be found in specifications of the sensors or experimentally.
A large Q1c or a small Q2c lead to a fast state feedback. Similarly, a large R1c or a
small R2c lead to a fast Kalman filter. In the thesis, the choice of these four matrices
affects the control performance and the performance improvement, so the matrices
are taken into account in the control design and the optimization of the real-time
system scheduling.

Sampling of the LQG problem

To design a discrete-time LQG controller that can be implemented as a task in a
real-time system, we need to sample the LQG problem formulation. First we zero-
order-hold (ZOH) sample the continuous-time LTI system in (2.1) with noise. For
details, see [Åström, 1970]. Suppose that the control signal u(t) is constant over the
interval [t0, t f ] and that the initial state x(t0) is known. The state at time t f is then
given by

x
(

t f

)

= Φ
(

t f , t0
)

x(t0)+Γ
(

t f , t0
)

u(t0)+ v1(t f , t0) (2.3)

where

Φ
(

t f , t0
)

= eA(t f−t0)

Γ
(

t f , t0
)

=
∫ t f−t0

0
eAsBds

(2.4)

and v1(t f , t0) is a mean-zero Gaussian random variable with variance

R1(t f , t0) =
∫ t f−t0

0
eAsR1ceAT sds. (2.5)

Next we sample the running cost (cf. (2.2))

V
(

t f , t0
)

=
∫ t f

t0

(

xT (t)Q1cx(t)+2xT (t)Q12cu(t)+uT (t)Q2cu(t)
)

dt (2.6)

21



Chapter 2. Background

over the same time interval, yielding

V
(

t f , t0
)

= xT (t0)Q1
(

t f , t0
)

xT (t0)+2xT (t0)Q12
(

t f , t0
)

uT (t0)

+uT (t0)Q2
(

t f , t0
)

uT (t0)+Vconst(t f , t0), (2.7)

where

Q1
(

t f , t0
)

=
∫ t f

t0

ΦT (s, t0)Q1cΦ(s, t0)ds

Q12
(

t f , t0
)

=
∫ t f

t0

ΦT (s, t0)(Q1cΓ(s, t0)+Q12c)ds

Q2
(

t f , t0
)

=
∫ t f

t0

(

ΓT (s, t0)Q1cΓ(s, t0)+2Γ(s, t0)Q12c +Q2c

)

ds

Vconst(t f , t0) = tr
(

Q1c

∫ t f−t0

0

(

∫ s

0
eAs′R1ceAT s′ds′

)

ds

)

.

(2.8)

Here, tr denotes matrix trace. The term Vconst represents the cost due to intersample
noise and does not depend on the initial state or the control signal.

Sampling of a System with Constant Delay

A basic case that we will consider in the thesis is sampled-data LQG control of a
system with a constant input delay. We denote the sampling period by h and the
constant delay by δ . For simplicity we here assume that 0≤ δ ≤ h, but the method
is easily extended to longer delays. Dividing each sampling interval [kh, kh+ h],
into two parts, [kh, kh+ δ ] and [kh+ δ , kh+ h], and applying (2.3)–(2.4) yield the
sampled state-space model

x[k+1] = Φx[k]+Γ1u[k−1]+Γ0u[k]+ v1[k], (2.9)

where
Φ = Φ(h, 0)

Γ1 = Φ(h−δ , 0)Γ(δ , 0)

Γ0 = Γ(h−δ , 0),

(2.10)

and where v1 is discrete-time Gaussian white noise with variance R1 = R1(h). It is
seen that the previous control signal, u[k− 1], affects the new state. We introduce
an augmented state xe in the discrete-time model that contains the original state and
the previous control signal, namely,

xe[k] =

[

x[k]
u[k−1]

]

. (2.11)

This gives the extended state-space model

xe[k+1] = Φexe[k]+Γeu[k]+Γ′ev1[k]

y[k] =Cexe[k]+ v2[k],
(2.12)

22



2.1 Control Design

with extended matrices

Φe =

[

Φ Γ1

0 0

]

Γe =

[

Γ0

I

]

Γ′e =

[

I

0

]

Ce =
[

C 0
]

.

(2.13)

Next we sample the cost function when there is an input delay. The running cost
from time kh to kh+h is given by

V ((k+1)h, kh) =
∫ (k+1)h

kh

(

xT (t)Q1cx(t)+2xT (t)Q12cu(t)+uT (t)Q2cu(t)
)

dt.

(2.14)
The cost function (2.14) is sampled as

V [k] = xT
e [k]Q1exe[k]+2xT

e [k]Q12eu[k]+uT [k]Q2eu[k]+Vconst (2.15)

where

Q1e =

[

Q1(δ , 0) Q12(δ , 0)
QT

12(δ , 0) Q2(δ , 0)

]

+

[

Φ(δ , 0)
Γ(δ , 0)

]T [
Q1(h−δ , 0) Q12(h−δ , 0)
QT

12(h−δ , 0) Q2(h−δ , 0)

][

Φ(δ , 0)
Γ(δ , 0)

]

Q12e =

[

Φ(δ , 0)
Γ(δ , 0)

]T

Q12(h−δ , 0)

Q2e = Q2(h−δ , 0)

Vconst =Vconst(h).

(2.16)

With the sampled state-space equations and cost function of the time-delay system,
one can use standard discrete-time LQG design to find the optimal controller.

Optimal State Feedback

For the LQG cost in (2.2), assuming that the augmented state of the plant xe is
available for feedback, the optimal control strategy is

u[k] =−Lxe[k] (2.17)

where
L =

(

ΓT
e SΓe +Q2e

)−1 (
ΓT

e SΦe +Q12e

)

(2.18)

and S is the solution to the algebraic Riccati equation

S = ΦT
e SΦ+Q1e−

(

ΦT SΓ+Q12e

)(

ΓT
e SΓe +Q2e

)−1 (
ΓT

e SΦe +Q12e

)

. (2.19)

23



Chapter 2. Background

More details on the Riccati equation can be found in, e.g., [Åström and Wittenmark,
2013].

Optimal State Estimation

Since there is measurement noise and the full plant state xe is generally not directly
measurable, we must design a Kalman filter to produce the estimated state x̂e. The
aim of the filter is to minimize the covariance of the steady-state estimation error

lim
k→∞

P[k] = lim
k→∞

E
(

xe[k]− x̂e[k]
)(

xe[k]− x̂e[k]
)T

. (2.20)

The optimal estimator contains the prediction step

x̂e[k+1 | k] = Φex̂e[k | k−1]+Γeu[k]+K
(

y[k]−Cex̂e[k | k−1]
)

(2.21)

and the measurement update

x̂e[k | k] = x̂e[k | k−1]+K f

(

y[k]−Cex̂e[k | k−1]
)

(2.22)

where
K =

(

ΦePCT
e +R12e

)(

CePCT
e +R2e

)−1

K f = PCT
e

(

CePCT
e +R2e

)−1
(2.23)

and P is the solution to the algebraic Riccatic equation

P = ΦePΦT
e −

(

ΦePCT
e +R12e

)(

CePCT
e +R2e

)−1 (
ΦePCT

e +R12e

)T
+R1e. (2.24)

Since we have an infinite-horizon LQG formulation, we only consider the sta-
tionary solutions to the Riccati equations (2.19) and (2.24), i.e., there are no time-
varying controller and estimator gains. In Chapter 5 we will, however, have a peri-
odic LQG control design, where the solutions to the Riccati equations are different
from period to period, but for a specific period within the hyperperiod, the solution
is stationary.

Optimal Output Feedback—LQG

According to the separation theorem, an LQG design problem can be solved by
independently designing an optimal state feedback controller and an optimal esti-
mator. Therefore, the LQG controller is

u[k] =−Lx̂e[k | k] (2.25)

where L is given by the optimal feedback gain (2.18), and x̂e[k | k] is given by the
optimal estimator (2.21)–(2.22).

The above LQG design method is for a sampled-data system with a constant
delay. For a stochastic control delay, which is given in the form of probability mass

24



2.2 Real-Time System Scheduling

function, the S in the optimal state feedback can be calculated by iteratively solving
a stochastic Riccati equation [Nilsson, 1998]. The stochastic LQG design will be
presented in Chapter 4 and Appendix A.

If the delay appears in a deterministically repeated pattern, we can introduce
an augmented state that contains all state variables and all control signals over the
periods. The standard optimal state feedback and optimal state estimation then are
applied to design a periodic LQG controller. The details are given in Chapter 5 and
Appendix B.

2.2 Real-Time System Scheduling

Scheduling Policies

In a real-time system, multiple tasks execute on one or multiple processors, where
the number of the processors is less than the number of tasks. A scheduling pol-
icy is needed to decide which task, in the case of a uni-processor, or tasks in the
case of multiple processors, to execute at a certain time. There are two widely used
scheduling policies:

• Off-line scheduling, also known as static scheduling or clock-driven schedul-
ing. Here the scheduling decisions are made off-line and stored in a calendar
or table for later use at run-time. The advantage is that all the behaviors of all
the jobs in the real-time system are fixed and known, and the complexity of
the scheduling algorithm is not important. The disadvantage is that there is
no flexibility if the system is non-deterministic.

• On-line scheduling, also known as dynamic scheduling or priority-driven
scheduling. Here the scheduling is done at run-time based on information
about the arrived jobs, but not on information about future jobs. On-line
scheduling is more effective when the parameters of jobs are varying, but
there is a reduced ability to make the best use of the system resources. The
two most common on-line scheduling algorithms are:

– Static-priority scheduling, also known as fixed-priority scheduling. All
jobs of a task have a static and fixed priority. Two priority assignment
methods are rate-monotonic (RM) and deadline-monotonic (DM) prior-
ity assignment.

– Dynamic-priority scheduling, also known as deadline-driven schedul-
ing. Compared to static-priority scheduling, different jobs of a task can
be assigned different priorities. Three common scheduling algorithms
are earliest deadline first (EDF), latest release time (LRT), and least
laxity first (LLF).

25



Chapter 2. Background

Scheduling algorithms can be also characterized by whether they are preemptive
or non-preemptive. In preemptive scheduling, the running job can be interrupted by
a higher priority job and in non-preemptive scheduling, the running job cannot be
interrupted until it finishes or voluntarily yields the processor.

Fixed-Priority Scheduling

Fixed-priority scheduling is the most widely used scheduling policy in industry. For
example, in the embedded operating system standard OSEK, only fixed-priority
scheduling is supported. To introduce fixed-priority scheduling, we first make some
basic definitions. A real-time system, consisting of n independent tasks running on
a single processor under preemptive fixed-priority scheduling, is considered. The
i th task, denoted by τi, is characterized by the following parameters:

• The worst-case execution time Cw
i is the largest amount of time it takes to

execute a job of task τi.

• The best-case execution time Cb
i is the smallest amount of time it takes to

execute a job of task τi.

• The period Ti is the constant time interval between two consecutive releases
of task τi.

• The offset Oi is the instant at which the first job of task τi is released. If no
offset is specified, then Oi = 0 is assumed.

• The relative deadline Di of task τi is the amount of time following the task
release after which its execution has to be completed.

• The task priority is implicitly given by the task index so that τi has higher
priority than τi+1, unless otherwise stated.

Furthermore, the following task parameters are defined:

• The response time Ri is the time interval between the release time and the
finish time of task τi. Since Ri varies over time depending on the interfer-
ence from higher priority tasks, we represent it by a random variable with
cumulative distribution function Fi : [0, ∞)→ [0, 1]. The value Fi(r) is the
probability P{Ri ≤ r} that any job released by τi has response time smaller
than or equal to r. The distribution Fi depends on the parameters of the tasks
{τ1, τ2, . . . , τi}, since they are the only ones which can affect the response
time of τi. The longest response time is the worst-case response time Rw

i , and
the shortest response time is the best-case response time Rb

i .

• The output jitter Ji, is the difference between the worst-case and best-case
response times; Ji = Rw

i −Rb
i . It represents the variation in time for the update

of the control signal in each period.

26



2.2 Real-Time System Scheduling

• The start latency Si is the time interval between the release time and the start
time of task τi.

• The task utilization Ui = Cw
i /Ti measures the worst-case fraction of compu-

tational resources required by the task. The total utilization of all tasks is
U = ∑n

i=1 Ui, which should be less than or equal to 1 for a uni-processor.

• The hyperperiod H is the least common multiplier of all the task periods.

Each control task implements a controller, for which we define the following
timing parameters:

• The sampling interval hi is the time difference between the sampling op-
erations of task τi. We assume that sampling jitter has been eliminated by
enforcing sampling at the job release time; hence, hi = Ti.

• The delay δi is the time interval between the sampling operation and the out-
put operation of task i. We assume that the output operation is performed
when the job finishes; hence, δi = Ri.

In this thesis, we allow the set of real numbers to represent all time values,
including the execution time and the sampling period.

Response-Time Analysis. For a control task, the delay normally varies from job
to job. The longest delay and the shortest delay are equal to the worst-case response
time and the best-case response time, respectively.

Assuming that Di ≤ Ti for all tasks and that all deadlines can be met, the worst-
case response time Rw

i of task τi can be found by the following iterative procedure:

Rw
i [0] =Cw

i

Rw
i [l +1] =Cw

i +∑
j<i

⌈

Rw
i [l]

h j

⌉

Cw
j , l = 0, 1, · · · (2.26)

The procedure is stopped when the same value is found for two successive iterations
of l [Joseph and Pandya, 1986]. Similarly, the best-case response time Rb

i of task τi

can be found by the following iterative procedure:

Rb
i [0] =Cb

i

Rb
i [l +1] =Cb

i +∑
j<i

⌊

Rb
i (l)

h j

⌋

Cb
j , l = 0, 1, · · · (2.27)

The procedure is stopped when the same value is found for two successive iterations
of l [Redell and Sanfridson, 2002].

27



Chapter 2. Background

Schedulability Analysis. A schedulability test for fixed-priority scheduling with
rate-monotonic priority assignment was given in [Liu and Layland, 1973] as fol-
lows. A system of n independent, preemptive periodic tasks with deadlines equal to
periods can be feasibly scheduled on one processor according to RM scheduling if
the total utilization satisfies

U ≤ n
(

2
1
n −1

)

. (2.28)

This is a sufficient, but not necessary, condition. The hyperbolic bound [Bini et al.,
2003] is tighter than the bound in [Liu and Layland, 1973]. Let Γ = {τ1, τ2, · · · , τn}
be a set of n independent, preemptive periodic tasks, where each task τi is charac-
terized by a processor utilization Ui. Then, Γ is schedulable with the RM algorithm
if

n

∏
i=1

(Ui +1)≤ 2. (2.29)

This however requires knowledge of the individual task utilizations.
An exact schedulability analysis can be carried out by computing the worst-

case response time of each task and comparing the value with the relative deadline.
If Rw

i ≤ Di for each task, then the task set is schedulable.

Harmonic Scheduling. Harmonic RM scheduling has some good properties. A
task set is harmonic if for any i < j, Tj is an integer multiple of Ti. RM is optimal for
harmonic periodic systems, i.e., a system of harmonic periodic, preemptive tasks,
whose deadlines are at least their periods, is schedulable on one processor using
RM if U < 1. More details on harmonic task scheduling are given in Chapter 6.

2.3 Jitterbug and TrueTime

In this thesis, two MATLAB-based toolboxes, Jitterbug and TrueTime, are used
frequently for analysis, synthesis, and control performance evaluation, [Cervin et
al., 2003]. Jitterbug is used for LQG controller design and LQG cost evaluation,
while TrueTime is used to simulate and evaluate the control system performance in
a real-time kernel environment.

Jitterbug

Jitterbug is an LQG control system analysis and synthesis toolbox [Cervin and Lin-
coln, 2003]. On the one hand, it is used to design a discrete-time LQG controller
for a continuous-time plant with continuous-time LQG cost and with constant or
random delay. On the other hand, for any given plant, controller, and timing in one
execution period, the LQG cost can be calculated in Jitterbug.

28



2.3 Jitterbug and TrueTime

H3(z) G(s) H1(z)

H2(z)

u y

1δ1

2δ2

3

H1(z)

H2(z)

H3(z)

Figure 2.1 A Jitterbug model of a computer-controlled system: a signal model and
a timing model.

For the plant (2.1) and the cost function (2.2), Jitterbug can be used to design a
LQG controller. If the plant is given on transfer function or zero-pole-gain form

y0(t) = G(p)(u(t−δ )+ v1c(t))

y[k] = y0[k]+ v2[k]
(2.30)

where G(p) is a strictly proper transfer function, and the cost of the system is de-
fined as

V = lim
T→∞

1
T

∫ T

0

[

y0(t)
u(t)

]T

Qc

[

y0(t)
u(t)

]

dt, (2.31)

this problem can be reformulated to the problem of (2.1) and (2.2).
If the delay δ is constant, the LQG controller is designed by solving an algebraic

Riccati equation. If the delay δ is given in the form of delay distribution, the LQG
controller is determined by iteratively solving a stochastic Riccati equation.

LQG Cost Calculation. In Jitterbug, a control system is described by two parallel
models: a signal model and a timing model. The signal model is given by a number
of connected, linear, continuous-time or discrete-time systems. The timing model is
given by a number of timing nodes and describes when the different discrete-time
systems are updated during the sampling period.

A Jitterbug model of a computer-controlled system is shown in Figure 2.1. The
figure on the left is the signal model, which consists of a continuous-time plant
G(s), a discrete-time sensor H1(z), a discrete-time controller H2(z), and a discrete-
time actuator H3(z). The sensor is a periodic sampler. All of the continuous-time and
discrete-time linear systems are driven by white noise. The cost for each system is
defined as a stationary, continuous-time quadratic cost function. The total cost of the
feedback loop is summed over all the costs of the continuous-time and discrete-time
systems.

The figure on the right in Figure 2.1 is the timing model, which consists of a
number of timing nodes. Each node with a time delay is associated with zero or
more discrete-time systems in the signal model. In this example, at the beginning

29



Chapter 2. Background

of each period, H1(z) is executed. Then there is a random delay δ1 before H2(z) is
executed, and there is another random delay δ2 before H3(z) is executed. The delays
can, e.g., model scheduling delays, computational delays, or network transmission
delays. The model in Figure 2.1 could model a networked control loop where δ1

corresponds to the delay between the sensor node and the controller node and δ2

corresponds to the delay between the controller node and the actuator node. Alter-
natively, it could model a control task with δ1 being the delay between the sampling
at the job arrival time and the start of the controller execution and δ2 corresponds to
the computational delay.

The time delay can be defined as a time-independent or time-dependent delay.
For a time-independent delay, it is described by a constant or by a probability den-
sity function

Pδ =
[

Pδ (0) Pδ (1) Pδ (2) · · ·
]

(2.32)

where Pδ (k) is the probability of a delay of kδ0 seconds. The time grain δ0 is a con-
stant that is specified for the whole model. A delay distribution may be dependent
on the time since the most recent execution of the first node in the timing model.
The delay is then described by a matrix

Pδ =







Pδ (0,0) Pδ (0,1) · · ·
Pδ (1,0) Pδ (1,1) · · ·

...
...

. . .






(2.33)

where Pδ ( j,k) is the probability of a delay of kδ0 seconds given a previous total
delay of jδ0 seconds.

In order to calculate the LQG cost, timing nodes and systems have to be defined
properly. In MATLAB, each timing node is defined by

N = addtimingnode(N, nodeid, Ptau, nextnode);

where N is the system’s name, nodeid is the positive integer ID of the timing node,
Ptau is the constant or random variable delay, and nextnode is the ID of the next
node after the delay in the current node has elapsed.

Each continuous-time plant, or discrete-time sampler and controller is defined
by

N = addcontsys(N, sysid, sys, inputid, Qc, R1c, R2);

N = adddiscsys(N, sysid, sys, inputid, nodeid);

where sysid is the name of the added system, sys is the state-space representation
or transfer function of the added system. The output of the inputid system is the
input of the added system. Qc is the cost matrix, R1c is the input noise covariance
matrix, R2 is the discrete-time measurement noise covariance matrix, and nodeid

is the timing node where the current discrete-time system is executed.
Finally, the commands

30



2.3 Jitterbug and TrueTime

N = calcdynamics(N);

V = calccost(N);

are used to calculate the LQG cost.

Advantages and Disadvantages. Jitterbug has several advantages:

• Jitterbug provides an analytical LQG performance computation. For a given
plant and a given controller in continuous-time or discrete-time, the stationary
covariance matrix and the quadratic cost can be calculated.

• It is fast to evaluate the cost for a wide range of parameters, e.g., different
periods, delays, and jitter. The delay can be given as a constant or a random
variable.

• If the obtained cost is finite, then stability (in the mean-square sense) is guar-
anteed.

There are, however, also some disadvantages of Jitterbug:

• It only supports simplistic timing models. The delays are independent and the
delay distributions may not change over time. It cannot handle dependencies
between the periods.

• It only supports linear systems and quadratic costs.

• It is only a statistical analysis. The calculated cost is an expected value. All
results only hold in a mean-value sense, so it does not provide any worst-
case guarantees. Timing scenarios with probability zero are disregarded by
the analysis. For instance, cases with switching-induced instability cannot be
verified using Jitterbug.

Use of Jitterbug. In this thesis Jitterbug is used for two purposes:

• To derive the LQG controllers, i.e., to solve the corresponding Riccati equa-
tions either in the normal case, i.e., with constant delay, the stochastic case,
or the periodic case.

• To evaluate the LQG costs analytically in the cases where Jitterbug is appli-
cable, e.g., when the delays are constant or can be reasonably approximated
by independent random variables.

TrueTime

TrueTime is a MATLAB/Simulink-based simulator, which facilitates simulation
of controller task execution in real-time kernels, network transmissions, and
continuous-time plant dynamics [Cervin et al., 2016]. TrueTime can be used to sim-
ulate real-time scheduling for control applications, and hence, for different schedul-
ing settings, the control performance of a control system can be evaluated.

31



Chapter 2. Background

Control Performance Evaluation. In a real-time control system, the TrueTime
kernel block, based on Simulink, can be used to simulate a real-time operating sys-
tem. The following activities are supported by the TrueTime kernel:

• Assigning the scheduling method and the priority assignment method. True-
time supports the following methods:

– Static-priority scheduling: fixed priority, rate monotonic, deadline
monotonic

– Dynamic-priority scheduling: earliest deadline first

However, it is also possible to implement user-defined scheduling methods.

• Assigning task parameters, e.g., task period, task offset, and task execution
time.

• Specifying the overhead time for a full context switch.

The tasks in the real-time system are added in the initialization script of the True-
Time kernel.

If the output of the plant is assumed to be sampled at the job start time, a periodic
task is created by the MATLAB command

N = ttCreatePeriodicTask(name,offset,period,codeFcn,data);

The first three arguments are the name, the offset, and the period of the created
task. codeFcn is a user-defined MATLAB function, which models the control algo-
rithm running in the created task. data contains the parameters used in codeFcn.
A typical code function could be

function [exectime, data] = controller(segment, data)

switch segment,

case 1,

y = ttAnalogIn(data.nbr);

data.u = data.c*data.x + data.d*y;

data.x = data.a*data.x + data.b*y;

exectime = data.exectime;

case 2,

ttAnalogOut(data.nbr, data.u);

exectime = -1;

end

In segment 1, the control signal is computed and the controller state is updated.
This takes exectime long time, where exectime can be an arbitrary deterministic
or random variable. In segment 2, the new control signal is sent to analog out port.
This takes zero time (indicated by −1).

32



2.3 Jitterbug and TrueTime

If the output of the plant is assumed to be sampled at the job release time, an
interrupt handler, a periodic timer, and a mailbox are needed to create a task. Using
this approach, a periodic task is implemented using a periodic timer, an associated
interrupt handler, and a mailbox. The timer invokes the interrupt handler periodi-
cally and the interrupt handler then samples the process, sends the sampled value to
the mailbox, and then triggers a new job of a task where the actual controller code
is executed. In the first segment of the code function of the controller task, the new
sampled data is retrieved by reading from the mailbox. A simple example is

ttCreateInterruptHandler(nametimer_handler,priority, ...

samplercodeFcn,data);

ttCreatePeriodicTimer(nametimer,offset,period, ...

nametimer_handler);

ttCreateMailbox(nameMailbox);

ttCreateTask(name,deadline,codeFcn,data);

The control algorithm code is similar to controller(segment,data) with the
exception of the first segment where the reading from the mailbox is performed.
The code function associated with the interrupt handler could look like

function [exectime, data] = samplercode(segment, data)

switch segment,

case 1,

y = ttAnalogIn(data.nbr);

ttTryPost(data.nameMailbox, y);

ttCreateJob(data.name);

exectime = 0;

case 2,

exectime = -1;

end

In segment 1, the code reads the process output, puts a sample in the mailbox, and
triggers a job of the controller task. This is assumed to take zero execution time,
modeling that this is in reality is performed in separate hardware.

Real-Time System Timing Analysis. TrueTime can also be used to do evaluate re-
sponse times by simulation. Response time, release latency, start latency, execution
time, and context switch instances can be logged for each job of each task during
the simulation. The distributions of those data are also available. This information
can then be used for schedulability analysis or worst-case response time analysis.
Hence, in addition to simulating control system performance, TrueTime can be used
as a pure scheduling simulator.

The timing information can be created by

ttCreateLog(taskname, logtype, variable, size);

33



Chapter 2. Background

TrueTime supports five pre-defined log types corresponding to the response time,
release latency, start latency, execution time, and context switch instances. The vari-
able logtype can also be extended to user-defined logs by using the primitives
ttLogStart, ttLogStop, and ttLogNow inside the code functions.

Real-Time System Implementation. TrueTime supports A/D and D/A connec-
tion between the kernel and simulated or physical systems using the primitives
ttAnalogIn and ttAnalogOut. If measures are taken to ensure that the Simulink
simulations are performed in real-time and these primitives are attached to real A/D
and D/A converters then TrueTime can also be used for real-time system implemen-
tation.

Advantages and Disadvantages. TrueTime has several advantages, e.g.:

• It can be used to investigate the true, timely behavior of time or event-
triggered control loops, subject to sampling jitter, input-output latency and
jitter, and lost samples, caused by real-time scheduling and networking ef-
fects.

• It supports a variety of different scheduling methods.

• It can also be used as a pure scheduling simulator.

However, it also has some disadvantages, e.g.:

• The abstraction level is low. Modeling a real-time system in TrueTime has
close to the same complexity as implementing the system using real software
and hardware.

• It is developed as a research tool rather than as a tool for system developers
and it is based on MATLAB/Simulink.

• Evaluating the LQG cost numerically using TrueTime simulation can be time-
consuming. For the example below, it takes about 1000 seconds to get a con-
verged LQG cost, as shown in Figure 2.3.

LQG Cost Evaluation Example

This example presents a simple LQG controller for an inverted pendulum where
the LQG control cost is evaluated in both Jitterbug and TrueTime. The state-space
model of the inverted pendulum is

ẋ(t) =

[

0 1
1 0

]

x(t)+

[

1
0

]

u(t−δ )+ v1c(t)

y[k] =
[

0 1
]

x[k]+ v2[k].

(2.34)

34



2.3 Jitterbug and TrueTime

TrueTime Kernel

A/D

D/A

Schedule

Transfer Fcn

1

s  +-12

Scope

R_{1c}(1,1)

R_2

Q_{2c}

-K-

Q_{1c}(2,2)

-K-

Product2

Product1

Integrator

1
s

Divide

Clock

Figure 2.2 LQG cost evaluation model in TrueTime

The sampling period is set to h = 0.3 and the constant delay in every period is
δ = 0.15. The cost matrix is

Qc =

[

Q1c Q12c

QT
12c Q2c

]

=





0 0 0
0 1 0
0 0 0.01



 , (2.35)

where the input noise covariance matrix is

R1c =

[

1 0
0 0

]

(2.36)

and the sampled measurement noise covariance matrix is R2 = 0.01. The discrete-
time LQG controller can be designed through the lqgdesign command in Jitter-
bug. The LQG controller is

K(z) =
−15.532z2(z−0.675)
z(z2 +0.618z+0.157)

.

Calculating the LQG cost in Jitterbug gives the value V = 0.432.
The corresponding TrueTime model is shown in Figure 2.2. The TrueTime ker-

nel is used to schedule only one task, which implements the LQG controller. The
controller is the same as the LQG controller in Jitterbug evaluation, namely K(z).
The simulated output signal y0(t) and control signal u(t) are squared. The square
of the output signal is multiplied by Q1c(2,2) and the square of the control signal
is multiplied by Q2c. Then the square of the output signal and the weighted control
signal are summed and the sum is integrated and divided by the running time. The
simulation time is 1000 seconds.

The average running cost

V
(

t f

)

=
1
t f

∫ t f

0

[

x(t)
u(t)

]T

Qc

[

x(t)
u(t)

]

dt, t f > 0 (2.37)

is shown in Figure 2.3. In this case the TrueTime cost converges to the Jitterbug
cost, if the simulation time in TrueTime is longer than 1000 seconds.

35



Chapter 2. Background

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (s)

L
Q

G
 c

o
s
t

 

 

Jitterbug cost

TrueTime cost

Figure 2.3 LQG cost in Jitterbug and TrueTime

Use of TrueTime

In this thesis, TrueTime is used for two purposes.

• To obtain the delay distributions required for the stochastic LQG design
method in Chapter 4 and the periodic–stochastic LQG design method in
Chapter 5. This is done by simulating the schedule for sufficiently long time
and logging the response times.

• To evaluate the LQG costs numerically by simulation in the cases where Jit-
terbug is not applicable, e.g., when the delays are not independent. The cost
evaluations can both be performed as a part of a codesign method, e.g., in the
search-based methods in Chapter 4, and in the final control performance eval-
uation. However, whenever Jitterbug is applicable, it is substantially faster
and more accurate to evaluate the cost using Jitterbug than with TrueTime.

36



3

Related Work

3.1 Real-Time System Scheduling

For rate-monotonic (RM) scheduling, the classical utilization bound is provided in
[Liu and Layland, 1973]. The bound only depends on the number of tasks in a real-
time system. The utilization bound test is only sufficient, but not necessary, so it is
in general pessimistic. The hyperbolic bound test proposed in [Bini et al., 2003] has
the same complexity as the Liu and Layland bound. It is also a sufficient-only test
but it is tighter. It is based on the individual task utilizations rather than the total
CPU utilization.

Harmonic task periods have some benefits both in real-time system schedul-
ing and control system design. A harmonic task set with total utilization less than
or equal to 1 can be feasibly scheduled by the RM algorithm [Lehoczky et al.,
1991]. Testing schedulability and computing the response time is computationally
expensive in general, but for harmonic real-time tasks, a polynomial-time algorithm
for schedulability tests for FP and EDF scheduling is provided in [Bonifaci et al.,
2013]. Two efficient methods to assign harmonic periods to real-time tasks with pe-
riod ranges have been proposed: the forward approach in [Nasri et al., 2014] and
the backward approach in [Nasri and Fohler, 2015].

In [Han and Tyan, 1997], the authors propose a polynomial-time sufficient
schedulability test for FP scheduling as long as the total utilization is less than or
equal to 1. They also point out that a harmonic task set under RM priority assign-
ment is schedulable if the utilization is less than or equal to 1. For harmonic task
sets under preemptive FP scheduling, the potential gains in terms of schedulable
utilization are shown for the case of cache memories in [Busquets-Mataix et al.,
1996].

A small hyperperiod reduces timing analysis complexity and simulation time. If
the periods of all tasks are selected from the natural numbers within given ranges,
a heuristic algorithm to calculate the minimum hyperperiod for a set of tasks is
proposed in [Brocal et al., 2011]. In [Ripoll and Ballester-Ripoll, 2013], the authors
present an algorithm to find the minimal hyperperiod for a set of periodic tasks. The
periods are any rational numbers within the given ranges.

37



Chapter 3. Related Work

An algorithm for calculating the worst-case response time of a task under fixed-
priority scheduling is presented in [Joseph and Pandya, 1986], and the correspond-
ing algorithm for the best-case response time is given in [Redell and Sanfridson,
2002]. In [Eisenbrand and Rothvoß, 2008], the authors show that the response
time computation for RM scheduling is NP-hard, and there does not exist any
polynomial-time approximation algorithms with approximation ratio bounded by
a constant. In [Bini and Baruah, 2007], an upper bound on the worst-case response
time is proposed. With task release offsets and release jitter, an exact response time
analysis is proposed in [Redell and Torngren, 2002]. The authors create the worst-
case condition in a hyperperiod, and calculate the worst-case response time by partly
iterative algorithms.

Only the worst-case response time and the best-case response time are not
enough for detailed performance analysis of control tasks. For this, the response
time distributions are needed. For fixed-priority and dynamic-priority scheduling,
the response time distribution of each task can be accurately computed [Díaz et al.,
2002]. The method can handle arbitrary execution time distributions. The authors
derive formulae for the backlog probability mass function (PMF) at any time, in or-
der to calculate the response time. In [Tanasa et al., 2015], the authors calculate the
response time probability distribution, with arbitrary execution time distributions.
The execution time distributions are approximated by polynomial functions, and
then the non-idling scenarios are identified to compute the response time distribu-
tion.

In [Davare et al., 2007], a period assignment is accomplished using schedula-
bility analysis with end-to-end latency constraints. This work is based on convex
optimization.

3.2 Controller Timing

In [Åström and Wittenmark, 2013], it is shown how a continuous-time system with
an input delay is sampled under zero-order hold (ZOH) control. In the extended
state vector, the past value of the control signal is included. The standard design
procedures for linear quadratic (LQ) control and Kalman filters for discrete-time
systems are also presented.

When the delay is random with a given delay distribution, the stability of the
closed-loop system is studied and a stochastic LQG control design is derived in
[Nilsson et al., 1998] and [Nilsson, 1998]. The stationary value of the value func-
tion S(k) can be calculated by iteratively solving the stochastic equation, and then
the optimal state feedback can be derived. Since the old time delays up to time k−1
are known at time k, the standard Kalman filter is optimal here. One hypothesis be-
hind this technique is that the delay of each job is independent of the others, which
is generally not the case in real-time systems. It is also assumed that the variabil-
ity in delay is smaller than the sampling period. This limitation is later lifted in

38



3.3 Scheduling and Control Codesign

[Lincoln and Bernhardsson, 2000]. The authors derive the LQG-optimal controller
for networked control systems with arbitrarily long delays. However, no stationary
solution is found, implying that the optimal controller involves quite heavy on-line
computations.

Under LQG control, stability of the closed-loop system is guaranteed, but its
robustness is not guaranteed [Doyle, 1978]. The control system might be sensitive
to modeling errors. The robust control synthesis problem can be solved by the com-
bination of Youla parameter design (also known as Q-parameterization) and convex
optimization. Some examples are shown in [Boyd et al., 1998]. Mixed H2/H∞ con-
trol gives some good properties, such as robustness guaranteed LQG control, e.g.
for continuous-time systems [Zhou et al., 1994] and [Doyle et al., 1994], and for
discrete-time systems [Muradore and Picci, 2005], but the feedback system is as-
sumed to be linear time-invariant (LTI), meaning that these methods cannot directly
deal with output jitter.

Motivated by delay and jitter in real-time control systems, simple sufficient
stability criteria for systems with time-varying but bounded delays for both
continuous-time and discrete-time systems are given in [Kao and Lincoln, 2004].
Based on this stability theorem, the notion of jitter margin for a control system is
proposed in [Cervin et al., 2004]. The jitter margin is defined as a function of the
constant delay, and it describes how much additional time-varying delay can be tol-
erated before the loop becomes unstable. In [Cervin, 2012], the author analyzes the
combined effect of input and output jitter on the stability of a linear sampled-data
control systems and proposes a new sufficient stability theorem.

For a sampled-data system, periodic sampling is most often used for digital im-
plementation of feedback control laws. However, event-triggered control, [Årzén,
1999] and [Åström and Bernhardsson, 1999], and the self-triggered control ap-
proach, [Velasco et al., 2003], have some advantages when energy and computa-
tional constraints are considered.

3.3 Scheduling and Control Codesign

The codesign problem of real-time system scheduling and feedback control is stud-
ied in [Årzén et al., 2000], [Årzén et al., 2003], [Årzén and Cervin, 2005], and
[Derler et al., 2013]. The research directions range over system timing and func-
tionality of control engineering and computer science, such as control loop timing,
task attribute adjustments, feedback scheduling, etc. Here we discuss some of them.

Sampling Period Assignment

In [Seto et al., 1996], the authors raise the question of how to optimize the overall
control performance subject to an overall utilization constraint. The cost of task τi

39



Chapter 3. Related Work

is defined as a general cost function

Vi = Si

(

xi

(

t f

))

+
∫ t f

0
Li(xi(t),ui(t), t)dt (3.1)

and this cost is approximated as a function of sampling period hi as

Vi = αie
− βi

hi + γi. (3.2)

Then this optimization problem is analytically solved with the utilization constraint.
In this work, which is a milestone in the literature of real-time control codesign,
however, the delay between sensing and actuation is assumed to have no impact on
the performance of the system. The authors use the utilization upper bound from
[Liu and Layland, 1973] as the feasibility constraint.

Delay and jitter due to task scheduling can have a great impact on control per-
formance [Wittenmark et al., 1995]. In [Kim, 1998], the author uses the same cost as
in [Seto et al., 1996], but the cost is approximated as a function of sampling period
and delay

Vi = αie
βihi+εiδi + γi. (3.3)

The initial delay δi is approximated as the worst-case response time and the periods
are found. Then, the new delays are computed by simulating the schedule of all the
tasks up to the hyperperiod, and iteratively the periods are computed again assuming
the new values of the delay.

In [Bini and Di Natale, 2005], the authors propose an algorithm that finds the op-
timal period assignment of control tasks scheduled by fixed priority. In their work,
the delay is guaranteed not to exceed the period for all tasks. Since the optimal
method requires a time consuming branch-and-bound algorithm to be executed, they
also propose a faster algorithm to find a sub-optimal period assignment taking ad-
vantage of some geometrical considerations in the space of feasible activation rates.

In [Bini and Cervin, 2008], the cost is defined as a standard LQG cost and this
cost is approximated as a linear function of sampling period and delay. Then the
overall cost minimization problem is analytically solved. The details of this method
are described in Section 3.4.

The aim in [Samii et al., 2009] is to optimize overall LQG cost, which is affected
by delay and jitter, for both static and priority-based scheduling. The approximation
of the delay distribution is obtained by simulation. The random variable delay is
approximated as the average delay when designing the LQG controller. The delay
distribution is used to evaluate the LQG cost. The search process for the periods is
based on a genetic algorithm, which assigns controller periods within a fixed and
given set.

For RM scheduling, the overall LQ cost is used as control performance metric
in [Saifullah et al., 2014]. The LQ cost for each task is approximated as (3.3) with
γi = 0. The constraint is that the response time is less than or equal to the deadline

40



3.3 Scheduling and Control Codesign

and the period is chosen from a period range. For this non-differentiable, nonlinear,
and non closed-form optimization problem, the authors give four ways to obtain
sub-optimal periods.

In [Goswami et al., 2012], for joint ECU and bus scheduling in mixed-criticality
systems, the overall LQ is used as the control cost. For each task, the period is se-
lected from a finite set. For each period, the LQ cost is approximated as a polyno-
mial function of the delay

Vi =
n

∑
j=0

α jδ
j

i . (3.4)

This integer programming problem is solved by the CPLEX ILP solver.
A codesign simulation tool is developed in [Palopoli et al., 2000]. For both RM

and EDF, the authors show the use of soft real-time constraints, by selecting shorter
sampling period for control task, leads to significant performance improvement.

In [Zhang et al., 2008], the control performance metric is defined as the overall
H∞ norm or the minimal H∞ norm. The optimal periods are found such that the Liu
and Layland bound is satisfied and all the feedback loops are stable.

In [Ben Gaid et al., 2009], the codesign problem is decomposed into an opti-
mal control problem and an off-line scheduling problem. The sampling periods are
optimally chosen. The optimal state feedback control is designed using the lifting
technique and an on-line scheduling algorithm (Reactive Pointer Placement) is pro-
posed. Control performance improvements and the stability guarantees are proven.

Periodic LQG control design in real-time systems has been considered in [Ra-
manathan, 1997], but for the case of variable sampling intervals and not for varying
delays. The time-varying state feedback control law is derived by solving a periodic
Riccati equation.

Handling Jitter

In control applications, the jitter may degrade performance and even jeopardize
stability. The delay variance is defined as CAI (control action interval) and DAI
(data acquisition interval) in [Balbastre et al., 2004]. The CAI and DAI are evaluated
offline. Using an IMF (initial, mandatory, and final) task model, a subtask partition
method is used to improve control performance.

In [Buttazzo and Cervin, 2007], three methods: task splitting, advancing dead-
lines, and non preemptive execution; for reducing the jitter in controller task exe-
cution are evaluated. The evaluation shows that the deadline advancement method
gives the best control performance.

Online Optimization

In [Eker et al., 2000], the overall LQ cost is used as control performance metric. The
authors calculate the relation between sampling period and control performance,
and a feedback scheduler is designed based on this relation. First, the cost functions

41



Chapter 3. Related Work

and their dependence on sampling intervals are calculated. Then a recursive opti-
mization is proposed, based on constrained Newton optimization. It is stable, but
computationally expensive. So an approximated solution is given, in which the LQ
cost function is approximated as a quadratic function of the sampling period. Both
the recursive optimization method and the approximated optimization method can
also be used for offline period assignment.

For EDF scheduling, a feedback-feedforward scheduling architecture for a real-
time control system is proposed in [Cervin et al., 2002a]. The scheduler uses feed-
back from execution time measurements and feedforward from workload changes
to adjust the sampling periods so that the overall LQG cost is minimized.

In [Abeni et al., 2002], the bandwidths are dynamically assigned to a set of
constant bandwidth servers (CBS), by applying feedback control to a reservation-
based scheduler.

In [Martí et al., 2004] and [Martí et al., 2009], in order to optimize the over-
all control performance, the authors present an optimal period assignment based on
feedback from the state of the plant. It is formulated as a linear constrained op-
timization problem and this problem can be analytically solved online. For EDF
scheduling, a self-triggered state feedback H∞ controller is proposed in [Lemmon
et al., 2007]. The release time is online adjusted such that the H∞ norm is bounded
in the feedback loop.

In [Henriksson and Cervin, 2005], the expressions relating the LQ cost to the
sampling period and the state of the plant are derived. For the case of minimum-
variance control applied to an integrator plant, an exact expression is developed.
For the general case, an online optimization procedure is obtained.

Network Scheduling for Control

In [Ben Gaid et al., 2006], the problem of control and scheduling of networked
control systems over limited bandwidth deterministic networks is addressed. Multi-
variable linear systems subject to communication constraints are modeled in the
Mixed Logical Dynamical framework. The Mixed Logical Dynamical model is
transformed to a Mixed Integer Quadratic Programming formulation. Then the con-
trol and scheduling problem is solved. A model predictive controller and an Optimal
Pointer Placement scheduler are designed.

In [Ben Gaid et al., 2004], a ride controller, which is used to improve ride com-
fort by isolating the sprung mass from road disturbances, is simulated in TrueTime.
The simulation result shows that the scheduling parameters have an important effect
on the robustness of the controlled system.

In [Goswami et al., 2011], using the FlexRay dynamic segment as the communi-
cation medium, a scheduling and control codesign method is proposed to guarantee
the stability of the control application.

42



3.4 Delay-Aware LQG Design

Robust Stability

In [Palopoli et al., 2002], robustness optimization problem of a control system is de-
fined to maximize the stability radius. The optimization variables are the activation
period and the feedback gain. It is solved based on a branch and bound algorithm.

In [Tabuada, 2007], an event-triggered real-time scheduling method is proposed
for stabilizing control tasks. The author considers an event-triggered scheduling
algorithm that preempts running tasks to execute the control task when a certain
error becomes large compared to the state norm. The execution time of the control
task is taken into account to show that the proposed scheduling policy provides
guarantees on the global asymptotic stability.

In [Aminifar et al., 2012], for the given delay range, the authors propose an
integrated approach to assign task periods so that the stability of the plants is guar-
anteed in the worst case. The jitter margin is used to measure the worst-case control
performance. A standard LQG controller is used and the jitter margin constraint is
satisfied by designing the scheduling parameters.

Formal Analysis

In [Frehse et al., 2014], the codesign model is represented as a network of hy-
brid automata. The timing properties and the closed-loop properties are verified
through model checkers, for example, SpaceEx. The verification of timing proper-
ties is based on the combination of logical execution times and typical worst-case
analysis, and the verification of closed-loop properties is based on reachability anal-
ysis of hybrid automata.

3.4 Delay-Aware LQG Design

The methods developed in this thesis often refer to the delay-aware LQG design
method described in [Bini and Cervin, 2008], either as an initialization method to
obtain good starting values for the task periods or as the baseline in the evaluations.
For RM scheduling, the authors optimize the sampling period, such that the utiliza-
tion is equal to 1. Jitter is not considered to have an effect on performance. The cost
is defined as the sum of the standard LQG costs for all the tasks. For reasonably
short periods, the LQG cost of a control loop is approximated as a linear function
of sampling period and delay

Vi = αihi +βiδi. (3.5)

The delay δi is approximated by a lower bound on the worst-case response time

δi =
Cw

i

1−∑i−1
j=1 U j

(3.6)

which is a constant. With the approximation of the cost and the approximation of
the response time, the overall cost is a function of the periods. Then the overall cost

43



Chapter 3. Related Work

minimization problem is analytically solved under the utilization constraint U ≤ 1.
Since the real cost function is not linear in hi and δi, the authors also propose an
iterative period assignment routine based on the analytic solution of the linearized
problem. In the sequel the method in [Bini and Cervin, 2008] is also referred to as
RiApprox.

44



4

Stochastic LQG Scheduling

and Control Codesign*

4.1 Introduction

In earlier work, the codesign problem of assigning optimal control task periods has
been approached either by ignoring the effects of the delay on the performance or by
approximating the delay by a constant. In this chapter, the delay is instead modeled
by the task response time distribution, and the controller is designed to improve
performance for a delay that varies according to such a distribution. This is done
using the techniques based on [Nilsson et al., 1998] that enable the optimal design
of controllers that are subject to a control delay, which is assumed to be a random
variable with known distribution. One hypothesis behind this technique is that the
delay of each job is independent from the others, which is certainly not the case
in real systems. However, if the parameters of all tasks are known in advance, it is
possible to determine the entire task schedule within the hyperperiod, which is then
repeated over time.

The picture, however, drastically changes if the controllers have to be designed,
that is, if the task periods are variables of an optimization problem. In this case, the
hyperperiod may not even exist (if any pair of task periods are incommensurable)
and then the full task schedule cannot be computed.

The design of controllers (which includes also the selection of their period) that
are aware of the job delay pattern is a challenging problem, which is considered in
this chapter.

The work by [Nilsson et al., 1998] assumed that the variability in delay was
smaller than the sampling period. This limitation was later lifted by [Lincoln and
Bernhardsson, 2000], who derived the LQG-optimal controller for networked con-
trol systems with arbitrarily long delays. However, no stationary solution was found,
implying that the optimal controller involves quite heavy on-line computations. In

* This chapter is based on [Xu et al., 2014].

45



Chapter 4. Stochastic LQG Scheduling and Control Codesign

this work, therefore, we design controllers based on truncated distributions so that
the variability is always smaller than the period, even though this approach is sub-
optimal.

Outline

In Section 4.2 the real-time control system model is presented. Validation for mod-
eling the delay with the response-time distribution is provided in Section 4.3. In Sec-
tion 4.4 the optimal period assignment problem is defined together a local sequen-
tial search-based method. In Section 4.5 this method is compared with a non-linear
direct optimization method in a simulation evaluation where the cost is evaluated
using the TrueTime simulation tool [Cervin et al., 2003].

4.2 Real-Time Control System Model

The basic model of the control cost and the task run-time model are described in
Section 2.1 and Section 2.2 respectively. Since the response time Ri varies over
time, depending on the interference from higher priority tasks, we here model it as
a random variable with cumulative distribution function Fi : [0, ∞)→ [0, 1]. The
value Fi(r) is the probability P{Ri ≤ r} that any job released by τi has response
time smaller than or equal to r. The distribution Fi depends on the parameters of the
tasks {τ1, τ2, . . . , τi}, since they are the only ones that can affect the response time
of task τi.

If the delay δi of the controller varies as a random variable with a given prob-
ability density, it is possible to calculate the corresponding optimal controller that
minimizes the cost of (2.2), yielding a so-called stochastic LQG controller. The
stochastic LQG solution for a discrete-time system with delays shorter than the pe-
riod was given in [Nilsson et al., 1998]. We have extended the design method to han-
dle a continuous-time problem formulation as well as delays longer than the period
(although with jitter smaller than or equal to the period). The optimal state feedback
gain in the controller is obtained through solving a stochastic Riccati equation using
iteration. This is combined with a Kalman filter to produce the full LQG controller.
The MATLAB toolbox Jitterbug [Lincoln and Cervin, 2002] can be used to com-
pute both the optimal control feedback and the corresponding cost. The details of
the stochastic LQG control design procedure are given in Appendix A.

Since the cost Vi of the controller τi depends on the response-time distribution,
which in turn depends on the period of the higher priority tasks, then it can be
written as

Vi(T1, T2 . . . , Tn) (4.1)

with
∂Vi

∂Tk

= 0, ∀k = i+1, . . . , n. (4.2)

46



4.3 Validating the Model of the Task Delay

The model used assumes that the sampling is performed at the task release times,
i.e., without any jitter. This can, e.g., be achieved by performing the sampling in the
clock interrupt service routine, or in a dedicated high-priority task that then com-
municates the sample to the controller task, using, e.g., a mailbox. Modeling the
delay of the controller using the task response time assumes that the actuation is
performed at the end of the task. Normally, this is not the way a controller is im-
plemented. Instead, the code is structured in two sections: a CalculateOutput sec-
tion that contains the calculations that directly depend on the current sample, and
an UpdateState section where the internal states of the controller are updated. The
actuation is then performed as soon as the CalculateOutput section is completed.
However, since the approach in this chapter is based on simulating the total task
schedule it is straightforward to extend it to this case instead. An additional assump-
tion implicitly made is that the task execution time is relatively constant from one
job to the next. Although this is not true for general tasks, the assumption is more
valid for controller tasks, since the code size is relatively small and the amount of
branches is low. Furthermore, it is assumed the kernel allows the task periods to
have arbitrary real-valued values. This implies a so-called tick-free kernel.

4.3 Validating the Model of the Task Delay

Choice of the Response Time Distribution

The design approach in this chapter is based on the possibility to design the con-
troller taking the distribution of the delay caused by the task scheduling into ac-
count. This is done by modeling the delay by the response time distribution. How-
ever, when the tasks have constant execution times, the delay is actually determin-
istic, although following a pattern, which is not easily characterizable [Lehoczky,
1990]. It is then necessary to validate the appropriateness of modeling the delay as
stochastic.

Consider the following example. Assume a task set consisting of two tasks de-
fined as

Task Ti Cw
i Priority

τ1 0.24 0.12 High
τ2 0.3 0.12 Low

where task τ2 implements a LQG-controller with sampling period, T2 = 0.3, con-
trolling an inverted pendulum process modelled by the Laplace-transfer function
P(s) = 1/(s2−1). The continuous-time input noise has the covariance R1c = 1 and
the discrete-time measurement noise has the covariance R2 = 0.01. The cost func-
tion that the controller should minimize is given by (2.2), with

Qc =

[

CTC 0
0 0.01

]

, (4.3)

47



Chapter 4. Stochastic LQG Scheduling and Control Codesign

τ1

τ2

0.240.24

0.24 0.48 0.72 0.96

0 0.3 0.6 0.9 1.2
0.18 0.12

Figure 4.1 Schedule of the two control tasks.

where C is defined by the controllable canonical state-space representation.
The schedule of the tasks is illustrated in Figure 4.1. The schedule repeats ev-

ery hyperperiod (1.2 for these tasks). The task execution times are assumed to be
constant and given by Cw

i .
As it can be noticed in the figure, the response time for task τ2 will have the

following repetitive cycle R2 = 0.24, 0.18, 0.12, 0.24, . . . (the interested reader can
find more details in the work by [Lehoczky, 1990]). Hence, the worst-case response
time is 0.24, the best-case response time is 0.12, and the average-case response time
is 0.195.

We now compare the costs for four different LQG-controllers:

LQGB The controller is designed assuming a constant delay equal to the best-case
response time.

LQGA The controller is designed assuming a constant delay equal to the average-
case response time.

LQGW The controller is designed assuming a constant delay equal to the worst-
case response time.

LQGS The controller is designed assuming that the delay is governed by a stochas-
tic variable with a discrete-time distribution function corresponding to the
above cycle, i.e., the likelihood is 50% that the delay is equal to 0.24, 25%
that it is equal to 0.18, etc.

The costs will be evaluated for two execution scenarios:

ES The delay is a stochastic variable with the distribution function defined previ-
ously.

ED The delay varies from job to job according to the deterministic repetitive cycle
defined previously. This scenario corresponds to the true execution according
to the schedule.

The costs for the eight cases are given below.

48



4.3 Validating the Model of the Task Delay

Controller ES ED

LQGB 0.66 0.71
LQGA 0.60 0.62
LQGW 0.64 0.62
LQGS 0.59 0.61

In this example, for both execution scenarios, the controller designed using the delay
distribution gives the lowest cost, which speaks in favour of the approach adopted
in this chapter. Also, the cost for the true deterministic execution scenario is quite
close to the cost for the stochastic execution scenario. This also speaks in favour of
the proposed approach. Furthermore, when as in the current case the task periods
are derived from numerical optimization it is unlikely that there will exist any hy-
perperiod, i.e., there is no repeating pattern for the delay. As will be shown by the
evaluations presented in the following the error introduced by assuming a stochastic
delay is in general quite minor.

Computation of the Response Time Distribution

The above example indicates that adopting the response time distribution as a model
for the delay provides results that are quite similar to the ones obtained by consider-
ing the exact pattern of job delays. However, to best of our knowledge, today there
is no analytical method, which provides the response time distribution as a function
of the task parameters. Hence, we can only proceed by simulation.

Our simulation-based computation of the response time distribution must nec-
essarily use a finite number of jobs for which the response time is computed. Next,
we investigate the impact of the number of jobs on the accuracy of the response
time distribution.

Let R(k) denote the random variable of the job response time extracted among
the first k jobs, and FR(k)(r) its cumulative distribution function (CDF). With this
notation in mind and for the purpose of measuring how sensitive the distribution of
R(k) is to k, we define the incremental normalized distance as

d(k) =
1
T

E
{

|R(k)−R(k+1)|
}

(4.4)

where T is the period of the task. Intuitively, d(k) represents the diversity of R(k+
1) w.r.t. R(k). The factor 1/T is added to properly normalize such a distance. We
observe that d(k) is zero if and only if R(k) and R(k + 1) are coincident almost
everywhere. Moreover, we have

lim
k→∞

d(k) = 0

since as k grows, the two random variables R(k) and R(k+1) tend to converge.
Such a quantity d(k) can be used to determine the number of jobs after which the

simulation can be stopped. In fact, if d(k) is small it means that adding new samples

49



Chapter 4. Stochastic LQG Scheduling and Control Codesign

d(k)

k

[(1, 2), (2, 5)]
[(1, π), (1, 5), (0.1, π2)]

[(0.2, 5), (1, 7), (2, 8), (5, 100)]
[(0.2,

√
2), (1, π), (2, π2), (5, 30), (11, 123.7)]

0 20 40 60 80 100
0.0001

0.001

0.01

0.1

1

Figure 4.2 d(k) as a function of the number k of jobs.

of the job response time is not going to affect significantly the new response time
distribution. As shown by [Vallender, 1974], the value d(k) of (4.4) can be computed
as

d(k) =
∫ ∞

−∞
|FR(k)(r)−FR(k+1)(r)|dr. (4.5)

In Figure 4.2, we report the value d(k) computed for the response time of the
lowest priority task, as the number of jobs increases. The plot is reported for several
task sets, each denoted in the format [(Cw

1 , T1), (C
w
2 , T2), . . . , (C

w
n , Tn)] in Figure 4.2.

Observe that when the task periods are integers (such as in the 1-st and 3-rd case)
the distribution of the response time does not vary rapidly over time. Instead, it is
interesting to notice that when any period is irrational (such as in the 2-nd and 4-th
cases) the response time of some job does not conform to the distribution computed
until job 100.

Finally, we remark that the goal of this chapter is not to determine the most
accurate possible distribution of the task response time. Instead, we aim at deter-
mining a response time distribution, which models the task delay well enough to
allow an improved selection of the task periods. As we will show later in the exper-
iments, selecting the first 100 jobs for computing the response time distribution is
a suitable choice for determining task periods which more aggressively reduce the
control cost.

4.4 Period Assignment

The period selection problem can be formulated as follows:

• find the controller periods [T1, T2, . . . , Tn],

• such that the cost

V =
n

∑
i=1

Vi, (4.6)

50



4.4 Period Assignment

with Vi defined in (2.2), is minimized, and

• the set of controllers is feasible, that is

n

∑
i=1

Cw
i

Ti

≤Ub, (4.7)

where Ub is the utilization bound. Since the cost Vi of (2.2) has no explicit form
and can only be computed numerically (through TrueTime, in our case), we solve
this problem with numerical optimization. Below we provide more details for the
optimization procedure.

The delay-aware period assignment method (RiApprox) from [Bini and Cervin,
2008] was used to provide initial task periods. In this approach a linear approxima-
tion of the cost function V = ∑αiTi +βiδi is minimized assuming that the delay δi

equals an approximation of the average response time.

Cost Calculation

The change of Ti affects the response time distribution of task j when j ≥ i. And
the change of response time distribution affects the cost of the current task. So the
overall cost V is a function of each period Ti of tasks. For the given computation
time Cw

i and period Ti of each task with fixed priority, the differentiation process for
the overall V with respect to each Ti consists of the following steps:

1. Compute the response time distribution of each task i using the method in
Section 4.3;

2. Design the LQG controller using the response-time distribution as the delay
distribution, for each task i using the method in Section 4.2;

3. Calculate the LQG cost Vi of each task i;

4. Calculate the overall cost V by (4.6).

For the example in Section 4.3, we plotted the overall cost V as a function of
periods T1 and T2 (Figure 4.3). The function is non-linear and non-convex, even
though there are only two tasks.

Local Optimization

Gradient based optimization methods could be used to find the local optimal overall
cost V , but they are time-consuming. So instead, we introduce a sequential search-
based optimization method, which is derivative free. The method is presented in
Algorithm 4.1. Since low priority tasks are disturbed by interference from high
priority tasks the algorithm starts by finding the optimal periods for higher priority
tasks and fix them, before proceeding to lower priority tasks. Since larger periods

51



Chapter 4. Stochastic LQG Scheduling and Control Codesign

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0

2

4

6

8

10

12

14

T
2

T
1

J

Figure 4.3 V as a function of periods T1 and T2.

of high priority tasks give more utilization to the low priority tasks, the algorithm
begins by trying larger periods and then smaller ones. The utilization requirement
U ≤ 1 is checked before assignment of smaller periods. This heuristic approach is
called sequential search in the sequel.

The algorithm starts by calculating the initial overall LQG cost for the initial
periods, as shown by line 2 of Algorithm 4.1. The algorithm iterates over all the
tasks from task 1 to task n. For each task, as shown from line 4 to line 13, we check
whether the increased period gives smaller overall LQG cost. If yes, we continue to
increase the period until the overall LQG cost increases. If no, we search the period
which is shorter than the initial period, as shown from line 14 to line 31. With the
decreased period, we first check the overall utilization. If the overall utilization is
greater than 1, we skip the current decreased period assignment and stop the search
for the current task; if the overall utilization is smaller than or equal to 1, we search
the small overall LQG cost until the cost increases.

Global Optimization

Our interest here is not only in the locally optimal solution. According to the char-
acteristics of the LQG cost as a function of periods, we are certain to say it is a

52



4.4 Period Assignment

Algorithm 4.1 Local optimization
1: procedure SEQUENTIALSEARCH(T1, T2, . . . , Tn)
2: calculate V at the initial value T1, T2, . . . , Tn

3: for i = 1 : n do

4: T ′i ← Ti +∆Ti

5: calculate V ′ at T1, T2, . . . , T ′i , . . . , Tn

6: moved← 0
7: while V ′ <V do

8: Ti← T ′i
9: V ←V ′

10: T ′i ← Ti +∆Ti

11: calculate V ′ at T1, T2, . . . , T ′i , . . . , Tn

12: moved← 1
13: end while

14: if moved = 0 then

15: T ′i ← Ti−∆Ti

16: U ← ∑n
j=1(

Cw
j

Tj
)− Cw

i
Ti

+
Cw

i

T ′i
17: if U ≤ 1 then

18: calculate V ′ at T1, T2, . . . , T ′i , . . . , Tn

19: while V ′ <V do

20: Ti← T ′i
21: V ←V ′

22: T ′i ← Ti−∆Ti

23: U ← ∑n
j=1(

Cw
j

Tj
)− Cw

i
Ti

+
Cw

i

T ′i
24: if U ≤ 1 then

25: calculate V ′ at T1, T2, . . . , T ′i , . . . , Tn

26: else

27: V ′← ∞
28: end if

29: end while

30: end if

31: end if

32: end for

33: return T1, T2, . . . , Tn ⊲ The local minimum
34: end procedure

53



Chapter 4. Stochastic LQG Scheduling and Control Codesign

typical non-convex global optimization problem. So several optimization methods
could be applied to its solution. As mentioned, the derivative-based optimization
method was avoided, since they are very time-consuming in the current problem.

The DIRECT optimization method [Jones et al., 1993] is a sampling-based
search algorithm. It is a global derivative-free method. In the given domain, DI-
RECT optimization samples some points without an initial value, then decides
where to do the next search based on the known information. It is widely used in
“black box” problem, in which the relation between inputs and outputs is complex.

4.5 Evaluation

In this section the proposed response time driven period assignment method is
evaluated comparing with the delay-aware period assignment method (RiApprox)
from [Bini and Cervin, 2008]. To better understand the properties of the proposed
period assignment method, tasks sets are randomly generated to control randomly
generated plants with varying characteristics. The evaluation is performed using
TrueTime toolbox.

Simulation Setup

Plant sets were randomly generated from the following three different plant fami-
lies.

• Family I: All plants have two stable poles, with each plant drawn with equal
probability from

P1(s) =
1

(s+a1)(s+a2)

P2(s) =
1

s2 +2ζ ωs+ω2

(4.8)

with a1, a2 ∈ unif(0, 1), ω ∈ unif(0, 1), ζ ∈ unif(0, 1).

• Family II: All plants have two stable or unstable poles, with each plant drawn
with equal probability from

P3(s) =
1

(s+a1)(s+a2)

P4(s) =
1

s2 +2ζ ωs+ω2

(4.9)

with a1, a2 ∈ unif(−1, 1), ω ∈ unif(0, 1), ζ ∈ unif(−1, 1).

54



4.5 Evaluation

• Family III: All plants have three stable or unstable poles, with each plant
drawn with equal probability from

P5(s) =
1

(s+a1)(s+a2)(s+a3)

P6(s) =
1

(s2 +2ζ ωs+ω2)(s+a4)

(4.10)

with a1, a2, a3, a4 ∈ unif(−1, 1), ω ∈ unif(0, 1), ζ ∈ unif(−1, 1).

The state-space representation used was the controllable canonical form. For the
LQG controllers, ρ = 0.01, R1c = BBT , and R2 = 0.01tr{R1c} were used. Stochas-
tic LQG controllers were designed with the assigned period T and response time
distribution. The LQG cost is computed using the same LQG parameters.

The evaluation examined systems of n ∈ {3, 5} control tasks. The nominal task
utilization Unom

i were generated using an n-dimensional uniform distribution with
total utilization 1. The execution time was given by Cw

i ∈ unif(0.04, 0.4)/n. The
task priorities were assigned based on the periods returned by [Seto et al., 1996].

In the optimization procedure, the cost values and the LQG controllers were cal-
culated using Jitterbug toolbox. However, Jitterbug can only design LQG controllers
when the delay variation is less than the period. Therefore the obtained delay distri-
butions were truncated from below if the delay variation was larger than the period.
The upper limit was set to worst-case response time Rw

i , and the lower limit was set
to (Rw

i −Ti). The probability of the response time lower than (Rw
i −Ti) was added

to the probability at (Rw
i −Ti).

In general, the stability of the plants under control decides the sensitivity to-
wards delay and jitter. Therefore, it can be expected that the cost obtained for Fam-
ily I has the smallest value, while the cost for Family III has the highest value. This
is also shown by the evaluation.

Evaluation Results

The RiApprox method was used to compute the initial periods. The different period
assignment methods were evaluated by Monte Carlo simulation, where the plants
(including the disturbances), the controllers, and the scheduler were simulated in
parallel using TrueTime. From each family of plants, 10 random plants were gener-
ated. After the period assignment the plants and controllers were simulated for 1000
s, and total cost, J, was recorded.

The utilization requirement U ≤ 1 should be always fulfilled. In the sequential
search algorithm, when the step has been changed, the utilization is checked to
avoid the situation that the utilization is larger than 1. In the DIRECT optimization
algorithm, if the utilization is more than 1, the cost is set to a very large number to
enforce the optimization result away from this situation.

The evaluation results are based on n ∈ {3, 5} plants and controllers. In each
family, the cost values are compared for four period assignment methods:

55



Chapter 4. Stochastic LQG Scheduling and Control Codesign

Table 4.1 Evaluation of the cost

Family I Family II Family III

n = 3 n = 5 n = 3 n = 5 n = 3 n = 5

RiApprox 4.05 5.40 19.57∗ 7.32∗ 15.04∗ 24.76∗

Initial 4.01 5.34 5.26 7.02 14.40 23.27
Sequential search 3.86 5.25 4.92 6.63 12.32 20.01
DIRECT optimization 3.86 5.23 4.92 6.63 12.32 19.81

• RiApprox by [Bini and Cervin, 2008], in which the LQG controllers are de-
signed for a constant delay and the task periods are obtained from a linear
approximation of the cost function;

• Initial, in which the task periods obtained from RiApprox are used but the
LQG controllers are redesigned based on the response time distributions;

• Sequential search is the local search algorithm described in Algorithm 4.1,
initialized with the periods computed in the previous method; and

• DIRECT optimization that is the global optimization approach proposed
by [Jones et al., 1993] and available in MATLAB.

The total costs for the three plant families are shown in Table 4.1.
For Family II and III, the RiApprox method sometimes gives rise to unstable

control loops, i.e., infinite cost, shown as ∗’s in Table 4.1. Therefore, the total cost
is divided by the number of plants for which the cost is finite. For Family II, n = 3,
there is 1 case, out of 10, giving the infinite cost. For Family II, n = 5, there are 3.
For Family III, n = 3, there is 1. For Family III, n = 5, there are 3.

The evaluation shows that the response time driven period assignment methods
gives better LQG performance than the RiApprox method in all cases. The dif-
ference is larger when the task set is large or when the plants are unstable. The
sequential search-based method gives results that in all cases are very close to the
results obtained by the global DIRECT method.

However, the sequential search-based method requires much fewer computa-
tions than the DIRECT method. In order to evaluate this, for each plant family, n

plants were randomly generated and n corresponding controllers were designed. The
computation times of sequential search and DIRECT optimization were compared
using the tic and toc method in MATLAB. The computation times are shown in
Table 4.2 As can be seen the difference is approximately a factor of 2.

4.6 Conclusion

In this chapter, we have introduced the response time driven design of the LQG
controllers. The major contribution of the chapter is the proposed period assignment

56



4.6 Conclusion

Table 4.2 Run-time of the methods.

Sequential search DIRECT method

Family I
n = 3 8.2912 114.2827
n = 5 18.4958 198.2194

Family II
n = 3 3.4655 123.5941
n = 5 11.9846 215.4092

Family III
n = 3 5.0514 128.8757
n = 5 14.4181 266.7887

method based on the task response time distribution and the sequential search-based
algorithm. Through a simulation-based evaluation, it was shown that the method
may lead to very good results. The control performance, as measured by the LQG
cost, was improved compared to previous approaches and the local search-based
heuristic algorithm gave results that were very close to the global solution, with
50% less computation effort compared to the global optimization method.

57



5

Periodic LQG Scheduling

and Control Codesign*

5.1 Introduction

In this chapter, we focus on the response-time variation that arises from preemp-
tive scheduling of a set of periodic tasks. Assuming constant execution times for all
tasks, the response times will have a periodic regularity in cases where a hyperpe-
riod exists. If the response-time pattern is known, it can be exploited in the control
design.

In reality, task execution times are not constant but may vary due to cache
misses, unmodeled hardware interrupts, etc. We can model the execution time of
each job of a control task as an independent random variable. The response time of
each job will no longer be constant but can be characterized by a probability distri-
bution. There is now a repetitive pattern of the response time distribution over the
hyperperiod, and this can also be exploited in the control design.

The approach taken in the current chapter is to exploit the periodic delay pattern
that results if the task periods are perturbed slightly, obtaining a finite hyperperiod.
This is combined with so-called periodic LQG design techniques, where the peri-
odic delay pattern is taken explicitly into account in the control design.

Outline

The outline of the rest of this chapter is as follows: Section 5.2 gives a method to
achieve a finite hyperperiod. Assuming this method, a periodic LQG control design
procedure is given in Section 5.3. Section 5.4 evaluates the periodic LQG control
design on three different examples. Section 5.5 discusses statistical response-time
analysis vs schedule simulations to find the response-time probability distributions.
In Section 5.6, a numerical method to design a periodic–stochastic LQG controller
is presented. Section 5.7 evaluates the periodic–stochastic LQG control design on
three different examples. Finally, Section 5.8 offers some concluding remarks.

* This chapter is based on [Xu et al., 2015].

58



5.2 Task Period Perturbation

5.2 Task Period Perturbation

Since the task periods are not necessarily integers, we extend the definition of the
hyperperiod of the set of tasks, as follows.

DEFINITION 5.1
The hyperperiod of a set of tasks with periods [T1, T2, . . . , Tn], is the smallest H > 0
such that

∀i, ∃ki ∈ N : kiTi = H. (5.1)
✷

Since we assume that the initial task periods are any real numbers, the hyperpe-
riod H of (5.1) may not exist. In this case we set it to H = ∞. We observe that the
above definition does not necessarily require the task periods to be integers. For ex-
ample, if T1 = 2

√
2 and T2 = 3

√
2, then according to Definition 5.1 we have that the

hyperperiod of [T1, T2] is H = 6
√

2. However, Definition 5.1 requires the periods to
be commensurate: if T1 = 1 and T2 =

√
2, then there is no hyperperiod H satisfying

(5.1), and we set H = ∞.
When the hyperperiod H is large or infinite, it is not practical or feasible to in-

vestigate the job response-time pattern over the hyperperiod. We, therefore, propose
a method to perturb the periods to obtain a finite and short hyperperiod.

Finding an Approximate Hyperperiod

When the periods are the solution of an optimization problem such as in scheduling–
control codesign, it may indeed happen that the task periods may be real values or,
at least, machine-representable “real” values. In these cases, it may be useful to find
a suitable substitute for the hyperperiod. We propose the following definition.

DEFINITION 5.2
Given a tolerance ε ∈ (0, 1), let [k1, k2, . . . , kn] ∈ N

n be such that

1− mini{kiTi}
maxi{kiTi}

≤ ε . (5.2)

The approximate hyperperiod Ĥ of the task periods [T1, T2, . . . , Tn] is then

Ĥ = max
i
{kiTi}. (5.3)

✷

As ε → 0, the approximate hyperperiod of Definition 5.2 tends to the actual hyper-
period of Definition 5.1, if the limit exists.

In Table 5.1 we illustrate an example when T1 =
√

2 and T2 = π . The third col-
umn reports the values [k1, k2] that makes Eq. (5.2) true. It can be observed that, as
the tolerance ε increases the corresponding approximate hyperperiod Ĥ decreases.

59



Chapter 5. Periodic LQG Scheduling and Control Codesign

Table 5.1 Example of approximate hyperperiod Ĥ when T1 =
√

2 ≈ 1.4142 and
T2 = π ≈ 3.1416.

ε Ĥ [k1, k2] [T̂1, T̂2]

0 ∞ [∞, ∞] [
√

2, π]
0.001 28.284 [20, 9] [1.4139, 3.1420]

0.1 9.8995 [7, 3] [1.3690, 3.1943]
1 maxi{Ti}= π [1, 1] [2.5658, 2.5658]

Control Task Period Assignment

Let us assume that an optimization-based scheduling–control codesign has been
performed, e.g., using the method in [Bini and Cervin, 2008] or in Chapter 4. This
leads to a set of real-valued task periods, T = [T1, T2, . . . , Tn], that give good control
performance but for which, typically, no finite hyperperiod exists.

The goal we have is to find some other task periods T̂ = [T̂1, T̂2, . . . , T̂n] which
are “close” to the original values and which have a finite hyperperiod that is not too
large.

We propose the following method for period assignment:

1. Set a value of ε of desired proximity between T and T̂. A typical value could
be between 10−3 and 10−2.

2. Compute the set of integers [k1, k2, . . . , kn] such that (5.2) holds;

3. Calculate the modified periods as

T̂i =
∑n

j=1 k jC
w
j

ki

. (5.4)

This choice implies that even the tasks with the modified periods T̂i are fully
utilizing the processor.

4. Redesign the controllers taking the obtained periodicity explicitly into ac-
count using a periodic LQG control design scheme. The results of this will be
that for each controller the controller parameters will depend on the current
job in the hyperperiod.

For the simple example of Table 5.1, if Cw
1 =
√

2/3 and Cw
2 = 2π/3, which

implies that ∑i
Cw

i
Ti

= 1, then the task periods T̂i modified according to (5.4) are
reported in the fourth column.

By tuning ε we can control the length of the hyperperiod and then the length
of the pattern of job response times. Also, ε is used to control the magnitude of the
perturbation of the original periods. From (5.2), it follows that

∀i, (1− ε)
max j{k jTj}

Ti

≤ ki ≤
max j{k jTj}

Ti

, (5.5)

60



5.3 Periodic LQG Control Design

which enables us to find lower and upper bounds to the perturbed T̂i of (5.4), as
follows

∀i, (1− ε)Ti

n

∑
j=1

U j ≤ T̂i ≤
1

1− ε
Ti

n

∑
j=1

U j. (5.6)

If the original periods [T1, T2, . . . , Tn] are fully utilizing the processor, which is al-
ways the case if they are the solution of an optimal real-time control codesign prob-
lem [Bini and Cervin, 2008], then the bounds to T̂i become

∀i, (1− ε)Ti ≤ T̂i ≤
1

1− ε
Ti. (5.7)

(5.7) provides an insightful interpretation of ε . It states that by perturbing the
periods according to (5.4), with ki defined by (5.2), then the amount of perturbation
can be controlled by ε .

In the real-time control codesign problem, selecting ε is a trade-off between
the tolerable variation of the task periods from the initial periods and the length of
the hyperperiod. A long hyperperiod requires more memory to store the controller
parameters and a larger (off-line) computational effort to design the controllers.

5.3 Periodic LQG Control Design

In a hyperperiod, fixed actual execution times implies that the delays are known,
but variable. This section establishes the LQG control design for the resulting pe-
riodic system. The modified hyperperiod proposed in the previous section makes it
possible to realize this design procedure. Note that existing LQG design methods
for time-delay systems do not apply because the delays are either assumed to be
constant or in the form of a probability distribution. Here we allow the delays to
vary according to a deterministic pattern over a hyperperiod.

Sampling the Periodic Time Delay System

For task i,
H = lihi (5.8)

where H is the hyperperiod, hi is the period, and li is the number of jobs in one
hyperperiod. The controlled plant is given by (2.1). The delays arrive in the deter-
ministic pattern δi,1, δi,2, ..., δi,li . The delays can be less than, equal to, or greater
than the period. We know, however, that δi, j < δi, j+1 + hi, j ∈ {1, 2, . . . , li− 1},
because in a single-CPU system, the finishing times of jobs cannot be disordered.
The control signal is assumed to be zero-order hold, i.e. piecewise constant between
update instants (see Figure 5.1).

Because the dynamics repeat in every hyperperiod, we only need to investi-
gate the state space model over one hyperperiod. Actually, if there exists a smaller
contiguous repeating sub-sequence than the full sequence in the hyperperiod, the

61



Chapter 5. Periodic LQG Scheduling and Control Codesign

Figure 5.1 Delayed control signals in one hyperperiod.

controller can be recalculated for the shorter length. The size of the matrices in
the state-space model is smaller and the cost reformulation is simpler. However, the
controller is the same as the full hyperperiod design. For convenience, the subscripts
indicating task i are omitted in the rest of this section.

The integration of (2.1) over one hyperperiod is shown in Appendix B. Follow-
ing this, an extended state-space model can be introduced,

[

x((k+1)lh)
u′(klh)

]

=

[

Φ Γ1

0 0

][

x(klh)
u′((k−1)lh)

]

+

[

Γ0

I

]

u′(klh). (5.9)

Here, l control signals over the hyperperiod are included in the extended state. This
reformulation changes the system from continuous-time infinite form to discrete-
time finite form.

Sampling the Cost Function

We have so far sampled the plant model, but we also need to sample the cost func-
tion. The cost of the i´th task is

Vi =
∞

∑
k=0

Vi(k) =
∞

∑
k=0

Vi(klihi) (5.10)

and

V (klh) =
∫ (k+1)lh

klh
xT (t)Q1cx(t)+2xT (t)Q12cu(t)+uT (t)Q2cu(t)dt

:= xT (klh)Q1x(klh)+2xT (klh)Q12u′(klh)

+u′T (klh)Q2u′(klh)+Vconst(lh), (5.11)

62



5.4 Periodic LQG Control Evaluation

where Vconst(lh) is given by (2.16). The discrete-time cost matrices Q1, Q2 and Q12

are calculated as shown in Appendix B. Given the extended state-space model, the
standard linear quadratic control design method can be applied.

5.4 Periodic LQG Control Evaluation

In this section, we first apply the periodic LQG design procedure to a simple exam-
ple and then to two real-time scheduling and control codesign problems. In the sim-
ple example, the design approach will guarantee the correctness of periodic LQG
design, without having to consider the exact multitasking behavior in the real-time
system. The exact costs can be calculated using Jitterbug. The second example will
illustrate how the perturbed period method works. The third evaluation example will
provide a systematic approach for periodic LQG design in a real-time multitasking
environment. The latter examples involve joint scheduling and control simulations
and are evaluated using TrueTime.

A Simple Example

Assume that a plant under control is given by

G(s) =
1

s2−1
. (5.12)

The state-space representation used is the controllable canonical form. The cost
function is given by (2.2), in which the continuous-time cost matrix is

Q1c =

[

0.01 0
0 1

]

(5.13)

and Q2c = 0.01. The continuous-time state noise covariance matrix is R1c = BBT ,
and the discrete-time measurement noise covariance matrix is R2 = 0.01tr{R1c}.

The sampling period is h = 0.3, and the hyperperiod is assumed to be H = 4h.
The delays in one hyperperiod are assumed to be δ1 = 0.24, δ2 = 0.18, δ3 = 0.12,
δ4 = 0.24.

LQG controllers are then designed by the following three methods:

• Constant delay: Using Jitterbug, a time-invariant LQG controller is designed
assuming a constant delay equal to the average delay.

• Stochastic LQG: Using Jitterbug, a time-invariant LQG controller is de-
signed, viewing the delay as a random variable with known probability mass
distribution.

• Periodic LQG: A sequence of l LQG controllers is designed using the peri-
odic LQG control design procedure proposed in Section 5.3.

63



Chapter 5. Periodic LQG Scheduling and Control Codesign

Table 5.2 Costs in the simple example.

Constant delay design 3.01
Stochastic LQG design 2.95
Periodic LQG design 2.22

Table 5.3 Perturbed periods and costs (Vini is based on [Bini and Cervin, 2008]).

T1 T2 T3 H Vini VLQG

Initial 0.2795 0.3509 0.2792 ∞ − −
ε = 0.1 0.2740 0.3653 0.2740 1.0959 5.5697 5.2188
ε = 0.05 0.2837 0.3404 0.2837 1.7021 5.5697 5.2061

The costs evaluated in Jitterbug are given in Table 5.2. The cost using periodic
LQG is better than the other two. This is because it takes all the information about
system dynamics, especially about delays, into account in control design procedure.
The larger the delay variability, the larger the improvement over previous design
techniques will be.

Three-Plant Example

Assume a set of three tasks controlling three plants

P1(s) =
1

s2 +0.549s−0.1979

P2(s) =
1

s2−0.9947s+0.2366

P3(s) =
1

s2 +0.711s+0.0252
.

(5.14)

We start by assigning initial periods with the approach proposed in [Bini and
Cervin, 2008]. The initial periods are shown in Table 5.3, where all periods have
been rounded to four decimal places. The hyperperiod is infinite. Then we modify
the periods by selecting the tolerance as ε = 0.1 or ε = 0.05. Now the hyperperiods
are finite. As shown in Section 5.2, the lower the ε value, the longer the hyperpe-
riod. The utilization is kept at U = 0.98 in order to avoid numerical errors in the
simulation.

We then perturb the periods to obtain a finite hyperperiod, calculate the actual
job response times and redesign the controllers according to periodic LQG method.
The results are shown in Table 5.3. The initial method from [Bini and Cervin, 2008]
uses a constant delay LQG design based on the approximate average response time.
Periodic LQG method gives better results than the initial method and even better
performance when the tolerance ε is small. The latter implies a longer hyperperiod
but enables a closer-to-optimal resource distribution.

64



5.4 Periodic LQG Control Evaluation

Table 5.4 Evaluation of costs for codesign for random plants (initial design is
based on [Bini and Cervin, 2008]).

Family I Family II Family III

Initial design 3.23 4.56 15.41
Periodic LQG 3.18 4.41 12.66

Evaluation on Randomly Generated Plants

In this codesign example, we generate plants randomly from three plant families,
which are the same as in Section 4.5. We assume Q1c, Q2c, R1c, and R2 to be the
same as those in the simple example above.

The evaluation examines systems with n = 3 control tasks. The nominal task
utilizations Unom

i are generated randomly using an n-dimensional uniform distri-
bution with total utilization 1. The worst-case execution time was drawn from
Cw

i ∈ unif(0.04, 0.4)/n. The task priorities were assigned using rate-monotonic or-
dering based on the periods returned by [Seto et al., 1996].

The initial task periods are assigned by the method in [Bini and Cervin, 2008]
with utilization 0.99, and the initial controllers are designed based on a constant
delay equal to the average response time. To avoid numerical errors, the utilization
is set to 0.99.

Then perturbed periods are calculated to get a finite hyperperiod, and the de-
lays in a period are derived from a schedule simulation. Finally, a periodic LQG
controller is designed for each plant.

The two control design methods are evaluated by Monte Carlo simulations,
where the plants, the controllers, and the scheduler are simulated in parallel using
TrueTime. From each family of plants, 10 sets of plants are randomly generated.
After the controller design, the plants and controllers are simulated for 1000 s, and
the total cost, J, was recorded. All the costs are given in Table 5.4.

The cost for periodic LQG control is lower than the cost for the initial design.
This is reasonable since the periodic LQG controller takes more information about
the system dynamics into account.

Limitations of Periodic LQG Control

As shown in the previous evaluations, periodic LQG control gives a good perfor-
mance as long as the task execution times are constant. However, when the execu-
tion times vary, then a periodically repeating delay pattern no longer exists, and the
performance obtained using the periodic LQG controller decreases.

The extent of this performance decrease depends on the shape of the delay distri-
bution function, which in turn depends on the execution time distribution functions
of the task under investigation and all higher-priority tasks. Consider the following
examples. Assume that a certain task of low priority has six jobs in a hyperperiod.
In Figure 5.2(a) the job response times, i.e., delays, are plotted for a large num-

65



Chapter 5. Periodic LQG Scheduling and Control Codesign

0

1

1 2 3 4 5 6

0.4

0.5

0.6

0.7

0.8

0.9

(a) Job response times over a hyperperiod in
the first example.

0.92 0.93 0.94 0.95 0.96 0.97
0

50

100

150

200

250

300

350

(b) Response time distribution for job 1 in the
first example.

0 2 3 4 5 6

0.4

0.5

0.6

0.7

0.8

0.9

1

1

1.1

1.2

1.3

(c) Job response times over a hyperperiod in
the second example.

0.95 1 1.05 1.1 1.15 1.2 1.25
0

50

100

150

200

250

300

350

400

(d) Response time distribution for job 1 in the
second example.

Figure 5.2 Two examples showing different job response time distributions.

ber of hyperperiods. The x-axis shows the current job index in the hyperperiod and
the y-axis shows the corresponding delay. The red line shows the average response
time, and the green lines show the individual response times for each job in the hy-
perperiods. Figure 5.2(b) shows the response time distribution of the first job in the
hyperperiod. With this narrow, unimodal shape of the distribution, it is likely that
a periodic LQG controller designed for the average delay in each job would still
work reasonably well. However, in another example, using slightly different task
parameters, the results may be as presented in Figure 5.2(c) and Figure 5.2(d). Here
the response-time distribution is bimodal and the average delay is no longer a good
approximation of the true delay and it is less likely that a periodic LQG control will
perform well.

In the following sections, we will investigate how a periodic–stochastic LQG
control design can be used to cope with this problem. In this type of LQG controller,
the delay is modeled by a probability distribution for each job in the hyperperiod.
Hence, rather than having delays that repeat periodically, we will have delay distri-
butions that repeat periodically. In order to use this technique, the delay distribution
for each job must be known at design time. This is studied next.

66



5.5 Calculation of Job Response-Time Distributions

5.5 Calculation of Job Response-Time Distributions

There are two approaches to obtaining the job response time cumulative distribution
functions. The first and most accurate way is to calculate them analytically using
some statistical response time analysis tool. The alternative is to simulate the task
schedule using a real-time schedule simulator for sufficiently long time and mea-
sure the individual delays. Similar to measurement-based WCET analysis the latter
approach always runs the risk of not encountering response times that have low
probability. Here, both approaches will be investigated. The response time analysis
framework considered is the one described in [Tanasa et al., 2015].

A Framework for Probabilistic Response-Time Analysis

We now describe the framework used to accurately compute the response time dis-
tributions of tasks scheduled on uniprocessor platforms based on non-idling, pre-
emptive scheduling policies [Tanasa et al., 2015]. With respect to scheduling poli-
cies, the framework is general and covers both static and dynamic scheduling algo-
rithms like fixed priority scheduling and earliest deadline first scheduling.

Besides the scheduling policy, the framework takes as inputs the relevant tasks
parameters, which include i) periods and ii) variable execution times. The main as-
sumption on which the framework is built is that the tasks’ jobs are independent of
each other. Thus, independent random variables can be used to model the variable
execution times of all jobs. As such, jobs belonging to the same task will be mod-
eled with independent identically distributed random variables. The framework also
assumes that i) the execution times of the tasks are described by probability density
functions (PDFs) and that ii) the maximum CPU utilization does not exceed 100%.
Given all these assumptions the framework accurately computes the response time
distributions of the tasks by conducting a job-level analysis over all the jobs in the
hyperperiod.

Internally, the framework tightly approximates all the PDFs with polynomial
functions. This is because polynomial functions can be integrated analytically in
polynomial time given their degrees. Also, for the uniform PDFs used in this chap-
ter, the polynomial approximations are exact. For each job in the hyperperiod, the
framework identifies a set of non-idling scenarios where each such scenario covers
a continuous interval of possible response times that the job under analysis might
have. In this way, the response time distribution of the job under analysis can be
evaluated by integrating the joint execution time function of those jobs that it inter-
acts with (i.e. jobs with higher priority) over the points in the current interval. We
illustrate the idea with the help of an example below.

Response-Time Analysis Example

We provide an example describing the functionality of the tool used to compute the
response time distributions of the tasks scheduled on uniprocessor platforms based
on non-idling, preemptive scheduling policies. Let us assume a task set with three

67



Chapter 5. Periodic LQG Scheduling and Control Codesign

Table 5.5 Task parameters in the probabilistic response-time analysis example.

Task index T D Cb Cw

1 5 5 1 2
2 6 6 1 2
3 9 9 1 2

2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Response Time

C
d
f

 

 

Empirical Cdf
Analytical Cdf

Figure 5.3 Cumulative response time distribution of the 10th job in the probabilis-
tic response-time analysis example.

tasks. The tasks’ parameters are presented in Table 5.5 and it is assumed that the
jobs are scheduled with fixed priorities implied by the task ordering and that the
random execution times are uniformly distributed. Given the parameters, a total of
43 jobs are released in any hyperperiod. In the following, we show the response
time distribution of the 10th job, corresponding to the second job of the third task.

The cumulative response time distribution of the 10th job (see Figure 5.3) has
been evaluated in two ways. First, we have conducted simulations in TrueTime and,
later, we have used the analytical tool. The red line depicts the response time dis-
tribution obtained from task simulations while the blue line denotes the analytical
distribution. It can be seen that the two graphs match each other very well apart
from one exception. The simulations have shown that the response time distribution
of the 10th job spreads over the interval [2..3]∪ [4..6]. On the other hand, the analyt-
ical tool reports that the same distribution has the domain [2..3]∪ [4..6]∪ [7..9]. Such
discrepancies are likely to occur as, in our case, the probability for the response time
of the 10th job to lie in the interval [7..9] is very small (less than 0.01).

In this section, it has been shown that the response time distribution calculated
using TrueTime-based schedule simulation is similar to, but not exactly equivalent
to, the analytical solution. With this as motivation, we still will use TrueTime to
derive the response time PDFs in the following sections. The reason for not using
the analytical calculation framework is that for certain task parameter values the
memory requirements are too large.

68



5.6 Periodic–Stochastic LQG Control Design

5.6 Periodic–Stochastic LQG Control Design

This section presents a numerical method for LQG control design when the execu-
tion time for each task is varying randomly. It is assumed that a hyperperiod exists
and that the response time PDF has been derived for each job of the task. As usual,
the LQG design can be split into two parts: state feedback design and state estimator
design.

State Feedback Design

In the state feedback design, it is assumed that the full state vector x is known at
each sampling instant. The goal is to design a time-varying control law

u[k] =−L[k]x[k] (5.15)

where the state feedback gain L varies over the hyperperiod. Given knowledge of
the PDFs of the delays Lk, we formulate a periodic–stochastic Riccati equation as

S[k] = E
δk+1

{

ΦT S[k+1]Φ+Q1−
(

ΦT S[k+1]Γ+Q12
)

×
(

ΓT S[k+1]Γ+Q2
)−1 (

ΓT S[k+1]Φ+QT
12

)

}

(5.16)

where matrices Φ, Γ and Q are all functions of Lk+1. They can be calculated using
the method in Section 5.3. The Riccati equation can be solved iteratively by calcu-
lating S[l], S[l−1], . . . , S[1], and then repeating again from S[l] and so on, until the
sequence of matrices S[k], k = 1, 2, . . . , l, converges. The state feedback gain is then
obtained as

L[k] = E
δk+1

(

ΓT S[k+1]Γ+Q2
)−1 (

ΓT S[k+1]Φ+QT
12

)

. (5.17)

State Estimator Design

Since the system we are considering in (2.1) is linear and time-varying, and vci, Cw
i

are Gaussian, a time-varying Kalman filter is the optimal estimator. Since the sam-
pling period is fixed, the Kalman filter gain K can actually be obtained by solving a
regular Riccati equation, yielding the standard update equation

x̂[k | k] = x̂[k | k−1]+K(y[k]−Cx̂[k | k−1]) (5.18)

where x̂ is the estimated state vector. The state prediction equation will however be
time-varying and is obtained by taking the expected value over the delay for each
job:

x̂[k+1 | k] = E
δk

Φx̂[k | k]+E
δk

Γu[k]. (5.19)

Combining the state estimator with the state feedback, we finally obtain the periodic
LQG control law

u[k] =−L[k]x̂[k | k]. (5.20)

69



Chapter 5. Periodic LQG Scheduling and Control Codesign

5.7 Periodic–Stochastic LQG Control Evaluation

In this section, we first apply the periodic–stochastic LQG design to a simple ex-
ample and calculate the exact costs using Jitterbug. We then look at two codesign
examples where performance was evaluated using simulations in TrueTime.

A Simple Example

The plant is an inverted pendulum, which is the same as in Section 5.4. We also have
the same cost matrix Qc, and noise covariance matrices R1c and R2. The sampling
period is h = 0.3, and the hyperperiod is H = 3h. The control delays of each control
task job in one hyperperiod are given in the form of probability mass functions as

δ1 =





0.12 0.4
0.15 0.2
0.18 0.4





δ2 =

[

0.15 0.5
0.18 0.5

]

δ3 =
[

0.12 1
]

.

(5.21)

Here, the left column is the length of response time, and the right column is the
corresponding probability.

LQG controllers are designed by the following three methods:

• Periodic–stochastic LQG: Design a set of controllers using the method pro-
posed in Section 5.6.

• Periodic LQG: Using the average response time as the delay in each period,
design a set of LQG controllers using the method from Section 5.3.

• Stochastic LQG: Design a time-invariant controller based on the overall delay
distribution.

The costs, evaluated in Jitterbug, are shown in Table 5.6. The periodic–
stochastic LQG has a lower cost than the other three methods because it takes all the
information about the response times into account in the control design procedure.
The other two methods work with different kinds of approximations of the response
times and are, hence, suboptimal.

70



5.7 Periodic–Stochastic LQG Control Evaluation

Table 5.6 Costs in the simple example and the three-plant example.

Design methods Simple Three-plant

Periodic–stochastic LQG 0.92 5.42
Periodic LQG 1.01 6.84
Stochastic LQG 0.99 16.57

Three-Plant Example

Assume a set of three tasks controlling three plants

P1(s) =
1

s2−0.068s−0.007

P2(s) =
1

s2 +1.048s−0.640

P3(s) =
1

s2−0.442s+0.397

(5.22)

to be controlled in three tasks in a real-time system. P1 has the highest priority, while
P3 has the lowest priority.

We start by assigning the initial periods with the approach proposed in [Bini and
Cervin, 2008]. We then use perturbed periods to obtain a finite hyperperiod. The
utilization is set to 0.95, in order to avoid excessive control delays. We assume that
the actual execution times are random variables, where the execution time of each
job is drawn from unif(0.9Cw,Cw). The job response time PDFs are then derived
from TrueTime simulations. We evaluate the same three methods as outlined in the
previous subsection. The costs obtained from evaluations using TrueTime are shown
in Table 5.6. Again it is seen that the periodic–stochastic LQG design is better than
the other two methods.

Evaluation on Randomly Generated Plants

We here consider scheduling and control codesign for sets of randomly generated
plants. The same kind of plants as in Section 5.4 are used, and again the evalua-
tion examines systems of n = 3 control tasks. The nominal task utilization Unom

i

is generated from an n-dimensional uniform distribution with total utilization 0.95.
The worst-case execution time is generated from Cw

i ∈ unif(0.04, 0.4)/n. The task
priorities are assigned based on the periods returned by [Seto et al., 1996].

First, the initial task periods are assigned by the method in [Bini and Cervin,
2008]. The periods are then perturbed to get a finite hyperperiod. The utilization is
throughout kept at 0.95 to avoid excessive control delays. The controllers are again
designed by the three methods outlined in Section 5.7.

The different control design methods are evaluated by Monte Carlo simulation,
where the plants, the controllers, and the scheduler are simulated in parallel using
TrueTime. From each family of plants, 10 sets of random plants are generated. After

71



Chapter 5. Periodic LQG Scheduling and Control Codesign

Table 5.7 Evaluation of the costs for random plants.

Family I Family II Family III

Periodic–stochastic LQG design 3.71 5.36 13.07

Periodic LQG design 4.01 9.00(5) 13.49(3)

Stochastic LQG design 5.48(1) 7.91(5) 22.74(2)

control design, the plants and controllers are simulated for 1000 s, and total cost, V ,
is recorded. All the costs are given in Table 5.7. The actual job execution times are
random variables drawn from unif(0.9Cw,Cw).

The numbers in the parenthesis indicate how many times the cost is infinite due
to an unstable control loop. The mean value of costs does not include the infinite
costs. We can see that the cost with periodic–stochastic LQG controller has a lower
value than costs with the other two methods, even when the unstable cases have
been discounted. The periodic–stochastic LQG is the only method to obtain 100%
stable systems for families II and III.

5.8 Conclusion

We have proposed new periodic and periodic–stochastic LQG control designs for
minimizing the overall cost in real-time control systems. The approaches rely on
knowledge of the response-time pattern of each task. In the case of periodic–
stochastic LQG, also knowledge of the PDF of the response time of each job is
required. To target large systems, there is a need for more efficient tools for statisti-
cal response-time analysis. Also, non-control tasks with possibly unknown phasings
should ideally also be included in the analysis.

72



6

Harmonic LQG Scheduling

and Control Codesign*

6.1 Introduction

Similar to Chapter 5, in the current chapter the focus is again on perturbing the
task periods, but in this case to make the task periods harmonic. Harmonic task
sets have many attractive properties. As long as the total utilization is less than or
equal to 1, the task set is schedulable under both rate-monotonic (RM) and earli-
est deadline first (EDF) scheduling. Also, assuming constant execution times, the
response times and start latencies are constant, which leads to a particularly sim-
ple LQG control design. Consider the simple example shown in Figure 6.1. In both
cases we have two controller tasks running under RM priority assignment, where
the sampling is performed at the job arrival times and the actuation is performed
at the job finishing times, i.e., the control delay equals the response times. In the
upper plot, the tasks have periods {3, 5} and constant execution times {1, 3}. We
assume that these periods have been chosen to give good total control performance.
From the figure, one can see that the response time of task τ2 varies according to
the pattern 5, 4, 4, 5, 4, 4 . . .. If one changes the period of task τ2 to 6, i.e., harmo-
nizes the periods, then, as shown in the lower plot, the response time will be always
equal to 5, i.e., more deterministic than in the first case. This will most likely lead
to worse control performance since both the period and the average delay are larger
than before. However, if one also introduces an offset of 1 for τ2 then the response
time will always be equal to 4. The question is then whether the decrease in control
performance of the controller executing as task τ2 caused by the longer sampling
period is compensated for by the increased performance caused by the shorter and
constant delay obtained through the period harmonization. This is the essence of
the problem that we are investigating in this chapter, and the evaluations performed
show that this is generally the case.

* This chapter is based on [Xu et al., 2016a] and [Xu et al., 2016b].

73



Chapter 6. Harmonic LQG Scheduling and Control Codesign

Figure 6.1 Two tasks with non-harmonic periods (upper plot) and harmonic peri-
ods (lower plot). The job arrivals are shown with down-arrows and the job finishing
times with up-arrows.

In the chapter, we present some new results on task period harmonization and
scheduling analysis for harmonic tasks, with the twin goals of simplifying the con-
trol design and improving the performance of multi-loop control systems.

Outline

Section 6.2 provides the harmonic response-time analysis. The two algorithms to
harmonize a non-harmonic task set are presented in Section 6.3. We present the har-
monic codesign procedure in Section 6.4. In Section 6.5, the harmonic task period
assignment is evaluated with and without task offsets and is compared to the non-
harmonic period assignment. Finally, in Section 6.6, some concluding remarks are
given.

6.2 Scheduling Analysis for Harmonic Tasks

Below we first give an algebraic characterization of the task periods under full uti-
lization. After stating some general scheduling properties, we then give the new
response-time analysis for harmonic tasks.

Characterization of Full-Utilization Harmonic Task Sets

Assume a harmonic task set consisting of n tasks and with full utilization, i.e.,

Cw
1

T1
+

Cw
2

T2
+ · · ·+ Cw

n

Tn

= 1. (6.1)

74



6.2 Scheduling Analysis for Harmonic Tasks

The fact that the task periods are harmonic can be expressed as Tk+1 = mkTk, mk ∈
N
+, k ∈ {1, 2, · · · , n−1}. Using this one obtains

Cw
1

T1
+

Cw
2

m1T1
+

Cw
3

m1m2T1
+ · · ·+ Cw

n

m1m2 · · ·mn−1T1
= 1. (6.2)

Solving for T1 gives

T1 =Cw
1 +

Cw
2

m1
+

Cw
3

m1m2
+ · · ·+ Cw

n

m1m2 · · ·mn−1
. (6.3)

From the harmonicity it follows that

T2 = m1Cw
1 +Cw

2 +
Cw

3

m2
+

Cw
4

m2m3
+ · · ·+ Cw

n

m2m3 · · ·mn−1

...

Tn = m1m2 · · ·mn−1Cw
1 +m2m3 · · ·mn−1Cw

2 + · · ·+Cw
n .

(6.4)

This can be written on matrix form as

T = MCw (6.5)

with T =
[

T1 T2 · · · Tn

]T and with M being the reciprocal matrix given by

M =











1
m1
...

m1m2 · · ·mn−1











[

1
1

m1
· · · 1

m1m2 · · ·mn−1

]

. (6.6)

Algebraically, T is a linear combination of the execution times Cw. Geometri-
cally, M is a linear projection of Cw onto a line L in the coordinate space, running
through the origin. The vector

[

1 m1 m1m2 · · · m1m2 · · ·mn−1
]T lies on L.

This is not an orthogonal projection. For given execution times {Cw
1 ,Cw

2 , · · · ,Cw
n }

and {m1, m2, · · · , mn−1} the harmonic periods can be calculated using (6.5).

Scheduling Analysis for Harmonic Tasks

Harmonic tasks have several properties that are appealing from a real-time control
perspective [Lehoczky et al., 1989].

1. Schedulability is guaranteed as long as the total utilization is less than or
equal to 1.

2. RM and EDF scheduling yields the same start latencies and response times
for each task. Under EDF, we assume that the tasks have implicit relative
deadlines equal to their periods, and that, if task τi and task τ j (i < j) have a
deadline tie, then EDF will schedule task τi.

75



Chapter 6. Harmonic LQG Scheduling and Control Codesign

Furthermore, under the assumption that execution times are constant for each task,
it holds that

3. The response time for each task, Ri, is constant.

4. The start latency for each task is constant, which is denoted as Si for task τi,
and is given by the response time of task τi−1, with τi being the current task.

The fact that the start latency of task i is equal to the worst-case response time
of task i− 1 implies that the delay can be large, which may degrade the control
performance. This can be remedied by adding an offset to each task, so that the job
start time always coincides with the job release time.

The following theorem can be used to calculate the response times under both
RM and EDF scheduling when the periods are harmonic, using the properties pre-
sented above. For convenience, let m0 = 1.

THEOREM 6.1
For RM and EDF scheduling with harmonic periods, given a set of n

tasks {τ1, τ2, . . . , τn} with utilization ∑U ≤ 1, there exists a smallest m̂ ∈
{1, 2, . . . , ∏

j−1
i=0 mi} such that

j

∑
i=1

(⌈

m

∏i−1
k=0 mk

⌉

Cw
i

)

−mT1 ≤ 0 (6.7)

for any m≥ m̂. Then the response time of task τ j ( j ≤ n) is

R j =
j

∑
i=1

(⌈

m̂

∏i−1
k=0 mk

⌉

Cw
i

)

. (6.8)

✷

Proof To prove the existence of m̂, we assume the extreme case m̂ = ∏
j−1
i=0 mk and

the utilization bound
j

∑
i=1

Ui =
j

∑
i=1

Cw
i

Ti

≤ 1. (6.9)

Then

j

∑
i=1

(⌈

m̂

∏i−1
k=0 mk

⌉

Cw
i

)

− m̂T1 =

(

j

∑
i=1

Cw
i

(

∏i−1
k=0 mk

)

T1
−1

)

m̂T1

=

(

j

∑
i=1

Cw
i

Ti

−1

)

m̂T1

≤ 0 (6.10)

and, hence, the existence of m̂ is proved.

76



6.2 Scheduling Analysis for Harmonic Tasks

Let Ri be the response time of task τi, then when 0 ≤ t ≤ Ri, the CPU is fully
loaded, so

j

∑
i=1

(⌈

m

∏i−1
k=0 mk

⌉

Cw
i

)

−mT1 > 0 (6.11)

when m < m̂. When m = m̂,

j

∑
i=1

(⌈

m

∏i−1
k=0 mk

⌉

Cw
i

)

−mT1 ≤ 0 (6.12)

and the response time of task τ j is

R j =
j

∑
i=1

(⌈

m̂

∏i−1
k=0 mk

⌉

Cw
i

)

. (6.13)
✷

The procedure to calculate the response time of task τ j follows from Theo-
rem 6.1. When m is chosen from 1, 2, . . . , ∏

j−1
i=0 mi, we evaluate

j

∑
i=1

(⌊

m

∏i−1
k=0 mk

⌋

Cw
i

)

−mT1 (6.14)

and find m̂ as the first m that makes this term negative. The procedure is summarized
in Algorithm 6.1.

In Algorithm 6.1, a linear search is used. In line 5, the initial value of m is given
by

minitial = mlower =









(

1−∑
j−1
i=1

Cw
i

Ti

)

Tj

Cw
j









j−2

∏
i=0

mi (6.15)

and it is increased by 1 every step, until m̂ is found, as shown in the while loop from
line 6 to line 8. By defining

mupper =









(

1−∑
j−1
i=1

Cw
i

Ti

)

Tj

Cw
j









j−2

∏
i=0

mi, (6.16)

it follows that mlower ≤ m̂ ≤ mupper. Furthermore, binary search on
[

mlower, mupper
]

can be applied to improve the algorithm performance.

EXAMPLE 6.1
Assume that we have three tasks with execution times C =

[

0.9 6.3 9.1
]

and that
T1 = 7.7, m1 = 2, and m2 = 3, i.e., T =

[

7.7 15.4 46.2
]

. Assume that we want
to calculate the response time of task τ3. Using Algorithm 6.1, one then obtains

minitial =









(

1−∑2
i=1

Cw
i

Ti

)

T3

Cw
3









1

∏
i=0

mi = 2. (6.17)

77



Chapter 6. Harmonic LQG Scheduling and Control Codesign

Algorithm 6.1 Response time calculation
1: procedure RESPONSETIME

2: calculate R j for m0, m1, . . ., m j−1, Cw
1 , Cw

2 , . . ., Cw
j , T1

3: T ′←MC

4: T ← T1

T ′1
T ′

5: m←









(

1−∑
j−1
i=1

Cw
i

Ti

)

Tj

Cw
j









j−2

∏
i=0

mi

6: while
j

∑
i=1

(⌈

m

∏i−1
k=0 mk

⌉

Cw
i

)

−mT1 > 0 do

7: m← m+1
8: end while

9: m̂← m

10: R j =
j

∑
i=1

(⌈

m̂

∏i−1
k=0 mk

⌉

Cw
i

)

11: return R j ⊲ Response time R j

12: end procedure

The search in the while loop in Algorithm 6.1 gives, when m = 3,

3

∑
i=1

(⌈

m

∏i−1
k=0 mk

⌉

Cw
i

)

−mT1 = 2.2 > 0 (6.18)

and when m = 4,

3

∑
i=1

(⌈

m

∏i−1
k=0 mk

⌉

Cw
i

)

−mT1 =−5.5 < 0. (6.19)

This implies that m̂ = 3 and that

R3 =
3

∑
i=1

(⌈

m̂

∏i−1
k=0 mk

⌉

Cw
i

)

= 25.3. (6.20)
✷

The time complexity of Algorithm 6.1 can be compared with the fixed priority
scheduling response-time calculation algorithm in [Bonifaci et al., 2013]. In [Boni-
faci et al., 2013], the authors assume that the task periods and the task execution
times are integers. The harmonic periods are defined as Ti|Tj (Ti divides Tj) or Tj|Ti

(Tj divides Ti) for all i, j = 1, 2, . . . , n. The algorithm correctly computes the re-
sponse time of task τn in O(n logn+ n logP) where n is the number of tasks and
P = maxn

i=1 Ti. In Algorithm 6.1 task periods and execution times may all be real-
valued. The while loop in the algorithm will, in the worst case, run ∏i−1

k=0 mk times.

78



6.3 Finding Harmonic Control Task Periods

The time complexity is O
(

∏i−1
k=0 mk

)

in the normal case and O
(

log∏i−1
k=0 mk

)

if
binary search is used.

Due to the different setups for the response time calculation in [Bonifaci et al.,
2013] and this chapter, one has to make adjustments to the proposed method. In
order to make a fair comparison one may assume that the periods are all integers.
Then it follows that ∏i−1

k=0 mk ≤ P, from which it follows that O
(

log∏i−1
k=0 mk

)

≤
O(n logn+n logP) for any n, i.e. the complexity of the proposed algorithm is lower
than what has been previously presented.

6.3 Finding Harmonic Control Task Periods

In scheduling–control codesign, it is typically assumed that the period of each con-
trol task can be chosen as a real value within a (possibly infinite) period range. In a
prototypical problem formulation, the performance of each controller is described
by a cost function V (T ), which is assumed to be an increasing function of the task
period T , i.e., the lower the cost, the better the performance will be. The goal is
to optimize the combined performance of all control tasks subject to a utilization
constraint Ub ≤ 1, e.g.,

minimize
T1,T2, ...,Tn

J =
n

∑
i=1

V (Ti)

subject to ∑
Cw

i

Ti

≤Ub.

(6.21)

If the function V (T−1) is convex, efficient numerical methods are available to find
the global optimum [Eker et al., 2000].

Here, we are interested in solving a similar codesign problem, but we want to
restrict the possible task periods to be harmonic. However, optimization problems
involving integers (i.e., the harmonic factors m1, m2, . . . , mn−1 in our case) are in
general NP-hard [Papadimitriou, 1981], meaning that the optimal harmonic period
assignment codesign problem cannot be solved efficiently. Hence, we propose the
following two heuristic approaches to the harmonic control task period assignment:
1) finding the closest harmonic period assignment to a set of initial periods, and
2) finding all possible harmonic period assignments that satisfy given task period
ranges. In both cases, all feasible candidate solutions are then evaluated with regards
to the combined control performance and the best solution is chosen.

Finding the Closest Harmonic Task Periods

We assume that a set of full-utilization initial non-harmonic task periods are given
as T 0 =

[

T 0
1 T 0

2 . . . T 0
n

]T
. The problem is then to find a set of harmonic periods

79



Chapter 6. Harmonic LQG Scheduling and Control Codesign

that minimizes the Euclidean distance between this set and the initial periods:

minimize
T1,T2, ...,Tn

∥

∥T −T 0
∥

∥

subject to
n

∑
i=1

Cw
i

Ti

= 1,
Tk+1

Tk

∈ N
+, k ∈ {1, 2, . . . , n−1}.

(6.22)

THEOREM 6.2
Let

T ∗ =
[

T ∗1 T ∗2 · · · T ∗n
]T (6.23)

be the solution of the above optimization problem. Then T ∗ ∈ {MC}, where M is

defined in (6.5), with mi ∈
{⌊

T 0
i+1

T 0
i

⌋

,

⌈

T 0
i+1

T 0
i

⌉}

. ✷

Proof Let f : Rn−1→ R
n be defined as

T = MC = f
([

m1 m2 . . . mn−1
])

(6.24)

where the matrix M is given in (6.5), and let the initial harmonic periods be T ∗ =
f (m∗vector), in which m∗vector =

[

m∗1 m∗2 . . . m∗n−1

]

. Further define

mvector, j =

[

m∗1 m∗2 . . .

⌈

T 0
j+1

T 0
j

⌉

+1 . . . m∗n−1

]

mvector, j =

[

m∗1 m∗2 . . .

⌈

T 0
j+1

T 0
j

⌉

−1 . . . m∗n−1

]

.

(6.25)

Let T = f
(

mvector, j

)

. Now consider Figure 6.2 where the curve represents the
utilization bound. Since this curve is convex, in the triangle T ∗T 0T , the angle be-
tween T ∗T 0 and T ∗T is greater than 90◦. Then

∥

∥T −T 0
∥

∥<
∥

∥ f
(

mvector, j

)

−T 0
∥

∥ (6.26)

and, similarly,
∥

∥T −T 0
∥

∥<
∥

∥ f (mvector, j)−T 0
∥

∥ . (6.27)

The two inequalities above also apply to the high-dimensional case. By choosing
different value of mi, one can prove that for each i≤ n−1, the two inequalities are
valid. In the n−dimensional case, we need to check 2n−1 inequalities. ✷

EXAMPLE 6.2
Assume that we have three tasks with the same execution times as in Example 1,
i.e., C =

[

0.9 6.3 9.1
]

. Let the full-utilization initial periods be

T 0 =
[

12.3 13.7 19.4
]

, with
T 0

2

T 0
1

= 1.1,
T 0

3

T 0
2

= 1.4, (6.28)

80



6.3 Finding Harmonic Control Task Periods

Figure 6.2 Finding the closest periods set to the initial periods set.

so m1 = 1 or 2 and m2 = 1 or 2. Four sets of harmonic periods can be calculated
from (6.5). The 2-norms of T −T 0 are given as follows:

∥

∥T −T 0
∥

∥=















5.62 if m1 = 1, m2 = 1
4.60 if m1 = 1, m2 = 2
5.57 if m1 = 2, m2 = 1
8.52 if m1 = 2, m2 = 2.

(6.29)

The closest harmonic periods are given by m1 = 1, m2 = 2 with T ∗ =
[

11.75 11.75 23.5
]

. ✷

The time complexity for calculating all feasible candidates for the closest har-
monic periods is O

(

2n−1
)

.

Harmonic Period Assignment with Period Ranges

In many real-time control applications, there exist lower and upper bounds on the
possible task periods. For instance, a commonly quoted rule of thumb [Åström and
Wittenmark, 2013] states that the period T of a control task should be chosen such
that

0.2≤ ωbT ≤ 0.6 (6.30)

where ωb is the bandwidth of the closed-loop system. Another rule of thumb, based
on the jitter margin of the control loop, is given in the next chapter.

In more general terms, we require that Ti ∈
[

T l
i , T u

i

]

where T l
i and T u

i are the
lower and upper period bounds of task τi and we assume that T l

i ≤ T u
i+1. We then

want to find all harmonic periods that satisfy the requirements above for all tasks.
We have the following theorem.

81



Chapter 6. Harmonic LQG Scheduling and Control Codesign

THEOREM 6.3
There exist m̃i, i ∈ {1, 2, . . . , n− 1}, satisfying the harmonic period requirement
above if and only if

⌈

T l
j

T u
i

⌉

≤
j−1

∏
k=i

m̃k ≤
⌊

T u
j

T l
i

⌋

for all i < j; (6.31)

and
n

∑
i=1

Cw
i

α ∏i−1
j=0 m̃ j

≤ 1, where α = min
i

T u
i

∏i−1
j=0 m̃ j

. (6.32)

✷

Proof Condition 1) can be understood as an existence condition. As shown in Sec-
tion 6.2, the harmonic periods are a function of m̃i, i ∈ {1, 2, . . . , n− 1}, for given
execution times [Cw

1 ,Cw
2 , . . . ,Cw

n ]. Thinking in the n-dimensional space spanned by
T1, T2, ..., Tn, each set of harmonic periods corresponds to a line through the ori-
gin. The existence condition can be understood as an n-dimensional cuboid in that
space. Any line that intersects with the cuboid can be represented by a function of
m̃i.

Condition 2) states that the total utilization should be less than or equal to 1.
Part of the intersection between the line representing the harmonic condition and
the cuboid must satisfy this utilization condition. ✷

Using Theorem 6.3 to find all harmonic periods, we can start with 1) to find all
possible sets of m̃i, and then use condition 2) to verify all of them. However, if

⌈

T l
j

T u
i

⌉

≪
⌊

T u
j

T l
i

⌋

(6.33)

then there exists a large number of sets of m̃i satisfying condition 1). We could
choose an equivalent to condition 1), which is

⌈

T l
i+1

T u
i

⌉

≤ m̃i ≤
⌊

T u
i+1

T l
i

⌋

and α
i−1

∏
j=0

m̃ j ≥ T l
i (6.34)

where α has been defined in condition 2).
We give an intuitive explanation for Theorem 6.3 when n = 2 in Figure 6.3. The

curve represents the utilization bound. For given Cw
1 and Cw

2 ,
Cw

1
T1

+
Cw

2
T2
≤ 1 is the

region on the right upper side of this curve. The lines through the origin represent
different harmonic relations between T1 and T2, while the rectangle represents the
allowed period ranges. The line segment between the two marked points give all
possible harmonic period assignments with utilization less than or equal to 1.

82



6.3 Finding Harmonic Control Task Periods

Figure 6.3 Harmonic periods selection for n = 2.

Considering n tasks, the point that is closest to the origin on each line segment
is T0 = M̃C, where M̃ is calculated by (6.5) with m̃i. The utilization when T = T0 is
1. The other point is

Tf = α
[

1 m̃1 m̃1m̃2 . . . m̃1m̃2 . . . m̃n

]

. (6.35)

The utilization when T = Tf is less than 1. Hence, the harmonic periods can be
selected anywhere in (1−a)T0 +aTf , with 0≤ a≤ 1.

EXAMPLE 6.3
Assume that we have three tasks with the same execution times as in Examples
6.1 and 6.2, i.e., C =

[

0.9 6.3 9.1
]

. Further assume that we have specified the
allowable period ranges as

[

T l
1 , T u

1

]

=
[

6, 12
]

,
[

T l
2 , T u

2

]

=
[

7, 21
]

,
[

T l
3 , T u

3

]

=
[

9, 27
]

. (6.36)

We then have

⌈

T l
2

T u
1

⌉

= 0.58,
⌊

T u
2

T l
1

⌋

= 3.5⇒ m1 ∈ {1, 2, 3}

⌈

T l
3

T u
2

⌉

= 0.43,
⌊

T u
3

T l
2

⌋

= 3.86⇒ m2 ∈ {1, 2, 3}

⌈

T l
3

T u
1

⌉

= 0.75,
⌊

T u
3

T l
1

⌋

= 4.5⇒ m1m2 ∈ {1, 2, 3, 4}.

(6.37)

We should choose [m1, m2] ∈ {[1, 2], [2, 1], [2, 2], [3, 1]}. When [m1, m2] ∈
{[1, 1], [1, 3]} the utilization condition is not satisfied. We then use (6.5) and (6.35)

83



Chapter 6. Harmonic LQG Scheduling and Control Codesign

to calculate the harmonic periods T0 and Tf . The corresponding period sets are

a
[

0.25 0.25 0.5
]

+
[

11.75 11.75 23.5
]

a
[

0.4 0.8 0.8
]

+
[

8.6 17.2 17.2
]

a
[

0.425 0.85 1.7
]

+
[

6.325 12.65 25.3
]

a
[

0.967 2.9 2.9
]

+
[

6.033 18.1 18.1
]

(6.38)

for any a ∈ [0, 1].
Note that the first solution with a = 0 corresponds to the closest period solu-

tion in Example 6.2. Here we have obtained more solutions that could be further
evaluated with regard to, e.g., overall system performance. ✷

The harmonic period assignment using period ranges has previously been solved
in [Nasri et al., 2014] and in [Nasri and Fohler, 2015]. In [Nasri and Fohler, 2015]
which uses the so-called forward calculation approach, the computational complex-
ity is O (n) when all integer multiples intersect, while the complexity is pseudo-
polynomial when all integer multiples do not intersect. In [Nasri and Fohler, 2015],
which uses an alternative backward calculation approach, the complexity is pseudo-
polynomial when all integer multiples intersect, and when all integer multiples do
not intersect the complexity is O (n logn).

Theorem 6.3 provides a unified method for both the case when all integer mul-
tiples intersect and when all integer multiples do not intersect, or a combination of
those two situations. Since the algorithm is only run once from 1 to n to calculate
m̃i and to evaluate

n

∑
i=1

Cw
i

α ∏i−1
j=0 m̃ j

, (6.39)

the time complexity is O (n) for each such calculation.

6.4 Codesign Procedure

In this section, we apply harmonic period assignment in scheduling-control code-
sign. As a starting point for the codesign, we find a set of non-harmonic, real-valued
task periods and corresponding controllers using the sequential search optimization
method in Chapter 4. We then harmonize these periods using Theorem 6.2 or Theo-
rem 6.3 and enumerate all possible combinations of the harmonic factors. For each
harmonic period assignment, we redesign each controller based on the new period
and the new (now constant) control delay. Finally, we evaluate the combined control
performance of all cases and select the best result.

All LQG controllers are designed using the lqgdesign command in Jitterbug
[Cervin et al., 2002b]. To make a fair comparison between harmonic and non-
harmonic designs, we make the following assumptions for the LQG control design:

84



6.5 Evaluation

Calculate initial
periods using [Bini
and Cervin, 2008]

Calculate initial non-
harmonic periods
using Chapter 4

Harmonize the
periods using Thm

6.2 or Thm 6.3

Redesign controllers

Evaluation in TrueTime

Evaluate cost in
TrueTime for non-
harmonic periods

Figure 6.4 Codesign and evaluation procedure for non-harmonic and harmonic
designs.

• The harmonic control design takes the constant delay into account.

• The non-harmonic control design takes the delay distribution due to task
scheduling into account, resulting in a jitter-robust controller with fixed pa-
rameters (Chapter 4). The delay distribution is found through a schedule sim-
ulation in TrueTime.

• The CPU utilization is 1 for both harmonic scheduling and non-harmonic
scheduling. In non-harmonic scheduling, if the response time is greater than
the period, the response time distribution used in the control design is trun-
cated to the period length.

The cost function (2.2) for each controller under each scheduling scenario is
evaluated with TrueTime. The design and evaluation procedure is summarized in
the flow diagram in Figure 6.4.

6.5 Evaluation

In this section, we compare the resulting performance of harmonic codesign to state-
of-the-art non-harmonic codesign.

85



Chapter 6. Harmonic LQG Scheduling and Control Codesign

A Simple Codesign Example

For a simple codesign example, we choose three plants

P1 =
2
s2 , P2 =

1
s2−3

, P3 =
1

s(s+1)
(6.40)

to be controlled by three tasks τ1, τ2, τ3. τ1 has the highest priority and τ3 has the
lowest priority. The execution times are given as Cw

1 = 0.1, Cw
2 = 0.12, Cw

3 = 0.14.
The state-space representation used is the controllable canonical form. The LQG
control cost parameters are given as Q1c = CTC, Q2c = 0.01tr(Q1c), R1c = BBT ,
and R2c = 0.01tr(R1c).

The initial non-harmonic periods are calculated by the initialization procedure
described in Chapter 4:

1. For task i, assume that the LQG cost can be approximated by a linear function
of the period Ti and of the delay δi,

Vi = αiTi +βiδi. (6.41)

Evaluate the sensitivity coefficients αi and βi at the point where Ti =Cw
i and

δi = Cw
i using numerical linearization and Jitterbug. Then use the period as-

signment method in [Bini and Cervin, 2008] to minimize the LQG cost under
the simplifying assumption that these are the true cost functions.

2. Use the Sequential Search method in Chapter 4 to find the stochastic LQG
periods.

The initial non-harmonic periods are T ∗1 = 0.3017, T ∗2 = 0.4089, T ∗3 = 0.4478
with initial cost V ∗ = 2.01. Using Theorem 2, we find the harmonic factors

m1 ∈
{⌊

T ∗2
T ∗1

⌋

,

⌈

T ∗2
T ∗1

⌉}

= {1, 2}

m2 ∈
{⌊

T ∗3
T ∗2

⌋

,

⌈

T ∗3
T ∗2

⌉}

= {1, 2} .
(6.42)

The LQG cost is then evaluated in TrueTime for the following cases:

• No offset. Assume a constant delay equal to the job response time Ri to design
and evalute the LQG controllers.

• Offset. Add the start latency Si as a release offset to each task; then design
and evalute the LQG controllers for the constant delay Ri−Si.

The resulting periods and LQG costs are shown in the table below. No offset means
sampling happens at job release time, while offset means that sampling happens at
the job start.

86



6.5 Evaluation

{m1, m2} T1 T2 T3 Vno offset Voffset

{1, 1} 0.36 0.36 0.36 1.99 1.57
{1, 2} 0.29 0.29 0.58 2.11 1.57
{2, 1} 0.23 0.46 0.46 1.90 1.33
{2, 2} 0.20 0.39 0.78 2.56 1.75

The result shows that when we approximate the initial non-harmonic task periods
with harmonic ones, the costs can be better or worse than the initial cost, i.e., V ∗ =
2.01. However, when we add release offsets, the cost is clearly better than the initial
cost in all the cases, with the best case obtained for {m1, m2}= {2, 1}.

Continuing the same example, we also show how to find harmonic periods when
there are constraints on the allowable period ranges, and then evaluate the LQG
control performance, using the same plants with the same execution times as before.
Assuming that the period Ti can only be chosen from [0.6T ∗i , 1.7T ∗i ], it follows from
Theorem 6.3 that the possible periods are when {m1, m2} is {1, 1}, {1, 2}, {2, 1}
(as shown above), or {3, 1} (as shown below).

{m1, m2} T1 T2 T3 Vno offset Voffset

{3, 1} 0.19 0.56 0.56 3.36 2.25

It should be noted, though, that the harmonic period assignment with the low-
est control cost is not necessarily restricted to the above cases. The control cost
function could have a form so that the harmonic period assignment with the low-
est cost is not among those assignments that are close to the initial non-harmonic
periods in the Euclidean sense. However, as shown in the general evaluation the
proposed approach obtains gives considerably better control performance than the
non-harmonic case.

Randomly Generated Example

To see if the good results shown in the simple example above holds in more general
cases, we randomly generate sets of three plants from three plant families, which
are the same as in Section 4.5.

We randomly generate 20 sets of plants for each family. The transfer functions
are converted to a state-space representation on controllable canonical form. For
the LQG controllers, we use the design parameters Q1c =CTC, Q2c = 0.01tr(Q1c),
R1c = BBT , and R2c = 0.01tr(R1c). The task execution times were randomly gener-
ated from Cw

1 ∈ unif(0.09, 0.11), Cw
2 ∈ unif(0.11, 0.13), Cw

3 ∈ unif(0.13, 0.15). The
nominal task utilizations Unom

i were generated using an n-dimensional uniform dis-
tribution with total utilization 1. Task 1 has the highest priority, while task 3 has the
lowest priority.

The optimization procedure to assign initial non-harmonic periods is the same
as in the previous section. We find the four closest harmonic period sets to the initial

87



Chapter 6. Harmonic LQG Scheduling and Control Codesign

Table 6.1 The overall LQG costs, averaged over randomly generated plant sets.

Family I II III

Non-harmonic tasks 2.92 8.61 29.46
Harmonic tasks 2.53 5.17 17.76
Harmonic tasks with offsets 2.03 3.91 15.43

periods using Theorem 6.2. For the harmonic periods case, the response time of each
task is constant. Using this constant response time as delay, the LQG controllers are
designed and the corresponding costs are evaluated. In the table below, the minimum
cost, out of the four cases with harmonic periods, is given. We then add an offset
to each task in order to obtain a shorter delay for task 2 and 3. The length of the
offset is the start latency of each task. The constant delay is Ri− Si. We design a
controller and evaluate the LQG costs for this constant delay. The obtained LQG
costs, averaged over 20 generated plant sets for each family, are summarized in
Table 6.1.

The LQG costs are evaluated as follows:

• Non-harmonic tasks. The delay distribution is truncated to the interval
[

Rb
i , Rb

i +Ti

]

. The probability of a response time greater than Rb
i +Ti is added

to the probability mass function (PMF) at Rb
i +Ti. We then use the truncated

delay distribution to design stochastic LQG controllers. The LQG cost is eval-
uated in TrueTime.

• Harmonic tasks. We calculate 2n−1 sets of harmonic periods. For each set,
LQG controllers with constant delays equal to Ri are designed and evaluated
in TrueTime. The period set giving the smallest cost is selected.

• Harmonic tasks with offsets. For each set of harmonic periods, LQG con-
trollers with constant delays equal to Ri− Si are designed and evaluated in
TrueTime. The period set giving the smallest cost is selected.

We normalize the costs for non-harmonic tasks to 1 for each plant set, then
normalize each cost for harmonic tasks without or with offsets, compared with cor-
responding non-harmonic tasks cost. The box plot is shown in Figure 6.5.

In Family III, the likelihood that the plants are unstable, and, hence, more sensi-
tive to delays and delay jitter, is larger, and therefore the control cost is considerably
higher than for Family I and II. As shown in Table 6.1, when the periods are har-
monic without offset, the costs are lower than in the non-harmonic case. The reason
for this is that the increase in cost caused by the period perturbation is compensated
for by the decrease in cost caused by the jitter-free, but possibly large delays. The

88



6.6 Conclusion

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I, no offset I, offset II, no offset II, offset III, no offset III, offset

Figure 6.5 Normalized costs for harmonic tasks without and with offsets.

best results are obtained for the harmonic tasks with offsets. In this case, the in-
crease in cost caused by the period perturbation is small compared to the decrease
in cost caused by the smaller and jitter-free delays.

The evaluation above is based on the assumption that the execution time is
constant. However, in reality, this is seldom the case. To investigate the effect of
varying execution times we design the controllers using the harmonic task with
offset method assuming that the execution times are constant. When we evalu-
ate the performance we let the execution time vary from job to job according to
unif(0.9Cw

i ,Cw
i ). The costs now become

Family I II III

Cost 2.01 3.88 15.33

i.e., even smaller than before. The box plot of the costs for non-constant execution
times compared with non-harmonic tasks costs are shown in Figure 6.6. The re-
sult is, however, not surprising since the average delay is always shorter than the
constant delay in the constant execution time case.

6.6 Conclusion

In this chapter, we have investigated the harmonic scheduling and control code-
sign problem. Through an extensive evaluation, it was shown that codesign using

89



Chapter 6. Harmonic LQG Scheduling and Control Codesign

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Family I Family II Family III

Figure 6.6 Normalized costs for non-constant execution times (different scale
compared to Figure 6.5).

harmonic controller task periods gives better control performance than using non-
harmonic periods when task offsets are added. The reason for this is the fact that
under harmonic scheduling the response times and start latencies for each task are
constant, assuming that the task execution times are constant. This can be exploited
in the LQG control design through the constant control delays that it gives rise to.
However, as shown in the evaluation also in the case when the task execution times
vary slightly from job to job the proposed codesign method gives good results.

In order to implement the codesign method, it is necessary to be able to find
the harmonic periods and to calculate the task response times. A new method for
calculating the response times has been presented that has lower complexity than
earlier methods. Also, two heuristic approaches to harmonic task period assignment
have been presented. One method for finding the closest harmonic periods to a set of
initial periods and one method for finding all possible harmonic period assignments
that satisfy constraints on allowable task period ranges.

90



7

Robust LQG Scheduling

and Control Codesign*

7.1 Introduction

The design methods in Chapters 4, 5, and 6 are all based on standard LQG de-
sign, albeit with extensions to both stochastic and periodic delays. It is however
well known that good LQG performance does not mean that the system is robust
[Doyle, 1978]. While there are several methods proposed to improve the robustness
of LQG, very few have focused on uncertainties related to controller timing. This is
the reason for exploring LQG control synthesis with a jitter robustness constraint.

In this chapter, we present an approach to jitter-robust LQG control synthesis
together with priority assignment and period selection methods for the real-time
system. We propose a convex optimization-based sampled-data LQG control de-
sign method with a jitter robustness constraint. The constraint guarantees that the
closed-loop system has a specified jitter margin [Kao and Lincoln, 2004; Cervin
et al., 2004]. We also propose a new rule of thumb for initial sampling period se-
lection based on the jitter margin. Finally, we give a codesign method to assign
priorities and sampling periods to obtain optimal robust LQG performance for a set
of controllers that share a single CPU.

Outline

In Section 7.2, we give the control system model, including the performance metric
we use. In Section 7.3, a new rule of thumb for initial sampling period assignment
is proposed. The robust LQG control design problem and its solution are described
in Section 7.4. In Section 7.5, we give a jitter-aware priority and period assignment
codesign method to optimize the overall system performance. In Section 7.6, an ex-
ample is presented to show the entire procedure of scheduling and control codesign.
In the same section, the method is evaluated on randomized plant sets, showing an
improvement over state-of-the-art methods. Conclusions are given in Section 7.7.

* This chapter is based on [Xu et al., 2017b].

91



Chapter 7. Robust LQG Scheduling and Control Codesign

P(s)

K(z)

w z

u y

Sh

Hh

δ (·)

Figure 7.1 Control loop with continuous plant P(s), discrete LQG controller K(z),
periodic sampler Sh and hold Hh, and time-varying delay δ (t).

7.2 System Model

The control loop is illustrated in Figure 7.1. For the system defined by (2.1), a
time-invariant LQG controller should be designed to minimize the quadratic cost
function

V = lim
T→∞

1
T

E
∫ T

0

(

xT (t)Q1cx(t)+2xT (t)Q12cu(t)+uT (t)Q2cu(t)
)

dt = E z2.

(7.1)
The sampling period of the controller is h = Ti. As before, sampling is performed at
the task release time, e.g., using external hardware, and the actuation is performed
when the task finishes. Hence, the actuation (or output) is subject to a time-varying
delay δ (t), Cb

i ≤ δ (t) ≤ Cw
i + Ji, due to the task output jitter where Ji is the jitter.

For a given constant delay or known delay distribution (assuming independent de-
lays between periods), the LQG controller and its corresponding cost (7.1) can be
designed and evaluated using, e.g., Jitterbug.

As first shown in [Doyle, 1978], an LQG controller has no guaranteed robust-
ness. In order to gain robustness of the real-time control system, we would like to
design a controller that has a specified jitter margin Jm [Kao and Lincoln, 2004;
Cervin et al., 2004]. This means that the closed-loop system should be stable for
any time-varying delays δ ∈ [Cb

i ,Cw
i + Jm]. Naturally, we will require that Jm > Ji.

For a continuous-time control system, the sufficient condition for stability of the
closed-loop system is

|T (iω)|=
∣

∣

∣

∣

P(iω)K(iω)

1+P(iω)K(iω)

∣

∣

∣

∣

<
1

Jmω
, ∀ω, (7.2)

where P(s) is the plant and K(s) is the controller [Kao and Lincoln, 2004]. In a
Bode plot, this corresponds to the magnitude curve of the complementary sensitivity
function T (s) lying below a line with slope −1 and gain 1/Jc

m (see Figure 7.2).

92



7.3 Initial Sampling Period Selection

10-1 100 101 102
-20

-15

-10

-5

0

5

10

15

20

M
ag

ni
tu

de
 (

dB
)

|T(i )|
1/(J

m
)

Frequency  (rad/s)

−3 dB

+3 dB

1
Jc

m ωb

Figure 7.2 The continuous-time jitter margin Jc
m is given by the intersection of

the closed-loop transfer function |T (iω)| and the line 1/(Jc
mω). For a typical robust

design, the 3 dB bandwidth ωb is close to 1/Jc
m.

For a sampled-data system, the stability criterion is slighly more complicated (see
Section 7.4 below).

The goal of the control and scheduling codesign is to optimize the overall con-
trol performance, subject to the real-time system utilization constraint. This can be
expressed as

minimize V = ∑
i

Vi

subject to ∑
i

Ui ≤ 1
(7.3)

where the cost Vi for each controller is defined in (7.1). Moreover, we would like
to give guarantees on the robustness for each control loop. The parameters that we
can optimize over are the task priorities, the sampling periods, and the controllers
themselves.

In order to achieve a small LQG cost and good robustness, the sampling period
and the jitter should be small, but this requirement cannot be satisfied simultane-
ously for every task due to the fixed-priority scheduling algorithm used. This makes
the codesign problem nontrivial.

7.3 Initial Sampling Period Selection

Sampling period selection for controllers is typically done based on the properties
of the closed-loop system. The sampling rate should be fast enough, so that distur-
bance rejection and robustness are not affected too much by the sampling and hold

93



Chapter 7. Robust LQG Scheduling and Control Codesign

100 101 102 103
-40

-30

-20

-10

0

10

20

30

40

M
ag

ni
tu

de
 (

dB
)

|T
1
(i )|

|T
2
(i )|

|T
3
(i )|

1/(J
m

)

Frequency  (rad/s)

−3 dB

1
Jc

m

ωb1

ωb2

Figure 7.3 In degenerate cases, the 3 dB bandwidth ωb may be significantly
smaller than 1/Jc

m (systems T1, T2) or even undefined (system T3).

operations, while slow enough to avoid numerical problems and allow implementa-
tion in resource-constrained systems.

There are several rules of thumb that relate the sampling rate with the speed
of the closed-loop system. Franklin et al. recommend sampling about 10–40 times
faster than the bandwidth [Franklin et al., 1994]. Åström and Wittermark recom-
mend 4 to 10 samples per rise-time of the closed-loop system [Åström and Wit-
tenmark, 2013]. These recommendations (and other similar ones [Levine, 1996])
roughly translate into the relation

0.15≤ ωbh≤ 0.6 (7.4)

where ωb is the 3 dB closed-loop bandwidth and h is the sampling interval.
Basing the sampling period selection on a single point ωb of the closed-loop fre-

quency response, however, makes this rule of thumb sensitive to degenerate cases.
As an alternative, we propose a new rule of thumb that is based on the continuous-
time jitter margin Jc

m of the control system:

0.15≤ h/Jc
m ≤ 0.6. (7.5)

For a typical, robust closed-loop system with a maximum complementary sensitivity
of 3 dB, we have ωb ≈ 1/Jc

m, and the new rule produces similar sampling intervals
as the old rule (7.4). This nominal case is illustrated in Figure 7.2.

For degenerate cases, however, the new rule will typically recommend shorter
sampling intervals than the old rule. Three such cases are illustrated in Figure 7.3.
For closed-loop system T1, the maximum complementary sensitivity is close to

94



7.4 Jitter-Robust LQG Control Synthesis

+ P(s)

K(z)
d

e

w z

u y

Sh

Hh

Hh

z−1
z

∆

Figure 7.4 Transformation of control loop with time-varying output delay. The
jitter is represented by the uncertainty ∆.

15 dB, which implies that the system is not robust. For system T2, the 3 dB band-
width is quite low, while |T (iω)| does not roll off until much later. For system T3

the closed-loop gain is low throughout and the bandwidth is not well-defined. As
seen in the figure, all of these systems actually have the same jitter margin, and the
new rule will hence recommend the same sampling interval for all of them.

The new rule aims for a sampled closed loop that should be robust towards de-
lay and jitter amounting to more than one and a half sampling interval in total. This
aligns with the worst-case situation in typical multirate applications: the sample-
and-hold operation can be approximated by a delay of h/2, and the output jitter is
typically upper bounded by h. Using the rule does not give any hard stability guar-
antees, however, since the exact performance degradation due to sampling cannot
be captured using simple expressions. Once a discrete-time controller has been de-
signed, its jitter margin should be verified using the sampled-data analysis in [Kao
and Lincoln, 2004].

7.4 Jitter-Robust LQG Control Synthesis

Robust LQG Problem Formulation

In order to design a LQG controller with guaranteed robustness against jitter, we use
the stability criterion in [Kao and Lincoln, 2004] as the constraint. As shown in [Kao
and Lincoln, 2004] the sampled-data control loop with output jitter in Figure 7.1
can be transformed into the block diagram shown in Figure 7.4. The time-varying
operator ∆ represents the uncertainty due to jitter and has the worst-case gain

‖∆‖=
√

(2⌊N⌋+1)N−⌊N⌋2−⌊N⌋, (7.6)

where N = Ji/h.

95



Chapter 7. Robust LQG Scheduling and Control Codesign

Referring to Figure 7.4, the jitter-robust control design problem can now be
stated as the optimization problem

minimize
K(z)

‖Gzw‖2
2

subject to ‖Gde‖∞ < b,
(7.7)

where

b =
1

√

(2⌊Nm⌋+1)Nm−⌊Nm⌋2−⌊Nm⌋
,

Nm = Jreq
m /h,

(7.8)

where J
req
m is the required jitter margin. The objective function in the optimization

problem, namely the square of the H2 norm of Gzw, is equal to the LQG cost (7.1).
Since both the criterion and the constraint in (7.7) are nonconvex, it is hard to

solve the problem directly. We, therefore, reformulate it as a convex optimization
problem below.

Youla Parameterization and Convex Optimization

Using the Youla parameterization [Boyd and Barratt, 1991], the optimization prob-
lem (7.7) can be reformulated as

minimize
Θ

∫ 2π

−2π

∣

∣Pzw(e
jω)−Pzu(e

jω)Θ(e jω)Pyw(e
jω)
∣

∣

2
dω

subject to

∥

∥

∥

∥

e jω −1
e jω

Pyu

(

e jω
)

Θ
(

e jω
)

∥

∥

∥

∥

∞

< b,

(7.9)

where the arbitrary stable finite order LTI Θ is defined as

Θ(e jω) =
K(e jω)

1+Pyu(e jω)K(e jω)
. (7.10)

For the sampled plant Pd(z) with noise covariance matrices R1d and R2d , and
weighting matrices Q1d and Q2d , the transfer function matrix used in the optimiza-
tion (7.9) is

[

Pzw(z) Pyw(z)

Pzu(z) Pyu(z)

]

=





√
Q1dPd(z)

√
R1d 0

√
Q1dPd(z)

0 0
√

Q2d

Pd(z)
√

R1d

√
R2d Pd(z)



 . (7.11)

The optimization problem can be solved numerically using, e.g., the CVX tool-
box [Grant and Boyd, 2014]. Here we choose a pulse response representation of the
Youla parameter,

Θ(z) =
n−1

∑
i=0

θi

zk
, (7.12)

96



7.4 Jitter-Robust LQG Control Synthesis

with {θi} being the set of scalar optimization variables. The magnitude constraint
is checked over a dense grid of frequency points. Once the problem is solved for
Θ(z), the corresponding controller can be calculated by

K(z) =
Θ(z)

1−Θ(z)Pyu(z)
. (7.13)

Example

Consider control of an inverted pendulum with realization

A =

[

−1 1
0 1

]

, B =

[

0
1

]

, C =
[

1 0
]

. (7.14)

The continuous-time cost and noise matrices are

Q1c =

[

100 0
0 0

]

, Q2c = 1, R1c =

[

0 0
0 100

]

, R2c = 1. (7.15)

A standard LQG design gives the continuous-time jitter margin Jc
m = 0.195. The

recommended sampling period range is hence 0.03 < h < 0.12, and we choose h =
0.1. The minimum delay is assumed to be zero, and the output delay is assumed
to be independent between periods and uniformly distributed between 0 and J. For
zero delay and jitter, the sampled-data jitter margin is J0

m = 0.190.
For different values of the jitter, 0≤ J ≤ h, three different designs are compared:

• Plain LQG design, assuming zero delay and jitter.

• Stochastic LQG design, with perfect knowledge of the delay distribution. This
is the optimal design with regards to the LQG cost.

• Jitter-robust LQG design, with the constraint of keeping the remaining jitter
margin at the original value J0

m. This is achieved by setting J
req
m = J0

m + J.

The expected LQG cost under uniform jitter is calculated using Jitterbug and the
remaining jitter margin is calculated using [Kao and Lincoln, 2004]. The results,
normalized to 1 for the case of zero jitter, are given in Figure 7.5. It is seen that
the stochastic LQG performs best in terms of average-case performance (it should
since it is an optimal design), while its jitter margin degrades as the jitter increases.
The situation is worse for the plain LQG controller, which suffers from both perfor-
mance deterioration and decreasing jitter margin. The jitter-robust LQG is able to
keep the jitter margin at its original value (0.190) while paying only a small price
in terms of performance degradation.

97



Chapter 7. Robust LQG Scheduling and Control Codesign

0 0.02 0.04 0.06 0.08 0.1

Jitter

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

A
v
e
ra

g
e
-c

a
s
e
 L

Q
G

 c
o
s
t LQG

Stochastic LQG

Jitter-robust LQG

0 0.02 0.04 0.06 0.08 0.1

Jitter

0.08

0.1

0.12

0.14

0.16

0.18

0.2

J
it
te

r 
m

a
rg

in

Figure 7.5 Comparison of design methods for the inverted pedulum: average-case
normalized performance (top) and remaining jitter margin (bottom) vs amount of
jitter in the control loop.

7.5 Real-Time System Scheduling Codesign

We now turn to the problem of implementing several digital controllers on the same
CPU. Using the procedure described above, we can design a robust controller with
a specified jitter margin for a given sampling period, but it remains to optimize
the combined performance of a set of controllers by assigning suitable periods and
priorities.

Affine Cost Function Approximation

We begin by characterizing the jitter-robust LQG cost Vi as a function of the sam-
pling period and the jitter. We first calculate the initial sampled-data jitter margin
J0

m,i assuming a constant delay Cw
i and zero jitter. For a pair (hi, Ji) we then design a

jitter-robust LQG controller as described in Section 7.4 with the required jitter mar-
gin J

req
m,i = J0

m,i+Ji. Solving the convex optimization problem (7.9) for a given period

98



7.5 Real-Time System Scheduling Codesign

hi and jitter Ji, we obtain one data point of the cost function Vi = fi(hi, Ji). We store
the result of each evaluation as a data point p j = (T, J,V ), j ∈ {1, 2, . . . , m}, with
m being the number of points.

In order to facilitate an analytical solution for the optimal periods below, we
approximate the cost Vi as an affine function of sampling period Ti and jitter Ji,
namely,

Vi = aihi +biJi + ci. (7.16)

We want the square sum of the orthogonal distances between the affine approxima-
tion and the points as small as possible. Let c be a point on the plane, and n be a
unit normal vector to the plane. The optimization problem is

minimize
c,n

m

∑
j=1

(

(p j− c)T
n
)2

subject to ‖n‖= 1.

(7.17)

This plane fitting problem can be efficiently solved by the singular value decom-
position (SVD) method [Arun et al., 1987]. The optimization solution contains two
parts, c and n. The point on the plane c can be calculated by c = 1/m∑m

j=1 p j. Let
A = [p1− c, p2− c, . . . , pm− c]. The unit normal vector n is the last column of U ,
where A =USV T . Having obtained c and n, the equation of the plane is

(

(

hi Ji Vi

)T − c

)T

n = 0, (7.18)

from which we obtain the coefficients in (7.16).

Period Assignment

For a given task priority ordering, we now derive a solution to the optimal period
assignment problem. To facilitate an analytical solution, we use simple bounds on
the best-case and worst-case response times and conservatively over-estimate the
jitter.

The best-case response time of task i is trivially lower bounded by Rb
i ≥ Cw

i .
For the worst-case response time, we use the simplistic upper bound (see [Bini and
Baruah, 2007])

Rw
i ≤

∑i
j=1 Cw

j

1−∑i−1
j=1

Cw
j

Tj

, (7.19)

where j < i indicates that task j has higher priority than task i. It then follows that
the jitter is upper bounded by

Ji = Rw
i −Rb

i ≤
∑i

j=1 Cw
j

1−∑i−1
j=1

Cw
j

Tj

−Cw
i . (7.20)

99



Chapter 7. Robust LQG Scheduling and Control Codesign

In order to obtain a solution that is guaranteed not to violate the jitter margin re-
quirement for any controller, we assume that the upper bound in (7.20) can actually
be reached during execution. Using the upper bound for the value of Ji and the
relation Ui =Cw

i /hi, the cost function (7.16) for task i can be restated as

Vi =
aiC

w
i

Ui

+
bi ∑i

j=1 Cw
j

1−∑i−1
j=1 U j

−biC
w
i + ci. (7.21)

The period assignment problem (7.3) can now be expressed in terms of task utiliza-
tions as

minimize
{Ui}

∑
i

Vi

subject to ∑
i

Ui ≤ 1.
(7.22)

A similar optimization problem of this form was solved in [Bini and Cervin, 2008]
and we reuse that solution here. Let

αi = aiC
w
i , βi = bi

i

∑
j=1

Cw
j , (7.23)

and recursively define µk and λk as

µk =
√

αk, k = 1, 2, · · · , n−1

λn−1 =
√

αn +βn

λk−1 =

√

βk +(λk +µk)
2, k = 2, 3, · · · , n−1.

(7.24)

The optimal utilizations of each task are then given by

U1 =
µ1

λ1 +µ1

Uk =U1
µk

µ1

k−1

∏
j=1

λ j

λ j+1 +µ j+1
, k = 2, 3, · · · , n.

(7.25)

Finally, the optimal periods are recovered as hi = Cw
i /Ui. The solution always

achieves full utilization (∑i Ui = 1). For details, see [Bini and Cervin, 2008].

Priority Assignment

As discussed in [Mancuso et al., 2014], optimal priority assignment in real-time
control systems is, in general, a combinatorial problem with exponential complexity
in terms of the number of tasks. Assigning correct priorities is however crucial, since
the amount of jitter (and hence also the performance degradation) depends heavily
on the task priority (cf. (7.20)).

In this chapter, we have used the following two methods to assign priorities to a
set of controller tasks:

100



7.6 Evaluation

• Global solution. Using exhaustive search, we solve the optimal period as-
signment problem for all permutations of the task priorities and select the
priority ordering that gives the smallest overall cost. Because of its complex-
ity, this method can only be used for small task sets in practice.

• Heuristic solution. We propose to order the tasks by the value of Cw
i /
√

bi in
ascending order. The idea is to give high priority to tasks with short execution
times and high jitter sensitivity. This method can be used for arbitrarily large
task sets and only requires the period assignment problem to be solved once.

7.6 Evaluation

This section illustrates the jitter-robust LQG control and scheduling codesign pro-
cedure in a simple example and in a larger evaluation using randomly generated
plants. In summary, the different steps of the codesign method are:

1. Initial sampling period selection. Using the rule of thumb (7.5), initial sam-
pling periods are calculated based on the continuous-time jitter margins. With
these periods, the sampled-data closed-loop systems will have some basic ro-
bustness against scheduling-induced delay and jitter.

2. Characterization of the LQG cost. Designing a jitter-robust LQG controller
and evaluating the resulting cost for a number of different values of the period
and jitter, we obtain an affine cost function for each control loop.

3. Priority assignment and sampling period selection. A heuristic method and a
global search method are used for the task priority ordering. For each priority
assignment, optimal periods are calculated based on the affine cost functions.
If any period is outside of the given range, it is clamped at the limitation of
the range.

A Simple Example

The simple example consists of three tasks sharing one CPU. Each task implements
an LQG controller that controls one of the following open-loop unstable plants:

P1(s) =
1

(s−0.71)(s−0.40)

P2(s) =
1

(s−0.21)(s+0.08)

P3(s) =
1

(s−0.95)(s+0.76)
.

(7.26)

101



Chapter 7. Robust LQG Scheduling and Control Codesign

Table 7.1 Initial parameters in the simple example.

h0
i U0

i Cw
i J0

m,i

i = 1 0.074 0.35 0.026 0.24
i = 2 0.082 0.18 0.015 0.27
i = 3 0.048 0.47 0.022 0.16

For the LQG design, the three plants are realized in controllable canonical form.
The cost weighting matrices and noise covariance matrices are chosen as

Q1,i =

[

0 0
0 αi

]

, Q2,i = 1,

R1,i =

[

βi 0
0 0

]

, R2,i = 0.01,
(7.27)

where α1 = 1.89, α2 = 72.38, α3 = 102.66, β1 = 14.48, β2 = 1818.80, β3 = 17.86.
For the given parameters, a standard continuous-time LQG controller Ki(s) for

each plant is designed, and the continuous-time jitter margin Jc
m,i is calculated. Ini-

tial sampling periods are then chosen as

h0
i = 0.3Jc

m,i, (7.28)

i.e., the recommendation (7.5) is fulfilled. The initial utilizations U0
i are random-

ized using the UUniFast algorithm [Bini and Buttazzo, 2005]. The execution times
are then given by Cw

i = U0
i h0

i . The initial jitter margin J0
m,i is calculated using the

initial period h0
i and with Cw

i as the best-case response time. The initial periods,
utilizations, execution times, and jitter margins are summarized in Table 7.1.

To obtain cost function approximations, for each task τi we choose the sampling
period hi from 7 evenly spaced points between 0.5h0

i and 2h0
i and choose the jitter Ji

from 9 evenly spaced points between 0 and 2h0
i . For each pair (hi, Ji) that satisfies

Rb
i +Ji≤ hi, we design a robust LQG controller with the required jitter margin J

req
m =

J0
m,i+Ji. The corresponding LQG cost is evaluated in Jitterbug, assuming a uniform

response time distribution, unif
(

Rb
i , Rb

i + Ji

)

. The resulting costs functions Vi(hi, Ji)
for P1(s), P2(s), P3(s) are plotted in Figure 7.6, showing that affine approximations
are reasonable. Using the SVD plane fitting method, the affine LQG cost functions
are

V1(h1, J1) = (0.01h1 +0.06J1 +0.03)×103,

V2(h2, J2) = (0.57h2 +1.16J2 +0.51)×103,

V3(h3, J3) = (0.12h3 +0.80J3 +0.26)×103.

(7.29)

As can be seen from the coefficients, the cost is more sensitive to the size of the
jitter than to the value of the sampling period.

102



7.6 Evaluation

30

32

0.1 0.15

34

V

P1 (s)

36

h J

0.05 0.1

38

0.050

500

600

700

0.1

P2 (s)

0.15

h

800

J

0.05 0.1
0 0.05

260

280

300

0.1

V

0.05

320

P3 (s)

0.08

h J

340

0.06
0.040 0.02

Figure 7.6 Cost functions Vi = fi(hi, Ji) for three example plants. It is seen that
each Vi can be quite well approximated by an affine function.

Table 7.2 Enumeration of all possible priority orderings.

3

∑
i=1

V 0
i h∗1 h∗2 h∗3

3

∑
i=1

V ∗i

τ1, τ2, τ3 1000.8 0.15 0.06 0.04 951.3
τ1, τ3, τ2 1285.1 0.15 0.04 0.10 973.9
τ2, τ1, τ3 945.7 0.15 0.08 0.04 914.0
τ2, τ3, τ1 881.0 0.07 0.05 0.07 870.4
τ3, τ1, τ2 1246.8 0.15 0.04 0.10 946.9
τ3, τ2, τ1 926.1 0.06 0.04 0.10 883.0

In order to optimize the overall cost, priorities and periods need to be assigned.
We first enumerate all the permutations of priority assignment and calculate the
corresponding cost ∑3

i=1 V 0
i using the initial periods h0

i . The results are shown in the
first two columns of Table 7.2, where the first column lists the tasks in descending
priority order.

Next, for each priority assignment, the periods are optimized using the method

103



Chapter 7. Robust LQG Scheduling and Control Codesign

in Section 7.5. Any period that falls outside the range
(

0.15J0
i,m, 0.6J0

i,m

)

is clamped

at the limit, and then the optimization for the remaining periods is repeated. The
optimal sampling periods h∗1, h∗2, h∗3 and the corresponding total cost ∑3

i=1 V ∗i are
shown in the four last columns of Table 7.2.

In all six cases, the overall cost using optimal periods is smaller than the cost
using the initial periods. The global optimal solution to the priority and period as-
signment problem is found when the priority ordering is τ2, τ3, τ1, which gives
the optimal total cost ∑3

i=1 V ∗i = 870.4. This can be compared to the initial priority
ordering τ3, τ1, τ2 with initial periods, which has the total cost ∑3

i=1 V 0
i = 1246.8.

Applying the heuristic priority assignment method, the tasks are sorted by
Cw

i /
√

bi in ascending order. It turns out that τ2, τ3, τ1 is the priority order, which is
same as the global optimal priority assignment order for this example.

Randomly Generated Examples

To further investigate the performance of the codesign method, 10 sets of 3 plants
are randomly generated from three plant families, which are the same as in Sec-
tion 4.5.

For each Pi(s), the cost weighting matrices and noise covariance matrices are
randomly generated as

Q1 = 103pCTC, Q2 = 1,

R1 = 103qBBT , R2 = 0.01,
(7.30)

where B and C are state-space matrices of the plant Pi(s) in controllable canonical
form, p and q are random numbers on unif(0, 1). We then design a standard LQG
controller Ki(s) for each Pi(s) assuming a constant delay Cw

i . The initial sampling
period is chosen using (7.28). The initial utilization U0

i for each task is assigned by
the UUniFast method, and the execution times are given by Cw

i = h0
i U0

i .
For the given execution time Cw

i and periods h0
i , and with the initial priority

assignment and using the affine cost function approximations, we calculated the
following four overall costs for each set of randomly generated plants:

• Initial overall cost VVV ini. This cost is calculated for the initial periods h0
i and

with rate-monotonic priority assignment. This is our baseline approach.

• Overall cost after re-assigning the priorities VVV pri. This cost is calculated for
the initial periods h0

i with heuristic priority assignment.

• Overall cost after re-assigning priorities and periods VVV heuristic. We re-assign
the priorities with the heuristic method and calculate the optimal period as-
signment and then the overall cost is evaluated.

• Global optimal overall cost VVV global. Here we calculate the optimal periods for
all the permutations of priority assignments and find the minimal overall cost.

104



7.6 Evaluation

Family I Family II Family III

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

R
at

io

Figure 7.7 Ratio of Vpri/Vini for the randomly generated examples with heuristic
priority assignment.

We compare the ratio of Vpri/Vini and the ratio of Vheuristic/Vini and Vglobal/Vini in
Figure 7.7 and 7.8, respectively.

Figure 7.7 shows the performance improvement by priority assignment. In most
cases, the overall cost is decreased using the heuristic priority assignment, compared
to the initial rate-monotonic priority assignment. Hence, using rate-monotonic pri-
ority assignment which is often done in the real-time control community is not
necessarily the best. Here only the priorities were re-assigned using the heuristic
method (keeping the same sampling periods), and it gives the lower overall cost.

Figure 7.8 shows the performance improvement by period assignment. In all
cases, the overall cost is decreased using optimal period assignment. It also shows
that Vheuristic is very close to Vglobal in most randomly generated sets of plants. The
results imply that the period assignment improves the overall LQG performance,
and the performance obtained using the heuristic method gives almost as good re-
sults as a much more expensive exhaustive enumeration.

In summary, the results show that the heuristic solution to the priority assign-
ment problem gives almost the same result as the global solution, and both of them
are better than the initial priority assignment, which is the rate-monotonic priority
assignment based on the initial sampling periods. In most cases, the priority assign-
ments by the global solution and by the heuristic solution coincide, but the global
solution requires evaluating all the possible priority assignments, which is unfeasi-

105



Chapter 7. Robust LQG Scheduling and Control Codesign

I, heuristic I, global II, heuristic II, global III, heuristic III, global

0.7

0.75

0.8

0.85

0.9

0.95

1

R
at

io

Figure 7.8 Ratio of Vheuristic/Vini and Vglobal/Vini for the randomly generated ex-
amples with optimized periods.

ble for large task sets. The overall LQG performance can be further improved by
using the proposed period assignment method. In the evaluation the performance
improvement is visible by comparing Figure 7.7 and Figure 7.8. The median cost re-
duction approximately doubles when the period optimization is performed as well.

7.7 Conclusion

In this chapter, we proposed an LQG control synthesis method with a robustness
constraint, in the context of real-time system scheduling and control codesign. The
initial sampling period assignment and the robustness constraint are both based on
the jitter margin of the control system. The approximated affine cost function shows
that the cost is more sensitive to jitter than to the value of the sampling periods.
A priority and period assignment method is given based on the affine cost func-
tions. The evaluation shows that both priority assignment and period assignment
are important in obtaining the overall best performance while retaining the initial
robustness of the control loops.

106



8

Evaluation

In this chapter, the codesign methods from previous chapters are compared and
evaluated in more design examples. First, the methods from Chapters 4 to 7 are
evaluated in a simple codesign example. Then the methods from Chapters 4 to 6 are
compared in a large study on randomly generated plants, tasks, and associated LQG
controllers. To allow for a large number of cases to be investigated, Jitterbug is used
throughout to evaluate the resulting performance.

8.1 A Simple Codesign Example

As a simple codesign example, assume three plants,

P1(s) =
2

s2−1
,

P2(s) =
2
s2 ,

P3(s) =
1

s(s+1)
,

(8.1)

that should be controlled by three tasks τ1, τ2, τ3. The task execution times are as-
sumed constant and given by Cw

1 = 0.10, Cw
2 = 0.09, Cw

3 = 0.06. For each controller,
the goal is to minimize the quadratic cost function

Vi = lim
T→∞

1
T

E
∫ T

0

(

y2
i (t)+u2

i (t)
)

dt (8.2)

when the plant is subject to white input noise with intensity 1 and white measure-
ment noise with intensity 0.1. This translates to the LQG design matrices

Q1ci =CT
i Ci, Q2ci = 1, R1ci = BiB

T
i , R2ci = 0.1 (8.3)

where (Ai, Bi,Ci, 0) is the controllable canonical state-space realization of the plant
Pi.

107



Chapter 8. Evaluation

Table 8.1 Key control loop parameters for the simple example.

Loop 1 Loop 2 Loop 3

3 dB bandwidth (ωb) 3.22 rad/s 2.78 rad/s 0.98 rad/s
Maximum sensitivity (Ms) 2.36 1.91 1.38
Jitter margin (Jc

m) 0.302 0.398 1.41
Recommended periods [0.045, 0.181] [0.060, 0.239] [0.212, 0.847]

Prior to implementation, a continuous-time LQG controller Ki(s) has been de-
signed for each plant to give satisfactory performance. The cost functions are nor-
malized so that Vi = 1 corresponds to continuous control. Running all continuous
controllers hence gives the overall cost V = ∑3

i=1 Vi = 3.
For each control loop, some key parameters are reported in Table 8.1. The 3 dB

bandwidth, ωb, is the frequency at which the closed-loop gain has dropped to 0.707,
and is a measure of the speed of the controlled system. The maximum sensitivity,
Ms, is calculated as

Ms = max
ω

∣

∣

∣

∣

1
1+P(iω)K(iω)

∣

∣

∣

∣

, (8.4)

and is an indicator of the robustness of the control loop. Typical values for robust
control systems are in the range [1.4, 2.0]; the lower the value of Ms, the larger the
stability margin is. Finally the continuous-time jitter margin is calculated as

Jc
m =

(

max
ω

∣

∣

∣

∣

ωP(iω)K(iω)

1+P(iω)K(iω)

∣

∣

∣

∣

)−1

. (8.5)

It is seen that the first control loop has the worst robustness (largest Ms), while the
third loop has the best robustness. This is natural since the last plant is open-loop
stable. The ranges of recommended sampling periods are calculated using the new
rule of thumb (7.5) proposed in Chapter 7. The execution times have been selected
so that, selecting initial sampling periods T init near the upper recommended values
results in full processor utilization (U = 1).

Priorities are assigned rate-monotonically according to the initial periods and
are kept constant throughout all the different methods below. (The heuristic prior-
ity assignment rule in Chapter 7 was proposed for jitter-robust LQG and may not
necessarily give good results for other LQG design techniques.)

We start by evaluating three different LQG design methods for a fixed set of
sampling periods given by T = T init/Ub, where Ub is the chosen utilization bound:

• Initial LQG design. Each controller is designed without regard for the
scheduling, assuming zero jitter and a constant delay δi =Cw

i .

• Delay-aware LQG design. The delay of each controller is assumed constant
and given by the approximate response-time formula (3.6) from [Bini and

108



8.1 A Simple Codesign Example

Table 8.2 Design results for the simple example with utilization bound Ub = 0.99.

T1 T2 T3 V

Initial LQG design 0.183 0.241 0.856 4.73
Delay-aware LQG design 0.183 0.241 0.856 4.43
Jitter-robust LQG design 0.183 0.241 0.856 4.68

Stochastic LQG codesign 0.260 0.261 0.436 3.76
Periodic LQG codesign 0.227 0.227 0.396 4.00
Harmonic LQG codesign 0.160 0.320 0.640 3.57

Cervin, 2008]. Based on this, a standard LQG controller compensating for
the fixed delay is designed.

• Jitter-robust LQG design. The delay of each controller is assumed to vary
between Cw

i and Rw
i , where Rw

i is the worst-case response time; the jitter is
hence Ji = Rw

i −Cw
i . A jitter-robust controller is designed using the method

from Chapter 7 with the required jitter margin J
req
i = Jc

mi + Ji.

We further evaluate three different codesign methods, where both the periods
and the controllers are redesigned:

• Stochastic LQG codesign. Following the procedure in Chapter 4, we use
the initial sampling periods as a starting point and calculate the first 100 job
response times to obtain the delay probability distributions for each controller.
This data is then used to design a set of stochastic LQG controllers. The
whole procedure is repeated using the DIRECT global search method for the
smallest total cost, using a maximum of 10 iterations.

• Periodic LQG codesign. Using the optimized stochastic LQG periods as a
starting point, the solution is perturbed with the tolerance ε = 0.05 to yield
a finite hyperperiod as described in Chapter 5. A set of time-varying LQG
controllers are then designed based on the resulting cyclic schedule.

• Harmonic LQG codesign. We again take the stochastic LQG periods as a
starting point and enumerate the 2n−1 = 4 closest harmonic task period sets
as proposed in Chapter 6. For each resulting task set, we assign task release
offsets to minimize the control delay and design a standard LQG controller
for the remaining constant delay. All four sets of controllers are evaluated and
the one with the smallest total cost is selected.

The resulting periods and the total LQG cost are shown in Table 8.2 and Ta-
ble 8.3, where all numbers have been rounded to three significant digits. In the
evaluation, two utilization bounds, Ub = 0.99 and Ub = 0.78, have been included.
In the first case, we used the bound 0.99 instead of 1 to avoid numerical errors in

109



Chapter 8. Evaluation

Table 8.3 Design results for the simple example with utilization bound Ub = 0.78.

T1 T2 T3 V

Initial LQG design 0.232 0.306 1.09 4.01
Delay-aware LQG design 0.232 0.306 1.09 3.99
Jitter-robust LQG design 0.232 0.306 1.09 4.06

Stochastic LQG codesign 0.330 0.332 0.544 3.78
Periodic LQG codesign 0.290 0.290 0.483 3.89
Harmonic LQG codesign 0.160 0.320 0.640 3.57

response-time calculations. In the second case, we use Liu and Layland’s sufficient
schedulability bound for three tasks under RM scheduling.

As shown in Table 8.2 and Table 8.3, the delay-aware LQG cost is smaller than
the initial LQG cost, because the delay-aware LQG design takes the RiApprox de-
lay into the design procedure, which is a better approximation of the true delay.
The stochastic LQG has a lower cost than the initial LQG and the delay-aware
LQG methods, because more response time information is taken into account in the
design procedure and the optimization is conducted for the period assignment. In
this particular example, the periodic LQG cost is worse than the delay-aware cost,
because the selected periods of periodic LQG deviate from the stochastic LQG pe-
riods, which are the result of the global search. But periodic LQG cost is still lower
than the initial and the delay-aware LQG cost. The harmonic LQG method has bet-
ter performance than all the other methods. The reason is that, by using harmonic
periods and task offsets, the schedule will give rise to both constant and short de-
lays. This positive effect dominates over the negative effect of having to deviate
quite far from the optimal, real-valued periods.

It is also seen that using the lower utilization bound gives better results for many
of the design methods. The reason seems to be that jitter can become extreme when
utilization is close to 1, and this can cause large performance degradation for the
low-priority tasks under Ub = 0.99. With Ub = 0.78 the jitter is always smaller than
one sampling period, and the performance degradation of the lower-priority tasks
are kept in check.

In the next section, a larger evaluation is performed using randomly generated
plant dynamics, showing the variability and confidence of the results obtained.

8.2 Randomly Generated Codesign Examples

To see whether the results for the simple example above hold in more general cases,
sets of three plants have been randomly generated for evaluation from the following
four plant families:

• Family A: All plants have two real or complex stable poles. They are drawn

110



8.2 Randomly Generated Codesign Examples

from

PA(s) =
K

T 2s2 +2ζ T s+1
, (8.6)

where T = 10−2α , K = 2×10β , ζ = 2γ , and α, β , γ ∈ unif(0, 1).

• Family B: All plants have two real or complex stable poles and one integrator.
They are drawn from

PB(s) =
K

T s(T 2s2 +2ζ T s+1)
, (8.7)

where T = 10−2α , K = 0.3×10β , ζ = 2γ , and α, β , γ ∈ unif(0, 1).

• Family C: All plants have two real or complex stable poles, one stable or
unstable zero and one integrator. They are drawn from

PC(s) =
K [1− sgn(λ −0.5)T Tzs]

T s(T 2s2 +2ζ T s+1)
, (8.8)

where T = 10−2α , K = 1.3× 10β , ζ = 2γ , Tz = 10η−1, and α, β , γ , η , λ ∈
unif(0, 1).

• Family D: All plants have two real or complex stable poles, one stable or
unstable pole and one integrator. They are drawn from

PD(s) =
K

T s(T 2s2 +2ζ T s+1) [1− sgn(λ −0.5)T Tps]
, (8.9)

where T = 10−2α , K = 10β , ζ = 2γ , Tp = 10η+1, and α, β , γ , η , λ ∈
unif(0, 1).

Compared to the random plants in earlier chapters, these plant families represent
more realistic cases, which are not only dominated by unstable dynamics. Integra-
tors and zeros have also been included. The plant parameters have been chosen to
give reasonable robustness (with typical maximum sensitivity values between 1.2
and 2.6). Also a random time constant T has been included to generate plants with
possibly very different time scales.

25 sets of three plants are randomly generated for each family. All plants are
converted to controllable canonical state-space form, and continuous-time LQG
controllers are designed using the parameters Q1ci = CT

i Ci, Q2ci = 1, R1ci = BiB
T
i ,

R2i = 0.01×102σ , where σ ∈ unif(0, 1). Box plots of the maximum sensitivity, Ms,
of the control loops from each family are given in Figure 8.1. It is seen that control
loops based on Family A have the highest robustness, while loops from Family D
have worse robustness (indicated by the larger Ms values).

For the initial sampling period assignment, we first calculate the continuous-
time jitter margin, Jc

mi. Using the rule of thumb for the period selection, the initial

111



Chapter 8. Evaluation

A B C D

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

M
s

Figure 8.1 Maximum sensitivity values for the randomly generated plants in Fam-
ilies A–D.

sampling period is calculated by a coefficient multiplied by the continuous-time
jitter margin of the plant

T init
i = cJc

mi. (8.10)

To investigate a wide range of sampling periods, from fast sampling to very
slow sampling (even violating the rule of thumb), we choose the constant c ∈
{0.15, 0.3, 0.45, 0.6, 0.75, 0.9}. Because each plant is controlled by a LQG con-
troller with similar complexity, we assume, in a set of plants, that the greatest exe-
cution time, out of three, is not larger than twice the execution time of the smallest
one. To reach the utilization bound, U = Ub, where Ub ∈ {0.99, 0.78}, when the
initial sampling periods are used, we assign a constant execution time to each task
as

Cw
i =

Ub (1+ ei)
3

∑
j=1

(

1+ e j

T init
j

) , (8.11)

where ei ∈ unif(0, 1) for i ∈ {1, 2, 3}.
Using this setup, we evaluate the following costs. In the initial, delay-aware,

stochastic, and periodic LQG evaluations, we use the utilization bound Ub.

• Continuous-time LQG cost V ct. For each plant, we design a continuous-time
LQG controller, and the continuous-time LQG cost, V ct

i , is evaluated in Jit-
terbug. In order to more easily compare the results between different plants,
we normalize V ct

i to 1 for each control loop. V ct is the sum of the normalized
cost value, so V ct = 3 after normalization.

112



8.2 Randomly Generated Codesign Examples

• Execution time LQG cost V et. For each plant, we design a discrete-time LQG
controller when the sampling period is chosen as the execution time (Ti = Ei)
and the constant delay is the same as the execution time (δi = Ei). This rep-
resents an ideal case, where the controller can fully utilize its own processor
and execute as frequently as possible. The LQG cost is evaluated in Jitterbug
as V et

i . We define

V et =
3

∑
i=1

V et
i

V ct
i

. (8.12)

• Initial LQG cost V init. The LQG controllers are designed for T init
i as the pe-

riod and Ei as the constant delay. For each task, we calculate the first 1000
response times to estimate the response time distribution. Using this distri-
bution as the delay distribution in Jitterbug, the LQG cost V init

i is evaluated.
V init is calculated by

V init =
3

∑
i=1

V init
i

V ct
i

. (8.13)

• Delay-aware LQG cost V da. We again design the LQG controller with T init
i

as the period but now with R
RiApprox
i as the constant delay. The first 1000

response times are used to calculate the response time distribution. Then the
distribution is used in Jitterbug evaluation. We calculate V da by using

V da =
3

∑
i=1

V da
i

V ct
i

. (8.14)

• Stochastic LQG cost V s. First we use the DIRECT optimization described
in Chapter 4 with the utilization bound ∑3

i=1 Ui ≤ Ub. In the optimization,
we calculate the delay distribution from the first 1000 response times, and
use the delay distribution to design the LQG controller. The LQG cost is
evaluated using the delay distribution. The period we get from the stochastic
LQG design is T s

i . V s is defined as

V s =
3

∑
i=1

V s
i

V ct
i

. (8.15)

• Periodic LQG cost V p. Using T s
i as the initial value, the period perturbation

method in Chapter 5 is used to calculate the periods with a short hyperperiod.
Then the periods are scaled such that U = Ub. In the evaluation procedure,
for each task, if a hyperperiod contains more than 20 periods or the largest
delay is greater than the period, we use the stochastic LQG controller and
use the delay distribution in the evaluation; otherwise, a set of controllers

113



Chapter 8. Evaluation

are designed using the periodic LQG method, and the deterministic repeated
pattern of the delays in a hyperperiod is used to evaluate the cost. We use

V p =
3

∑
i=1

V
p
i

V ct
i

. (8.16)

• Harmonic LQG cost V h. We use T s
i as the initial period and the harmonic

LQG design method in Chapter 6 to evaluate the four closest harmonic task
period sets with full utilization. The LQG controller is designed using a con-
stant delay, equal to the difference between the response time and the start
latency. The LQG cost is evaluated with an offset which is equal to the start
latency. V h is defined as

V h =
3

∑
i=1

V h
i

V ct
i

. (8.17)

We consider two options for the overall utilization bound Ub: 0.99 and 0.78. In
the full utilization case, we use 0.99 to avoid numerical errors in the evaluation. 0.78
is the Liu and Layland sufficient utilization bound for a system with three tasks.

The costs, averaged over 25 generated plant sets for each family and each uti-
lization bound Ub, are shown in Figures 8.2, 8.4, 8.6, 8.8, 8.10, 8.12, 8.14, and 8.16.
To see the variability of the results we also show the box plots of the costs over the
25 sets of the randomly generated plants for the case T init = 0.6Jc

m in Figures 8.3,
8.5, 8.7, 8.9, 8.11, 8.13, 8.15, and 8.17.

As seen in the figures, V ct = 3 is used as the baseline in the evaluation. V et is
evaluated when a task fully uses a CPU, so there is not any uniprocessor scheduling
method that can outperform it, as shown in the figures. V da is lower than V init. The
reason is that, in the initial and the delay-aware LQG, although the sampling periods
are the same and both use a constant delay to design the controller, the delay-aware
LQG uses the RiApprox method to better approximate the non-constant delay. V init

is evaluated using the execution times as delays, which is not a good approximation.
The stochastic LQG design always gives better performance than the delay-

aware design, because the stochastic uses the delay distribution to design the con-
trollers, and uses global search to assign sampling periods, which leads to a lower
total cost. When Ub = 0.78, the periodic LQG outperforms the stochastic LQG, be-
cause the periodic LQG takes the deterministic repeated pattern of response times
into account in the controller design, which is better than a stochastic interpreta-
tion of the delay. However, the periodic LQG is more sensitive to the increased
utilization. So when Ub = 1, the performance of the stochastic LQG is better than
the periodic LQG. Harmonic LQG always has a better performance compared to
stochastic and periodic LQG, the reason being that in harmonic LQG, the delay is
always constant and a release offset is assigned to shorten the delay.

For the given examples, it is seen that the cost increases monotonically with the
sampling periods in all cases. This is to be expected, since the controllers can act less

114



8.2 Randomly Generated Codesign Examples

0.15 0.3 0.45 0.6 0.75 0.9

T init/Jc
m

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

V

V init

V da

V s

V p

V h

V et

V ct

Figure 8.2 Average costs for Family A, Ub = 0.99.

V
init

V
da

V
s

V
p

V
h

V
et

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

Figure 8.3 Box plots of the costs for Family A, Ub = 0.99, T init = 0.6Jc
m.

115



Chapter 8. Evaluation

0.15 0.3 0.45 0.6 0.75 0.9

T init/Jc
m

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

V

V init

V da

V s

V p

V h

V et

V ct

Figure 8.4 Average costs for Family B, Ub = 0.99.

V
init

V
da

V
s

V
p

V
h

V
et

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

Figure 8.5 Box plots of the costs for Family B, Ub = 0.99, T init = 0.6Jc
m.

116



8.2 Randomly Generated Codesign Examples

0.15 0.3 0.45 0.6 0.75 0.9

T init/Jc
m

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

V

V init

V da

V s

V p

V h

V et

V ct

Figure 8.6 Average costs for Family C, Ub = 0.99.

V
init

V
da

V
s

V
p

V
h

V
et

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

Figure 8.7 Box plots of the costs for Family C, Ub = 0.99, T init = 0.6Jc
m.

117



Chapter 8. Evaluation

0.15 0.3 0.45 0.6 0.75 0.9

T init/Jc
m

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

V

V init

V da

V s

V p

V h

V et

V ct

Figure 8.8 Average costs for Family D, Ub = 0.99.

V
init

V
da

V
s

V
p

V
h

V
et

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

Figure 8.9 Box plots of the costs for Family D, Ub = 0.99, T init = 0.6Jc
m.

118



8.2 Randomly Generated Codesign Examples

0.15 0.3 0.45 0.6 0.75 0.9

T init/Jc
m

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

V

V init

V da

V s

V p

V h

V et

V ct

Figure 8.10 Average costs for Family A, Ub = 0.78.

V
init

V
da

V
s

V
p

V
h

V
et

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

Figure 8.11 Box plots of the costs for Family A, Ub = 0.78, T init = 0.6Jc
m.

119



Chapter 8. Evaluation

0.15 0.3 0.45 0.6 0.75 0.9

T init/Jc
m

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

V

V init

V da

V s

V p

V h

V et

V ct

Figure 8.12 Average costs for Family B, Ub = 0.78.

V
init

V
da

V
s

V
p

V
h

V
et

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

Figure 8.13 Box plots of the costs for Family B, Ub = 0.78, T init = 0.6Jc
m.

120



8.2 Randomly Generated Codesign Examples

0.15 0.3 0.45 0.6 0.75 0.9

T init/Jc
m

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

V

V init

V da

V s

V p

V h

V et

V ct

Figure 8.14 Average costs for Family C, Ub = 0.78.

V
init

V
da

V
s

V
p

V
h

V
et

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

Figure 8.15 Box plots of the costs for Family C, Ub = 0.78, T init = 0.6Jc
m.

121



Chapter 8. Evaluation

0.15 0.3 0.45 0.6 0.75 0.9

T init/Jc
m

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

V

V init

V da

V s

V p

V h

V et

V ct

Figure 8.16 Average costs for Family D, Ub = 0.78.

V
init

V
da

V
s

V
p

V
h

V
et

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

Figure 8.17 Box plots of the costs for Family D, Ub = 0.78, T init = 0.6Jc
m.

122



8.2 Randomly Generated Codesign Examples

often to reject disturbances when the period is large. The performance degradation
is not however particularly large; even as slow sampling as T init = 0.9Jc

m only gives
a cost increase of at most 60% for all of the codesign methods. This is an indication
of that the rule of thumb for initial period selection is quite robust.

From Family A to Family D, the sensitivity of the plants to delays and jitter
increases. As shown in Figure 8.1, the maximum sensitivity increases, and, hence,
the robustness decreases. This actually makes the rule of thumb for sampling in-
terval selection choose smaller periods for Family D, which ends up making those
examples more robust towards scheduling-induced jitter.

Comparing the two cases of Ub = 0.99 and Ub = 0.78, the costs are higher when
Ub = 0.99, because the high utilization leads to long average delays and also large
jitter for the low-priority tasks. However, the relative performance improvement for
Ub = 0.99 is higher when applying the codesign methods.

One final conclusion from the evaluation is that, if computing resources are
abundant enough to allow choosing all the sampling periods to be short, e.g.,
T init = 0.15Jc

m, then scheduling and control codesign becomes a non-issue and any
implementation will give satisfactory performance.

123



9

Conclusion

9.1 Summary

This thesis presented four scheduling and control codesign methods for optimizing
the LQG performance of multitasking control applications, such that the scheduling
constraints are satisfied.

We began by presenting a stochastic LQG codesign method (Chapter 4) for
designing LQG controllers, taking the delay distributions into account. The ma-
jor contribution of the stochastic LQG codesign is the proposed period assignment
method based on the task response time distribution and the sequential search-based
algorithm. Through a simulation-based evaluation, it was shown that the control per-
formance, as measured by the LQG cost, was improved compared to previous ap-
proaches and the local search-based heuristic algorithm gave results that were very
close to the solution obtained with a global sampling-based optimization method,
with 50% less computation effort compared to the latter method. In Chapter 8, the
method performed very well for a wide range of sampling periods and plant dynam-
ics in randomized design examples.

In Chapter 5 we described how the periodic pattern of response times can be
used in periodic LQG codesign. We presented periodic and periodic–stochastic
LQG control designs for minimizing the overall cost in real-time control systems.
In the case of periodic–stochastic LQG, also knowledge of the probability distri-
butions of the response times of each job is required. Since both approaches rely
on knowledge of the response-time pattern of each task, they require more analy-
sis and design effort than stochastic LQG codesign. The resulting controller has a
time-periodic gain, meaning that the implementation is also more complicated. In
Chapter 8, it was seen that the method performed at its best at processor utiliza-
tions lower than 1, where in many cases it could beat the stochastic LQG codesign
method.

In Chapter 6 we presented the harmonic LQG scheduling and control codesign
method, in which the sampling periods are perturbed to be harmonic. In order to
implement the codesign method, it is necessary to be able to find the harmonic
periods and to calculate the task response times. Two heuristic approaches to har-

124



9.2 Future Work

monic task period assignment were presented. One method for finding the closest
harmonic periods to a set of initial periods and one method for finding all possi-
ble harmonic period assignments that satisfy constraints on allowable task period
ranges. The resulting controllers are easy to design and implement, since they are
based on a constant control delay. Evaluations showed that the method often gives
very good results, despite the fact that having harmonic periods is a quite severe
design restriction. In Chapter 8 it yielded better performance than both stochastic
and periodic LQG codesign for almost all cases.

Robustness is not considered in Chapters 4–6, so Chapter 7 addressed codesign
of jitter-robust LQG controllers. We proposed an LQG control synthesis method
with a robustness constraint. The initial sampling period assignment and the ro-
bustness constraint were both based on the jitter margin of the control system. The
approximated affine cost function shows that the cost is more sensitive to jitter than
to the sampling period. A priority and period assignment method was given based
on the affine cost functions. The evaluation shows that both priority assignment and
period assignment are important in obtaining the overall best performance while re-
taining the initial robustness of the control loops. The performance with this method
is not as good as under for instance stochastic LQG, but the main goal here was ro-
bustness and not performance.

Finally, Chapter 8 gave further numerical evidence of the relative strength of
the stochastic, periodic, harmonic, and robust LQG codesign methods. The results
showed that all of the proposed LQG codesign methods achieve better overall con-
trol performance than methods that do not take the jitter into account.

The thesis presented multiple methods on LQG-based control and scheduling
codesign, and each of these approaches has its benefits. Which one is the best?
Generally, harmonic LQG design should be used in control and scheduling code-
sign. This is motivated by the good properties of harmonic LQG design, such as
schedulability with full utilization, constant response time (under the assumption of
constant execution times), and constant job start time. Furthermore, harmonic LQG
design can be used together with release offsets, in order to shorten the constant
response times and hence further improve the control performance.

However, these four methods are independent, so each of them can be chosen
for a specific control aim or a specific scheduling timing. For example, if robustness
of the control system a major requirement when optimizing the performance, we
can use robust LQG design. When the response time pattern is known, the periodic
LQG design can provide better performance than stochastic LQG design.

9.2 Future Work

Many different directions for future research and extensions of the thesis are pos-
sible. These range from continued investigation of real-time scheduling analysis to
further development of the control synthesis methods. Although all the limitations

125



Chapter 9. Conclusion

listed in Chapter 1 could have been discussed, here we will only highlight a few of
them.

First, development of multicore scheduling and control codesign methods is
needed. Several of the codesign methods discussed throughout the thesis can quite
easily be extended to partitioned multiprocessor scheduling, because the local
schedulers are independent and the single core scheduling can be reused. For ex-
ample, in the periodic LQG case, the problem becomes how to partition the task set
in the best way in order to obtain finite and short hyperperiods for each of local pro-
cessors while keeping the task periods close to the initial periods. Similarly, in the
harmonic LQG case, the problem is how to partition the task set so that harmonic
task periods can be obtained for each local processor that keep the task periods close
to the initial periods. Since global scheduling suits dynamic configurations and pro-
vides optimal schedules, it is also necessary to investigate the codesign methods in
the case of global scheduling.

Second, methods for efficient codesign under EDF scheduling could be devel-
oped. EDF is an optimal dynamic scheduling strategy for preemptive uniprocessors,
and its utilization bound is 1. It allows better usage of limited computational re-
sources, and the jitter also tends to be more evenly distributed between tasks, which
may lead to better control performance.

Third, further exploration of other types of controllers types besides LQG may
lead to other control and scheduling codesign problems. Another popular design
criterion is to minimize the weighted H∞ norm of the closed-loop system. This
approach is popular in robust control and could possibly be extended to handle
jitter as well.

Fourth, the assumptions on sampling at the job release time and actuation at the
job finishing time could be relaxed. In this case, the delay will be shorter than with
periodic sampling. This, however, leads to systems with varying sampling intervals.
The LQG theory could be extended to also cover this case, although it is currently
not known whether a stochastic Kalman filter and a stochastic state feedback can be
combined using the separation principle to form an optimal LQG controller.

126



Bibliography

Abeni, L., L. Palopoli, G. Lipari, and J. Walpole (2002). “Analysis of a reservation-
based feedback scheduler”. In: Proceedings of the 23rd IEEE Real-Time Systems

Symposium (RTSS). Austin, TX, USA, pp. 71–80.

Aminifar, A., S. Samii, P. Eles, Z. Peng, and A. Cervin (2012). “Designing high-
quality embedded control systems with guaranteed stability”. In: Proceedings

of the 33rd IEEE Real-Time Systems Symposium (RTSS). San Juan, Puerto Rico,
pp. 283–292.

Arun, K. S., T. S. Huang, and S. D. Blostein (1987). “Least-squares fitting of two 3-
D point sets”. IEEE Transactions on pattern analysis and machine intelligence

5, pp. 698–700.

Årzén, K.-E. (1999). “A simple event-based PID controller”. In: Proceedings of the

14th IFAC World Congress. Beijing, China, pp. 423–428.

Årzén, K.-E. and A. Cervin (2005). “Control and embedded computing: survey of
research directions”. In: Proceedings of the 16th IFAC World Congress. Prague,
Czech Republic, pp. 191–202.

Årzén, K.-E., A. Cervin, J. Eker, and L. Sha (2000). “An introduction to control
and scheduling co-design”. In: Proceedings of the 39th IEEE Conference on

Decision and Control (CDC). Sydney, Australia, pp. 4865–4870.

Årzén, K.-E., A. Cervin, and D. Henriksson (2003). “Resource-constrained embed-
ded control systems: possibilities and research issues”. In: Proceedings of the

Co-design for Embedded Real-time Systems (CERTS). Porto, Portugal.

Åström, K. J. (1970). Introduction to stochastic control theory. Academic Press.

Åström, K. J. and B. Wittenmark (2013). Computer-controlled systems: theory and

design. Courier Corporation.

Åström, K. J. and B. Bernhardsson (1999). “Comparison of periodic and event
based sampling for first-order stochastic systems”. In: Proceedings of the 14th

IFAC World Congress. Beijing, China, pp. 5006–5011.

127



Bibliography

Balbastre, P., I. Ripoll, and A. Crespo (2000). “Control tasks delay reduction under
static and dynamic scheduling policies”. In: Proceedings of the 7th International

Conference on Real-Time Computing Systems and Applications (RTCSA). Cheju
Island, South Korea, pp. 522–526.

Balbastre, P., I. Ripoll, J. Vidal, and A. Crespo (2004). “A task model to reduce
control delays”. Real-Time Systems 27:3, pp. 215–236.

Ben Gaid, M. E. M., A. Cela, and Y. Hamam (2006). “Optimal integrated control
and scheduling of networked control systems with communication constraints:
application to a car suspension system”. IEEE Transactions on Control Systems

Technology 14:4, pp. 776–787.

Ben Gaid, M. E. M., A. Cela, and Y. Hamam (2009). “Optimal real-time scheduling
of control tasks with state feedback resource allocation”. IEEE Transactions on

Control Systems Technology 17:2, pp. 309–326.

Ben Gaid, M. E. M., A. Cela, and R. Kocik (2004). “Distributed control of a car
suspension system”. In: Proceedings of the 5th Eurosim Congress on Modelling

and Simulation (EUROSIM). Paris, France.

Bini, E. and S. K. Baruah (2007). “Efficient computation of response time bounds
under fixed-priority scheduling”. In: Proceedings of the 15th Conference on

Real-Time and Network Systems (RTNS). Nancy, France, pp. 95–104.

Bini, E. and G. C. Buttazzo (2005). “Measuring the performance of schedulability
tests”. Real-Time Systems 30:1, pp. 129–154.

Bini, E., G. C. Buttazzo, and G. M. Buttazzo (2003). “Rate monotonic analysis: the
hyperbolic bound”. IEEE Transactions on Computers 52:7, pp. 933–942.

Bini, E. and A. Cervin (2008). “Delay-aware period assignment in control sys-
tems”. In: Proceedings of the 29th IEEE Real-Time Systems Symposium (RTSS).
Barcelona, Spain, pp. 291–300.

Bini, E. and M. Di Natale (2005). “Optimal task rate selection in fixed priority sys-
tems”. In: Proceedings of the 26th IEEE Real-Time Systems Symposium (RTSS).
Miami, FL, USA, pp. 399–409.

Bonifaci, V., A. Marchetti-Spaccamela, N. Megow, and A. Wiese (2013).
“Polynomial-time exact schedulability tests for harmonic real-time tasks”.
In: Proceedings of the 34th IEEE Real-Time Systems Symposium (RTSS).
Vancouver, Canada, pp. 236–245.

Boyd, S. P. and C. H. Barratt (1991). Linear controller design: limits of perfor-

mance. Prentice Hall Englewood Cliffs, NJ.

Boyd, S., C. Crusius, and A. Hansson (1998). “Control applications of nonlinear
convex programming”. Journal of Process Control 8:5-6, pp. 313–324.

Brocal, V., P. Balbastre, R. Ballester, and I. Ripoll (2011). “Task period selection
to minimize hyperperiod”. In: Proceedings of the 16th Conference on Emerging

Technologies & Factory Automation (ETFA). IEEE. Toulouse, France, pp. 1–4.

128



Bibliography

Busquets-Mataix, J. V., J. J. Serrano, R. Ors, P. Gil, and A. Wellings (1996). “Using
harmonic task-sets to increase the schedulable utilization of cache-based pre-
emptive real-time systems”. In: Proceedings of the 3rd International Workshop

on Real-Time Computing Systems and Applications (RTCSA). Seoul, South Ko-
rea, pp. 195–202.

Buttazzo, G. and A. Cervin (2007). “Comparative assessment and evaluation of
jitter control methods”. In: Proceedings of the 15th Conference on Real-Time

and Network Systems (RTNS). Nancy, France, pp. 163–172.

Camacho, E. F. and C. B. Alba (2013). Model predictive control. Springer Science
& Business Media.

Cervin, A. (1999). “Improved scheduling of control tasks”. In: Proceedings of the

11th Euromicro Conference on Real-Time Systems (ECRTS). York, UK, pp. 4–
10.

Cervin, A. (2012). “Stability and worst-case performance analysis of sampled-data
control systems with input and output jitter”. In: Proceedings of the American

Control Conference (ACC). IEEE. Montreal, Canada, pp. 3760–3765.

Cervin, A., J. Eker, B. Bernhardsson, and K.-E. Årzén (2002a). “Feedback–
feedforward scheduling of control tasks”. Real-Time Systems 23:1, pp. 25–53.

Cervin, A., D. Henriksson, B. Lincoln, and K.-E. Årzén (2002b). “Jitterbug and
TrueTime: analysis tools for real-time control systems”. In: Proceedings of the

2nd Workshop on Real-Time Tools. Copenhagen, Denmark.

Cervin, A., D. Henriksson, B. Lincoln, J. Eker, and K.-E. Årzén (2003). “How does
control timing affect performance? analysis and simulation of timing using Jit-
terbug and TrueTime”. IEEE control systems 23:3, pp. 16–30.

Cervin, A., D. Henriksson, and M. Ohlin (2016). TrueTime 2.0—Reference Manual.
Technical Report.

Cervin, A. and B. Lincoln (2003). Jitterbug 1.1—Reference Manual. Technical Re-
port 7604. Department of Automatic Control, Lund University, Sweden.

Cervin, A., B. Lincoln, J. Eker, K.-E. Årzén, and G. Buttazzo (2004). “The jitter
margin and its application in the design of real-time control systems”. In: Pro-

ceedings of the 10th International Conference on Real-Time Computing Systems

and Applications (RTCSA). Gothenburg, Sweden, pp. 1–9.

Davare, A., Q. Zhu, M. Di Natale, C. Pinello, S. Kanajan, and A. Sangiovanni-
Vincentelli (2007). “Period optimization for hard real-time distributed automo-
tive systems”. In: Proceedings of the 44th annual Design Automation Confer-

ence (DAC). ACM. San Diego, CA, USA, pp. 278–283.

Derler, P., E. A. Lee, M. Törngren, and S. Tripakis (2013). “Cyber-physical sys-
tem design contracts”. In: Proceedings of the 4th International Conference on

Cyber-Physical Systems (ICCPS). IEEE. Philadelphia, PA, USA, pp. 109–118.

129



Bibliography

Díaz, J. L., D. F. García, K. Kim, C.-G. Lee, L. L. Bello, J. M. López, S. L. Min,
and O. Mirabella (2002). “Stochastic analysis of periodic real-time systems”. In:
Proceedings of the 23rd IEEE Real-Time Systems Symposium (RTSS). Austin,
TX, USA, pp. 289–300.

Doyle, J. (1978). “Guaranteed margins for LQG regulators”. IEEE Transactions on

Automatic Control 23:4, pp. 756–757.
Doyle, J., K. Zhou, K. Glover, and B. Bodenheimer (1994). “Mixed H2 and H∞

performance objectives II. optimal control”. IEEE Transactions on Automatic

Control 39:8, pp. 1575–1587.
Eisenbrand, F. and T. Rothvoß (2008). “Static-priority real-time scheduling: re-

sponse time computation is NP-hard”. In: Proceedings of the 29th IEEE Real-

Time Systems Symposium (RTSS). Barcelona, Spain, pp. 397–406.
Eker, J., P. Hagander, and K.-E. Årzén (2000). “A feedback scheduler for real-time

controller tasks”. Control Engineering Practice 8:12, pp. 1369–1378.
Franklin, G. F., J. D. Powell, A. Emami-Naeini, and J. D. Powell (1994). Feedback

control of dynamic systems. Vol. 3. Addison-Wesley Reading, MA.
Frehse, G., A. Hamann, S. Quinton, and M. Woehrle (2014). “Formal analysis of

timing effects on closed-loop properties of control software”. In: Proceedings of

the 34th IEEE Real-Time Systems Symposium (RTSS). Rome, Italy, pp. 53–62.
Goswami, D., M. Lukasiewycz, R. Schneider, and S. Chakraborty (2012). “Time-

triggered implementations of mixed-criticality automotive software”. In: Pro-

ceedings of the Design, Automation & Test in Europe Conference & Exhibition

(DATE). European Design and Automation Association. Dresden, Germany,
pp. 1227–1232.

Goswami, D., R. Schneider, and S. Chakraborty (2011). “Co-design of cyber-
physical systems via controllers with flexible delay constraints”. In: Proceed-

ings of the 16th Asia and South Pacific Design Automation Conference (ASP-

DAC). IEEE. Yokohama, Japan, pp. 225–230.
Grant, M. and S. Boyd (2014). CVX: matlab software for disciplined convex pro-

gramming, version 2.1. http://cvxr.com/cvx.
Han, C.-C. and H.-Y. Tyan (1997). “A better polynomial-time schedulability test

for real-time fixed-priority scheduling algorithms”. In: Proceedings of the 18th

IEEE Real-Time Systems Symposium (RTSS). San Francisco, CA, USA, pp. 36–
45.

Henriksson, D. and A. Cervin (2005). “Optimal on-line sampling period assignment
for real-time control tasks based on plant state information”. In: Proceedings

of the 44th IEEE Conference on Decision and Control and European Control

Conference (CDC-ECC). Seville, Spain, pp. 4469–4474.
Jones, D. R., C. D. Perttunen, and B. E. Stuckman (1993). “Lipschitzian optimiza-

tion without the Lipschitz constant”. Journal of optimization Theory and Appli-

cations 79:1, pp. 157–181.

130



Bibliography

Joseph, M. and P. Pandya (1986). “Finding response times in a real-time system”.
The Computer Journal 29:5, pp. 390–395.

Kao, C.-Y. and B. Lincoln (2004). “Simple stability criteria for systems with time-
varying delays”. Automatica 40:8, pp. 1429–1434.

Kim, B. K. (1998). “Task scheduling with feedback latency for real-time control
systems”. In: Proceedings of the 5th International Conference on Real-Time

Computing Systems and Applications (RTCSA). Hiroshima, Japan, pp. 37–41.

Lehoczky, J. P. (1990). “Fixed priority scheduling of periodic task sets with arbitrary
deadlines”. In: Proceedings of the 11th IEEE Real-Time Systems Symposium

(RTSS). Lake Buena Vista, FL, USA, pp. 201–209.

Lehoczky, J. P., L. Sha, J. K. Strosnider, and H. Tokuda (1991). “Fixed priority
scheduling theory for hard real-time systems”. Foundations of Real-Time Com-

puting: Scheduling and Resource Management 1, pp. 1–30.

Lehoczky, J., L. Sha, and Y. Ding (1989). “The rate monotonic scheduling algo-
rithm: exact characterization and average case behavior”. In: Proceedings of the

10th IEEE Real-Time Systems Symposium (RTSS). Santa Monica, CA, USA,
pp. 166–171.

Lemmon, M., T. Chantem, X. Hu, and M. Zyskowski (2007). “On self-triggered
full-information H-infinity controllers”. Hybrid Systems: computation and con-

trol, pp. 371–384.

Levine, W. S. (1996). The control handbook. CRC press.

Lincoln, B. and B. Bernhardsson (2000). “Optimal control over networks with long
random delays”. In: Proceedings of the 14th International Symposium on Math-

ematical Theory of Networks and Systems (MTNS). Perpignan, France.

Lincoln, B. and A. Cervin (2002). “Jitterbug: a tool for analysis of real-time control
performance”. In: Proceedings of the 41st IEEE Conference on Decision and

Control (CDC). Las Vegas, NV, USA, pp. 1319–1324.

Liu, C. L. and J. W. Layland (1973). “Scheduling algorithms for multiprogramming
in a hard-real-time environment”. Journal of the ACM (JACM) 20:1, pp. 46–61.

Mancuso, G. M., E. Bini, and G. Pannocchia (2014). “Optimal priority assignment
to control tasks”. ACM Transactions on Embedded Computing Systems (TECS)

13:5s, p. 161.

Martí, P., C. Lin, S. A. Brandt, M. Velasco, and J. M. Fuertes (2004). “Optimal state
feedback based resource allocation for resource-constrained control tasks”. In:
Proceedings of the 25th IEEE Real-Time Systems Symposium (RTSS). Lisbon,
Portugal, pp. 161–172.

Martí, P., C. Lin, S. A. Brandt, M. Velasco, and J. M. Fuertes (2009). “Draco:
efficient resource management for resource-constrained control tasks”. IEEE

Transactions on Computers 58:1, pp. 90–105.

131



Bibliography

Mohaqeqi, M., M. Nasri, Y. Xu, A. Cervin, and K.-E. Årzén (2016). “On the prob-
lem of finding optimal harmonic periods”. In: Proceedings of the 24th Confer-

ence on Real-Time and Network Systems (RTNS). Brest, France, pp. 171–180.
Mohaqeqi, M., M. Nasri, Y. Xu, A. Cervin, and K.-E. Årzén (2017). “Optimal har-

monic period assignment: complexity results and approximation algorithms”. In
submission to Real-Time Systems.

Muradore, R. and G. Picci (2005). “Mixed H2/H∞ control: the discrete-time case”.
Systems & control letters 54:1, pp. 1–13.

Nasri, M. and G. Fohler (2015). “An efficient method for assigning harmonic peri-
ods to hard real-time tasks with period ranges”. In: Proceedings of the 27th Eu-

romicro Conference on Real-Time Systems (ECRTS). Lund, Sweden, pp. 149–
159.

Nasri, M., G. Fohler, and M. Kargahi (2014). “A framework to construct customized
harmonic periods for real-time systems”. In: Proceedings of the 26th Euromicro

Conference on Real-Time Systems (ECRTS). Madrid, Spain, pp. 211–220.
Nilsson, J. (1998). Real-time control systems with delays. PhD thesis. TFRT–1049–

SE, Department Automatic Control, Lund University, Lund, Sweden.
Nilsson, J., B. Bernhardsson, and B. Wittenmark (1998). “Stochastic analysis

and control of real-time systems with random time delays”. Automatica 34:1,
pp. 57–64.

Palopoli, L., L. Abeni, G. Buttazzo, F. Conticelli, and M. Di Natale (2000). “Real-
time control system analysis: an integrated approach”. In: Proceedings of the

21st IEEE Real-Time Systems Symposium (RTSS). Orlando, FL, USA, pp. 131–
140.

Palopoli, L., C. Pinello, A. S. Vincentelli, L. Elghaoui, and A. Bicchi (2002). “Syn-
thesis of robust control systems under resource constraints”. In: Proceedings

of the 5th Workshop on Hybrid Systems: Computation and Control (HSCC).
Springer. Stanford, CA, USA, pp. 337–350.

Papadimitriou, C. H. (1981). “On the complexity of integer programming”. Journal

of the ACM (JACM) 28:4, pp. 765–768.
Ramanathan, P. (1997). “Graceful degradation in real-time control applications us-

ing (m, k)-firm guarantee”. In: Proceedings of the 27th International Sympo-

sium on Fault-Tolerant Computing (FTCS). IEEE. Seattle, WA, USA, pp. 132–
141.

Redell, O. and M. Sanfridson (2002). “Exact best-case response time analysis of
fixed priority scheduled tasks”. In: Proceedings of the 14th Euromicro Confer-

ence on Real-Time Systems (ECRTS). Vienna, Austria, pp. 165–172.
Redell, O. and M. Torngren (2002). “Calculating exact worst case response times

for static priority scheduled tasks with offsets and jitter”. In: Proceedings of the

8th IEEE Real-Time and Embedded Technology and Applications Symposium

(RTAS). San Jose, CA, USA, pp. 164–172.

132



Bibliography

Ripoll, I. and R. Ballester-Ripoll (2013). “Period selection for minimal hyperperiod
in periodic task systems”. IEEE Transactions on Computers 62:9, pp. 1813–
1822.

Saifullah, A., C. Wu, P. B. Tiwari, Y. Xu, Y. Fu, C. Lu, and Y. Chen (2014). “Near
optimal rate selection for wireless control systems”. ACM Transactions on Em-

bedded Computing Systems (TECS) 13:4s, p. 128.

Samii, S., A. Cervin, P. Eles, and Z. Peng (2009). “Integrated scheduling and synthe-
sis of control applications on distributed embedded systems”. In: Proceedings

of the Design, Automation & Test in Europe Conference & Exhibition (DATE).
European Design and Automation Association. Nice, France, pp. 57–62.

Seto, D., J. P. Lehoczky, L. Sha, and K. G. Shin (1996). “On task schedulability in
real-time control systems”. In: Proceedings of the 17th IEEE Real-Time Systems

Symposium (RTSS). Washington, DC, USA, pp. 13–21.

Tabuada, P. (2007). “Event-triggered real-time scheduling of stabilizing control
tasks”. IEEE Transactions on Automatic Control 52:9, pp. 1680–1685.

Tanasa, B., U. D. Bordoloi, P. Eles, and Z. Peng (2015). “Probabilistic response
time and joint analysis of periodic tasks”. In: Proceedings of the 27th Euromicro

Conference on Real-Time Systems (ECRTS). Lund, Sweden, pp. 235–246.

Vallender, S. (1974). “Calculation of the Wasserstein distance between probabil-
ity distributions on the line”. Theory of Probability & Its Applications 18:4,
pp. 784–786.

Velasco, M., J. Fuertes, and P. Martí (2003). “The self triggered task model for real-
time control systems”. In: Work-in-Progress Session of the 24th IEEE Real-Time

Systems Symposium (RTSS). Vol. 384. Cancun, Mexico.

Wittenmark, B., J. Nilsson, and M. Torngren (1995). “Timing problems in real-time
control systems”. In: Proceedings of the American Control Conference (ACC).
IEEE. Seattle, WA, USA, pp. 2000–2004.

Xu, Y., K.-E. Årzén, E. Bini, and A. Cervin (2014). “Response time driven design
of control systems”. In: Proceedings of the 19th IFAC World Congress. Cape
Town, South Africa, pp. 6098–6104.

Xu, Y., K.-E. Årzén, E. Bini, and A. Cervin (2017a). “LQG-based control and
scheduling co-design”. In: Proceedings of the 20th IFAC World Congress.
Toulouse, France.

Xu, Y., K.-E. Årzén, A. Cervin, E. Bini, and B. Tanasa (2015). “Exploiting job
response-time information in the co-design of real-time control systems”. In:
Proceedings of the 21st International Conference on Embedded and Real-Time

Computing Systems and Applications (RTCSA). Hong Kong, China, pp. 247–
256.

133



Bibliography

Xu, Y., A. Cervin, and K.-E. Årzén (2016a). “Harmonic scheduling and control co-
design”. In: Proceedings of the 22nd International Conference on Embedded

and Real-Time Computing Systems and Applications (RTCSA). Daegu, South
Korea, pp. 182–187.

Xu, Y., A. Cervin, and K.-E. Årzén (2016b). “LQG-based scheduling and control
co-design using harmonic task periods”. Technical Report TFRT-7646. Depart-
ment of Automatic Control, Lund University.

Xu, Y., A. Cervin, and K.-E. Årzén (2017b). “Jitter-robust LQG control and real-
time scheduling co-design”. In submission to the 2018 American Control Con-
ference.

Zhang, F., K. Szwaykowska, W. Wolf, and V. Mooney (2008). “Task scheduling for
control oriented requirements for cyber-physical systems”. In: Proceedings of

the 29th IEEE Real-Time Systems Symposium (RTSS). Barcelona, Spain, pp. 47–
56.

Zhou, K., K. Glover, B. Bodenheimer, and J. Doyle (1994). “Mixed H2 and H∞

performance objectives I: robust performance analysis”. IEEE Transactions on

Automatic Control 39:8, pp. 1564–1574.

134



A

Stochastic LQG Design

We here derive the discrete-time stochastic LQG controller for a continuous-time
plant with a random control delay δk, used in the stochastic scheduling and control
codesign in Chapter 4. It is assumed that the difference between the maximum delay,
δ max, and the minimum delay, δ min, is smaller than or equal to the sampling interval
h. (Without this assumption, further information would be needed about the order
of arrival of the control signals to the plant, and the calculations would also be
much more involved.) For ease of notation, we further assume that δ min ≤ h. Extra
integer delays can easily be added to the sampled plant before the state feedback is
calculated.

To handle the long control delays in the control design, we treat the constant
part of the delay, δ min, as a measurement delay, while the time-varying part of the
delay, δk−δ min is handled as an input delay. The setup is illustrated in Figure A.1.
At time kh, the plant output y[k], sampled at time kh−δ min, arrives to the controller.
The newly calculated control signal u[k] is then applied somewhere in the interval
[kh, kh+h]. As usual, the LQG controller design can be separated into optimal state
feedback and Kalman filtering.

y(t)

u(t)

t

(k−1)h kh (k+1)h (k+2)h

δ minδ minδ min

δk
δk+1

y[k]
y[k+1]

y[k+2]

u[k−1]
u[k]

u[k+1]

Figure A.1 The long control delays are handled using a combination of constant
measurement delays and a time-varying input delay.

135



Appendix A. Stochastic LQG Design

Optimal State Feedback

Introduce the notation δ̄k = δk − δ min for the time-varying part of the delay. The
evolution of the state is then given by the discrete-time state-space model

x[k+1] = Φx[k]+ Γ̄1(δ̄k)u[k−1]+ Γ̄0(δ̄k)u[k]+ v[k], (A.1)

where
Φ = Φ(h, 0)

Γ̄1(δ̄k) = Φ(h−δk, 0)Γ(δk, 0)

Γ̄0(δ̄k) = Γ(h−δk, 0),

(A.2)

compare (2.10). After introducing the augmented state vector xe as in (2.11), the
sampled cost in the time interval [kh, kh+h] given by

V [k] = xT
e [k]Q1e(δ̄k)xe[k]+2xT

e [k]Q12e(δ̄k)u[k]+uT [k]Q2e(δ̄k)u[k]+Vconst, (A.3)

where Q1e(δ̄k), QT
12e(δ̄k), and QT

2e(δ̄k) are given by the time-varying counterparts of
the cost matrices (2.16). To solve for the optimal state feedback gain, let

X =

[

X11 X12

XT
12 X22

]

(A.4)

be a symmetric matrix of appropriate size. The optimal static feedback L is then
given by the stationary solution to the stochastic Riccati equation

X = E
δ̄k

{

[

ΦT
e (δ̄k)

ΓT
e (δ̄k)

]

S

[

ΦT
e (δ̄k)

ΓT
e (δ̄k)

]T

+

[

Q1e(δ̄k) Q12e(δ̄k)

QT
12e(δ̄k) Q2e(δ̄k)

]

}

(A.5)

where
S = X11−LT X22L

L = X−1
22 XT

12.
(A.6)

In MATLAB, this can be solved by using iteration.

Kalman Filtering

The Kalman filter is based on an extended model that includes the measurement
delayed by δ min time units. The delayed measurement to be used in the next step is
captured by an extra state variable y0, yielding the extended state-space model

x[k+1] = Φx[k]+ v1[k]

y0[k+1] =CΦ(h−δ min)x[k]+ vy[k]

y[k] = y0[k]+ v2[k].

(A.7)

136



Appendix A. Stochastic LQG Design

The extended process noise vector (v1, vy) has covariance

E
[

v1[k]
vy[k]

][

v1[k]
vy[k]

]T

=

[

R1 R12y

RT
12y R2y

]

(A.8)

where
R12y = Φ(δ min)R1(h−δ min)CT

R2y =CR1(h−δ min)CT .
(A.9)

Solving the associated algebraic Riccati equation yields the Kalman filter gain vec-
tor [KT KT

y ]
T , and the Kalman filter becomes

x̂[k+1] = Φx̂[k]+ Γ̂1u[k−1]+ Γ̂0u[k]+K(y[k]− ŷ0[k])

ŷ0[k+1] =CΦ(h−δ min)x̂[k]+ Γ̂1yu[k−1]+ Γ̂0yu[k]+Ky(y[k]− ŷ0[k]),
(A.10)

where Γ̂1 and Γ̂0 represent the average (expected value) Γ1 and Γ0 matrices over a
sampling period, while Γ̂1y and Γ̂0y are the corresponding matrices but only up to
time h−δ min in the period, where the new measurement sample will be taken.

Optimal Output Feedback

Since there is no sampling jitter, the time-invariant Kalman filter will be optimal. It
is combined with the static state feedback gain from the stochastic Riccati equation
to form an optimal time-invariant LQG controller.

137



B

Periodic LQG Design

To derive the periodic LQG control for deterministic job response times presented
in Chapter 5, we describe here the procedure that leads us to the result.

Sampling the Periodic Time Delay System

For convenience, all the subscripts indicating the ith task are omitted. Integration of
(2.1) over one hyperperiod is given as

x((k+1)lh) = eAlhx(klh)+
∫ klh+δ1

klh
eA((k+1)lh−s)dsBu((kl−1)h)

+
l−1

∑
j=1

∫ (kl+ j)h+δ j+1

(kl+ j−1)h+δ j

eA((k+1)lh−s)dsBu((kl + j−1)h)

+
∫ (k+1)lh

((k+1)l−1)h+δl

eA((k+1)lh−s)dsBu(((k+1)l−1)h)

= Φx(klh)+Γ0











u(klh)
u((kl +1)h)

...
u(((k+1)l +1)h)











+Γ1











u((k−1)lh)
u(((k−1)l +1)h)

...
u((kl−1)h)











= Φx(klh)+Γ0u′(klh)+Γ1u′((k−1)lh)
(B.1)

where

Φ = eAlh (B.2)

138



Appendix B. Periodic LQG Design

Γ0 =



























∫ (kl+1)h+δ2

klh+δ1

eA((k+1)lh−s)dsB

∫ (kl+1)h+δ3

klh+δ2

eA((k+1)lh−s)dsB

...
∫ ((k+1)l−1)h+δl

((k+1)l−2)h+δl−1

eA((k+1)lh−s)dsB



























T

Γ1 =

[

0 0 · · · 0
∫ klh+δ1

klh
eA((k+1)lh−s)dsB

]

.

(B.3)

Here, the vector u′(klh) contains all the control signals from time klh to time (k+
1)lh, and the length of it is l.

Sampling the Cost Function

In order to calculate Q1, Q12 and Q2, the cost matrices of the cost function are
sampled using zero-order hold. For (2.1), when vci are zero, and from time b to time
a control ui(t) is constant, the discrete time cost matrices are

Q0
1(a,b) =

∫ a

b
ΦT (s,b)Q1cΦ(s,b)ds

Q0
12(a,b) =

∫ a

b
ΦT (s,b) [Q1cΓ(s,b)+Q12c]ds

Q0
2(a,b) =

∫ a

b

[

ΓT (s,b)Q1cΓ(s,b)+2ΓT (s,b)Q12c +Q2c

]

ds.

(B.4)

Due to the periodicity, the cost matrices calculation is only performed from time 0
to time lh, which is one hyperperiod. Then

Q1 = Q0
1(lh,0). (B.5)

We further have

Q2 =















Q
(1,1)
2 Q

(1,2)
2 · · · Q

(1,l)
2

Q
(1,2)T
2 Q

(2,2)
2 · · · Q

(2,l)
2

...
...

. . .
...

Q
(1,l)T
2 Q

(2,l)T
2 · · · Q

(l,l)
2















(B.6)

139



Appendix B. Periodic LQG Design

where

Q
(1,1)
2 = Q0

2(h+δ2,δ1)+
l−2

∑
i=1

{

ΓT (h+δ2,δ1)ΦT (ih+δi+1,h+δ2)

× Q0
1 [(i+1)h+δi+2, ih+δi+1]Φ(ih+δi+1,h+δ2)Γ(h+δ2,δ1)

}

+ΓT (h+δ2,δ1)ΦT [(l−1)h+δl ,h+δ2]Q
0
1 [lh,(l−1)h+δl ]

×Φ [(l−1)h+δl ,h+δ2]Γ(h+δ2,δ1) (B.7)

Q
(1,2)
2 = ΓT (h+δ2,δ1)

{

l−1

∑
i=1

ΓT (ih+δi+1,h+δ2)Q0
1 [(i+1)h+δi+2, ih+δi+1]

×Γ(ih+δi+1,h+δ2)+ΓT [(l−1)h+δl ,h+δ2]Q
0
1 [lh,(l−1)h+δl ]

×Γ [(l−1)h+δl ,h+δ2]

}

(B.8)

Q
(1,l)
2 = ΓT (h+δ2,δ1)ΦT ((l−1)h+δl ,h+δ2)Q0

12 (lh,(l−1)h+δl) (B.9)

Q
(2,2)
2 = Q0

2 (2h+δ3,h+δ2)+ΓT (2h+δ3,h+δ2)

{

l−2

∑
i=2

ΦT (ih+δi+1,2h+δ3)

×Q0
1 ((i+1)h+δi+2, ih+δi+1)Φ(ih+δi+1,2h+δ3)

+ΦT ((l−1)h+δl ,2h+δ3)Q0
1 (lh,(l−1)h+δl)

×Φ((l−1)h+δl ,2h+δ3)

}

Γ(2h+δ3,h+δ2)

(B.10)

Q
(2,l)
2 = ΓT (2h+δ3,h+δ2)ΦT ((l−1)h+δl ,2h+δ3)Q0

12 (lh,(l−1)h+δl)
(B.11)

Q
(l,l)
2 = Q0

2 (lh,(l−1)h+δl) (B.12)

and

Q12 =











Q1
12

Q2
12
...

Ql
12











(B.13)

140



Appendix B. Periodic LQG Design

where

Q1
12 =

[

Φ(δ1,0) Γ(δ1,0)
]T

{

Q0
12 (h+δ2,δ1)+

[

l−1

∑
i=2

ΦT ((i−1)h+δi,δ1)

×Q0
1 (ih+δi+1,(i−1)h+δi)Φ((i−1)h+δi,h+δ2)+ΦT ((l−1)h+δl ,δ1)

×Q0
1(lh,(l−1)h+δl)Φ((l−1)h+δl ,h+δ2)

]

Γ(h+δ2,δ1)

}

(B.14)

Q2
12 =

[

Φ(δ1,0) Γ(δ1,0)
]T

ΦT (h+δ2,δ1)

{

Q0
12 (2h+δ3,h+δ2)

+

[

l−1

∑
i=3

ΦT ((i−1)h+δi,h+δ2)Q0
1 (ih+δi+1,(i−1)h+δi)

×Φ((i−1)h+δi,2h+δ3)+ΦT ((l−1)h+δl ,h+δ2)Q0
1 (lh,(l−1)h+δl)

×Φ((l−1)h+δl ,2h+δ3)

]

Γ(2h+δ3,h+δ2)

}

(B.15)

Ql
12 =

(

Φ(δ1,0) Γ(δ1,0)
)T

ΦT [(l−1)h+δl ,δ1]Q
0
12 [lh,(l−1)h+δl ] . (B.16)

The matrix Q1 is positive semidefinite, and Q2 is positive definite, which will be
relaxed next. The cross term Q12 is general not zero even if Q12c = 0.

Linear Quadratic Control Design

Using the extended state space matrices Φ, Γ from Section 5.3 and cost matrix Q

from Section 5.3, we solve the standard discrete time algebraic Riccati equation

Q1 +ΦT
e PΦe−

(

ΦT
e PΓe +Q12

)(

ΓT
e PΓe +Q2

)−1 (
ΓT

e PΦe +QT
12

)

−P = 0 (B.17)

where

Φe =

[

Φ Γ1

0 0

]

, Γe =

[

Γ0

I

]

. (B.18)

The linear quadratic state feedback vector is given by

L =
(

Q2 +ΓT
e PΓe

)−1 (
2QT

12 +ΓT
e PΦe

)

. (B.19)

Q2 + ΓT
e PΓe needs to be positive definite. It means that the requirement in Sec-

tion 5.3 about Q2 is relaxed. The control signals over the hyperperiod are obtained

141



Appendix B. Periodic LQG Design

as

u′(klh) =











u(klh)
u((kl +1)h)

...
u((k+1)lh)











=−Lx(klh) =−











L1

L2
...

Ll











x(klh). (B.20)

The state feedback vector is based on the extended state x(klh), which means the
sampling happens every hyperperiod. But in fact, it should happen every period. So
the state feedback vector must be reformulated according to











u(klh)
u((kl +1)h)

...
u((k+1)lh)











=−











L′1x(klh)
L′2x((kl +1)h)

...
L′lx((k+1)lh)











. (B.21)

For any i ∈ {1, 2, . . . , l}, the extended state at time (kl + i)h is

x((kl + i)h) =
(

Φe,i−1−Γe,i−1L′i−1

)

x((kl + i−1)h)

=
i−1

∏
j=1

(

Φe,i− j−Γe,i− jL
′
i− j

)

x(klh) (B.22)

where Φe,i and Γe,i are the ith extended state space matrices in a hyperperiod. So

Lix(klh) = L′ix((kl + i−1)h)

= L′i
i−1

∏
j=2

(

Φe,i− j−Γe,i− jL
′
i− j

)

x(klh). (B.23)

The reformulated state feedback vectors are finally calculated recursively by

L′i =











L1, if i = 1

Li

i−2

∏
j=1

(

Φe, j−Γe, jL
′
j

)−1
, if i > 1.

(B.24)

142


